Science.gov

Sample records for narrow emission band

  1. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  2. Narrow-band tunable terahertz emission from ferrimagnetic Mn3-xGa thin films

    NASA Astrophysics Data System (ADS)

    Awari, N.; Kovalev, S.; Fowley, C.; Rode, K.; Gallardo, R. A.; Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Green, B.; Yildirim, O.; Lindner, J.; Fassbender, J.; Coey, J. M. D.; Deac, A. M.; Gensch, M.

    2016-07-01

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn3-xGa Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20-0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  3. Investigation of narrow-band thermal emission from intersubband transitions in quantum wells

    SciTech Connect

    De Zoysa, M.; Asano, T.; Inoue, T.; Mochizuki, K.; Noda, S.

    2015-09-14

    We investigate thermal emission from n-doped GaAs/AlGaAs quantum wells (QWs). Emission peaks with Lorentzian shapes (linewidth 11∼19 meV) that reflect transitions between the first and second conduction subbands are observed in the mid-infrared range. It is demonstrated that the emission characteristics can be tuned by modifying the QW parameters. The peak emissivity is increased from 0.3 to 0.9 by modifying the doping density, and the peak wavelength is tuned from 6 to 10 μm by changing the well width. The obtained results are useful for the design of narrow-band thermal emitters.

  4. Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals

    NASA Astrophysics Data System (ADS)

    Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.

    2012-12-01

    nm (r2 = 0.88, RMSE = 7.54 x 107). When perfect retrievals were assumed (0% noise), retrievals remained good in the low emission regions on either side of the peaks-- those associated with the H alpha line at 655 nm (r2 = 0.83, RMSE =8.87 x 107) and the far-NIR wavelengths recently utilized for satellite retrievals: a K line at 770 nm (r2 = 0.85, RMSE = 8.36 x 107) and the 750-770 nm interval (r2 = 0.88, RMSE = 6.92 x 107). However, the atmosphere and satellite observations are expected to add noise to retrievals. Adding 5% random error to these relationships did not seriously impair the retrieval successes in the red and far-red peaks (r2 ~ 0.85, RMSEs = 6.31 x 107). A greater impact occurred (reducing retrieval success by ~10%) when adding 5% noise for the far-NIR narrow band at 770 nm (r2 ~ 0.70, RMSE ~ 8.5 x 107). When a 10% random error was added, the retrieval successes fell to ~68 ± 7% for all retrieval wavebands, and RMSEs increased by a factor of 10. This laboratory approach will be critical to calibrate space borne retrievals, but additional information across plant species is needed. Furthermore, this experiment indicates that ChlF retrievals from space should include information from the red and far-red peak emission regions, since the true total fluorescence signal is the desired parameter for Earth carbon and energy budgets.

  5. Enhanced tunable narrow-band THz emission from laser-modulated electron beams

    SciTech Connect

    Xiang, D.; Stupakov, G.; /SLAC

    2009-06-19

    We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers and dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.

  6. Narrow-band light emission from a single carbon nanotube p-n diode

    NASA Astrophysics Data System (ADS)

    Kinoshita, Megumi; Mueller, Thomas; Steiner, Mathias; Perebeinos, Vasili; Bol, Ageeth; Farmer, Damon; Avouris, Phaedon

    2010-03-01

    We present the first observation of electroluminescence from electrostatically-generated carbon nanotube (CNT) p-n junctions[1]. While CNT optoelectronics has made much progress in recent years, observations of emission from electrically excited CNT devices have been limited to the high-bias regime and with low efficiency. Furthermore, the resulting broad linewidths are broad, making it difficult to investigate electronic levels and carrier dynamics. We find that p-n junctions allow for better carrier control at lower power inputs, resulting in emission with near-zero threshold, low self-heating and efficiency two to three orders of magnitude greater compared to previous device configurations. This yields higher signal-to-noise ratio and narrower linewidths (down to ˜35 meV) that allows us to identify localized excitonic transitions that have previously been observed only in photoluminescent studies. [1] T. Mueller, M. Kinoshita, M. Steiner, V. Perebeinos, A. Bol, D. Farmer, and Ph. Avouris, Nature Nanotech., web publication, November 15 2009.

  7. Narrow Red Emission Band Fluoride Phosphor KNaSiF6:Mn(4+) for Warm White Light-Emitting Diodes.

    PubMed

    Jin, Ye; Fang, Mu-Huai; Grinberg, Marek; Mahlik, Sebastian; Lesniewski, Tadeusz; Brik, M G; Luo, Guan-Yu; Lin, Jauyn Grace; Liu, Ru-Shi

    2016-05-11

    Red phosphors AMF6:Mn(4+) (A = Na, K, Cs, Ba, Rb; M = Si, Ti, Ge) have been widely studied due to the narrow red emission bands around 630 nm. The different emission of the zero-phonon line (ZPL) may affect the color rendering index of white light-emitting diodes (WLED). The primary reason behind the emergence and intensity of ZPL, taking KNaSiF6:Mn(4+) as an example, was investigated here. The effects of pressure on crystal structure and luminescence were determined experimentally and theoretically. The increase of band gap, red shift of emission spectrum and blue shift of excitation spectrum were observed with higher applied pressure. The angles of ∠FMnF and ∠FMF(M = Si, Ti, Ge) were found clearly distorted from 180° in MF6(2-) octahedron with strong ZPL intensity. The larger distorted SiF6(2-) octahedron, the stronger ZPL intensity. This research provides a new perspective to address the ZPL intensity problem of the hexafluorosilicate phosphors caused by crystal distortion and pressure-dependence of the luminescence. The efficacy of the device featuring from Y3Al5O12:Ce(3+) (YAG) and KNaSiF6:Mn(4+) phosphor was 118 lm/W with the color temperature of 3455 K. These results reveal that KNaSiF6:Mn(4+) presents good luminescent properties and could be a potential candidate material for application in back-lighting systems. PMID:27104357

  8. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  9. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    SciTech Connect

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan; Cobb, Jeff; Lebofsky, Matt; Marcy, Geoffrey W.; Demorest, Paul; Maddalena, Ron J.; Langston, Glen; Howard, Andrew W.; Tarter, Jill

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.

  10. A 1.1-1.9 GHz SETI Survey of the Kepler Field. I. A Search for Narrow-band Emission from Select Targets

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill

    2013-04-01

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T eq > 230 K, stars with five or more detected candidates or stars with a super-Earth (R p < 3 R ⊕) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 × 1021 erg s-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be {<}10^{-6}\\ M^{-1}_\\odot. Here we describe our observations, data reduction procedures and results.

  11. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  12. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning. PMID:23938497

  13. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  14. Photosensized Controlling Benzyl Methacrylate-Based Matrix Enhanced Eu3+ Narrow-Band Emission for Fluorescence Applications

    PubMed Central

    Lee, Jiann-Fong; Chen, Hsuen-Li; Lee, Geneh-Siang; Tseng, Shao-Chin; Lin, Mei-Hsiang; Liau, Wen-Bin

    2012-01-01

    This study synthesized a europium (Eu3+) complex Eu(DBM)3Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl)-1-methyl-1H-imidazo[4,5-f][1,10]phenanthroline) dispersed in a benzyl methacrylate (BMA) monomer and treated with ultraviolet (UV) light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu3+ energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π–π interactions between the ligands and the Eu3+-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA) matrix. The underlying mechanism of the effective enhancement of the pure Eu3+ emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material. PMID:22489178

  15. Narrow band photometry of selected asteroids

    NASA Technical Reports Server (NTRS)

    Rajamohan, R.; Bhargavi, S. G.

    1992-01-01

    The CCD photometry of selected asteroids was carried out to check for possible cometary activity in them. To distinguish the asteroids with possible cometary activity from those of the main belt, each object of interest was observed in two filters; one centered on the C2 emission band at 5140A (90A bandpass) and the other centered on the nearby continuum at 4845A (65A bandpass). None of the observed asteroids appear to have any C2 emission.

  16. Jovian narrow-band as generator of the Jovian millisecond radio bursts

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Rucker, H. O.; Lecacheux, A.

    2000-11-01

    We report on the narrow-band emissions observed in the dynamic spectra of the Jovian decametric radio emissions. Such narrow-band emissions are infrequent phenomena and are related to the Jovian millisecond radio bursts (S-bursts). From the Riihimaa catalogue (Riihimaa 1991) we select narrow-band events observed in Oulu (Finland) with an acousto-optic spectrograph (AOS) with a high time resolution of about 7 ms. The AOS receiver gives the possibility to study the relationship between the S-bursts and the Jovian narrow-band emissions. For this we use the Riihimaa classification which shows sketches of millisecond radio bursts as they appear on the dynamic spectra and allows to distinguish one S-burst from another. The analysis of the temporal evolution of the Jovian narrow-band leads to a new interpretation of the Riihimaa structures. We show that each individual structure could be decomposed in one, two or three components and related to the narrow-band. It appears that the temporal evolution of the narrow-band involves the presence of fine structures, i.e. S-bursts, with a short time duration of about few tens of milliseconds. The individual S-burst duration and the short time scale of the gap in the narrow-band account for a mechanism totally intrinsic to the radio source. Taking into consideration our new results, we show that two models, the feedback model (Calvert 1982) and filamentary model (Louarn 1997) could explain part but not the global observed features of the narrow-band. According to the previous models the drift rate of the individual S-bursts seems to associate the combined effect of the source width with the refractive index or the geometry of the source relatively to the observer.

  17. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGESBeta

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; Ong, Shyue Ping

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit goodmore » chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  18. The Narrow-Band Model and Semi-Conductor Theory

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1976-01-01

    Applies the narrow-band model to the instruction of intrinsic and extrinsic semiconductors along with the phenomenon of compensation. Advocates the model for undergraduate instruction due to its intuitive appeal and mathematical simplicity. (CP)

  19. Ultrafast Narrow Band Modulation of VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.

  20. The electronic structure of heavy fermions: Narrow temperature independent bands

    SciTech Connect

    Arko, A.J.; Joyce, J.J.; Smith, J.L.; Andrews, A.B.

    1996-08-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.

  1. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  2. Narrow-Band WGM Optical Filters With Tunable FSRs

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Strekalov, Dmitry

    2007-01-01

    Optical resonators of the whispering-gallery-mode (WGM) type featuring DC-tunable free spectral ranges (FSRs) have been demonstrated. By making the FSR tunable, one makes it possible to adjust, during operation, the frequency of a microwave signal generated by an optoelectronic oscillator in which an WGM optical resonator is utilized as a narrow-band filter.

  3. Recovering physical properties from narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  4. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity

    SciTech Connect

    Albrecht, Roland; Bommer, Alexander; Becher, Christoph; Pauly, Christoph; Mücklich, Frank; Schell, Andreas W.; Engel, Philip; Benson, Oliver; Schröder, Tim; Reichel, Jakob

    2014-08-18

    We report the realization of a device based on a single Nitrogen-Vacancy (NV) center in diamond coupled to a fiber-cavity for use as single photon source (SPS). The device consists of two concave mirrors each directly fabricated on the facets of two optical fibers and a preselected nanodiamond containing a single NV center deposited onto one of these mirrors. Both, cavity in- and out-put are directly fiber-coupled, and the emission wavelength is easily tunable by variation of the separation of the two mirrors with a piezo-electric crystal. By coupling to the cavity, we achieve an increase of the spectral photon rate density by two orders of magnitude compared to free-space emission of the NV center. With this work, we establish a simple all-fiber based SPS with promising prospects for the integration into photonic quantum networks.

  5. A narrow-band speckle-free light source via random Raman lasing

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Schmidt, Morgan S.; Bixler, Joel N.; Dyer, Phillip N.; Noojin, Gary D.; Redding, Brandon; Thomas, Robert J.; Rockwell, Benjamin A.; Cao, Hui; Yakovlev, Vladislav V.; Scully, Marlan O.

    2016-01-01

    Currently, no light source exists which is both narrowband and speckle free with sufficient brightness for full-field imaging applications. Light-emitting diodes are excellent spatially incoherent sources, but are tens of nanometers broad. Lasers, on the other hand, can produce very narrow-band light, but suffer from high spatial coherence which leads to speckle patterns, which distort the image. Here, we propose the use of random Raman laser emission as a new kind of light source capable of providing short-pulsed narrow-band speckle-free illumination for imaging applications.

  6. Novel structural flexibility identification in narrow frequency bands

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Moon, F. L.

    2012-12-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method.

  7. Latitude dependence of narrow bipolar pulse emissions

    NASA Astrophysics Data System (ADS)

    Ahmad, M. R.; Esa, M. R. M.; Cooray, V.; Baharudin, Z. A.; Hettiarachchi, P.

    2015-06-01

    In this paper, we present a comparative study on the occurrence of narrow bipolar pulses (NBPs) and other forms of lightning flashes across various geographical areas ranging from northern regions to the tropics. As the latitude decreased from Uppsala, Sweden (59.8°N) to South Malaysia (1.5°N), the percentage of NBP emissions relative to the total number of lightning flashes increased significantly from 0.13% to 12%. Occurrences of positive NBPs were more common than negative NBPs at all observed latitudes. However, as latitudes decreased, the negative NBP emissions increased significantly from 20% (Uppsala, Sweden) to 45% (South Malaysia). Factors involving mixed-phase region elevations and vertical extents of thundercloud tops are invoked to explain the observed results. These factors are fundamentally latitude dependent. Our results suggest that the NBP emission rate is not a useful measure to monitor thunderstorm severity because regular tropical thunderstorms, where relatively high NBP emissions occur, lack suitable conditions to become severe (i.e., there is modest convective available potential energy and a lack of baroclinity in such regions). Observations of significantly high negative NBP occurrences together with very rare occurrences of positive cloud-to-ground flashes and isolated breakdown pulses in tropical thunderstorms are indicative of a stronger negative screening layer magnitude and weaker lower positive charge region magnitude than those in northern regions.

  8. Comparison of Natural Narrow-banded Emissions and Sounder Stimulated Resonances In The Magnetospheres of Jupiter and The Earth (ulysses and Image Spacecraft)

    NASA Astrophysics Data System (ADS)

    Osherovich, V. A.; Fainberg, J.; Benson, R. F.; MacDowall, R.

    The sounder stimulated resonances observed by Ulysses in JupiterSs Io torus re- vealed a spectrum of frequencies which has been interpreted in terms of Dn reso- nances together with electron plasma frequency fpe and Bernstein Qn resonances in order to determine the electron density and magnetic field strength (Osherovich et al. 1993; Benson et al. 1997). The presence of Dn resonances (cylindrical eigen- modes with frequencies proportional sqrtn, n = 1, 2, ...) has been predicted for the Io torus on the basis of the classification of the EarthSs Ionospheric sounder stim- ulated resonances (Osherovich 1987, 1989; Osherovich and Benson 1991; Benson and Osherovich 1992). The magnetic field strength measured by the Ulysses mag- netometer confirmed the values found from resonances to within a few percent. An alternative interpretation suggested that the Ulysses relaxation sounder did not excite Dn in JupiterSs magnetosphere( Le Sagre et al. 1998) and the topic has been subject to a recent debate (Canu 2001a; Benson et al. 2001; Canu 2001b) . We show that Dn resonances are present in both sounder stimulated spectra and in natural emissions ob- served by Ulysses during the inbound and outbound part of the trajectory inside the Io torus. The natural emissions (no sounding) have the same frequencies as their sounder stimulated counterparts. IMAGE/RPI observations, which confirm the specific rela- tion between Dn, fp and fce and for the subsidiary resonances Dn+ and Dn-, will also be presented. References: Benson, R.F. and V.A. Osherovich, Canu, J. Geophys. Res., 97, 19413, 1992. Benson, R.F. et al., Radio Sci., 32, 1127, 1997. Benson, R.F. et al., Radio Sci., 36, 1649, 2001. Canu, P., Radio Sci., 36, 171, 2001a. Canu, P., Radio Sci., 36, 1645, 2001b. Le Sagre, P. et al., J. Geophys. Res., 103, 26667, 1998. 1 Osherovich, V. A., J. Geophys. Res., 92, 316, 1987. Osherovich, V. A., J. Geophys. Res., 94, 5530, 1989. Osherovich, V. A. and R.F. Benson, ., J. Geophys. Res., 96

  9. Narrow-band oscillations in probabilistic cellular automata.

    PubMed

    Puljic, Marko; Kozma, Robert

    2008-08-01

    Dynamical properties of neural populations are studied using probabilistic cellular automata. Previous work demonstrated the emergence of critical behavior as the function of system noise and density of long-range axonal connections. Finite-size scaling theory identified critical properties, which were consistent with properties of a weak Ising universality class. The present work extends the studies to neural populations with excitatory and inhibitory interactions. It is shown that the populations can exhibit narrow-band oscillations when confined to a range of inhibition levels, with clear boundaries marking the parameter region of prominent oscillations. Phase diagrams have been constructed to characterize unimodal, bimodal, and quadromodal oscillatory states. The significance of these findings is discussed in the context of large-scale narrow-band oscillations in neural tissues, as observed in electroencephalographic and magnetoencephalographic measurements. PMID:18850928

  10. Spectral narrowing of solid state lasers by narrow-band PTR Bragg mirrors

    NASA Astrophysics Data System (ADS)

    Chung, T.; Rapaport, A.; Chen, Y.; Smirnov, V.; Hemmer, M.; Glebov, L. B.; Richardson, M. C.; Bass, M.

    2006-05-01

    Dramatic spectral narrowing of normally broad band lasers, Ti:Sapphire,Cr:LiSAF, and alexandrite was achieved by simply replacing the output mirror with a reflective, volumetric Bragg grating recorded in photo thermal refractive (PTR) glass. The output power of each laser was changed very slightly from that obtained using dielectric coated output mirrors with the same output coupling as the Bragg grating while spectral brightness increased by about three orders of magnitude.

  11. Imaging spectrograph for interstellar shocks (ISIS): a far-ultraviolet narrow-band imaging rocket payload

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew N.; Wilkinson, Erik

    2001-12-01

    We present a new instrument for narrow band imaging without the use of conventional interference filters. This instrument will image the OVI doublet at 103.2 and 103.8 nm, the brightest astrophysical emission line from diffuse gas at 300,000 degrees. Gases at this temperature, formed mostly by supernovae blast waves, are key to understanding the energy budget of the galaxy. To date, there are no high spatial resolution narrow-band images of OVI, although some low spatial resolution narrow maps have been acquired with conventional spectrographs. Using the imaging power of a conventional two-optic Gregorian telescope in conjunction with aberration-corrected holography, we can acquire narrow band images with subarcsecond spatial resolution. An aberration-corrected holographically ruled grating in place of the secondary optic is used to diffract the ultraviolet light to stigmatic focus. Additionally, the use of few optical surfaces minimizes the light loss from poor reflectivity of materials in the far ultraviolet (FUV), thereby maximizing instrument sensitivity. This instrument is the first to use aberration-corrected holographic gratings to produce a narrow-band imaging capability in this fashion. We are now developing a rocket payload to demonstrate the power of this technique with particular application to non-radiative shocks in the interstellar medium. We present the optical design, instrument performance, and relevant scientific simulations.

  12. Quantum information processing with narrow band two-photon state

    NASA Astrophysics Data System (ADS)

    Lu, Yajun

    Application of quantum sources in communication and information processing are believed to bring a new revolution to the on-going information age. The generation of applicable quantum sources such as single photon state and two-photon state, appears to be one of the most difficult in experimental quantum optics. Spontaneous Parametric Down-Conversion (PDC) is known to generate two-photon state, but bandwidth problem makes it less applicable in quantum information processing. The aim of this work is to generate a narrow band two-photon state and apply it to quantum information processing. We start by developing a cavity enhanced PDC device to narrow the bandwidth of the two-photon state. Direct measurement of the bandwidth of the generated state has been made and the quantum theory of such a device has been investigated. An application of this narrow band two-photon state is to generate anti-bunched photons for quantum cryptography, based on the quantum interference between the two-photon state and a coherent state. The feasibility of this scheme for pulsed pump is also investigated. When applying the concept of mode locking in lasers to a two-photon state, we have mode-locked two-photon state which exhibits a comb-like correlation function and may be used for engineering of quantum states in time domain. Other applications such as demonstration of single photon nonlocality, nonlinear sign gate in quantum computation, and direct measurement of quantum beating, will also be addressed.

  13. Narrow-Band Spectrophotometry of Comet Hale-Bopp (C/1995 O1) Near Perihelion I.: Photometric Behavior of C2, C3, CN Molecular Bands

    NASA Astrophysics Data System (ADS)

    Sung, Eon-Chang; Kim, Ho-Il; Youn, Jae-Hyuk

    2000-12-01

    We present the results from narrow-band spectrophotometry of Comet Hale-Bopp (C/1995 O1) near perihelion obtained at Sobaeksan Optical Astronomy Observatory 61cm telescope equipped with PM 512 CCD camera (512 x 512, 0.5''/pixel) and narrow-band filter set for the comet on 19 nights from February 21 to May 1, 1997. We discuss molecular emission band morphology and photometric behavior of Comet Hale-Bopp. The morphology of CN band shows more symmetric light distributions than C2 or C3 bands. On other hand, C2 and C3 band have more compact light distributions than CN band. Similar to wide-band image, molecular band morphology shows spiral structures at the core of the comet. The CN surface brightness variation with changing heliocentric distance shows difference from those of C2 and C.3 The brightness, however, of these molecular bands near perihelion shows previously known 7day period light variations.

