Sample records for narrow band highfrequency

  1. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.

    2013-03-15

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less

  2. Masking of low-frequency signals by high-frequency, high-level narrow bands of noisea

    PubMed Central

    Patra, Harisadhan; Roup, Christina M.; Feth, Lawrence L.

    2011-01-01

    Low-frequency masking by intense high-frequency noise bands, referred to as remote masking (RM), was the first evidence to challenge energy-detection models of signal detection. Its underlying mechanisms remain unknown. RM was measured in five normal-hearing young-adults at 250, 350, 500, and 700 Hz using equal-power, spectrally matched random-phase noise (RPN) and low-noise noise (LNN) narrowband maskers. RM was also measured using equal-power, two-tone complex (TC2) and eight-tone complex (TC8). Maskers were centered at 3000 Hz with one or two equivalent rectangular bandwidths (ERBs). Masker levels varied from 80 to 95 dB sound pressure level in 5 dB steps. LNN produced negligible masking for all conditions. An increase in bandwidth in RPN yielded greater masking over a wider frequency region. Masking for TC2 was limited to 350 and 700 Hz for one ERB but shifted to only 700 Hz for two ERBs. A spread of masking to 500 and 700 Hz was observed for TC8 when the bandwidth was increased from one to two ERBs. Results suggest that high-frequency noise bands at high levels could generate significant low-frequency masking. It is possible that listeners experience significant RM due to the amplification of various competing noises that might have significant implications for speech perception in noise. PMID:21361445

  3. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  4. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2017-02-01

    In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.

  5. An enhanced narrow-band imaging method for the microvessel detection

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  6. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  7. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  8. Perfect narrow band absorber for sensing applications.

    PubMed

    Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing

    2016-05-02

    We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

  9. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGES

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; ...

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  10. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  11. A narrow band pattern-matching model of vowel perception

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.; Houde, Robert A.

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  12. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  13. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    PubMed

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  14. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  15. Large Format Narrow-Band, Multi-Band, and Broad-Band LWIR QWIP Focal Planes for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2004-01-01

    A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.

  16. Application of narrow-band television to industrial and commercial communications

    NASA Technical Reports Server (NTRS)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  17. Narrow-band filters for the lightning imager

    NASA Astrophysics Data System (ADS)

    Piegari, Angela; Di Sarcina, Ilaria; Grilli, Maria Luisa; Menchini, Francesca; Scaglione, Salvatore; Sytchkova, Anna; Zola, Danilo; Cuevas, Leticia P.

    2017-11-01

    The study of lightning phenomena will be carried out by a dedicated instrument, the lightning imager, that will make use of narrow-band transmission filters for separating the Oxygen emission lines in the clouds, from the background signal. The design, manufacturing and testing of these optical filters will be described here.

  18. Narrow band imaging combined with water immersion technique in the diagnosis of celiac disease.

    PubMed

    Valitutti, Francesco; Oliva, Salvatore; Iorfida, Donatella; Aloi, Marina; Gatti, Silvia; Trovato, Chiara Maria; Montuori, Monica; Tiberti, Antonio; Cucchiara, Salvatore; Di Nardo, Giovanni

    2014-12-01

    The "multiple-biopsy" approach both in duodenum and bulb is the best strategy to confirm the diagnosis of celiac disease; however, this increases the invasiveness of the procedure itself and is time-consuming. To evaluate the diagnostic yield of a single biopsy guided by narrow-band imaging combined with water immersion technique in paediatric patients. Prospective assessment of the diagnostic accuracy of narrow-band imaging/water immersion technique-driven biopsy approach versus standard protocol in suspected celiac disease. The experimental approach correctly diagnosed 35/40 children with celiac disease, with an overall diagnostic sensitivity of 87.5% (95% CI: 77.3-97.7). An altered pattern of narrow-band imaging/water immersion technique endoscopic visualization was significantly associated with villous atrophy at guided biopsy (Spearman Rho 0.637, p<0.001). Concordance of narrow-band imaging/water immersion technique endoscopic assessments was high between two operators (K: 0.884). The experimental protocol was highly timesaving compared to the standard protocol. An altered narrow-band imaging/water immersion technique pattern coupled with high anti-transglutaminase antibodies could allow a single guided biopsy to diagnose celiac disease. When no altered mucosal pattern is visible even by narrow-band imaging/water immersion technique, multiple bulbar and duodenal biopsies should be obtained. Copyright © 2014. Published by Elsevier Ltd.

  19. Enhanced tunable narrow-band THz emission from laser-modulated electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, D.; Stupakov, G.; /SLAC

    2009-06-19

    We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers andmore » dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.« less

  20. High power narrow-band fiber-based ASE source.

    PubMed

    Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A

    2011-02-28

    In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.

  1. Narrow-band radio flares from red dwarf stars

    NASA Technical Reports Server (NTRS)

    White, Stephen M.; Kundu, Mukul R.; Jackson, Peter D.

    1986-01-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles.

  2. Diluted magnetic semiconductors with narrow band gaps

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Maekawa, Sadamichi

    2016-10-01

    We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.

  3. Effect of narrow band nonuniformity on unsteady heat up of water vapor under radiation-conduction combined heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Tatsuyuki; Tanaka, Tomohiro; Morimune, Atsushi

    Effect of narrow band nonuniformity on unsteady heat up process of water vapor under radiation-conduction combined heat transfer is examined by comparing the result of numerical simulations with and without incorporation of narrow band nonuniformity. The authors propose a rational and comprehensive computational approach for incorporating the narrow band nonuniformity into numerical simulations of radiative heat transfer when the considered field is nonisothermal. Results of examination exhibited that the contribution of radiative heat transfer to the heat up rate of water vapor may be almost twice overestimated, if the narrow band nonuniformity effect is neglected. Separate analyses of radiative energymore » attributed to wall emission and gas emission clarified that the absorption of wall emission is overestimated and, on the contrary, the absorption of radiation energy emitted by water vapor itself is underestimated if the narrow band nonuniformity is neglected. The reason why such over- or under-estimation is induced is understood by examining the influence of line overlap parameter on the transmittance averaged within a narrow band. Smaller value of line overlap parameter {gamma}/d means more violent narrow band nonuniformity. The broken lines show the narrow band transmittance for flat incident power spectrum, and the solid lines show that for the radiative emission from the absorbing gas itself. It is also clarified that the disregard of the narrow band nonuniformity give rise to serious error in the estimation of absorption rate of wall and gas emission even in the case where the disregard of narrow band nonuniformity bring little change to the temperature distribution. The results illustrated in this paper suggest that the narrow band nonuniformity should not be neglected.« less

  4. Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films

    NASA Astrophysics Data System (ADS)

    Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi

    2017-07-01

    We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.

  5. Narrow band imaging versus autofluorescence imaging for head and neck squamous cell carcinoma detection: a prospective study.

    PubMed

    Ni, X-G; Zhang, Q-Q; Wang, G-Q

    2016-11-01

    This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.

  6. Narrow-band filters for ocean colour imager

    NASA Astrophysics Data System (ADS)

    Krol, Hélène; Chazallet, Frédéric; Archer, Julien; Kirchgessner, Laurent; Torricini, Didier; Grèzes-Besset, Catherine

    2017-11-01

    During the last few years, the evolution of deposition technologies of optical thin films coatings and associated in-situ monitoring methods enables us today to successfully answer the increasingly request of space systems for Earth observation. Geostationary satellite COMS-1 (Communication, Ocean, Meteorological Satellite-1) of Astrium has the role of ensuring meteorological observation as well as monitoring of the oceans. It is equipped with a colour imager to observe the marine ecosystem through 8 bands in the visible spectrum with a ground resolution of 500m. For that, this very high technology instrument is constituted with a filters wheel in front of the oceanic colour imager with 8 narrow band filters carried out and qualified by Cilas.

  7. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  8. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    PubMed

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  9. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites

    PubMed Central

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang

    2016-01-01

    The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014

  10. Measuring the critical band for speech.

    PubMed

    Healy, Eric W; Bacon, Sid P

    2006-02-01

    The current experiments were designed to measure the frequency resolution employed by listeners during the perception of everyday sentences. Speech bands having nearly vertical filter slopes and narrow bandwidths were sharply partitioned into various numbers of equal log- or ERBN-width subbands. The temporal envelope from each partition was used to amplitude modulate a corresponding band of low-noise noise, and the modulated carriers were combined and presented to normal-hearing listeners. Intelligibility increased and reached asymptote as the number of partitions increased. In the mid- and high-frequency regions of the speech spectrum, the partition bandwidth corresponding to asymptotic performance matched current estimates of psychophysical tuning across a number of conditions. These results indicate that, in these regions, the critical band for speech matches the critical band measured using traditional psychoacoustic methods and nonspeech stimuli. However, in the low-frequency region, partition bandwidths at asymptote were somewhat narrower than would be predicted based upon psychophysical tuning. It is concluded that, overall, current estimates of psychophysical tuning represent reasonably well the ability of listeners to extract spectral detail from running speech.

  11. The diagnostic value of narrow-band imaging for early and invasive lung cancer: a meta-analysis.

    PubMed

    Zhu, Juanjuan; Li, Wei; Zhou, Jihong; Chen, Yuqing; Zhao, Chenling; Zhang, Ting; Peng, Wenjia; Wang, Xiaojing

    2017-07-01

    This study aimed to compare the ability of narrow-band imaging to detect early and invasive lung cancer with that of conventional pathological analysis and white-light bronchoscopy. We searched the PubMed, EMBASE, Sinomed, and China National Knowledge Infrastructure databases for relevant studies. Meta-disc software was used to perform data analysis, meta-regression analysis, sensitivity analysis, and heterogeneity testing, and STATA software was used to determine if publication bias was present, as well as to calculate the relative risks for the sensitivity and specificity of narrow-band imaging vs those of white-light bronchoscopy for the detection of early and invasive lung cancer. A random-effects model was used to assess the diagnostic efficacy of the above modalities in cases in which a high degree of between-study heterogeneity was noted with respect to their diagnostic efficacies. The database search identified six studies including 578 patients. The pooled sensitivity and specificity of narrow-band imaging were 86% (95% confidence interval: 83-88%) and 81% (95% confidence interval: 77-84%), respectively, and the pooled sensitivity and specificity of white-light bronchoscopy were 70% (95% confidence interval: 66-74%) and 66% (95% confidence interval: 62-70%), respectively. The pooled relative risks for the sensitivity and specificity of narrow-band imaging vs the sensitivity and specificity of white-light bronchoscopy for the detection of early and invasive lung cancer were 1.33 (95% confidence interval: 1.07-1.67) and 1.09 (95% confidence interval: 0.84-1.42), respectively, and sensitivity analysis showed that narrow-band imaging exhibited good diagnostic efficacy with respect to detecting early and invasive lung cancer and that the results of the study were stable. Narrow-band imaging was superior to white light bronchoscopy with respect to detecting early and invasive lung cancer; however, the specificities of the two modalities did not differ

  12. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination. © 2012 American Academy of Forensic Sciences.

  13. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  14. Adaptive sparsest narrow-band decomposition method and its applications to rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao

    2017-02-01

    Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.

  15. Numerical simulation of evaluation of surface breaking cracks by array-lasers generated narrow-band SAW

    NASA Astrophysics Data System (ADS)

    Dong, Li-Ming; Ni, Chen-Yin; Shen, Zhong-Hua; Ni, Xiao-Wu

    2011-09-01

    Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.

  16. The role of intraoperative narrow-band imaging in transoral laser microsurgery for early and moderately advanced glottic cancer.

    PubMed

    Klimza, Hanna; Jackowska, Joanna; Piazza, Cesare; Banaszewski, Jacek; Wierzbicka, Malgorzata

    2018-03-01

    Trans-oral laser microsurgery is an established technique for the treatment of early and moderately advanced laryngeal cancer. The authors intend to test the usefulness of narrow-band imaging in the intraoperative assessment of the larynx mucosa in terms of specifying surgical margins. Forty-four consecutive T1-T2 glottic cancers treated with trans-oral laser microsurgery Type I-VI cordectomy were presented. Suspected areas (90 samples/44 patients) were biopsied under the guidance of narrow-band imaging and white light and sent for frozen section. Our study revealed that 75 of 90 (83.3%) white light and narrow-band imaging-guided samples were histopathologically positive: 30 (40%) were confirmed as carcinoma in situ or invasive carcinoma and 45 (60%) as moderate to severe dysplasia. In 6 patients mucosa was suspected only in narrow-band imaging, with no suspicion under white light. Thus, in these 6 patients 18/90 (20%) samples were taken. In 5/6 patients 16/18 (88.8%) samples were positive in frozen section: in 6/18 (33.3%) carcinoma (2 patients), 10/18 (66.6%) severe dysplasia was confirmed (3 patients). In 1 patient 2/18 (11.1%) samples were negative in frozen section. Presented analysis showed, that sensitivity, specificity and accuracy of white light was 79.5%, 20% and 71.1% respectively, while narrow-band imaging was 100%, 0.0% and 85.7%, respectively. The intraoperative use of narrow-band imaging proved to be valuable in the visualization of suspect areas of the mucosa. Narrow-band imaging confirms the suspicions undertaken in white light and importantly, it showed microlesions beyond the scope of white light. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  18. Narrow-band erbium-doped fibre linear–ring laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolegov, A A; Sofienko, G S; Minashina, L A

    2014-01-31

    We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)

  19. Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Lang, K. R.; Willson, R. F.

    1986-01-01

    Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.

  20. Monte Carlo modeling of light-tissue interactions in narrow band imaging.

    PubMed

    Le, Du V N; Wang, Quanzeng; Ramella-Roman, Jessica C; Pfefer, T Joshua

    2013-01-01

    Light-tissue interactions that influence vascular contrast enhancement in narrow band imaging (NBI) have not been the subject of extensive theoretical study. In order to elucidate relevant mechanisms in a systematic and quantitative manner we have developed and validated a Monte Carlo model of NBI and used it to study the effect of device and tissue parameters, specifically, imaging wavelength (415 versus 540 nm) and vessel diameter and depth. Simulations provided quantitative predictions of contrast-including up to 125% improvement in small, superficial vessel contrast for 415 over 540 nm. Our findings indicated that absorption rather than scattering-the mechanism often cited in prior studies-was the dominant factor behind spectral variations in vessel depth-selectivity. Narrow-band images of a tissue-simulating phantom showed good agreement in terms of trends and quantitative values. Numerical modeling represents a powerful tool for elucidating the factors that affect the performance of spectral imaging approaches such as NBI.

  1. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  2. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  3. An adaptive narrow band frequency modulation voice communication system

    NASA Technical Reports Server (NTRS)

    Wishna, S.

    1972-01-01

    A narrow band frequency modulation communication system is described which provides for the reception of good quality voice at low carrier-to-noise ratios. The high level of performance is obtained by designing a limiter and phase lock loop combination as a demodulator, so that the bandwidth of the phase lock loop decreases as the carrier level decreases. The system was built for the position location and aircraft communication equipment experiment of the ATS 6 program.

  4. Photometric Type Ia supernova surveys in narrow-band filters

    NASA Astrophysics Data System (ADS)

    Xavier, Henrique S.; Abramo, L. Raul; Sako, Masao; Benítez, Narciso; Calvão, Maurício O.; Ederoclite, Alessandro; Marín-Franch, Antonio; Molino, Alberto; Reis, Ribamar R. R.; Siffert, Beatriz B.; Sodré, Laerte.

    2014-11-01

    We study the characteristics of a narrow-band Type Ia supernova (SN) survey through simulations based on the upcoming Javalambre Physics of the accelerating Universe Astrophysical Survey. This unique survey has the capabilities of obtaining distances, redshifts and the SN type from a single experiment thereby circumventing the challenges faced by the resource-intensive spectroscopic follow-up observations. We analyse the flux measurements signal-to-noise ratio and bias, the SN typing performance, the ability to recover light-curve parameters given by the SALT2 model, the photometric redshift precision from Type Ia SN light curves and the effects of systematic errors on the data. We show that such a survey is not only feasible but may yield large Type Ia SN samples (up to 250 SNe at z < 0.5 per month of search) with low core-collapse contamination (˜1.5 per cent), good precision on the SALT2 parameters (average σ _{m_B}=0.063, σ _{x_1}=0.47 and σc = 0.040) and on the distance modulus (average σμ = 0.16, assuming an intrinsic scatter σint = 0.14), with identified systematic uncertainties σsys ≲ 0.10σstat. Moreover, the filters are narrow enough to detect most spectral features and obtain excellent photometric redshift precision of σz = 0.005, apart from ˜2 per cent of outliers. We also present a few strategies for optimizing the survey's outcome. Together with the detailed host galaxy information, narrow-band surveys can be very valuable for the study of SN rates, spectral feature relations, intrinsic colour variations and correlations between SN and host galaxy properties, all of which are important information for SN cosmological applications.

  5. Duodenal villous morphology assessed using magnification narrow band imaging correlates well with histology in patients with suspected malabsorption syndrome.

    PubMed

    Dutta, Amit Kumar; Sajith, Kattiparambil Gangadharan; Shah, Gautam; Pulimood, Anna Benjamin; Simon, Ebby George; Joseph, Anjilivelil Joseph; Chacko, Ashok

    2014-11-01

    Narrow band imaging with magnification enables detailed assessment of duodenal villi and may be useful in predicting the presence of villous atrophy or normal villi. We aimed to assess the morphology of duodenal villi using magnification narrow band imaging and correlate it with histology findings in patients with clinically suspected malabsorption syndrome. Patients with clinical suspicion of malabsorption presenting at a tertiary care center were prospectively recruited in this diagnostic intervention study. Patients underwent upper gastrointestinal endoscopy using magnification narrow band imaging. The villous morphology in the second part of the duodenum was assessed independently by two endoscopists and the presence of normal or atrophic villi was recorded. Biopsy specimen was obtained from the same area and was examined by two pathologists together. The sensitivity and specificity of magnification narrow band imaging in detecting the presence of duodenal villous atrophy was calculated and compared to the histology. One hundred patients with clinically suspected malabsorption were included in this study. Sixteen patients had histologically confirmed villous atrophy. The sensitivity and specificity of narrow band imaging in predicting villous atrophy was 87.5% and 95.2%, respectively, for one endoscopist. The corresponding figures for the second endoscopist were 81.3% and 92.9%, respectively. The interobserver agreement was very good with a kappa value of 0.87. Magnification narrow band imaging performed very well in predicting duodenal villous morphology. This may help in carrying out targeted biopsies and avoiding unnecessary biopsies in patients with suspected malabsorption. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.

  6. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  7. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  8. Therapeutic efficacy of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome.

    PubMed

    Kajiwara, Mitsuru; Inoue, Shougo; Kobayashi, Kanao; Ohara, Shinya; Teishima, Jun; Matsubara, Akio

    2014-04-01

    Narrow band imaging cystoscopy can increase the visualization and detection of Hunner's lesions. A single-center, prospective clinical trial was carried out aiming to show the effectiveness of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. A total of 23 patients (19 women and 4 men) diagnosed as having ulcer-type interstitial cystitis/painful bladder syndrome were included. All typical Hunner's lesions and suspected areas identified by narrow band imaging were electrocoagulated endoscopically after the biopsy of those lesions. Therapeutic efficacy was assessed prospectively by using visual analog scale score of pain, O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score. The mean follow-up period was 22 months. All patients (100%) experienced a substantial improvement in pain. The average visual analog scale pain scores significantly decreased from 7.3 preoperatively to 1.2 1 month postoperatively. A total of 21 patients (91.3%) who reported improvement had at least a 50% reduction in bladder pain, and five reported complete resolution. Daytime frequency was significantly decreased postoperatively. O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score were significantly decreased postoperatively. However, during the follow-up period, a total of six patients had recurrence, and repeat narrow band imaging-assisted transurethral electrocoagulation of the recurrent lesions was carried out for five of the six patients, with good response in relieving bladder pain. Our results showed that narrow band imaging-assisted transurethral electrocoagulation could be a valuable therapeutic alternative in patients with ulcer-type interstitial cystitis/painful bladder syndrome, with good efficacy and reduction of recurrence rate. © 2014 The Japanese Urological Association.

  9. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.

  10. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-06-01

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.

  11. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters

    NASA Astrophysics Data System (ADS)

    Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-01

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  12. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters.

    PubMed

    Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-29

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  13. Response to narrow-band UVB--vitiligo-melasma versus vitiligo: a comparative study.

    PubMed

    Sharma, Parikshit; Pai, Harsha S; Pai, Ganesh S; Kuruvila, Maria; Kolar, Reshma

    2011-04-01

    Vitiligo is the most common depigmentary disorder of the skin and hair, resulting from selective destruction of melanocytes. Melasma, a hyperpigmentary disorder, presents as irregular, brown, macular hypermelanosis. A small subset of vitiligo patients paradoxically also have melasma. To evaluate and compare the response to narrow-band UVB in a group of patients with vitiligo, and another group of patients with vitiligo and coexisting melasma (vitiligo-melasma). Patients in both groups were treated with narrow-band UVB and a comparison of the zonal repigmentation was made at 4, 8, and 12 weeks after the initiation of therapy. At the end of 12 weeks, 86% of patients in the vitiligo-melasma group attained ≥75% pigmentation on the face, whereas this was achieved in only 12.5% of patients in the vitiligo group. Over the limbs, 73% of patients in the vitiligo-melasma group attained 75% or more pigmentation at the end of 12 weeks compared with only 9% in the vitiligo group. On the trunk, only 20% of vitiligo-melasma patients showed ≥75% pigmentation at 12 weeks compared with 63% of patients in the vitiligo group. Patients having both vitiligo and melasma have a significantly better prognosis for repigmentation on the face and limbs with narrow-band UVB compared with patients with vitiligo alone; the vitiligo-melasma patients achieve repigmentation much earlier and also attain a greater level of repigmentation. Unexpectedly, for truncal lesions, patients with vitiligo alone responded better than those with both conditions. Although the vitiligo-melasma group with truncal lesions started repigmenting earlier, the final pigmentation was more extensive in the vitiligo group.

  14. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    NASA Astrophysics Data System (ADS)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  15. Intensity Variations of Narrow Bands of Solar UV Radiation during Descending Phases of SACs 21-23

    NASA Astrophysics Data System (ADS)

    Gigolashvili, M.; Kapanadze, N.

    2014-12-01

    The study of variations of four narrow bands of solar spectral irradiance (SSI) in the ultraviolet (UV) range for period 1981-2008 is presented. Observational data obtained by space-flight missions SORCE, UARS, SME and daily meanings of international sunspot number (ISN) have been used. The investigated data cover the decreasing phases of the solar activity cycles (SACs) 21, 22 and 23. We have revealed a peculiar behavior of intensity variability of some solar ultraviolet spectral lines originated in the solar chromospheres for period corresponding to the declining phase of the solar cycle 23. It is found that variability of emission of different solar spectral narrow bands (289.5 nm, 300.5 nm) does not agree equally well with ISN variability during decreasing phase of the solar activity cycle 23. The negative correlations between total solar irradiance and the solar spectral narrow bands of UV emission (298.5 nm, 300.5 nm) had been revealed. The existence of the negative correlation can be explained by the sensitivity of SSI of some emission lines to the solar global magnetic field.

  16. [Study on the Spectral Characteristics of the Narrow-Band Filter in SHS].

    PubMed

    Luo, Hai-yan; Shi, Hai-liang; Li, Zhi-wei; Li, Shuang; Xiong, Wei; Hong, Jin

    2015-04-01

    The spectral response of spatial heterodyne spectroscopy (SHS) is determined by the spectrum property of narrow-band filter. As discussed in previous studies, the symmetric heterodyned interferogram of high frequency waves modulated by SHS and lack of sample lead to spectral confusion, which is associated with the true and ghost spectra. Because of the deviation from theoretical index of narrow-band filter in the process of coating, the boarded spectral response and middle wave shift are presented, and conditions in the theoretical Littrow wavelength made the effective wavelength range of SHS reduced. According to the measured curve of filter, a new wavenumber of zero spatial frequency can be reset by tunable laser, and it is easy for SHS to improve the spectral aliasing distortion. The results show that it is utilized to the maximum extent of the effective bandwidth by adjusting the grating angle of rotation to change the Littrow wavelength of the basic frequency, and the spectral region increased to 14.9 nm from original 12.9 nm.

  17. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU

    NASA Astrophysics Data System (ADS)

    Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.

    2018-01-01

    There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.

  18. Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis.

    PubMed

    Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan; Henson, Zachary B; Nguyen, Thuc-Quyen; Heeger, Alan J; Bazan, Guillermo C

    2013-12-02

    PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Polyp detection rates using magnification with narrow band imaging and white light.

    PubMed

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-05-16

    To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other's findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ(2) test and means were compared using the Student's t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for adenomas). Miss rate of

  20. Electrically Conductive Photopatternable Silver Paste for High-Frequency Ring Resonator and Band-Pass Filter

    NASA Astrophysics Data System (ADS)

    Umarji, Govind; Qureshi, Nilam; Gosavi, Suresh; Mulik, Uttam; Kulkarni, Atul; Kim, Taesung; Amalnerkar, Dinesh

    2017-02-01

    In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better

  1. The assessment of mucosal surgical margins in head and neck cancer surgery with narrow band imaging.

    PubMed

    Šifrer, Robert; Urbančič, Jure; Strojan, Primož; Aničin, Aleksandar; Žargi, Miha

    2017-07-01

    The diagnostic gain of narrow band imaging in the definition of surgical margins in the treatment of head and neck cancer was evaluated. A prospective study, blinded to the pathologist, with historical comparison. The study group included 45 patients subjected to the intraoperative definition of margins by narrow band imaging. The control group included 55 patients who had undergone standard definition of margins. All patients underwent resection of the tumor and frozen section analysis of superficial margins. The rate of initial R 0 resection and the ratio of histologically negative margins for both groups were statistically compared. The rate of initial R 0 resection in the study group and in the control group was 88.9% and 70.9% (P = .047), and the ratio of histologically negative margins was 95.9% and 88.4% (P = .017), respectively. Narrow band imaging reveals a microscopic extension of the tumor that could be effectively used to better define superficial margins and to achieve a higher rate of initial R 0 resections. 4 Laryngoscope, 127:1577-1582, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  2. LUGOL'S IODINE CHROMOENDOSCOPY VERSUS NARROW BAND IMAGE ENHANCED ENDOSCOPY FOR THE DETECTION OF ESOPHAGEAL CANCER IN PATIENTS WITH STENOSIS SECONDARY TO CAUSTIC/CORROSIVE AGENT INGESTION.

    PubMed

    Pennachi, Caterina Maria Pia Simoni; Moura, Diogo Turiani Hourneaux de; Amorim, Renato Bastos Pimenta; Guedes, Hugo Gonçalo; Kumbhari, Vivek; Moura, Eduardo Guimarães Hourneaux de

    2017-01-01

    The diagnosis of corrosion cancer should be suspected in patients with corrosive ingestion if after a latent period of negligible symptoms there is development of dysphagia, or poor response to dilatation, or if respiratory symptoms develop in an otherwise stable patient of esophageal stenosis. Narrow Band Imaging detects superficial squamous cell carcinoma more frequently than white-light imaging, and has significantly higher sensitivity and accuracy compared with white-light. To determinate the clinical applicability of Narrow Band Imaging versus Lugol´s solution chromendoscopy for detection of early esophageal cancer in patients with caustic/corrosive agent stenosis. Thirty-eight patients, aged between 28-84 were enrolled and examined by both Narrow Band Imaging and Lugol´s solution chromendoscopy. A 4.9mm diameter endoscope was used facilitating examination of a stenotic area without dilation. Narrow Band Imaging was performed and any lesion detected was marked for later biopsy. Then, Lugol´s solution chromoendoscopy was performed and biopsies were taken at suspicious areas. Patients who had abnormal findings at the routine, Narrow Band Imaging or Lugol´s solution chromoscopy exam had their stenotic ring biopsied. We detected nine suspicious lesions with Narrow Band Imaging and 14 with Lugol´s solution chromendoscopy. The sensitivity and specificity of the Narrow Band Imaging was 100% and 80.6%, and with Lugol´s chromoscopy 100% and 66.67%, respectively. Five (13%) suspicious lesions were detected both with Narrow Band Imaging and Lugol's chromoscopy, two (40%) of these lesions were confirmed carcinoma on histopathological examination. Narrow Band Imaging is an applicable option to detect and evaluate cancer in patients with caustic /corrosive stenosis compared to the Lugol´s solution chromoscopy.

  3. The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Wu, Mei-Ling; Chen, Lien-Wen

    2009-01-01

    In this paper, we study the defect bands of a 1D phononic crystal consisting of aluminum (Al) and polymethyl methacrylate (PMMA) layers with a dielectric elastomer (DE) defect layer. The plane wave expansion (PWE) method and supercell calculation are used to calculate the band structure and the defect bands. The transmission spectra are obtained using the finite element method (FEM). Since the thickness of the dielectric elastomer defect layer is controlled by applying an electric voltage, the frequencies of the defect bands can be tuned. A narrow pass band filter can be developed and designed by using the dielectric elastomer.

  4. Narrow-band microwave radiation from a biased single-Cooper-pair transistor.

    PubMed

    Naaman, O; Aumentado, J

    2007-06-01

    We show that a single-Cooper-pair transistor (SCPT) electrometer emits narrow-band microwave radiation when biased in its subgap region. Photoexcitation of quasiparticle tunneling in a nearby SCPT is used to spectroscopically detect this radiation in a configuration that closely mimics a qubit-electrometer integrated circuit. We identify emission lines due to Josephson radiation and radiative transport processes in the electrometer and argue that a dissipative superconducting electrometer can severely disrupt the system it attempts to measure.

  5. Polyp detection rates using magnification with narrow band imaging and white light

    PubMed Central

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-01-01

    AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for

  6. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norin, L.; Leyser, T. B.; Nordblad, E.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  7. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  8. Ultrabright narrow-band telecom two-photon source for long-distance quantum communication

    NASA Astrophysics Data System (ADS)

    Niizeki, Kazuya; Ikeda, Kohei; Zheng, Mingyang; Xie, Xiuping; Okamura, Kotaro; Takei, Nobuyuki; Namekata, Naoto; Inoue, Shuichiro; Kosaka, Hideo; Horikiri, Tomoyuki

    2018-04-01

    We demonstrate an ultrabright narrow-band two-photon source at the 1.5 µm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 104. Our measurement of the second-order correlation function G (2)(τ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 µm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 105 pairs/(s·MHz·mW) is also the highest reported over all wavelengths.

  9. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nong, Hanond, E-mail: Nong.Hanond@rub.de; Markmann, Sergej; Hekmat, Negar

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunesmore » the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.« less

  10. Efficacy of narrow-band imaging for detecting intestinal metaplasia in adult patients with symptoms of dyspepsia.

    PubMed

    Sobrino-Cossío, S; Abdo Francis, J M; Emura, F; Galvis-García, E S; Márquez Rocha, M L; Mateos-Pérez, G; González-Sánchez, C B; Uedo, N

    2018-02-12

    Atrophy and intestinal metaplasia are early phenotypic markers in gastric carcinogenesis. White light endoscopy does not allow direct biopsy of intestinal metaplasia due to a lack of contrast of the mucosa. Narrow-band imaging is known to enhance the visibility of intestinal metaplasia, to reduce sampling error, and to increase the diagnostic yield of endoscopy for intestinal metaplasia in Asian patients. The aim of our study was to validate the diagnostic performance of narrow-band imaging using 1.5× electronic zoom endoscopy (with no high magnification) to diagnose intestinal metaplasia in Mexican patients. A retrospective cohort study was conducted on consecutive patients with dyspeptic symptoms at a private endoscopy center within the time frame of January 2015 to December 2016. A total of 338 patients (63±8.4 years of age, 40% women) were enrolled. The prevalence of H. pylori infection was 10.9% and the incidence of intestinal metaplasia in the gastric antrum and corpus was 23.9 and 5.9%, respectively. Among the patients with intestinal metaplasia, 65.3% had the incomplete type, 42.7% had multifocal disease, and one third had extension to the gastric corpus. Two patients had low-grade dysplasia. The sensitivity of white light endoscopy was 71.2%, with a false negative rate of 9.9%. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of narrow-band imaging (with a positive light blue crest) were 85, 98, 86.8, 97.7, and 87.2%, respectively. The prevalence of H. pylori infection and intestinal metaplasia in dyspeptic Mexican patients was not high. Through the assessment of the microsurface structure and light blue crest sign, non-optical zoom narrow-band imaging had high predictive values for detecting intestinal metaplasia in patients from a general Western setting. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  11. Clicking in a killer whale habitat: narrow-band, high-frequency biosonar clicks of harbour porpoise (Phocoena phocoena) and Dall's porpoise (Phocoenoides dalli).

    PubMed

    Kyhn, Line A; Tougaard, Jakob; Beedholm, Kristian; Jensen, Frants H; Ashe, Erin; Williams, Rob; Madsen, Peter T

    2013-01-01

    Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall's porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall's (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall's porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring.

  12. Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.

    2018-04-01

    A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.

  13. Narrow-Band Organic Photodiodes for High-Resolution Imaging.

    PubMed

    Han, Moon Gyu; Park, Kyung-Bae; Bulliard, Xavier; Lee, Gae Hwang; Yun, Sungyoung; Leem, Dong-Seok; Heo, Chul-Joon; Yagi, Tadao; Sakurai, Rie; Ro, Takkyun; Lim, Seon-Jeong; Sul, Sangchul; Na, Kyoungwon; Ahn, Jungchak; Jin, Yong Wan; Lee, Sangyoon

    2016-10-05

    There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

  14. Locata Performance Evaluation in the Presence of Wide- and Narrow-Band Interference

    NASA Astrophysics Data System (ADS)

    Khan, Faisal A.; Rizos, Chris; Dempster, Andrew G.

    Classically difficult positioning environments often call for augmentation technology to assist the GPS, or more generally the Global Navigation Satellite System (GNSS) technology. The ground-based ranging technology offers augmentation, and even replacement, to GPS in such environments. However, like any other system relying on wireless technology, a Locata positioning network also faces issues in the presence of RF interference (RFI). This problem is magnified due to the fact that Locata operates in the licence-free 2·4 GHz Industrial, Scientific and Medical (ISM) band. The licence-free nature of this band attracts a much larger number of devices using a wider range of signal types than for licensed bands, resulting in elevation of the noise floor. Also, harmonics from out-of-band signals can act as potential interferers. WiFi devices operating in this band have been identified as the most likely potential interferer, due partially to their use of the whole ISM band, but also because Locata applications often also may use a wireless network. This paper evaluates the performance of Locata in the presence of both narrow- and wide-band interfering signals. Effects of received interference on both raw measurements and final solutions are reported and analysed. Test results show that Locata performance degrades in the presence of received interference. It is also identified that high levels of received interference can affect Locata carriers even if the interference is not in co-frequency situation with the affected carrier. Finally, Locata characteristics have been identified which can be exploited to mitigate RFI issues.

  15. Sky-radiance gradient measurements at narrow bands in the visible.

    PubMed

    Winter, E M; Metcalf, T W; Stotts, L B

    1995-07-01

    Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.

  16. ASSESSMENT OF LOW-FREQUENCY HEARING WITH NARROW-BAND CHIRP EVOKED 40-HZ SINUSOIDAL AUDITORY STEADY STATE RESPONSE

    PubMed Central

    Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  17. A simplified scheme for generating narrow-band mid-ultraviolet laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almog, G.; Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München; Scholz, M., E-mail: Matthias.Scholz@toptica.com

    2015-03-15

    We report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6{sup 1}S{sub 0} → 6{sup 3}P{sub 1} intercombination line at 253.7 nm. We could perform Doppler-free saturation spectroscopy on this line and were able to lock our laser to the transition frequency on long time scales.

  18. High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts

    NASA Astrophysics Data System (ADS)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2016-02-01

    Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high

  19. Hydrogen-Saturated Saline Protects Intensive Narrow Band Noise-Induced Hearing Loss in Guinea Pigs through an Antioxidant Effect

    PubMed Central

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316

  20. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays

    DOE PAGES

    Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; ...

    2015-04-20

    We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less

  1. Crystal Growth and Characterization of the Narrow-Band-Gap Semiconductors OsPn 2 (Pn = P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugaris, Daniel E.; Malliakas, Christos D.; Shoemaker, Daniel P.

    2014-09-15

    Using metal fluxes, crystals of the binary osmium dipnictides OsPn(2) (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn(6) octahedra, as well as [Pn(2)(-4)] anions. Raman spectroscopy shows the presence of PP single bonds, consistent with the presence of [Pn(2)(-4)] anions and formally Os4+ cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2more » and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn(2) dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a PnPn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment.« less

  2. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  3. Narrow band imaging in the diagnosis of intra-epithelial and invasive laryngeal squamous cell carcinoma: a preliminary report of two cases.

    PubMed

    Masaki, Takashi; Katada, Chikatoshi; Nakayama, Meijin; Takeda, Masahiko; Miyamoto, Shunsuke; Seino, Yutomo; Koizumi, Wasaburo; Tanabe, Satoshi; Horiguchi, Satoshi; Okamoto, Makito

    2009-12-01

    Narrow band imaging (NBI) is a novel optical technique that enhances the diagnostic capability of the gastrointestinal endoscope (GIE) by illuminating the intraepithelial papillary capillary loop (IPCL) using narrow bandwidth filters in a red-green-blue sequential illumination system (CV-260SL processor and CLV-260SL light source, Olympus Optical Co. Ltd, Tokyo, Japan). The NBI filter sets (415 nm and 540 nm) are selected to obtain fine images of the microvascular structure. Because 415 nm is the hemoglobin absorption band, capillaries on the mucosal surface can be seen most clearly at this wavelength. NBI is able to represent more clearly both capillary patterns and the boundary between different types of tissue, which are necessary for diagnosing a tumor in its early stage (Gono K, Yamazaki K, Doguchi N, Nonami T, Obi T, Yamaguchi M, et al. Endoscopic observation of tissue by narrow band illumination. Opt Rev 2003;10:211-215, Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue feature in narrow-band endoscopic imaging. J Biomed Opt 2004;9:568-577). We present two patients with laryngeal squamous cell carcinoma in whom the spread and the depth of invasion was evaluated with transnasal GIE equipped with NBI. Based on our results, the vascular neoplastic changes of carcinoma in situ of the larynx could be similar to carcinoma in situ of the esophagus.

  4. A search for narrow band signals with SERENDIP II: a progress report

    NASA Technical Reports Server (NTRS)

    Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  5. A search for narrow band signals with SERENDIP II: a progress report.

    PubMed

    Werthimer, D; Brady, R; Berezin, A; Bowyer, S

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  6. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  7. A test of ν stability using a 200 GeV narrow-band neutrino beam at BEBC

    NASA Astrophysics Data System (ADS)

    Deden, H.; Grässler, H.; Kirch, D.; Schultze, K.; Böckmann, K.; Glimpf, W.; Kokott, T. P.; Nellen, B.; Saarikko, H.; Wünsch, B.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Peyrou, Ch.; Skjeggestad, O.; Wachsmuth, H.; Mermikides, M.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Petrides, A.; Powell, K. J.; Albajar, C.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Poppe, M.; Radojicic, D.; Renton, P.; Saitta, B.; Wells, J.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration

    1981-01-01

    νe induced events obtained in a 200 GeV narrow-band beam have been studied and compared to the number expected from K e3+ decay. Agreement is found between the expected and observed numbers allowing limits to be set on νe → νx mixing.

  8. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    PubMed

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  9. Joint inversion of high-frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.

    2007-01-01

    Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.

  10. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background

    PubMed Central

    Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan

    2015-01-01

    Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387

  11. Narrow-band evoked oto-acoustic emission from ears with normal and pathologic conditions.

    PubMed

    Takeda, Taizo; Kakigi, Akinobu; Takebayashi, Shinji; Ohono, Satoshi; Nishioka, Rie; Nakatani, Hiroaki

    2010-01-01

    Evoked oto-acoustic emission (EOAE), in particular the slow component, is fragile with the inner ear lesions and is apt to disappear in impaired ears. This presence is thought to mean that inner ear is not badly damaged, and that the presence of EOAEs in early stage sudden deafness carries a good prognosis. Narrow-band EOAE analysis would open a potentially promising way to manage sensorineural deafness. The aim of present study was to evaluate the characteristics of EOAEs from pathologic ears by a narrow-band EOAE analysis, which allowed us to investigate amplitude, frequency content and latency of EOAEs simultaneously and also to easily detect weak echoes in cases with inner ear lesions. EOAEs were analyzed by investigating narrow-band frequency contents of EOAEs, filtered by a 100-Hz step of pass bandwidth in frequency regions from 1.0 to 2.0 kHz, and by 500 Hz of pass bandwidth in the frequency ranges of 0.5-1.0 and 2.0-5.0 kHz. EOAE testing was performed in 40 normal ears and 111 ears with pathologic disorders, including sudden deafness, Ménière's disease and surgically proven acoustic neurinomas. Spontaneous oto-acoustic emission was investigated in some cases. In acoustic neurinoma, especially computed tomography scan and magnetic resonance imaging tests were performed to assess the tumor size. (1) Narrow-band EOAE analysis revealed that EOAEs from normal ears were composed of two main echo trains and several sub-echoes. The main echo trains were divided into a fast component with a short latency of <10 ms and a slow component with a long latency of >10 ms. (2) EOAEs could often be detected from ears with moderate to severe hearing loss >45 dB HL in early stage sudden deafness. The prognosis of sudden deafness was good in cases where both a fast component and slow component were detected in the acute stage within 2 weeks after the deafness onset, and was pessimistic, when either or both of them failed to recover. (3) In Ménière's disease, EOAE was found

  12. H-tailored surface conductivity in narrow band gap In(AsN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O.

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  13. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  14. Anomalous resistivity and superconductivity in the two-band Hubbard model with one narrow band (Review)

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.; Valkov, V. V.