  14. Narrow-band tunable alexandrite laser with passive Q switching

    SciTech Connect

    Tyryshkin, I S; Ivanov, N A; Khulugurov, V M

    1998-06-30

    An alexandrite laser with a self-injection of narrow-band radiation into its cavity was developed. A Fabry - Perot interferometer and a diffraction grating were used as dispersive components in an additional cavity. The cavity was switched by an LiF crystal with F{sub 3}{sup -} colour centres. The laser generated a single pulse of {approx} 180 ns duration and of 1.5 mJ energy, and with a spectrum 5 x 10{sup -3} cm{sup -1} wide. The laser emitted in the spectral range 720 - 780 nm. (lasers, active media)

  15. Fatigue failure of materials under narrow band random vibrations. I.

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Hubbard, R. B.; Lanz, R. W.

    1971-01-01

    A novel approach for the study of fatigue failure of materials under the multifactor influence of narrow band random vibrations is developed. The approach involves the conduction of an experiment in conjunction with various statistical techniques. Three factors including two statistical properties of the excitation or response are considered and varied simultaneously. A minimum of 6 tests for 3 variables is possible for a fractional f actorial design. The four coefficients of the predicting equation can be independently estimated. A look at 3 predicting equations shows the predominant effect of the root mean square stress of the first order equation.

  16. Narrow-band photometry of Beta Lyrae in 1971

    NASA Astrophysics Data System (ADS)

    Scarfe, C. D.

    1980-01-01

    Observations of Beta Lyrae (with HR 6997 as the principal companion star) are presented, principally of certain strong lines and neighboring continuum regions obtained through interference filters of bandwidths ranging from 27.0 to 33.7 A. Light curves in the 3 blue and 3 red bands are shown, and color indices and emission intensity indices are tabulated. Moreover, a photometric index of emission line strength, analogous to the spectroscopic index of Batten and Sahade (1973), is derived. It is suggested that the H alpha emission comes from a larger region around the binary star than does the helium emission and is asymmetrical, being weakest near quadrature when the primary star is approaching earth. The helium emission, by contrast, is more symmetrical, and varies with binary phase by a larger fractional amount.

  17. Narrow band imaging: clinical applications in oral and oropharyngeal cancer.

    PubMed

    Vu, A; Farah, C S

    2016-07-01

    Narrow Band Imaging (NBI) is an endoscopic optical imaging enhancement technology that improves the contrast of mucosal surface texture, and enhances visualisation of mucosal and submucosal vasculature. White light is filtered to emit two 30-nm narrow bands of blue (415 nm) and green light (540 nm) light simultaneously, the former corresponding to the main peak absorption spectrum of haemoglobin, and the latter allowing visualisation of blood vessels in the deeper mucosal and submucosal layers. NBI has been used to better assess oral potentially malignant disorders (OPMD), identify oral and oropharyngeal squamous cell carcinoma (SCC), and to define surgical margins of head and neck malignancies. NBI shows great potential in improving detection rates of OPMD, facilitating better assessment of oral and oropharyngeal SCC, and reducing the risk of recurrence for oral SCC. Although further research is required to better understand and define intrapapillary capillary loop (IPCL) patterns and to relate these with clinical, histopathological and molecular parameters especially for early mucosal changes, there is building evidence to recommend its use as the new gold standard for endoscopic assessment in head and neck oncology. PMID:26713751

  18. Narrow band 3 × 3 Mueller polarimetric endoscopy

    PubMed Central

    Qi, Ji; Ye, Menglong; Singh, Mohan; Clancy, Neil T.; Elson, Daniel S.

    2013-01-01

    Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information. PMID:24298405

  19. Shining a new narrow band of light on old problems.

    PubMed

    Chan, Daniel K; Wang, Kenneth K

    2014-06-01

    Improvements in narrow band imaging (NBI) may provide an improved view of colonic mucosa for detection of polyps and adenomas. In this issue, Leung et al. report findings to suggest that this next-generation NBI technology is superior to conventional high-definition white light endoscopy in polyp detection. These findings are based on brighter illumination, which has been a problem with older generations of NBI, which did not increase polyp detection but were useful for polyp characterization. Although these findings are very promising for this new role of second-generation NBI in polyp detection, the study must be viewed with consideration of the history of the older NBI system, the analysis of which through multiple positive and negative studies ultimately led to the conclusion that it was not beneficial for detection. PMID:24896757

  20. Precisely tunable, narrow-band pulsed dye laser

    SciTech Connect

    Bhatia, P.S.; Keto, J.W.

    1996-07-01

    A narrow-band, precisely tunable dye laser pumped by an injection-seeded YAG laser is described. The laser achieves an output of 100 mJ/pulse and 40{percent} efficiency when one uses Rhodamine 6G dyes. The output pulse is Gaussian both in time and spatial profile. The laser oscillator employs an intracavity {acute e}talon that is repetitively pressure scanned over one free spectral range while the grating successively steps to consecutive {acute e}talon modes. We pressure scanned the {acute e}talon under computer control using a bellows. Methods are described for calibrating the tuning elements for absolute precision. We demonstrated that the laser has an absolute precision of {plus_minus}0.4 pm over a 1.0-nm scan. This accuracy is achievable over the wavelength range of a dye. {copyright} {ital 1996 Optical Society of America.}

  1. NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM

    SciTech Connect

    Colón, Knicole D.; Gaidos, Eric

    2013-10-10

    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.

  2. Superscattering-enhanced narrow band forward scattering antenna

    NASA Astrophysics Data System (ADS)

    Hu, De-Jiao; Zhang, Zhi-You; Du, Jing-Lei

    2015-10-01

    We present a narrow band forward scattering optical antenna which is based on the excitation of distinctive whispering gallery modes (WGMs). The antenna is composed of three coaxial cylinder layers: a dielectric layer is sandwiched between a metallic core and cladding. Owing to the destructive interference between the scattering of the outer metallic cladding and the WGM in the backward direction, the power flow in the forward direction is increased. Simulation and analysis show that in proper geometry conditions, the cavity can be tuned into a superscattering state. At this state, both the zeroth and the first order of WGM are excited and contribute to the total scattering. It is shown that the power ratio (power towards backward divided by power towards forward) can be enhanced to about 27 times larger than that for a non-resonant position by the superscattering. Owing to the confinement of the cladding to WGMs, the wavelength range of effective forward scattering is considerably narrow (about 15 nm). Project supported by the National Natural Science Foundation of China (Grant No. 61377054), the Collaborative Innovation Foundation of Sichuan University, China (Grant No. XTCX 2013002), and the International Cooperation and Exchange of Science and Technology Project in Sichuan Province, China (Grant No. 2013HH0010).

  3. PAU, a fully depleted mosaic imager with narrow band filters

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Casas, R.; Castander, F. J.; Serrano, S.

    2014-03-01

    The PAU Survey studies the existence and properties of dark energy from the observations of redshift space distortions and weak lensing magnification from galaxy cross-correlations as main cosmological probes. The PAU Team is building an instrument, PAUCam, equipped with fully depleted CCD detectors, designed to be mounted at the prime focus of the 4.2 m diameter William Herschel Telescope (WHT) in La Palma. Simulations indicate that PAUCam at the WHT will be able to image about 2 square degrees per night in 40 narrow-band filters plus six wide-band filters to an AB magnitude depth of i ~ 22.5, providing low-resolution (R ~ 50) photometric spectra for around 30,000 galaxies, 5,000 stars and 1,000 quasars per square degree. Accurate photometric calibration of the PAU data is vital to achieve the survey science goals. This calibration is challenging due to the large and unusual filter set. We outline the data management pipelines being developed for the survey, both for nightly data reduction and co-addition of multiple epochs, with emphasis on the photometric calibration strategies. We also describe the main tests and results in the characterization of our Hamamatsu fully depleted detectors.

  4. Variations in the wide band and narrow band beams for NuMI

    SciTech Connect

    Malensek, A.J.

    1997-06-02

    This paper is directed at studies related to using the main injector at Fermilab to generate neutrino beams. The note describes two studies that have been done on variations of the reference beams. The first suggests a method to reduce the low-energy tail of the narrow band beam (NBB); the second addresses possibilities for minimizing the far/near variations in the spectra for the wide band beam (WBB). Both of these are studied with NUADA (Long Baseline) and are meant to give guidance for GEANT calculations that would be able to answer whether the suggested ideas are in fact improvements, once all the complex processes are included.

  5. Monaural envelope correlation perception for bands narrower or wider than a critical band

    PubMed Central

    Buss, Emily; Hall, Joseph W.; Grose, John H.

    2013-01-01

    Monaural envelope correlation perception concerns the ability of listeners to discriminate stimuli based on the degree of correlation between the temporal envelopes of two or more frequency-separated bands of noise [Richards, J. Acoust. Soc. Am. 82, 1621–1630 (1987)]. Previous work has examined this ability for relatively narrow bandwidths, generally 100 Hz or less. The present experiment explored a wide range of bandwidths, from 25 to 1600 Hz, which included bands narrower and wider than a critical bandwidth. Stimuli were pairs of noise bands separated by a 500-Hz-wide spectral gap centered on 2250 Hz. The magnitude spectra of the pair of comodulated bands were either identical or reflected around the midpoint of the band, and performance was assessed with and without a low-pass noise masker. Although discrimination was best for intermediate bandwidths, mean performance was above chance for all bandwidths tested. Data were similar for stimuli with identical and reflected magnitude spectra, and for stimuli with and without the low-pass masker. The one exception was particularly good performance for intermediate-bandwidth stimuli with identical spectra, for which some listeners reported hearing a tonal cue. Results indicate that listeners are flexible in selecting spectral regions upon which to base across-frequency comparisons. PMID:23297912

  6. Narrow-Band Emitting Solid Fluorescence Reference Standard with Certified Intensity Pattern.

    PubMed

    Hoffmann, Katrin; Spieles, Monika; Bremser, Wolfram; Resch-Genger, Ute

    2015-07-21

    The development of a lanthanum-phosphate glass doped with several rare-earth-ions for use as solid fluorescence standard is described. The cuvette-shaped reference material which shows a characteristic emission intensity pattern upon excitation at 365 nm consisting of a multitude of relatively narrow emission bands in the wavelength region between 450 and 700 nm is intended for the day-to-day performance validation of fluorescence measuring devices. Evaluation of the fluorescent glass includes the determination of all properties which can affect its relative emission intensity profile or contribute to the uncertainty of the certified values like absorption spectra, fluorescence anisotropy, excitation wavelength, and temperature dependence of the spectroscopic features, homogeneity of fluorophore distribution, and photo- and long-term stability. Moreover, a certification procedure was developed including the normalization of the intensity profile consisting of several narrow emission bands and the calculation of wavelength-dependent uncertainties. Criteria for the design, characterization, and working principle of the new reference material BAM-F012 are presented, and possible applications of this ready-to-use fluorescence standard are discussed. PMID:26077510

  7. Measuring large-scale structure with quasars in narrow-band filter surveys

    NASA Astrophysics Data System (ADS)

    Abramo, L. Raul; Strauss, Michael A.; Lima, Marcos; Hernández-Monteagudo, Carlos; Lazkoz, Ruth; Moles, Mariano; de Oliveira, Claudia Mendes; Sendra, Irene; Sodré, Laerte; Storchi-Bergmann, Thaisa

    2012-07-01

    We show that a large-area imaging survey using narrow-band filters could detect quasars in sufficiently high number densities, and with more than sufficient accuracy in their photometric redshifts, to turn them into suitable tracers of large-scale structure. If a narrow-band optical survey can detect objects as faint as i= 23, it could reach volumetric number densities as high as 10-4 h3 Mpc-3 (comoving) at z˜ 1.5. Such a catalogue would lead to precision measurements of the power spectrum up to z˜ 3-4. We also show that it is possible to employ quasars to measure baryon acoustic oscillations at high redshifts, where the uncertainties from redshift distortions and non-linearities are much smaller than at z≲ 1. As a concrete example we study the future impact of the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS), which is a narrow-band imaging survey in the optical over 1/5 of the unobscured sky with 42 filters of ˜100-Å full width at half-maximum. We show that J-PAS will be able to take advantage of the broad emission lines of quasars to deliver excellent photometric redshifts, σz≃ 0.002 (1 +z), for millions of objects.

  8. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    SciTech Connect

    Nong, Hanond Markmann, Sergej; Hekmat, Negar; Jukam, Nathan; Pal, Shovon; Mohandas, Reshma A.; Dean, Paul; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Wieck, Andreas D.

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunes the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.

  9. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the

  10. Narrow-band erbium-doped fibre linear–ring laser

    SciTech Connect

    Kolegov, A A; Sofienko, G S; Minashina, L A; Bochkov, A V

    2014-01-31

    We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)

  11. Narrow band imaging and long slit spectroscopy of UGC 5101

    NASA Technical Reports Server (NTRS)

    Stanga, R. M.; Mannucci, F.; Rodriguezespinosa, J. M.

    1993-01-01

    UGC 5101 (z = 0.04; D is approximately equal to 240 Mpc) is one of the so called Ultraluminous IRAS sources. Two important properties of the members of this group are their L(sub IR) is greater than or equal to 10(exp 12) solar luminosity, and their space density in the universe up to z is less than 0.1 is equal or even larger than the space density of the quasars. Further noteworthy features of the Ultraluminous IRAS sources are their being morphologically peculiar and the fact that they all seem to host active nuclei in their center. We have observed UGC 5101 in an effort to study the interplay between the gas ionized by the central active nucleus and that gas ionized by other processes which may hold important clues to the understanding of the entire picture of this object. In particular these other ionizing processes could well be massive stars formed recently after the galactic encounter and shocks possibly also related to the galaxy collision. The data that we discuss were obtained between Dec. 1989 and Jan. 1992 with the WHT 4.2 m telescope using the two-arm spectrograph ISIS. Several spectral frames were obtained at three different position angles: PA 84--along the tail of the galaxy; PA 32--along the dust lane; and PA 110. The blue spectra are centered on the H beta line, while the red spectra are centered on the H alpha line. In the configuration we used for the long slit spectra, the spectral scale was 0.74 A per pixel, and the spatial scale was .37 arcsec per pixel; we also observed the H alpha region with a spectral scale of .37 A per pixel, at position angle 84. The narrow band images were obtained at the auxiliary port of ISIS, with a scale of .2 arcsec per pixel, and were centered at the H alpha wavelength, and on the adjacent continuum. The H alpha images and the spectra support the following model. UGC 5101 hosts an active nucleus; the NLR extends up to about 1.5 kpc and shows a complex velocity field, superimposed on the rotation curve of the

  12. 47 CFR 80.1159 - Narrow-band direct-printing (NB-DP).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Narrow-band direct-printing (NB-DP). 80.1159... Narrow-band direct-printing (NB-DP). NB-DP is a form of telegraphy for the transmission and receipt of direct printing public correspondence. Ships must use NB-DP techniques only with authorized public...

  13. 47 CFR 80.1159 - Narrow-band direct-printing (NB-DP).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Narrow-band direct-printing (NB-DP). 80.1159... Narrow-band direct-printing (NB-DP). NB-DP is a form of telegraphy for the transmission and receipt of direct printing public correspondence. Ships must use NB-DP techniques only with authorized public...

  14. 47 CFR 80.1159 - Narrow-band direct-printing (NB-DP).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Narrow-band direct-printing (NB-DP). 80.1159... Narrow-band direct-printing (NB-DP). NB-DP is a form of telegraphy for the transmission and receipt of direct printing public correspondence. Ships must use NB-DP techniques only with authorized public...

  15. 47 CFR 80.1159 - Narrow-band direct-printing (NB-DP).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Narrow-band direct-printing (NB-DP). 80.1159... Narrow-band direct-printing (NB-DP). NB-DP is a form of telegraphy for the transmission and receipt of direct printing public correspondence. Ships must use NB-DP techniques only with authorized public...

  16. 47 CFR 80.1159 - Narrow-band direct-printing (NB-DP).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Narrow-band direct-printing (NB-DP). 80.1159... Narrow-band direct-printing (NB-DP). NB-DP is a form of telegraphy for the transmission and receipt of direct printing public correspondence. Ships must use NB-DP techniques only with authorized public...

  17. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  18. Iron Line Diagnostics of Narrow Emission Line Galaxies

    NASA Astrophysics Data System (ADS)

    Nousek, John A.

    1996-05-01

    This report describes the activities at Penn State University supported by NASA Grant NAG5-2528, 'Iron Line Diagnostics of Narrow Emission Line Galaxies'. The aim of this investigation was to accurately measure the iron (Fe K) line emission in two X-ray selected Seyfert 2 galaxies (NGC 2992 and MCG-5-23-16). The astrophysics being probed was to determine whether the Fe line was narrow, broad or both. The broad line component is very important as a probe of the nature of the innermost accretion onto the central engine in AGN's.

  19. Frequency band broadening of magnetospheric VLF emissions near the equator

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Lin, C. S.

    1981-01-01

    The broadening of the whistler mode VLF emission band has frequently been observed by the equatorially orbiting S3-A (Explorer 45) satellite outside the midnight sector of the plasmasphere, during periods of geomagnetic disturbance. Prior to the broadening, the band of this emission is narrow with a sharp gap at the half electron gyrofrequency. The gradual broadening of the emission band on the low-frequency side is associated with the simultaneously observed spreading of the anisotropy of the ring current electrons to higher and wider energy ranges. Using the modeled distribution function, the linear growth rates of the cyclotron instability are calculated numerically. The results suggest that broadening of the VLF emission band near the plasmasphere can be caused by spreading of the ring current electron anisotropy toward higher energies.

  20. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  1. Nanoslit-microcavity-based narrow band absorber for sensing applications.

    PubMed

    Lu, Xiaoyuan; Zhang, Lingxuan; Zhang, Tongyi

    2015-08-10

    We propose an ultranarrow bandwidth perfect infrared absorber consisting of a metal periodic structured surface with nanoslits, a spacer dielectric, and a metal back plate. Its bandwidth and aborption are respectively about 8 nm and 95%. The thickness of the nanobars and the spacer, and the width of the nanoslits are primary factors determining the absorption performance. This structure not only has narrow bandwidth but also can obtain the giant electric field enhancement in the tiny volume of the nanoslits. Operated as a refractive index sensor, this structure has figure of merit as high as 25. It has potential in biomedical and sensing applications. PMID:26367923

  2. High-power narrow-vertical-divergence photonic band crystal laser diodes with optimized epitaxial structure

    SciTech Connect

    Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi

    2014-12-08

    900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.

  3. High-power narrow-band terahertz generation using large-aperture photoconductors

    SciTech Connect

    Park, S.G.; Weiner, A.M.; Melloch, M.R. . School of Electrical and Computer Engineering); Siders, C.W.; Siders, J.L.W.; Taylor, A.J. )

    1999-08-01

    Large-aperture biased photoconductive emitters which can generate high-power narrow-band terahertz (THz) radiation are developed. These emitters avoid saturation at high fluence excitation and achieve enhanced peak power spectral density by employing a thick layer of short-lifetime low-temperature-grown GaAs (LT-GaAs) photoconductor and multiple-pulse excitation. THz waveforms are calculated from the saturation theory of large-aperture photoconductors, and a comparison is made between theory and measurement. A direct comparison of the multiple-pulse saturation properties of THz emission from semi-insulating GaAs and LT-GaAs emitters reveals a strong dependence on the carrier lifetime. In particular, the data demonstrate that saturation is avoided only when the interpulse spacing is longer than the carrier lifetime.

  4. Elimination of threshold-induced distortion in the power spectrum of narrow-band laser speckle

    NASA Astrophysics Data System (ADS)

    Ducharme, Alfred D.; Boreman, Glenn D.; Yang, Sidney S.

    1995-10-01

    The distortion in the power spectrum of narrow-band laser speckle that results from irradiance thresholding is quantified. A method for compensation of this distortion is presented. An optimal threshold level is presented that simplifies the compensation method.

  5. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  6. Ultrafast optical control of group delay of narrow-band terahertz waves

    PubMed Central

    Miyamaru, Fumiaki; Morita, Hiroki; Nishiyama, Yohei; Nishida, Tsubasa; Nakanishi, Toshihiro; Kitano, Masao; Takeda, Mitsuo W.

    2014-01-01

    We experimentally demonstrate control over the group delay of narrow-band (quasi continuous wave) terahertz (THz) pulses with constant amplitude based on optical switching of a metasurface characteristic. The near-field coupling between resonant modes of a complementary split ring resonator pair and a rectangular slit show an electromagnetically induced transparency-like (EIT-like) spectral shape in the reflection spectrum of a metasurface. This coupling induces group delay of a narrow-band THz pulse around the resonant frequency of the EIT-like spectrum. By irradiating the metasurface with an optical excitation pulse, the metasurface becomes mirror-like and thus the incident narrow-band THz pulse is reflected without a delay. Remarkably, if we select the appropriate excitation power, only the group delay of the narrow-band THz pulse can be switched while the amplitude is maintained before and after optical excitation. PMID:24614514

  7. Narrow-band 5 kHz hiss observed in the vicinity of the plasmapause

    NASA Astrophysics Data System (ADS)

    Ondoh, T.; Nakamura, Y.; Watanabe, S.; Murakami, T.