    2011-01-01

    We search for marginal Fermi-liquid behavior in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron-polaron effects and other mechanisms for mass-enhancement (related to the momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find a tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case with a large mismatch between the densities of heavy and light bands in the strong coupling limit. We also find that for low temperatures and equal densities, the resistivity in a homogeneous state R(T )∝T2 behaves as a Fermi-liquid in both 3D and 2D. For temperatures greater than the effective bandwidth for heavy electrons T >Wh*, the coherence of the heavy component breaks down completely. The heavy particles move diffusively in the surrounding light particles. At the same time, light particles scatter on heavy particles as if on immobile (static) impurities. Under these conditions, the heavy component is marginal, while the light component is not. The resistivity approaches saturation for T >Wh* in the 3D case. In 2D the resistivity has a maximum and a localization tail owing to weak-localization corrections of the Altshuler-Aronov type. This behavior of resistivity in 3D could be relevant for some uranium-based heavy-fermion compounds such as UNi2Al3 and in 2D, for some other mixed-valence compounds, possibly including layered manganites. We also consider briefly the superconductive (SC) instability in this model. The leading instability tends to p-wave pairing and is governed by an enhanced Kohn-Luttinger mechanism for SC at low electron densities. The critical temperature corresponds to the pairing of heavy electrons via polarization of

  15. Clicking in a Killer Whale Habitat: Narrow-Band, High-Frequency Biosonar Clicks of Harbour Porpoise (Phocoena phocoena) and Dall’s Porpoise (Phocoenoides dalli)

    PubMed Central

    Kyhn, Line A.; Tougaard, Jakob; Beedholm, Kristian; Jensen, Frants H.; Ashe, Erin; Williams, Rob; Madsen, Peter T.

    2013-01-01

    Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall’s porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall’s (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall’s porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring. PMID:23723996

  16. Nature of the narrow optical band in H*-aggregates: Dozy-chaos–exciton coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, Vladimir V., E-mail: egorov@photonics.ru

    2014-07-15

    Dozy chaos emerges as a combined effect of the collective chaotic motion of electrons and nuclei, and their chaotic electromagnetic interactions in the transient state of molecules experiencing quantum transitions. Following earlier discussions of the well-known Brönsted relations for proton-transfer reactions; the temperature-dependent electron transfer in Langmuir–Blodgett films; the shape of the optical bands of polymethine dye monomers, their dimers, and J-aggregates, this paper reports one more application of the dozy-chaos theory of molecular quantum transitions. The qualitative and quantitative explanations for shape of a narrow and blue-shifted optical absorption band in H{sup *}-aggregates is given on the basis ofmore » the dozy-chaos theory by taking into account the dozy-chaos–exciton coupling effect. It is emphasized that in the H{sup *}-aggregate chromophore (dimer of cyclic bis-thiacarbocyanines) there is a competition between two Frenkel exciton transitions through the chaotic reorganization motion of nuclear environment. As a result, the highly organized quantum transition to the upper exciton state becomes an exciton-induced source of dozy chaos for the low organized transition to the lower exciton state. This manifests itself in appearing the narrow peak and broad wing in the optical spectrum pattern of H{sup *}-aggregates. A similar enhancement in the H{sup *}-effect caused by the strengthening of the exciton coupling in H{sup *}-dimers, which could be achieved by synthesizing tertiary and quarternary thiacarbocyanine monomers, is predicted.« less

  17. Optical Design with Narrow-Band Imaging for a Capsule Endoscope.

    PubMed

    Yen, Chih-Ta; Lai, Zong-Wei; Lin, Yu-Ting; Cheng, Hsu-Chih

    2018-01-01

    The study proposes narrow-band imaging (NBI) lens design of 415 nm and 540 nm of a capsule endoscope (CE). The researches show that in terms of the rate of accuracy in detecting and screening neoplastic and nonneoplastic intestinal lesions, the NBI system outperformed that of traditional endoscopes and rivaled that of chromoendoscopes. In the proposed NBI CE optical system, the simulation result shows the field of view (FOV) was 109.8°; the modulation transfer function (MTF) could achieve 12.5% at 285 lp/mm and 34.1% at 144 lp/mm. The relative illumination reaches more than 60%, and the system total length was less than 4 mm. Finally, this design provides high-quality images for a 300-megapixel 1/4 ″ CMOS image sensor with a pixel size of 1.75  μ m.

  18. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  19. The Hazard of Exposure to 2.075 kHz Center Frequency Narrow Band Impulses

    DTIC Science & Technology

    1991-09-01

    i By r James H. Patterson, Jr. Kevin Bordwell Sensory Research Division and Roger P. Hamernik William A. Ahroon George Turrentine C. E. Hargett, Jr...The hazard of exposure to 2.075 kHz center frequency narrow band impulses 12. PERSONAL AUTHOR(S) James H. Patterson, Jr., Kevin Bordwell , Roger P...Patterson, J. H., Jr., Carrier, M., Jr., Bordwell , K., Lomba Gautier, I. M., Hamernik, R. P., Ahroon, W. A., Turrentine, G. A., and Hargett, C. E., Jr

  20. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    PubMed

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  1. Comparison between ABR with click and narrow band chirp stimuli in children.

    PubMed

    Zirn, Stefan; Louza, Julia; Reiman, Viktor; Wittlinger, Natalie; Hempel, John-Martin; Schuster, Maria

    2014-08-01

    Click and chirp-evoked auditory brainstem responses (ABR) are applied for the estimation of hearing thresholds in children. The present study analyzes ABR thresholds across a large sample of children's ears obtained with both methods. The aim was to demonstrate the correlation between both methods using narrow band chirp and click stimuli. Click and chirp evoked ABRs were measured in 253 children aged from 0 to 18 years to determine their individual auditory threshold. The delay-compensated stimuli were narrow band CE chirps with either 2000 Hz or 4000 Hz center frequencies. Measurements were performed consecutively during natural sleep, and under sedation or general anesthesia. Threshold estimation was performed for each measurement by two experienced audiologists. Pearson-correlation analysis revealed highly significant correlations (r=0.94) between click and chirp derived thresholds for both 2 kHz and 4 kHz chirps. No considerable differences were observed either between different age ranges or gender. Comparing the thresholds estimated using ABR with click stimuli and chirp stimuli, only 0.8-2% for the 2000 Hz NB-chirp and 0.4-1.2% of the 4000 Hz NB-chirp measurements differed more than 15 dB for different degrees of hearing loss or normal hearing. The results suggest that either NB-chirp or click ABR is sufficient for threshold estimation. This holds for the chirp frequencies of 2000 Hz and 4000 Hz. The use of either click- or chirp-evoked ABR allows a reduction of recording time in young infants. Nevertheless, to cross-check the results of one of the methods, we recommend measurements with the other method as well. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Investigation of narrow-band thermal emission from intersubband transitions in quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Zoysa, M.; Hakubi Center, Kyoto University, Yoshida, Kyoto 606-8501; Asano, T.

    2015-09-14

    We investigate thermal emission from n-doped GaAs/AlGaAs quantum wells (QWs). Emission peaks with Lorentzian shapes (linewidth 11∼19 meV) that reflect transitions between the first and second conduction subbands are observed in the mid-infrared range. It is demonstrated that the emission characteristics can be tuned by modifying the QW parameters. The peak emissivity is increased from 0.3 to 0.9 by modifying the doping density, and the peak wavelength is tuned from 6 to 10 μm by changing the well width. The obtained results are useful for the design of narrow-band thermal emitters.

  3. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  4. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    PubMed Central

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  5. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  6. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in seasonal affective disorder.

    PubMed

    Meesters, Ybe; Duijzer, Wianne B; Hommes, Vanja

    2018-05-01

    Ever since a new photoreceptor was discovered with a highest sensitivity to 470-490 nm blue light, it has been speculated that blue light has some advantages in the treatment of Seasonal Affective Disorder (SAD) over more traditional treatments. In this study we compared the effects of exposure to narrow-band blue light (BLUE) to those of broad-wavelength white light (BLT) in the treatment of SAD. In a 15-day design, 45 patients suffering from SAD completed 30-min sessions of light treatment on 5 consecutive days. 21 subjects received white-light treatment (BLT, broad-wavelength without UV, 10 000 lx, irradiance 31.7 W/m 2 ), 24 subjects received narrow-band blue light (BLUE, 100 lx, irradiance 1.0 W/m 2 ). All participants completed weekly questionnaires concerning mood and energy levels, and were also assessed by means of the SIGH-SAD, which is the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 73.2%, effect size 3.37; BLUE 67%, effect size 2.63), which outcomes were not statistically significant different between both conditions. Small sample size. Light treatment is an effective treatment for SAD. The use of narrow-band blue light is equally effective as a treatment using bright white-light. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  8. Novel schemes for the optimization of the SPARC narrow band THz source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, B., E-mail: barbara.marchetti@desy.de; Zagorodnov, I.; Bacci, A.

    2015-07-15

    A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-bandmore » and acting as a longitudinal phase space linearizer.« less

  9. High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH 3 -(CH 2 ) 4 -NH 3 ]CuCl 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Li, Shourui; Wang, Kai

    Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH 3-(CH 2) 4-NH 3]CuCl 4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl 4 2–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the springmore » cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl 4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.« less

  10. A 1.1-1.9 GHz SETI Survey of the Kepler Field. I. A Search for Narrow-band Emission from Select Targets

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill

    2013-04-01

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T eq > 230 K, stars with five or more detected candidates or stars with a super-Earth (R p < 3 R ⊕) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 × 1021 erg s-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be {<}10^{-6}\\ M^{-1}_\\odot. Here we describe our observations, data reduction procedures and results.

  11. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  12. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2010-09-10

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)

  13. Characterization of High-Frequency Excitation of a Wake by Simulation

    NASA Technical Reports Server (NTRS)

    Cain, Alan B.; Rogers, Michael M.; Kibens, Valdis; Mansour, Nagi (Technical Monitor)

    2003-01-01

    Insights into the effects of high-frequency forcing on free shear layer evolution are gained through analysis of several direct numerical simulations. High-frequency forcing of a fully turbulent plane wake results in only a weak transient effect. On the other hand, significant changes in the developed turbulent state may result when high-frequency forcing is applied to a transitional wake. The impacts of varying the characteristics of the high-frequency forcing are examined, particularly, the streamwise wavenumber band in which forcing is applied and the initial amplitude of the forcing. The high-frequency excitation is found to increase the dissipation rate of turbulent kinetic energy, to reduce the turbulent kinetic energy production rate, and to reduce the turbulent kinetic energy suppression increases with forcing amplitude once a threshold level has been reached. For a given initial forcing energy, the largest reduction in turbulent kinetic energy density was achieved by forcing wavenumbers that are about two to three times the neutral wavenumber determined from linear stability theory.

  14. Recovering physical properties from narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  15. Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.

    PubMed

    Kartashova, Elena

    2012-10-01

    A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.

  16. Update on narrow band imaging in disorders of the upper gastrointestinal tract.

    PubMed

    Singh, Rajvinder; Lee, Shok Y; Vijay, Nimal; Sharma, Prateek; Uedo, Noriya

    2014-03-01

    With the ever-increasing concern regarding morbidity and mortality associated with diseases of the gastrointestinal tract, the importance of an effective and efficient diagnostic tool cannot be overstated. The standard of care currently is an examination using conventional white light endoscopy. This approach may occasionally overlook areas exhibiting a premalignant change. Numerous image-enhanced modalities have been recently introduced. Narrow band imaging (NBI) appears to be the most prominent of these and perhaps the most commonly used. Thepresent review will focus on some of the newer studies on NBI and its utility in the diagnosis of malignant, pre-malignant and chronic inflammatory conditions of the upper gastrointestinal tract. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  17. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the

  18. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    NASA Astrophysics Data System (ADS)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  19. First Results of Exoplanet Observations with the Gran Telescopio Canarias: Narrow-Band Transit Photometry Capable of Detecting Super-Earth-size Planets

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.

    2010-01-01

    We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  20. Narrow Band Filter at 1550 nm Based on Quasi-One-Dimensional Photonic Crystal with a Mirror-Symmetric Heterostructure.

    PubMed

    Wang, Fang; Cheng, Yong Zhi; Wang, Xian; Zhang, Yi Nan; Nie, Yan; Gong, Rong Zhou

    2018-06-27

    In this paper, we present a high-efficiency narrow band filter (NBF) based on quasi-one-dimensional photonic crystal (PC) with a mirror symmetric heterostructure. Similarly to the Fabry-Perot-like resonance cavity, the alternately-arranged dielectric layers on both sides act as the high reflectance and the junction layers used as the defect mode of the quasi-one-dimensional PC, which can be designed as a NBF. The critical conditions for the narrow pass band with high transmittance are demonstrated and analyzed by simulation and experiment. The simulation results indicate that the transmission peak of the quasi-one-dimensional PC-based NBF is up to 95.99% at the telecommunication wavelength of 1550 nm, which agrees well with the experiment. Furthermore, the influences of the periodicity and thickness of dielectric layers on the transmission properties of the PC-based NBF also have been studied numerically. Due to its favorable properties of PC-based NBF, it is can be found to have many potential applications, such as detection, sensing, and communication.

  1. Narrow band noise response of a Belleville spring resonator.

    PubMed

    Lyon, Richard H

    2013-09-01

    This study of nonlinear dynamics includes (i) an identification of quasi-steady states of response using equivalent linearization, (ii) the temporal simulation of the system using Heun's time step procedure on time domain analytic signals, and (iii) a laboratory experiment. An attempt has been made to select material and measurement parameters so that nearly the same systems are used and analyzed for all three parts of the study. This study illustrates important features of nonlinear response to narrow band excitation: (a) states of response that the system can acquire with transitions of the system between those states, (b) the interaction between the noise source and the vibrating load in which the source transmits energy to or draws energy from the load as transitions occur; (c) the lag or lead of the system response relative to the source as transitions occur that causes the average frequencies of source and response to differ; and (d) the determination of the state of response (mass or stiffness controlled) by observation of the instantaneous phase of the influence function. These analyses take advantage of the use of time domain analytic signals that have a complementary role to functions that are analytic in the frequency domain.

  2. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields

    PubMed Central

    Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P. J.; Mouritsen, Henrik

    2016-01-01

    Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth’s magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356

  3. Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si

    NASA Astrophysics Data System (ADS)

    Persson, C.; Lindefelt, U.; Sernelius, B. E.

    1999-10-01

    Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.

  4. Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awari, N.; University of Groningen, 9747 AG Groningen; Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie

    2016-07-18

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  5. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Serafinelli, R.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  6. Narrow-Band Search of Continuous Gravitational-Wave Signals from Crab and Vela Pulsars in Virgo VSR4 Data

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; hide

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  7. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    PubMed

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  8. Anomalous resistivity and the origin of heavy mass in the two-band Hubbard model with one narrow band

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.; Val'kov, V. V.

    2011-07-01

    We search for marginal Fermi-liquid behavior [1] in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron polaron effect [2] and other mechanisms of mass enhancement (related to momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find the tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case for a large mismatch between the densities of heavy and light bands in the strong-coupling limit. We also observe that for low temperatures and equal densities, the homogeneous state resistivity R( T) ˜ T 2 behaves in a Fermi-liquid fashion in both 3D and 2D cases. For temperatures higher than the effective bandwidth for heavy electrons T > W {*/ h }, the coherent behavior of the heavy component is totally destroyed. The heavy particles move diffusively in the surrounding of light particles. At the same time, the light particles scatter on the heavy ones as if on immobile (static) impurities. In this regime, the heavy component is marginal, while the light one is not. The resistivity saturates for T > W {*/ h } in the 3D case. In 2D, the resistivity has a maximum and a localization tail due to weak-localization corrections of the Altshuler-Aronov type [3]. Such behavior of resistivity could be relevant for some uranium-based heavy-fermion compounds like UNi2Al3 in 3D and for some other mixed-valence compounds possibly including layered manganites in 2D. We also briefly consider the superconductive (SC) instability in the model. The leading instability is towards the p-wave pairing and is governed by the enhanced Kohn-Luttinger [4] mechanism of SC at low electron density. The critical temperature corresponds to the pairing of heavy electrons

  9. Utilization of high-frequency Rayleigh waves in near-surface geophysics

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.

    2004-01-01

    Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.

  10. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-03

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  11. Deep UV Narrow-Band Photodetector Based on Ion Beam Synthesized Indium Oxide Quantum Dots in Al2O3 Matrix.

    PubMed

    Rajamani, Saravanan; Arora, Kanika; Konakov, Anton; Belov, Alexey; Korolev, Dmitry; Nikolskaya, Alyona; Mikhaylov, Alexey N; Surodin, Sergey; Kryukov, Ruslan; Nikolichev, Dmitri; Sushkov, Artem; Pavlov, Dmitry; Tetelbaum, David; Kumar, Mukesh; Kumar, Mahesh

    2018-04-20

    Semiconductor quantum dots (QDs) have attracted tremendous attention owing to their novel electrical and optical properties due to the size dependent quantum confinement effects. This provides an advantage of tunable wavelength detection, which is essential to realize spectrally selective photodetectors. We report the fabrication and characterization of high performance narrow band ultraviolet photodetector (UV-B) based on In2O3 nanocrystals embedded in Al2O3 matrices. The In2O3 nanocrystals are synthesized in Al2O3 matrix by sequential implantation of In+ and N2+ ions and post-implantation annealing. The photodetector exhibits excellent optoelectronic performances with high spectral responsivity and external quantum efficiency. The spectral response showed a band-selective nature with a full width half maximum of ∼ 60 nm, and the responsivity reaches up to 70 A/W under 290 nm at 5 V bias. The corresponding rejection ratio to visible region was as high as 8400. The high performance of this photodetector makes it highly suitable for practical applications such as narrow-band spectrum-selective photodetectors. The device design based on ion-synthesized nanocrystals would provide a new approach for realizing a visible-blind photodetector. © 2018 IOP Publishing Ltd.

  12. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  13. Narrow band vacuum ultraviolet radiation, produced by fast conical discharge

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.; Koshelev, K. N.

    2018-04-01

    The article presents the experimental study of discharges in a conical cavity, filled with Ar at pressure 80 Pa. The electrical current driver (inductive storage with plasma erosion opening switch) supplies to the load electrical current pulse with growth rate about 1012 A s‑1 and maximal value 30–40 kA. The convergent conical shock wave starts from the inner surface of the discharge cavity and collapses in ‘zippering’ mode. The pin hole camera imaging with MCP detector (time resolution 5 ns) have demonstrated the appearance of effectively fast moving compact plasma with visible velocity v  =  (1.5  ±  0.14)  ×  107 cm s‑1. Plasma emits narrow band radiation in the spectral range of Rydberg series transitions of Ar VII, Ar VIII with quantum number up to n  =  9 (wavelength about 11 nm). The intensity of radiation is comparable with the total plasma emission in the range 10–50 nm. Charge exchange between multiply charged Ar ions and cold Ar atoms of working gas is proposed as the possible mechanism of the origin of the radiation.

  14. Research and design of an optical system of biochemical analyzer based on the narrow-band pass filter

    NASA Astrophysics Data System (ADS)

    Xiao, Ze-xin; Chen, Kuan

    2008-03-01

    Biochemical analyzer is one of the important instruments in the clinical diagnosis, and its optical system is the important component. The operation of this optical system can be regard as three parts. The first is transforms the duplicate colored light as the monochromatic light. The second is transforms the light signal of the monochromatic, which have the information of the measured sample, as the electric signal by use the photoelectric detector. And the last is to send the signal to data processing system by use the control system. Generally, there are three types monochromators: prism, optical grating and narrow-band pass filter. Thereinto, the narrow-band pass filter were widely used in the semi-auto biochemical analyzer. Through analysed the principle of biochemical analyzer base on the narrow-band pass filter, we known that the optical has three features. The first is the optical path of the optical system is a non- imaging system. The second, this system is wide spectrum region that contain visible light and ultraviolet spectrum. The third, this is a little aperture and little field monochromatic light system. Therefore, design idea of this optical system is: (1) luminous energy in the system less transmission loss; (2) detector coupled to the luminous energy efficient; mainly correct spherical aberration. Practice showed the point of Image quality evaluation: (1) dispersion circle diameter equal the receiving device pixel effective width of 125%, and the energy distribution should point target of 80% of energy into the receiving device pixel width of the effective diameter in this dispersion circle; (2) With MTF evaluation, the requirements in 20lp/ mm spatial frequency, the MTF values should not be lower than 0.6. The optical system should be fit in with ultraviolet and visible light width spectrum, and the detector image plane can but suited the majority visible light spectrum when by defocus optimization, and the image plane of violet and ultraviolet

  15. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire bandmore » between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.« less

  16. [Value of narrow band imaging endoscopy in detection of early laryngeal squamous cell carcinoma].

    PubMed

    Staníková, L; Kučová, H; Walderová, R; Zeleník, K; Šatanková, J; Komínek, P

    2015-01-01

    Narrow band imaging (NBI) is an endoscopic method using filtered wavelengths in detection of microvascular abnormalities associated with preneoplastic and neoplastic changes of the mucosa. The aim of the study is to evaluate the value of NBI endoscopy in the dia-gnosis of laryngeal precancerous and early stages of cancerous lesions and to investigate impact of NBI method in prehistological diagnostics in vivo. One hundred patients were enrolled in the study and their larynx was investigated using white light HD endoscopy and narrow band imaging between 6/ 2013- 10/ 2014. Indication criteria included chronic laryngitis, hoarseness for more than three weeks or macroscopic laryngeal lesion. Features of mucosal lesions were evaluated by white light endoscopy and afterwards were compared with intra-epithelial papillary capillary loop changes, viewed using NBI endoscopy. Suspicious lesions (leukoplakia, exophytic tumors, recurrent respiratory papillomatosis and/ or malignant type of vascular network by NBI endoscopy) were evaluated by histological analysis, results were compared with prehistological NBI dia-gnosis. Using NBI endoscopy, larger demarcation of pathological mucosal features than in white light visualization were recorded in 32/ 100 (32.0%) lesions, in 4/ 100 (4.0%) cases even new lesions were detected only by NBI endoscopy. 63/ 100 (63.0%) suspected lesions were evaluated histologically -  malign changes (carcinoma in situ or invasive carcinoma) were observed in 25/ 63 (39.7%). Prehistological diagnostics of malignant lesions using NBI endoscopy were in agreement with results of histological examination in 23/ 25 (92.0%) cases. The sensitivity of NBI in detecting malignant lesions was 89.3%, specificity of this method was 94.9%. NBI endoscopy is a promising optical technique enabling in vivo differentiation of superficial neoplastic lesions. These results suggest endoscopic NBI may be useful in the early detection of laryngeal cancer and precancerous

  17. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    PubMed

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  18. Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques

    NASA Technical Reports Server (NTRS)

    Gridley, D.

    1982-01-01

    A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.

  19. VizieR Online Data Catalog: NGC 4038/4039 broad and /narrow band photometry (Mengel+, 2005)

    NASA Astrophysics Data System (ADS)

    Mengel, S.; Lehnert, M. D.; Thatte, N.; Genzel, R.

    2005-06-01

    The Ks-band image which was used for the 3{sigma}-detection was obtained with ISAAC on VLT-ANTU as part of programme 65.N-0577, and has a FWHM of ~0.38". 1072 point-like objects were detected. For the multi-band photometry, we also used the HST archival images obtained by Whitmore et al. (see Whitmore et al., 1999AJ....118.1551W), which we rebinned to the same pixel size as the ISAAC image (0.1484"/pix). The CO narrow band image was also obtained with ISAAC, while the Br{gamma} image was obtained with SOFI at the NTT (programme number 63.N-0528). The Br{gamma} image had a lower image quality than the other two images (FWHM=0.7"). The photometry data were used to simultaneously fit age and extinction for each individual cluster in comparison to an evolutionary synthesis model. Where possible, the visual extinction was determined from an average of the extinction from the broadband fit and from the Hydrogen recombination line ratios (in comparison to the expected Case B line ratio). The age estimate from the fit was, where possible, averaged with the aged determined from equivalent widths and CO index. (1 data file).

  20. Use of narrow-band imaging bronchoscopy in detection of lung cancer.

    PubMed

    Zaric, Bojan; Perin, Branislav

    2010-05-01

    Narrow-band imaging (NBI) is a new endoscopic technique designed for detection of pathologically altered submucosal and mucosal microvascular patterns. The combination of magnification videobronchoscopy and NBI showed great potential in the detection of precancerous and cancerous lesions of the bronchial mucosa. The preliminary studies confirmed supremacy of NBI over white-light videobronchoscopy in the detection of premalignant and malignant lesions. Pathological patterns of capillaries in bronchial mucosa are known as Shibuya's descriptors (dotted, tortuous and abrupt-ending blood vessels). Where respiratory endoscopy is concerned, the NBI is still a 'technology in search of proper indication'. More randomized trials are necessary to confirm the place of NBI in the diagnostic algorithm, and more trials are needed to evaluate the relation of NBI to autofluorescence videobronchoscopy and to white-light magnification videobronchoscopy. Considering the fact that NBI examination of the tracheo-bronchial tree is easy, reproducible and clear to interpret, it is certain that NBI videobronchoscopy will play a significant role in the future of lung cancer detection and staging.

  1. Narrow Band Gap Conjugated Polyelectrolytes.

    PubMed

    Cui, Qiuhong; Bazan, Guillermo C

    2018-01-16

    Two essential structural elements define a class of materials called conjugated polyelectrolytes (CPEs). The first is a polymer framework with an electronically delocalized, π-conjugated structure. This component allows one to adjust desirable optical and electronic properties, for example the range of wavelengths absorbed, emission quantum yields, electron affinity, and ionization potential. The second defining feature is the presence of ionic functionalities, which are usually linked via tethers that can modulate the distance of the charged groups relative to the backbone. These ionic groups render CPEs distinct relative to their neutral conjugated polymer counterparts. Solubility in polar solvents, including aqueous media, is an immediately obvious difference. This feature has enabled the development of optically amplified biosensor protocols and the fabrication of multilayer organic semiconductor devices through deposition techniques using solvents with orthogonal properties. Important but less obvious potential advantages must also be considered. For example, CPE layers have been used to introduce interfacial dipoles and thus modify the effective work function of adjacent electrodes. One can thereby modulate the barriers for charge injection into semiconductor layers and improve the device efficiencies of organic light-emitting diodes and solar cells. With a hydrophobic backbone and hydrophilic ionic sites, CPEs can also be used as dispersants for insoluble materials. Narrow band gap CPEs (NBGCPEs) have been studied only recently. They contain backbones that comprise electron-rich and electron-poor fragments, a combination that leads to intramolecular charge transfer excited states and enables facile oxidation and reduction. One particularly interesting combination is NBGCPEs with anionic sulfonate side groups, for which spontaneous self-doping in aqueous media is observed. That no such doping is observed with cationic NBGCPEs indicates that the interplay

  2. Very narrow band model calculations of atmospheric fluxes and cooling rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L.S.; Berk, A.; Acharya, P.K.

    1996-10-15

    A new very narrow band model (VNBM) approach has been developed and incorporated into the MODTRAN atmospheric transmittance-radiance code. The VNBM includes a computational spectral resolution of 1 cm{sup {minus}1}, a single-line Voigt equivalent width formalism that is based on the Rodgers-Williams approximation and accounts for the finite spectral width of the interval, explicit consideration of line tails, a statistical line overlap correction, a new sublayer integration approach that treats the effect of the sublayer temperature gradient on the path radiance, and the Curtis-Godson (CG) approximation for inhomogeneous paths. A modified procedure for determining the line density parameter 1/d ismore » introduced, which reduces its magnitude. This results in a partial correction of the VNBM tendency to overestimate the interval equivalent widths. The standard two parameter CG approximation is used for H{sub 2}O and CO{sub 2}, while the Goody three parameter CG approximation is used for O{sub 3}. Atmospheric flux and cooling rate predictions using a research version of MODTRAN, MODR, are presented for H{sub 2}O (with and without the continuum), CO{sub 2}, and O{sub 3} for several model atmospheres. The effect of doubling the CO{sub 2} concentration is also considered. These calculations are compared to line-by-line (LBL) model calculations using the AER, GLA, GFDL, and GISS codes. The MODR predictions fall within the spread of the LBL results. The effects of decreasing the band model spectral resolution are illustrated using CO{sub 2} cooling rate and flux calculations. 36 refs., 18 figs., 1 tab.« less

  3. Design of an S band narrow-band bandpass BAW filter

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhao, Kun-li; Han, Chao

    2017-11-01

    An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.

  4. The Least Mean Squares Adaptive FIR Filter for Narrow-Band RFI Suppression in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Głas, Dariusz

    2017-06-01

    Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.

  5. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  6. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett's esophagus: a prospective randomized crossover study.

    PubMed

    Kara, M A; Peters, F P; Rosmolen, W D; Krishnadath, K K; ten Kate, F J; Fockens, P; Bergman, J J G H

    2005-10-01

    High-resolution endoscopy (HRE) may improve the detection of early neoplasia in Barrett's esophagus. Indigo carmine chromoendoscopy (ICC) and narrow-band imaging (NBI) may be useful techniques to complement HRE. The aim of this study was to compare HRE-ICC with HRE-NBI for the detection of high-grade dysplasia or early cancer (HGD/EC) in patients with Barrett's esophagus. Twenty-eight patients with Barrett's esophagus underwent HRE-ICC and HRE-NBI (separated by 6 - 8 weeks) in a randomized sequence. The two procedures were performed by two different endoscopists, who were blinded to the findings of the other examination. Targeted biopsies were taken from all detected lesions, followed by four-quadrant biopsies at 2-cm intervals. Biopsy evaluation was supervised by a single expert pathologist, who was blinded to the imaging technique used. Fourteen patients were diagnosed with HGD/EC. The sensitivity for HGD/EC was 93 % and 86 % for HRE-ICC and HRE-NBI, respectively. Targeted biopsies had a sensitivity of 79 % with HRE alone. HGD was diagnosed from random biopsies alone in only one patient. ICC and NBI detected a limited number of additional lesions occult to HRE, but these lesions did not alter the sensitivity for identifying patients with HGD/EC. In most patients with high-grade dysplasia or early cancer in Barrett's esophagus, subtle lesions can be identified with high-resolution endoscopy. Indigo carmine chromoendoscopy and narrow-band imaging are comparable as adjuncts to high-resolution endoscopy.

  7. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in sub-syndromal seasonal affective disorder.

    PubMed

    Meesters, Ybe; Winthorst, Wim H; Duijzer, Wianne B; Hommes, Vanja

    2016-02-18

    The discovery of a novel photoreceptor in the retinal ganglion cells with a highest sensitivity of 470-490 nm blue light has led to research on the effects of short-wavelength light in humans. Several studies have explored the efficacy of monochromatic blue or blue-enriched light in the treatment of SAD. In this study, a comparison has been made between the effects of broad-wavelength light without ultraviolet (UV) wavelengths compared to narrow-band blue light in the treatment of sub-syndromal seasonal affective disorder (Sub-SAD). In a 15-day design, 48 participants suffering from Sub-SAD completed 20-minute sessions of light treatment on five consecutive days. 22 participants were given bright white-light treatment (BLT, broad-wavelength light without UV 10 000 lux, irradiance 31.7 Watt/m(2)) and 26 participants received narrow-band blue light (BLUE, 100 lux, irradiance 1.0 Watt/m(2)). All participants completed daily and weekly questionnaires concerning mood, activation, sleep quality, sleepiness and energy. Also, mood and energy levels were assessed by means of the SIGH-SAD, the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 54.8 %, effect size 1.7 and BLUE 50.7 %, effect size 1.9). No statistically significant differences were found on the main outcome measures. Light treatment is an effective treatment for Sub-SAD. The use of narrow-band blue-light treatment is equally effective as bright white-light treatment. This study was registered in the Dutch Trial Register (Nederlands Trial Register TC =  4342 ) (20-12-2013).

  8. Acquisition and visualization techniques for narrow spectral color imaging.

    PubMed

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  9. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  10. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Sun, Y. -E; Maxwell, T. J.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  11. Simulator spectral characterization using balloon calibrated solar cells with narrow band pass filters

    NASA Technical Reports Server (NTRS)

    Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.

    1981-01-01

    The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.

  12. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period

    PubMed Central

    2012-01-01

    Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. PMID

  13. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.

    PubMed

    Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M

    2012-08-24

    The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.

  14. High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks.

    PubMed

    Lee, Ji Hyung; Park, Chang Geun; Kim, Aesun; Kim, Hyung Jong; Kim, Youngseo; Park, Sungnam; Cho, Min Ju; Choi, Dong Hoon

    2018-06-06

    We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm 2 , demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.

  15. Band-gap narrowing and magnetic behavior of Ni-doped Ba(Ti0.875Ce0.125)O3 thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Wenliang; Deng, Hongmei; Yu, Lu; Yang, Pingxiong; Chu, Junhao

    2015-11-01

    Band-gap narrowing and magnetic effects have been observed in a Ni-doped Ba(Ti0.875Ce0.125)O3 (BTC) thin film. Structural characterizations and microstructural analysis show that the as-prepared Ba(Ti0.75Ce0.125Ni0.125)O3-δ (BTCN) thin film exhibits a cubic perovskite structure with an average grain size of 25 nm. The Ce doping at the Ti-site results in an increasing perovskite volume to favour an O-vacancy-stabilized Ni2+ substitution. Raman spectroscopy, however, shows the cubic symmetry of crystalline structures is locally lowered by the presence of dopants, significantly deviating from the ideal Pm3m space group. Moreover, BTCN presents a narrowed band-gap, much smaller than that of BaTiO3 and BTC, due to new states of both the highest occupied molecular orbital and the lowest unoccupied molecular orbital in an electronic structure with the presence of Ni. Also, magnetic enhancement driven by co-doping has been confirmed in the films, which mainly stems from the exchange interaction of Ni2+ ions via an electron trapped in a bridging oxygen vacancy. These findings may open an avenue to discover and design optimal perovskite compounds for solar-energy devices and information storage.

  16. UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band

    NASA Astrophysics Data System (ADS)

    Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei

    2017-12-01

    A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.

  17. On-sky characterisation of the VISTA NB118 narrow-band filters at 1.19 μm

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, Bo; Freudling, Wolfram; Zabl, Johannes; Fynbo, Johan P. U.; Møller, Palle; Nilsson, Kim K.; McCracken, Henry Joy; Hjorth, Jens; Le Fèvre, Olivier; Tasca, Lidia; Dunlop, James S.; Sobral, David

    2013-12-01

    Observations of the high redshift Universe through narrow-band filters have proven very successful in the last decade. The 4-m VISTA telescope, equipped with the wide-field camera VIRCAM, offers a major step forward in wide-field near-infrared imaging, and in order to utilise VISTA's large field-of-view and sensitivity, the Dark Cosmology Centre provided a set of 16 narrow-band filters for VIRCAM. These NB118 filters are centered at a wavelength near 1.19 μm in a region with few airglow emission lines. The filters allow the detection of Hα emitters at z = 0.8, Hβ and [O iii] emitters at z ≈ 1.4, [O ii] emitters at z = 2.2, and Lyα emitters at z = 8.8. Based on guaranteed time observations of the COSMOS field we here present a detailed description and characterization of the filters and their performance. In particular we provide sky-brightness levels and depths for each of the 16 detector/filter sets and find that some of the filters show signs of some red-leak. We identify a sample of 2 × 103 candidate emission-line objects in the data. Cross-correlating this sample with a large set of galaxies with known spectroscopic redshifts we determine the "in situ" passbands of the filters and find that they are shifted by about 3.5 - 4 nm (corresponding to 30% of the filter width) to the red compared to the expectation based on the laboratory measurements. Finally, we present an algorithm to mask out persistence in VIRCAM data. Scientific results extracted from the data will be presented separately. Based on observations collected at the European Southern Observatory, Chile, as part of programme 284.A-5026 (VISTA NB118 GTO, PI Fynbo) and 179.A-2005 (UltraVISTA, PIs Dunlop, Franx, Fynbo, & Le Fèvre).

  18. Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulas, Dana B.; London, Alexander E.; Huang, Lifeng

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less

  19. Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors

    DOE PAGES

    Sulas, Dana B.; London, Alexander E.; Huang, Lifeng; ...

    2018-02-13

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less

  20. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    NASA Astrophysics Data System (ADS)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  1. The Effect of High N-DOPED Anatase TiO2 on the Band Gap Narrowing and Redshift by First-Principles

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Jin, Yongjun; Ying, Chun; Zhao, Erjun; Zhang, Yue; Dong, Hongying

    2012-10-01

    Anatase TiO2 supercells were studied by first-principles, in which one was undoped and another three were high N-doping. Partial densities of states, band structure, population and absorption spectrum were calculated. The calculated results indicated that in the condition of TiO2-xNx (x = 0.0625, 0.125, 0.25), the higher the doping concentration is, the shorter will be the lattice parameters parallel to the direction of c-axis. The strength of covalent bond significantly varied. The formation energy increases at first, and then decreases. The doping models become less stable as N-doping concentration increases. Meanwhile, the narrower the band gap is, the more significant will be the redshift, which is in agreement with the experimental results.

  2. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness.

    PubMed

    Kuribayashi, Ryuma; Nittono, Hiroshi

    2017-01-01

    High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound

  3. Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, J.; Crawford, D.; Edstrom Jr, D.

    We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the detailsmore » of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.« less

  4. Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  5. Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity.

    PubMed

    Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D; Weber, Peter B; Kuperman, Rachel A; Auguste, Kurtis I; Brunner, Peter; Schalk, Gerwin; Lin, Jack J; Parvizi, Josef; Crone, Nathan E; Dronkers, Nina F; Knight, Robert T

    2017-06-06

    Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70-150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.

  6. Hα Emitting Galaxies at z ∼ 0.6 in the Deep And Wide Narrow-band Survey

    NASA Astrophysics Data System (ADS)

    Coughlin, Alicia; Rhoads, James E.; Malhotra, Sangeeta; Probst, Ronald; Swaters, Rob; Tilvi, Vithal S.; Zheng, Zhen-Ya; Finkelstein, Steven; Hibon, Pascale; Mobasher, Bahram; Jiang, Tianxing; Joshi, Bhavin; Pharo, John; Veilleux, Sylvain; Wang, Junxian; Yang, Huan; Zabl, Johannes

    2018-05-01

    We present new measurements of the Hα luminosity function (LF) and star formation rate (SFR) volume density for galaxies at z ∼ 0.62 in the COSMOS field. Our results are part of the Deep And Wide Narrow-band Survey (DAWN), a unique infrared imaging program with large areal coverage (∼1.1 deg2 over five fields) and sensitivity (9.9× {10}-18 {erg} {cm}}-2 {{{s}}}-1 at 5σ). The present sample, based on a single DAWN field, contains 116 Hα emission-line candidates at z ∼ 0.62, 25% of which have spectroscopic confirmations. These candidates have been selected through the comparison of narrow and broad-band images in the infrared and through matching with existing catalogs in the COSMOS field. The dust-corrected LF is well described by a Schechter function with {L}* ={10}42.64+/- 0.92 erg s‑1, {{{Φ }}}* ={10}-3.32+/- 0.93 Mpc‑3, {L}* {{{Φ }}}* ={10}39.40+/- 0.15 erg s‑1 Mpc‑3, and α = ‑1.75 ± 0.09. From this LF, we calculate a SFR density of ρ SFR = 10‑1.37 ± 0.08 M ⊙ yr‑1 Mpc‑3. We expect an additional cosmic variance uncertainty of ∼20%. Both the faint end slope and luminosity density that we derive are consistent with prior results at similar redshifts, with reduced uncertainties. We also present an analysis of these Hα emitters’ sizes, which shows a direct correlation between the galaxies’ sizes and their Hα emission.

  7. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510

    2011-06-27

    We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  8. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    PubMed

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  9. Ultrafast Narrow Band Modulation of VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.

  10. Narrow Angle Diversity using ACTS Ka-band Signal with Two USAT Ground Stations

    NASA Technical Reports Server (NTRS)

    Kalu, A.; Emrich, C.; Ventre, J.; Wilson, W.; Acosta, R.

    1998-01-01

    Two ultra small aperture terminal (USAT) ground stations, separated by 1.2 km in a narrow angle diversity configuration, received a continuous Ka-band tone sent from Cleveland Link Evaluation Terminal (LET). The signal was transmitted to the USAT ground stations via NASA's Advanced Communications Technology Satellite (ACTS) steerable beam. Received signal power at the two sites was measured and analyzed. A dedicated datalogger at each site recorded time-of-tip data from tipping bucket rain gauges, providing rain amount and instantaneous rain rate. WSR-88D data was also obtained for the collection period. Eleven events with ground-to-satellite slant-path precipitation and resultant signal attenuation were observed during the data collection period. Fade magnitude and duration were compared at the two sites and diversity gain was calculated. These results exceeded standard diversity gain model predictions by several decibels. Rain statistics from tipping bucket data and from radar data were also compared to signal attenuation. The nature of Florida's subtropical rainfall, specifically its impact on signal attenuation at the sites, was addressed.

  11. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  12. Effective High-Frequency Permeability of Compacted Metal Powders

    NASA Astrophysics Data System (ADS)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  13. Examination of the high-frequency capability of carbon nanotube FETs

    NASA Astrophysics Data System (ADS)

    Pulfrey, David L.; Chen, Li

    2008-09-01

    New results are added to a recent critique of the high-frequency performance of carbon nanotube field-effect transistors (CNFETs). On the practical side, reduction of the number of metallic tubes in CNFETs fashioned from multiple nanotubes has allowed the measured fT to be increased to 30 GHz. On the theoretical side, the opinion that the band-structure-determined velocity limits the high-frequency performance has been reinforced by corrections to recent simulation results for doped-contact CNFETs, and by the ruling out of the possibility of favourable image-charge effects. Inclusion in the simulations of the features of finite gate-metal thickness and source/drain contact resistance has given an indication of likely practical values for fT. A meaningful comparison between CNFETs with doped-contacts and metallic contacts has been made.

  14. Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  15. High-frequency tone-pip-evoked otoacoustic emissions in chinchillas

    NASA Astrophysics Data System (ADS)

    Siegel, Jonathan H.; Charaziak, Karolina K.

    2015-12-01

    We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.

  16. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  17. Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity

    PubMed Central

    Dhillon, Rummit K.; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D.; Weber, Peter B.; Kuperman, Rachel A.; Auguste, Kurtis I.; Brunner, Peter; Lin, Jack J.; Parvizi, Josef; Crone, Nathan E.; Dronkers, Nina F.; Knight, Robert T.

    2017-01-01

    Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70–150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain. PMID:28533406

  18. An Exceptionally Narrow Band-Gap (∼4 eV) Silicate Predicted in the Cubic Perovskite Structure: BaSiO3.

    PubMed

    Hiramatsu, Hidenori; Yusa, Hitoshi; Igarashi, Ryo; Ohishi, Yasuo; Kamiya, Toshio; Hosono, Hideo

    2017-09-05

    The electronic structures of 35 A 2+ B 4+ O 3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO 3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO 2 and the calculated value of 7.3 eV for orthorhombic BaSiO 3 ) and a small electron effective mass (0.3m 0 , where m 0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO 3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO 3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.

  19. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  20. High-frequency neural oscillations and visual processing deficits in schizophrenia

    PubMed Central

    Tan, Heng-Ru May; Lana, Luiz; Uhlhaas, Peter J.

    2013-01-01

    Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder. PMID:24130535

  1. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  2. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    PubMed

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-12-01

    The present study was designed to evaluate the effect of combining fractional CO 2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO 2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO 2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO 2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  3. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    NASA Astrophysics Data System (ADS)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  4. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less

  5. Diagnosis of early gastric cancer using narrow band imaging and acetic acid

    PubMed Central

    Matsuo, Ken; Takedatsu, Hidetoshi; Mukasa, Michita; Sumie, Hiroaki; Yoshida, Hikaru; Watanabe, Yasutomo; Akiba, Jun; Nakahara, Keita; Tsuruta, Osamu; Torimura, Takuji

    2015-01-01

    AIM: To determine whether the endoscopic findings of depressed-type early gastric cancers (EGCs) could precisely predict the histological type. METHODS: Ninety depressed-type EGCs in 72 patients were macroscopically and histologically identified. We evaluated the microvascular (MV) and mucosal surface (MS) patterns of depressed-type EGCs using magnifying endoscopy (ME) with narrow-band imaging (NBI) (NBI-ME) and ME enhanced by 1.5% acetic acid, respectively. First, depressed-type EGCs were classified according to MV pattern by NBI-ME. Subsequently, EGCs unclassified by MV pattern were classified according to MS pattern by enhanced ME (EME) images obtained from the same angle. RESULTS: We classified the depressed-type EGCs into the following 2 MV patterns using NBI-ME: a fine-network pattern that indicated differentiated adenocarcinoma (25/25, 100%) and a corkscrew pattern that likely indicated undifferentiated adenocarcinoma (18/23, 78.3%). However, 42 of the 90 (46.7%) lesions could not be classified into MV patterns by NBI-ME. These unclassified lesions were then evaluated for MS patterns using EME, which classified 33 (81.0%) lesions as MS patterns, diagnosed as differentiated adenocarcinoma. As a result, 76 of the 90 (84.4%) lesions were matched with histological diagnoses using a combination of NBI-ME and EME. CONCLUSION: A combination of NBI-ME and EME was useful in predicting the histological type of depressed-type EGC. PMID:25632201

  6. Disordered high-frequency oscillation in face processing in schizophrenia patients

    PubMed Central

    Liu, Miaomiao; Pei, Guangying; Peng, Yinuo; Wang, Changming; Yan, Tianyi; Wu, Jinglong

    2018-01-01

    Abstract Schizophrenia is a complex disorder characterized by marked social dysfunctions, but the neural mechanism underlying this deficit is unknown. To investigate whether face-specific perceptual processes are influenced in schizophrenia patients, both face detection and configural analysis were assessed in normal individuals and schizophrenia patients by recording electroencephalogram (EEG) data. Here, a face processing model was built based on the frequency oscillations, and the evoked power (theta, alpha, and beta bands) and the induced power (gamma bands) were recorded while the subjects passively viewed face and nonface images presented in upright and inverted orientations. The healthy adults showed a significant face-specific effect in the alpha, beta, and gamma bands, and an inversion effect was observed in the gamma band in the occipital lobe and right temporal lobe. Importantly, the schizophrenia patients showed face-specific deficits in the low-frequency beta and gamma bands, and the face inversion effect in the gamma band was absent from the occipital lobe. All these results revealed face-specific processing in patients due to the disorder of high-frequency EEG, providing additional evidence to enrich future studies investigating neural mechanisms and serving as a marked diagnostic basis. PMID:29419668

  7. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding

    PubMed Central

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-01-01

    AIM: To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. METHODS: A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. RESULTS: Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. CONCLUSION: Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both

  8. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding.

    PubMed

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-07-28

    To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both imaging and training, it may be possible

  9. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. V.; Mironova, T. V.; Sultanov, T. T.

    2010-09-01

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases.

  10. Phototherapy with Narrow-Band UVB in Adult Guttate Psoriasis: Results and Patient Assessment.

    PubMed

    Fernández-Guarino, Montserrat; Aboín-González, Sonsoles; Velázquez, Diana; Barchino, Lucia; Cano, Natividad; Lázaro, Pablo

    2016-01-01

    Acute guttate psoriasis (AGP) is a distinctive clinical entity with good response to treatment with narrow-band ultraviolet B (NB-UVB). To investigate the results of NB-UVB phototherapy in adult patients with adult guttate psoriasis. We carried out a prospective, open, and observational study. Patients over 18 years with more than 5% of body surface area affected were included. The PASI was assessed prior to and after treatment. The follow-up period was 18 months. After treatment, patients completed a simple questionnaire to assess their overall impression of the treatment. The 67 adult patients with AGP included in this study had an initial PASI of 8.55 (SD 5.03). Patients were treated with a mean of 19.9 sessions (SD 13.5) and mean doses of 14 mJ/cm2 (SD 10.5). Of the 67 patients, 52 achieved PASI90 with 96.15% of PASI reduction, and of these, 46 (88%) maintained PASI90 during the 18 months of follow-up. Patients were very satisfied with the treatment. AGP is a defined clinical entity with a variable course. Phototherapy with NB-UVB appears to be a very good option for treatment of AGP because of the good results obtained and patient satisfaction. © 2016 S. Karger AG, Basel.

  11. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  12. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less

  13. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks.

    PubMed

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-05-25

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.

  14. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks

    PubMed Central

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-01-01

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085

  15. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  16. Variable frame rate transmission - A review of methodology and application to narrow-band LPC speech coding

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. R.; Makhoul, J.; Schwartz, R. M.; Huggins, A. W. F.

    1982-04-01

    The variable frame rate (VFR) transmission methodology developed, implemented, and tested in the years 1973-1978 for efficiently transmitting linear predictive coding (LPC) vocoder parameters extracted from the input speech at a fixed frame rate is reviewed. With the VFR method, parameters are transmitted only when their values have changed sufficiently over the interval since their preceding transmission. Two distinct approaches to automatic implementation of the VFR method are discussed. The first bases the transmission decisions on comparisons between the parameter values of the present frame and the last transmitted frame. The second, which is based on a functional perceptual model of speech, compares the parameter values of all the frames that lie in the interval between the present frame and the last transmitted frame against a linear model of parameter variation over that interval. Also considered is the application of VFR transmission to the design of narrow-band LPC speech coders with average bit rates of 2000-2400 bts/s.

  17. High resolution He I 10830 angstrom narrow-band imaging of an M-class flare.I-analysis of sunspot dynamics during flaring

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Zeng, Zhicheng; Ji, Kaifan; Goode, Philip R.; Cao, Wenda; Ji, Haisheng

    2016-10-01

    We report our first-step results of high resolution He I 1083 nm narrow-band imaging of an M 1.8 class two-ribbon flare on July 5,2012. The flare was observed with the 1.6 meter aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extention of umbral flashes, both take the form of absorption in our 1083 nm narrow-band images. From a space-time image made of a slit cutting across the ribbon and the sunspot, we find that dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside one ribbon of the flare when it sweeps into sunspot's penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a returning of the absorption strip with similar speed. We tentatively explain the phenomenon as the result of a sudden increase in the density of ortho-Helium atoms in the area of the sunspot area being excited by the flare's EUV illumination. This explanation is based on the obsevation that 1083 nm absorption in the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  18. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u}more » is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.« less

  19. Spectral evolution and extreme value analysis of non-linear numerical simulations of narrow band random surface gravity waves.

    NASA Astrophysics Data System (ADS)

    Socquet-Juglard, H.; Dysthe, K. B.; Trulsen, K.; Liu, J.; Krogstad, H. E.

    2003-04-01

    Numerical simulations of a narrow band gaussian spectrum of random surface gravity waves have been carried out in two and three spatial dimensions [7]. Different types of non-linear Schr&{uml;o}dinger equations, [1] and [4], have been used in these simulations. Simulations have now been carried with a JONSWAP spectrum associated with a spreading function of the type cosine-squared [5]. The evolution of the spectrum, skewness, kurtosis, ... will be presented. In addition, some results about stochastic properties of the surface will be shown. Based on the approach found in [2], [3] and [6], the results are presented in terms of deviations from linear Gaussian theory and the standard second order small slope perturbation theory. begin{thebibliography}{9} bibitem{kk96} Trulsen, K. &Dysthe, K. B. (1996). A modified nonlinear Schr&{uml;o}dinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, pp. 281-289. bibitem{BK2000} Krogstad, H.E. and S.F. Barstow (2000). A uniform approach to extreme value analysis of ocean waves, Proc. ISOPE'2000, Seattle, USA, 3, pp. 103-108. bibitem{PRK} Prevosto, M., H. E. Krogstad and A. Robin (2000). Probability distributions for maximum wave and crest heights, Coast. Eng., 40, 329-360. bibitem{ketal} Trulsen, K., Kliakhandler, I., Dysthe, K. B. &Velarde, M. G. (2000) On weakly nonlinear modulation of waves on deep water, Phys. Fluids, 12, pp. L25-L28. bibitem{onorato} Onorato, M., Osborne, A.R. and Serio, M. (2002) Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, pp. 2432-2437. bibitem{BK2002} Krogstad, H.E. and S.F. Barstow (2002). Analysis and Applications of Second Order Models for the Maximum Crest height, % Proc. 21nd Int. Conf. Offshore Mechanics and Arctic Engineering, Oslo. Paper no. OMAE2002-28479. bibitem{JFMP} Dysthe, K. B., Trulsen, K., Krogstad, H. E. and Socquet-Juglard, H. (2002, in press) Evolution of a narrow band spectrum of random surface gravity waves, J. Fluid

  20. Very high-frequency gravitational waves from magnetars and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Li, Fang-Yu; Li, Jin; Fang, Zhen-Yun; Beckwith, Andrew

    2017-12-01

    Extremely powerful astrophysical electromagnetic (EM) systems could be possible sources of high-frequency gravitational waves (HFGWs). Here, based on properties of magnetars and gamma-ray bursts (GRBs), we address “Gamma-HFGWs” (with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation (in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields (˜1011 T). By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density Ω gw around 10-6, and they would cause perturbed signal EM waves of ˜10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future. Supported by National Natural Science Foundation of China (11605015, 11375279, 11205254, 11647307) and the Fundamental Research Funds for the Central Universities (106112017CDJXY300003, 106112017CDJXFLX0014)

  1. Dual-Band Operation of a Microstrip Patch Antenna on a Duroid 5870 Substrate for Ku- and K-Bands

    PubMed Central

    Islam, M. M.; Islam, M. T.; Faruque, M. R. I.

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz–14.86 GHz) on the lower band and 0.94 GHz (20.67–19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results. PMID:24385878

  2. Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands.

    PubMed

    Islam, M M; Islam, M T; Faruque, M R I

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.

  3. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hassan, Ali; Jin, Yuhua; Irfan, Muhammad; Jiang, Yijian

    2018-03-01

    Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (˜ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ˜315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  4. Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian

    2006-01-01

    A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure. The electronic hardware and software used to acquire the QRS complexes and perform some preliminary analyses of their high-frequency components were summarized in Real-Time, High-Frequency QRS Electrocardiograph (MSC- 23154), NASA Tech Briefs, Vol. 27, No. 7 (July 2003), pp. 26-28. To recapitulate, signals from standard electrocardiograph electrodes are preamplified, then digitized at a sampling rate of 1,000 Hz, then analyzed by the software that detects R waves and QRS complexes and analyzes them from several perspectives. The software includes provisions for averaging signals over multiple beats and for special-purpose nonrecursive digital filters with specific low- and high-frequency cutoffs. These filters, applied to the averaged signal, effect a band-pass operation in the frequency range from 150 to 250 Hz. The output of the bandpass filter is the desired high-frequency QRS signal. Further processing is then performed in real time to obtain the beat-to-beat root mean square (RMS) voltage amplitude of the filtered signal, certain variations of the RMS voltage, and such standard measures as the heart rate and R-R interval at any given time. A key signal feature analyzed in the present

  5. Multispectral decomposition for the removal of out-of-band effects of visible/infrared imaging radiometer suite visible and near-infrared bands.

    PubMed

    Gao, Bo-Cai; Chen, Wei

    2012-06-20

    The visible/infrared imaging radiometer suite (VIIRS) is now onboard the first satellite platform managed by the Joint Polar Satellite System of the National Oceanic and Atmospheric Administration and NASA. It collects scientific data from an altitude of approximately 830 km in 22 narrow bands located in the 0.4-12.5 μm range. The seven visible and near-infrared (VisNIR) bands in the wavelength interval between 0.4-0.9 μm are known to suffer from the out-of-band (OOB) responses--a small amount of radiances far away from the center of a given band that can pass through the filter and reach detectors in the focal plane. A proper treatment of the OOB effects is necessary in order to obtain calibrated at-sensor radiance data [referred to as the Sensor Data Records (SDRs)] from measurements with these bands and subsequently to derive higher-level data products [referred to as the Environmental Data Records (EDRs)]. We have recently developed a new technique, called multispectral decomposition transform (MDT), which can be used to correct/remove the OOB effects of VIIRS VisNIR bands and to recover the true narrow band radiances from the measured radiances containing OOB effects. An MDT matrix is derived from the laboratory-measured filter transmittance functions. The recovery of the narrow band signals is performed through a matrix multiplication--the production between the MDT matrix and a multispectral vector. Hyperspectral imaging data measured from high altitude aircraft and satellite platforms, the complete VIIRS filter functions, and the truncated VIIRS filter functions to narrower spectral intervals, are used to simulate the VIIRS data with and without OOB effects. Our experimental results using the proposed MDT method have demonstrated that the average errors after decomposition are reduced by more than one order of magnitude.

  6. Quantitative evaluation of mucosal vascular contrast in narrow band imaging using Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-06-01

    Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.

  7. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy.

    PubMed

    Kominami, Yoko; Yoshida, Shigeto; Tanaka, Shinji; Sanomura, Yoji; Hirakawa, Tsubasa; Raytchev, Bisser; Tamaki, Toru; Koide, Tetsusi; Kaneda, Kazufumi; Chayama, Kazuaki

    2016-03-01

    It is necessary to establish cost-effective examinations and treatments for diminutive colorectal tumors that consider the treatment risk and surveillance interval after treatment. The Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI) committee of the American Society for Gastrointestinal Endoscopy published a statement recommending the establishment of endoscopic techniques that practice the resect and discard strategy. The aims of this study were to evaluate whether our newly developed real-time image recognition system can predict histologic diagnoses of colorectal lesions depicted on narrow-band imaging and to satisfy some problems with the PIVI recommendations. We enrolled 41 patients who had undergone endoscopic resection of 118 colorectal lesions (45 nonneoplastic lesions and 73 neoplastic lesions). We compared the results of real-time image recognition system analysis with that of narrow-band imaging diagnosis and evaluated the correlation between image analysis and the pathological results. Concordance between the endoscopic diagnosis and diagnosis by a real-time image recognition system with a support vector machine output value was 97.5% (115/118). Accuracy between the histologic findings of diminutive colorectal lesions (polyps) and diagnosis by a real-time image recognition system with a support vector machine output value was 93.2% (sensitivity, 93.0%; specificity, 93.3%; positive predictive value (PPV), 93.0%; and negative predictive value, 93.3%). Although further investigation is necessary to establish our computer-aided diagnosis system, this real-time image recognition system may satisfy the PIVI recommendations and be useful for predicting the histology of colorectal tumors. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  8. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  9. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  10. Development of a novel image-based program to teach narrow-band imaging.

    PubMed

    Dumas, Cedric; Fielding, David; Coles, Timothy; Good, Norm

    2016-08-01

    Narrow-band imaging (NBI) is a widely available endoscopic imaging technology; however, uptake of the technique could be improved. Teaching new imaging techniques and assessing trainees' performance can be a challenging exercise during a 1-day workshop. To support NBI training, we developed an online training tool (Medimq) to help experts train novices in NBI bronchoscopy that could assess trainees' performance and provide feedback before the close of the 1-day course. The present study determines whether trainees' capacity to identify relevant pathology increases with the proposed interactive testing method. Two groups of 20 and 18 bronchoscopists have attended an NBI course where they did a pretest and post-test before and after the main lecture, and a follow-up test 4 weeks later to measure retention of knowledge. We measured their ability to mark normal and abnormal 'biopsy size' areas on bronchoscopic NBI images for biopsy. These markings were compared with areas marked by experts on the same images. The first group results were used to pilot the test. After modifications, the results of the improved test for group 2 showed trainees improved by 32% (total class average normalized gain) in detecting normal or abnormal areas. On follow-up testing, Group 2 improved by 23%. The overall class average normalized gain of 32% shows our test can be used to improve trainees' competency in analyzing NBI Images. The testing method (and tool) can be used to measure the follow up 4 weeks later. Better follow-up test results would be expected with more frequent practice by trainees after the course. © The Author(s), 2016.

  11. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    PubMed

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  12. A narrow-band injection-seeded pulsed titanium:sapphire oscillator-amplifier system with on-line chirp analysis for high-resolution spectroscopy.

    PubMed

    Hannemann, S; van Duijn, E-J; Ubachs, W

    2007-10-01

    A narrow-band tunable injection-seeded pulsed titanium:sapphire laser system has been developed for application in high-resolution spectroscopic studies at the fundamental wavelengths in the near infrared as well as in the ultraviolet, deep ultraviolet, and extreme ultraviolet after upconversion. Special focus is on the quantitative assessment of the frequency characteristics of the oscillator-amplifier system on a pulse-to-pulse basis. Frequency offsets between continuous-wave seed light and the pulsed output are measured as well as linear chirps attributed mainly to mode pulling effects in the oscillator cavity. Operational conditions of the laser are found in which these offset and chirp effects are minimal. Absolute frequency calibration at the megahertz level of accuracy is demonstrated on various atomic and molecular resonance lines.

  13. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  14. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date.

  15. Surface correlation effects in two-band strongly correlated slabs.

    PubMed

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  16. Narrow Band Imaging Enhances the Detection Rate of Penetration and Aspiration in FEES.

    PubMed

    Nienstedt, Julie C; Müller, Frank; Nießen, Almut; Fleischer, Susanne; Koseki, Jana-Christiane; Flügel, Till; Pflug, Christina

    2017-06-01

    Narrow band imaging (NBI) is widely used in gastrointestinal, laryngeal, and urological endoscopy. Its original purpose was to visualize vessels and epithelial irregularities. Based on our observation that adding NBI to common white light (WL) improves the contrast of the test bolus in fiberoptic endoscopic evaluation of swallowing (FEES), we now investigated the potential value of NBI in swallowing disorders. 148 FEES images were analyzed from 74 consecutive patients with swallowing disorders, including 74 with and 74 without NBI. All images were evaluated by four dysphagia specialists. Findings were classified according to Rosenbek's penetration-aspiration scale modified for evaluating these FEES images. Intra- and inter-rater reliability was determined as well as observer confidence. A better visualization of the bolus is the main advantage of NBI in FEES. This generally leads to sharper optical contrasts and better detection of small bolus quantities. Accordingly, NBI enhances the detection rate of penetration and aspiration. On average, identification of laryngeal penetration increased from 40 to 73% and of aspiration from 13 to 24% (each p < 0.01) of patients. In contrast to WL alone, the use of NBI also markedly increased the inter- and intra-rater reliability (p < 0.01) and the rating confidence of all experts (p < 0.05). NBI is an easy and cost-effective tool simplifying dysphagia evaluation and shortening FEES evaluation time. It leads to a markedly higher detection rate of pathological findings. The significantly better intra- and inter-rater reliability argues further for a better overall reproducibly of FEES interpretation.

  17. Detection of high-frequency energy changes in sustained vowels produced by singers

    PubMed Central

    Monson, Brian B.; Lotto, Andrew J.; Ternström, Sten

    2011-01-01

    The human voice spectrum above 5 kHz receives little attention. However, there are reasons to believe that this high-frequency energy (HFE) may play a role in perceived quality of voice in singing and speech. To fulfill this role, differences in HFE must first be detectable. To determine human ability to detect differences in HFE, the levels of the 8- and 16-kHz center-frequency octave bands were individually attenuated in sustained vowel sounds produced by singers and presented to listeners. Relatively small changes in HFE were in fact detectable, suggesting that this frequency range potentially contributes to the perception of especially the singing voice. Detection ability was greater in the 8-kHz octave than in the 16-kHz octave and varied with band energy level. PMID:21476681

  18. Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng

    2011-01-01

    We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.

  19. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  20. Ortho-Rectification of Narrow Band Multi-Spectral Imagery Assisted by Dslr RGB Imagery Acquired by a Fixed-Wing Uas

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.

    2015-08-01

    Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at

  1. A Web-Based Education Program for Colorectal Lesion Diagnosis with Narrow Band Imaging Classification.

    PubMed

    Aihara, Hiroyuki; Kumar, Nitin; Thompson, Christopher C

    2018-04-19

    An education system for narrow band imaging (NBI) interpretation requires sufficient exposure to key features. However, access to didactic lectures by experienced teachers is limited in the United States. To develop and assess the effectiveness of a colorectal lesion identification tutorial. In the image analysis pretest, subjects including 9 experts and 8 trainees interpreted 50 white light (WL) and 50 NBI images of colorectal lesions. Results were not reviewed with subjects. Trainees then participated in an online tutorial emphasizing NBI interpretation in colorectal lesion analysis. A post-test was administered and diagnostic yields were compared to pre-education diagnostic yields. Under the NBI mode, experts showed higher diagnostic yields (sensitivity 91.5% [87.3-94.4], specificity 90.6% [85.1-94.2], and accuracy 91.1% [88.5-93.7] with substantial interobserver agreement [κ value 0.71]) compared to trainees (sensitivity 89.6% [84.8-93.0], specificity 80.6% [73.5-86.3], and accuracy 86.0% [82.6-89.2], with substantial interobserver agreement [κ value 0.69]). The online tutorial improved the diagnostic yields of trainees to the equivalent level of experts (sensitivity 94.1% [90.0-96.6], specificity 89.0% [83.0-93.2], and accuracy 92.0% [89.3-94.7], p < 0.001 with substantial interobserver agreement [κ value 0.78]). This short, online tutorial improved diagnostic performance and interobserver agreement. © 2018 S. Karger AG, Basel.

  2. Pansharpening on the Narrow Vnir and SWIR Spectral Bands of SENTINEL-2

    NASA Astrophysics Data System (ADS)

    Vaiopoulos, A. D.; Karantzalos, K.

    2016-06-01

    In this paper results from the evaluation of several state-of-the-art pansharpening techniques are presented for the VNIR and SWIR bands of Sentinel-2. A procedure for the pansharpening is also proposed which aims at respecting the closest spectral similarities between the higher and lower resolution bands. The evaluation included 21 different fusion algorithms and three evaluation frameworks based both on standard quantitative image similarity indexes and qualitative evaluation from remote sensing experts. The overall analysis of the evaluation results indicated that remote sensing experts disagreed with the outcomes and method ranking from the quantitative assessment. The employed image quality similarity indexes and quantitative evaluation framework based on both high and reduced resolution data from the literature didn't manage to highlight/evaluate mainly the spatial information that was injected to the lower resolution images. Regarding the SWIR bands none of the methods managed to deliver significantly better results than a standard bicubic interpolation on the original low resolution bands.

  3. The Luminosity Function and Star Formation Rate Between Redshifts of 0.07 and 1.47 for Narrow-band Emitters in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, M.; Kashikawa, N.; Shimasaku, K.; Doi, M.; Nagao, T.; Iye, M.; Kodama, T.; Morokuma, T.; Motohara, K.

    2006-06-01

    Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple narrow-band filters are used to distinguish Hα, [OII], and [OIII] emitters between redshifts of 0.07 and 1.47 to construct their averaged rest-frame optical-to-UV SED and luminosity functions. These luminosity functions are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N 200-900) sample for each redshift interval, a Schechter profile is fitted to each luminosity function. Prior to dust extinction corrections, the [OIII] and [OII] luminosity functions reported in this paper agree reasonably well with those of Hippelein et al (2003). The z=0.066-0.092 Hα LF agrees with those of Jones & Bland-Hawthorn (2001), but for z=0.24 and 0.40, their number density is higher by a factor of two or more. The z=0.08 Hα LF, which reaches two orders of magnitude fainter than Gallego et al. (1995), is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1 than predicted. The faint end slope α and φ* show a strong evolution with redshift while L* show little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Hα for 0.07

  4. OLGA- and OLGIM-based staging of gastritis using narrow-band imaging magnifying endoscopy.

    PubMed

    Saka, Akiko; Yagi, Kazuyoshi; Nimura, Satoshi

    2015-11-01

    As atrophic gastritis and intestinal metaplasia as a result of Helicobacter pylori are considered risk factors for gastric cancer, it is important to assess their severity. In the West, the operative link for gastritis assessment (OLGA) and operative link for gastric intestinal metaplasia assessment (OLGIM) staging systems based on biopsy have been widely adopted. In Japan, however, narrow-band imaging (NBI)-magnifying endoscopic diagnosis of gastric mucosal inflammation, atrophy, and intestinal metaplasia has been reported to be fairly accurate. Therefore, we investigated the practicality of NBI-magnifying endoscopy (NBI-ME) for gastritis staging. We enrolled 55 patients, in whom NBI-ME was used to score the lesser curvature of the antrum (antrum) and the lesser curvature of the lower body (corpus). The NBI-ME score classification was established from images obtained beforehand, and then biopsy specimens taken from the observed areas were scored according to histological findings. The NBI-ME and histology scores were then compared. Furthermore, we assessed the NBI-ME and histology stages using a combination of scores for the antrum and corpus, and divided the stages into two risk groups: low and high. The degree to which the stage assessed by NBI-ME approximated that assessed by histology was then ascertained. Degree of correspondence between the NBI-ME and histology scores was 69.1% for the antrum and 72.7% for the corpus, and that between the high- and low-risk groups was 89.1%. Staging of gastritis using NBI-ME approximates that based on histology, and would be a practical alternative to the latter. © 2015 The Authors. Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.

  5. The soundtrack of RR Lyrae in omega Cen at high-frequency.

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Randall, S. K.; Monelli, M.; Bono, G.; Buonanno, R.; Strampelli, G.; Catelan, M.; Van Grootel, V.; Alonso, M. L.; Stetson, P. B.; Stellingwerf, R. F.

    We present preliminary Sloan u',g'-band light curves for a sample of known RR Lyrae variables in the Galactic globular cluster omega Cen. Results are based on the partial reduction of multi-band time series photometric data collected during six consecutive nights with the visitor instrument ULTRACAM mounted on the New Technology Telescope (La Silla, ESO). This facility allowed us to simultaneously observe in three different bands (Sloan u',g',r') a field of view of ˜ 6×6 arcminutes. The telescope and the good seeing conditions allowed us to sample the light curves every 15 seconds. We ended up with a data set of ˜ 6,000 images per night per filter, for a total of more than 200,000 images of the selected field. This data set allowed us to detect different kind of variables, such as RR-Lyraes, SX Phoenicis, eclipsing binaries, semi-regulars. More importantly, we were able for the first time to sample at high-frequency cluster RR Lyraes in the u',g'-band and to show in detail the pulsation phases across the dip located along the rising branch of RR-Lyraes. Based on data collected with ULTRACAM@NTT (La Silla, ESO, PID: 087.D-0216)

  6. Prediction of corridor effect from the launching of the satellite power system. [air pollutant concentration into narrow band of latitude

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Woodward, H. T.; Capone, L. A.; Riegel, C. A.

    1982-01-01

    A diagnostic model is developed to define the parameters which control the corridor effect of contaminants deposited in a narrow latitudinal band of the earth's atmosphere by numerous launches of the STS and heavy lift launch vehicles for construction of satellite solar power systems. Identified factors included the pollution injection rate, the ambient background levels of the pollutant species, and the transport properties related to the dilution rate of the chemicals. If the chemical life of the pollutant was shorter or the same length of time as the transport time, alterations in the chemical production and loss rates were found to be parameters necessarily added to the model. A comparison with NASA Ames Research Center two-dimensional model results indicate that the corridor effect was possile with operations above 60 km in the case of H2O, H2, and NO production.

  7. Photovoltaic measurement of bandgap narrowing in moderately doped silicon

    NASA Astrophysics Data System (ADS)

    del Alamo, Jesus A.; Swanson, Richard M.; Lietoila, Arto

    1983-05-01

    Solar cells have been fabricated on n-type and p-type moderately doped Si. The shrinkage of the Si bandgap has been obtained by measuring the internal quantum efficiency in the near infrared spectrum ( hv = 1.00-1.25 eV) around the fundamental absorption edge. The results agree with previous optical measurements of bandgap narrowing in Si. It is postulated that this optically-determined bandgap narrowing is the rigid shrinkage of the forbidden gap due to many-body effects. The "device bandgap narrowing" obtained by measuring the pn product in bipolar devices leads to discrepant values because (i) the density of states in the conduction and valence band is modified due to the potential fluctuations originated in the variations in local impurity density, and (ii) the influence of Fermi-Dirac statistics.

  8. New high-frequency weldable polyolefin films.

    PubMed

    Kelch, R

    2000-05-01

    There is an increasing desire for plastic films that can be sealed using high-frequency energy. Tests on new high-frequency polyolefin film structures are reported, which compare them with the characteristics and performance of poly(vinyl chloride), ethylene-vinyl acetate and thermoplastic polyurethane films.

  9. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    PubMed Central

    Urbano, Francisco J.; D’Onofrio, Stasia M.; Luster, Brennon R.; Beck, Paige B.; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS. PMID:25368599

  10. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep.

    PubMed

    Urbano, Francisco J; D'Onofrio, Stasia M; Luster, Brennon R; Beck, Paige B; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS.

  11. High-frequency neural activity predicts word parsing in ambiguous speech streams

    PubMed Central

    Basirat, Anahita; Azizi, Leila; van Wassenhove, Virginie

    2016-01-01

    During speech listening, the brain parses a continuous acoustic stream of information into computational units (e.g., syllables or words) necessary for speech comprehension. Recent neuroscientific hypotheses have proposed that neural oscillations contribute to speech parsing, but whether they do so on the basis of acoustic cues (bottom-up acoustic parsing) or as a function of available linguistic representations (top-down linguistic parsing) is unknown. In this magnetoencephalography study, we contrasted acoustic and linguistic parsing using bistable speech sequences. While listening to the speech sequences, participants were asked to maintain one of the two possible speech percepts through volitional control. We predicted that the tracking of speech dynamics by neural oscillations would not only follow the acoustic properties but also shift in time according to the participant's conscious speech percept. Our results show that the latency of high-frequency activity (specifically, beta and gamma bands) varied as a function of the perceptual report. In contrast, the phase of low-frequency oscillations was not strongly affected by top-down control. Whereas changes in low-frequency neural oscillations were compatible with the encoding of prelexical segmentation cues, high-frequency activity specifically informed on an individual's conscious speech percept. PMID:27605528

  12. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.

    PubMed

    Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin

    2015-06-12

    Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.

  13. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression

    PubMed Central

    Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando

    2013-01-01

    The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient. PMID:28788412

  14. Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber.

    PubMed

    Astorino, Maria Denise; Fastampa, Renato; Frezza, Fabrizio; Maiolo, Luca; Marrani, Marco; Missori, Mauro; Muzi, Marco; Tedeschi, Nicola; Veroli, Andrea

    2018-01-31

    This paper reports the design, the microfabrication and the experimental characterization of an ultra-thin narrow-band metamaterial absorber at terahertz frequencies. The metamaterial device is composed of a highly flexible polyimide spacer included between a top electric ring resonator with a four-fold rotational symmetry and a bottom ground plane that avoids misalignment problems. Its performance has been experimentally demonstrated by a custom polarization-maintaining reflection-mode terahertz time-domain spectroscopy system properly designed in order to reach a collimated configuration of the terahertz beam. The dependence of the spectral characteristics of this metamaterial absorber has been evaluated on the azimuthal angle under oblique incidence. The obtained absorbance levels are comprised between 67% and 74% at 1.092 THz and the polarization insensitivity has been verified in transverse electric polarization. This offers potential prospects in terahertz imaging, in terahertz stealth technology, in substance identification, and in non-planar applications. The proposed compact experimental set-up can be applied to investigate arbitrary polarization-sensitive terahertz devices under oblique incidence, allowing for a wide reproducibility of the measurements.

  15. New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect

    PubMed Central

    Zhang, Ganghua; Wu, Hui; Li, Guobao; Huang, Qingzhen; Yang, Chongyin; Huang, Fuqiang; Liao, Fuhui; Lin, Jianhua

    2013-01-01

    Intrinsic polarization of ferroelectrics (FE) helps separate photon-generated charge carriers thus enhances photovoltaic effects. However, traditional FE with transition-metal cations (M) of d0 electron in MO6 network typically has a band gap (Eg) exceeding 3.0 eV. Although a smaller Eg (2.6 eV) can be obtained in multiferroic BiFeO3, the value is still too high for optimal solar energy applications. Computational “materials genome” searches have predicted several exotic MO6 FE with Eg < 2.0 eV, all thus far unconfirmed because of synthesis difficulties. Here we report a new FE compound with MO4 tetrahedral network, KBiFe2O5, which features narrow Eg (1.6 eV), high Curie temperature (Tc ~ 780 K) and robust magnetic and photoelectric activities. The high photovoltage (8.8 V) and photocurrent density (15 μA/cm2) were obtained, which is comparable to the reported BiFeO3. This finding may open a new avenue to discovering and designing optimal FE compounds for solar energy applications. PMID:23405279

  16. High-frequency seismic signals associated with glacial earthquakes in Greenland

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Nettles, M.

    2017-12-01

    Glacial earthquakes are magnitude 5 seismic events generated by iceberg calving at marine-terminating glaciers. They are characterized by teleseismically detectable signals at 35-150 seconds period that arise from the rotation and capsize of gigaton-sized icebergs (e.g., Ekström et al., 2003; Murray et al., 2015). Questions persist regarding the details of this calving process, including whether there are characteristic precursory events such as ice slumps or pervasive crevasse opening before an iceberg rotates away from the glacier. We investigate the high-frequency seismic signals produced before, during, and after glacial earthquakes. We analyze a set of 94 glacial earthquakes that occurred at three of Greenland's major glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier, from 2001 - 2013. We employ data from the GLISN network of broadband seismometers around Greenland and from short-term seismic deployments located close to the glaciers. These data are bandpass filtered to 3 - 10 Hz and trimmed to one-hour windows surrounding known glacial earthquakes. We observe elevated amplitudes of the 3 - 10 Hz signal for 500 - 1500 seconds spanning the time of each glacial earthquake. These durations are long compared to the 60 second glacial-earthquake source. In the majority of cases we observe an increase in the amplitude of the 3 - 10 Hz signal 200 - 600 seconds before the centroid time of the glacial earthquake and sustained high amplitudes for up to 800 seconds after. In some cases, high-amplitude energy in the 3 - 10 Hz band precedes elevated amplitudes in the 35 - 150 s band by 300 seconds. We explore possible causes for these high-frequency signals, and discuss implications for improving understanding of the glacial-earthquake source.

  17. Usefulness of magnifying endoscopy with narrow-band imaging for diagnosis of depressed gastric lesions

    PubMed Central

    SUMIE, HIROAKI; SUMIE, SHUJI; NAKAHARA, KEITA; WATANABE, YASUTOMO; MATSUO, KEN; MUKASA, MICHITA; SAKAI, TAKESHI; YOSHIDA, HIKARU; TSURUTA, OSAMU; SATA, MICHIO

    2014-01-01

    The usefulness of magnifying endoscopy with narrow-band imaging (ME-NBI) for the diagnosis of early gastric cancer is well known, however, there are no evaluation criteria. The aim of this study was to devise and evaluate a novel diagnostic algorithm for ME-NBI in depressed early gastric cancer. Between August, 2007 and May, 2011, 90 patients with a total of 110 depressed gastric lesions were enrolled in the study. A diagnostic algorithm was devised based on ME-NBI microvascular findings: microvascular irregularity and abnormal microvascular patterns (fine network, corkscrew and unclassified patterns). The diagnostic efficiency of the algorithm for gastric cancer and histological grade was assessed by measuring its mean sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. Furthermore, inter- and intra-observer variation were measured. In the differential diagnosis of gastric cancer from non-cancerous lesions, the mean sensitivity, specificity, PPV, NPV, and accuracy of the diagnostic algorithm were 86.7, 48.0, 94.4, 26.7, and 83.2%, respectively. Furthermore, in the differential diagnosis of undifferentiated adenocarcinoma from differentiated adenocarcinoma, the mean sensitivity, specificity, PPV, NPV, and accuracy of the diagnostic algorithm were 61.6, 86.3, 69.0, 84.8, and 79.1%, respectively. For the ME-NBI final diagnosis using this algorithm, the mean κ values for inter- and intra-observer agreement were 0.50 and 0.77, respectively. In conclusion, the diagnostic algorithm based on ME-NBI microvascular findings was convenient and had high diagnostic accuracy, reliability and reproducibility in the differential diagnosis of depressed gastric lesions. PMID:24649321

  18. Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD

    NASA Astrophysics Data System (ADS)

    Hasebe, T.; Kashima, S.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, H.-M.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, A.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.

    2018-05-01

    The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1-3.2% at 101-448 GHz.

  19. Narrow-band imaging for the computer assisted diagnosis in patients with Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Kage, Andreas; Raithel, Martin; Zopf, Steffen; Wittenberg, Thomas; Münzenmayer, Christian

    2009-02-01

    Cancer of the esophagus has the worst prediction of all known cancers in Germany. The early detection of suspicious changes in the esophagus allows therapies that can prevent the cancer. Barrett's esophagus is a premalignant change of the esophagus that is a strong indication for cancer. Therefore there is a big interest to detect Barrett's esophagus as early as possible. The standard examination is done with a videoscope where the physician checks the esophagus for suspicious regions. Once a suspicious region is found, the physician takes a biopsy of that region to get a histological result of it. Besides the traditional white light for the illumination there is a new technology: the so called narrow-band Imaging (NBI). This technology uses a smaller spectrum of the visible light to highlight the scene captured by the videoscope. Medical studies indicate that the use of NBI instead of white light can increase the rate of correct diagnoses of a physician. In the future, Computer-Assisted Diagnosis (CAD) which is well known in the area of mammography might be used to support the physician in the diagnosis of different lesions in the esophagus. A knowledge-based system which uses a database is a possible solution for this task. For our work we have collected NBI images containing 326 Regions of Interest (ROI) of three typical classes: epithelium, cardia mucosa and Barrett's esophagus. We then used standard texture analysis features like those proposed by Haralick, Chen, Gabor and Unser to extract features from every ROI. The performance of the classification was evaluated with a classifier using the leaving-one-out sampling. The best result that was achieved is an accuracy of 92% for all classes and an accuracy of 76% for Barrett's esophagus. These results show that the NBI technology can provide a good diagnosis support when used in a CAD system.