    1981-01-01

    Latitudinal distributions of narrow-band 5 kHz hisses have been statistically obtained by using VLF electric field data received from the ISIS-1 and -2 at Syowa station, Antarctica and Kashima station, Japan, in order to study an origin of the narrow-band 5 kHz hisses which are often observed on the ground in mid- and low-latitudes. The result shows that the narrow-band 5 kHz hiss occurs most frequently at geomagnetically invariant latitudes from 55 to 63 deg, which are roughly the plasmapause latitudes at various geomagnetic activities, both in the Northern and Southern Hemispheres. The narrow-band 5 kHz hiss seems to be generated by the cyclotron instabilities of several keV to a few ten keV electrons for the most feasible electron density of 10 to 1000 per cu cm in the vicinity of the equatorial plasmapause.

  8. Narrow-band surveys for very high redshift Lyman-α emitters

    NASA Astrophysics Data System (ADS)

    Nilsson, K. K.; Orsi, A.; Lacey, C. G.; Baugh, C. M.; Thommes, E.

    2007-11-01

    Context: Many current and future surveys aim to detect the highest redshift (z ⪆ 7) sources through their Lyman-α (Lyα) emission, using the narrow-band imaging method. However, to date the surveys have only yielded non-detections and upper limits as no survey has reached the necessary combination of depth and area to detect these very young star forming galaxies. Aims: We aim to calculate model luminosity functions and mock surveys of Lyα emitters at z ⪆ 7 based on a variety of approaches calibrated and tested on observational data at lower redshifts. Methods: We calculate model luminosity functions at different redshifts based on three different approaches: a semi-analytical model based on CDM, a simple phenomenological model, and an extrapolation of observed Schechter functions at lower redshifts. The results of the first two models are compared with observations made at redshifts z ˜ 5.7 and z ˜ 6.5, and they are then extrapolated to higher redshift. Results: We present model luminosity functions for redshifts between z = 7{-}12.5 and give specific number predictions for future planned or possible narrow-band surveys for Lyα emitters. We also investigate what constraints future observations will be able to place on the Lyα luminosity function at very high redshift. Conclusions: It should be possible to observe z = 7{-}10 Lyα emitters with present or near-future instruments if enough observing time is allocated. In particular, large area surveys such as ELVIS (Emission Line galaxies with VISTA Survey) will be useful in collecting a large sample. However, to get a large enough sample to constrain well the z ≥ 10 Lyα luminosity function, instruments further in the future, such as an ELT, will be necessary.

  9. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  10. NICMOS Narrow-band Images of OMC-1

    NASA Technical Reports Server (NTRS)

    Schultz, Angela S. B.; Colgan, Sean W. J.; Erickson, E. F.; Kaufman, M. J.; Hollenbach, D. J.; O'Dell, C. R.; Young, E. T.; Chen, H.

    1998-01-01

    We present images of a 90in. x 90in. field centered on BN in OMC-1, taken with the Near-Infrared Camera and MultiObject Spectrograph (NICMOS) aboard the Hubble Space Telescope. The observed lines are H2 1-0 S(l), Pa, [FeII] 1.64 pm, and the adjacent continua. The region is rich in interesting structures. The most remarkable are the streamers or "fingers" of H2 emission which extend from 15in. to 50in. from IRc2, seen here in unprecedented detail. Unlike the northern H2 fingers, the inner fingers do not exhibit significant [FeII] emission at theirdips, which we suggest is due to lower excitation. These observations also show that the general morphology of the Pa and [FeII] emission (both imaged for the first time in this region) bears a striking resemblance to that of the Ha and [SII] emission previously observed with WFPC2. This implies that these IR and optical lines are produced by radiative excitation on the surface of the molecular cloud. The Pa morphology of HH 202 is also very similar to its H a and [OIII] emission, again suggesting that the Pa in this object is photo-excited by the Trapezium, as has been suggested for the optical emission. We find evidence of shock-excited [FeII] in HH 208, where it again closely follows the morphology of [SII]. There is also H2 coincident with the [SII] and [FeII] emission, which may be associated with HH 208. Finally, we note some interesting continuum features: diffuse "tails" trailing from IRc3 and IRc4, more extensive observations of the "crescent" found by Stolovy, et al. (1998), and new observations of a similar oval object nearby. We also find a "V"-shaped region which may be the boundary of a cavity being cleared by IRc2.

  11. Generation of narrow-band hyperentangled nondegenerate paired photons.

    PubMed

    Yan, Hui; Zhang, Shanchao; Chen, J F; Loy, M M T; Wong, G K L; Du, Shengwang

    2011-01-21

    We report the generation of nondegenerate narrow-bandwidth paired photons with time-frequency and polarization entanglements from laser cooled atoms. We observe the two-photon interference caused by Rabi splitting with a coherence time of about 30 ns and a visibility of 81.8% which verifies the time-frequency entanglement of the paired photons. The polarization entanglement is confirmed by polarization correlation measurements which exhibit a visibility of 89.5% and characterized by quantum-state tomography with a fidelity of 90.8%. Taking into account the transmission losses and duty cycle, we estimate that the system generates hyperentangled paired photons into opposing single-mode fibers at a rate of 320 pairs per second. PMID:21405274

  12. Generation of Narrow-Band Hyperentangled Nondegenerate Paired Photons

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Zhang, Shanchao; Chen, J. F.; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang

    2011-01-01

    We report the generation of nondegenerate narrow-bandwidth paired photons with time-frequency and polarization entanglements from laser cooled atoms. We observe the two-photon interference caused by Rabi splitting with a coherence time of about 30 ns and a visibility of 81.8% which verifies the time-frequency entanglement of the paired photons. The polarization entanglement is confirmed by polarization correlation measurements which exhibit a visibility of 89.5% and characterized by quantum-state tomography with a fidelity of 90.8%. Taking into account the transmission losses and duty cycle, we estimate that the system generates hyperentangled paired photons into opposing single-mode fibers at a rate of 320 pairs per second.

  13. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  14. Narrow band amplification of light carrying orbital angular momentum.

    PubMed

    Borba, G C; Barreiro, S; Pruvost, L; Felinto, D; Tabosa, J W R

    2016-05-01

    We report on the amplification of an optical vortex beam carrying orbital angular momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. A 20% single-pass Raman gain of a weak vortex signal field is observed with a spectral width of order of 1 MHz, much smaller than the natural width, demonstrating that the amplification process preserves the phase structure of the vortex beam. The gain is observed in the degenerated two-level system associated with the hyperfine transition 6S1/2(F = 3) ↔ 6P3/2(F' = 2) of cesium. Our experimental observations are explained with a simple theoretical model based on a three-level Λ system interacting coherently with the weak Laguerre-Gauss field and a strong coupling field, including an incoherent pumping rate between the two degenerate ground-states. PMID:27137618

  15. Intensity Variations of Narrow Bands of Solar UV Radiation during Descending Phases of SACs 21-23

    NASA Astrophysics Data System (ADS)

    Gigolashvili, M.; Kapanadze, N.

    2014-12-01

    The study of variations of four narrow bands of solar spectral irradiance (SSI) in the ultraviolet (UV) range for period 1981-2008 is presented. Observational data obtained by space-flight missions SORCE, UARS, SME and daily meanings of international sunspot number (ISN) have been used. The investigated data cover the decreasing phases of the solar activity cycles (SACs) 21, 22 and 23. We have revealed a peculiar behavior of intensity variability of some solar ultraviolet spectral lines originated in the solar chromospheres for period corresponding to the declining phase of the solar cycle 23. It is found that variability of emission of different solar spectral narrow bands (289.5 nm, 300.5 nm) does not agree equally well with ISN variability during decreasing phase of the solar activity cycle 23. The negative correlations between total solar irradiance and the solar spectral narrow bands of UV emission (298.5 nm, 300.5 nm) had been revealed. The existence of the negative correlation can be explained by the sensitivity of SSI of some emission lines to the solar global magnetic field.

  16. Large Format Narrow-Band, Multi-Band, and Broad-Band LWIR QWIP Focal Planes for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2004-01-01

    A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.

  17. The relationship between rape biomass and narrow-band vegetation indices

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Wang, Yuan; Wang, Fumin; Wang, Xiuzhen

    2004-11-01

    The Relationships between rape biomass and hyperspectral vegetation indices are investigated in this paper. The data for this study comes from field hyperspectral reflectance measurements of rape during 2002-2003 growing period. Reflectance was measured in discrete narrow bands between 350 and 2500 nm. Observed rape biomass included wet biomass (WBM including leaf wet biomass-LWBM, stem wet biomass-SWBM, fruit wet biomass-FWBM), and dry biomass(DBM: including leaf dry biomass-LDBM, stem dry biomass, fruit dry biomass-FDBM). Narrow band normalized difference vegetation index (NBNDVI) and narrow band ratio vegetation index (NBRVI)involving all possible two-band combinations of discrete channels was tested. Special narrow band lambda (λ1) versus lambda (λ2) plots of R2 values illustrate the most effective wavelength combinations (λ1 and λ2) and band-width (Δλ1 and Δλ2) for predicting rape biomass at different development stage. A strong relationship with rape biomass is located in red-edge, the longer portion of red, moisture-sensitive NIR, longer portion of the blue band, the intermediate portion of SWIR, and the longer portion of SWIR.

  18. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.

    PubMed

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-12-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites. PMID:26319225

  19. Narrow-band impedance of a round metallic pipe with a low conductive thin layer

    NASA Astrophysics Data System (ADS)

    Ivanyan, M.; Grigoryan, A.; Tsakanian, A.; Tsakanov, V.

    2014-02-01

    The new traveling wave structure with a single synchronous mode resonantly excited by the relativistic charge is presented. The structure is composed of a metallic tube with an internally coated low conductive thin layer. It is shown that the impedance of the internally coated metallic tube has a narrow-band single resonance at a high frequency. The analytical presentation of the narrow-band impedance, the wake function, and the frequency of the synchronous mode are obtained. The analytical solutions are compared with exact numerical simulations using the field matching technique.

  20. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation. PMID:27421066

  1. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites.

    PubMed

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-Kwang

    2016-08-01

    The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014

  2. Cyclotron side band emissions from magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Maeda, K.

    1975-01-01

    Very low frequency emissions with subharmonic cyclotron frequency from magnetospheric electrons were detected by the S(3)-A satellite (Explorer 45) whose orbit is close to the magnetic equatorial plane where the wave-particle interaction is most efficient. These emissions were observed during the main phase of a geomagnetic storm in the nightside of the magnetosphere outside of the plasmasphere. During the event of these side-band emissions, the pitch angle distributions of high energy electrons (greater than 50 keV) and of energetic protons (greater than 100 keV) showed remarkable changes with time, whereas those of low energy electrons and protons remained approximately isotropic. In this type of event, emissions consist essentially of two bands, the one below the equatorial electron gyrofrequency, and the other above. The emissions below are whistler mode, and the emissions above are electrostatic mode.

  3. Analysis of Discrimination Techniques for Low-Cost Narrow-Band Spectrofluorometers

    PubMed Central

    Aymerich, Ismael F.; Sánchez, Albert-Miquel; Pérez, Sergio; Piera, Jaume

    2015-01-01

    The need for covering large areas in oceanographic measurement campaigns and the general interest in reducing the observational costs open the necessity to develop new strategies towards this objective, fundamental to deal with current and future research projects. In this respect, the development of low-cost instruments becomes a key factor, but optimal signal-processing techniques must be used to balance their measurements with those obtained from accurate but expensive instruments. In this paper, a complete signal-processing chain to process the fluorescence spectra of marine organisms for taxonomic discrimination is proposed. It has been designed to deal with noisy, narrow-band and low-resolution data obtained from low-cost sensors or instruments and to optimize its computational cost, and it consists of four separated blocks that denoise, normalize, transform and classify the samples. For each block, several techniques are tested and compared to find the best combination that optimizes the classification of the samples. The signal processing has been focused on the Chlorophyll-a fluorescence peak, since it presents the highest emission levels and it can be measured with sensors presenting poor sensitivity and signal-to-noise ratios. The whole methodology has been successfully validated by means of the fluorescence spectra emitted by five different cultures. PMID:25558997

  4. Invisible grazings and dangerous bifurcations in impacting systems: The problem of narrow-band chaos

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumitro; Ing, James; Pavlovskaia, Ekaterina; Wiercigroch, Marian; Reddy, Ramesh K.

    2009-03-01

    We discovered a narrow band of chaos close to the grazing condition for a simple soft impact oscillator. The phenomenon was observed experimentally for a range of system parameters. Through numerical stability analysis, we argue that this abrupt onset to chaos is caused by a dangerous bifurcation in which two unstable period-3 orbits, created at “invisible” grazings, take part.

  5. Invisible grazings and dangerous bifurcations in impacting systems: the problem of narrow-band chaos.

    PubMed

    Banerjee, Soumitro; Ing, James; Pavlovskaia, Ekaterina; Wiercigroch, Marian; Reddy, Ramesh K

    2009-03-01

    We discovered a narrow band of chaos close to the grazing condition for a simple soft impact oscillator. The phenomenon was observed experimentally for a range of system parameters. Through numerical stability analysis, we argue that this abrupt onset to chaos is caused by a dangerous bifurcation in which two unstable period-3 orbits, created at "invisible" grazings, take part. PMID:19392086

  6. Narrow band coronographic imaging of the bipolar nebula around the LBV R127

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Nota, Antonella; Golimowski, David A.; Leitherer, Claus

    1992-01-01

    New high resolution narrow band coronographic images of the R127 nebula have been recently obtained. The nebula displays a bipolar morphology and is similar in appearance to the nebula around AG Carinae. The observations improve the values for the linear dimensions (1.9 x 2.2 pc) and yield an estimated nebular mass of 3.1 solar mass.

  7. Submillimeter Narrow Emission Lines from the Inner Envelope of IRC+10216

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Young, Ken H.; Brünken, Sandra; Wilson, Robert W.; Thaddeus, Patrick; Menten, Karl M.; Reid, Mark; McCarthy, Michael C.; Dinh-V-Trung; Gottlieb, Carl A.; Hedden, Abigail

    2009-02-01

    A spectral-line survey of IRC+10216 in the 345 GHz band has been undertaken with the Submillimeter Array. Although not yet completed, it has already yielded a fairly large sample of narrow molecular emission lines with line widths indicating expansion velocities of ~ 4 km s-1, less than three times the well known value of the terminal expansion velocity (14.5 km s-1) of the outer envelope. Five of these narrow lines have now been identified as rotational transitions in vibrationally excited states of previously detected molecules: the v = 1, J = 17-16, and J = 19-18 lines of Si34S and 29SiS and the v = 2, J = 7-6 line of CS. Maps of these lines show that the emission is confined to a region within ~ 60 AU of the star, indicating that the narrow-line emission is probing the region of dust formation where the stellar wind is still being accelerated.

  8. Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors

    NASA Astrophysics Data System (ADS)

    Zogg, Hans; Arnold, Martin

    2007-01-01

    Narrow spectral band infrared detectors are required for multispectral infrared imaging. We review the first photovoltaic resonant cavity enhanced detectors (RCED) for the mid-IR range. The lead-chalcogenide (PbEuSe) photodetector is placed as a very thin layer inside an optical cavity. At least one side is terminated with an epitaxial Bragg mirror (consisting of quarter wavelength PbEuSe/BaF 2 pairs), while the second mirror may be a metal. Linewidths are as narrow as 37 nm at a peak wavelength of 4400 nm, and peak quantum efficiencies up to above 50% are obtained.

  9. Stopping Narrow-Band X-Ray Pulses in Nuclear Media

    NASA Astrophysics Data System (ADS)

    Kong, Xiangjin; Pálffy, Adriana

    2016-05-01

    A control mechanism for stopping x-ray pulses in resonant nuclear media is investigated theoretically. We show that narrow-band x-ray pulses can be mapped and stored as nuclear coherence in a thin-film planar x-ray cavity with an embedded 57Fe nuclear layer. The pulse is nearly resonant to the 14.4 keV Mössbauer transition in the 57Fe nuclei. The role of the control field is played here by a hyperfine magnetic field which induces interference effects reminiscent of electromagnetically induced transparency. We show that, by switching off the control magnetic field, a narrow-band x-ray pulse can be completely stored in the cavity for approximately 100 ns. Additional manipulation of the external magnetic field can lead to both group velocity and phase control of the pulse in the x-ray cavity sample.

  10. Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting.

    PubMed

    Wang, Tuo; Gong, Jinlong

    2015-09-01

    Solar water splitting provides a clean and renewable approach to produce hydrogen energy. In recent years, single-crystal semiconductors such as Si and InP with narrow band gaps have demonstrated excellent performance to drive the half reactions of water splitting through visible light due to their suitable band gaps and low bulk recombination. This Minireview describes recent research advances that successfully overcome the primary obstacles in using these semiconductors as photoelectrodes, including photocorrosion, sluggish reaction kinetics, low photovoltage, and unfavorable planar substrate surface. Surface modification strategies, such as surface protection, cocatalyst loading, surface energetics tuning, and surface texturization are highlighted as the solutions. PMID:26227831

  11. Scaling effect on the estimation of chlorophyll content using narrow band NDVIs based on radiative transfer model

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Shi, Runhe; Liu, Pudong; Cong, Zhou

    2015-09-01

    The aim of this work is to use narrow band normalized difference vegetation indices to compare the estimations of chlorophyll contents at foliar level and canopy level, through a large number of simulated canopy reflectance spectra under different chlorophyll contents based on PROSPECT model and SAIL model. 10 narrow band NDVIs were selected at the identified ranges that can effectively assess foliar chlorophyll content. We analyzed the correlations between canopy chlorophyll contents and the ten narrow band NDVIs firstly, and then analyze these indices' sensitivities to all canopy parameters, the adaptation of the 10 narrow band NDVIs used in assessing the canopy chlorophyll content were evaluated finally. We found that only two narrow band NDVIs (i.e., NDVI(875, 725) and NDVI(900,720)) can be applied for the estimation of chlorophyll contents at canopy level.

  12. Narrow-band radiation wavelength measurement by processing digital photographs in RAW format

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2012-12-31

    The technique of measuring the mean wavelength of narrow-band radiation in the 455 - 625-nm range using the image of the emitting surface is presented. The data from the camera array unprocessed by the built-in processor (RAW format) are used. The method is applied for determining the parameters of response of holographic sensors. Depending on the wavelength and brightness of the image fragment, the mean square deviation of the wavelength amounts to 0.3 - 3 nm. (experimental techniques)

  13. Identification of vessel degeneration and endometrosis in the equine endometrium, using narrow-band imaging hysteroscopy.

    PubMed

    Otzen, Henning; Sieme, Harald; Oldenhof, Harriëtte; Ertmer, Franziska; Kehr, Anne; Rode, Kristina; Klose, Kristin; Rohn, Karl; Schoon, Heinz-Adolf; Meinecke, Burkhard

    2016-10-01

    In this study, endometrosis and angiosclerosis in mares were studied. Endometrosis is a severe, progressive, and irreversible fibrotic condition that affects the endometrium, whereas angiosclerosis refers to thickening of vessel walls due to degenerative changes leading to reduced elasticity of the walls and lower perfusion. Histologic evaluations were performed on biopsies and compared with vascular features of the endometrial surface obtained via narrow-band imaging (NBI) hysteroscopy. First, it was determined if hysteroscopic evaluation of the endometrium using NBI resulted in a better visualization of the vascular pattern (i.e., vessel-versus-background contrast was increased) compared with using white light. This was found to be the case for examinations in vivo (n = 10), but not when using abattoir uteri (n = 3). In the second part of this study, it was determined if vascular densities and sizes as derived from NBI images could be used as indicators for the degree of degenerative changes of the equine endometrium and its vessels. Narrow-band imaging hysteroscopic evaluations were performed (n = 10), and endometrial biopsies (n = 32) were collected. Histologic specimens were evaluated for degree of endometrosis and angiosclerosis, and they were classified in Kenney categories. Narrow-band imaging images were analyzed for vascular pattern. Samples classified to Kenney category I, or without signs of vessel degeneration, had significantly higher vascular densities than samples from Kenney category IIa or with angiosclerosis. In conclusion, narrow-band imaging facilitates enhanced visualization of the vasculature of the equine endometrium during hysteroscopies, which has applications in detection of endometrosis and angiosclerosis. PMID:27264739

  14. On resolving 2M - 1 narrow-band signals with an M sensor uniform linear array

    NASA Technical Reports Server (NTRS)

    Williams, Douglas B.; Johnson, Don H.

    1992-01-01

    Length 2M real signal vectors are used to address the problem of determining the maximum number of narrow-band signals whose parameters can be estimated with a linear array of M equally spaced sensors. It is shown that 2M of these real vectors are linearly independent with probability one, and, thus in the presence of additive white noise, the parameters of 2M - 1 signals can be estimated. An algorithm for determining directions and amplitudes is presented.

  15. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  16. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    SciTech Connect

    Ramakanth, S.; James Raju, K. C.

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nm particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.

  17. Band gap narrowing in BaTiO3 nanoparticles facilitated by multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Ramakanth, S.; James Raju, K. C.

    2014-05-01

    In the present work, BaTiO3 nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nm particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm-1. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm-1) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm-1 with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.

  18. Decomposing a signal into short-time narrow-banded modes

    NASA Astrophysics Data System (ADS)

    McNeill, S. I.