  20. Yb5Ga2Sb6: a mixed valent and narrow-band gap material in the RE5M2X6 family.

    PubMed

    Subbarao, Udumula; Sarkar, Sumanta; Gudelli, Vijay Kumar; Kanchana, V; Vaitheeswaran, G; Peter, Sebastian C

    2013-12-02

    A new compound Yb5Ga2Sb6 was synthesized by the metal flux technique as well as high frequency induction heating. Yb5Ga2Sb6 crystallizes in the orthorhombic space group Pbam (no. 55), in the Ba5Al2Bi6 structure type, with a unit cell of a = 7.2769(2) Å, b = 22.9102(5) Å, c = 4.3984(14) Å, and Z = 2. Yb5Ga2Sb6 has an anisotropic structure with infinite anionic double chains (Ga2Sb6)(10-) cross-linked by Yb(2+) and Yb(3+) ions. Each single chain is made of corner-sharing GaSb4 tetrahedra. Two such chains are bridged by Sb2 groups to form double chains of 1/∞ [Ga2Sb6(10-)]. The compound satisfies the classical Zintl-Klemm concept and is a narrow band gap semiconductor with an energy gap of around 0.36 eV calculated from the electrical resistivity data corroborating with the experimental absorption studies in the IR region (0.3 eV). Magnetic measurements suggest Yb atoms in Yb5Ga2Sb6 exist in the mixed valent state. Temperature dependent magnetic susceptibility data follows the Curie-Weiss behavior above 100 K and no magnetic ordering was observed down to 2 K. Experiments are accompanied by all electron full-potential linear augmented plane wave (FP-LAPW) calculations based on density functional theory to calculate the electronic structure and density of states. The calculated band structure shows a weak overlap of valence band and conduction band resulting in a pseudo gap in the density of states revealing semimetallic character.

  1. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Hongliang; Du, Mao-Hua

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less

  2. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    DOE PAGES

    Shi, Hongliang; Du, Mao-Hua

    2015-05-12

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less

  3. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    nm (r2 = 0.88, RMSE = 7.54 x 107). When perfect retrievals were assumed (0% noise), retrievals remained good in the low emission regions on either side of the peaks-- those associated with the H alpha line at 655 nm (r2 = 0.83, RMSE =8.87 x 107) and the far-NIR wavelengths recently utilized for satellite retrievals: a K line at 770 nm (r2 = 0.85, RMSE = 8.36 x 107) and the 750-770 nm interval (r2 = 0.88, RMSE = 6.92 x 107). However, the atmosphere and satellite observations are expected to add noise to retrievals. Adding 5% random error to these relationships did not seriously impair the retrieval successes in the red and far-red peaks (r2 ~ 0.85, RMSEs = 6.31 x 107). A greater impact occurred (reducing retrieval success by ~10%) when adding 5% noise for the far-NIR narrow band at 770 nm (r2 ~ 0.70, RMSE ~ 8.5 x 107). When a 10% random error was added, the retrieval successes fell to ~68 ± 7% for all retrieval wavebands, and RMSEs increased by a factor of 10. This laboratory approach will be critical to calibrate space borne retrievals, but additional information across plant species is needed. Furthermore, this experiment indicates that ChlF retrievals from space should include information from the red and far-red peak emission regions, since the true total fluorescence signal is the desired parameter for Earth carbon and energy budgets.

  4. Gas Distributions in Comet ISON’s Coma: Concurrent Integral-Field Spectroscopy and Narrow-band Imaging.

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Johnson, Robert E.; Baumgardner, Jeffrey; Mendillo, Michael

    2014-11-01

    At a solar distance of 0.44 AU, Oort cloud comet C/2012 S1 (ISON) exhibited an outburst phase that was observed by small telescopes at the McDonald Observatory. In conjunction with narrow-band (14Å) imaging over a wide-field, an image-slicer spectrograph ( 20,000) simultaneously measured the spatial distribution of ISON’s coma over a 1.6 x 2.7 arcminute field made up of 246 individual spectra. More than fifty emission lines from C2, NH2, CO, H2O+ and Na were observed within a single Echelle order spanning 5868Å to 5930Å. Spatial reconstructions of these species reveal that ISON’s coma was quite elongated several thousand km along the axis perpendicular to its motion. The ion tail appeared distinctly broader than the neutral Na tail, providing strong evidence that Na in the coma did not originate by dissociative recombination of a sodium bearing molecular ion. Production rates increased from 1.6 ± 0.3 x 1023 to 5.8 ± 1 x 1023 Na atoms/s within 24 hours, outgassing much less than comparable comets relative to ISON’s water production. The anti-sunward Na tail was imaged >106 km from the nucleus. Its distribution indicates origins both near the nucleus and in the dust tail, with the ratio of these Na sources varying on hourly timescales due to outburst activity.

  5. "Leopard skin sign": the use of narrow-band imaging with magnification endoscopy in celiac disease.

    PubMed

    Tchekmedyian, Asadur J; Coronel, Emmanuel; Czul, Frank

    2014-01-01

    Celiac Disease (CD) is an immune reaction to gluten containing foods such as rye, wheat and barley. This condition affects individuals with a genetic predisposition; it targets the small bowel and may cause symptoms including diarrhea, malabsorption, weight loss, abdominal pain and bloating. The diagnosis is made by serologic testing of celiac-specific antibodies and confirmed by histology. Certain endoscopic characteristics, such as scalloping, reduction in the number of folds, mosaic-pattern mucosa or nodular mucosa, are suggestive of CD and can be visualized under white light endoscopy. Due to its low sensitivity, endoscopy alone is not recommended to diagnose CD; however, enhanced visual identification of suspected mucosal abnormalities through the use of new technologies, such as narrow band imaging with magnification (NBI-ME), could assist in targeting biopsies and thereby increasing the sensitivity of endoscopy. This is a case series of seven patients with serologic and histologic diagnoses of CD who underwent upper endoscopies with NBI-ME imaging technology as part of their CD evaluation. By employing this imaging technology, we could identify patchy atrophy sites in a mosaic pattern, with flattened villi and alteration of the central capillaries of the duodenal mucosa. We refer to this epithelial pattern as "Leopard Skin Sign". Since epithelial lesions are easily seen using NBI-ME, we found it beneficial for identifying and targeting biopsy sites. Larger prospective studies are warranted to confirm our findings.

  6. On the unconventional amide I band in acetanilide

    NASA Astrophysics Data System (ADS)

    Tenenbaum, Alexander; Campa, Alessandro; Giansanti, Andrea

    1987-04-01

    We developed a new model to study the molecular dynamics of the acetanilide (ACN) crystal by computer simulation. Low-frequency oscillations of the molecules as a whole were considered with high-frequency vibrations of the amidic degrees of freedom involved in hydrogen bonding. The low-temperature power spectrum has two peaks, shifted by 15 cm -1, in the region of the amide I band: one of them corresponds to the so-called anomalous amide I band in the IR and Raman spectra of ACN. We found that this peak is due to the coupling of the low-frequency motion in the chain of molecules with the motion of the hydrogen-bonded protons, at variance with current suggestions.

  7. Mid- to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins.

    PubMed

    Li, Songhai; Wu, Haiping; Xu, Youhou; Peng, Chongwei; Fang, Liang; Lin, Mingli; Xing, Luru; Zhang, Peijun

    2015-08-01

    The impact of noise made by vessels on marine animals has come under increased concern. However, most measurements on noise from vessels have only taken into account the low-frequency components. For cetaceans operating in the mid- and high-frequencies, such as the Indo-Pacific humpback dolphin (Sousa chinensis), mid- to high-frequency noise components may be of more concern, in terms of their potential impacts. In this study, noise made by a small high-speed boat was recorded using a broadband recording system in a dolphin watching area focusing on the effects on humpback dolphins in Sanniang Bay, China. The high-speed boat produced substantial mid- to high-frequency noise components with frequencies to >100 kHz, measured at three speeds: ∼40, 30, and 15 km/h. The noise from the boat raised the ambient noise levels from ∼5 to 47 decibels (dB) root-mean-square (rms) across frequency bands ranging from 1 to 125 kHz at a distance of 20 to 85 m, with louder levels recorded at higher speeds and at closer distances. To conclude, the noise produced by the small high-speed boat could be heard by Sousa chinensis and therefore potentially had adverse effects on the dolphins.

  8. Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?

    PubMed

    Draaijers, Lieneke J; Tempelman, Fenike R H; Botman, Yvonne A M; Kreis, Robert W; Middelkoop, Esther; van Zuijlen, Paul P M

    2004-03-01

    The evaluation of scar colour is, at present, usually limited to an assessment according to a scar assessment scale. Although useful, these assessment scales only evaluate subjectively the degree of scar colour. In this study, the reliability of the subjective assessment of scar colour by observers is compared to the reliability of the measurements of two objective colour measurement instruments. Four independent observers subjectively assessed the vascularisation and pigmentation of 49 scar areas in 20 patients. The degree of vascularisation and pigmentation was scored according to a scale ranging from '1', when it appeared to be like healthy skin, to '10', which corresponds to the worst imaginable outcome of vascularisation or pigmentation. The observers also scored the pigmentation categories of the scar (hypopigmention, hyperpigmention or mixed pigmentation). Finally, each observer measured the scar areas with a tristimulus colorimeter (Minolta Chromameter) and a narrow-band simple reflectance meter (DermaSpectrometer). A single observer could reliably carry out measurements of the DermaSpectrometer and the Minolta Chromameter for the evaluation of scar colour (r = 0.72). The vascularisation of scars could also be assessed reliably with a single observer (r = 0.76) whereas for a reliable assessment of pigmentation at least three observers were necessary (r > or = 0.77). The agreement between the observers for the pigmentation categories also turned out to be unacceptably low (k = 0.349). This study shows that an overall evaluation of scar colour with the DermaSpectrometer and the Minolta Chromameter is more reliable than the evaluation of scar colour with observers. Of both instruments for measuring scar colour, we prefer, because of its feasibility, the DermaSpectrometer.

  9. Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Mikami, Takahiro; Kitamura, Sota; Yasuda, Kenji; Tsuji, Naoto; Oka, Takashi; Aoki, Hideo

    2016-04-01

    We construct a systematic high-frequency expansion for periodically driven quantum systems based on the Brillouin-Wigner (BW) perturbation theory, which generates an effective Hamiltonian on the projected zero-photon subspace in the Floquet theory, reproducing the quasienergies and eigenstates of the original Floquet Hamiltonian up to desired order in 1 /ω , with ω being the frequency of the drive. The advantage of the BW method is that it is not only efficient in deriving higher-order terms, but even enables us to write down the whole infinite series expansion, as compared to the van Vleck degenerate perturbation theory. The expansion is also free from a spurious dependence on the driving phase, which has been an obstacle in the Floquet-Magnus expansion. We apply the BW expansion to various models of noninteracting electrons driven by circularly polarized light. As the amplitude of the light is increased, the system undergoes a series of Floquet topological-to-topological phase transitions, whose phase boundary in the high-frequency regime is well explained by the BW expansion. As the frequency is lowered, the high-frequency expansion breaks down at some point due to band touching with nonzero-photon sectors, where we find numerically even more intricate and richer Floquet topological phases spring out. We have then analyzed, with the Floquet dynamical mean-field theory, the effects of electron-electron interaction and energy dissipation. We have specifically revealed that phase transitions from Floquet-topological to Mott insulators emerge, where the phase boundaries can again be captured with the high-frequency expansion.

  10. Solar Influences on the Return Direction of High-Frequency Radar Backscatter

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.; Perry, Gareth W.; Yeoman, Timothy K.; Milan, Stephen E.; Stoneback, Russell

    2018-04-01

    Coherent-scatter, high-frequency, phased-array radars create narrow beams through the use of constructive and destructive interference patterns. This formation method leads to the creation of a secondary beam, or lobe, that is sent out behind the radar. This study investigates the relative importance of the beams in front of and behind the high-frequency radar located in Hankasalmi, Finland, using observations taken over a solar cycle, as well as coincident observations from Hankasalmi and the Enhanced Polar Outflow Probe Radio Receiver Instrument. These observations show that the relative strength of the front and rear beams is frequency dependent, with the relative amount of power sent to the front lobe increasing with increasing frequency. At the range of frequencies used by Hankasalmi, both front and rear beams are always present, though the main beam is always stronger than the rear lobe. Because signals are always transmitted to the front and rear of the radar, it is always possible to receive backscatter from both return directions. Examining the return direction as a function of local time, season, and solar cycle shows that the dominant return direction depends primarily on the local ionospheric structure. Diurnal changes in plasma density typically cause an increase in the amount of groundscatter returning from the rear lobe at night, though the strength of this variation has a seasonal dependence. Solar cycle variations are also seen in the groundscatter return direction, modifying the existing local time and seasonal variations.

  11. Intraoperative narrow band imaging better delineates superficial resection margins during transoral laser microsurgery for early glottic cancer.

    PubMed

    Garofolo, Sabrina; Piazza, Cesare; Del Bon, Francesca; Mangili, Stefano; Guastini, Luca; Mora, Francesco; Nicolai, Piero; Peretti, Giorgio

    2015-04-01

    The high rate of positive margins after transoral laser microsurgery (TLM) remains a matter of debate. This study investigates the effect of intraoperative narrow band imaging (NBI) examination on the incidence of positive superficial surgical margins in early glottic cancer treated by TLM. Between January 2012 and October 2013, 82 patients affected by Tis-T1a glottic cancer were treated with TLM by type I or II cordectomies. Intraoperative NBI evaluation was performed using 0-degree and 70-degree rigid telescopes. Surgical specimens were oriented by marking the superior edge with black ink and sent to a dedicated pathologist. Comparison between the rate of positive superficial margins in the present cohort and in a matched historical control group treated in the same way without intraoperative NBI was calculated by chi-square test. At histopathological examination, all surgical margins were negative in 70 patients, whereas 7 had positive deep margins, 2 close, and 3 positive superficial margins. The rate of positive superficial margins was thus 3.6% in the present group and 23.7% in the control cohort (P<.001). Routine use of intraoperative NBI increases the accuracy of neoplastic superficial spreading evaluation during TLM for early glottic cancer. © The Author(s) 2014.

  12. Microstrip patch antenna receiving array operating in the Ku band

    NASA Technical Reports Server (NTRS)

    Walcher, Douglas A.

    1996-01-01

    Microstrip patch antennas were first investigated from the idea that it would be highly advantageous to fabricate radiating elements (antennas) on the same dielectric substrate as RF circuitry and transmission lines. Other advantages were soon discovered to be its lightweight, low profile, conformability to shaped surfaces, and low manufacturing costs. Unfortunately, these same patches continually exhibit narrow bandwidths, wide beamwidths, and low antenna gain. This thesis will present the design and experimental results of a microstrip patch antenna receiving array operating in the Ku band. An antenna array will be designed in an attempt to improve its performance over a single patch. Most Ku band information signals are either wide band television images or narrow band data and voice channels. An attempt to improve the gain of the array by introducing parasitic patches on top of the array will also be presented in this thesis.

  13. High-frequency neural activity predicts word parsing in ambiguous speech streams.

    PubMed

    Kösem, Anne; Basirat, Anahita; Azizi, Leila; van Wassenhove, Virginie

    2016-12-01

    During speech listening, the brain parses a continuous acoustic stream of information into computational units (e.g., syllables or words) necessary for speech comprehension. Recent neuroscientific hypotheses have proposed that neural oscillations contribute to speech parsing, but whether they do so on the basis of acoustic cues (bottom-up acoustic parsing) or as a function of available linguistic representations (top-down linguistic parsing) is unknown. In this magnetoencephalography study, we contrasted acoustic and linguistic parsing using bistable speech sequences. While listening to the speech sequences, participants were asked to maintain one of the two possible speech percepts through volitional control. We predicted that the tracking of speech dynamics by neural oscillations would not only follow the acoustic properties but also shift in time according to the participant's conscious speech percept. Our results show that the latency of high-frequency activity (specifically, beta and gamma bands) varied as a function of the perceptual report. In contrast, the phase of low-frequency oscillations was not strongly affected by top-down control. Whereas changes in low-frequency neural oscillations were compatible with the encoding of prelexical segmentation cues, high-frequency activity specifically informed on an individual's conscious speech percept. Copyright © 2016 the American Physiological Society.

  14. Narrow-linewidth Q-switched random distributed feedback fiber laser.

    PubMed

    Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu

    2016-08-22

    A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.

  15. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity.

    PubMed

    López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther

    2014-07-05

    Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. High-frequency carbon supercapacitors from polyfurfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Ruiz, V.; Pandolfo, A. G.

    Porous carbons with controllable and narrow pore-size distributions are prepared from the chemical activation of polyfurfuryl alcohol (PFA). High apparent BET surface areas, up to 2600 m 2 g -1 (2611 m 2 g -1 by Density Functional Theory (DFT)), and good electrical conductivities (up to ∼130 S cm -1) are obtained. By varying the potassium hydroxide: carbon precursor ratio, the preparation of carbons with different proportions of micro- and fine mesoporosity (<5 nm) can be tailored to provide an ideal electronic and ionic pore structure for electrochemical energy-storage devices, such as electrical double-layer capacitors. High specific capacitance values are obtained up to 147 F g -1 in a voltage window of 2.5 V using 1 M tetraethyl ammonium tetrafluoroborate in acetonitrile. Moreover, excellent high-current and high-frequency performance is demonstrated: 100 F g -1 at 225 A g -1 (10 Hz) and ∼30 F g -1 at 100 Hz. When comparing the performance with commercial activated carbons (ACs) of similar textural properties, the PFA-derived ACs demonstrated better performance in terms of higher capacitance values and improved rate capabilities. There is a 125% increase in capacitance values at 1 kHz.

  17. Next-generation narrow band imaging system for colonic polyp detection: a prospective multicenter randomized trial.

    PubMed

    Horimatsu, Takahiro; Sano, Yasushi; Tanaka, Shinji; Kawamura, Takuji; Saito, Shoichi; Iwatate, Mineo; Oka, Shiro; Uno, Koji; Yoshimura, Kenichi; Ishikawa, Hideki; Muto, Manabu; Tajiri, Hisao

    2015-07-01

    Previous studies have yielded conflicting results on the colonic polyp detection rate with narrow-band imaging (NBI) compared with white-light imaging (WLI). We compared the mean number of colonic polyps detected per patient for NBI versus WLI using a next-generation NBI system (EVIS LUCERA ELITE; Olympus Medical Systems) used with standard-definition (SD) colonoscopy and wide-angle (WA) colonoscopy. this study is a 2 × 2 factorial, prospective, multicenter randomized controlled trial. this study was conducted at five academic centers in Japan. patients were allocated to one of four groups: (1) WLI with SD colonoscopy (H260AZI), (2) NBI with SD colonoscopy (H260AZI), (3) WLI with WA colonoscopy (CF-HQ290), and (4) NBI with WA colonoscopy (CF-HQ290). the mean numbers of polyps detected per patient were compared between the four groups: WLI with/without WA colonoscopy and NBI with/without WA colonoscopy. Of the 454 patients recruited, 431 patients were enrolled. The total numbers of polyps detected by WLI with SD, NBI with SD, WLI with WA, and NBI with WA were 164, 176, 188, and 241, respectively. The mean number of polyps detected per patient was significantly higher in the NBI group than in the WLI group (2.01 vs 1.56; P = 0.032). The rate was not higher in the WA group than in the SD group (1.97 vs 1.61; P = 0.089). Although WA colonoscopy did not improve the polyp detection, next-generation NBI colonoscopy represents a significant improvement in the detection of colonic polyps.

  18. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  19. Photoluminescence from narrow InAs-AlSb quantum wells

    NASA Technical Reports Server (NTRS)

    Brar, Berinder; Kroemer, Herbert; Ibbetson, James; English, John H.

    1993-01-01

    We report on photoluminescence spectra from narrow InAs-AlSb quantum wells. Strong, clearly resolved peaks for well widths from 2 to 8 monolayers were observed. Transmission electron micrographs show direct evidence for the structural quality of the quantum well structures. The transition energies of the narrowest wells suggest a strong influence of the AlSb X-barrier on the electronic states in the conduction band.

  20. Magnifying Endoscopy with Narrow Band Imaging of Early Gastric Cancer: Correlation with Histopathology and Mucin Phenotype

    PubMed Central

    Ok, Kyung-Sun; Kim, Gwang Ha; Park, Do Youn; Lee, Hyun Jeong; Jeon, Hye Kyung; Baek, Dong Hoon; Lee, Bong Eun; Song, Geun Am

    2016-01-01

    Background/Aims Magnifying endoscopy with narrow band imaging (ME-NBI) is a useful modality for the detailed visualization of microsurface (MS) and microvascular (MV) structures in the gastrointestinal tract. This study aimed to determine whether the MS and MV patterns in ME-NBI differ according to the histologic type, invasion depth, and mucin phenotype of early gastric cancers (EGCs). Methods The MS and MV patterns of 160 lesions in 160 patients with EGC who underwent ME-NBI before endoscopic or surgical resection were prospectively collected and analyzed. EGCs were categorized as either differentiated or undifferentiated and as either mucosal or submucosal, and their mucin phenotypes were determined via immunohistochemistry of the tumor specimens. Results Differentiated tumors mainly displayed an oval and/or tubular MS pattern and a fine network or loop MV pattern, whereas undifferentiated tumors mainly displayed an absent MS pattern and a corkscrew MV pattern. The destructive MS pattern was associated with submucosal invasion, and this association was more prominent in the differentiated tumors than in the undifferentiated tumors. MUC5AC expression was increased in lesions with either a papillary or absent MS pattern and a corkscrew MV pattern, whereas MUC6 expression was increased in lesions with a papillary MS pattern and a loop MV pattern. CD10 expression was more frequent in lesions with a fine network MV pattern. Conclusions ME-NBI can be useful for predicting the histopathology and mucin phenotype of EGCs. PMID:27021504

  1. Comparison of narrow-band reflectance spectroscopy and tristimulus colorimetry for measurements of skin and hair color in persons of different biological ancestry.

    PubMed

    Shriver, M D; Parra, E J

    2000-05-01

    We have used two modern computerized handheld reflectometers, the Photovolt ColorWalk colorimeter (a tristimulus colorimeter; Photovolt, UMM Electronics, Indianapolis, IN) and the DermaSpectrometer (a specialized narrow-band reflectometer; Cortex Technology, Hadsund, Denmark), to compare two methods for the objective determination of skin and hair color. These instruments both determine color by measuring the intensity of reflected light of particular wavelengths. The Photovolt ColorWalk instrument does so by shining a white light and sensing the intensity of the reflected light with a linear photodiode array. The ColorWalk results can then be expressed in terms of several standard color systems, most importantly, the Commission International d'Eclairage (CIE) Lab system, in which any color can be described by three values: L*, the lightness; a*, the amount of green or red; and b*, the amount of yellow or blue. Instead of a white light and photodiodes, the DermaSpectrometer uses two light-emitting diodes (LEDs), one green and one red, to illuminate a surface, and then it records the intensity of the reflected light. The results of these readings are expressed in terms of erythema (E) and melanin (M) indices. We measured the unexposed skin of the inner upper arm, the exposed skin of the forehead, and the hair, of 80 persons using these two instruments. Since it is important for the application of these measures in anthropology that we understand their relationship across a number of different pigmentation levels, we sampled persons from several different groups, namely, European Americans (n = 55), African Americans (n = 9), South Asians (n = 7), and East Asians (n = 9). In these subjects, there is a very high correlation between L* and the M index for the inner arm (R(2) = 0.928, P < 0.001), the forehead (R(2) = 0.822, P < 0.001), and the hair (R(2) = 0.827, P < 0.001). The relationship between a* and the E index is complex and dependent on the pigmentation level

  2. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  3. Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs.

    PubMed

    Kitazaki, Kazuyoshi; Fukushima, Atsushi; Nakabayashi, Ryo; Okazaki, Yozo; Kobayashi, Makoto; Mori, Tetsuya; Nishizawa, Tomoko; Reyes-Chin-Wo, Sebastian; Michelmore, Richard W; Saito, Kazuki; Shoji, Kazuhiro; Kusano, Miyako

    2018-05-21

    Light-emitting diodes (LEDs) are an artificial light source used in closed-type plant factories and provide a promising solution for a year-round supply of green leafy vegetables, such as lettuce (Lactuca sativa L.). Obtaining high-quality seedlings using controlled irradiation from LEDs is critical, as the seedling health affects the growth and yield of leaf lettuce after transplantation. Because key molecular pathways underlying plant responses to a specific light quality and intensity remain poorly characterised, we used a multi-omics-based approach to evaluate the metabolic and transcriptional reprogramming of leaf lettuce seedlings grown under narrow-band LED lighting. Four types of monochromatic LEDs (one blue, two green and one red) and white fluorescent light (control) were used at low and high intensities (100 and 300 μmol·m -2 ·s -1 , respectively). Multi-platform mass spectrometry-based metabolomics and RNA-Seq were used to determine changes in the metabolome and transcriptome of lettuce plants in response to different light qualities and intensities. Metabolic pathway analysis revealed distinct regulatory mechanisms involved in flavonoid and phenylpropanoid biosynthetic pathways under blue and green wavelengths. Taken together, these data suggest that the energy transmitted by green light is effective in creating a balance between biomass production and the production of secondary metabolites involved in plant defence.

  4. Diagnostic Performance of Narrow Band Imaging for Laryngeal Cancer: A Systematic Review and Meta-analysis.

    PubMed

    Sun, Changling; Han, Xue; Li, Xiaoying; Zhang, Yayun; Du, Xiaodong

    2017-04-01

    Objective To evaluate the performance of narrow band imaging (NBI) for the diagnosis of laryngeal cancer and to compare the diagnostic value of NBI with that of white light endoscopy. Data Sources PubMed, Embase, Cochrane Library, and CNKI databases. Review Methods Data analyses were performed with Meta-DiSc. The updated Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality and potential bias. Publication bias was assessed with the Deeks's asymmetry test. The protocol used in this article has been published on PROSPERO and is in accordance with the PRISMA checklist. The registry number for this study is CRD42015025866. Results Six studies including 716 lesions were included in this meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratio for the NBI diagnosis of laryngeal cancer were 0.94 (95% confidence interval [95% CI]: 0.91-0.96), 0.89 (95% CI: 0.85-0.92), and 142.12 (95% CI: 46.42-435.15), respectively, and the area under receiver operating characteristics curve was 0.97. Among the 6 studies, 3 evaluated the diagnostic value of white light endoscopy, with a sensitivity of 0.81 (95% CI: 0.76-0.86), a specificity of 0.92 (95% CI: 0.88-0.95), and a diagnostic odds ratio of 33.82 (95% CI: 14.76-77.49). The evaluation of heterogeneity, calculated per the diagnostic odds ratio, gave an I 2 of 66%. No marked publication bias ( P = .84) was detected in this meta-analysis. Conclusion The sensitivity of NBI is superior to white light endoscopy, and the potential value of NBI needs to be validated in future studies.

  5. Midlatitude Measurements of L-Band Ionospheric Scintillation with the ATS-5 Spacecraft

    DOT National Transportation Integrated Search

    1975-09-01

    The report presents some results of L-band signal level measurements taken from the ATS-5 spacecraft operating in the narrow-band frequency translation mode. The uplink signal was sent from the DOT/TSC/Westford Propagation Facility in Westford, Massa...

  6. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  7. Excitation of high-frequency surface waves with long duration in the Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Iida, Masahiro

    1999-04-01

    During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed zone of Mexico City. We interpret high-frequency seismic wave fields in the three geotechnical zones (the hill, the transition, and the lake bed zones) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of wave types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the wave field incident into surficial layers in the Valley of Mexico. We interpret recorded surface waves as fundamental-mode Love waves excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface waves. In the lake bed zone, while early portions are noisy body waves, late portions are mostly surface waves. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-wave propagation in the lake bed zone. The wave propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-wave portions from lake bed seismograms. Surface waves are dominant and are recognized even in the early time section. Thus high-frequency surface waves with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.

  8. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew

    2002-01-01

    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  9. Polycrystalline ZrTe 5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    DOE PAGES

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; ...

    2018-01-24

    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  10. Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    NASA Astrophysics Data System (ADS)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; Peng, Lintao; Rettie, Alexander J. E.; Gorai, Prashun; Chung, Duck Young; Kanatzidis, Mercouri G.; Grayson, Matthew; Stevanović, Vladan; Toberer, Eric S.; Snyder, G. Jeffrey

    2018-01-01

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n -p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5 Wm-1 K-1 , than previously reported for single crystals. It is found that the polycrystalline ZrTe5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n - to p -type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding z T =0.2 and 0.1 for p and n type, respectively, at 300 K, and z T =0.23 and 0.32 for p and n type at 600 K. Given the reasonably high z T that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.

  11. Polycrystalline ZrTe 5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut

    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  12. The effectiveness of anticellulite treatment using tripolar radiofrequency monitored by classic and high-frequency ultrasound.

    PubMed

    Mlosek, R K; Woźniak, W; Malinowska, S; Lewandowski, M; Nowicki, A

    2012-06-01

      Cellulite affects nearly 85% of the female population. Given the size of the phenomenon, we are continuously looking for effective ways to reduce cellulite. Reliable monitoring of anticellulite treatment remains a problem.   The main aim of the study was to evaluate the effectiveness of anticellulite treatment carried out using radiofrequency (RF), which was monitored by classical and high-frequency ultrasound.   Twenty-eight women underwent anticellulite treatment using RF, 17 women were in the placebo group. The therapy was monitored by classical and high-frequency ultrasound. The examinations evaluated the thickness of the epidermal echo, dermis thickness, dermis echogenicity, the length of the subcutaneous tissue bands growing into the dermis, the presence or absence of oedema, the thickness of subcutaneous tissue as well as thigh circumference and the stage of cellulite (according to the Nürnberger-Müller scale).   Cellulite was reduced in 89.286% of the women who underwent RF treatment. After the therapy, the following observations were made: a decrease in the thickness of the dermis and subcutaneous tissue, an increase in echogenicity reflecting on the increase in the number of collagen fibres, decreased subcutaneous tissue growing into bands in the dermis, and the reduction of oedema. In the placebo group, no statistically significant changes of the above parameters were observed.   Radiofrequency enables cellulite reduction. A crucial aspect is proper monitoring of the progress of such therapy, which ultrasound allows. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  13. Functional correlates of brain aging: beta and gamma frequency band responses to age-related cortical changes.

    PubMed

    Christov, Mario; Dushanova, Juliana

    2016-01-01

    The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.

  14. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajdič, P.; Alexandrova, O.; Maksimovic, M.

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times whenmore » the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).« less

  15. The 1994 Northridge, California, earthquake: Investigation of rupture velocity, risetime, and high-frequency radiation

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.; Mendoza, C.

    1996-01-01

    A hybrid global search algorithm is used to solve the nonlinear problem of calculating slip amplitude, rake, risetime, and rupture time on a finite fault. Thirty-five strong motion velocity records are inverted by this method over the frequency band from 0.1 to 1.0 Hz for the Northridge earthquake. Four regions of larger-amplitude slip are identified: one near the hypocenter at a depth of 17 km, a second west of the hypocenter at about the same depth, a third updip from the hypocenter at a depth of 10 km, and a fourth updip from the hypocenter and to the northwest. The results further show an initial fast rupture with a velocity of 2.8 to 3.0 km/s followed by a slow termination of the rupture with velocities of 2.0 to 2.5 km/s. The initial energetic rupture phase lasts for 3 s, extending out 10 km from the hypocenter. Slip near the hypocenter has a short risetime of 0.5 s, which increases to 1.5 s for the major slip areas removed from the hypocentral region. The energetic rupture phase is also shown to be the primary source of high-frequency radiation (1-15 Hz) by an inversion of acceleration envelopes. The same global search algorithm is used in the envelope inversion to calculate high-frequency radiation intensity on the fault and rupture time. The rupture timing from the low- and high-frequency inversions is similar, indicating that the high frequencies are produced primarily at the mainshock rupture front. Two major sources of high-frequency radiation are identified within the energetic rupture phase, one at the hypocenter and another deep source to the west of the hypocenter. The source at the hypocenter is associated with the initiation of rupture and the breaking of a high-stress-drop asperity and the second is associated with stopping of the rupture in a westerly direction.

  16. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors

  17. Laser-Induced Modification Of Energy Bands Of Transparent Solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-10-01

    Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.

  18. Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.; Kats, Mikhail A.

    2016-12-01

    Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.

  19. The effect of narrow-band noise maskers on increment detection1

    PubMed Central

    Messersmith, Jessica J.; Patra, Harisadhan; Jesteadt, Walt

    2010-01-01

    It is often assumed that listeners detect an increment in the intensity of a pure tone by detecting an increase in the energy falling within the critical band centered on the signal frequency. A noise masker can be used to limit the use of signal energy falling outside of the critical band, but facets of the noise may impact increment detection beyond this intended purpose. The current study evaluated the impact of envelope fluctuation in a noise masker on thresholds for detection of an increment. Thresholds were obtained for detection of an increment in the intensity of a 0.25- or 4-kHz pedestal in quiet and in the presence of noise of varying bandwidth. Results indicate that thresholds for detection of an increment in the intensity of a pure tone increase with increasing bandwidth for an on-frequency noise masker, but are unchanged by an off-frequency noise masker. Neither a model that includes a modulation-filter-bank analysis of envelope modulation nor a model based on discrimination of spectral patterns can account for all aspects of the observed data. PMID:21110593

  20. Diagnostic Performance of Narrow Band Imaging for Nasopharyngeal Cancer: A Systematic Review and Meta-analysis.

    PubMed

    Sun, Changling; Zhang, Yayun; Han, Xue; Du, Xiaodong

    2018-03-01

    Objective The purposes of this study were to verify the effectiveness of the narrow band imaging (NBI) system in diagnosing nasopharyngeal cancer (NPC) as compared with white light endoscopy. Data Sources PubMed, Cochrane Library, EMBASE, CNKI, and Wan Fang databases. Review Methods Data analyses were performed with Meta-Disc. The updated Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality and potential bias. Publication bias was assessed with a Deeks asymmetry test. The registry number of the protocol published on PROSPERO is CRD42015026244. Results This meta-analysis included 10 studies of 1337 lesions. For NBI diagnosis of NPC, the pooled values were as follows: sensitivity, 0.83 (95% CI, 0.80-0.86); specificity, 0.91 (95% CI, 0.89-0.93); positive likelihood ratio, 8.82 (95% CI, 5.12-15.21); negative likelihood ratio, 0.18 (95% CI, 0.12-0.27); and diagnostic odds ratio, 65.73 (95% CI, 36.74-117.60). The area under the curve was 0.9549. For white light endoscopy in diagnosing NPC, the pooled values were as follows: sensitivity, 0.79 (95% CI, 0.75-0.83); specificity, 0.87 (95% CI, 0.84-0.90); positive likelihood ratio, 5.02 (95% CI, 1.99-12.65); negative likelihood ratio, 0.34 (95% CI, 0.24-0.49); and diagnostic odds ratio, 16.89 (95% CI, 5.98-47.66). The area under the curve was 0.8627. The evaluation of heterogeneity, calculated per the diagnostic odds ratio, gave an I 2 of 0.326. No marked publication bias ( P = .68) existed in this meta-analysis. Conclusion The sensitivity and specificity of NBI for the diagnosis of NPC are similar to those of white light endoscopy, and the potential value of NBI for the diagnosis of NPC needs to be validated further.

  1. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  2. Simplified criteria for diagnosing superficial esophageal squamous neoplasms using Narrow Band Imaging magnifying endoscopy

    PubMed Central

    Dobashi, Akira; Goda, Kenichi; Yoshimura, Noboru; Ohya, Tomohiko R; Kato, Masayuki; Sumiyama, Kazuki; Matsushima, Masato; Hirooka, Shinichi; Ikegami, Masahiro; Tajiri, Hisao

    2016-01-01

    AIM To simplify the diagnostic criteria for superficial esophageal squamous cell carcinoma (SESCC) on Narrow Band Imaging combined with magnifying endoscopy (NBI-ME). METHODS This study was based on the post-hoc analysis of a randomized controlled trial. We performed NBI-ME for 147 patients with present or a history of squamous cell carcinoma in the head and neck, or esophagus between January 2009 and June 2011. Two expert endoscopists detected 89 lesions that were suspicious for SESCC lesions, which had been prospectively evaluated for the following 6 NBI-ME findings in real time: “intervascular background coloration”; “proliferation of intrapapillary capillary loops (IPCL)”; and “dilation”, “tortuosity”, “change in caliber”, and “various shapes (VS)” of IPCLs (i.e., Inoue’s tetrad criteria). The histologic examination of specimens was defined as the gold standard for diagnosis. A stepwise logistic regression analysis was used to identify candidates for the simplified criteria from among the 6 NBI-ME findings for diagnosing SESCCs. We evaluated diagnostic performance of the simplified criteria compared with that of Inoue’s criteria. RESULTS Fifty-four lesions (65%) were histologically diagnosed as SESCCs and the others as low-grade intraepithelial neoplasia or inflammation. In the univariate analysis, proliferation, tortuosity, change in caliber, and VS were significantly associated with SESCC (P < 0.01). The combination of VS and proliferation was statistically extracted from the 6 NBI-ME findings by using the stepwise logistic regression model. We defined the combination of VS and proliferation as simplified dyad criteria for SESCC. The areas under the curve of the simplified dyad criteria and Inoue’s tetrad criteria were 0.70 and 0.73, respectively. No significant difference was shown between them. The sensitivity, specificity, and accuracy of diagnosis for SESCC were 77.8%, 57.1%, 69.7% and 51.9%, 80.0%, 62.9% for the simplified

  3. Impedance self-matching ultra-narrow linewidth fiber resonator by use of a tunable π-phase-shifted FBG.

    PubMed

    Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang

    2017-05-15

    In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.

  4. Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window

    PubMed Central

    Shao, Wei; Chen, Guanying; Kuzmin, Andrey; Kutscher, Hilliard L.; Pliss, Artem; Ohulchanskyy, Tymish Y.; Prasad, Paras N.

    2017-01-01

    We introduce a hybrid organic–inorganic system consisting of epitaxial NaYF4:Yb3+/X3+@NaYbF4@NaYF4:Nd3+ (X = null, Er, Ho, Tm, or Pr) core/shell/shell (CSS) nanocrystal with organic dye, indocyanine green (ICG) on the nanocrystal surface. This system is able to produce a set of narrow band emissions with a large Stokes-shift (>200 nm) in the second biological window of optical transparency (NIR-II, 1000–1700 nm), by directional energy transfer from light-harvesting surface ICG, via lanthanide ions in the shells, to the emitter X3+ in the core. Surface ICG not only increases the NIR-II emission intensity of inorganic CSS nanocrystals by ~4-fold but also provides a broadly excitable spectral range (700–860 nm) that facilitates their use in bioapplications. We show that the NIR-II emission from ICG-sensitized Er3+-doped CSS nanocrystals allows clear observation of a sharp image through 9 mm thick chicken breast tissue, and emission signal detection through 22 mm thick tissue yielding a better imaging profile than from typically used Yb/Tm-codoped upconverting nanocrystals imaged in the NIR-I region (700–950 nm). Our result on in vivo imaging suggests that these ICG-sensitized CSS nanocrystals are suitable for deep optical imaging in the NIR-II region. PMID:27935695

  5. Sensitivity and specificity of narrow-band imaging nasoendoscopy compared to histopathology results in patients with suspected nasopharyngeal carcinoma

    NASA Astrophysics Data System (ADS)

    Adham, M.; Musa, Z.; Lisnawati; Suryati, I.

    2017-08-01

    Nasopharyngeal carcinoma (NPC) is a disease which is prevalent in developing countries like Indonesia. There were 164 new cases of nasopharyngeal carcinoma in the ear, nose, and throat (ENT) oncology outpatient clinic of the Cipto Mangunkusumo hospital in 2014, and 142 cases in 2015. Unfortunately, almost all of these cases presented at an advanced stage. The success of nasopharyngeal carcinoma treatment is largely determined by the stage when patients are diagnosed; it is critical to diagnose NPC as early as possible. Narrow-band imaging (NBI) is an endoscopic instrument with a light system that can improve the visualization of blood vessels of mucosal epithelial malignant tumors. NBI is expected to help clinicians to assess whether a lesion is malignant or not; to do so, it is important to know the value of sensitivity and specificity. This study is a cross-sectional form of a diagnostic test which was performed in the outpatient clinic of the ENT Head and Neck Surgery Department for the Cipto Mangunkusumo Hospital, from January to June 2016, and involved 56 subjects. Patients with a nasopharyngeal mass discovered by physical examination or imaging, and a suspected nasopharyngeal carcinoma were included as a subject. An NBI examination and biopsy was performed locally. Based on this research, NBI could be used as a screening tool for nasopharyngeal carcinoma with high sensitivity (100%), but with a low specificity result (6.7%).