    2016-07-01

    An algorithm for nonparametric decomposition of a signal into the sum of short-time narrow-banded modes (components) is introduced. Specifically, the signal data is augmented with its Hilbert transform to obtain the analytic signal. Then the set of constituent amplitude and frequency modulated (AM-FM) analytic sinusoids, each with slowly varying amplitude and frequency, is sought. The method for obtaining the short-time narrow-banded modes is derived by minimizing an objective function comprised of three criteria: smoothness of the instantaneous amplitude envelope, smoothness of the instantaneous frequency and complete reconstruction of the signal data. A minimum of the objective function is approached using a sequence of suboptimal updates of amplitude and phase. The updates are intuitive, efficient and simple to implement. For a given mode, the amplitude and phase are extracted from the band-pass filtered residual (signal after the other modes are removed), where the band-pass filter is applied about the previous modal instantaneous frequency estimate. The method is demonstrated by application to random output-only vibration data and order tracking data. It is demonstrated that vibration modal responses can be estimated from single channel data and order tracking can be performed without measured tachometer data.

  19. UNIDENTIFIED INFRARED EMISSION BANDS: PAHs or MAONs?

    SciTech Connect

    Sun Kwok; Yong Zhang

    2013-07-01

    We suggest that the carrier of the unidentified infrared emission (UIE) bands is an amorphous carbonaceous solid with mixed aromatic/aliphatic structures, rather than free-flying polycyclic aromatic hydrocarbon molecules. Through spectral fittings of the astronomical spectra of the UIE bands, we show that a significant amount of the energy is emitted by the aliphatic component, implying that aliphatic groups are an essential part of the chemical structure. Arguments in favor of an amorphous, solid-state structure rather than a gas-phase molecule as a carrier of the UIE are also presented.

  20. Some observations about the components of transonic fan noise from narrow-band spectral analysis

    NASA Technical Reports Server (NTRS)

    Saule, A. V.

    1974-01-01

    Qualitative and quantitative spectral analyses are presented that give the broadband-noise, discrete-tone, and multiple-tone properties of the noise generated by a full-scale high-bypass single-stage axial-flow transonic fan (fan B, NASA Quiet Engine Program). The noise components were obtained from narrow-band spectra in conjunction with 1/3-octave-band spectra. Variations in the pressure levels of the noise components with fan speed, forward-quadrant azimuth angle, and frequency are presented and compared. The study shows that much of the apparent broadband noise on 1/3-octave-band plots consists of a complex system of shaft-order tones. The analyses also indicate the difficulties in determining or defining noise components, especially the broadband level under the discrete tones. The sources which may be associated with the noise components are discussed.

  1. Stability of narrow emission line clouds in active galactic nuclei

    SciTech Connect

    Mathews, W.G.; Veilleux, S.

    1989-01-01

    The effects of the lateral flow and Rayleigh-Taylor instabilities on clouds in the narrow-line region of active galaxies are considered using cloud densities and velocities based on observations. A simplified model for the lateral flow instability governed only by overpressures is discussed. The associated radiative acceleration is considered, and parameters describing the narrow-line region and the central nonstellar continuum are presented. It is shown that many otherwise acceptable narrow-line clouds are unstable to lateral flows, particularly if their column depths are small. It is argued that the most likely narrow-line clouds have column densities of about 10 to the 23rd/sq cm and that these clouds are accelerated by winds in the intercloud medium. Arguments are made against models in which narrow-line clouds move inward. 22 references.

  2. High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts

    NASA Astrophysics Data System (ADS)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2016-02-01

    Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high

  3. Narrow-Band Search of Continuous Gravitational-Wave Signals from Crab and Vela Pulsars in Virgo VSR4 Data

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Camp, J. B.; Gehrels, N.

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  4. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Serafinelli, R.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  5. Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors

    NASA Astrophysics Data System (ADS)

    Zogg, H.; Arnold, M.

    2006-03-01

    Narrow spectral band infrared detectors are required for multispectral infrared imaging. Wavelength selectivity can be obtained by placing passive line filters in front of the detectors, or, the preferred choice, by making the detectors themselves wavelength selective. We review the first photovoltaic resonant cavity enhanced detectors (RCED) for the mid-IR range. The lead-chalcogenide (PbEuSe) photodetector is placed as a very thin layer inside an optical cavity. At least one side is terminated with an epitaxial Brugg mirror (consisting of quarter wavelength PbEuSe/BaF2 pairs), while the second mirror may be a metal. Linewidths are as narrow as 37 nm at a peak wavelength of 4400 nm, and peak quantum efficiencies up to above 50% are obtained.

  6. Numerical investigation of the instability and nonlinear evolution of narrow-band directional ocean waves.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2010-07-01

    The instability and nonlinear evolution of directional ocean waves is investigated numerically by means of simulations of the governing kinetic equation for narrow-band surface waves. Our simulation results reveal the onset of the modulational instability for long-crested wave trains, which agrees well with recent large-scale experiments in wave basins, where it was found that narrower directional spectra lead to self-focusing of ocean waves and an enhanced probability of extreme events. We find that the modulational instability is nonlinearly saturated by a broadening of the wave spectrum, which leads to the stabilization of the water-wave system. Applications of our results to other fields of physics, such as nonlinear optics and plasma physics, are discussed. PMID:20867450

  7. Narrow band absorber based on a dielectric nanodisk array on silver film

    NASA Astrophysics Data System (ADS)

    Callewaert, F.; Chen, S.; Butun, S.; Aydin, K.

    2016-07-01

    The simulations of normally incident visible light absorption in a periodic array of dielectric nanodisks on the top of a silver film are presented. Electromagnetic simulations indicate narrow resonances with absorption intensities as large as 95%. The absorption enhancement due to the periodic array can be as high as a factor of 30 compared to an equivalent dielectric film on top of a silver mirror. A parametric study shows that the resonance characteristics and the number of modes can be easily tuned and controlled by the refractive index and the geometric parameters of the nanodisks. In particular, the structure can be tuned to have either a single or two absorption peaks. The characteristics of the two main resonance peaks are described in detail using the simulated electric field profiles and the dispersion relation. Proposed narrowband absorber design utilizing continuous metal films and nanostructured dielectric arrays could be used for narrow-band absorption filters, refractive-index based biosensing applications and thermal emitters.

  8. Flow-radiation coupling for atmospheric entries using a Hybrid Statistical Narrow Band model

    NASA Astrophysics Data System (ADS)

    Soucasse, Laurent; Scoggins, James B.; Rivière, Philippe; Magin, Thierry E.; Soufiani, Anouar

    2016-09-01

    In this study, a Hybrid Statistical Narrow Band (HSNB) model is implemented to make fast and accurate predictions of radiative transfer effects on hypersonic entry flows. The HSNB model combines a Statistical Narrow Band (SNB) model for optically thick molecular systems, a box model for optically thin molecular systems and continua, and a Line-By-Line (LBL) description of atomic radiation. Radiative transfer calculations are coupled to a 1D stagnation-line flow model under thermal and chemical nonequilibrium. Earth entry conditions corresponding to the FIRE 2 experiment, as well as Titan entry conditions corresponding to the Huygens probe, are considered in this work. Thermal nonequilibrium is described by a two temperature model, although non-Boltzmann distributions of electronic levels provided by a Quasi-Steady State model are also considered for radiative transfer. For all the studied configurations, radiative transfer effects on the flow, the plasma chemistry and the total heat flux at the wall are analyzed in detail. The HSNB model is shown to reproduce LBL results with an accuracy better than 5% and a speed up of the computational time around two orders of magnitude. Concerning molecular radiation, the HSNB model provides a significant improvement in accuracy compared to the Smeared-Rotational-Band model, especially for Titan entries dominated by optically thick CN radiation.

  9. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-06-01

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.

  10. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain.

    PubMed

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-07-14

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm(-2) at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering. PMID:27305339

  11. A simplified scheme for generating narrow-band mid-ultraviolet laser radiation

    SciTech Connect

    Almog, G.; Scholz, M. Weber, W.; Leisching, P.; Kaenders, W.; Udem, Th.

    2015-03-15

    We report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6{sup 1}S{sub 0} → 6{sup 3}P{sub 1} intercombination line at 253.7 nm. We could perform Doppler-free saturation spectroscopy on this line and were able to lock our laser to the transition frequency on long time scales.

  12. Construction of narrow-band regenerative amplifier for momentum imaging spectroscopy of lithium dimer

    SciTech Connect

    Matsuoka, Leo; Hashimoto, Masashi; Yokoyama, Keiichi

    2012-07-11

    We constructed a Ti:Sapphire narrow-band regenerative amplifier as the probe laser of the experiment of momentum imaging spectroscopy of lithium dimer. The spectral profile of the regenerative cavity was designed by three birefringent filters and a plate of etalon. With 1.1-mJ pumping by the second harmonics of Nd:YLF laser, mode-locked seed pulses were amplified to {approx}25 {mu}J at 1-kHz repetition, with the bandwidth of {approx}0.7 cm{sup -1}.

  13. Compressed Sensing/Sparse-Recovery Approach for Improved Range Resolution in Narrow-Band Radar

    PubMed Central

    Costanzo, Sandra

    2016-01-01

    A compressed sensing/sparse-recovery procedure is adopted to obtain enhanced range resolution capability from the processing of data acquired with narrow-band SFCW radars. A mathematical formulation for the proposed approach is reported and validity limitations are fully discussed, by demonstrating the ability to identify a great number of targets, up to 20, in the range direction. Both numerical and experimental validations are presented, by assuming also noise conditions. The proposed method can be usefully applied for the accurate detection of parameters with very small variations, such as those involved in the monitoring of soil deformations or biological objects. PMID:27022617

  14. AGAR-AGAR: a high-efficiency narrow-band imager for ELTs

    NASA Astrophysics Data System (ADS)

    Tresoldi, Daniela; Felletti, Riccardo; Bianco, Andrea; Conconi, Paolo; De Caprio, Vincenzo; Crimi, Giuseppe; Molinari, Emilio; Riva, Alberto; Riva, Marco; Spanò, Paolo; Tintori, Matteo; Toso, Giorgio; Zerbi, Filippo M.

    2006-06-01

    The thinking about possible instruments for the future ELTs has just started and the current phase allows to pursue non-traditional solutions. Following the guidelines of the Science Case for an ELT 1,2 our team searched for possible intersections with innovative technologies we currently deal with in our research. We found that Volume Phase Holographic Gratings and advanced dichroics could be suited to design a non-traditional narrow band imager. We propose in this paper a comparative analysis of a VPHG based and a dichroic based configurations for the imager.

  15. A simplified scheme for generating narrow-band mid-ultraviolet laser radiation.

    PubMed

    Almog, G; Scholz, M; Weber, W; Leisching, P; Kaenders, W; Udem, Th

    2015-03-01

    We report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6(1)S0 → 6(3)P1 intercombination line at 253.7 nm. We could perform Doppler-free saturation spectroscopy on this line and were able to lock our laser to the transition frequency on long time scales. PMID:25832214

  16. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2010-09-10

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)

  17. Locata Performance Evaluation in the Presence of Wide- and Narrow-Band Interference

    NASA Astrophysics Data System (ADS)

    Khan, Faisal A.; Rizos, Chris; Dempster, Andrew G.

    Classically difficult positioning environments often call for augmentation technology to assist the GPS, or more generally the Global Navigation Satellite System (GNSS) technology. The ground-based ranging technology offers augmentation, and even replacement, to GPS in such environments. However, like any other system relying on wireless technology, a Locata positioning network also faces issues in the presence of RF interference (RFI). This problem is magnified due to the fact that Locata operates in the licence-free 2·4 GHz Industrial, Scientific and Medical (ISM) band. The licence-free nature of this band attracts a much larger number of devices using a wider range of signal types than for licensed bands, resulting in elevation of the noise floor. Also, harmonics from out-of-band signals can act as potential interferers. WiFi devices operating in this band have been identified as the most likely potential interferer, due partially to their use of the whole ISM band, but also because Locata applications often also may use a wireless network. This paper evaluates the performance of Locata in the presence of both narrow- and wide-band interfering signals. Effects of received interference on both raw measurements and final solutions are reported and analysed. Test results show that Locata performance degrades in the presence of received interference. It is also identified that high levels of received interference can affect Locata carriers even if the interference is not in co-frequency situation with the affected carrier. Finally, Locata characteristics have been identified which can be exploited to mitigate RFI issues.

  18. Narrow band wavelength selective filter using grating assisted single ring resonator

    SciTech Connect

    Prabhathan, P. Murukeshan, V. M.

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  19. Novel schemes for the optimization of the SPARC narrow band THz source

    NASA Astrophysics Data System (ADS)

    Marchetti, B.; Bacci, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Pompili, R.; Ronsivalle, C.; Spataro, B.; Zagorodnov, I.

    2015-07-01

    A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC_LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-band and acting as a longitudinal phase space linearizer.

  20. Novel schemes for the optimization of the SPARC narrow band THz source

    SciTech Connect

    Marchetti, B. Zagorodnov, I.; Bacci, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Spataro, B.; Cianchi, A.; Mostacci, A.; Ronsivalle, C.

    2015-07-15

    A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-band and acting as a longitudinal phase space linearizer.

  1. A search for narrow band signals with SERENDIP II: a progress report

    NASA Technical Reports Server (NTRS)

    Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  2. A search for narrow band signals with SERENDIP II: a progress report.

    PubMed

    Werthimer, D; Brady, R; Berezin, A; Bowyer, S

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope. PMID:11538322

  3. EVOLUTION OF [O III] {lambda}5007 EMISSION-LINE PROFILES IN NARROW EMISSION-LINE GALAXIES

    SciTech Connect

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] {lambda}5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  4. Evolution of [O III] λ5007 Emission-line Profiles in Narrow Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] λ5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  5. An accurate cluster selection function for the J-PAS narrow-band wide-field survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Benítez, N.; Dupke, R.; Cypriano, E.; Lima-Neto, G.; López-Sanjuan, C.; Varela, J.; Alcaniz, J. S.; Broadhurst, T.; Cenarro, A. J.; Devi, N. Chandrachani; Díaz-García, L. A.; Fernandes, C. A. C.; Hernández-Monteagudo, C.; Mei, S.; Mendes de Oliveira, C.; Molino, A.; Oteo, I.; Schoenell, W.; Sodré, L.; Viironen, K.; Marín-Franch, A.

    2016-03-01

    The impending Javalambre Physics of the accelerating Universe Astrophysical Survey (J-PAS) will be the first wide-field survey of ≳ 8500 deg2 to reach the `stage IV' category. Because of the redshift resolution afforded by 54 narrow-band filters, J-PAS is particularly suitable for cluster detection in the range z<1. The photometric redshift dispersion is estimated to be only ˜0.003 with few outliers ≲4 per cent for galaxies brighter than i ˜ 23 AB, because of the sensitivity of narrow band imaging to absorption and emission lines. Here, we evaluate the cluster selection function for J-PAS using N-body+semi-analytical realistic mock catalogues. We optimally detect clusters from this simulation with the Bayesian Cluster Finder, and we assess the completeness and purity of cluster detection against the mock data. The minimum halo mass threshold we find for detections of galaxy clusters and groups with both >80 per cent completeness and purity is Mh ˜ 5 × 1013 M⊙ up to z ˜ 0.7. We also model the optical observable, M^{*}_CL-halo mass relation, finding a non-evolution with redshift and main scatter of σ _{M^{*}_CL | M_h}˜ 0.14 dex down to a factor 2 lower in mass than other planned broad-band stage IV surveys, at least. For the Mh ˜ 1 × 1014 M⊙ Planck mass limit, J-PAS will arrive up to z ˜ 0.85 with a σ _{M^{*}_CL | M_h}˜ 0.12 dex. Therefore, J-PAS will provide the largest sample of clusters and groups up to z ˜ 0.8 with a mass calibration accuracy comparable to X-ray data.

  6. Narrow band gap and enhanced thermoelectricity in FeSb2.

    PubMed

    Sun, Peijie; Oeschler, Niels; Johnsen, Simon; Iversen, Bo B; Steglich, Frank

    2010-01-28

    FeSb(2) was recently identified as a narrow-gap semiconductor with indications of strong electron-electron correlations. In this manuscript, we report on systematic thermoelectric investigation of a number of FeSb(2) single crystals with varying carrier concentrations, together with two isoelectronically substituted FeSb(2-x)As(x) samples (x = 0.01 and 0.03) and two reference compounds FeAs(2) and RuSb(2). Typical behaviour associated with narrow bands and narrow gaps is only confirmed for the FeSb(2) and the FeSb(2-x)As(x) samples. The maximum absolute thermopower of FeSb(2) spans from 10 to 45 mV/K at around 10 K, greatly exceeding that of both FeAs(2) and RuSb(2). The relation between the carrier concentration and the maximum thermopower value is in approximate agreement with theoretical predictions of the electron-diffusion contribution which, however, requires an enhancement factor larger than 30. The isoelectronic substitution leads to a reduction of the thermal conductivity, but the charge-carrier mobility is also largely reduced due to doping-induced crystallographic defects or impurities. In combination with the high charge-carrier mobility and the enhanced thermoelectricity, FeSb(2) represents a promising candidate for thermoelectric cooling applications at cryogenic temperatures. PMID:20066185

  7. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  8. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution

    PubMed Central

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I.; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6]3− precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance. PMID:27025784

  9. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    PubMed Central

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  10. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications.

    PubMed

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10(-4) × (λres/n)(3). Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  11. Fabry-Pérot based narrow band imager for solar filament observations

    NASA Astrophysics Data System (ADS)

    Dhara, Sajal Kumar; Ravindra, Belur; Banyal, Ravinder Kumar

    2016-01-01

    We have recently developed a narrow band imager (NBI) using an air gap based Fabry-Pérot (FP) interferometer at the Indian Institute of Astrophysics, Bangalore. Narrow band imaging is achieved by using an FP interferometer working in combination with an order sorting pre-filter. The NBI can be tuned to a different wavelength position on the line profile by changing the plate separation of the FP. The interferometer has a 50 mm clear aperture with a bandpass of ∼247.8 mÅ and a free spectral range of ∼5.3 Å at λ = 656.3 nm. The developed NBI is used to observe the solar filament in the Hα wavelength. The instrument is being used to image the Sun at chromospheric height and it is also able to scan the Hα spectral line profile at different wavelength positions. We have also made Doppler velocity maps at chromospheric height by taking the blue and red wing images at ±176 mÅ wavelength positions separately away from the line center of the spectral line. In this paper, we present a description of the NBI including lab test results of individual components and some initial observations carried out with this instrument.

  12. A Cooperative Distance Learning Method based on the Narrow-band Internet and Its Evaluation

    NASA Astrophysics Data System (ADS)

    Tilwaldi, Dilmurat; Takahashi, Toshiya; Takata, Akinobu; Koizumi, Hisao

    This paper describes the experimental evaluation of a cooperative distance learning method, which can be utilized on the narrow-band Internet. In this method, students of group-learning perform a series of study a couple of times, which create an on-line report, communicating through the chat about given theme. they try to gain improvement in the study effect with higher cooperative attitude. Teacher gives a short lecture at the first stage, and then gives supplementary explanation after grasping the degree of comprehension of students at the middle stage of the study. Teaching materials are distributed to students' PCs beforehand and the lecture could be carried out on the narrow-band environment by transmitting the commands. The teacher analyzes students' communication logs and gives advice for the next study. This paper describes the result of the evaluation of the proposed method by carrying out simulated installation of the environment within the campus supposing a trial of cooperative distance learning in overseas desert circumference area environment.

  13. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    NASA Astrophysics Data System (ADS)

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-04-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10‑4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics.

  14. In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zhiwei; Bergholt, Mads Sylvest; Zheng, Wei; Lin, Kan; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan

    2010-05-01

    We first report on the implementation of a novel narrow-band image-guided Raman endoscopy technique for in vivo diagnosis of gastric dysplasia. High-quality in vivo Raman spectra can be acquired from normal and dysplastic gastric mucosal tissue within 0.5 sec under narrow-band image (NBI) guidance at gastroscopy. Significant differences are observed in in vivo Raman spectra between normal (n=54) and dysplastic (n=18) gastric tissue from 30 gastric patients, particularly in the spectral ranges of 825 to 950, 1000 to 1100, 1250 to 1500, and 1600 to 1800 cm-1, which primarily contain signals related to proteins, nucleic acids, and lipids. The multivariate analysis [i.e., principal components analysis (PCA) and linear discriminant analysis (LDA)], together with the leave-one tissue site-out, cross validation on in vivo gastric Raman spectra yields a diagnostic sensitivity of 94.4% (17/18) and specificity of 96.3% (52/54) for distinction of gastric dysplastic tissue. This study suggests that narrowband image-guided Raman endoscopy associated with PCA-LDA diagnostic algorithms has potential for the noninvasive, in vivo early diagnosis and detection of gastric precancer during clinical gastroscopic examination.

  15. Progress in the Search for Ultra-Narrow Band Extraterrestrial Artificial

    NASA Astrophysics Data System (ADS)

    Lemarchand, Guillermo

    Project META II (Megachannel Extra Terrestrial Assay), a full-sky survey for artificial ultra-narrow-band signals, has been conducted in Argentina, since October 1990, from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomia (IAR). The search was performed near the 1.4 GHz line of neutral hydrogen, using an 8.4 times 10^6 channel Fourier spectrometer of 0.05 Hz spectral resolution and 400 kHz of instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. In 1996, with the economical sponsorship of The Planetary Society, an up-grade of the original META data acquisition system was made. New hardware was installed and new software was developed allowing a more comprehensive data analysis of the detected signals. The search was expanded to the 1.667 and 3.3 GHz observing frequencies. A description of the new system's characteristics as well

  16. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Bahk, Je-Hyeong; Shakouri, Ali

    2016-04-01

    We present detailed theoretical predictions on the enhancement of the thermoelectric figure of merit by minority carrier blocking with heterostructure barriers in bulk narrow-band-gap semiconductors. Bipolar carrier transport, which is often significant in a narrow-band-gap material, is detrimental to the thermoelectric energy conversion efficiency as it suppresses the Seebeck coefficient and increases the thermal conductivity. When the minority carriers are selectively prevented from participating in conduction while the transport of majority carriers is relatively unaffected by one-sided heterobarriers, the thermoelectric figure of merit can be drastically enhanced. Thermoelectric transport properties such as Seebeck coefficient, electrical conductivity, and electronic thermal conductivity including the bipolar term are calculated with and without the barriers based on the near-equilibrium Boltzmann transport equations under the relaxation time approximation to investigate the effects of minority carrier barriers on the thermoelectric figure of merit. For this, we provide details of carrier transport modeling and fitting results of experimental data for three important material systems, B i2T e3 -based alloys, M g2S i1 -xS nx , and S i1 -xG ex , that represent, respectively, near-room-temperature (300 K-500 K), midtemperature (600 K-900 K), and high-temperature (>1000 K ) applications. Theoretical maximum enhancement of thermoelectric figure of merit that can be achieved by minority carrier blocking is quantified and discussed for each of these semiconductors.

  17. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Chen, Deyuan; Zhang, Gang; Wang, Juebin; Tao, Shangbin

    2016-03-01

    In this paper, a novel structure of super narrow band filter based on two-dimensional square lattice photonic crystals of silicon rods in air for 1.5 um communication is proposed and studied. COMSOL Multiphysics4.3b software is used to simulate the optical behavior of the filter. The filter consists of one point-defect-based resonator and two line-defect-based reflectors. The resonance frequency, transmission coefficient and quality factor are investigated by varying the parameters of the structure. In design, a silicon rod is removed to form the resonator; for the rows of rods above and below the resonator, a part of the rods are removed to form the reflectors. By optimizing the parameters of the filter, the quality factor and transmission coefficient of the filter at the resonance frequency of 2e14 Hz can reach 1330 and 0.953, respectively. The super narrow band filter can be integrated into optical circuit for its micron size. Also, it can be used for wavelength selection and noise filtering of optical amplifier in future communication application.

  18. Narrow-band N-resonance formed in thin rubidium atomic layers

    SciTech Connect

    Sargsyan, A.; Mirzoyan, R.; Sarkisyan, D.

    2012-11-15

    The narrow-band N-resonance formed in a {Lambda} system of D{sub 1}-line rubidium atoms is studied in the presence of a buffer gas (neon) and the radiations of two continuous narrow-band diode lasers. Special-purpose cells are used to investigate the dependence of the process on vapor column thickness L in millimeter, micrometer, and nanometer ranges. A comparison of the dependences of the N-resonance and the electromagnetically induced transparency (EIT) resonance on L demonstrates that the minimum (record) thickness at which the N-resonance can be detected is L = 50 {mu}m and that a high-contrast EIT resonance can easily be formed even at L Almost-Equal-To 800 nm. The N-resonance in a magnetic field for {sup 85}Rb atoms is shown to split into five or six components depending on the magnetic field and laser radiation directions. The results obtained indicate that levels F{sub g} = 2, 3 are initial and final in the N-resonance formation. The dependence of the N-resonance on the angle between the laser beams is analyzed, and practical applications are noted.

  19. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    SciTech Connect

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V; Yakubovich, S D

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  20. Effect of timing noise on targeted and narrow-band coherent searches for continuous gravitational waves from pulsars

    NASA Astrophysics Data System (ADS)

    Ashton, G.; Jones, D. I.; Prix, R.

    2015-03-01

    Most searches for continuous gravitational waves from pulsars use Taylor expansions in the phase to model the spin-down of neutron stars. Studies of pulsars demonstrate that their electromagnetic (EM) emissions suffer from timing noise, small deviations in the phase from Taylor expansion models. How the mechanism producing EM emission is related to any continuous gravitational-wave (CW) emission is unknown; if they either interact or are locked in phase, then the CW will also experience timing noise. Any disparity between the signal and the search template used in matched filtering methods will result in a loss of signal-to-noise ratio, referred to as "mismatch." In this work we assume the CW suffers a level of timing noise similar to its EM counterpart. We inject and recover fake CW signals, which include timing noise generated from observational data on the Crab pulsar. Measuring the mismatch over durations of order ˜10 months, the effect is, for the most part, found to be small. This suggests recent so-called "narrow-band" searches which placed upper limits on the signals from the Crab and Vela pulsars will not be significantly affected. At a fixed observation time, we find the mismatch depends upon the observation epoch. Considering the averaged mismatch as a function of observation time, we find that it increases as a power law with time, and so may become relevant in long baseline searches.

  1. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding

    PubMed Central

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-01-01

    AIM: To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. METHODS: A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. RESULTS: Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. CONCLUSION: Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both

  2. Treatment of moderate and severe adult chronic atopic dermatitis with narrow-band UVB and the combination of narrow-band UVB/UVA phototherapy.

    PubMed

    Fernández-Guarino, Montserrat; Aboin-Gonzalez, Sonsoles; Barchino, Lucia; Velazquez, Diana; Arsuaga, Carmen; Lázaro, Pablo

    2016-01-01

    The phototherapy is a safe and effective technique for the treatment of adult patients with atopic dermatitis (AD). The treatment of chronic forms of the disease is most often done with narrow-band UVB (NB-UVB). There also exist effective phototherapy options against the AD. The aim of this study was to asses if the combination of NB-UVB with UVA was more effective than the treatment with only NB-UVB against adult chronic AD. We carried out a prospective and observational study. Adult patients with chronic AD with more than 50% of the total body surface area affected (TBSA) were included. The affected TBSA was calculated using the so-called "rule of nines." Patients with a clearance rate >75% of the initial affected TBSA or complete clearance rate were considered as complete response (CR). An analogue scale from 0 to 10 was used to measure the improvement grade of the pruritus. The treatments were repeated three times a week. The initial doses of NB-UVB and UVA were determined by patient's phototype. The treatments were performed using a phototherapy booth (UV7002, Walmann, Villingen-Schwenningen, Germany(®) ) with TL01 and UVA fluorescent lamps. Statistical analysis was performed with SPSS(®) (IBM, New York, NY) for Windows 21.0. A total of 26 patients with adult chronic AD were included in the study, 16 patients were treated with UVB-BE and 10 patients with the combined treatment option NB-UVB/UVA. The mean value of cumulative doses and the mean number of performed treatments were similar between both groups of patients (p > 0.05). The mean value of duration of response was significantly higher in the patients treated only with NB-UVB, 101 versus 6.8 months (p ≥ 0.05). No differences were observed for the patients that showed complete response (p = 0.42) and in the analogue scale of pruritus (p > 0.005). In our study, the patients treated with the combination of NB-UVB and UVA were similar to the patient that were only treated with NB-UVB e

  3. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 2. Overview).

    SciTech Connect

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  4. H-tailored surface conductivity in narrow band gap In(AsN)

    SciTech Connect

    Velichko, A. V. E-mail: anton.velychko@nottingham.ac.uk; Patanè, A. E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O.; Capizzi, M.; Polimeni, A.; Sandall, I. C.; Tan, C. H.; Giubertoni, D.; Krier, A.; Zhuang, Q.

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  5. Band gap narrowing in zinc oxide-based semiconductor thin films

    SciTech Connect

    Kumar, Jitendra E-mail: akrsri@gmail.com; Kumar Srivastava, Amit E-mail: akrsri@gmail.com

    2014-04-07

    A simple expression is proposed for the band gap narrowing (or shrinkage) in semiconductors using optical absorption measurements of spin coated 1 at. % Ga-doped ZnO (with additional 0–1.5 at. % zinc species) thin films as ΔE{sub BGN} = Bn{sup 1/3} [1 − (n{sub c}/n){sup 1/3}], where B is the fitting parameter, n is carrier concentration, and n{sub c} is the critical density required for shrinkage onset. Its uniqueness lies in not only describing variation of ΔE{sub BGN} correctly but also allowing deduction of n{sub c} automatically for several M-doped ZnO (M: Ga, Al, In, B, Mo) systems. The physical significance of the term [1 − (n{sub c}/n){sup 1/3}] is discussed in terms of carrier separation.

  6. Narrow-band Electrostatic Noise generated by an electron velocity space hole

    NASA Technical Reports Server (NTRS)

    Richard, Robert L.; Ashour-Abdalla, Maha; Coroniti, Ferdinand V.

    1993-01-01

    Narrow-band Electrostatic Noise (NEN) is a common occurrence in the Earth's distant magnetotail. NEN is observed in a frequency range (100-316 Hz) that falls roughly between the electron and ion plasma frequencies. This mode may result from holes in the electron distribution function associated with slow shocks. An instability that is associated with this mode is studied using numerical simulations. The growth of the instability depends on the size and shape of the hole. The hole mode can also be driven unstable by either an anisotropy in the electron distribution function or an ion beam. In all these cases the instability saturates at a low level and only a fraction of the available free energy is released.

  7. Generation of Intense Narrow-Band Tunable Terahertz Radiation from Highly Bunched Electron Pulse Train

    NASA Astrophysics Data System (ADS)

    Li, Heting; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-07-01

    We present the analysis and start-to-end simulation of an intense narrow-band terahertz (THz) source with a broad tuning range of radiation frequency, using a single-pass free electron laser (FEL) driven by a THz-pulse-train photoinjector. The fundamental radiation frequency, corresponding to the spacing between the electron microbunches, can be easily tuned by varying the spacing time between the laser micropulses. Since the prebunched electron beam is highly bunched at the first several harmonics, with the harmonic generation technique, the radiation frequency range can be further enlarged by several times. The start-to-end simulation results show that this FEL is capable of generating a few tens megawatts power, several tens micro-joules pulse energy, and a few percent bandwidth at the frequencies of 0.5-5 THz. In addition, several practical issues are considered.

  8. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

    SciTech Connect

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodgriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  9. Simulator spectral characterization using balloon calibrated solar cells with narrow band pass filters

    NASA Technical Reports Server (NTRS)

    Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.

    1981-01-01

    The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.

  10. A proposed interim improvement to the Tevatron beam position monitors with narrow band crystal filters

    SciTech Connect

    Cheng-Yang Tan

    2003-08-25

    Since the start of Run II, we have found that we are unable to reliably and accurately measure the beam position with the present BPM system during high energy physics (HEP). This problem can be traced back to the analogue frontend called the AM/PM module which has trouble handling coalesced beam, but works well with uncoalesced beam. In this paper, we propose a simple fix to the AM/PM module so that we can measure the beam position during HEP. The idea is to use narrow band crystal filters which ring when pinged by coalesced beam so that the AM/PM module is tricked into thinking that it is measuring uncoalesced beam.

  11. [Nursing care management in dermatological patient on phototherapy narrow band UVB].

    PubMed

    de Argila Fernández-Durán, Nuria; Blasco Maldonado, Celeste; Martín Gómez, Mónica

    2013-01-01

    Phototherapy with narrow band ultraviolet B is a treatment used in some dermatology units, and is the first choice in some dermatological diseases due to being comfortable and cheap. The aim of this paper is to describe the management and nursing care by grouping more specific diagnoses, following NANDA-NIC/NOC taxonomy, such as the methodology from application, technique, material, and personnel to space-related aspects, with the aim of avoiding the clinical variability and the possible associated risks for the patients, and for the nurses who administer the treatment. The continuity of the same nurse in the follow-up sessions stimulates the relationship between medical personnel and patients, key points for loyalty and therapeutic adherence. This paper examines a consensus procedure with the Dermatology Unit Team and accredited by the Hospital Quality Unit. PMID:23916523

  12. Polyp detection rates using magnification with narrow band imaging and white light

    PubMed Central

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-01-01

    AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for

  13. The method of narrow-band audio classification based on universal noise background model

    NASA Astrophysics Data System (ADS)

    Rui, Rui; Bao, Chang-chun

    2013-03-01

    Audio classification is the basis of content-based audio analysis and retrieval. The conventional classification methods mainly depend on feature extraction of audio clip, which certainly increase the time requirement for classification. An approach for classifying the narrow-band audio stream based on feature extraction of audio frame-level is presented in this paper. The audio signals are divided into speech, instrumental music, song with accompaniment and noise using the Gaussian mixture model (GMM). In order to satisfy the demand of actual environment changing, a universal noise background model (UNBM) for white noise, street noise, factory noise and car interior noise is built. In addition, three feature schemes are considered to optimize feature selection. The experimental results show that the proposed algorithm achieves a high accuracy for audio classification, especially under each noise background we used and keep the classification time less than one second.

  14. The Safety and Efficacy of Narrow Band Ultraviolet B Treatment in Dermatology: A Review.

    PubMed

    Sokolova, Anna; Lee, Andrew; D Smith, Saxon

    2015-12-01

    Narrow-band ultraviolet B (NBUVB) phototherapy is an important treatment modality in dermatology. The most common dermatological indications for NBUVB include psoriasis, atopic dermatitis and vitiligo; however, it has been found to be an effective and well-tolerated treatment option in various other dermatoses. The efficacy of NBUVB phototherapy compares favorably with other available photo(chemo)therapy options and its efficacy is further augmented by a number of topical and systemic adjuncts. The long-term safety of NBUVB phototherapy remains to be fully elucidated; however, available data now suggest that it is safe and well-tolerated. The objective of this review was to summarize the current understanding of the safety and efficacy of NBUVB phototherapy in dermatology. PMID:26369540

  15. Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption.

    PubMed

    He, Jinna; Ding, Pei; Wang, Junqiao; Fan, Chunzhen; Liang, Erjun

    2015-03-01

    A novel plasmonic metamaterial consisting of the solid (bar) and the inverse (slot) compound metallic nanostructure for electromagnetically induced absorption (EIA) is proposed in this paper, which is demonstrated to achieve an ultra-narrow absorption peak with the linewidth less than 8 nm and the absorptivity exceeding 97% at optical frequencies. This is attributed to the plasmonic EIA resonance arising from the efficient coupling between the magnetic response of the slot (dark mode) and the electric resonance of the bar (bright mode). To the best of our knowledge, this is the first time that the plasmonic EIA is used to realize the narrow-band perfect absorbers. The underlying physics are revealed by applying the two-coupled-oscillator model. The near-perfect-absorption resonance also causes an enhancement of about 50 times in H-field and about 130 times in E-field within the slots. Such absorber possesses potential for applications in filter, thermal emitter, surface enhanced Raman scattering, sensing and nonlinear optics. PMID:25836832

  16. Nature of the narrow optical band in H*-aggregates: Dozy-chaos–exciton coupling

    SciTech Connect

    Egorov, Vladimir V.

    2014-07-15

    Dozy chaos emerges as a combined effect of the collective chaotic motion of electrons and nuclei, and their chaotic electromagnetic interactions in the transient state of molecules experiencing quantum transitions. Following earlier discussions of the well-known Brönsted relations for proton-transfer reactions; the temperature-dependent electron transfer in Langmuir–Blodgett films; the shape of the optical bands of polymethine dye monomers, their dimers, and J-aggregates, this paper reports one more application of the dozy-chaos theory of molecular quantum transitions. The qualitative and quantitative explanations for shape of a narrow and blue-shifted optical absorption band in H{sup *}-aggregates is given on the basis of the dozy-chaos theory by taking into account the dozy-chaos–exciton coupling effect. It is emphasized that in the H{sup *}-aggregate chromophore (dimer of cyclic bis-thiacarbocyanines) there is a competition between two Frenkel exciton transitions through the chaotic reorganization motion of nuclear environment. As a result, the highly organized quantum transition to the upper exciton state becomes an exciton-induced source of dozy chaos for the low organized transition to the lower exciton state. This manifests itself in appearing the narrow peak and broad wing in the optical spectrum pattern of H{sup *}-aggregates. A similar enhancement in the H{sup *}-effect caused by the strengthening of the exciton coupling in H{sup *}-dimers, which could be achieved by synthesizing tertiary and quarternary thiacarbocyanine monomers, is predicted.

  17. Five years of comet narrow band photometry and imaging with TRAPPIST

    NASA Astrophysics Data System (ADS)

    Opitom, Cyrielle; Jehin, Emmanuel; Manfroid, Jean; Hutsemékers, Damien; Gillon, Michaël; Magain, Pierre

    2015-11-01

    TRAPPIST is a 60-cm robotic telescope in La Silla Observatory [1] mainly dedicated to the study of exoplanets and comets. The telescope is equipped with a set of narrow band cometary filters designed by the NASA for the Hale-Bopp observing campaign [2]. Since its installation in 2010, we gathered a high quality and homogeneous data set of more than 30 bright comets observed with narrow band filters. Some comets were only observed for a few days but others have been observed weekly during several months on both sides of perihelion. From the images, we derived OH, NH, CN, C2, and C3 production rates using a Haser [3] model in addition to the Afρ parameter as a proxy for the dust production. We computed production rates ratios and the dust color for each comet to study their composition and followed the evolution of these ratios and colors with the heliocentric distance.The TRAPPIST data set, rich of more than 10000 images obtained and reduced in an homogeneous way, allows us to address several fundamental questions such as the pristine or evolutionary origin of composition differences among comets. The evolution of comet activity with the heliocentric distance, the differences between species, and from comet to comet, will be discussed. Finally, the first results about the one year campaign on comet C/2013 US10 (Catalina) and our recent work on the re-determination of Haser scalelengths will be presented.[1] Jehin et al., The Messenger, 145, 2-6, 2011[2] Farnham et al., Icarus, 147, 180-204, 2000[3] Haser, Bulletin de l’Académie Royal des Sciences de Belgique,63, 739, 1957

  18. ZEN2: a narrow J-band search for z ~ 9 Lyα emitting galaxies directed towards three lensing clusters

    NASA Astrophysics Data System (ADS)

    Willis, J. P.; Courbin, F.; Kneib, J.-P.; Minniti, D.

    2008-03-01

    We present the results of a continuing survey to detect Lyα emitting galaxies at redshifts z ~ 9: the `z equals nine' (ZEN) survey. We have obtained deep VLT Infrared Spectrometer and Array Camera observations in the narrow J-band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835 and 114. The foreground clusters provide a magnified view of the distant Universe and permit a sensitive test for the presence of very high redshift galaxies. We search for z ~ 9 Lyα emitting galaxies displaying a significant narrow-band excess relative to accompanying J-band observations that remain undetected in Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) optical images of each field. No sources consistent with this criterion are detected above the unlensed 90 per cent point-source flux limit of the narrow-band image, FNB = 3.7 × 10-18ergs-1cm-2. To date, the total coverage of the ZEN survey has sampled a volume at z ~ 9 of approximately 1700 comoving Mpc3 to a Lyα emission luminosity of 1043ergs-1. We conclude by considering the prospects for detecting z ~ 9 Lyα emitting galaxies in light of both observed galaxy properties at z < 7 and simulated populations at z > 7.

  19. Narrow band pass filter using birefringence film and quarter-wave film

    NASA Astrophysics Data System (ADS)

    Lee, Dong-kun; Song, Jang-Kun

    2016-03-01

    While a pixel in a color image has three colorimetric information of RGB, that in a spectral image contains full spectral information, several tens times more information compared to the color image. Hence, the spectral image is widely applicable in biology, material science, and environmental science. Although several methods for spectral image acquisition have been suggested to date, those methods are expensive, bulky, or slow in actual device. In this work, we designed a novel type of tunable narrow band-pass filter using rotatable polarizer, quarter-wave plate, and birefringence films. Different from the conventional Lyot-Ohman type filter, we do not use a liquid crystal layer. The selection of wavelength is made by rotating the polarizer in our filter set, and adopted a piezoelectric rotational actuator for that. We simulated to find the optimal conditions of the filter set, and finally, fabricated a filter module. The minimum band width was 5 nm, which is suitable for usual spectral imaging and can be reduced further if necessary, and the wavelength of light passing through the filter set was continuously selectable. After setting the filter in a microscope, we obtained a spectral image set for a bio sample that contained full spectrum information in each pixel. Using image processing, we could demonstrate to read out the spectral information for any selected position.

  20. Band Narrowing and Gain Spectra of Laser Dye Solutions with Scattering TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Chidichimo, G.; Cipparrone, G.; Pagliusi, P.; Rugiero, T.

    The spectra of amplified spontaneous emission (ASE) intensity and gain have been measured for solutions of laser dye Rhodamine-640 in glycerin with light scattering TiO2 nanoparticles. Such solutions typically manifest random lasing in backscattering geometry. In this work, the conventional transverse pump geometry is used, and the ASE gain spectra are measured using a variation of the length of the illuminated (pumped) stripe. In this geometry, with increasing concentration of nanoparticles, the "unidirectional" gain along the stripe decreases dramatically. At the same time, strong narrowing of the ASE bandwidth is observed even in the absence of net gain. The experimental results help one to understand the role of the scattering particles in the light amplification. On the one hand, the particles increase a zigzag type of the light path within the amplifying medium, which results in bandwidth narrowing and strong amplification of chaotic light beams. On the other hand, the amplification of a seed beam propagating in a selected direction is dramatically suppressed. The results are discussed using simple modeling of ASE amplification and qualitative arguments.

  1. Characterizing the Atmospheres of Super-Earths and Hot-Jupiters with Narrow-Band Photometry

    NASA Astrophysics Data System (ADS)

    Colon, Knicole D.; Gaidos, E.; Wilson, P. A.; Ford, E. B.; Sing, D. K.; Ballester, G. E.; Desert, J.; Ehrenreich, D.; Fortney, J. J.; Lecavelier des Etangs, A.; Lopez-Morales, M.; Morley, C.; Pettitt, A.; Pont, F.; Vidal-Madjar, A.