  6. Using narrow-band imaging with conventional hysteroscopy increases the detection of chronic endometritis in abnormal uterine bleeding and postmenopausal bleeding.

    PubMed

    Ozturk, Mustafa; Ulubay, Mustafa; Alanbay, Ibrahim; Keskin, Uğur; Karasahin, Emre; Yenen, Müfit Cemal

    2016-01-01

    A preliminary study was designed to evaluate whether a narrow-band imaging (NBI) endoscopic light source could detect chronic endometritis that was not identifiable with a white light hysteroscope. A total of 86 patients with endometrial pathology (71 abnormal uterine bleeding and 15 postmenopausal bleeding) were examined by NBI endoscopy and white light hysteroscopy between February 2010 and February 2011. The surgeon initially observed the uterine cavity using white light hysteroscopy and made a diagnostic impression, which was recorded. Subsequently, after pressing a button on the telescope, NBI was used to reevaluate the endometrial mucosa. The median age of the patients was 40 years (range: 30-60 years). Endometritis was diagnosed histologically. Six cases of abnormal uterine bleeding (6/71, 8.4%, 95% confidence interval [CI] 0.03-0.17) and one case of postmenopausal bleeding (1/15, 6%, 95%CI 0.01-0.29) were only diagnosed with chronic endometritis by NBI (7/86, 8.1%, 95%CI 0.04-0.15). Capillary patterns of the endometrium can be observed by NBI and this method can be used to assess chronic endometritis. © 2015 Japan Society of Obstetrics and Gynecology.

  7. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  8. Oligothiophene-Indandione-Linked Narrow-Band Gap Molecules: Impact of π-Conjugated Chain Length on Photovoltaic Performance.

    PubMed

    Komiyama, Hideaki; To, Takahiro; Furukawa, Seiichi; Hidaka, Yu; Shin, Woong; Ichikawa, Takahiro; Arai, Ryota; Yasuda, Takuma

    2018-04-04

    Solution-processed organic solar cells (OSCs) based on narrow-band gap small molecules hold great promise as next-generation energy-converting devices. In this paper, we focus on a family of A-π-D-π-A-type small molecules, namely, BDT- nT-ID ( n = 1-4) oligomers, consisting of benzo[1,2- b:4,5- b']dithiophene (BDT) as the central electron-donating (D) core, 1,3-indandione (ID) as the terminal electron-accepting (A) units, and two regioregular oligo(3-hexylthiophene)s ( nT) with different numbers of thiophene rings as the π-bridging units, and elucidate their structure-property-function relationships. The effects of the length of the π-bridging nT units on the optical absorption, thermal behavior, morphology, hole mobility, and OSC performance were systematically investigated. All oligomers exhibited broad and intense visible photoabsorption in the 400-700 nm range. The photovoltaic performances of bulk heterojunction OSCs based on BDT- nT-IDs as donors and a fullerene derivative as an acceptor were studied. Among these oligomers, BDT-2T-ID, incorporating bithiophene as the π-bridging units, showed better photovoltaic performance with a maximum power conversion efficiency as high as 6.9% under AM 1.5G illumination without using solvent additives or postdeposition treatments. These favorable properties originated from the well-developed interpenetrating network morphology of BDT-2T-ID, with larger domain sizes in the photoactive layer. Even though all oligomers have the same A-D-A main backbone, structural modulation of the π-bridging nT length was found to impact their self-organization and nanostructure formation in the solid state, as well as the corresponding OSC device performance.

  9. Magnifying narrow-band imaging of gastric mucosal morphology predicts the H. pylori-related epigenetic field defect.

    PubMed

    Tahara, Tomomitsu; Yamazaki, Jumpei; Tahara, Sayumi; Okubo, Masaaki; Kawamura, Tomohiko; Horiguchi, Noriyuki; Ishizuka, Takamitsu; Nagasaka, Mitsuo; Nakagawa, Yoshihito; Shibata, Tomoyuki; Kuroda, Makoto; Ohmiya, Naoki

    2017-06-08

    DNA methylation is associated with "field defect" in the gastric mucosa. To characterize "field defect" morphologically, we examined DNA methylation of non-neoplastic gastric mucosa in relation to their morphology seen by narrow-band imaging (NBI) with magnifying endoscopy. Magnifying NBI of non-neoplastic gastric body was classified as follows: normal-small and round pits with uniform subepithelial capillary networks; type 1-a little enlarged round pits with indistinct subepithelial capillary networks; type 2-remarkably enlarged pits with irregular vessels; and type 3-clearly demarcated oval or tubulovillous pits with bulky coiled or wavy vessels. Methylation of nine candidate genes (MYOD1, SLC16A12, GDNF, IGF2, MIR 124A1, CDH1, PRDM5, RORA and MLF1) were determined by bisulfite pyrosequencing. Infinium HumanMethylation450 array was used to characterize the methylation of >450,000 CpG sites. Mean Z score methylation of nine genes positively correlated with the changes of mucosal patterns from normal to types 1, 2, and 3 (P < 0.0001). Genome-wide analysis showed that development of mucosal patterns correlated with methylation accumulation especially at CpG islands. Genes with promoter CpG islands that were gradually methylated with the development of mucosal patterns significantly enriched the genes involved in zinc-related pathways. The results indicates that gastric mucosal morphology predicts a "field defect" in this tissue type. Accumulation of DNA methylation is associated with "field defect" in the non-neoplastic gastric mucosa. Endoscopic identification of "field defect" has important implications for preventing gastric cancer. Our results suggest that magnifying NBI of gastric mucosal morphology predicts a "field defect" in the gastric mucosa.

  10. An inkjet vision measurement technique for high-frequency jetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation ofmore » high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.« less

  11. High-frequency welding trials.

    PubMed

    Kelch, R

    2000-09-01

    The high-frequency weldability of a new family of polyolefin films is compared with that of conventional films made of other polymers. A comparison of the optimum weld parameters of all the films and the results of performance testing of all the pouches produced are reported.

  12. Pressure effects on band structures in dense lithium

    NASA Astrophysics Data System (ADS)

    Goto, Naoyuki; Nagara, Hitose

    2012-07-01

    We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.

  13. Is narrow-band imaging useful for histological evaluation of gastric mucosa-associated lymphoid tissue lymphoma after treatment?

    PubMed

    Nonaka, Kouichi; Ohata, Ken; Matsuhashi, Nobuyuki; Shimizu, Michio; Arai, Shin; Hiejima, Yoshimitsu; Kita, Hiroto

    2014-05-01

    Endoscopic diagnosis of stomach mucosa-associated lymphoid tissue (MALT) lymphoma is often difficult because few specific findings are indicated. Even when MALT lymphoma is suspected by endoscopy, it is still difficult to make a definitive diagnosis by biopsy because lymphoma cells sometimes distribute unevenly. We previously reported that a tree-like appearance (TLA) is a characteristic finding of MALT lymphoma by narrow-band imaging (NBI) magnifying endoscopy and it is valuable in the selection of an optimal biopsy site in MALT lymphoma. Here, we study the frequency of TLA and evaluate the relationship between the response to eradication therapy and TLA in MALT lymphoma. We retrospectively examined the clinical background, endoscopic findings, response to eradication therapy, and Helicobacter pylori infection status of 16 patients diagnosed with MALT lymphoma who were referred to our hospital from April 2007 to August 2012. The regimen for eradicationtherapy consisted of rabeprazole, with amoxicillin and clarithromycin, all given for 7 days. TLA was found in 75% (12/16) and H. pylori infection in 75% (12/16) of patients diagnosed with MALT lymphoma by NBI magnifying endoscopy. In all complete regression (CR) patients after eradication treatment, the TLA finding had disappeared (100%); however, in the non-CR patients, TLA remained the same as before the eradication therapy (P=0.002). These results suggest that NBI magnifying endoscopy may be useful not only in the diagnosis but also in the evaluation of the response to eradication therapy of MALT lymphoma of the stomach. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  14. Electronic structure modifications and band gap narrowing in Zn0.95V0.05O

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Majid, S. S.; Rahman, F.; Shukla, D. K.; Phase, D. M.

    2018-04-01

    We present here, structural, optical and electronic structure studies on Zn0.95V0.05O, synthesized using solid state method. Rietveld refinement of x-ray diffraction pattern indicates no considerable change in the lattice of doped ZnO. The band gap of doped sample, as calculated by Kubelka-Munk transformed reflectance spectra, has been found reduced compared to pure ZnO. Considerable changes in absorbance in UV-Vis range is observed in doped sample. V doping induced decrease in band gap is supported by x-ray absorption spectroscopy measurements. It is experimentally confirmed that conduction band edge in Zn0.95V0.05O has shifted towards Fermi level than in pure ZnO.

  15. Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO{sub 3}]{sub 1−x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3−δ}]{sub x} ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenliang; Yang, Pingxiong, E-mail: pxyang@ee.ecnu.edu.cn; Chu, Junhao

    2014-09-15

    Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1−x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3−δ}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ≥ 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it ismore » noted that KBNNO with compositions x = 0.1–0.3 have quite narrow E{sub g} of below 1.5 eV, much smaller than the 3.2 eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagnetic–antiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.« less

  16. Tunable graphene-based mid-infrared plasmonic multispectral and narrow band-stop filter

    NASA Astrophysics Data System (ADS)

    Wang, Xianjun; Meng, Hongyun; Liu, Shuai; Deng, Shuying; Jiao, Tao; Wei, Zhongchao; Wang, Faqiang; Tan, Chunhua; Huang, Xuguang

    2018-04-01

    In this paper, we numerically investigate the band-stop properties of single- or few-layers doped graphene ribbon arrays operating in the mid-infrared region by finite-difference time-domain method (FDTD). A perfect band-stop filter with extinction ratio (ER) ∼17 dB, 3 dB bandwidth ∼200 nm and the resonance notch located at 6.64 μm can be achieved. And desired working regions can be obtained by tuning the Fermi level (E f ) of the graphene ribbons and the geometrical parameters of the structure. Besides, by tuning the Fermi level of odd or even graphene ribbons with terminal gate voltage, we can achieve a dual-circuit switch with four states combinations of on-to-off. Furthermore, the multiple filter notches can be achieved by stacking few-layers structure, and the filter dips can be dynamically tuned to achieve the tunability and selective characteristics by tuning the Fermi-level of the graphene ribbons in the system. We believe that our proposal has the potential applications in selective filters and active plasmonic switching in the mid-infrared region.

  17. High-frequency hearing impairment assessed with cochlear microphonics.

    PubMed

    Zhang, Ming

    2012-09-01

    Cochlear microphonic (CM) measurements may potentially become a supplementary approach to otoacoustic emission (OAE) measurements for assessing low-frequency cochlear functions in the clinic. The objective of this study was to investigate the measurement of CMs in subjects with high-frequency hearing loss. Currently, CMs can be measured using electrocochleography (ECochG or ECoG) techniques. Both CMs and OAEs are cochlear responses, while auditory brainstem responses (ABRs) are not. However, there are inherent limitations associated with OAE measurements such as acoustic noise, which can conceal low-frequency OAEs measured in the clinic. However, CM measurements may not have these limitations. CMs were measured in human subjects using an ear canal electrode. The CMs were compared between the high-frequency hearing loss group and the normal-hearing control group. Distortion product OAEs (DPOAEs) and audiogram were also measured. The DPOAE and audiogram measurements indicate that the subjects were correctly selected for the two groups. Low-frequency CM waveforms (CMWs) can be measured using ear canal electrodes in high-frequency hearing loss subjects. The difference in amplitudes of CMWs between the high-frequency hearing loss group and the normal-hearing group is insignificant at low frequencies but significant at high frequencies.

  18. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    NASA Astrophysics Data System (ADS)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  19. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  20. Mid-wave infrared narrow bandwidth guided mode resonance notch filter.

    PubMed

    Zhong, Y; Goldenfeld, Z; Li, K; Streyer, W; Yu, L; Nordin, L; Murphy, N; Wasserman, D

    2017-01-15

    We have designed, fabricated, and characterized a guided mode resonance notch filter operating in the technologically vital mid-wave infrared (MWIR) region of the electromagnetic spectrum. The filter provides a bandstop at λ≈4.1  μm, with a 12 dB extinction on resonance. In addition, we demonstrate a high transmission background (>80%), less than 6% transmission on resonance, and an ultra-narrow bandwidth transmission notch (10  cm-1). Our filter is optically characterized using angle- and polarization-dependent Fourier transform infrared spectroscopy, and simulated using rigorous coupled-wave analysis (RCWA) with excellent agreement between simulations and our experimental results. Using our RCWA simulations, we are able to identify the optical modes associated with the transmission dips of our filter. The presented structure offers a potential route toward narrow-band laser filters in the MWIR.

  1. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    PubMed

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech.

  2. Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR.

    PubMed

    Misra, S K; Andronenko, S I; Tipikin, D; Freed, J H; Somani, V; Prakash, Om

    2016-03-01

    Detailed EPR investigations on as-grown and annealed TiO 2 nanoparticles in the anatase and rutile phases were carried out at X-band (9.6 GHz) at 77, 120-300 K and at 236 GHz at 292 K. The analysis of EPR data for as-grown and annealed anatase and rutile samples revealed the presence of several paramagnetic centers: Ti 3+ , O - , adsorbed oxygen (O 2 - ) and oxygen vacancies. On the other hand, in as-grown rutile samples, there were observed EPR lines due to adsorbed oxygen (O 2 - ) and the Fe 3+ ions in both Ti 4+ substitutional positions, with and without coupling to an oxygen vacancy in the near neighborhood. Anatase nanoparticles were completely converted to rutile phase when annealed at 1000° C, exhibiting EPR spectra similar to those exhibited by the as-grown rutile nanoparticles. The high-frequency (236 GHz) EPR data on anatase and rutile samples, recorded in the region about g = 2.0 exhibit resolved EPR lines, due to O - and O 2 - ions enabling determination of their g-values with higher precision, as well as observation of hyperfine sextets due to Mn 2+ and Mn 4+ ions in anatase.

  3. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  4. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    NASA Astrophysics Data System (ADS)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  5. Diffuse Interstellar Bands. A Survey of Observational Facts

    NASA Astrophysics Data System (ADS)

    Krełowski, J.

    2018-07-01

    The paper presents and documents the most important observational results concerning the enigmatic diffuse interstellar bands (DIBs) that have remained unidentified since 1922. It demonstrates why the bands are commonly considered as having originated in many still unknown carriers. The mutual correlations of different DIBs, aiming at finding “families” of common origin, are briefly discussed. It was found that the strength ratio of the major DIBs, 5780 and 5797, is heavily variable; at the same E(B‑V), the DIB intensities may vary by as much as a factor of three or more. Certain DIB strength ratios seem to be related to intensities of the known features of simple molecular species; this led to the introduction of the so-called σ and ζ type interstellar clouds. In the former (prototype HD147165), broad DIBs are very strong, while the narrow ones and molecular features are weak. In the latter (prototype HD149757), narrow DIBs, as well as bands of simple radicals, are strong while the broad DIBs are weak (in relation to E(B‑V)). Details of the profiles of narrow DIBs, documenting their molecular origin, are presented. The relative DIB strengths as well as those of the simple radicals seem to be related to the shapes of interstellar extinction curves. Possible carriers of DIBs are only mentioned, as all of the proposed ones remain uncertain. The survey is biased in the sense that it presents the author’s point of view. It was prepared for the thirtieth anniversary of the first DIB survey, published in PASP (Krełowski 1988), and demonstrates how far our knowledge has evolved since then.

  6. Forces directing germ-band extension in Drosophila embryos.

    PubMed

    Kong, Deqing; Wolf, Fred; Großhans, Jörg

    2017-04-01

    Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. EMI survey for maritime satellite, L-band, shipboard terminal

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Brandel, D. L.; Hill, J. S.

    1975-01-01

    The paper presents results of an onboard EMI survey of an L-band shipboard terminal for operation with two geostationary maritime satellites. Significant EMC results include: (1) antenna noise temperature measurements indicate a maximum of 70 K steady background component at 1.6 GHz at sea for elevation angles of 5 degrees and higher; (2) field intensity measurements from 1-10 GHz show that a L-band terminal can operate simultaneously with onboard S-band and X-band navigation radar; (3) radar transmitter case emissions, below deck, in-band from 1535-1660 MHz, at 1 m distance from the cabinet, are equivalent, or greater than above-deck emissions in the same frequency range; and (4) conducted-emission tests of a ship's power lines to both radars show both narrow band and broad band emissions are 15 dB to 50 dB higher than equivalent U.S. commercial power lines from 150 kHz to 32 MHz.

  8. A pilot comparative study of topical latanoprost and tacrolimus in combination with narrow-band ultraviolet B phototherapy and microneedling for the treatment of nonsegmental vitiligo.

    PubMed

    Korobko, Igor V; Lomonosov, Konstantin M

    2016-11-01

    Prostaglandins and their analogues are beneficial as topical agents in vitiligo treatment, yet neither of the previous study addressed their comparative efficiency with conventional topical agents used in vitiligo treatment. In this pilot (24 patients) left-right comparative study we addressed efficiency of prostaglandin F2α analogue latanoprost versus tacrolimus when combined with narrow-band ultraviolet B and microneedling in repigmentation of nonsegmental vitiligo lesions. Our results confirm potency of prostaglandins, in particular, that of latanoprost, in inducing repigmentation, with the efficiency being at least comparable to that of tacrolimus, while contribution of microneedling remains unclear. In summary, results of our study provide further evidences for justified use of prostaglandins, in particular, latanoprost, in vitiligo treatment. In turn, this warrants future studies on the topic aiming to conclusively introduce prostaglandin-based formulations as conventional agents for vitiligo management. © 2016 Wiley Periodicals, Inc.

  9. Measurements of global UV irradiance at Terranova Bay, Antactica, by a home made narrow band filter radiometer

    NASA Astrophysics Data System (ADS)

    Salvatore, Scaglione; di Sarcina, Ilaria; Flori, Daniele; Menchini, Francesca

    2010-05-01

    Filter radiometers measure the solar radiation in several channels (typically 4 to 7) with a bandwith from 2 to 10 nm. They require less maintenance than the spectroradiometer and they are able to work in hostile environment as for instance the polar regions. The spectral resolution depends on the width at half maximum (FWHM) of the filters and is generally lower than the spectroradiometer resolution (0.5 nm). Other than the robustness of this instruments, the main advantage of the filter radiometers is the high frequency with which all wavelengths can be measured, making this class of instrument well suited for investigating short term irradiance variation. In this work is presented the results of UV irradiance measurements performed by a very narrow band (FWHM less than 1 nm) filter radiometer at Antarctica Italia Base, Mario Zucchelli Station, Terranova Bay, lat. 74° 41.6084' south and lon. 164° 05.9224' est. All-dielectric Fabry-Perot filters were manufactured in the laboratories of the Optical Coating Group, ENEA, by the ion beam assistance physical vapor deposition technique. Nine filters select nine different wavelengths in the UV spectral range from 296.5 nm to 377 nm with about 1 minute of measurement period, i.e. each wavelength is measured about 1250 times per day. At the moment the radiometer are permanently located near MZS and the data are daily downloaded in ENEA, Rome, by a dedicated satellite channel. During the Antarctica winter the radiometer will be in standby mode, in this season MZS is closed, and it will be start to measure again in the Antarctica spring.

  10. Effect of narrow band ultraviolet B phototherapy as monotherapy or combination therapy for vitiligo: a meta-analysis.

    PubMed

    Li, Ronghua; Qiao, Meng; Wang, Xiaoyan; Zhao, Xintong; Sun, Qing

    2017-01-01

    The treatment of vitiligo is still one of the most difficult dermatological challenges, although there are many therapeutic options. Narrow band ultraviolet B (NB-UVB) phototherapy is considered to be a very important modality for generalized vitiligo. The aim of this study was to explore whether a combination of NB-UVB and topical agents would be superior to NB-UVB alone for treating vitiligo. We searched the electronic databases such as PUBMED, EMBASE, Cochrane Library, and Web of Science. The primary outcome was the proportion of ≥50% repigmentation (a clinical significance), and secondary outcome was the proportion of ≥75% repigmentation (an excellent response). Seven randomized controlled trials (RCTs) involving 240 patients (413 lesions) were included in this meta-analysis. The study showed no significant difference between NB-UVB combination therapy (NB-UVB and topical calcineurin inhibitor or vitamin D analogs) and NB-UVB monotherapy in the outcomes of ≥50% repigmentation and ≥75% repigmentation. However, lesions located on the face and neck had better results in ≥50% repigmentation (RR = 1.40, 95% CI 1.08-1.81) and ≥75% repigmentation (RR = 1.88, 95% CI 1.10-3.20) with NB-UVB and topical calcineurin inhibitor combination therapy vs. NB-UVB monotherapy. The meta-analysis suggested that adding neither topical calcineurin inhibitors nor topical vitamin-D3 analogs on NB-UVB can yield significantly superior outcomes than NB-UVB monotherapy for treatment of vitiligo. However, addition of topical calcineurin inhibitors to NB-UVB may increase treatment outcomes in vitiligo affecting face and neck. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chiu, Alan W. L.; Jahromi, Shokrollah S.; Khosravani, Houman; Carlen, Peter L.; Bardakjian, Berj L.

    2006-03-01

    The existence of hippocampal high-frequency electrical activities (greater than 100 Hz) during the progression of seizure episodes in both human and animal experimental models of epilepsy has been well documented (Bragin A, Engel J, Wilson C L, Fried I and Buzsáki G 1999 Hippocampus 9 137-42 Khosravani H, Pinnegar C R, Mitchell J R, Bardakjian B L, Federico P and Carlen P L 2005 Epilepsia 46 1-10). However, this information has not been studied between successive seizure episodes or utilized in the application of seizure classification. In this study, we examine the dynamical changes of an in vitro low Mg2+ rat hippocampal slice model of epilepsy at different frequency bands using wavelet transforms and artificial neural networks. By dividing the time-frequency spectrum of each seizure-like event (SLE) into frequency bins, we can analyze their burst-to-burst variations within individual SLEs as well as between successive SLE episodes. Wavelet energy and wavelet entropy are estimated for intracellular and extracellular electrical recordings using sufficiently high sampling rates (10 kHz). We demonstrate that the activities of high-frequency oscillations in the 100-400 Hz range increase as the slice approaches SLE onsets and in later episodes of SLEs. Utilizing the time-dependent relationship between different frequency bands, we can achieve frequency-dependent state classification. We demonstrate that activities in the frequency range 100-400 Hz are critical for the accurate classification of the different states of electrographic seizure-like episodes (containing interictal, preictal and ictal states) in brain slices undergoing recurrent spontaneous SLEs. While preictal activities can be classified with an average accuracy of 77.4 ± 6.7% utilizing the frequency spectrum in the range 0-400 Hz, we can also achieve a similar level of accuracy by using a nonlinear relationship between 100-400 Hz and <4 Hz frequency bands only.

  12. Polycrystalline ZrTe{sub 5} Parameterized as a Narrow Band Gap Semiconductor for Thermoelectric Performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivitymore » for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the twoband model, the thermoelectric performance at different doping levels is predicted, finding zT =0.2 and 0.1 for p and n type, respectively, at 300 K, and zT= 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  13. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production

    PubMed Central

    Domingues Franceschini, Marston Héracles; Bartholomeus, Harm; van Apeldoorn, Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-01-01

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm−2), leaf area index (RMSE = 0.67 m2·m−2), canopy chlorophyll (RMSE = 0.24 g·m−2) and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm−2, 0.85 m2·m−2, 0.28 g·m−2 and 6.8%, respectively), for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CIg provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical sensors, and

  14. Intercomparison of Unmanned Aerial Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop Trait Monitoring in Organic Potato Production.

    PubMed

    Domingues Franceschini, Marston Héracles; Bartholomeus, Harm; van Apeldoorn, Dirk; Suomalainen, Juha; Kooistra, Lammert

    2017-06-18

    Vegetation properties can be estimated using optical sensors, acquiring data on board of different platforms. For instance, ground-based and Unmanned Aerial Vehicle (UAV)-borne spectrometers can measure reflectance in narrow spectral bands, while different modelling approaches, like regressions fitted to vegetation indices, can relate spectra with crop traits. Although monitoring frameworks using multiple sensors can be more flexible, they may result in higher inaccuracy due to differences related to the sensors characteristics, which can affect information sampling. Also organic production systems can benefit from continuous monitoring focusing on crop management and stress detection, but few studies have evaluated applications with this objective. In this study, ground-based and UAV spectrometers were compared in the context of organic potato cultivation. Relatively accurate estimates were obtained for leaf chlorophyll (RMSE = 6.07 µg·cm -2 ), leaf area index (RMSE = 0.67 m²·m -2 ), canopy chlorophyll (RMSE = 0.24 g·m -2 ) and ground cover (RMSE = 5.5%) using five UAV-based data acquisitions, from 43 to 99 days after planting. These retrievals are slightly better than those derived from ground-based measurements (RMSE = 7.25 µg·cm -2 , 0.85 m²·m -2 , 0.28 g·m -2 and 6.8%, respectively), for the same period. Excluding observations corresponding to the first acquisition increased retrieval accuracy and made outputs more comparable between sensors, due to relatively low vegetation cover on this date. Intercomparison of vegetation indices indicated that indices based on the contrast between spectral bands in the visible and near-infrared, like OSAVI, MCARI2 and CI g provided, at certain extent, robust outputs that could be transferred between sensors. Information sampling at plot level by both sensing solutions resulted in comparable discriminative potential concerning advanced stages of late blight incidence. These results indicate that optical sensors

  15. Cavity mode-width spectroscopy with widely tunable ultra narrow laser.

    PubMed

    Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman

    2013-12-02

    We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.

  16. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation.

    PubMed

    Passarella, Salvatore; Karu, Tiina

    2014-11-01

    In addition to the major functions performed by in the cell, mitochondria play a major role in cell-light interaction. Accordingly it is generally accepted that mitochondria are crucial in cell photobiomodulation; however a variety of biomolecules themselves proved to be targets of light irradiation. We describe whether and how mitochondria can interact with monochromatic and narrow band radiation in the red and near IR optical regions with dissection of both structural and functional effects likely leading to photobiostimulation. Moreover we also report that a variety of biomolecules localized in mitochondria and/or in other cell compartments including cytochrome c oxidase, some proteins, nucleic acids and adenine nucleotides are light sensitive with major modifications in their biochemistry. All together the reported investigations show that the elucidation of the mechanism of the light interaction with biological targets still remains to be completed, this needing further research, however the light sensitivity of a variety of molecules strongly suggests that photobiomodulation could be used in both in photomedicine and in biotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. High-frequency Lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap.

    PubMed

    Kadota, Michio; Ogami, Takashi; Yamamoto, Kansho; Tochishita, Hikari; Negoro, Yasuhiro

    2010-11-01

    High-frequency devices operating at 3 GHz or higher are required, for instance, for future 4th generation mobile phone systems in Japan. Using a substrate with a high acoustic velocity is one method to realize a high-frequency acoustic or elastic device. A Lamb wave has a high velocity when the substrate thickness is thin. To realize a high-frequency device operating at 3 GHz or higher using a Lamb wave, a very thin (less than 0.5 μm thick) single-crystal plate must be used. It is difficult to fabricate such a very thin single crystal plate. The authors have attempted to use a c-axis orientated epitaxial LiNbO(3) thin film deposited by a chemical vapor deposition system (CVD) instead of using a thin LiNbO(3) single crystal plate. Lamb wave resonators composed of a interdigital transducer (IDT)/the LiNbO(3) film/air gap/base substrate structure like micro-electromechanical system (MEMS) transducers were fabricated. These resonators have shown a high frequency of 4.5 and 6.3 GHz, which correspond to very high acoustic velocities of 14,000 and 12,500 m/s, respectively, have excellent characteristics such as a ratio of resonant and antiresonant impedance of 52 and 38 dB and a wide band of 7.2% and 3.7%, respectively, and do not have spurious responses caused by the 0th modes of shear horizontal (SH(0)) and symmetric (S(0)) modes.

  18. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    PubMed

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  19. Optimal wavelength band clustering for multispectral iris recognition.

    PubMed

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  20. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  1. GATA3 Expression Is Decreased in Psoriasis and during Epidermal Regeneration; Induction by Narrow-Band UVB and IL-4

    PubMed Central

    Kant, Marius; Baerveldt, Ewout M.; Florencia, Edwin; Mourits, Sabine; de Ridder, Dick; Laman, Jon D.; van der Fits, Leslie; Prens, Errol P.

    2011-01-01

    Psoriasis is characterized by hyperproliferation of keratinocytes and by infiltration of activated Th1 and Th17 cells in the (epi)dermis. By expression microarray, we previously found the GATA3 transcription factor significantly downregulated in lesional psoriatic skin. Since GATA3 serves as a key switch in both epidermal and T helper cell differentiation, we investigated its function in psoriasis. Because psoriatic skin inflammation shares many characteristics of epidermal regeneration during wound healing, we also studied GATA3 expression under such conditions. Psoriatic lesional skin showed decreased GATA3 mRNA and protein expression compared to non-lesional skin. GATA3 expression was also markedly decreased in inflamed skin of mice with a psoriasiform dermatitis induced with imiquimod. Tape-stripping of non-lesional skin of patients with psoriasis, a standardized psoriasis-triggering and skin regeneration-inducing technique, reduced the expression of GATA3. In wounded skin of mice, low GATA3 mRNA and protein expression was detected. Taken together, GATA3 expression is downregulated under regenerative and inflammatory hyperproliferative skin conditions. GATA3 expression could be re-induced by successful narrow-band UVB treatment of both human psoriasis and imiquimod-induced psoriasiform dermatitis in mice. The prototypic Th2 cytokine IL-4 was the only cytokine capable of inducing GATA3 in skin explants from healthy donors. Based on these findings we argue that GATA3 serves as a key regulator in psoriatic inflammation, keratinocyte hyperproliferation and skin barrier dysfunction. PMID:21611195

  2. Kappa0 (κ0) estimates for hard rock SED stations in Switzerland using a high-frequency approach

    NASA Astrophysics Data System (ADS)

    Ktenidou, O. J.; Van Houtte, C.; Cotton, F.; Abrahamson, N. A.

    2013-12-01

    At high frequencies the acceleration spectrum decays rapidly. This attenuation is typically modeled by kappa (κ), the S-wave spectral decay parameter introduced by Anderson and Hough (1984). Its site-specific, zero-distance component (κ0), is crucial in the creation and adjustment of GMPEs and in the simulation of ground motion for describing high-frequency ground motion. Different groups of approaches have been identified in literature for the measurement of κ (Ktenidou et al., 2013): the high-frequency group is based on the initial definition and measures κ on the high-frequency decay of the data, while the broadband group of approaches uses the entire frequency band of the data to invert for κ, source and path parameters. Within the PEGASOS Refinement Project, κ0 values were recently computed for the 9 hardest rock stations of the Swiss Seismological Service (SED), with Vs30 values between 1000-3000 m/s. The task was performed using both groups of approaches for measuring κ. In this study we present results for the high-frequency approach. We use 2000 records of events with magnitudes between 2.0-5.5 at distances out to 200 km. We are interested not only in the mean values of κ0 at each station but also in their variability. Thus we follow 14 different ';scenarios', which are variations of the same basic approach. Each scenario consists of different criteria in terms of frequency bands used, event magnitudes, constraints on regional Q, etc. These criteria are applied when treating individual κ measurements in order to derive the overall κ0 site values. Through the scenarios we quantify the epistemic uncertainty stemming from the different possible choices made within a single approach. We find that the between-scenario uncertainty can be larger than the within-scenario uncertainty, meaning that the final estimate of κ0 depends on the choices made in the computation process. For a single station, our κ0 values can vary by a factor of 2. We infer Q

  3. Frequency Compounded Imaging with a High-Frequency Dual Element Transducer

    PubMed Central

    Chang, Jin Ho; Kim, Hyung Ham; Lee, Jungwoo; Shung, K. Kirk

    2014-01-01

    This paper proposes a frequency compounding method to reduce speckle interferences, where a concentric annular type high-frequency dual element transducer is used to broaden the bandwidth of an imaging system. In frequency compounding methods, frequency division is carried out to obtain sub-band images containing uncorrelated speckles, which sacrifices axial resolution. Therefore, frequency compounding often deteriorates the target-detecting capability, quantified by the total signal-to-noise ratio (SNR), when the speckle’s SNR (SSNR) is not improved as much as the degraded axial resolution. However, this could be avoided if the effective bandwidth required for frequency compounding is increased. The primary goal of the proposed approach, hence, is to improve SSNR by a factor of two under the condition where axial resolution is degraded by a factor of less than two, which indicates the total SNR improvement to higher than 40% compared to that of an original image. Since the method here employs a dual element transducer operating at 20 and 40 MHz, the effective bandwidth necessary for frequency compounding becomes broadened. By dividing each spectrum of RF samples from both elements into two sub-bands, this method eventually enables four sets of the sub-band samples to contain uncorrelated speckles. This causes the axial resolution to be reduced by a factor of as low as 1.85, which means that this method would improve total SNR by at least 47 %. An in vitro experiment on an excised pig eye was performed to validate the proposed approach, and the results showed that the SSNR was improved from 2.081±0.365 in the original image to 4.206±0.635 in the final compounding image. PMID:19914674

  4. Frequency compounded imaging with a high-frequency dual element transducer.

    PubMed

    Chang, Jin Ho; Kim, Hyung Ham; Lee, Jungwoo; Shung, K Kirk

    2010-04-01

    This paper proposes a frequency compounding method to reduce speckle interferences, where a concentric annular type high-frequency dual element transducer is used to broaden the bandwidth of an imaging system. In frequency compounding methods, frequency division is carried out to obtain sub-band images containing uncorrelated speckles, which sacrifices axial resolution. Therefore, frequency compounding often deteriorates the target-detecting capability, quantified by the total signal-to-noise ratio (SNR), when the speckle's SNR (SSNR) is not improved as much as the degraded axial resolution. However, this could be avoided if the effective bandwidth required for frequency compounding is increased. The primary goal of the proposed approach, hence, is to improve SSNR by a factor of two under the condition where axial resolution is degraded by a factor of less than two, which indicates the total SNR improvement to higher than 40% compared to that of an original image. Since the method here employs a dual element transducer operating at 20 and 40MHz, the effective bandwidth necessary for frequency compounding becomes broadened. By dividing each spectrum of RF samples from both elements into two sub-bands, this method eventually enables four sets of the sub-band samples to contain uncorrelated speckles. This causes the axial resolution to be reduced by a factor of as low as 1.85, which means that this method would improve total SNR by at least 47%. An in vitro experiment on an excised pig eye was performed to validate the proposed approach, and the results showed that the SSNR was improved from 2.081+/-0.365 in the original image to 4.206+/-0.635 in the final compounding image. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Wide-band gas leak imaging detection system using UFPA

    NASA Astrophysics Data System (ADS)

    Jin, Wei-qi; Li, Jia-kun; Dun, Xiong; Jin, Minglei; Wang, Xia

    2014-11-01

    The leakage of toxic or hazardous gases not only pollutes the environment, but also threatens people's lives and property safety. Many countries attach great importance to the rapid and effective gas leak detection technology and instrument development. However, the gas leak imaging detection systems currently existing are generally limited to a narrow-band in Medium Wavelength Infrared (MWIR) or Long Wavelength Infrared (LWIR) cooled focal plane imaging, which is difficult to detect the common kinds of the leaking gases. Besides the costly cooled focal plane array is utilized, the application promotion is severely limited. To address this issue, a wide-band gas leak IR imaging detection system using Uncooled Focal Plane Array (UFPA) detector is proposed, which is composed of wide-band IR optical lens, sub-band filters and switching device, wide-band UFPA detector, video processing and system control circuit. A wide-band (3µm~12µm) UFPA detector is obtained by replacing the protection window and optimizing the structural parameters of the detector. A large relative aperture (F#=0.75) wide-band (3μm~12μm) multispectral IR lens is developed by using the focus compensation method, which combining the thickness of the narrow-band filters. The gas leak IR image quality and the detection sensitivity are improved by using the IR image Non-Uniformity Correction (NUC) technology and Digital Detail Enhancement (DDE) technology. The wide-band gas leak IR imaging detection system using UFPA detector takes full advantage of the wide-band (MWIR&LWIR) response characteristic of the UFPA detector and the digital image processing technology to provide the resulting gas leak video easy to be observed for the human eyes. Many kinds of gases, which are not visible to the naked eyes, can be sensitively detected and visualized. The designed system has many commendable advantages, such as scanning a wide range simultaneously, locating the leaking source quickly, visualizing the gas

  6. Usefulness of Demarcation of Differentiated-Type Early Gastric Cancers after Helicobacter pylori Eradication by Magnifying Endoscopy with Narrow-Band Imaging.

    PubMed

    Akazawa, Yoichi; Ueyama, Hiroya; Yao, Takashi; Komori, Hiroyuki; Takeda, Tsutomu; Matsumoto, Kohei; Matsumoto, Kenshi; Asaoka, Daisuke; Hojo, Mariko; Watanabe, Sumio; Nagahara, Akihito

    2018-06-05

    Early gastric cancer after Helicobacter pylori (Hp) eradication is difficult to demarcate. We used the vessel plus surface classification system (VSCS) to determine whether magnifying endoscopy with narrow-band imaging (ME-NBI) could demarcate differentiated-type early gastric cancers after Hp eradication, and to identify causes of an unclear demarcation line (DL). Among 100 lesions of differentiated-type early gastric cancer resected endoscopically, 34 lesions in the Hp-eradicated group and 66 in the Hp-infected group were retrospectively compared. Clinicopathological factors and ME-NBI findings, including the presence or absence of the DL, were examined. Histopathologically, histological gastritis, the surface structure at the tumor border, well-differentiated adenocarcinoma with low-grade atypia (tub1-low), and non-neoplastic epithelium (NE) coverage rate on the tumor surface and at the tumor border were evaluated. DL (-) cases were more frequent in the Hp-eradicated group (11.8%, 4/34) than in the Hp-infected group (1.5%, 1/66; p < 0.05). The Hp-eradicated group had a higher NE coverage rate than the Hp-infected group (p < 0.05). All DL (-) cases had tub1-low or NE at the tumor border. ME-NBI with VSCS can identify the DL in most patients (88.2%) with differentiated-type early gastric cancer after Hp eradication. © 2018 S. Karger AG, Basel.

  7. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  8. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  9. Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations.

    PubMed

    Hirschmann, Jan; Butz, Markus; Hartmann, Christian J; Hoogenboom, Nienke; Özkurt, Tolga E; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2016-10-01

    High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  10. Visuospatial Working Memory in Toddlers with a History of Periventricular Leukomalacia: An EEG Narrow-Band Power Analysis

    PubMed Central

    García-Gomar, María Luisa; Santiago-Rodríguez, Efraín; Rodríguez-Camacho, Mario; Harmony, Thalía

    2013-01-01

    Background Periventricular Leukomalacia (PVL) affects white matter, but grey matter injuries have also been reported, particularly in the dorsomedial nucleus and the cortex. Both structures have been related to working memory (WM) processes. The aim of this study was to compare behavioral performances and EEG power spectra during a visuospatial working memory task (VSWMT) of toddlers with a history of PVL and healthy toddlers. Methodology/Principal Findings A prospective, comparative study of WM was conducted in toddlers with a history of PVL and healthy toddlers. The task responses and the EEG narrow-band power spectra during a VSWMT were compared in both groups. The EEG absolute power was analyzed during the following three conditions: baseline, attention and WM retention. The number of correct responses was higher in the healthy group (20.5±5.0) compared to the PVL group (16.1±3.9) (p = 0.04). The healthy group had absolute power EEG increases (p≤0.05) during WM compared to the attention condition in the bilateral frontal and right temporal, parietal and occipital regions in frequencies ranging from 1.17 to 2.34 Hz and in the right temporal, parietal and occipital regions in frequencies ranging from 14.06 to 15.23 Hz. In contrast, the PVL group had absolute power increases (p≤0.05) in the bilateral fronto-parietal, left central and occipital regions in frequencies that ranged from 1.17 to 3.52 Hz and in the bilateral frontal and right temporal regions in frequencies ranging from 9.37 to 19.14 Hz. Conclusions/Significance This study provides evidence that PVL toddlers have visuospatial WM deficits and a very different pattern of absolute power increases compared to a healthy group of toddlers, with greater absolute power in the low frequency range and widespread neuronal networks in the WM retention phase. PMID:23922816

  11. Visuospatial working memory in toddlers with a history of periventricular Leukomalacia: an EEG narrow-band power analysis.

    PubMed

    García-Gomar, María Luisa; Santiago-Rodríguez, Efraín; Rodríguez-Camacho, Mario; Harmony, Thalía

    2013-01-01

    Periventricular Leukomalacia (PVL) affects white matter, but grey matter injuries have also been reported, particularly in the dorsomedial nucleus and the cortex. Both structures have been related to working memory (WM) processes. The aim of this study was to compare behavioral performances and EEG power spectra during a visuospatial working memory task (VSWMT) of toddlers with a history of PVL and healthy toddlers. A prospective, comparative study of WM was conducted in toddlers with a history of PVL and healthy toddlers. The task responses and the EEG narrow-band power spectra during a VSWMT were compared in both groups. The EEG absolute power was analyzed during the following three conditions: baseline, attention and WM retention. The number of correct responses was higher in the healthy group (20.5 ± 5.0) compared to the PVL group (16.1 ± 3.9) (p = 0.04). The healthy group had absolute power EEG increases (p ≤ 0.05) during WM compared to the attention condition in the bilateral frontal and right temporal, parietal and occipital regions in frequencies ranging from 1.17 to 2.34 Hz and in the right temporal, parietal and occipital regions in frequencies ranging from 14.06 to 15.23 Hz. In contrast, the PVL group had absolute power increases (p ≤ 0.05) in the bilateral fronto-parietal, left central and occipital regions in frequencies that ranged from 1.17 to 3.52 Hz and in the bilateral frontal and right temporal regions in frequencies ranging from 9.37 to 19.14 Hz. This study provides evidence that PVL toddlers have visuospatial WM deficits and a very different pattern of absolute power increases compared to a healthy group of toddlers, with greater absolute power in the low frequency range and widespread neuronal networks in the WM retention phase.

  12. High-frequency seismic noise: Results of investigation in Kamchatka

    NASA Astrophysics Data System (ADS)

    Saltykov, V.; Chebrov, V.; Kugaenko, Yu.; Sinitsyn, V.

    The investigation of seismic noise in Kamchatka is carried out for the control of the medium stress condition and search of the strong earthquakes precursors. The main directions of this research are modulation of high-frequency seismic noise (HFSN, frequency range of the first tens of Hz, amplitudes about 10 -9-10 -12 m) by the Earth tides and temporal variations of HFSN parameters connected with the strong earthquake preparation. For reception of the statistically significant characteristics of HFSN and tides connection it was necessary to carry out long-term HFSN observations in points free from anthropogenous influence as far as possible. The station of HFSN observation was organized in the settlement Nachiky. The sensor is a narrow-band ( Q = 100) piezoelectric seismometer, tuned to frequency 30 Hz. Signal envelope is recorded and analyzed. The continuous HFSN registration was begun in 1990 and proceeds till now. In 2000 the second station was established in the complex geophysical observatory “Karymshina”. The HFSN sensor is set up in the borehole at the depth of 30 m. The research of HFSN structure gave the opportunity to allocate HFSN components connected with the Earth tides. Besides it was revealed that the tidal response is not stable in time: the intervals of the tidal component existence are replaced by intervals of its absence, correlation between tide and HFSN varies in time, while tides have constant parameters. We propose a hypothesis about the connection of variations of the tidal components in HFSN data with the tectonic conditions in region, and consequently, about an opportunity to use this phenomenon for the prediction of strong earthquakes. The phase of the HFSN component connected with a tidal wave O1 ( T = 25.8 h) was chosen as a parameter. The choice of wave O1 is connected with its greatest hindrance-immunity. It was shown that the stabilization of this phase is observed before earthquakes with M > 6.0, occurred at distances up to 250

  13. Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-07-01

    The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.

  14. Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.

    PubMed

    Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei

    2012-08-27

    A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.

  15. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    PubMed

    Baroni, Fabiano; Burkitt, Anthony N; Grayden, David B

    2014-05-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  16. Interplay of Intrinsic and Synaptic Conductances in the Generation of High-Frequency Oscillations in Interneuronal Networks with Irregular Spiking

    PubMed Central

    Baroni, Fabiano; Burkitt, Anthony N.; Grayden, David B.

    2014-01-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  17. Continuous high-frequency activity in mesial temporal lobe structures

    PubMed Central

    Mari, Francesco; Zelmann, Rina; Andrade-Valenca, Luciana; Dubeau, Francois; Gotman, Jean

    2013-01-01

    Summary Purpose Many recent studies have reported the importance of high-frequency oscillations (HFOs) in the intracerebral electroencephalography (EEG) of patients with epilepsy. These HFOs have been defined as events that stand out from the background. We have noticed that this background often consists itself of high-frequency rhythmic activity. The purpose of this study is to perform a first evaluation of the characteristics of high-frequency continuous or semicontinuous background activity. Methods Because the continuous high-frequency pattern was noted mainly in mesial temporal structures, we reviewed the EEG studies from these structures in 24 unselected patients with electrodes implanted in these regions. Sections of background away from interictal spikes were marked visually during periods of slow-wave sleep and wakefulness. They were then high-passed filtered at 80 Hz and categorized as having high-frequency rhythmic activity in one of three patterns: continuous/semicontinuous, irregular, sporadic. Wavelet entropy, which measures the degree of rhythmicity of a signal, was calculated for the marked background sections. Key Findings Ninety-six bipolar channels were analyzed. The continuous/semicontinuous pattern was found frequently (29/96 channels during wake and 34/96 during sleep). The different patterns were consistent between sleep and wakefulness. The continuous/semicontinuous pattern was found significantly more often in the hippocampus than in the parahippocampal gyrus and was rarely found in the amygdala. The types of pattern were not influenced by whether a channel was within the seizure-onset zone, or whether it was a lesional channel. The continuous/semicontinuous pattern was associated with a higher frequency of spikes and with high rates of ripples and fast ripples. Significance It appears that high-frequency activity (above 80 Hz) does not appear only in the form of brief paroxysmal events but also in the form of continuous rhythmic activity

  18. Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236 GHz) EPR

    PubMed Central

    Misra, S.K.; Andronenko, S.I.; Tipikin, D.; Freed, J. H.; Somani, V.; Prakash, Om

    2016-01-01

    Detailed EPR investigations on as-grown and annealed TiO2 nanoparticles in the anatase and rutile phases were carried out at X-band (9.6 GHz) at 77, 120–300 K and at 236 GHz at 292 K. The analysis of EPR data for as-grown and annealed anatase and rutile samples revealed the presence of several paramagnetic centers: Ti3+, O−, adsorbed oxygen (O2−) and oxygen vacancies. On the other hand, in as-grown rutile samples, there were observed EPR lines due to adsorbed oxygen (O2−) and the Fe3+ ions in both Ti4+ substitutional positions, with and without coupling to an oxygen vacancy in the near neighborhood. Anatase nanoparticles were completely converted to rutile phase when annealed at 1000° C, exhibiting EPR spectra similar to those exhibited by the as-grown rutile nanoparticles. The high-frequency (236 GHz) EPR data on anatase and rutile samples, recorded in the region about g = 2.0 exhibit resolved EPR lines, due to O− and O2− ions enabling determination of their g-values with higher precision, as well as observation of hyperfine sextets due to Mn2+ and Mn4+ ions in anatase. PMID:27041794

  19. Design of matching layers for high-frequency ultrasonic transducers

    PubMed Central

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers. PMID:26445518

  20. A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring

    NASA Astrophysics Data System (ADS)

    Almansa, A. Fernando; Cuevas, Emilio; Torres, Benjamín; Barreto, África; García, Rosa D.; Cachorro, Victoria E.; de Frutos, Ángel M.; López, César; Ramos, Ramón

    2017-02-01

    A new zenith-looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand alone and without moving parts, making it a low-cost and robust instrument with low maintenance, appropriate for deployment in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured zenith sky radiance (ZSR) with a look-up table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriate for inferring AOD from ZSR measurements with an AOD standard uncertainty up to 0.06 for AOD500 nm ˜ 0.5 and up to 0.15 for AOD500 nm ˜ 1.0, considering instrumental errors of 5 %. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse-sky measurements) and AOD provided by AERONET (derived from CE318 direct-sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands and Tamanrasset in Algeria. The results show a coefficient of determination (R2) ranging from 0.99 to 0.97, and root mean square errors (RMSE) ranging from 0.010 at Izaña to 0.032 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB) < 10 %. ZEN-R41 AOD values inferred from ZEN-LUT methodology were compared with AOD provided by AERONET, showing a fairly good agreement in all wavelengths, with mean absolute AOD differences < 0.030 and R2 higher than 0.97.

  1. High-frequency ultrasound-responsive block copolymer micelle.

    PubMed

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  2. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives

    PubMed Central

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2012-01-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902

  3. The relative immunity of high-frequency transposed stimuli to low-frequency binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2004-05-01

    We have recently demonstrated that high-frequency transposed stimuli, having envelopes designed to provide high-frequency channels with information similar to that normally available in only low-frequency channels, yield threshold-ITDs and extents of laterality comparable to those obtained with conventional low-frequency stimuli. This enhanced potency of ITDs conveyed by high-frequency transposed stimuli, as compared to conventional high-frequency stimuli, suggested to us that ITDs conveyed by transposed stimuli might be relatively immune to the presence of low-frequency binaural interferers. To investigate this issue, threshold-ITDs and extents of laterality were measured with a variety of conventional and transposed targets centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs and reduced extents of laterality for the conventional high-frequency stimuli. In contrast, these interference effects were either greatly attenuated or absent for ITDs conveyed by the high-frequency transposed targets. The results will be discussed in the context of current models of binaural interference. [Work supported by NIH DC 04147, NIH DC04073, NIH DC 002304.

  4. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  5. Ka-band monopulse antenna-pointing systems analysis and simulation

    NASA Technical Reports Server (NTRS)

    Lo, V. Y.

    1996-01-01

    NASA 's Deep Space Network (DSN) has been using both 70-m and 34-m reflector antennas to communicate with spacecraft at S-band (2.3 GHz) and X-band (8.45 GHz). To improve the quality of telecommunication and to meet future mission requirements, JPL has been developing 34-m Ka-band (32-GHz) beam waveguide antennas. Presently, antenna pointing operates in either the open-loop mode with blind pointing using navigation predicts or the closed-loop mode with conical scan (conscan). Pointing accuracy under normal conscan operating conditions is in the neighborhood of 5 mdeg. This is acceptable at S- and X-bands, but not enough at Ka-band. Due to the narrow beamwidth at Ka-band, it is important to improve pointing accuracy significantly (approximately 2 mdeg). Monopulse antenna tracking is one scheme being developed to meet the stringent pointing-accuracy requirement at Ka-band. Other advantages of monopulse tracking include low sensitivity to signal amplitude fluctuations as well as single-pulse processing for acquisition and tracking. This article presents system modeling, signal processing, simulation, and implementation of Ka-band monopulse tracking feed for antennas in NASA/DSN ground stations.

  6. High-Pressure Band-Gap Engineering in Lead-Free Cs 2 AgBiBr 6 Double Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Wang, Yonggang; Pan, Weicheng

    Novel inorganic lead-free double perovskites with improved stability are regarded as alternatives to state-of-art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–propertymore » relationship in lead-free double perovskites, but also offers new strategies for further development of advanced perovskite devices.« less

  7. Investigation of mucosal pattern of gastric antrum using magnifying narrow-band imaging in patients with chronic atrophic fundic gastritis.

    PubMed

    Yamasaki, Yasushi; Uedo, Noriya; Kanzaki, Hiromitsu; Kato, Minoru; Hamada, Kenta; Aoi, Kenji; Tonai, Yusuke; Matsuura, Noriko; Kanesaka, Takashi; Yamashina, Takeshi; Akasaka, Tomofumi; Hanaoka, Noboru; Takeuchi, Yoji; Higashino, Koji; Ishihara, Ryu; Tomita, Yasuhiko; Iishi, Hiroyasu

    2017-01-01

    Magnifying narrow-band imaging (M-NBI) can reportedly help predict the presence and distribution of atrophy and intestinal metaplasia in the gastric corpus. However, the micro-mucosal pattern of the antrum shown by M-NBI differs from that of the corpus. We studied the distribution and histology of the micro-mucosal pattern in the antrum based on magnifying endoscopy. Endoscopic images of the greater curvature of the antrum were evaluated in 50 patients with chronic atrophic fundic gastritis (CAFG). The extent of CAFG was evaluated by autofluorescence imaging. The micro-mucosal pattern was evaluated by M-NBI and classified into groove and white villiform types. The localization of white villiform type mucosa was classified into three types in relation to the areae gastricae : null, central, and segmental types. Biopsies were taken from regions showing different micro-mucosal patterns. Associations among the extent of CAFG, micro-mucosal pattern, and histology were examined. As the extent of CAFG increased, the proportion of white villiform type mucosa increased, whereas that of groove type mucosa decreased (P=0.022). In patients with extensive CAFG, most of the areae gastricae was composed of the segmental or central type of white villiform type mucosa (P=0.044). The white villiform type mucosa had significantly higher grades of atrophy (P=0.002) and intestinal metaplasia (P<0.001) than did the groove type mucosa. White villiform type mucosa is indicative of atrophy and intestinal metaplasia in the gastric antrum. It extends to the whole or central part of the areae gastricae as CAFG becomes more extensive.

  8. Skyrmion-based high-frequency signal generator

    NASA Astrophysics Data System (ADS)

    Luo, Shijiang; Zhang, Yue; Shen, Maokang; Ou-Yang, Jun; Yan, Baiqian; Yang, Xiaofei; Chen, Shi; Zhu, Benpeng; You, Long

    2017-03-01

    Many concepts for skyrmion-based devices have been proposed, and most of their possible applications are based on the motion of skyrmions driven by a dc current in an area with a constricted geometry. However, skyrmion motion driven by a pulsed current has not been investigated so far. In this work, we propose a skyrmion-based high-frequency signal generator based on the pulsed-current-driven circular motion of skyrmions in a square-shaped film by micromagnetic simulation. The results indicate that skyrmions can move in a closed curve with central symmetry. The trajectory and cycle period can be adjusted by tuning the size of the film, the current density, the Dzyaloshinskii-Moriya interaction constant, and the local in-plane magnetic anisotropy. The period can be tuned from several nanoseconds to tens of nanoseconds, which offers the possibility to prepare high-frequency signal generator based on skyrmions.

  9. Unique magnetic and thermoelectric properties of chemically functionalized narrow carbon polymers.

    PubMed

    Zberecki, K; Wierzbicki, M; Swirkowicz, R; Barnaś, J

    2017-02-01

    We analyze magnetic, transport and thermoelectric properties of narrow carbon polymers, which are chemically functionalized with nitroxide groups. Numerical calculations of the electronic band structure and the corresponding transmission function are based on density functional theory. Transport and thermoelectric parameters are calculated in the linear response regime, with particular interest in charge and spin thermopowers (charge and spin Seebeck effects). Such nanoribbons are shown to have thermoelectric properties described by large thermoelectric efficiency, which makes these materials promising from the application point of view.

  10. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    PubMed

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  11. Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal

    NASA Astrophysics Data System (ADS)

    Yue, Chenxi; Tan, Wei; Liu, Jianjun

    2018-05-01

    In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.

  12. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  13. Is Perceptual Narrowing Too Narrow?

    ERIC Educational Resources Information Center

    Cashon, Cara H.; Denicola, Christopher A.

    2011-01-01

    There is a growing list of examples illustrating that infants are transitioning from having earlier abilities that appear more "universal," "broadly tuned," or "unconstrained" to having later abilities that appear more "specialized," "narrowly tuned," or "constrained." Perceptual narrowing, a well-known phenomenon related to face, speech, and…

  14. Narrow-band imaging can increase the visibility of fibrin caps after bleeding of esophageal varices: a case with extensive esophageal candidiasis.

    PubMed

    Furuichi, Yoshihiro; Kasai, Yoshitaka; Takeuchi, Hirohito; Yoshimasu, Yuu; Kawai, Takashi; Sugimoto, Katsutoshi; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Itoi, Takao

    2017-08-01

    A 58-year-old man with hepatitis B cirrhosis noticed black stools and underwent an endoscopy at a community hospital. The presence of esophageal varices (EVs) was confirmed, but the bleeding point was not found. He was referred to our institution and underwent a second endoscopy. Extensive white patches of esophageal candidiasis were visible on endoscopy by white-light imaging (WLI), but it was difficult to find the fibrin cap of the EVs. This was easier under narrow-band imaging (NBI), however, as the color turned red from absorption by hemoglobin adhered to it. We retrospectively measured the color differences (CD) between the fibrin cap and the surrounding mucosa 10 times using the CIE (L*a*b*) color space method. The median value of CD increased after NBI (13.9 → 43.0, p < 0.001), with increased visibility. However, the median CD between the white patch and surrounding mucosa decreased after NBI (44.8 → 30.3, p < 0.001). The fibrin cap was paler than the white patch of candidiasis, but the increased visibility of the fibrin cap by NBI enabled it to be found more easily. This is the first report of a case in which NBI was helpful in locating a fibrin cap of EVs.

  15. A comparison of high-frequency cross-correlation measures

    NASA Astrophysics Data System (ADS)

    Precup, Ovidiu V.; Iori, Giulia

    2004-12-01

    On a high-frequency scale the time series are not homogeneous, therefore standard correlation measures cannot be directly applied to the raw data. There are two ways to deal with this problem. The time series can be homogenised through an interpolation method (An Introduction to High-Frequency Finance, Academic Press, NY, 2001) (linear or previous tick) and then the Pearson correlation statistic computed. Recently, methods that can handle raw non-synchronous time series have been developed (Int. J. Theor. Appl. Finance 6(1) (2003) 87; J. Empirical Finance 4 (1997) 259). This paper compares two traditional methods that use interpolation with an alternative method applied directly to the actual time series.

  16. Step width alters iliotibial band strain during running.

    PubMed

    Meardon, Stacey A; Campbell, Samuel; Derrick, Timothy R

    2012-11-01

    This study assessed the effect of step width during running on factors related to iliotibial band (ITB) syndrome. Three-dimensional (3D) kinematics and kinetics were recorded from 15 healthy recreational runners during overground running under various step width conditions (preferred and at least +/- 5% of their leg length). Strain and strain rate were estimated from a musculoskeletal model of the lower extremity. Greater ITB strain and strain rate were found in the narrower step width condition (p < 0.001, p = 0.040). ITB strain was significantly (p < 0.001) greater in the narrow condition than the preferred and wide conditions and it was greater in the preferred condition than the wide condition. ITB strain rate was significantly greater in the narrow condition than the wide condition (p = 0.020). Polynomial contrasts revealed a linear increase in both ITB strain and strain rate with decreasing step width. We conclude that relatively small decreases in step width can substantially increase ITB strain as well as strain rates. Increasing step width during running, especially in persons whose running style is characterized by a narrow step width, may be beneficial in the treatment and prevention of running-related ITB syndrome.

  17. An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Fraenkel, E. D.; Glas, Dariusz; Legumina, Remigiusz

    2013-12-01

    The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages.

  18. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  19. High-frequency noise characterization of graphene field effect transistors on SiC substrates

    NASA Astrophysics Data System (ADS)

    Yu, C.; He, Z. Z.; Song, X. B.; Liu, Q. B.; Dun, S. B.; Han, T. T.; Wang, J. J.; Zhou, C. J.; Guo, J. C.; Lv, Y. J.; Cai, S. J.; Feng, Z. H.

    2017-07-01

    Considering its high carrier mobility and high saturation velocity, a low-noise amplifier is thought of as being the most attractive analogue application of graphene field-effect transistors. The noise performance of graphene field-effect transistors at frequencies in the K-band remains unknown. In this work, the noise parameters of a graphene transistor are measured from 10 to 26 GHz and noise models are built with the data. The extrinsic minimum noise figure for a graphene transistor reached 1.5 dB, and the intrinsic minimum noise figure was as low as 0.8 dB at a frequency of 10 GHz, which were comparable with the results from tests on Si CMOS and started to approach those for GaAs and InP transistors. Considering the short development time, the current results are a significant step forward for graphene transistors and show their application potential in high-frequency electronics.

  20. The Narrow Cold-Frontal Rainband of 22/23 November 2013

    NASA Technical Reports Server (NTRS)

    Kidd, Christopher

    2015-01-01

    The recent paper in Weather by Young (2014) provided a detailed analysis of an intensive cold front as it passed over the UK on 2223 November 2013. This was an extremely good example of linear convection, as it is described in the paper, or a narrow cold-frontal rainband (NCFR; Hobbs and Biswas, 1979). These features are associated with a low-level jet that lies ahead and parallel to the surface cold front, generating a band of intense but relatively shallow convection (see Koch and Kocin, 1991). Although the structure associated with these systems is not uncommon (e.g. Gatzen, 2011), this case was notable for the (linear) length and the longevity of the feature. Critically, fine-scale radar observations using the 1km, 5min UK composite radar product, produced by the UK Met Office and supplied by the British Atmospheric Data Centre, enabled the timing and progression of the most intense band of this feature tobe examined (see Figure 1).

  1. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    NASA Astrophysics Data System (ADS)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  2. Assessment of the Polycyclic Aromatic Hydrocarbon-Diffuse Interstellar Band Proposal

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Bakes, F.; Allamandola, L.; Tielens, A. G. G. M.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high energy range of the spectrum, and possess a large oscillator strength), and seems to correlate with strong and broad DIBs. In the case of non-compact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low energy range of the spectrum, and possess a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that: (i) Only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narrow bands on the other hand can easily be interpreted in the context of the PAH proposal by a distribution between compact and non-compact PAH ions, respectively. A

  3. The angular electronic band structure and free particle model of aromatic molecules: High-frequency photon-induced ring current

    NASA Astrophysics Data System (ADS)

    Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray

    2017-05-01

    This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.

  4. Fractal Based Triple Band High Gain Monopole Antenna

    NASA Astrophysics Data System (ADS)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  5. The information content of high-frequency seismograms and the near-surface geologic structure of "hard rock" recording sites

    USGS Publications Warehouse

    Cranswick, E.

    1988-01-01

    Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.

  6. Accuracy of computer-aided diagnosis based on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with experts.

    PubMed

    Misawa, Masashi; Kudo, Shin-Ei; Mori, Yuichi; Takeda, Kenichi; Maeda, Yasuharu; Kataoka, Shinichi; Nakamura, Hiroki; Kudo, Toyoki; Wakamura, Kunihiko; Hayashi, Takemasa; Katagiri, Atsushi; Baba, Toshiyuki; Ishida, Fumio; Inoue, Haruhiro; Nimura, Yukitaka; Oda, Msahiro; Mori, Kensaku

    2017-05-01

    Real-time characterization of colorectal lesions during colonoscopy is important for reducing medical costs, given that the need for a pathological diagnosis can be omitted if the accuracy of the diagnostic modality is sufficiently high. However, it is sometimes difficult for community-based gastroenterologists to achieve the required level of diagnostic accuracy. In this regard, we developed a computer-aided diagnosis (CAD) system based on endocytoscopy (EC) to evaluate cellular, glandular, and vessel structure atypia in vivo. The purpose of this study was to compare the diagnostic ability and efficacy of this CAD system with the performances of human expert and trainee endoscopists. We developed a CAD system based on EC with narrow-band imaging that allowed microvascular evaluation without dye (ECV-CAD). The CAD algorithm was programmed based on texture analysis and provided a two-class diagnosis of neoplastic or non-neoplastic, with probabilities. We validated the diagnostic ability of the ECV-CAD system using 173 randomly selected EC images (49 non-neoplasms, 124 neoplasms). The images were evaluated by the CAD and by four expert endoscopists and three trainees. The diagnostic accuracies for distinguishing between neoplasms and non-neoplasms were calculated. ECV-CAD had higher overall diagnostic accuracy than trainees (87.8 vs 63.4%; [Formula: see text]), but similar to experts (87.8 vs 84.2%; [Formula: see text]). With regard to high-confidence cases, the overall accuracy of ECV-CAD was also higher than trainees (93.5 vs 71.7%; [Formula: see text]) and comparable to experts (93.5 vs 90.8%; [Formula: see text]). ECV-CAD showed better diagnostic accuracy than trainee endoscopists and was comparable to that of experts. ECV-CAD could thus be a powerful decision-making tool for less-experienced endoscopists.

  7. Conduction Band-Edge Non-Parabolicity Effects on Impurity States in (In,Ga)N/GaN Cylindrical QWWs

    NASA Astrophysics Data System (ADS)

    Haddou El, Ghazi; Anouar, Jorio

    2014-02-01

    In this paper, the conduction band-edge non-parabolicity (NP) and the circular cross-section radius effects on hydrogenic shallow-donor impurity ground-state binding energy in zinc-blende (ZB) InGaN/GaN cylindrical QWWs are reported. The finite potential barrier between (In,Ga)N well and GaN environment is considered. Two models of the conduction band-edge non-parabolicity are taking into account. The variational approach is used within the framework of single band effective-mass approximation with one-parametric 1S-hydrogenic trial wave-function. It is found that NP effect is more pronounced in the wire of radius equal to effective Bohr radius than in large and narrow wires. Moreover, the binding energy peak shifts to narrow wire under NP effect. A good agreement is shown compared to the findings results.

  8. Influence of 2D electrostatic effects on the high-frequency noise behavior of sub-100-nm scaled MOSFETs

    NASA Astrophysics Data System (ADS)

    Rengel, Raul; Pardo, Daniel; Martin, Maria J.

    2004-05-01

    In this work, we have performed an investigation of the consequences of dowscaling the bulk MOSFET beyond the 100 nm range by means of a particle-based Monte Carlo simulator. Taking a 250 nm gate-length ideal structure as the starting point, the constant field scaling rules (also known as "classical" scaling) are considered and the high-frequency dynamic and noise performance of transistors with 130 nm, 90 nm and 60 nm gate-lengths are studied in depth. The analysis of internal quantities such as electric fields, velocity and energy of carriers or conduction band profiles shows the increasing importance of electrostatic two-dimensional effects due to the proximity of source and drain regions even when the most ideal bias conditions are imposed. As a consequence, a loss of the transistor action for the smallest MOSFET and the degradation of the most important high-frequency figures of merit is observed. Whereas the comparative values of intrinsic noise sources (SID, SIG) are improved when reducing the dimensions and the bias voltages, the poor dynamic performance yields an overall worse noise behaviour than expected (especially for Rn and Gass), limiting at the same time the useful bias ranges and conditions for a proper low-noise configuration.

  9. Research for the jamming mechanism of high-frequency laser to the laser seeker

    NASA Astrophysics Data System (ADS)

    Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming

    2013-08-01

    High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.

  10. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.

    PubMed

    Cheney, P D; Griffin, D M; Van Acker, G M

    2013-10-01

    Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.

  11. Satellite Ka-band propagation measurements in Florida

    NASA Technical Reports Server (NTRS)

    Helmken, Henry; Henning, Rudolf

    1995-01-01

    Commercial growth of interactive, high data rate communication systems is expected to focus on the use of the Ka-band (20/30 GHz) radio spectrum. The ability to form narrow spot beams and the attendant small diameter antennas are attractive features to designers of mobile aeronautical and ground based satellite communication systems. However, Ka-band is strongly affected by weather, particularly rain, and hence systems designs may require a significant link margin for reliable operations. Perhaps the most stressing area in North America, weatherwise, is the Florida sub-tropical climatic region. As part of the NASA Advanced Communications Technology Satellite (ACTS) propagation measurements program, beacon and radiometer data have been recorded since December 1993 at the University of South Florida (USF), Tampa, Florida.

  12. Molecular Kondo effect in flat-band lattices

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Tien; Nguyen, Thuy Thi

    2018-04-01

    The Kondo effect of a single magnetic impurity embedded in the Lieb lattice is studied by the numerical renormalization group. When the band flatness is present in the local density of states at the impurity site, it quenches the participation of all dispersive electrons in the Kondo singlet formation and reduces the many-body Kondo problem to a two-electron molecular Kondo problem. A quantum entanglement of two spins, which is the two-electron molecular analog of the many-body Kondo singlet, is stable at low temperature, and the impurity contributions to thermodynamical and dynamical quantities are qualitatively different from that obtained in the many-body Kondo effect. The conditions for existence of the molecular Kondo effect in narrow band systems are also presented.

  13. An alternative option for "resect and discard" strategy, using magnifying narrow-band imaging: a prospective "proof-of-principle" study.

    PubMed

    Takeuchi, Yoji; Hanafusa, Masao; Kanzaki, Hiromitsu; Ohta, Takashi; Hanaoka, Noboru; Yamamoto, Sachiko; Higashino, Koji; Tomita, Yasuhiko; Uedo, Noriya; Ishihara, Ryu; Iishi, Hiroyasu

    2015-10-01

    The "resect and discard" strategy is beneficial for cost savings on screening and surveillance colonoscopy, but it has the risk to discard lesions with advanced histology or small invasive cancer (small advanced lesion; SALs). The aim of this study was to prove the principle of new "resect and discard" strategy with consideration for SALs using magnifying narrow-band imaging (M-NBI). Patients undergoing colonoscopy at a tertiary center were involved in this prospective trial. For each detected polyp <10 mm, optical diagnosis (OD) and virtual management ("leave in situ", "discard" or "send for pathology") were independently made using non-magnifying NBI (N-NBI) and M-NBI, and next surveillance interval were predicted. Histological and optical diagnosis results of all polyps were compared. While the management could be decided in 82% of polyps smaller than 10 mm, 24/31 (77%) SALs including two small invasive cancers were not discarded based on OD using M-NBI. The sensitivity [90% confidence interval (CI)] of M-NBI for SALs was 0.77 (0.61-0.89). The risk for discarding SALs using N-NBI was significantly higher than that using M-NBI (53 vs. 23%, p = 0.02). The diagnostic accuracy (95% CI) of M-NBI in distinguishing neoplastic from non-neoplastic lesions [0.88 (0.86-0.90)] was significantly better than that of N-NBI [0.84 (0.82-0.87)] (p = 0.005). The results of our study indicated that our "resect and discard" strategy using M-NBI could work to reduce the risk for discarding SALs including small invasive cancer (UMIN-CTR, UMIN000003740).

  14. Theory of g-factor enhancement in narrow-gap quantum well heterostructures.

    PubMed

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2011-09-28

    We report on the study of the exchange enhancement of the g-factor in the two-dimensional (2D) electron gas in n-type narrow-gap semiconductor heterostructures. Our approach is based on the eight-band k⋅p Hamiltonian and takes into account the band nonparabolicity, the lattice deformation, the spin-orbit coupling and the Landau level broadening in the δ-correlated random potential model. Using the 'screened' Hartree-Fock approximation we demonstrate that the exchange g-factor enhancement not only shows maxima at odd values of Landau level filling factors but, due to the conduction band nonparabolicity, persists at even filling factor values as well. The magnitude of the exchange enhancement, the amplitude and the shape of the g-factor oscillations are determined by both the screening of the electron-electron interaction and the Landau level width. The 'enhanced' g-factor values calculated for the 2D electron gas in InAs/AlSb quantum well heterostructures are compared with our earlier experimental data and with those obtained by Mendez et al (1993 Phys. Rev. B 47 13937) in magnetic fields up to 30 T.

  15. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.

    PubMed

    Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn

    2002-03-08

    We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.

  16. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  17. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    PubMed

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.

    PubMed

    Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang

    2015-04-14

    In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.

  19. Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors

    NASA Astrophysics Data System (ADS)

    Islam, Nazifah; Warzywoda, Juliusz; Fan, Zhaoyang

    2018-03-01

    High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications. [Figure not available: see fulltext.

  20. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy.

    PubMed

    Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H

    2018-03-01

    Vitiligo is a chronic, depigmenting skin disorder, whose pathogenesis is still unknown. Narrow band ultraviolet-B (NB-UVB) is now one of the most widely used treatment of vitiligo. It was suggested that trace elements may play a role in pathogenesis of vitiligo. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) in the serum of patients with vitiligo. We assessed 50 patients with vitiligo and 58 healthy controls. Serum levels of Se, Zn and Cu were determined by the atomic absorption spectrometry method, and the Cu/Zn ratio was also calculated. TAS in serum was measured spectrophotometrically. Serum concentration of Se in patients with vitiligo before and after phototherapy was significantly lower as compared to the control group. Zn level in the serum of patients decreased significantly after phototherapy. We observed higher Cu/Zn ratio (p < .05) in examined patients than in the control group and after NB-UVB. We have found decrease in TAS in the serum of vitiligo patients after NB-UVB. The current study showed some disturbances in the serum levels of trace elements and total antioxidant status in vitiligo patients.

  1. Spectral band passes for a high precision satellite sounder

    NASA Technical Reports Server (NTRS)

    Kaplan, L. D.; Chahine, M. T.; Susskind, J.; Searl, J. E.

    1977-01-01

    Atmospheric temperature soundings with significantly improved vertical resolution can be obtained from carefully chosen narrow band-pass measurements in the 4.3-micron band of CO2 by taking advantage of the variation of the absorption coefficients, and thereby the weighting functions, with pressure and temperature. A set of channels has been found in the 4.2-micron region that is capable of yielding about 2-km vertical resolution in the troposphere. The concept of a complete system is presented for obtaining high resolution retrievals of temperature and water vapor distribution, as well as surface and cloud top temperatures, even in the presence of broken clouds.

  2. Uranus - Disk structure within the 7300-A methane band

    NASA Technical Reports Server (NTRS)

    Price, M. J.; Franz, O. G.

    1979-01-01

    Orthogonal narrow-band (100 A) photoelectric slit scan photometry of Uranus has been used to infer the basic two-dimensional structure of the disk within the 7300-A methane band. Numerical image reconstruction and restoration techniques have been applied to quantitatively estimate the degrees of polar and limb brightening on the planet. Through partial removal of atmospheric smearing, an effective spatial resolution of approximately 0.9 arcsec has been achieved. Peak polar, limb, and central intensities on the disk are in the respective proportions 3:2:1. In addition, the bright polar feature is displaced from the geometric pole towards the equator of the planet.

  3. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    PubMed

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  4. Prediction of Helicobacter pylori status by conventional endoscopy, narrow-band imaging magnifying endoscopy in stomach after endoscopic resection of gastric cancer.

    PubMed

    Yagi, Kazuyoshi; Saka, Akiko; Nozawa, Yujiro; Nakamura, Atsuo

    2014-04-01

    To reduce the incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer, Helicobacter pylori eradication therapy has been endorsed. It is not unusual for such patients to be H. pylori negative after eradication or for other reasons. If it were possible to predict H. pylori status using endoscopy alone, it would be very useful in clinical practice. To clarify the accuracy of endoscopic judgment of H. pylori status, we evaluated it in the stomach after endoscopic submucosal dissection (ESD) of gastric cancer. Fifty-six patients treated by ESD were enrolled. The diagnostic criteria for H. pylori status by conventional endoscopy and narrow-band imaging (NBI)-magnifying endoscopy were decided, and H. pylori status was judged by two endoscopists. Based on the H. pylori stool antigen test as a diagnostic gold standard, conventional endoscopy and NBI-magnifying endoscopy were compared for their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Interobserver agreement was assessed in terms of κ value. Interobserver agreement was moderate (0.56) for conventional endoscopy and substantial (0.77) for NBI-magnifying endoscopy. The sensitivity, specificity, PPV, and NPV were 0.79, 0.52, 0.70, and 0.63 for conventional endoscopy and 0.91, 0.83, 0.88, and 0.86 for NBI-magnifying endoscopy, respectively. Prediction of H. pylori status using NBI-magnifying endoscopy is practical, and interobserver agreement is substantial. © 2013 John Wiley & Sons Ltd.

  5. Laser and high-frequency cauthery gingivectomy in nonperiodontal indications: assessment and comparison of techniques

    NASA Astrophysics Data System (ADS)

    Bartak, Petr; Smucler, Roman

    2003-06-01

    The authors have verified the efficiency and safety of laser and high-frequency gingivectomy in non-periodontal indications. Within a prospective, non-selective study, they treated and monitored 357 dental areas in 139 teeth.Out of the total number, 248 areas were treated wtih a diode laser, 980nm; 109 areas with high-frequency electrocautery. The following parameters were monitored: a) regeneration of the marginal gingiva; b) generation of iatrogenic recessions or periodontal pockets; c) bleeding from gingival sulcus during probing; d) changes in tooth vitality; e) patient's subjective evaluation. The authors identified a high degree of safety in both laser and high-frequency gingivectomy, with no significant difference between these two methods. Laser gingivectomy appears to have a wider indication range, while high-frequency gingivectomy requires lower financial expenses.

  6. Nature of the abnormal band gap narrowing in highly crystalline Zn1-xCoxO nanorods

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoqing; Li, Liping; Li, Guangshe

    2006-03-01

    Highly crystalline Zn1-xCoxO nanorods were prepared using a hydrothermal method. With increasing Co2+ dopant concentration, the lattice volume enlarged considerably, which is associated with the enhanced repulsive interactions of defect dipole moments on the wall surfaces. This lattice modification produced a significant decrease in band gap energies with its magnitude that followed the relationship, ΔEg=ΔE0•(e-x/B-1), where x and B are Co2+ dopant concentration and a constant, respectively. The abnormal band gap energies were indicated to originate from the sp-d exchange interactions that are proportional to the square of lattice volume.

  7. A wideband superconducting filter at Ku-band based on interdigital coupling

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang

    2018-04-01

    In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.

  8. Lateralization of high-frequency transposed stimuli under conditions of binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2005-04-01

    The purpose of this study was to determine whether binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs rather than extents of laterality, suggested that high-frequency transposed stimuli might be immune to binaural interference effects resulting from the addition of a spectrally-remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets can, indeed, be susceptible to binaural interference. High-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did Gaussian noise targets presented in isolation. That is, the enhanced potency of ITDs conveyed by transposed stimuli persisted even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for binaural interference obtained with conventional Gaussian noise targets but generally over-predicted the amounts of interference found with the transposed targets.

  9. Superconductivity between standard types: Multiband versus single-band materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagov, A.; Shanenko, A. A.; Milošević, M. V.

    In the nearest vicinity of the critical temperature, types I and II of conventional single-band superconductors interchange at the Ginzburg-Landau parameter κ = 1/√2. At lower temperatures this point unfolds into a narrow but finite interval of κ’s, shaping an intertype (transitional) domain in the (κ,T ) plane. In the present work, based on the extended Ginzburg-Landau formalism, we show that the same picture of the two standard types with the transitional domain in between applies also to multiband superconductors. However, the intertype domain notably widens in the presence of multiple bands and can become extremely large when the systemmore » has a significant disparity between the band parameters. It is concluded that many multiband superconductors, such as recently discovered borides and iron-based materials, can belong to the intertype regime.« less

  10. Computer-aided design of high-frequency transistor amplifiers.

    NASA Technical Reports Server (NTRS)

    Hsieh, C.-C.; Chan, S.-P.

    1972-01-01

    A systematic step-by-step computer-aided procedure for designing high-frequency transistor amplifiers is described. The technique makes it possible to determine the optimum source impedance which gives a minimum noise figure.

  11. Continued Development of an Ultra-Narrow Bandpass Filter for Solar Research

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1993-01-01

    The objective of work under this task was to develop ultranarrow optical bandpass filters and related technology necessary for construction of a compact solar telescope capable of operating unattended in space. The scientific problems to which such a telescope could be applied include solar seismology, solar activity monitoring, solar irradiance variations, solar magnetic field evolution, and the location of targets for narrow-field specialized telescopes. We have demonstrated a Y-cut lithium-niobate Fabry-Perot etalon. This filter will be used on the Flare Genesis Experiment. We also obtained solar images with a Z-cut etalon. The technical report on etalon filters is attached to this final report. We believe that work under this grant will lead to the commercial availability of a universal optical filter with approximately 0.1 A bandwidth. Progress was made toward making a suitable 1-2 A tunable blocker filter, but it now appears that the best approach is to make a double-cavity etalon that will not require such a narrow blocker. Broader band blockers are commercially available.

  12. The Structure of A Pacific Narrow Cold Frontal Rainband

    NASA Technical Reports Server (NTRS)

    Jorgensen, David P.; Pu, Zhaoxia; Persson, Ola; Tao, Wei-Kuo; Starr, David OC. (Technical Monitor)

    2002-01-01

    A NOAA P-3 instrumented aircraft observed an intense, fast-moving narrow cold frontal Farmhand as it approached the Pacific Northwest coast on 19 February 2001 during the Pacific Coastal Jets Experiment. Pseudo-dual-Doppler analyses performed on the airborne Doppler radar data while the frontal system was well offshore indicated that a narrow ribbon of very high radar reflectively convective cores characterized the Farmhand at low levels with echo tops to approximately 4-5 km. The NCFR exhibited gaps in its narrow ribbon of high reflectively, probably as a result of hydrodynamic instability all no its advancing cold pool leading edge. In contrast to some earlier studies of cold frontal rainbands, density current theory described well the motion of the overall front. The character of the updraft structure associated with the heavy rainfall at its leading edge varied across the gap region. The vertical shear of the cross-frontal low-level ambient flow exerted a strong influence on the updraft character, consistent with theoretical arguments developed for squall lines describing the balance of vorticity at the leading edge. In short regions south of the gaps the vertical wind shear was strongest with the updrafts and rain shafts more intense, narrower, and more erect or even downshear tilted. North of the gaps the wind shear weakened with less intense Dihedrals which tilted upshear with a broader band of rainfall. Simulations using a nonhydrostatic mesoscale nested grid model are used to investigate the gap regions, particularly the balance of cold pool induced to pre-frontal ambient shears at the leading edge. Observations confirm the model results that the updraft character depends on the balance of vorticity at the leading edge. Downshear-tilted updrafts imply that convection south of the gap regions would weaken with time relative to the frontal segments north of the gaps since inflow air would be affected by passage through the heavy rain region before ascent

  13. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with thosemore » from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.« less

  14. Effectiveness of computer-aided diagnosis of colorectal lesions using novel software for magnifying narrow-band imaging: a pilot study.