    2014-01-01

    Nearly one thousand extrasolar planets have been discovered, but none are considered true analogs to solar system planets. Instead, we characterize some planets as “super-Earths” or “hot-Jupiters.” It has been possible to characterize the atmospheres of some of these planets via transit observations, which is a crucial stepping stone towards future studies of true solar system analogs. We present narrow-band photometry of several transiting planets, including the super-Earth GJ 1214b and the hot-Jupiters XO-2b and TrES-2b. For GJ 1214b, most studies find that the transmission spectrum is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. We observed seven transits of GJ 1214b through a narrow K-band (2.141 micron) filter with the Wide Field Camera on the 3.8 meter United Kingdom Infrared Telescope. We observed another five transits at 800-900 nm using tunable filters with the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) on the 10.4 meter Gran Telescopio Canarias (GTC). Our observations support a flat transmission spectrum for GJ 1214b, but we also find that a hydrogen-dominated upper atmosphere cannot be excluded. For hot-Jupiters, potassium has been predicted to be one of the strongest sources of opacity at optical wavelengths and has been previously detected in the atmospheres of XO-2b and TrES-2b. Using OSIRIS on the GTC, we observed three transits of XO-2b and two transits of TrES-2b in multiple bandpasses around the potassium absorption feature at 770 nm. Our technique is somewhat different than in previous studies, and we use our observations to constrain the amount of potassium in these exoplanet atmospheres. We consider how our studies set the stage for future investigations of true Earth and Jupiter analogs that have not yet been discovered.

  2. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  3. Very narrow band model calculations of atmospheric fluxes and cooling rates

    SciTech Connect

    Bernstein, L.S.; Berk, A.; Acharya, P.K.; Robertson, D.C.

    1996-10-15

    A new very narrow band model (VNBM) approach has been developed and incorporated into the MODTRAN atmospheric transmittance-radiance code. The VNBM includes a computational spectral resolution of 1 cm{sup {minus}1}, a single-line Voigt equivalent width formalism that is based on the Rodgers-Williams approximation and accounts for the finite spectral width of the interval, explicit consideration of line tails, a statistical line overlap correction, a new sublayer integration approach that treats the effect of the sublayer temperature gradient on the path radiance, and the Curtis-Godson (CG) approximation for inhomogeneous paths. A modified procedure for determining the line density parameter 1/d is introduced, which reduces its magnitude. This results in a partial correction of the VNBM tendency to overestimate the interval equivalent widths. The standard two parameter CG approximation is used for H{sub 2}O and CO{sub 2}, while the Goody three parameter CG approximation is used for O{sub 3}. Atmospheric flux and cooling rate predictions using a research version of MODTRAN, MODR, are presented for H{sub 2}O (with and without the continuum), CO{sub 2}, and O{sub 3} for several model atmospheres. The effect of doubling the CO{sub 2} concentration is also considered. These calculations are compared to line-by-line (LBL) model calculations using the AER, GLA, GFDL, and GISS codes. The MODR predictions fall within the spread of the LBL results. The effects of decreasing the band model spectral resolution are illustrated using CO{sub 2} cooling rate and flux calculations. 36 refs., 18 figs., 1 tab.

  4. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period

    PubMed Central

    2012-01-01

    Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. PMID

  5. Measurement and Analysis of Narrow-Band Surface Acoustic Waves in Ceramic Environmental Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Steen, T. L.; Basu, S. N.; Sarin, V. K.; Murray, T. W.

    2008-02-01

    A laser-based ultrasonic system is used to measure the mechanical properties and thickness of mullite environmental barrier coatings deposited on SiC substrates. Narrow-band surface acoustic waves (SAWs) are generated with an amplitude modulated laser source, and a photorefractive crystal based interferometer coupled to a lock-in amplifier is used to detect the resulting surface displacement. The complex displacement field is mapped over a source-to-receiver distance of approximately 500 μm in order to extract the wavelength of the SAW at a given excitation frequency, from which the phase velocity is determined. Dispersion curves measured over a frequency range of 100-180 MHz are used to extract mean values for the elastic modulus and thickness of the coating over the measurement region. These values are compared to the mean elastic modulus and thickness of the coating measured using nanoindentation and optical microscopy, respectively. It is shown that porosity in the substrate can have a significant impact on the experimental results, particularly over short measurement distances. Experiments on SiC with 1-4% porosity show a linear increase of the mean SAW velocity with decreasing porosity. Additionally, measurements made on a sample with a given bulk porosity indicate that the SAW velocity varies locally, leading to additional error in the measurement of coating properties. This error can be reduced through spatially averaging the velocity measurements.

  6. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for narrow-band sweeps.

    PubMed

    Kastelein, Ronald A; Schop, Jessica; Hoek, Lean; Covi, Jennifer

    2015-10-01

    The hearing sensitivity of a 2-yr-old male harbor porpoise was measured using a standard psycho-acoustic technique under low ambient noise conditions. Auditory sensitivity was measured for narrow-band 1 s sweeps (center frequencies: 0.125-150 kHz). The audiogram was U-shaped; range of best hearing (within 10 dB of maximum sensitivity) was from 13 to ∼140 kHz. Maximum sensitivity (threshold: ∼39 dB re 1 μPa) occurred at 125 kHz at the peak frequency of echolocation pulses produced by harbor porpoises. Reduced sensitivity occurred at 32 and 63 kHz. Sensitivity fell by ∼10 dB per octave below 16 kHz and declined sharply above 125 kHz. Apart from this individual's ca. 10 dB higher sensitivity at 0.250 kHz, ca. 10 dB lower sensitivity at 32 kHz, and ca. 59 dB lower sensitivity at 150 kHz, his audiogram is similar to that of two harbor porpoises tested previously with a similar psycho-acoustic technique. PMID:26520333

  7. Adaptive digital calibration techniques for narrow band low-IF receivers with on-chip PLL

    NASA Astrophysics Data System (ADS)

    Juan, Li; Huajiang, Zhang; Feng, Zhao; Zhiliang, Hong

    2009-06-01

    Digital calibration and control techniques for narrow band integrated low-IF receivers with on-chip frequency synthesizer are presented. The calibration and control system, which is adopted to ensure an achievable signal-to-noise ratio and bit error rate, consists of a digitally controlled, high resolution dB-linear automatic gain control (AGC), an inphase (I) and quadrature (Q) gain and phase mismatch calibration, and an automatic frequency calibration (AFC) of a wideband voltage-controlled oscillator in a PLL based frequency synthesizer. The calibration system has a low design complexity with little power and small die area. Simulation results show that the calibration system can enlarge the dynamic range to 72 dB and minimize the phase and amplitude imbalance between I and Q to 0.08° and 0.024 dB, respectively, which means the image rejection ratio is better than 60 dB. In addition, the calibration time of the AFC is 1.12 μs only with a reference clock of 100 MHz.

  8. Three-step H- charge exchange injection with a narrow-band laser

    NASA Astrophysics Data System (ADS)

    Danilov, V.; Aleksandrov, A.; Assadi, S.; Henderson, S.; Holtkamp, N.; Shea, T.; Shishlo, A.; Braiman, Y.; Liu, Y.; Barhen, J.; Zacharia, T.

    2003-05-01

    This paper presents a scheme for three-step laser-based stripping of an H- beam for charge exchange injection into a high-intensity proton ring. First, H- atoms are converted to H0 by Lorentz stripping in a strong magnetic field, then neutral hydrogen atoms are excited from the ground state to upper levels by a laser, and the remaining electron, now more weakly bound, is stripped in a strong magnetic field. The energy spread of the beam particles gives rise to a Doppler broadened absorption linewidth, which makes for an inefficient population of the upper state by a narrow-band laser. We propose to overcome this limitation with a “frequency sweeping” arrangement, which populates the upper state with almost 100% efficiency. We present estimates of peak laser power and describe a method to reduce the power by tailoring the dispersion function at the laser-particle beam interaction point. We present a scheme for reducing the average power requirements by using an optical ring resonator. Finally, we discuss an experimental setup to demonstrate this approach in a proof-of-principle experiment.

  9. Narrow-band imaging with magnifying endoscopy for the evaluation of gastrointestinal lesions

    PubMed Central

    Boeriu, Alina; Boeriu, Cristian; Drasovean, Silvia; Pascarenco, Ofelia; Mocan, Simona; Stoian, Mircea; Dobru, Daniela

    2015-01-01

    Narrow band imaging (NBI) endoscopy is an optical image enhancing technology that allows a detailed inspection of vascular and mucosal patterns, providing the ability to predict histology during real-time endoscopy. By combining NBI with magnification endoscopy (NBI-ME), the accurate assessment of lesions in the gastrointestinal tract can be achieved, as well as the early detection of neoplasia by emphasizing neovascularization. Promising results of the method in the diagnosis of premalignant and malignant lesions of gastrointestinal tract have been reported in clinical studies. The usefulness of NBI-ME as an adjunct to endoscopic therapy in clinical practice, the potential to improve diagnostic accuracy, surveillance strategies and cost-saving strategies based on this method are summarized in this review. Various classification systems of mucosal and vascular patterns used to differentiate preneoplastic and neoplastic lesions have been reviewed. We concluded that the clinical applicability of NBI-ME has increased, but standardization of endoscopic criteria and classification systems, validation in randomized multicenter trials and training programs to improve the diagnostic performance are all needed before the widespread acceptance of the method in routine practice. However, published data regarding the usefulness of NBI endoscopy are relevant in order to recommend the method as a reliable tool in diagnostic and therapy, even for less experienced endoscopists. PMID:25685267

  10. Magnifying Endoscopy with Narrow Band Imaging of Early Gastric Cancer: Correlation with Histopathology and Mucin Phenotype

    PubMed Central

    Ok, Kyung-Sun; Kim, Gwang Ha; Park, Do Youn; Lee, Hyun Jeong; Jeon, Hye Kyung; Baek, Dong Hoon; Lee, Bong Eun; Song, Geun Am

    2016-01-01

    Background/Aims Magnifying endoscopy with narrow band imaging (ME-NBI) is a useful modality for the detailed visualization of microsurface (MS) and microvascular (MV) structures in the gastrointestinal tract. This study aimed to determine whether the MS and MV patterns in ME-NBI differ according to the histologic type, invasion depth, and mucin phenotype of early gastric cancers (EGCs). Methods The MS and MV patterns of 160 lesions in 160 patients with EGC who underwent ME-NBI before endoscopic or surgical resection were prospectively collected and analyzed. EGCs were categorized as either differentiated or undifferentiated and as either mucosal or submucosal, and their mucin phenotypes were determined via immunohistochemistry of the tumor specimens. Results Differentiated tumors mainly displayed an oval and/or tubular MS pattern and a fine network or loop MV pattern, whereas undifferentiated tumors mainly displayed an absent MS pattern and a corkscrew MV pattern. The destructive MS pattern was associated with submucosal invasion, and this association was more prominent in the differentiated tumors than in the undifferentiated tumors. MUC5AC expression was increased in lesions with either a papillary or absent MS pattern and a corkscrew MV pattern, whereas MUC6 expression was increased in lesions with a papillary MS pattern and a loop MV pattern. CD10 expression was more frequent in lesions with a fine network MV pattern. Conclusions ME-NBI can be useful for predicting the histopathology and mucin phenotype of EGCs. PMID:27021504

  11. Equine endometrial vascular pattern changes during the estrous cycle examined by Narrow Band Imaging hysteroscopy.

    PubMed

    Otzen, Henning; Sieme, Harald; Oldenhof, Harriëtte; Kassens, Ana; Ertmer, Franziska; Rode, Kristina; Müller, Kristin; Klose, Kristin; Rohn, Karl; Schoon, Heinz-Adolf; Meinecke, Burkhard

    2016-03-01

    The aim of this study was to evaluate the uterine blood supply and endometrial vessel architecture, during the equine estrous cycle. Narrow Band Imaging (NBI) hysteroscopy was used for evaluating changes in the endometrial vasculature during the estrous cycle [six mares, d 0 (representing the day of ovulation), d 6 and 11 in four locations]. In addition, endometrial biopsy samples were used for immunodetection of markers for angiogenesis (Vascular Endothelial Growth Factor A, its receptor 2, as well as angiopoietin-2 and its receptor-tyrosine-kinase Tie2) during the estrous cycle (three mares, d 0, 5 and 10; one biopsy per mare). Detailed analysis of hysteroscopic images revealed an increase in the vascular density from estrus towards diestrus. In contrast, microscopic specimens prepared from biopsies revealed no evidence for changes in the endometrial vessel number during the estrous cycle. Studies on expression of angiogenesis markers indicated that cyclic changes in the endometrial vascular density observed by NBI-hysteroscopy were not due to formation of new vessels. It is concluded that vessels are involved in blood supply of a smaller area during diestrus, facilitating better distribution of nutrients during this phase. PMID:26791330

  12. Polyp Detection, Characterization, and Management Using Narrow-Band Imaging with/without Magnification

    PubMed Central

    Utsumi, Takahiro; Iwatate, Mineo; Sano, Wataru; Sunakawa, Hironori; Hattori, Santa; Hasuike, Noriaki; Sano, Yasushi

    2015-01-01

    Narrow-band imaging (NBI) is a new imaging technology that was developed in 2006 and has since spread worldwide. Because of its convenience, NBI has been replacing the role of chromoendoscopy. Here we review the efficacy of NBI with/without magnification for detection, characterization, and management of colorectal polyps, and future perspectives for the technology, including education. Recent studies have shown that the next-generation NBI system can detect significantly more colonic polyps than white light imaging, suggesting that NBI may become the modality of choice from the beginning of screening. The capillary pattern revealed by NBI, and the NBI International Colorectal Endoscopic classification are helpful for prediction of histology and for estimating the depth of invasion of colorectal cancer. However, NBI with magnifying colonoscopy is not superior to magnifying chromoendoscopy for estimation of invasion depth. Currently, therefore, chromoendoscopy should also be performed additionally if deep submucosal invasive cancer is suspected. If endoscopists become able to accurately estimate colorectal polyp pathology using NBI, this will allow adenomatous polyps to be resected and discarded; thus, reducing both the risk of polypectomy and costs. In order to achieve this goal, a suitable system for education and training in in vivo diagnostics will be necessary. PMID:26668794

  13. Narrow-band imaging observation of colorectal lesions using NICE classification to avoid discarding significant lesions

    PubMed Central

    Hattori, Santa; Iwatate, Mineo; Sano, Wataru; Hasuike, Noriaki; Kosaka, Hidekazu; Ikumoto, Taro; Kotaka, Masahito; Ichiyanagi, Akihiro; Ebisutani, Chikara; Hisano, Yasuko; Fujimori, Takahiro; Sano, Yasushi

    2014-01-01

    AIM: To assess the risk of failing to detect diminutive and small colorectal cancers with the “resect and discard” policy. METHODS: Patients who received colonoscopy and polypectomy were recruited in the retrospective study. Probable histology of the polyps was predicted by six colonoscopists by the use of NICE classification. The incidence of diminutive and small colorectal cancers and their endoscopic features were assessed. RESULTS: In total, we found 681 cases of diminutive (1-5 mm) lesions in 402 patients and 197 cases of small (6-9 mm) lesions in 151 patients. Based on pathology of the diminutive and small polyps, 105 and 18 were non-neoplastic polyps, 557 and 154 were low-grade adenomas, 18 and 24 were high-grade adenomas or intramucosal/submucosal (SM) scanty invasive carcinomas, 1 and 1 were SM-d carcinoma, respectively. The endoscopic features of invasive cancer were classified as NICE type 3 endoscopically. CONCLUSION: The risk of failing to detect diminutive and small colorectal invasive cancer with the “resect and discard” strategy might be avoided through the use of narrow-band imaging observation with the NICE classification scheme and magnifying endoscopy. PMID:25512769

  14. Narrow Angle Diversity using ACTS Ka-band Signal with Two USAT Ground Stations

    NASA Technical Reports Server (NTRS)

    Kalu, A.; Emrich, C.; Ventre, J.; Wilson, W.; Acosta, R.

    1998-01-01

    Two ultra small aperture terminal (USAT) ground stations, separated by 1.2 km in a narrow angle diversity configuration, received a continuous Ka-band tone sent from Cleveland Link Evaluation Terminal (LET). The signal was transmitted to the USAT ground stations via NASA's Advanced Communications Technology Satellite (ACTS) steerable beam. Received signal power at the two sites was measured and analyzed. A dedicated datalogger at each site recorded time-of-tip data from tipping bucket rain gauges, providing rain amount and instantaneous rain rate. WSR-88D data was also obtained for the collection period. Eleven events with ground-to-satellite slant-path precipitation and resultant signal attenuation were observed during the data collection period. Fade magnitude and duration were compared at the two sites and diversity gain was calculated. These results exceeded standard diversity gain model predictions by several decibels. Rain statistics from tipping bucket data and from radar data were also compared to signal attenuation. The nature of Florida's subtropical rainfall, specifically its impact on signal attenuation at the sites, was addressed.

  15. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  16. Visualization of mucosal vasculature with narrow band imaging: a theoretical study

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Le, Du; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-03-01

    Narrow band imaging (NBI) is a spectrally-selective reflectance imaging technique that is used as an adjunctive approach to endoscopic detection of mucosal abnormalities such as neoplastic lesions. While numerous clinical studies in tissue sites such as the esophagus, oral cavity and lung indicate the efficacy of this approach, it is not well theoretically understood. In this study, we performed Monte Carlo simulations to elucidate the factors that affect NBI device performance. The model geometry involved a two-layer turbid medium based on mucosal tissue optical properties and embedded cylindrical, blood-filled vessels at varying diameters and depths. Specifically, we studied the effect of bandpass filters (415+/-15 nm, 540+/-10 nm versus white light), blood vessel diameter (20-400 μm) and depth (30 - 450 μm), wavelength, and bandwidth on vessel contrast. Our results provide a quantitative evaluation of the two mechanisms that are commonly believed to be the primary components of NBI: (i) the increased contrast provided by high hemoglobin absorption and (ii) increase in the penetration depth produced by the decrease in scattering with increasing wavelength. Our MC model can provide novel, quantitative insight into NBI, may lead to improvements in its performance.

  17. Narrow-band imaging in the diagnosis of vascular nasal lesions.

    PubMed

    Torretta, Sara; Gaffuri, Michele; Cantarella, Giovanna; Pignataro, Lorenzo

    2013-01-01

    The management of unilateral nasal lesions can sometimes be a challenge and an ordinary bioptic assessment should be avoided in order to prevent complications due to their possible vascular or meningoencephalic origin. Narrow-band imaging (NBI) endoscopy could improve the diagnosis of vascular nasal formations by enhancing the visualisation of the mucosal microvascular supply. We describe the case of a 68-year-old male patient who was brought to our attention because of a left nasopharyngeal mass that had elsewhere been unsuccessfully biopsied (with conspicuous bleeding) and assessed by means of traditional endoscopic and radiological techniques. NBI endoscopy revealed increased vasculature covering most of the mucosal surface without any features suggestive for malignancy. Subsequent angiography showed that the feeding vessel was the left sphenopalatine artery, which was embolised using 150-250 μm Contour embospheres. The mass was then completely removed surgically using an NBI-assisted endoscopic technique, and a histopathological examination revealed it was a hemangiopericytoma-like (HPCL) tumor. This case suggests the usefulness of NBI endoscopy in diagnosing unilateral vascularised nasal lesions and guiding the therapeutic approach before and during major surgery. PMID:23218114

  18. Narrow band pulses as stimuli in an auditory brain stem recording study with a harbor porpoise

    NASA Astrophysics Data System (ADS)

    Beedholm, Kristian; Miller, Lee A.

    2005-04-01

    We have studied several aspects of hearing by a harbor porpoise using the ABR method with pulsed stimuli. Experiments were conducted on a male porpoise in collaboration with Fjord and Baelt, Kerteminde, Denmark. The animal had suction cups containing silver electrodes placed near the blowhole and near the dorsal fin. When fitted with the electrodes he moved to an underwater listening post where his outgoing sonar signal could be used to trigger a phantom echo. EEG signals were amplified differentially and averaged over a variable number of presentations depending on trial duration and experiment. For studying the frequency/intensity response, narrow band pulsed stimuli were generated and presented in several ways. One way was to use the impulse response of a B&K 1/3 octave filter bank (set to 80, 100, 125, or 160 kHz) as a stimulus. This stimulus was presented in both a passive hearing task, when a signal generator triggered the echo, and in an active experiment, where the echo was time locked to the animals emitted signal. Our results show the best response at 125 kHz and indicate a slight, but significantly higher response in the active mode. The latter has a methodological explanation. [Work supported by ONR.

  19. "Leopard skin sign": the use of narrow-band imaging with magnification endoscopy in celiac disease.