    PubMed

    Tamai, Naoto; Saito, Yutaka; Sakamoto, Taku; Nakajima, Takeshi; Matsuda, Takahisa; Sumiyama, Kazuki; Tajiri, Hisao; Koyama, Ryosuke; Kido, Shoji

    2017-08-01

     Magnifying narrow-band imaging (M-NBI) enables detailed observation of microvascular architecture and can be used in endoscopic diagnosis of colorectal lesion. However, in clinical practice, differential diagnosis and estimation of invasion depth of colorectal lesions based on M-NBI findings require experience. Therefore, developing computer-aided diagnosis (CAD) for M-NBI would be beneficial for clinical practice. The aim of this study was to evaluate the effectiveness of software for CAD of colorectal lesions. In collaboration with Yamaguchi University, we developed novel software that enables CAD of colorectal lesions using M-NBI images. This software for CAD further specifically divides original Sano's colorectal M-NBI classification into 3 groups (group A, capillary pattern [CP] type I; group B, CP type II + CP type IIIA; group C, CP type IIIB), which describe hyperplastic polyps (HPs), adenoma/adenocarcinoma (intramucosal [IM] to submucosal [SM]-superficial) lesions, and SM-deep lesions, respectively. We retrospectively reviewed 121 lesions evaluated using M-NBI. The 121 reviewed lesions included 21 HP, 80 adenoma/adenocarcinoma (IM to SM-superficial), and 20 SM-deep lesions. The concordance rate between the CAD and the diagnosis of the experienced endoscopists was 90.9 %. The sensitivity, specificity, positive and negative predictive values, and accuracy of the CAD for neoplastic lesions were 83.9 %, 82.6 %, 53.1 %, 95.6 %, and 82.8 %, respectively. The values for SM-deep lesions were 83.9 %, 82.6 %, 53.1 %, 95.6 %, and 82.8 %, respectively.  Relatively high diagnostic values were obtained using CAD. This software for CAD could possibly lead to a wider use of M-NBI in the endoscopic diagnosis of colorectal lesions.

  15. Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex.

    PubMed

    Hashimoto, I; Mashiko, T; Imada, T

    1996-05-01

    High-frequency potential oscillations in the range of 300-900 Hz have recently been shown to concur with the primary response (N20) of the somatosensory cortex in awake humans. However, the physiological mechanisms of the high-frequency oscillations remained undetermined. We addressed the issue by analyzing magnetic fields during wakefulness and sleep over the left hemisphere to right median nerve stimulation with a wide bandpass (0.1-2000 Hz) recording with subsequent high-pass (> 300 Hz) and low-pass (< 300 Hz) filtering. With wide bandpass recordings, high-frequency magnetic oscillations with the main signal energy at 580-780 Hz were superimposed on the N20m during wakefulness. Isofield mapping at each peak of the high-pass filtered and isolated high-frequency oscillations showed a dipolar pattern and the estimated source for these peaks was the primary somatosensory cortex (area 3b) very close to that for the N20m peak. During sleep, the high-frequency oscillations showed dramatic diminution in amplitude while the N20m amplitude exhibited a moderate increment. This reciprocal relation between the high-frequency oscillations and the N20m during a wake-sleep cycle suggests that they represent different generator substrates. We speculate that the high-frequency oscillations represent a localized activity of the GABAergic inhibitory interneurons of layer 4, which have been shown in animal experiments to respond monosynaptically to thalamo-cortical input with a high-frequency (600-900 Hz) burst of short duration spikes. On the other hand, the underlying N20m represents activity of pyramidal neurons which receive monosynaptic excitatory input from the thalamus as well as a feed-forward inhibition from the interneurons.

  16. Band gap bowing in NixMg1−xO

    PubMed Central

    Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.

    2016-01-01

    Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808

  17. Band gap engineering of BC2N for nanoelectronic applications

    NASA Astrophysics Data System (ADS)

    Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali

    2017-12-01

    The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.

  18. Observation of the spin-orbit components of the 3B 2g( 3A 2g) ground state in the system Ni 2+:MgF 2 by fluorescence line narrowing

    NASA Astrophysics Data System (ADS)

    Tonucci, R. J.; Jacobsen, S. M.; Yen, W. M.

    1990-10-01

    Using a tunable narrow-band infrared laser, we demonstrate for the first time infrared-fluorescnece line narrowing in the system Ni 2+:MgF 2. High-resolution emission spectra were obtained by pumping the lowest spin-orbit component B 3 ( 3T 2g) (orthorhombic notation with octahedral notation in parentheses) of the 3T 2g multiplet and observing the B 3( 3T 2g)→B 1, A, B 2( 3A 2g) luminescent transitions at low temperature. By tuning the narrow-band laser over the B 3( 3T 2g) band, resonant and non-resonant fluorescence were obtained which narrowed with respect to the inhomogeneously broadened profile, and additional lines were observed. The spectra can be understood in terms of a simultaneous excitation of two different subsets of Ni 2+ ions which have their B 2( 3A 2g)→B 3( 3T 2g) and A( 3A 2g)→B 3( 3T 2g) transitions in resonance with the laser. The A( 3A 2g) and B 1( 3A 2g) spin-orbit components of the ground-state multiplet lie 1.9 cm -1 and 6.5 cm -1 above the B 2( 3A 2g) ground state, respectively, at 2 K.

  19. High-frequency ultrasound for monitoring changes in liver tissue during preservation

    NASA Astrophysics Data System (ADS)

    Vlad, Roxana M.; Czarnota, Gregory J.; Giles, Anoja; Sherar, Michael D.; Hunt, John W.; Kolios, Michael C.

    2005-01-01

    Currently the only method to assess liver preservation injury is based on liver appearance and donor medical history. Previous work has shown that high-frequency ultrasound could detect ischemic cell death due to changes in cell morphology. In this study, we use high-frequency ultrasound integrated backscatter to assess liver damage in experimental models of liver ischemia. Ultimately, our goal is to predict organ suitability for transplantation using high-frequency imaging and spectral analysis techniques. To examine the effects of liver ischemia at different temperatures, livers from Wistar rats were surgically excised, immersed in phosphate buffer saline and stored at 4 and 20 °C for 24 h. To mimic organ preservation, livers were excised, flushed with University of Wisconsin (UW) solution and stored at 4 °C for 24 h. Preservation injury was simulated by either not flushing livers with UW solution or, before scanning, allowing livers to reach room temperature. Ultrasound images and corresponding radiofrequency data were collected over the ischemic period. No significant increase in integrated backscatter (~2.5 dBr) was measured for the livers prepared using standard preservation conditions. For all other ischemia models, the integrated backscatter increased by 4-9 dBr demonstrating kinetics dependent on storage conditions. The results provide a possible framework for using high-frequency imaging to non-invasively assess liver preservation injury.

  20. High-frequency Oscillations in the Atmosphere above a Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Deng, Hui; Li, Bo; Feng, Song; Bai, Xianyong; Deng, Linhua; Yang, Yunfei; Xue, Zhike; Wang, Rui

    2018-03-01

    We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above a sunspot umbra. A novel time–frequency analysis method, namely, the synchrosqueezing transform (SST), is employed to represent their power spectra and to reconstruct the high-frequency signals at different solar atmospheric layers. A validation study with synthetic signals demonstrates that SST is capable of resolving weak signals even when their strength is comparable to the high-frequency noise. The power spectra, obtained from both SST and the Fourier transform, of the entire umbral region indicate that there are significant enhancements between 10 and 14 mHz (labeled as 12 mHz) at different atmospheric layers. Analyzing the spectrum of a photospheric region far away from the umbra demonstrates that this 12 mHz component exists only inside the umbra. The animation based on the reconstructed 12 mHz component in AIA 171 Å illustrates that an intermittently propagating wave first emerges near the footpoints of coronal fan structures, and then propagates outward along the structures. A time–distance diagram, coupled with a subsonic wave speed (∼49 km s‑1), highlights the fact that these coronal perturbations are best described as upwardly propagating magnetoacoustic slow waves. Thus, we first reveal the high-frequency oscillations with a period around one minute in imaging observations at different height above an umbra, and these oscillations seem to be related to the umbral perturbations in the photosphere.

  1. [A Feasibility Study of closing the small bowel with high-frequency welding device].

    PubMed

    Zhou, Huabin; Han, Shuai; Chen, Jun; Huang, Dequn; Peng, Liang; Ning, Jingxuan; Li, Zhou

    2014-12-01

    This study aimed to evaluate the feasibility and effectiveness of closing the small bowel in an ex vivo porcine model with high-frequency welding device. A total of 100 porcine small bowels were divided into two groups, and then were closed with two different methods. The fifty small bowels in experimental group were closed by the high-frequency welding device, and the other fifty small bowels in comparison group were hand-sutured. All the small bowels were subjected to leak pressure testing later on. The speed of closure and bursting pressure were compared. The 50 porcine small bowels closed by the high-frequency welding device showed a success rate of 100%. Compared with the hand-sutured group, the bursting pressures of the former were significantly lower (P<0.01) and the closing process was significantly shorter (P<0.01). The pathological changes of the closed ends mainly presented as acute thermal and pressure induced injury. Experimental results show that the high-frequency welding device has higher feasibility in closing the small bowel.

  2. A randomised tandem colonoscopy trial of narrow band imaging versus white light examination to compare neoplasia miss rates.

    PubMed

    Kaltenbach, T; Friedland, S; Soetikno, R

    2008-10-01

    Colonoscopy, the "gold standard" screening test for colorectal cancer (CRC), has known diagnostic limitations. Advances in endoscope technology have focused on improving mucosal visualisation. In addition to increased angle of view and resolution features, recent colonoscopes have non-white-light optics, such as narrow band imaging (NBI), to enhance image contrast. We aimed to study the neoplasia diagnostic characteristics of NBI, by comparing the neoplasm miss rate when the colonoscopy was performed under NBI versus white light (WL). Randomised controlled trial. US Veterans hospital. Elective colonoscopy adults. We randomly assigned patients to undergo a colonoscopic examination using NBI or WL. All patients underwent a second examination using WL, as the reference standard. The primary end point was the difference in the neoplasm miss rate, and secondary outcome was the neoplasm detection rate. In 276 tandem colonoscopy patients, there was no significant difference of miss or detection rates between NBI or WL colonoscopy techniques. Of the 135 patients in the NBI group, 17 patients (12.6%; 95% confidence interval (CI) 7.5 to 19.4%) had a missed neoplasm, as compared with 17 of the 141 patients (12.1%; 95% CI 7.2 to 18.6%) in the WL group, with a miss rate risk difference of 0.5% (95% CI -7.2 to 8.3). 130 patients (47%) had at least one neoplasm. Missed lesions with NBI showed similar characteristics to those missed with WL. All missed neoplasms were tubular adenomas, the majority (78%) was < or = 5 mm and none were larger than 1 cm (one-sided 95% CI up to 1%). Nonpolypoid lesions represented 35% (13/37) of missed neoplasms. NBI did not improve the colorectal neoplasm miss rate compared to WL; the miss rate for advanced adenomas was less than 1% and for all adenomas was 12%. The neoplasm detection rates were similar high using NBI or WL; almost a half the study patients had at least one adenoma. Clinicaltrials.gov identifier: NCT00628147.

  3. Sustainable limitation of high-frequency oscillations of elevator cabin

    NASA Astrophysics Data System (ADS)

    Kaytukov, Batraz

    2017-10-01

    In this paper, a problem of sustainable limitation of vertical high-frequency oscillations of elevator cabin in buildings with various number of storeys is considered. To solve this problem, dynamic model of the elevator movement was developed. In the course of analytical and experimental studies, the main cause for emergence of undesirable high-frequency oscillations of a cabin was defined. The amplification factor which is the function of λ and length of cable was determined. The λ parameter is variable, and length of the cable changes depending on length passed by the cabin and is an amplification factor argument. For sustainable limitation of oscillations, use of dynamic dumper of lever type is proposed. Adjustment of the dumper natural vibration frequency in such a way that it is equal to the excitation frequency allows limiting of oscillations of the cabin and the elevator machine to reasonable value irrespective to position of a moving cabin in the shaft. Using dependences and plots which were obtained in the course of scientific analysis and experimental studies, reasonability of dumper application for sustainable limitation of high-frequency influence of the elevator machine on the base and obtaining of solutions of inertial forces equilibration problem was proved.

  4. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  5. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

    PubMed

    Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui

    2015-11-10

    In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.

  6. Ultra narrow flat-top filter based on multiple equivalent phase shifts

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zou, Xihua; Yin, Zuowei; Chen, Xiangfei; Shen, Haisong

    2008-11-01

    Instead of real phase shifts, equivalent phase shifts (EPS) are adopted to construct ultra narrow phase-shifted band-pass filer in sampled Bragg gratings (SBG). Two optimized distributions of multiple equivalent phase shifts, using 2 and 5 EPSs respectively, are given in this paper to realize flat-top and ripple-free transmission characteristics simultaneously. Also two demonstrations with 5 EPSs both on hydrogen-loaded and photosensitive fibers are presented and their spectrums are examined by an optical vector analyzer (OVA). Given only ordinary phase mask and sub-micrometer precision control, ultra-narrowband flat-top filters with expected performance can be achieved flexibly and cost-effectively.

  7. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy.

    PubMed

    Liu, Su; Gurses, Candan; Sha, Zhiyi; Quach, Michael M; Sencer, Altay; Bebek, Nerses; Curry, Daniel J; Prabhu, Sujit; Tummala, Sudhakar; Henry, Thomas R; Ince, Nuri F

    2018-01-30

    High-frequency oscillations in local field potentials recorded with intracranial EEG are putative biomarkers of seizure onset zones in epileptic brain. However, localized 80-500 Hz oscillations can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or frequency, physiological high-frequency oscillations are indistinguishable from pathological ones, which limit their application in epilepsy presurgical planning. We hypothesized that pathological high-frequency oscillations occur in a repetitive fashion with a similar waveform morphology that specifically indicates seizure onset zones. We investigated the waveform patterns of automatically detected high-frequency oscillations in 13 epilepsy patients and five control subjects, with an average of 73 subdural and intracerebral electrodes recorded per patient. The repetitive oscillatory waveforms were identified by using a pipeline of unsupervised machine learning techniques and were then correlated with independently clinician-defined seizure onset zones. Consistently in all patients, the stereotypical high-frequency oscillations with the highest degree of waveform similarity were localized within the seizure onset zones only, whereas the channels generating high-frequency oscillations embedded in random waveforms were found in the functional regions independent from the epileptogenic locations. The repetitive waveform pattern was more evident in fast ripples compared to ripples, suggesting a potential association between waveform repetition and the underlying pathological network. Our findings provided a new tool for the interpretation of pathological high-frequency oscillations that can be efficiently applied to distinguish seizure onset zones from functionally important sites, which is a critical step towards the translation of these signature events into valid clinical biomarkers.awx374media15721572971001. © The Author(s) (2018). Published by Oxford University Press on

  8. Myoneural necrosis following high-frequency electrical stimulation of the cast-immobilized rabbit hindlimb

    NASA Technical Reports Server (NTRS)

    Friden, J.; Lieber, R. L.; Myers, R. R.; Powell, H. C.; Hargens, A. R.

    1989-01-01

    The morphological and physiological effects of 4 weeks of high-frequency electrical stimulation (1 h/day, 5 days/week) on cast-immobilized rabbit hindlimbs were investigated in the tibialis anterior muscle and peroneal nerve. In 2 out of 6 animals, high-frequency stimulation with immobilization caused muscle fiber death, internalization of muscle fiber nuclei, connective tissue proliferation, inflammatory response, altered fiber size distribution and variable staining intensities. The fast-twitch fibers were predominantly affected. Two of six peripheral nerves subjected to immobilization and stimulation showed severe damage. Tetanic forces were significantly reduced in the affected muscles. Therefore, the immobilization and high-frequency stimulation may be detrimental to myoneural structure and function and, thus, this combination of therapies should be applied conservatively.

  9. Comparison of High-Frequency Solar Irradiance: Ground Measured vs. Satellite-Derived

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lave, Matthew; Weekley, Andrew

    2016-11-21

    High-frequency solar variability is an important to grid integration studies, but ground measurements are scarce. The high resolution irradiance algorithm (HRIA) has the ability to produce 4-sceond resolution global horizontal irradiance (GHI) samples, at locations across North America. However, the HRIA has not been extensively validated. In this work, we evaluate the HRIA against a database of 10 high-frequency ground-based measurements of irradiance. The evaluation focuses on variability-based metrics. This results in a greater understanding of the errors in the HRIA as well as suggestions for improvement to the HRIA.

  10. Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles

    NASA Astrophysics Data System (ADS)

    Kondo, Daiyu; Sato, Shintaro; Awano, Yuji

    2006-05-01

    Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution have been synthesized by hot-filament chemical vapor deposition using acetylene at 590 °C. Iron nanoparticles with diameters of 1.6, 2.0, 2.5, 5.0 and 10 nm (standard deviation: ≈10%) obtained with a differential mobility analyzer were used as a catalyst without any supporting materials on a substrate. SWNTs were obtained from 2.0 nm or smaller particles. The ratio of G band to D band in Raman spectra was as high as 35 without purification, indicating that high-quality SWNTs were synthesized. The SWNT diameters correlated with the particle diameters, demonstrating diameter-controlled SWNT growth.

  11. The impact of cochlear fine structure on hearing thresholds and DPOAE levels

    NASA Astrophysics Data System (ADS)

    Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.

    2004-05-01

    Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.

  12. Relative electroencephalographic desynchronization and synchronization in humans to emotional film content: an analysis of the 4-6, 6-8, 8-10 and 10-12 Hz frequency bands.

    PubMed

    Krause, C M; Viemerö, V; Rosenqvist, A; Sillanmäki, L; Aström, T

    2000-05-26

    The reactivity of different narrow electroencephalographic (EEG) frequencies (4-6, 6-8, 8-10 and 10-12 Hz) to three types of emotionally laden film clips (aggressive, sad, neutral) were examined. We observed that different EEG frequency bands responded differently to the three types of film content. In the 4-6 Hz frequency band, the viewing of aggressive film content elicited greater relative synchronization as compared the responses elicited by the viewing of sad and neutral film content. The 6-8 Hz and 8-10 Hz frequency bands exhibited reactivity to the chronological succession of film viewing whereas the responses of the 10-12 Hz frequency band evolved within minutes during film viewing. Our results propose dissociations between the responses of different frequencies within the EEG to different emotion-related stimuli. Narrow frequency band EEG analysis offers an adequate tool for studying cortical activation patterns during emotion-related information processing.

  13. Plasma Reflection in Multigrain Layers of Narrow-Bandgap Semiconductors

    NASA Astrophysics Data System (ADS)

    Zhukov, N. D.; Shishkin, M. I.; Rokakh, A. G.

    2018-04-01

    Qualitatively similar spectral characteristics of plasma-resonance reflection in the region of 15-25 μm were obtained for layers of electrodeposited submicron particles of InSb, InAs, and GaAs and plates of these semiconductors ground with M1-grade diamond powder. The most narrow-bandgap semiconductor InSb (intrinsic absorption edge ˜7 μm) is characterized by an absorption band at 2.1-2.3 μm, which is interpreted in terms of the model of optical excitation of electrons coupled by the Coulomb interaction. The spectra of a multigrain layer of chemically deposited PbS nanoparticles (50-70 nm) exhibited absorption maxima at 7, 10, and 17 μm, which can be explained by electron transitions obeying the energy-quantization rules for quantum dots.

  14. Comparison of high-resolution magnification narrow-band imaging and white-light endoscopy in the prediction of histology in Barrett's oesophagus.

    PubMed

    Singh, Rajvinder; Karageorgiou, Haris; Owen, Victoria; Garsed, Klara; Fortun, Paul J; Fogden, Edward; Subramaniam, Venkataraman; Shonde, Anthony; Kaye, Philip; Hawkey, Christopher J; Ragunath, Krish

    2009-01-01

    To evaluate whether there is any appreciable difference in imaging characteristics between high-resolution magnification white-light endoscopy (WLE-Z) and narrow-band imaging (NBI-Z) in Barrett's oesophagus (BE) and if this translates into superior prediction of histology. This was a prospective single-centre study involving 21 patients (75 areas, corresponding NBI-Z and WLE-Z images) with BE. Mucosal patterns (pit pattern and microvascular morphology) were evaluated for their image quality on a visual analogue scale (VAS) of 1-10 by five expert endoscopists. The endoscopists then predicted mucosal morphology based on four subtypes which can be visualized in BE. Type A: round pits, regular microvasculature; type B: villous/ridge pits, regular microvasculature; type C: absent pits, regular microvasculature; type D: distorted pits, irregular microvasculature. The sensitivity (Sn), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were then compared with the final histopathological analysis and the interobserver variability calculated. The overall pit and microvasculature quality was significantly higher for NBI-Z, pit: NBI-Z=6, WLE-Z=4.5, p < 0.001; microvasculature: NBI-Z=7.3, WLE-Z=4.9, p < 0.001. This translated into a superior prediction of histology (Sn: NBI-Z: 88.9, WLE-Z: 71.9, p < 0.001). For the prediction of dysplasia, NBI-Z was superior to WLE-Z (chi(2)=10.3, p < 0.05). The overall kappa agreement among the five endoscopists for NBI-Z and WLE-Z, respectively, was 0.59 and 0.31 (p < 0.001). NBI-Z is superior to WLE-Z in the prediction of histology in BE, with good reproducibility. This novel imaging modality could be an important tool for surveillance of patients with BE.

  15. Factors controlling high-frequency radiation from extended ruptures

    NASA Astrophysics Data System (ADS)

    Beresnev, Igor A.

    2017-09-01

    Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of "asperities," both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.

  16. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    NASA Astrophysics Data System (ADS)

    Yin, J.; Huang, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2014-06-01

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results.

  17. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals

    PubMed Central

    Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F.

    2014-01-01

    Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2–3 days and used 1–2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory. PMID:24904402

  18. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals.

    PubMed

    Xiang, Jing; Luo, Qian; Kotecha, Rupesh; Korman, Abraham; Zhang, Fawen; Luo, Huan; Fujiwara, Hisako; Hemasilpin, Nat; Rose, Douglas F

    2014-01-01

    Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz) and high-frequency (70~200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2-3 days and used 1-2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory.

  19. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS.

    PubMed

    Delvendahl, Igor; Hallermann, Stefan

    2016-11-01

    The speed of neuronal information processing depends on neuronal firing frequency. Here, we describe the evolutionary advantages and ubiquitous occurrence of high-frequency firing within the mammalian nervous system in general. The highest firing frequencies so far have been observed at the cerebellar mossy fiber to granule cell synapse. The mechanisms enabling high-frequency transmission at this synapse are reviewed and compared with other synapses. Finally, information coding of high-frequency signals at the mossy fiber synapse is discussed. The exceptionally high firing frequencies and amenability to high-resolution technical approaches both in vitro and in vivo establish the cerebellar mossy fiber synapse as an attractive model to investigate high-frequency signaling from the molecular up to the network level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2016-11-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  1. Development of a high-frequency and large-stroke fatigue testing system for rubber

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang

    2017-04-01

    The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.

  2. High-frequency surface waves method for agricultural applications

    USDA-ARS?s Scientific Manuscript database

    A high-frequency surface wave method has been recently developed to explore shallow soil in the vadose zone for agricultural applications. This method is a modification from the conventional multichannel analysis of surface wave (MASW) method that explores near surface soil properties from a couple ...

  3. High-frequency modulation of ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  4. Measures of extents of laterality for high-frequency ``transposed'' stimuli under conditions of binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2005-09-01

    Our purpose in this study was to determine whether across-frequency binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs, rather than extents of laterality, suggested that high-frequency transposed stimuli might be ``immune'' to binaural interference effects resulting from the addition of a spectrally remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets are susceptible to binaural interference. Nevertheless, high-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did high-frequency Gaussian noise targets presented in isolation. That is, the ``enhanced potency'' of ITDs conveyed by transposed stimuli persisted, even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for across-frequency binaural interference obtained with conventional Gaussian noise targets but, in all but one case, overpredicted the amounts of interference found with the transposed targets.

  5. Design of tunable thermo-optic C-band filter based on coated silicon slab

    NASA Astrophysics Data System (ADS)

    Pinhas, Hadar; Malka, Dror; Danan, Yossef; Sinvani, Moshe; Zalevsky, Zeev

    2018-03-01

    Optical filters are required to have narrow band-pass filtering in the spectral C-band for applications such as signal tracking, sub-band filtering or noise suppression. These requirements lead to a variety of filters such as Mach-Zehnder interferometer inter-leaver in silica, which offer thermo-optic effect for optical switching, however, without proper thermal and optical efficiency. In this paper we propose tunable thermo-optic filtering device based on coated silicon slab resonator with increased Q-factor for the C-band optical switching. The device can be designed either for long range wavelength tuning of for short range with increased wavelength resolution. Theoretical examination of the thermal parameters affecting the filtering process is shown together with experimental results. Proper channel isolation with an extinction ratio of 20dBs is achieved with spectral bandpass width of 0.07nm.

  6. Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou.

    PubMed

    Sun, Yanbo; Xue, Rui; Zhao, Danfeng; Wang, Dun

    2017-05-05

    With L band frequency allocations for satellite navigation getting more crowded, S band (2483.5-2500 MHz) is already allocated for navigation services, where Globalstar broadcasts downlink communications to user terminals. The Indian Regional Navigation Satellite System (IRNSS) is transmitting navigation signals and Galileo exploits some potential signals in S band. Also, several candidate S band signals based on binary offset carrier (BOC), binary phase shift keying (BPSK), continuous phase modulation (CPM) and minimum shift keying-BOC (MSK-BOC) are suggested for BeiDou system (BDS). In quite narrow S band, mutual interference among these systems is inevitable, thus the compatibility issue is particularly significant for S band signal design. To explore desired S band signals for BDS, the paper firstly describes a comprehensive compatibility evaluation methods based on effective carrier-to-noise ratio degradation for acquisition and code tracking. Then a real simulation is established using space constellations, modulation schemes and received power. Finally, the worst mutual interference of BDS candidate signals with Galileo, IRNSS and Globalstar is calculated and compared. The results indicate that CPM signal is easier to allow peaceful coexistence of other systems with minimal mutual interference in S band compared to other BDS candidates.

  7. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study

    PubMed Central

    Riedner, Brady A.; Goldstein, Michael R.; Plante, David T.; Rumble, Meredith E.; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). Methods: All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. Results: The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4–8 Hz) and alpha (8–12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. Conclusions: These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. Citation: Riedner BA, Goldstein MR, Plante DT, Rumble ME, Ferrarelli F, Tononi G, Benca RM. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: a pilot study. SLEEP 2016;39(4):801–812. PMID:26943465

  8. A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery.

    PubMed

    Vicini, C; Montevecchi, F; D'Agostino, G; DE Vito, A; Meccariello, G

    2015-06-01

    The primary goal of surgical oncology is to obtain a tumour resection with disease-free margins. Transoral robotic surgery (TORS) for surgical treatment of head-neck cancer is commensurate with standard treatments. However, the likelihood of positive margins after TORS is up to 20.2% in a recent US survey. The aim of this study is to evaluate the efficacy and the feasibility of narrow-band imaging (NBI) during TORS in order to improve the ability to achieve disease-free margins during tumour excision. The present study was conducted at the ENT, Head- Neck Surgery and Oral Surgery Unit, Department of Special Surgery, Morgagni Pierantoni Hospital, Azienda USL Romagna. From March 2008 to January 2015, 333 TORS were carried out for malignant and benign diseases. For the present study, we retrospectively evaluated 58 biopsy-proven squamous cell carcinoma patients who underwent TORS procedures. Patients were divided into 2 groups: (1) 32 who underwent TORS and intra-operative NBI evaluation (NBI-TORS); (2) 21 who underwent TORS with standard intra-operative white-light imaging (WLITORS). Frozen section analysis of margins on surgical specimens showed a higher rate of negative superficial lateral margins in the NBI-TORS group compared with the WLI-TORS group (87.9% vs. 57.9%, respectively, p = 0.02). The sensitivity and specificity of intra-operative use of NBI, respectively, were 72.5% and 66.7% with a negative predictive value of 87.9%. Tumour margin enhancement provided by NBI associated with magnification and 3-dimensional view of the surgical field might increase the capability to achieve an oncologically-safe resection in challenging anatomical areas where minimal curative resection is strongly recommended for function preservation.

  9. The role of high-resolution endoscopy and narrow-band imaging in the evaluation of upper GI neoplasia in familial adenomatous polyposis.

    PubMed

    Lopez-Ceron, Maria; van den Broek, Frank J C; Mathus-Vliegen, Elisabeth M; Boparai, Karam S; van Eeden, Susanne; Fockens, Paul; Dekker, Evelien

    2013-04-01

    The Spigelman classification stratifies cancer risk in familial adenomatous polyposis (FAP) patients with duodenal adenomatosis. High-resolution endoscopy (HRE) and narrow-band imaging (NBI) may identify lesions at high risk. To compare HRE and NBI for the detection of duodenal and gastric polyps and to characterize duodenal adenomas harboring advanced histology with HRE and NBI. Prospective, nonrandomized, comparative study. Retrospective image evaluation study. Tertiary-care center. Thirty-seven FAP patients undergoing surveillance upper endoscopies. HRE endoscopy was followed by NBI. The number of gastric polyps and Spigelman staging were compared. Duodenal polyp images were systematically reviewed in a learning and validation phase. Number of gastric and duodenal polyps detected by HRE and NBI and prevalence of specific endoscopic features in duodenal adenomas with advanced histology. NBI did not identify additional gastric polyps but detected more duodenal adenomas in 16 examinations, resulting in upgrades of the Spigelman stage in 2 cases (4.4%). Pictures of 168 duodenal adenomas (44% advanced histology) were assessed. In the learning phase, 3 endoscopic features were associated with advanced histology: white color, enlarged villi, and size ≥1 cm. Only size ≥1 cm was confirmed in the validation phase (odds ratio 3.0; 95% confidence interval, 1.2-7.4). Nonrandomized study, scant number of high-grade dysplasia adenomas. Inspection with NBI did not lead to a clinically relevant upgrade in the Spigelman classification and did not improve the detection of gastric polyps in comparison with HRE. The only endoscopic feature that predicted advanced histology of a duodenal adenoma was size ≥1 cm. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  10. Implications of High-Frequency Cochlear Dead Regions for Fitting Hearing Aids to Adults with Mild to Moderately-Severe Hearing Loss

    PubMed Central

    Cox, Robyn M.; Johnson, Jani A.; Alexander, Genevieve C.

    2012-01-01

    Short Summary It has been suggested that existence of high-frequency cochlear dead regions (DRs) has implications for hearing aid fitting, and that the optimal amount of high-frequency gain is reduced for these patients. This investigation used laboratory and field measurements to examine the effectiveness of reduced high-frequency gain in typical hearing aid users with high-frequency DRs. Both types of data revealed that speech understanding was better with the evidence-based prescription than with reduced high-frequency gain, and that this was seen for listeners with and without DRs. Nevertheless, subjects did not always prefer the amplification condition that produced better speech understanding. PMID:22555183

  11. Monograph on High-Frequency Seafloor Acoustics

    DTIC Science & Technology

    2003-09-30

    will be part of a series on underwater acoustics being supported by ONR-OA. It will provide an in-depth review of the current state of data and models ...supported by ONR-OA. It will provide an in-depth review of the current state of data and models for acoustic interaction with the seafloor at high...frequencies. OBJECTIVES The monograph will cover geoacoustics and acoustics , measurements and modeling . The acoustics chapters will treat

  12. Monograph on High-Frequency Seafloor Acoustics

    DTIC Science & Technology

    2002-09-30

    will be part of a series on underwater acoustics being supported by ONR-OA. It will provide an in-depth review of the current state of data and models ...supported by ONR-OA. It will provide an in-depth review of the current state of data and models for acoustic interaction with the seafloor at high...frequencies. OBJECTIVES The monograph will cover geoacoustics and acoustics , measurements and modeling . The acoustics chapters will treat

  13. Novel laparoscopic narrow band imaging for real-time detection of bile leak during hepatectomy: proof of the concept in a porcine model.

    PubMed

    Diana, Michele; Usmaan, Hameed; Legnèr, Andras; Yu-Yin, Liu; D'Urso, Antonio; Halvax, Peter; Nagao, Yoshihiro; Pessaux, Patrick; Marescaux, Jacques

    2016-07-01

    Bile leakage is a serious complication occurring in up to 10 % of hepatic resections. Intraoperative detection of bile leakage is challenging, and concomitant blood oozing can mask the presence of bile. Intraductal dye injection [methylene blue or indocyanine green (ICG)] is a validated technique to detect bile leakage. However, this method is time-consuming, particularly in the laparoscopic setting. A novel narrow band imaging (NBI) modality (SPECTRA-A; Karl Storz, Tuttlingen, Germany) allows easy discrimination of the presence of bile, which appears in clear orange, by image processing. The aim of this experimental study was to evaluate SPECTRA-A ability to detect bile leakage. Twelve laparoscopic partial hepatectomies were performed in seven pigs. The common bile duct was clipped distally and dissected, and a catheter was inserted and secured with a suture or a clip. Liver dissection was achieved with an ultrasonic cutting device. Dissection surfaces were checked by frequently switching on the SPECTRA filter to identify the presence of bile leakage. Intraductal ICG injection through the catheter was performed to confirm SPECTRA findings. Three active bile leakages were obtained out of 12 hepatectomies and successfully detected intraoperatively by the SPECTRA. There was complete concordance between NBI and ICG fluorescence detection. No active leaks were found in the remaining cases with both techniques. The leaking area identified was sutured, and SPECTRA was used to assess the success of the repair. The SPECTRA laparoscopic image processing system allows for rapid detection of bile leaks following hepatectomy without any contrast injection.

  14. Office-based narrow band imaging-guided flexible laryngoscopy tissue sampling: A cost-effectiveness analysis evaluating its impact on Taiwanese health insurance program.

    PubMed

    Fang, Tuan-Jen; Li, Hsueh-Yu; Liao, Chun-Ta; Chiang, Hui-Chen; Chen, I-How

    2015-07-01

    Narrow band imaging (NBI)-guided flexible laryngoscopy tissue sampling for laryngopharyngeal lesions is a novel technique. Patients underwent the procedure in an office-based setting without being sedated, which is different from the conventional technique performed using direct laryngoscopy. Although the feasibility and effects of this procedure were established, its financial impact on the institution and Taiwanese National Health Insurance program was not determined. This is a retrospective case-control study. From May 2010 to April 2011, 20 consecutive patients who underwent NBI flexible laryngoscopy tissue sampling were recruited. During the same period, another 20 age-, sex-, and lesion-matched cases were enrolled in the control group. The courses for procedures and financial status were analyzed and compared between groups. Office-based NBI flexible laryngoscopy tissue sampling procedure took 27 minutes to be completed, while 191 minutes were required for the conventional technique. Average reimbursement for each case was New Taiwan Dollar (NT$)1264 for patients undergoing office-based NBI flexible laryngoscopy tissue sampling, while NT$10,913 for those undergoing conventional direct laryngoscopy in the operation room (p < 0.001). The institution suffered a loss of at least NT$690 when performing NBI flexible laryngoscopy tissue sampling. Office-based NBI flexible laryngoscopy tissue sampling is a cost-saving procedure for patients and the Taiwanese National Health Insurance program. It also saves the procedure time. However, the net financial loss for the institution and physician would limit its popularization unless reimbursement patterns are changed. Copyright © 2013. Published by Elsevier B.V.

  15. Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Purnawirman, Purnawirman; Magden, E. Salih; Singh, Gurpreet; Singh, Neetesh; Baldycheva, Anna; Hosseini, Ehsan S.; Sun, Jie; Moresco, Michele; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Bradley, Jonathan D. B.; Watts, Michael R.

    2018-02-01

    We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 +/- 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 +/- 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.

  16. Skilled adult readers activate the meanings of high-frequency words using phonology: Evidence from eye tracking.

    PubMed

    Jared, Debra; O'Donnell, Katrina

    2017-02-01

    We examined whether highly skilled adult readers activate the meanings of high-frequency words using phonology when reading sentences for meaning. A homophone-error paradigm was used. Sentences were written to fit 1 member of a homophone pair, and then 2 other versions were created in which the homophone was replaced by its mate or a spelling-control word. The error words were all high-frequency words, and the correct homophones were either higher-frequency words or low-frequency words-that is, the homophone errors were either the subordinate or dominant member of the pair. Participants read sentences as their eye movements were tracked. When the high-frequency homophone error words were the subordinate member of the homophone pair, participants had shorter immediate eye-fixation latencies on these words than on matched spelling-control words. In contrast, when the high-frequency homophone error words were the dominant member of the homophone pair, a difference between these words and spelling controls was delayed. These findings provide clear evidence that the meanings of high-frequency words are activated by phonological representations when skilled readers read sentences for meaning. Explanations of the differing patterns of results depending on homophone dominance are discussed.

  17. The learning curve for narrow-band imaging in the diagnosis of precancerous gastric lesions by using Web-based video.

    PubMed

    Dias-Silva, Diogo; Pimentel-Nunes, Pedro; Magalhães, Joana; Magalhães, Ricardo; Veloso, Nuno; Ferreira, Carlos; Figueiredo, Pedro; Moutinho, Pedro; Dinis-Ribeiro, Mário

    2014-06-01

    A simplified narrow-band imaging (NBI) endoscopy classification of gastric precancerous and cancerous lesions was derived and validated in a multicenter study. This classification comes with the need for dissemination through adequate training. To address the learning curve of this classification by endoscopists with differing expertise and to assess the feasibility of a YouTube-based learning program to disseminate it. Prospective study. Five centers. Six gastroenterologists (3 trainees, 3 fully trained endoscopists [FTs]). Twenty tests provided through a Web-based program containing 10 randomly ordered NBI videos of gastric mucosa were taken. Feedback was sent 7 days after every test submission. Measures of accuracy of the NBI classification throughout the time. From the first to the last 50 videos, a learning curve was observed with a 10% increase in global accuracy, for both trainees (from 64% to 74%) and FTs (from 56% to 65%). After 200 videos, sensitivity and specificity of 80% and higher for intestinal metaplasia were observed in half the participants, and a specificity for dysplasia greater than 95%, along with a relevant likelihood ratio for a positive result of 7 to 28 and likelihood ratio for a negative result of 0.21 to 0.82, were achieved by all of the participants. No constant learning curve was observed for the identification of Helicobacter pylori gastritis and sensitivity to dysplasia. The trainees had better results in all of the parameters, except specificity for dysplasia, compared with the FTs. Globally, participants agreed that the program's structure was adequate, except on the feedback, which should have consisted of a more detailed explanation of each answer. No formal sample size estimate. A Web-based learning program could be used to teach and disseminate classifications in the endoscopy field. In this study, an NBI classification for gastric mucosal features seems to be easily learned for the identification of gastric preneoplastic

  18. Advanced Gun System (AGS) Dynamic Characterization: Modal Test and Analysis, High-Frequency Analysis.

    DTIC Science & Technology

    1999-12-01

    frequency data (to 10 kHz) in the AGS test. 3.2 High-Frequency Damping Determination by Wavelet Transform. The continuous wavelet transform (CWT...ARMY RESEARCH LABORATORY MmOSm Hi Advanced Gun System ( AGS ) Dynamic Characterization: Modal Test and Analysis, High-Frequency Analysis by Morris...this report when it is no longer needed. Do not return it to the originator. ERRATA SHEET re: ARL-TR-2138 "Advanced Gun System ( AGS ) Dynamic

  19. Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal

    NASA Technical Reports Server (NTRS)

    Salama, F.; Bakes, E. L.; Allamandola, L. J.; Tielens, A. G.

    1996-01-01

    The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high-energy range of the spectrum, and possesses a large oscillator strength), and seems to correlate with strong and broad DIBs. For noncompact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low-energy range of the spectrum, and possesses a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that (i) only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narow bands on the other can easily be interpreted in the context of the PAH proposal by a distribution of compact and noncompact PAH ions, respectively. A plausible correlation

  20. Embedding multiple watermarks in the DFT domain using low- and high-frequency bands

    NASA Astrophysics Data System (ADS)

    Ganic, Emir; Dexter, Scott D.; Eskicioglu, Ahmet M.

    2005-03-01

    Although semi-blind and blind watermarking schemes based on Discrete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT) are robust to a number of attacks, they fail in the presence of geometric attacks such as rotation, scaling, and translation. The Discrete Fourier Transform (DFT) of a real image is conjugate symmetric, resulting in a symmetric DFT spectrum. Because of this property, the popularity of DFT-based watermarking has increased in the last few years. In a recent paper, we generalized a circular watermarking idea to embed multiple watermarks in lower and higher frequencies. Nevertheless, a circular watermark is visible in the DFT domain, providing a potential hacker with valuable information about the location of the watermark. In this paper, our focus is on embedding multiple watermarks that are not visible in the DFT domain. Using several frequency bands increases the overall robustness of the proposed watermarking scheme. Specifically, our experiments show that the watermark embedded in lower frequencies is robust to one set of attacks, and the watermark embedded in higher frequencies is robust to a different set of attacks.

  1. Parallel Processing of Broad-Band PPM Signals

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).