    PubMed

    Tchekmedyian, Asadur J; Coronel, Emmanuel; Czul, Frank

    2014-01-01

    Celiac Disease (CD) is an immune reaction to gluten containing foods such as rye, wheat and barley. This condition affects individuals with a genetic predisposition; it targets the small bowel and may cause symptoms including diarrhea, malabsorption, weight loss, abdominal pain and bloating. The diagnosis is made by serologic testing of celiac-specific antibodies and confirmed by histology. Certain endoscopic characteristics, such as scalloping, reduction in the number of folds, mosaic-pattern mucosa or nodular mucosa, are suggestive of CD and can be visualized under white light endoscopy. Due to its low sensitivity, endoscopy alone is not recommended to diagnose CD; however, enhanced visual identification of suspected mucosal abnormalities through the use of new technologies, such as narrow band imaging with magnification (NBI-ME), could assist in targeting biopsies and thereby increasing the sensitivity of endoscopy. This is a case series of seven patients with serologic and histologic diagnoses of CD who underwent upper endoscopies with NBI-ME imaging technology as part of their CD evaluation. By employing this imaging technology, we could identify patchy atrophy sites in a mosaic pattern, with flattened villi and alteration of the central capillaries of the duodenal mucosa. We refer to this epithelial pattern as "Leopard Skin Sign". Since epithelial lesions are easily seen using NBI-ME, we found it beneficial for identifying and targeting biopsy sites. Larger prospective studies are warranted to confirm our findings. PMID:25594756

  20. THE PREVALENCE OF NARROW OPTICAL Fe II EMISSION LINES IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Dong Xiaobo; Wang Jianguo; Wang Tinggui; Wang Huiyuan; Zhou Hongyan; Ho, Luis C.; Fan Xiaohui

    2010-10-01

    From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate-statistically for the first time-that narrow optical Fe II emission lines, both permitted and forbidden, are prevalent in type 1 AGNs. Remarkably, these optical lines are completely absent in type 2 AGNs, across a wide luminosity range, from Seyfert 2 galaxies to type 2 quasars. We suggest that the narrow Fe II-emitting gas is confined to a disk-like geometry in the innermost regions of the narrow-line region on physical scales smaller than the obscuring torus.

  1. Light-Emitting Diode-Assisted Narrow Band Imaging Video Endoscopy System in Head and Neck Cancer

    PubMed Central

    Chang, Hsin-Jen; Wang, Wen-Hung; Chang, Yen-Liang; Jeng, Tzuan-Ren; Wu, Chun-Te; Angot, Ludovic; Lee, Chun-Hsing

    2015-01-01

    Background/Aims To validate the effectiveness of a newly developed light-emitting diode (LED)-narrow band imaging (NBI) system for detecting early malignant tumors in the oral cavity. Methods Six men (mean age, 51.5 years) with early oral mucosa lesions were screened using both the conventional white light and LED-NBI systems. Results Small elevated or ulcerative lesions were found under the white light view, and typical scattered brown spots were identified after shifting to the LED-NBI view for all six patients. Histopathological examination confirmed squamous cell carcinoma. The clinical stage was early malignant lesions (T1), and the patients underwent wide excision for primary cancer. This is the pilot study documenting the utility of a new LED-NBI system as an adjunctive technique to detect early oral cancer using the diagnostic criterion of the presence of typical scattered brown spots in six high-risk patients. Conclusions Although large-scale screening programs should be established to further verify the accuracy of this technology, its lower power consumption, lower heat emission, and higher luminous efficiency appear promising for future clinical applications. PMID:25844342

  2. 47 CFR 80.361 - Frequencies for narrow-band direct-printing (NBDP), radioprinter and data transmissions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequencies for narrow-band direct-printing (NBDP), radioprinter and data transmissions. 80.361 Section 80.361 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Frequencies Radiotelegraphy § 80.361 Frequencies...

  3. 47 CFR 80.219 - Special requirements for narrow-band direct-printing (NB-DP) equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Special requirements for narrow-band direct-printing (NB-DP) equipment. 80.219 Section 80.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES General Technical Standards § 80.219 Special requirements...

  4. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination. PMID:23278497

  5. 47 CFR 80.219 - Special requirements for narrow-band direct-printing (NB-DP) equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of these standards can be inspected...-printing (NB-DP) equipment. 80.219 Section 80.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.219 Special requirements for narrow-band direct-printing (NB-DP) equipment. NB-DP and...

  6. 47 CFR 80.219 - Special requirements for narrow-band direct-printing (NB-DP) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-printing (NB-DP) equipment. 80.219 Section 80.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.219 Special requirements for narrow-band direct-printing (NB-DP) equipment. NB-DP and data...-DP and data transmission equipment are additionally permitted to utilize any modulation, so long...

  7. 47 CFR 80.219 - Special requirements for narrow-band direct-printing (NB-DP) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-printing (NB-DP) equipment. 80.219 Section 80.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.219 Special requirements for narrow-band direct-printing (NB-DP) equipment. NB-DP and data...-DP and data transmission equipment are additionally permitted to utilize any modulation, so long...

  8. 47 CFR 80.219 - Special requirements for narrow-band direct-printing (NB-DP) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-printing (NB-DP) equipment. 80.219 Section 80.219 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... § 80.219 Special requirements for narrow-band direct-printing (NB-DP) equipment. NB-DP and data...-DP and data transmission equipment are additionally permitted to utilize any modulation, so long...

  9. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990---December 31, 2002

    SciTech Connect

    Allen, J. W.

    2003-05-13

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties.

  10. Development of inexpensive optical broad- and narrow-band sensors for ecosystem research

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Cuntz, Thomas; Bumberger, Jan

    2014-05-01

    The observation and monitoring of ecosystem processes are great challenges in environmental science, due to the dynamic and complexity of such procedures. To describe and understand biotic and abiotic processes and their interaction it is necessary to acquire multiple parameters, which are influencing the natural regime. Essential issues are: the detection of spatial heterogeneities and scale overlapping procedures in the environment. To overcome these problems an adequate monitoring system should cover a representative area as well as have a sufficient resolution in time and space. Hence, the needed quantity of sensors (depending on the observed parameters or processes) can be enormous. According to these issues, there is a high demand on low-cost sensor technologies (with adequate performances) to realize a delicate monitoring platform. In the case of vegetation processes, one key feature is to characterize photosynthetic activity of the plants in detail. Common investigation methods are based on optical measurements. Here photosynthetically active radiation (PAR) sensors and hyperspectral sensors are in major use. Photosynthetically active radiation (solar radiation from 400 to 700 nanometers) designates the spectral range that photosynthetic organisms are able to use in the process of photosynthesis. PAR sensors enable the detection of the reflected solar light of the vegetation in whole the PAR wave band. The amount of absorption indicates photosynthetic activity of the plant. Hyperspectral sensors observe specific parts of the solar light spectrum and facilitate the determination of the main pigment classes (Chlorophyll, Carotenoid and Anthocyanin). Due to absorption of pigments they producing a specific spectral signature in the visible part of the electromagnetic spectrum (narrow-band peaks). If vegetation is affected by water or nutritional deficience the proportion of light-absorbing pigments is reduced which finally results in an overall reduced light

  11. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.

    PubMed

    Whiteman, David N; Venable, Demetrius D; Walker, Monique; Cadirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-08-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author. PMID:23913054

  12. Reversal of Atopic Dermatitis with Narrow-Band UVB Phototherapy and Biomarkers for Therapeutic Response

    PubMed Central

    Tintle, Suzanne; Shemer, Avner; Suárez-Fariñas, Mayte; Fujita, Hideki; Gilleaudeau, Patricia; Sullivan-Whalen, Mary; Johnson-Huang, Leanne; Chiricozzi, Andrea; Cardinale, Irma; Duan, Shenghui; Bowcock, Anne; Krueger, James G.; Guttman-Yassky, Emma

    2012-01-01

    Background Atopic dermatitis (AD) is a common inflammatory skin disease exhibiting a predominantly Th2/“T22” immune activation and a defective epidermal barrier. Narrow-band UVB (NB-UVB) is considered an efficient treatment for moderate-to-severe AD. In psoriasis, NB-UVB has been found to suppress the Th1/Th17-polarization with subsequent reversal of epidermal hyperplasia. The immunomodulatory effects of this treatment are largely unknown in AD. Objective To evaluate the effects of NB-UVB on immune and barrier abnormalities in AD, aiming to establish reversibility of disease and biomarkers of therapeutic response. Methods 12 moderate-to-severe chronic AD patients received NB-UVB phototherapy 3 times weekly for up to 12 weeks. Lesional and non-lesional skin biopsies were obtained before and after treatment and evaluated by gene-expression and immunohistochemistry studies. Results All patients had at least a 50% reduction in SCORing of AD (SCORAD) index with NB-UVB phototherapy. The Th2, “T22,” and Th1 immune pathways were suppressed and measures of epidermal hyperplasia and differentiation normalized. The reversal of disease activity was associated with elimination of inflammatory leukocytes, Th2/“T22”- associated cytokines and chemokines, and normalized expression of barrier proteins. Conclusions Our study shows that resolution of clinical disease in patients with chronic AD is accompanied by reversal of both the epidermal defects and the underlying immune activation. We have defined a set of biomarkers of disease response that associate resolved Th2 and “T22” inflammation in chronic AD patients with reversal of barrier pathology. By showing reversal of the AD epidermal phenotype with a broad immune-targeted therapy, our data argues against a fixed genetic phenotype. PMID:21762976

  13. Differential Expression of TGF-β Isoforms in Human Kerationocytes by Narrow Band UVB

    PubMed Central

    Jung, Moon Chul; Shin, Min Kyung; Hong, Kyung Kook; Jeong, Ki Heon

    2008-01-01

    Background Transforming growth factor-β (TGF-β), a multifunctional growth factor, has three isoforms: TGF-β1, TGF-β2, and TGF-β3. Different isoforms of TGF-β are associated with different proliferation and differentiation states of the epidermis. Narrow band ultraviolet B (NBUVB) emits a concentrated UVB source of 311 nm. NBUVB 1,000 mJ/cm2 induces apoptosis in approximately 50% of keratinocytes. Objective The purpose of this study was to evaluate whether irradiation with NBUVB would alter the expression and production of TGF-β1, 2, and 3. Methods We measured TGF-β1, 2, and 3 mRNA and TGF-β1 and 2 protein levels at 800, 1,000, and 1,200 mJ/cm2 for 24 hours and 48 hours. Results TGF-β1 mRNA levels were increased at both 24 hr and 48 hr, TGF-β2 mRNA levels were decreased at both 24 hr and 48 hr, and TGF-β3 mRNA levels were increased at 24 hr and similar to control at 48 hr. TGF-β1 protein levels were increased at 48 hr but decreased at 24 hr. TGF-β2 protein levels were decreased at both 24 hr and 48 hr. Conclusion The results suggest a possible role for TGF-β1 after NBUVB irradiation and opposing roles for TGF-β1 and TGF-β2 isoforms in NBUVB irradiation. PMID:27303173

  14. Usefulness of magnifying endoscopy with narrow-band imaging for diagnosis of depressed gastric lesions.

    PubMed

    Sumie, Hiroaki; Sumie, Shuji; Nakahara, Keita; Watanabe, Yasutomo; Matsuo, Ken; Mukasa, Michita; Sakai, Takeshi; Yoshida, Hikaru; Tsuruta, Osamu; Sata, Michio

    2014-01-01

    The usefulness of magnifying endoscopy with narrow-band imaging (ME-NBI) for the diagnosis of early gastric cancer is well known, however, there are no evaluation criteria. The aim of this study was to devise and evaluate a novel diagnostic algorithm for ME-NBI in depressed early gastric cancer. Between August, 2007 and May, 2011, 90 patients with a total of 110 depressed gastric lesions were enrolled in the study. A diagnostic algorithm was devised based on ME-NBI microvascular findings: microvascular irregularity and abnormal microvascular patterns (fine network, corkscrew and unclassified patterns). The diagnostic efficiency of the algorithm for gastric cancer and histological grade was assessed by measuring its mean sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy. Furthermore, inter- and intra-observer variation were measured. In the differential diagnosis of gastric cancer from non-cancerous lesions, the mean sensitivity, specificity, PPV, NPV, and accuracy of the diagnostic algorithm were 86.7, 48.0, 94.4, 26.7, and 83.2%, respectively. Furthermore, in the differential diagnosis of undifferentiated adenocarcinoma from differentiated adenocarcinoma, the mean sensitivity, specificity, PPV, NPV, and accuracy of the diagnostic algorithm were 61.6, 86.3, 69.0, 84.8, and 79.1%, respectively. For the ME-NBI final diagnosis using this algorithm, the mean κ values for inter- and intra-observer agreement were 0.50 and 0.77, respectively. In conclusion, the diagnostic algorithm based on ME-NBI microvascular findings was convenient and had high diagnostic accuracy, reliability and reproducibility in the differential diagnosis of depressed gastric lesions. PMID:24649321

  15. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  16. Therapeutic or spontaneous Helicobacter pylori eradication can obscure magnifying narrow-band imaging of gastric tumors

    PubMed Central

    Kobayashi, Masaaki; Hashimoto, Satoru; Mizuno, Ken-ichi; Takeuchi, Manabu; Sato, Yuichi; Watanabe, Gen; Ajioka, Yoichi; Azumi, Motoi; Akazawa, Kouhei; Terai, Shuji

    2016-01-01

    Background and study aims: We previously reported that narrow-band imaging with magnifying endoscopy (NBI-ME) revealed a unique “gastritis-like” appearance in approximately 40 % of early gastric cancers after Helicobacter pylori eradication. Because rates of gastric cancer are increasing in patients with non-persistent infection of H. pylori, we aimed to clarify contribution factors to obscure tumors after therapeutic or spontaneous eradication. Patients and methods: NBI-ME findings were examined retrospectively in 194 differentiated-type adenocarcinomas from H. pylori-negative patients with prior eradication therapy (83 patients) or without prior eradication therapy (72 patients). A gastritis-like appearance under NBI-ME was defined as an orderly microsurface structure and/or loss of clear demarcation with resemblance to the adjacent, non-cancerous mucosa. The correlation of this phenomenon with the degree of atrophic gastritis, determined both histologically in the adjacent mucosa and endoscopically, was evaluated. Results: The tumor-obscuring gastritis-like appearance was observed in 42 % and 23 % of the patients in the H. pylori eradication and non-eradication groups, respectively. The development of this appearance was affected by the histological grade of atrophy (P = 0.003) and intestinal metaplasia (P < 0.001) on univariate analysis. Multivariate analysis revealed an odds ratio of 0.25 (95 % confidence interval 0.10 – 0.61, P = 0.002) for an endoscopically severe extent of atrophy, independently of eradication therapy. Conclusions: An endoscopically mild or moderate extent of atrophy is associated with a gastritis-like appearance under NBI-ME in currently H. pylori-negative gastric cancers. Surveillance endoscopy should be performed carefully after successful eradication or spontaneous elimination of H. pylori, particularly in patients with non-severe atrophic background mucosa. PMID:27556076

  17. Advantage of transurethral resection with narrow band imaging for non-muscle invasive bladder cancer

    PubMed Central

    KOBATAKE, KOHEI; MITA, KOJI; OHARA, SHINYA; KATO, MASAO

    2015-01-01

    The aim of the present study was to compare the benefits of transurethral resection (TUR) under narrow band imaging (NBI-TUR) and TUR under conventional white light imaging (WLI-TUR) for non-muscle invasive bladder cancer (NMIBC). The study cohort consisted of 135 patients with NMIBC who were followed up for ≥1 year after TUR and who received no additional post-operative treatment. In the WLI-TUR group (n=78), systematic intravesical observation under WLI was followed by a multiple site biopsy (MSB), after which lesions detected as positive findings were resected completely under WLI. In the NBI-TUR group (n=57), similar observation under WLI was followed by systematic intravesical observation under NBI. Following MSB under NBI, TUR was performed for all lesions detected as positive findings under NBI. The sensitivity, specificity, positive-predictive value, negative-predictive value (NPV) and accuracy in the NBI-TUR group were calculated using results from the cystoscopical and pathological examinations of MSB samples under WLI and NBI. The tumor recurrence rate was analyzed in the two groups. Background factors did not differ significantly between the two groups, with the exception of the observation period (31.0 vs. 15.0 months; P<0.01). The procedure under NBI exhibited significantly higher sensitivity (95.0 vs. 70.0%; P<0.01) and NPV (97.1 vs. 86.8%; P<0.01) compared with the procedure under WLI. The 1-year recurrence rate in the NBI-TUR group was significantly lower than that in the WLI-TUR group (21.1 vs. 39.7%; P=0.016). In conclusion, the present study indicated that NBI-TUR is more advantageous than conventional WLI-TUR for patients with NMIBC. PMID:26622632

  18. Narrow-band imaging for the computer assisted diagnosis in patients with Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Kage, Andreas; Raithel, Martin; Zopf, Steffen; Wittenberg, Thomas; Münzenmayer, Christian

    2009-02-01

    Cancer of the esophagus has the worst prediction of all known cancers in Germany. The early detection of suspicious changes in the esophagus allows therapies that can prevent the cancer. Barrett's esophagus is a premalignant change of the esophagus that is a strong indication for cancer. Therefore there is a big interest to detect Barrett's esophagus as early as possible. The standard examination is done with a videoscope where the physician checks the esophagus for suspicious regions. Once a suspicious region is found, the physician takes a biopsy of that region to get a histological result of it. Besides the traditional white light for the illumination there is a new technology: the so called narrow-band Imaging (NBI). This technology uses a smaller spectrum of the visible light to highlight the scene captured by the videoscope. Medical studies indicate that the use of NBI instead of white light can increase the rate of correct diagnoses of a physician. In the future, Computer-Assisted Diagnosis (CAD) which is well known in the area of mammography might be used to support the physician in the diagnosis of different lesions in the esophagus. A knowledge-based system which uses a database is a possible solution for this task. For our work we have collected NBI images containing 326 Regions of Interest (ROI) of three typical classes: epithelium, cardia mucosa and Barrett's esophagus. We then used standard texture analysis features like those proposed by Haralick, Chen, Gabor and Unser to extract features from every ROI. The performance of the classification was evaluated with a classifier using the leaving-one-out sampling. The best result that was achieved is an accuracy of 92% for all classes and an accuracy of 76% for Barrett's esophagus. These results show that the NBI technology can provide a good diagnosis support when used in a CAD system.

  19. Nitric oxide gamma band emission in an aurora

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1976-01-01

    Emission of the NO gamma (1,0) band at 2150 A has been observed by a rocket-borne spectrophotometer in an IBC II(+) aurora. The nu-prime progression of the gamma-system does not appear in the spectrum. The observed emission rate of the 2150 A feature increases relative to N2(+) first negative band emission with increasing altitude. We suggest radiative recombination of NO(+) ions with electrons as a possible excitation mechanism compatible with the data.

  20. THE BALDWIN EFFECT IN THE NARROW EMISSION LINES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang, Kai; Wang, Ting-Gui; Dong, Xiao-Bo; Gaskell, C. Martin E-mail: twang@ustc.edu.cn E-mail: martin.gaskell@uv.cl

    2013-01-01

    The anti-correlations between the equivalent widths of emission lines and the continuum luminosity in active galactic nuclei (AGNs), known as the Baldwin effect, are well established for broad lines, but are less well studied for narrow lines. In this paper we explore the Baldwin effect of narrow emission lines over a wide range of ionization levels and critical densities using a large sample of broad-line, radio-quiet AGNs taken from Sloan Digital Sky Survey Data Release 4. These type 1 AGNs span three orders of magnitude in continuum luminosity. We show that most narrow lines show a similar Baldwin effect slope of about -0.2, while the significant deviations of the slopes for [N II] {lambda}6583, [O II] {lambda}3727, [Ne V] {lambda}3425, and the narrow component of H{alpha} can be explained by the influence of metallicity, star formation contamination, and possibly by the difference in the shape of the UV-optical continuum. The slopes do not show any correlation with either the ionization potential or the critical density. We show that a combination of 50% variations in continuum near 5100 A and a lognormal distribution of observed luminosity can naturally reproduce a constant Baldwin effect slope of -0.2 for all narrow lines. The variations of the continuum could be due to variability, intrinsic anisotropic emission, or an inclination effect.

  1. Narrowing of the emission angle in high-intensity Compton scattering

    NASA Astrophysics Data System (ADS)

    Harvey, C. N.; Gonoskov, A.; Marklund, M.; Wallin, E.

    2016-02-01

    We consider the emission spectrum of high-energy electrons in an intense laser field. At high intensities (a0˜200 ) we find that the QED theory predicts a narrower angular spread of emissions than the classical theory. This is due to the classical theory overestimating the energy loss of the particles, resulting in them becoming more susceptible to reflection in the laser pulse.

  2. AVHRR Surface Temperature and Narrow-Band Albedo Comparison with Ground Measurements for the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Haefliger, M.; Steffen, K.; Fowler, C.

    1993-01-01

    An ice-surface temperature retrieval algorithm for the Greenland ice sheet was developed using NOAA 11 thermal radiances from channels 4 and 5. Temperature, pressure and humidity profiles, cloud observations and skin temperatures from the Swiss Federal Institute of Technology (ETH) camp, located at the equilibrium line altitude at 49 deg17 min W, 69 deg 34 min N, were used in the LOWTRAN 7 model. Through a statistical analysis of daily clear sky profiles, the coefficients that correct for the atmospheric effects were determined for the ETH-Camp field season (May to August). Surface temperatures retrieved by this method were then compared against the in situ observations with a maximum difference of 0.6 K. The NOAA 11 narrow-band planetary albedo values for channels 1 and 2 were calculated using pre-launch calibration coefficients. Scattering and absorption by the atmosphere were modelled with LOWTRAN 7. Then, narrow-band albedo values for the AVHRR visible and near infrared channels were compared with in situ high resolution spectral reflectance measurements. In the visible band (580-680 nm), AVHRR-derived narrow-band albedo and the in situ measurements corrected with radiative transfer model LOWTRAN 7 showed a difference of less than 2%. For the near infrared channel (725-1100 nm) the difference between the measured and modelled narrow-band albedo was 14%. These discrepancies could be either the result of inaccurate aerosol scattering modelling (lack of the in situ observation), or the result of sensor drift due to degradation.