  2. Noise Trauma Induced Plastic Changes in Brain Regions outside the Classical Auditory Pathway

    PubMed Central

    Chen, Guang-Di; Sheppard, Adam; Salvi, Richard

    2017-01-01

    The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC). High-frequency octave band noise (10–20 kHz) and narrow band noise (16–20 kHz) induced permanent thresho ld shifts (PTS) at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time dependent manner and the changes appeared to be related to severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration. PMID:26701290

  3. High-frequency tone burst-evoked ABR latency-intensity functions.

    PubMed

    Fausti, S A; Olson, D J; Frey, R H; Henry, J A; Schaffer, H I

    1993-01-01

    High-frequency tone burst stimuli (8, 10, 12, and 14 kHz) have been developed and demonstrated to provide reliable and valid auditory brainstem responses (ABRs) in normal-hearing subjects. In this study, latency-intensity functions (LIFs) were determined using these stimuli in 14 normal-hearing individuals. Significant shifts in response latency occurred as a function of stimulus intensity for all tone burst frequencies. For each 10 dB shift in intensity, latency shifts for waves I and V were statistically significant except for one isolated instance. LIF slopes were comparable between frequencies, ranging from 0.020 to 0.030 msec/dB. These normal LIFs for high-frequency tone burst-evoked ABRs suggest the degree of response latency change that might be expected from, for example, progressive hearing loss due to ototoxic insult, although these phenomena may not be directly related.

  4. High-frequency monopole sound source for anechoic chamber qualification

    NASA Astrophysics Data System (ADS)

    Saussus, Patrick; Cunefare, Kenneth A.

    2003-04-01

    Anechoic chamber qualification procedures require the use of an omnidirectional monopole sound source. Required characteristics for these monopole sources are explicitly listed in ISO 3745. Building a high-frequency monopole source that meets these characteristics has proved difficult due to the size limitations imposed by small wavelengths at high frequency. A prototype design developed for use in hemianechoic chambers employs telescoping tubes, which act as an inverse horn. This same design can be used in anechoic chambers, with minor adaptations. A series of gradually decreasing brass telescoping tubes is attached to the throat of a well-insulated high-frequency compression driver. Therefore, all of the sound emitted from the driver travels through the horn and exits through an opening of approximately 2.5 mm. Directivity test data show that this design meets all of the requirements set forth by ISO 3745.

  5. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  6. Does Phonology Play a Role When Skilled Readers Read High-Frequency Words? Evidence from ERPs

    ERIC Educational Resources Information Center

    Newman, Randy Lynn; Jared, Debra; Haigh, Corinne A.

    2012-01-01

    We used event-related brain potentials to clarify the role of phonology in activating the meanings of high-frequency words during skilled silent reading. Target homophones ("meet") in sentences such as "The students arranged to meet in the library to study" were replaced on some trials by either a high-frequency homophone mate…

  7. Korean VLBI Network Calibrator Survey (KVNCS). 1. Source Catalog of KVN Single-dish Flux Density Measurement in the K and Q Bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong Ae; Sohn, Bong Won; Jung, Taehyun

    We present the catalog of the KVN Calibrator Survey (KVNCS). This first part of the KVNCS is a single-dish radio survey simultaneously conducted at 22 ( K band) and 43 GHz ( Q band) using the Korean VLBI Network (KVN) from 2009 to 2011. A total of 2045 sources are selected from the VLBA Calibrator Survey with an extrapolated flux density limit of 100 mJy at the K  band. The KVNCS contains 1533 sources in the K band with a flux density limit of 70 mJy and 553 sources in the Q band with a flux density limit of 120more » mJy; it covers the whole sky down to −32.°5 in decl. We detected 513 sources simultaneously in the K and Q bands; ∼76% of them are flat-spectrum sources (−0.5 ≤ α ≤ 0.5). From the flux–flux relationship, we anticipated that most of the radiation of many of the sources comes from the compact components. The sources listed in the KVNCS therefore are strong candidates for high-frequency VLBI calibrators.« less

  8. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  9. Is Bare Band Description of Carrier Transport Appropriate in Pentacene?

    NASA Astrophysics Data System (ADS)

    Andersen, John D.; Giuggioli, Luca; Kenkre, V. M.

    2002-03-01

    Experiments on injected charges in pentacene single crystals reveal mobilities typical of inorganic semiconductors and temperature dependence (for T<430K) suggesting bandlike behavior.(J. H. Schon, C. Kloc, and B. Batlogg, Phys. Rev. Lett. 86, 3843 (2001)) Polaronic bands, particularly their narrowing with increasing temperature, were invoked(V. M. Kenkre, John D. Andersen, D.H. Dunlap, and C.B. Duke, Phys. Rev. Lett. 62, 1165 (1989)) in the related naphthalene problem.(L. B. Schein, C. B. Duke, and A.R. McGhie, Phys. Rev. Lett. 40, 197 (1978); L. B. Schein, W. Warta, and N. Karl, Chem. Phys. Lett. 100, 34 (1983)) Because the low temperature mobility values in pentacene suggest moderately large bandwidths, we address two questions. Does a bare wide (effectively infinite) band description work for pentacene for T<400K? And, is a bare finite band description compatible with those data? These questions are answered by modifications of a theory originally constructed for inorganic materials and a newly developed mobility theory.

  10. High-frequency signal and noise estimates of CSR GRACE RL04

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.

    2012-12-01

    A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.

  11. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.

    PubMed

    Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y

    2010-02-01

    Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  12. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication.

    PubMed

    Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael

    2018-04-02

    We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.

  13. High-frequency autonomic modulation: a new model for analysis of autonomic cardiac control.

    PubMed

    Champéroux, Pascal; Fesler, Pierre; Judé, Sebastien; Richard, Serge; Le Guennec, Jean-Yves; Thireau, Jérôme

    2018-05-03

    Increase in high-frequency beat-to-beat heart rate oscillations by torsadogenic hERG blockers appears to be associated with signs of parasympathetic and sympathetic co-activation which cannot be assessed directly using classic methods of heart rate variability analysis. The present work aimed to find a translational model that would allow this particular state of the autonomic control of heart rate to be assessed. High-frequency heart rate and heart period oscillations were analysed within discrete 10 s intervals in a cohort of 200 healthy human subjects. Results were compared to data collected in non-human primates and beagle dogs during pharmacological challenges and torsadogenic hERG blockers exposure, in 127 genotyped LQT1 patients on/off β-blocker treatment and in subgroups of smoking and non-smoking subjects. Three states of autonomic modulation, S1 (parasympathetic predominance) to S3 (reciprocal parasympathetic withdrawal/sympathetic activation), were differentiated to build a new model of heart rate variability referred to as high-frequency autonomic modulation. The S2 state corresponded to a specific state during which both parasympathetic and sympathetic systems were coexisting or co-activated. S2 oscillations were proportionally increased by torsadogenic hERG-blocking drugs, whereas smoking caused an increase in S3 oscillations. The combined analysis of the magnitude of high-frequency heart rate and high-frequency heart period oscillations allows a refined assessment of heart rate autonomic modulation applicable to long-term ECG recordings and offers new approaches to assessment of the risk of sudden death both in terms of underlying mechanisms and sensitivity. © 2018 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  14. Airway Humidification During High-Frequency Percussive Ventilation

    DTIC Science & Technology

    2009-03-01

    Airway Humidification During High-Frequency Percussive Ventilation Patrick F Allan MD, Michael J Hollingsworth CRT, Gordon C Maniere CRT, Anthony K...about the risk of inadequate humidification during high- frequency percussive ventilation (HFPV). METHODS: We studied 5 humidifiers during HFPV with a...50 L/min, and the ConchaTherm Hi-Flow with VDR nebulizer) provided carinal humidification equivalent to the comparator setup, without regard to

  15. Radio Frequency Compatibility Evaluation of S Band Navigation Signals for Future BeiDou

    PubMed Central

    Sun, Yanbo; Xue, Rui; Zhao, Danfeng; Wang, Dun

    2017-01-01

    With L band frequency allocations for satellite navigation getting more crowded, S band (2483.5–2500 MHz) is already allocated for navigation services, where Globalstar broadcasts downlink communications to user terminals. The Indian Regional Navigation Satellite System (IRNSS) is transmitting navigation signals and Galileo exploits some potential signals in S band. Also, several candidate S band signals based on binary offset carrier (BOC), binary phase shift keying (BPSK), continuous phase modulation (CPM) and minimum shift keying-BOC (MSK-BOC) are suggested for BeiDou system (BDS). In quite narrow S band, mutual interference among these systems is inevitable, thus the compatibility issue is particularly significant for S band signal design. To explore desired S band signals for BDS, the paper firstly describes a comprehensive compatibility evaluation methods based on effective carrier-to-noise ratio degradation for acquisition and code tracking. Then a real simulation is established using space constellations, modulation schemes and received power. Finally, the worst mutual interference of BDS candidate signals with Galileo, IRNSS and Globalstar is calculated and compared. The results indicate that CPM signal is easier to allow peaceful coexistence of other systems with minimal mutual interference in S band compared to other BDS candidates. PMID:28475142

  16. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  17. An integrated signal conditioner for high-frequency inductive position sensors

    NASA Astrophysics Data System (ADS)

    Rahal, Mohamad; Demosthenous, Andreas

    2010-01-01

    This paper describes the design, implementation and evaluation of a signal conditioner application-specific integrated circuit (ASIC) for high-frequency inductive non-contact position sensors. These sensors employ a radio frequency technology based on an antenna planar arrangement and a resonant target, have a high inherent resolution (0.1% of antenna length) and can measure target position over a wide distance range (<0.1 mm to >10 m). However, due to the relatively high-frequency excitation (1 MHz typically) and to the specific layouts of these sensors, there is unwanted capacitive coupling between the transmitter and receiver coils; this type of distortion reduces linearity and resolution. The ASIC, which is the first generation of its kind for this type of sensor, employs a differential mixer topology which suppresses the capacitive coupling offsets. The system architecture and circuit details are presented. The ASIC was fabricated in a 0.6 µm high-voltage CMOS technology occupying an area of 8 mm2. It dissipates about 30 mA from a 24 V power supply. The ASIC was tested with a high-frequency inductive position sensor (with an antenna length of 10.8 cm). The measured input-referred offset due to transmitter crosstalk is on average about 22 µV over a wide phase difference variation (-99° to +117°) between the transmitter and demodulating signals.

  18. The add-on N-acetylcysteine is more effective than dimethicone alone to eliminate mucus during narrow-band imaging endoscopy: a double-blind, randomized controlled trial.

    PubMed

    Chen, Ming-Jen; Wang, Horng-Yuan; Chang, Chen-Wang; Hu, Kuang-Chun; Hung, Chien-Yuan; Chen, Chih-Jen; Shih, Shou-Chuan

    2013-02-01

    Recent studies have shown that pronase can improve mucosal visibility, but this agent is not uniformly available for human use worldwide. This study aimed to assess the efficacy of N-acetylcysteine (NAC), a mucolytic agent, in improving mucus elimination as measured by decreased endoscopic water flushes during narrow-band imaging (NBI) endoscopy. A consecutive series of patients scheduled for upper gastrointestinal endoscopy at outpatient clinics were enrolled in this double-blind, randomized controlled trial. The control group drank a preparation of 100 mg dimethicone (5 ml at 20 mg/ml) plus water up to 100 ml, and the NAC group drank 300 mg NAC plus 100 mg dimethicone and water up to 100 ml. During the endoscopy, the endoscopist used as many flushes of water as deemed necessary to produce a satisfactory NBI view of the entire gastric mucosa. In all, 177 patients with a mean age of 51 years were evaluated in this study. Significantly lesser water was used for flushing during NBI endoscopy for the NAC group than the control group; 40 ml (30-70, 0-120) versus 50 ml (30-100, 0-150) (median (interquartile range, range), p = 0.0095). Considering the safety profile of NAC, decreasing the number of water flushes for optimal vision and unavailability of pronase in some areas, the authors suggest the use of add-on NAC to eliminate mucus during NBI endoscopy.

  19. A novel high-frequency encoding algorithm for image compression

    NASA Astrophysics Data System (ADS)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  20. Ka-band SAR interferometry studies for the SWOT mission

    NASA Astrophysics Data System (ADS)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.

    2008-12-01

    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  1. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  2. Extended high-frequency audiometry (9,000-20,000 Hz). Usefulness in audiological diagnosis.

    PubMed

    Rodríguez Valiente, Antonio; Roldán Fidalgo, Amaya; Villarreal, Ithzel M; García Berrocal, José R

    2016-01-01

    Early detection and appropriate treatment of hearing loss are essential to minimise the consequences of hearing loss. In addition to conventional audiometry (125-8,000 Hz), extended high-frequency audiometry (9,000-20,000 Hz) is available. This type of audiometry may be useful in early diagnosis of hearing loss in certain conditions, such as the ototoxic effect of cisplatin-based treatment, noise exposure or oral misunderstanding, especially in noisy environments. Eleven examples are shown in which extended high-frequency audiometry has been useful in early detection of hearing loss, despite the subject having a normal conventional audiometry. The goal of the present paper was to highlight the importance of the extended high-frequency audiometry examination for it to become a standard tool in routine audiological examinations. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  3. Band alignment in atomically precise graphene nanoribbon junctions

    NASA Astrophysics Data System (ADS)

    Ma, Chuanxu; Liang, Liangbo; Hong, Kunlun; Li, An-Ping; Xiao, Zhongcan; Lu, Wenchang; Bernholc, Jerry

    Building atomically precise graphene nanoribbon (GNR) heterojunctions down to molecular level opens a new realm to functional graphene-based devices. By employing a surface-assisted self-assembly process, we have synthesized heterojunctions of armchair GNRs (aGNR) with widths of seven, fourteen and twenty-one carbon atoms, denoted 7, 14 and 21-aGNR respectively. A combined study with scanning tunneling microscopy (STM) and density functional theory (DFT) allows the visualization of electronic band structures and energy level alignments at the heterojunctions with varying widths. A wide bandgap ( 2.6 eV) has been identified on semiconducting 7-aGNR, while the 14-aGNR appears nearly metallic and the 21-aGNR possesses a narrow bandgap. The spatially modulations of the energy bands are strongly confined at the heterojunctions within a width of about 2 nm. Clear band bending of about 0.4 eV and 0.1 eV are observed at the 7-14 and 14-21 aGNR heterojunctions, respectively. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  4. Stress Patterns in High-Frequency Russian Nouns and Verbs.

    ERIC Educational Resources Information Center

    Cubberley, Paul

    1987-01-01

    Analyses for stress patterns of the first 1,000 nouns and 500 verbs from a high-frequency Russian vocabulary list. The most irregular patterns are seen in the most frequently occurring items and, therefore, should be learned early in the study of Russian. (Author/LMO)

  5. Modernization of gas-turbine engines with high-frequency induction motors

    NASA Astrophysics Data System (ADS)

    Abramovich, B. N.; Sychev, Yu A.; Kuznetsov, P. A.

    2018-03-01

    Main tendencies of growth of electric energy consumption in general and mining industries were analyzed in the paper. A key role of electric drive in this process was designated. A review about advantages and disadvantages of unregulated gearboxes with mechanical units that are commonly used in domestically produced gas-turbine engines was made. This review allows one to propose different gas-turbine engines modernization schemes with the help of PWM-driven high-frequency induction motors. Induction motors with the double rotor winding were examined. A simulation of high-frequency induction motors with double rotor windings in Matlab-Simulink software was carried out based on equivalent circuit parameters. Obtained characteristics of new motors were compared with serially produced analogues. After the simulation, results were implemented in the real prototype.

  6. Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.

    PubMed

    Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent

    2014-06-01

    Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.

  7. Underwater hearing sensitivity of harbor seals (Phoca vitulina) for narrow noise bands between 0.2 and 80 kHz.

    PubMed

    Kastelein, Ronald A; Wensveen, Paul; Hoek, Lean; Terhune, John M

    2009-07-01

    The underwater hearing sensitivities of two 1.5-year-old female harbor seals were quantified in a quiet pool built specifically for acoustic research, by using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not ("go/no-go" response). Fourteen narrowband noise signals (1/3-octave bands but with some energy in adjacent bands), at 1/3-octave center frequencies of 0.2-80 kHz, and of 900 ms duration, were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. Between 0.5 and 40 kHz, the thresholds corresponded to a 1/3-octave band noise level of approximately 60 dB re 1 microPa (SD+/-3.0 dB). At lower frequencies, the thresholds increased to 66 dB re 1 microPa and at 80 kHz the thresholds rose to 114 dB re 1 microPa. The 1/3-octave noise band thresholds of the two seals did not differ from each other, or from the narrowband frequency-modulated tone thresholds at the same frequencies obtained a few months before for the same animals. These hearing threshold values can be used to calculate detection ranges of underwater calls and anthropogenic noises by harbor seals.

  8. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  9. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    PubMed

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P < .05). While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing

  10. Tracking coherent population transfer and thermal population relaxation in condensed system by broad-band transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Xiaosong; Wu, Honglin; Song, Yunfei; Liu, Weilong; Yang, Yanqiang

    2018-04-01

    Broad-band transient grating (BB-TG) spectroscopy was proposed to track both coherent population transfer (CPT) and thermal population relaxation processes in a condensed system of solvated molecules in solution (Rhodamine101 in methanol). A broad band around 1500 cm‑1 and a relative narrow band near 2900 cm‑1 emerge in TG and transient absorption contour plots when pump and probe pulses overlap in the sample. The experimental results matched well with the vibrational modes of Rhodamine101 that were obtained by theoretical calculation. In addition, it was found that the population of CPT particles can be evaluated quantitatively through the intensity of the TG signal.

  11. Asynchronous BCI control using high-frequency SSVEP.

    PubMed

    Diez, Pablo F; Mut, Vicente A; Avila Perona, Enrique M; Laciar Leber, Eric

    2011-07-14

    Steady-State Visual Evoked Potential (SSVEP) is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz), medium (12-30) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult). The signal processing method is based on Fourier transform and three EEG measurement channels. The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.

  12. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kai; Zhan, Yaohui, E-mail: yhzhan@suda.edu.cn, E-mail: xfli@suda.edu.cn; Wu, Shaolong

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-stepmore » electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.« less

  13. Synchronous high-frequency oscillations in inhibitory-dominant network motifs consisting of three dentate gyrus-CA3 systems

    NASA Astrophysics Data System (ADS)

    Zhang, Liyuan; Fan, Denggui; Wang, Qingyun

    2018-06-01

    Studies on the structural-functional connectomes of the human brain have demonstrated the existence of synchronous firings in a specific brain network motif. In particular, synchronization of high-frequency oscillations (HFOs) has been observed in the experimental data sets of temporal lobe epilepsy (TLE). In addition, both clinical and experimental evidences have accumulated to demonstrate the effect of electrical stimulation on TLE, which, however, remains largely unexplored. In this work, we first employ our previously proposed dentate gyrus (DG)-CA3 network model to investigate the influence of an external electrical stimulus on the HFO transitions. The results indicate that the reinforcing stimulus can induce the HFO transitions of the DG-CA3 system from the gamma band to the fast ripples band. Along with that, the consistent oscillations of neurons within DG-CA3 can also be enhanced with the increasing of stimulus. Then, we expand into a simple motif of three coupled DG-CA3 systems in both the feedforward inhibition and feedback inhibition connections, to investigate the synchronous evolutions of HFOs by regulating both the stimulation strength and inhibitory function. It is shown that the comprehensive effects, which lead to band transition, are independent of the motif configurations. The enhanced external electrical stimulus weakens the synchronism and correlation of connected motifs. In contrast, we demonstrate that the increased inhibitory coupling could facilitate correlation to some extent. Overall, our work highlights the possible origin of synchronous HFOs of hippocampal motifs governed by external inputs and inhibitory connection, which might contribute to a better understanding of the interplay between synchronization dynamics and epileptic structure in the human brain.

  14. Nonlinear theory of the narrow-band generation and detection of terahertz radiation in resonant tunneling heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapaev, V. V., E-mail: kapaev@lebedev.ru

    The nonlinear regime of high-frequency response for resonant tunneling structures in a time-periodic electric field has been investigated using a technique for solving the time-dependent Schrödinger equation based on a Floquet mode expansion of the wave functions. The dependences of current harmonic amplitudes on ac signal amplitude have been calculated and the limiting values of the generated field have been determined for singleand double-well resonant tunneling structures. The dynamic Stark effect is shown to play an important role in the formation of response. It leads to a quadratic (in ac field amplitude) shift in the positions of resonances E{sub r}more » in single-well structures and in double-well ones in the nonresonant case and to a splitting at resonance hν ≈ E{sub r2}–E{sub r1} (ν is the signal frequency, E{sub r1} and E{sub r2} are the energies of the size-quantization levels) in double-well structures proportional to the ac signal amplitude. The phenomenon of ac signal detection by resonant tunneling structures has been investigated. The effect of resonant direct-current amplification in double-well structures has been detected at a signal frequency satisfying the condition hν ≈ E{sub r2}–E{sub r1}. In asymmetric systems, detection is shown to be possible in the absence of a dc bias, which allows zero-biased detectors based on them to be created.« less

  15. Profitability of simple stationary technical trading rules with high-frequency data of Chinese Index Futures

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Chao; Zhou, Yu; Wang, Xi

    2018-02-01

    Technical trading rules have been widely used by practitioners in financial markets for a long time. The profitability remains controversial and few consider the stationarity of technical indicators used in trading rules. We convert MA, KDJ and Bollinger bands into stationary processes and investigate the profitability of these trading rules by using 3 high-frequency data(15s,30s and 60s) of CSI300 Stock Index Futures from January 4th 2012 to December 31st 2016. Several performance and risk measures are adopted to assess the practical value of all trading rules directly while ADF-test is used to verify the stationarity and SPA test to check whether trading rules perform well due to intrinsic superiority or pure luck. The results show that there are several significant combinations of parameters for each indicator when transaction costs are not taken into consideration. Once transaction costs are included, trading profits will be eliminated completely. We also propose a method to reduce the risk of technical trading rules.

  16. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.

    2018-02-01

    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  17. Sequence stratigraphy and high-frequency cycles: New aspects for a quantitative evaluation of the Gulf of Suez basin, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nio, S.D.; Yang, C.S.; Tewfik, N.

    1993-09-01

    A new development in the application of sequence stratigraphic concepts in marine as well as continental basins is the recognition of high-frequency cyclic patterns in rock successions in the subsurface. Studies of six wells from the northern, central, and southern parts of the Gulf of Suez show the presence of well-preserved, high-frequency cycles with periodicities similar to the orbitally forced Malankovitch parameters. Subsurface rock successions, third-order sequences, and high-frequency cycles were compared with outcrops. After establishing the biostratigraphic framework for the above-mentioned wells, a sequence analysis was performed. Sequence boundaries and maximum flooding positions in each well were calibrated withmore » the occurrences and evaluation of the high-frequency cycles. It became obvious that there is an intimate relationship between these high-frequency Milankovitch cycles and sequence organization. In addition, a close relationship can be observed in the subsurface as well as in outcrops between high-frequency climatic changes (connected to the Milankovitch cycles) and (litho)facies variability. Quantitative evaluations of each sequence and/or systems tract can be computed with the International Geoservices' cyclicity analysis tool (MILABAR). The results are summarized in a well composite chart, rate (NAR), and ratio of preserved time. In correlations between the wells, an accuracy of 500-100 Ka can be obtained. The quantitative evaluation of the sequence and high-frequency cycle analysis gave some new aspects concerning the (litho)facies and geodynamic development during the pre- as well as the synrift stages of the Gulf of Suez Basin.« less

  18. Audiometric Notch and Extended High-Frequency Hearing Threshold Shift in Relation to Total Leisure Noise Exposure: An Exploratory Analysis

    PubMed Central

    Wei, Wenjia; Heinze, Stefanie; Gerstner, Doris G.; Walser, Sandra M.; Twardella, Dorothee; Reiter, Christina; Weilnhammer, Veronika; Perez-Alvarez, Carmelo; Steffens, Thomas; Herr, Caroline E.W.

    2017-01-01

    Background: Studies investigating leisure noise effect on extended high frequency hearing are insufficient and they have inconsistent results. The aim of this study was to investigate if extended high-frequency hearing threshold shift is related to audiometric notch, and if total leisure noise exposure is associated with extended high-frequency hearing threshold shift. Materials and Methods: A questionnaire of the Ohrkan cohort study was used to collect information on demographics and leisure time activities. Conventional and extended high-frequency audiometry was performed. We did logistic regression between extended high-frequency hearing threshold shift and audiometric notch as well as between total leisure noise exposure and extended high-frequency hearing threshold shift. Potential confounders (sex, school type, and firecrackers) were included. Results: Data from 278 participants (aged 18–23 years, 53.2% female) were analyzed. Associations between hearing threshold shift at 10, 11.2, 12.5, and 14 kHz with audiometric notch were observed with a higher prevalence of threshold shift at the four frequencies, compared to the notch. However, we found no associations between total leisure noise exposure and hearing threshold shift at any extended high frequency. Conclusion: This exploratory analysis suggests that while extended high-frequency hearing threshold shifts are not related to total leisure noise exposure, they are strongly associated with audiometric notch. This leads us to further explore the hypothesis that extended high-frequency threshold shift might be indicative of the appearance of audiometric notch at a later time point, which can be investigated in the future follow-ups of the Ohrkan cohort. PMID:29319010

  19. Audiometric notch and extended high-frequency hearing threshold shift in relation to total leisure noise exposure: An exploratory analysis.

    PubMed

    Wei, Wenjia; Heinze, Stefanie; Gerstner, Doris G; Walser, Sandra M; Twardella, Dorothee; Reiter, Christina; Weilnhammer, Veronika; Perez-Alvarez, Carmelo; Steffens, Thomas; Herr, Caroline E W

    2017-01-01

    Studies investigating leisure noise effect on extended high frequency hearing are insufficient and they have inconsistent results. The aim of this study was to investigate if extended high-frequency hearing threshold shift is related to audiometric notch, and if total leisure noise exposure is associated with extended high-frequency hearing threshold shift. A questionnaire of the Ohrkan cohort study was used to collect information on demographics and leisure time activities. Conventional and extended high-frequency audiometry was performed. We did logistic regression between extended high-frequency hearing threshold shift and audiometric notch as well as between total leisure noise exposure and extended high-frequency hearing threshold shift. Potential confounders (sex, school type, and firecrackers) were included. Data from 278 participants (aged 18-23 years, 53.2% female) were analyzed. Associations between hearing threshold shift at 10, 11.2, 12.5, and 14 kHz with audiometric notch were observed with a higher prevalence of threshold shift at the four frequencies, compared to the notch. However, we found no associations between total leisure noise exposure and hearing threshold shift at any extended high frequency. This exploratory analysis suggests that while extended high-frequency hearing threshold shifts are not related to total leisure noise exposure, they are strongly associated with audiometric notch. This leads us to further explore the hypothesis that extended high-frequency threshold shift might be indicative of the appearance of audiometric notch at a later time point, which can be investigated in the future follow-ups of the Ohrkan cohort.

  20. The very low-frequency band of heart rate variability represents the slow recovery component after a mental stress task.

    PubMed

    Usui, Harunobu; Nishida, Yusuke

    2017-01-01

    The very low-frequency (VLF) band of heart rate variability (HRV) has different characteristics compared with other HRV components. Here we investigated differences in HRV changes after a mental stress task. After the task, the high-frequency (HF) band and ratio of high- to low-frequency bands (LF/HF) immediately returned to baseline. We evaluated the characteristics of VLF band changes after a mental stress task. We hypothesized that the VLF band decreases during the Stroop color word task and there would be a delayed recovery for 2 h after the task (i.e., the VLF change would exhibit a "slow recovery"). Nineteen healthy, young subjects were instructed to rest for 10 min, followed by a Stroop color word task for 20 min. After the task, the subjects were instructed to rest for 120 min. For all subjects, R-R interval data were collected; analysis was performed for VLF, HF, and LF/HF ratio. HRV during the rest time and each 15-min interval of the recovery time were compared. An analysis of the covariance was performed to adjust for the HF band and LF/HF ratio as confounding variables of the VLF component. HF and VLF bands significantly decreased and the LF/HF ratio significantly increased during the task compared with those during rest time. During recovery, the VLF band was significantly decreased compared with the rest time. After the task, the HF band and LF/HF ratio immediately returned to baseline and were not significantly different from the resting values. After adjusting for HF and LF/HF ratio, the VLF band had significantly decreased compared with that during rest. The VLF band is the "slow recovery" component and the HF band and LF/HF ratio are the "quick recovery" components of HRV. This VLF characteristic may clarify the unexplained association of the VLF band in cardiovascular disease prevention.

  1. Nitrogen-related intermediate band in P-rich GaN xP yAs 1-x-y alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelazna, K.; Gladysiewicz, M.; Polak, M. P.

    The electronic band structure of phosphorus-rich GaN xP yAs 1-x-y alloys (x ~ 0.025 and y ≥ 0.6) is studied experimentally using optical absorption, photomodulated transmission, contactless electroreflectance, and photoluminescence. Here, it is shown that incorporation of a few percent of N atoms has a drastic effect on the electronic structure of the alloys. The change of the electronic band structure is very well described by the band anticrossing (BAC) model in which localized nitrogen states interact with the extended states of the conduction band of GaAsP host. The BAC interaction results in the formation of a narrow intermediate bandmore » (E - band in BAC model) with the minimum at the Γ point of the Brillouin zone resulting in a change of the nature of the fundamental band gap from indirect to direct. The splitting of the conduction band by the BAC interaction is further confirmed by a direct observation of the optical transitions to the E + band using contactless electroreflectance spectroscopy.« less

  2. Nitrogen-related intermediate band in P-rich GaN xP yAs 1-x-y alloys

    DOE PAGES

    Zelazna, K.; Gladysiewicz, M.; Polak, M. P.; ...

    2017-11-16

    The electronic band structure of phosphorus-rich GaN xP yAs 1-x-y alloys (x ~ 0.025 and y ≥ 0.6) is studied experimentally using optical absorption, photomodulated transmission, contactless electroreflectance, and photoluminescence. Here, it is shown that incorporation of a few percent of N atoms has a drastic effect on the electronic structure of the alloys. The change of the electronic band structure is very well described by the band anticrossing (BAC) model in which localized nitrogen states interact with the extended states of the conduction band of GaAsP host. The BAC interaction results in the formation of a narrow intermediate bandmore » (E - band in BAC model) with the minimum at the Γ point of the Brillouin zone resulting in a change of the nature of the fundamental band gap from indirect to direct. The splitting of the conduction band by the BAC interaction is further confirmed by a direct observation of the optical transitions to the E + band using contactless electroreflectance spectroscopy.« less

  3. Self-adaptive method for high-frequency dispersion curve determination

    USDA-ARS?s Scientific Manuscript database

    When high-frequency (from 50 to 500 Hz) MASW is conducted to explore soil profile in the vadose zone, existing rules for selecting near offset and receiver spread length cannot satisfy the requirements of planar and dominant Rayleigh waves for all frequencies and will inevitably introduce near and f...

  4. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    PubMed

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  5. FPGA/NIOS Implementation of an Adaptive FIR Filter Using Linear Prediction to Reduce Narrow-Band RFI for Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Fraenkel, E. D.; van den Berg, Ad M.

    2013-10-01

    We present the FPGA/NIOS implementation of an adaptive finite impulse response (FIR) filter based on linear prediction to suppress radio frequency interference (RFI). This technique will be used for experiments that observe coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays. These experiments are designed to make a detailed study of the development of the electromagnetic part of air showers. Therefore, these radio signals provide information that is complementary to that obtained by water-Cherenkov detectors which are predominantly sensitive to the particle content of an air shower at ground. The radio signals from air showers are caused by the coherent emission due to geomagnetic and charge-excess processes. These emissions can be observed in the frequency band between 10-100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. A FIR filter implemented in the FPGA logic segment of the front-end electronics of a radio sensor significantly improves the signal-to-noise ratio. In this paper we discuss an adaptive filter which is based on linear prediction. The coefficients for the linear predictor (LP) are dynamically refreshed and calculated in the embedded NIOS processor, which is implemented in the same FPGA chip. The Levinson recursion, used to obtain the filter coefficients, is also implemented in the NIOS and is partially supported by direct multiplication in the DSP blocks of the logic FPGA segment. Tests confirm that the LP can be an alternative to other methods involving multiple time-to-frequency domain conversions using an FFT procedure. These multiple conversions draw heavily on the power consumption of the FPGA and are avoided by the linear prediction approach. Minimization of the power consumption is an important issue because the final system will be powered by solar panels. The FIR filter has been successfully tested in the Altera development kits

  6. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  7. Semiconducting-metallic transition of singlecrystalline ferromagnetic Hf-doped CuCr2Se4 spinels

    NASA Astrophysics Data System (ADS)

    Maciążek, E.; Malicka, E.; Gągor, A.; Stokłosa, Z.; Groń, T.; Sawicki, B.; Duda, H.; Gudwański, A.

    2017-09-01

    Chalcogenide spinels show a variety of physical properties and are very good candidates for electronic and high-frequency applications. We report the measurements of magnetic susceptibility, magnetic isotherm, electrical conductivity, thermoelectric power and calculations of the superexchange and double-exchange integrals made for singlecrystalline Cu[CrxHfy]Se4 spinels. The results showed a ferromagnetic order of magnetic moments below the Curie temperatures of 390 K and, an increase in the splitting of the zero-field cooled and field cooled susceptibilities with increasing Hf-content below the room temperature suggesting a slight spin-frustration and a rapid transition from semiconducting to metallic state at room temperature. A quantitative evaluation of the exchange Hamiltonian showed that the total hopping integral rapidly decreased and the bandwidth of the 3d t2g band due to Cr3+ and Cr4+ ions strongly narrowed from 0.76 eV for y = 0 to 0.28 eV for y = 0.14. The narrowing of this band appears to be responsible for semiconducting properties of the Hf-doped CuCr2Se4 spinels below the room temperature.

  8. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  9. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    PubMed

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).

  10. High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy

    ERIC Educational Resources Information Center

    Worrell, Greg A.; Parish, Landi; Cranstoun, Stephen D.; Jonas, Rachel; Baltuch, Gordon; Litt, Brian

    2004-01-01

    Neocortical seizures are often poorly localized, explosive and widespread at onset, making them poorly amenable to epilepsy surgery in the absence of associated focal brain lesions. We describe, for the first time in an unselected group of patients with neocortical epilepsy, the finding that high-frequency (60--100 Hz) epileptiform oscillations…

  11. Practical techniques for enhancing the high-frequency MASW method

    USDA-ARS?s Scientific Manuscript database

    For soil exploration in the vadose zone, a high-frequency multi-channel analysis of surface waves (HF-MASW) method has been developed. In the study, several practical techniques were applied to enhance the overtone image of the HF-MASW method. They included (1) the self-adaptive MASW method using a ...

  12. Electronic characterization of defects in narrow gap semiconductors

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1994-01-01

    We use a Green's function technique to calculate the position of deep defects in narrow gap semiconductors. We consider substitutional (including antisite), vacancy, and interstitial (self and foreign) deep defects. We also use perturbation theory to look at the effect of nonparabolic bands on shallow defect energies and find nonparabolicity can increase the binding by 10 percent or so. We consider mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). For substitutional and interstitial defects we look at the situation with and without relaxation. For substitutional impurities in MCT, MZT, and MZS, we consider x (the concentration of Cd or Zn) in the range 0.1 less than x less than 0.3 and also consider appropriate x so E(sub g) = 0.1 eV for each of the three compounds. We consider several cation site s-like deep levels and anion site p-like levels. For E(sub g) = 0.1 eV, we also consider the effects of relaxation. Similar comments apply to the interstitial deep levels whereas no relaxation is considered for the ideal vacancy model. Relaxation effects can be greater for the interstitial than the substitutional cases. Specific results are given in figures and tables and comparison to experiment is made in a limited number of cases. We find, for example, that I, Se, S, Rn, and N are possible cation site, s-like deep levels in MCT and Zn and Mg are for anion site, p-like levels (both levels for substitutional cases). The corresponding cation and anion site levels for interstitial deep defects are (Au, Ag, Hg, Cd, Cu, Zn) and (N, Ar, O, F). For the substitutional cases we have some examples of relaxation moving the levels into the band gap, whereas for the interstitial case we have examples where relaxation moves it out of the band gap. Future work involves calculating the effects of charge state interaction and seeing the effect of relaxation on vacancy levels.

  13. Effects of laser source parameters on the generation of narrow band and directed laser ultrasound

    NASA Technical Reports Server (NTRS)

    Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.

    1992-01-01

    Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.

  14. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties.

    PubMed

    Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P

    2008-07-25

    Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.

  15. Band gap engineering of N-alloyed Ga{sub 2}O{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Dongyu; Li, Bingsheng, E-mail: libingsheng@hit.edu.cn, E-mail: ashen@ccny.cuny.edu; Sui, Yu

    2016-06-15

    The authors report the tuning of band gap of GaON ternary alloy in a wide range of 2.75 eV. The samples were prepared by a two-step nitridation method. First, the samples were deposited on 2-inch fused silica substrates by megnetron sputtering with NH{sub 3} and Ar gas for 60 minutes. Then they were annealed in NH{sub 3} ambience at different temperatures. The optical band gap energies are calculated from transmittance measurements. With the increase of nitridation temperature, the band gap gradually decreases from 4.8 eV to 2.05 eV. X-ray diffraction results indicate that as-deposited amorphous samples can crystallize into monoclinicmore » and hexagonal structures after they were annealed in oxygen or ammonia ambience, respectively. The narrowing of the band gap is attributed to the enhanced repulsion of N2p -Ga3d orbits and formation of hexagonal structure.« less

  16. On the affinities of lambda 5778 and other broad diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Mcintosh, Alan; Webster, Adrian

    1994-01-01

    The authors examined the broad band 5778 A because of the quantity and quality of data that exists in literature. To investigate the affinity of that band with the bands of Family 1, the ratio W(sub lambda)(4430)/W(sub lambda)(5797) was formed. If the two band belong to the same family then the ratio should be a constant from star to star and it should not be possible to find an independent variable with which the ratio is correlated. If, however, a variable is found which does produce a statistically significant correlation with the ratio of equivalent widths then the bands cannot be in the same family. To test the affinity of the band at 5778 A with the other families the procedure was repeated using the bands at 5780 and 5787 A as being representative of Families 2 and 3 respectively. The measurement results of this test are shown using 21 stars taken from Herbig. Statistically significant correlations resulted when the band at 5778 A was tested against the bands of Families 1 and 2 but there was no correlation with Family 3. It is concluded that lambda 5778 is unlikely a member of Family 1 and so all the broad bands do not have their origin in a single carrier. Also, lambda 5778 does not appear to be a member of Family 2 either, but may be a member of Family 3. It appears that either a single carrier can be the origin of both broad and narrow bands or that the bands are produced by different carriers which exist in similar interstellar habitats. This latter possibility would require the introduction of a fourth family of bands.

  17. Band structures in coupled-cluster singles-and-doubles Green's function (GFCCSD)

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoritaka; Kosugi, Taichi; Nishi, Hirofumi; Matsushita, Yu-ichiro

    2018-05-01

    We demonstrate that the coupled-cluster singles-and-doubles Green's function (GFCCSD) method is a powerful and prominent tool drawing the electronic band structures and the total energies, which many theoretical techniques struggle to reproduce. We have calculated single-electron energy spectra via the GFCCSD method for various kinds of systems, ranging from ionic to covalent and van der Waals, for the first time: the one-dimensional LiH chain, one-dimensional C chain, and one-dimensional Be chain. We have found that the bandgap becomes narrower than in HF due to the correlation effect. We also show that the band structures obtained from the GFCCSD method include both quasiparticle and satellite peaks successfully. Besides, taking one-dimensional LiH as an example, we discuss the validity of restricting the active space to suppress the computational cost of the GFCCSD method. We show that the calculated results without bands that do not contribute to the chemical bonds are in good agreement with full-band calculations. With the GFCCSD method, we can calculate the total energies and spectral functions for periodic systems in an explicitly correlated manner.

  18. HiRadProp: High-Frequency Modeling and Prediction of Tropospheric Radiopropagation Parameters from Ground-Based-Multi-Channel Radiometric Measurements between Ka and W Band

    DTIC Science & Technology

    2016-05-11

    new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are

  19. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    NASA Astrophysics Data System (ADS)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  20. Direct observation of a Γ -X energy spectrum transition in narrow AlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Khisameeva, A. R.; Shchepetilnikov, A. V.; Muravev, V. M.; Gubarev, S. I.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Reichl, C.; Tiemann, L.; Dietsche, W.; Wegscheider, W.

    2018-03-01

    Spectra of magnetoplasma excitations have been investigated in two-dimensional electron systems in AlAs quantum wells (QWs) of different widths. The magnetoplasma spectrum has been found to change profoundly when the quantum well width becomes thinner than 5.5 nm, indicating a drastic change in the conduction electron energy spectrum. The transformation can be interpreted in terms of transition from the in-plane strongly anisotropic Xx-Xy valley occupation to the out-of-plane isotropic Xz valley in the QW plane. Strong enhancement of the cyclotron effective mass over the band value in narrow AlAs QWs is reported.