  3. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lyu, Yang; Liu, Xin

    2016-08-01

    One percent of redshift z ˜ 0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]λ5007 emission-line luminosity L[O III]. We combine the sample of Liu et al. (2010a) at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  4. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    NASA Astrophysics Data System (ADS)

    Feng, Liefeng; Yang, Xiufang; Li, Yang; Li, Ding; Wang, Cunda; Yao, Dongsheng; Hu, Xiaodong; Li, Hongru

    2015-04-01

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by Ithl and Ithu, as shown in Fig. 2; Ithl is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; Ithu is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (Vj) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at Ithl and Ithu. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  5. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    SciTech Connect

    Feng, Liefeng E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng; Li, Yang; Li, Ding; Hu, Xiaodong; Li, Hongru E-mail: lihongru@nankai.edu.cn

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  6. Narrow-band imaging with magnifying endoscopy is accurate for detecting gastric intestinal metaplasia

    PubMed Central

    Savarino, Edoardo; Corbo, Marina; Dulbecco, Pietro; Gemignani, Lorenzo; Giambruno, Elisa; Mastracci, Luca; Grillo, Federica; Savarino, Vincenzo

    2013-01-01

    AIM: To investigate the predictive value of narrow-band imaging with magnifying endoscopy (NBI-ME) for identifying gastric intestinal metaplasia (GIM) in unselected patients. METHODS: We prospectively evaluated consecutive patients undergoing upper endoscopy for various indications, such as epigastric discomfort/pain, anaemia, gastro-oesophageal reflux disease, suspicion of peptic ulcer disease, or chronic liver diseases. Patients underwent NBI-ME, which was performed by three blinded, experienced endoscopists. In addition, five biopsies (2 antrum, 1 angulus, and 2 corpus) were taken and examined by two pathologists unaware of the endoscopic findings to determine the presence or absence of GIM. The correlation between light blue crest (LBC) appearance and histology was measured. Moreover, we quantified the degree of LBC appearance as less than 20% (+), 20%-80% (++) and more than 80% (+++) of an image field, and the semiquantitative evaluation of LBC appearance was correlated with IM percentage from the histological findings. RESULTS: We enrolled 100 (58 F/42 M) patients who were mainly referred for gastro-esophageal reflux disease/dyspepsia (46%), cancer screening/anaemia (34%), chronic liver disease (9%), and suspected celiac disease (6%); the remaining patients were referred for other indications. The prevalence of Helicobacter pylori (H. pylori) infection detected from the biopsies was 31%, while 67% of the patients used proton pump inhibitors. LBCs were found in the antrum of 33 patients (33%); 20 of the cases were classified as LBC+, 9 as LBC++, and 4 as LBC+++. LBCs were found in the gastric body of 6 patients (6%), with 5 of them also having LBCs in the antrum. The correlation between the appearance of LBCs and histological GIM was good, with a sensitivity of 80% (95%CI: 67-92), a specificity of 96% (95%CI: 93-99), a positive predictive value of 84% (95%CI: 73-96), a negative predictive value of 95% (95%CI: 92-98), and an accuracy of 93% (95%CI: 90-97). The

  7. Analysis of microvascular density in early gastric carcinoma using magnifying endoscopy with narrow-band imaging

    PubMed Central

    Kawamura, Masashi; Naganuma, Hiroshi; Shibuya, Rie; Kikuchi, Tatsuya; Sakai, Yoshitaka; Nagasaki, Futoshi; Nomura, Eiki; Suzuki, Noriaki; Saito, Eri

    2016-01-01

    Background and study aims: Intramucosal vascular density differs between differentiated and undifferentiated type gastric carcinomas. This study aimed to evaluate the microvascular density characteristics of these two types of carcinoma using magnifying endoscopy with narrow-band imaging (ME-NBI). Patients and methods: In total, 42 differentiated and 10 undifferentiated types were evaluated. The microvessels observed using ME-NBI were extracted from stored still images and the microvascular density in the two carcinoma types was analyzed. Histological vascular density in resected specimens was also evaluated using CD34 immunostaining. Results: There were significant differences between the microvascular density in the differentiated and undifferentiated types of carcinoma (10.02 ± 4.72 % vs 4.02 ± 0.40 %; P < 0.001) using ME-NBI. Vascular density assessed histologically also differed significantly between differentiated and undifferentiated types in both the whole mucosal (5.81 ± 3.17 % vs 3.25 ± 1.21 %) and the superficial mucosal layers (0 – 100 μm) (6.38 ± 3.73 % vs 3.66 ± 1.46 %). However, the vascular density in the surrounding non-carcinomatous mucosa assessed using ME-NBI and histologically, was significantly lower in the differentiated than in the undifferentiated types (P < 0.001). There was good agreement between ME-NBI and histologically assessed microvascular density in both the whole (r = 0.740; P < 0.001) and superficial mucosal layers (r = 0.764; P < 0.001). White opaque substance (WOS) was seen in eight patients who had the differentiated type carcinoma. In almost all cases with WOS, the appearance of the carcinoma was discolored. Conclusions: There was a close relationship between ME-NBI assessed microvascular density and histologically assessed vascular density in the mucosal layer. Microvascular density differed significantly between the differentiated and undifferentiated

  8. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  9. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.

  10. First-principles study of direct and narrow band gap semiconducting β -CuGaO2

    DOE PAGESBeta

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. Inmore » conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  11. Narrow band photometry of comet Kohoutek. [made at the Cassegrain focus of a 36-inch astronomical telescope

    NASA Technical Reports Server (NTRS)

    Brown, L. W.

    1976-01-01

    Photometric observations of the coma of comet Kohoutek were made at the Cassegrain focus of a 36-inch telescope. The observations consisted of one wide (visual, 5454 A) and six narrow (CN, 3879 A; C3, 4057 A; C2, 4732 A, 5165 A, 5634 A; continuum, 5200 A) band interference filters. In addition each filter was used with six diaphragms. Good quality data were obtained on 13 days between November 1973 and February 1974. A small flare was observed on 1 December for all filters, a CN flare on 13 January, and a visual flare on 28 January. The data were reduced to absolute narrow band magnitudes of the comet for the 13 days. The radial dependence of the surface brightness was derived from the set of diaphragms and future work will be directed toward using these results for modeling density distributions for the coma.

  12. A compact, narrow-band, and low-noise 800-mW laser source at 980 nm

    NASA Astrophysics Data System (ADS)

    Pliska, Tomas; Matuschek, Nicolai; Troger, Joerg; Schmidt, Berthold; Mohrdiek, Stefan; Harder, Christoph

    2005-04-01

    We report on the development of a new cost-effective, small form-factor laser source at a wavelength of 980 nm. The laser module is based on proven technology commonly used for pump laser modules deployed in fiber amplifiers of telecommunication networks. The package uses a state-of-the-art 14-pin butterfly housing with a footprint of 30x15 mm2 with a Fabry-Perot AlGaAs-InGaAs pump laser diode mounted inside having an anti-reflection coating on its front facet. The light is coupled into a single-mode polarization-maintaining fiber with a mode-field diameter of 6.6 micrometer. The spectral properties of the source are defined by a fiber Bragg grating (FBG) that provides feedback in a narrow reflection band. The laser back facet and the FBG form a long resonant cavity of 1.7 m length in which laser light with a low coherence length of a few cm is generated. This configuration with the laser being operated in the coherence-collapse regime has the advantage of being robust against variations in the optical path, thus enabling stable and mode-hop free emission. The laser module has the following properties: a continuous-wave fiber output power exceeding 800 mW, a spectral bandwidth of less than 50 pm, a root-mean square power variation of less than 0.2 % from DC to 2 MHz over the entire power operating range, and a polarization extinction ratio of more than 20 dB. This is a compact, low noise, high power source for frequency conversion with nonlinear optical materials, such as blue light generation.

  13. Narrow-band UVB radiation promotes dendrite formation by activating Rac1 in B16 melanoma cells.

    PubMed

    Wang, Wu-Qing; Wu, Jin-Feng; Xiao, Xiao-Qing; Xiao, Qin; Wang, Jing; Zuo, Fu-Guo

    2013-09-01

    Melanocytes are found scattered throughout the basal layer of the epidermis. Following hormone or ultraviolet (UV) light stimulation, the melanin pigments contained in melanocytes are transferred through the dendrites to the surrounding keratinocytes to protect against UV light damage or carcinogenesis. This has been considered as a morphological indicator of melanocytes and melanoma cells. Small GTPases of the Rho family have been implicated in the regulation of actin reorganization underlying dendrite formation in melanocytes and melanoma cells. It has been proven that ultraviolet light plays a pivotal role in melanocyte dendrite formation; however, the molecular mechanism underlying this process has not been fully elucidated. The effect of small GTPases, such as Rac1 and RhoA, on the morphology of B16 melanoma cells treated with narrow-band UVB radiation was investigated. The morphological changes were observed under a phase contrast microscope and the F-actin microfilament of the cytoskeleton was observed under a laser scanning confocal microscope. The pull-down assay was performed to detect the activity of the small GTPases Rac1 and RhoA. The morphological changes were evident, with globular cell bodies and increased numbers of tree branch-like dendrites. The cytoskeletal F-actin appeared disassembled following narrow-band UVB irradiation of B16 melanoma cells. Treatment of B16 melanoma cells with narrow-band UVB radiation resulted in the activation of Rac1 in a time-dependent manner. In conclusion, the present study may provide a novel method through which narrow-band UVB radiation may be used to promote dendrite formation by activating the Rac1 signaling pathway, resulting in F-actin rearrangement in B16 melanoma cells. PMID:24649261

  14. Subsurface banding poultry litter impacts greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...

  15. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-01

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized. PMID:27403812

  16. Diagnosis of gastric intraepithelial neoplasia by narrow-band imaging and confocal laser endomicroscopy

    PubMed Central

    Wang, Shu-Fang; Yang, Yun-Sheng; Wei, Li-Xin; Lu, Zhong-Sheng; Guo, Ming-Zhou; Huang, Jin; Peng, Li-Hua; Sun, Gang; Ling-Hu, En-Qiang; Meng, Jiang-Yun

    2012-01-01

    AIM: To evaluate the diagnosis of different differentiated gastric intraepithelial neoplasia (IN) by magnification endoscopy combined with narrow-band imaging (ME-NBI) and confocal laser endomicroscopy (CLE). METHODS: Eligible patients with suspected gastric IN lesions previously diagnosed by endoscopy in secondary hospitals and scheduled for further diagnosis and treatment were recruited for this study. Excluded from the study were patients who had liver cirrhosis, impaired renal function, acute gastrointestinal (GI) bleeding, coagulopathy, esophageal varices, jaundice, and GI post-surgery. Also excluded were those who were pregnant, breastfeeding, were younger than 18 years old, or were unable to provide informed consent. All patients had all mucus and bile cleared from their stomachs. They then received upper GI endoscopy. When a mucosal lesion is found during observation with white-light imaging, the lesion is visualized using maximal magnification, employing gradual movement of the tip of the endoscope to bring the image into focus. Saved images are analyzed. Confocal images were evaluated by two endoscopists (Huang J and Li MY), who were familiar with CLE, blinded to the related information about the lesions, and asked to classify each lesion as either a low grade dysplasia (LGD) or high grade dysplasia (HGD) according to given criteria. The results were compared with the final histopathologic diagnosis. ME-NBI images were evaluated by two endoscopists (Lu ZS and Ling-Hu EQ) who were familiar with NBI, blinded to the related information about the lesions and CLE images, and were asked to classify each lesion as a LGD or HGD according to the “microvascular pattern and surface pattern” classification system. The results were compared with the final histopathologic diagnosis. RESULTS: The study included 32 pathology-proven low grade gastric IN and 26 pathology-proven high grade gastric IN that were detected with any of the modalities. CLE and ME-NBI enabled

  17. Flexible metamaterial narrow-band-pass filter based on magnetic resonance coupling between ultra-thin bilayer frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyuan; Zhang, Qing; Ju, Yongfeng; Tao, Guiju; Jiang, Xiongwei; Kang, Ning; Liu, Chengpu; Zhang, Long

    2016-02-01

    A novel flexible metamaterial narrow-band-pass filter is designed and proved to be reliable by both numerical simulations and experimental measurements. The unit cell of the designed structure consists of circle ring resonators on top of a thin dielectric layer backed by a metallic mesh. The investigations on the distribution of the surface current and magnetic field as well as the analysis of the equivalent circuit model reveal that the magnetic resonance response between layers induced by the reverse surface current contributes to the high quality factor band-pass property. Importantly, it is a flexible design with a tunable resonance frequency by just changing the radius of the circle rings and can also be easily extended to have the multi-band-pass property. Moreover, this simplified structure with low duty cycle and ultra-thin thickness is also a symmetric design which is insensitive to the polarization and incident angles. Therefore, such a metamaterial narrow-band-pass filter is of great importance in the practical applications such as filtering and radar stealth, and especially for the conformal structure applications in the infrared and optical window area.

  18. Crystal growth and characterization of the narrow-band-gap semiconductors OsPn₂ (Pn = P, As, Sb).

    PubMed

    Bugaris, Daniel E; Malliakas, Christos D; Shoemaker, Daniel P; Do, Dat T; Chung, Duck Young; Mahanti, Subhendra D; Kanatzidis, Mercouri G

    2014-09-15

    Using metal fluxes, crystals of the binary osmium dipnictides OsPn2 (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn6 octahedra, as well as [Pn2(4-)] anions. Raman spectroscopy shows the presence of P-P single bonds, consistent with the presence of [Pn2(-4)] anions and formally Os(4+) cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2 and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn2 dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a Pn-Pn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment. PMID:25162930

  19. Electronic crosstalk in Terra MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, Sriharsha; Xiong, Xiaoxiong; Wang, Menghua

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a legacy Earth remote sensing instrument in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on board the Terra spacecraft. MODIS has 36 bands, among which bands 20-25 and bands 27-36 are thermal emissive bands covering a wavelength range from 3.7μm to 14.2μm. It has been found that there are severe contaminations in Terra bands 27-30 (6.7 μm - 9.73 μm) due to crosstalk of signals among themselves. The crosstalk effect induces strong striping artifacts in the Earth View (EV) images and causes large long-term drifts in the EV brightness temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect for them. It was demonstrated that the crosstalk correction can substantially reduce the striping noise in the EV images and significantly remove the long-term drifts in the EV BT in the Long Wave InfraRed (LWIR) water vapor channels (bands 27-28). In this paper, the crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in the remaining LWIR bands 29 and 30. The crosstalk correction successfully reduces the striping artifact in the EV images and removes long-term drifts in the EV BT in bands 29-30 as was done similarly for bands 27-28. The crosstalk correction algorithm can thus substantially improve both the image quality and the radiometric accuracy of the Level 1B (L1B) products of the LWIR PV bands, bands 27-30. From this study it is also understood that other Terra MODIS thermal emissive bands are contaminated by the crosstalk effect and that the algorithm can be applied to these bands for crosstalk correction.

  20. PAH Clusters and the Interstellar Infrared Emission Bands

    NASA Astrophysics Data System (ADS)

    Ricca, Alessandra; Roser, Joseph

    2016-06-01

    Polycyclic aromatic hydrocarbons (or PAHs) are the leading candidate for the emitters of the interstellar aromatic infrared emission bands. Some aspects of these emission bands indicate a contribution from PAH clusters. To better assess this contribution, we measured infrared absorption spectra of a series of homogeneous and heterogeneous PAH clusters using matrix isolation spectroscopy in solid argon and we performed theoretical calculations. The spectral shifts observed in the absorption spectra as a function of the PAH concentration can be related to preferred cluster structures forming in the argon matrix. Based upon our results, we predict that the large PAHs present in the interstellar medium are likely to have clusters with redshifted absorption bands in the C–H out-of-plane bending region. These clusters could contribute to a well-known red-shading observed in the profile of the interstellar 11.2 micron emission band.

  1. Simultaneous Multi-Spectral Narrow Band Auroral Imagery From Space (1150Å to 6300Å)

    NASA Astrophysics Data System (ADS)

    Schenkel, F. W.; Ogorzalek, B. S.; Gardner, R. R.; Hutchins, R. A.; Huffman, R. E.; Larrabee, J. C.

    1986-12-01

    The design of a multi-mode instrument known as the Auroral Ionospheric Remote Sensor, AIRS, is described. The design criteria are enumerated. The goal of the AIRS instrument is to produce data on the global imaging of the auroral display in both dark and sunlit hemispheres with the remote sensing of ionospheric airglows to deduce ionospheric parameters such as electron density profiles and atmospheric background emissions. The AIRS will fly on the POLAR BEAR spacecraft in a near polar circular orbit at an altitude of 1,000 km with a scheduled launch in the fall of 1986. The AIRS instrument is designed as a multi-mode system with four (4) channels of data to yield simultaneous operation in the vacuum ultraviolet (VUV), near ultraviolet (UV) and visible spectral bands. Two of the data channels are designed to operate in the VUV with 30A windows having a 240Å separation. These two channels utilize an Ebert-Fastie spectrometer which can provide total coverage for each of these channels from 1150Å to 1800Å. The other two channels utilize a filter selector system to provide preselected, 10Å bandwidth spectral channels at 3371Å, 3914Å and 6300Å, and a 200Å wide channel centered at 2250Å. These spectral bands are paired to provide simultaneous pair coverage of 2250Å and 3371Å and simultaneous pair coverage of 3914Å and 6300Å. All four channels view the auroral scene of the north polar cap via appropriate optics and a scan mirror system. In effect a line scan image of the auroral scene is produced via the scan mirror operating in the orbit cross plane with the longitudinal direction provided by the forward motion of the spacecraft. All four channels can also operate in the photometer mode by locking of the scan mirror in the nadir viewing position. The two VUV channels can also operate in a spectrometer mode with the scan mirror locked in the nadir viewing position and the Ebert-Fastie spectrometer performing a spectral scan. The basic ground level spatial

  2. Modulation transfer function testing of detector arrays using narrow-band laser speckle

    NASA Astrophysics Data System (ADS)

    Sensiper, Martin; Boreman, Glenn D.; Ducharme, Alfred D.; Snyder, Donald R.

    1993-02-01

    A method for measuring the modulation transfer function (MTF) of a detector array from zero spatial frequency to twice the Nyquist frequency is presented. Laser speckle with a tunable, narrow spatial-frequency bandpass is used. The MTF measured with this method is compared to the MTF measured using sine targets. The results of the two methods agree to within 2%.

  3. First Light of the Near-Infrared Narrow-Band Tunable Birefringent Filter at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Cao, Wenda; Hartkorn, Klaus; Ma, Jun; Xu, Yan; Spirock, Tom; Wang, Haimin; Goode, Philip R.

    2006-10-01

    We discuss a near-infrared (NIR) narrow-band tunable birefringent filter system newly developed by the Big Bear Solar Observatory (BBSO). This is one of the first narrow-bandpass NIR filter systems working at 1.56 μm which is used for the observation of the deepest solar photosphere. Four stages of calcite were used to obtain a bandpass of 2.5 Å along with a free spectral range (FSR) of 40 Å. Some unique techniques were implemented in the design, including liquid crystal variable retarders (LCVRs) to tune the bandpass in a range of ±100 Å, a wide field configuration to provide up to 2° incident angle, and oil-free structure to make it more compact and handy. After performing calibration and characteristic evaluation at the Evans Facility of the National Solar Observatory at Sacramento Peak (NSO/SP), a series of high-resolution filtergrams and imaging polarimetry observations were carried out with the Dunn Solar Telescope of NSO/SP and the 65-cm telescope of BBSO, in conjunction with the high-order adaptive optics system and the Fabry-Pérot Interferometer (FPI). In this paper, we describe the optical design and discuss the calibration method. Preliminary observations show that it is capable of serving as either a stand-alone narrow-band filter for NIR filtergram observations or an order-sorting filter of a FPI applied to NIR two-dimensional imaging spectro-polarimetry.

  4. Band limited emission with central frequency around 2 Hz accompanying powerful cyclones

    NASA Technical Reports Server (NTRS)

    Troitskaia, V. A.; Shepetnov, K. S.; Dvobnia, B. D.

    1992-01-01

    It has been found that powerful cyclones are proceeded, accompanied and followed by narrow band electromagnetic emission with central frequency around 2 Hz. It is shown that the signal from this emission is unique and clearly distinguishable from known types of magnetic pulsations, spectra of local thunderstorms, and signals from industrial sources. This emission was first observed during an unusually powerful cyclone with tornadoes in the western European part of the Soviet Union, which passed by the observatory of Borok from south to north-east. The emission has been confirmed by analysis of similar events in Antarctica. The phenomenon described presents a new aspect of interactions of processes in the lower atmosphere and the ionosphere.

  5. Tunable narrow-band spectral peak imposed onto a soliton with an acoustic long-period grating

    NASA Astrophysics Data System (ADS)

    Bolger, Jeremy A.; Luan, Feng; Yeom, Dong-Il; Tsoy, Eduard; de Sterke, C. Martijn; Eggleton, Benjamin J.

    2008-01-01

    We demonstrate a method of local spectral enhancement of an ultrafast soliton pulse. We use an in-line acoustic long-period grating (LPG), a periodic structure modifying both the phase and the loss of the propagating light, and which is readily tuned by simple adjustment of an applied electrical signal. The soliton perturbed by this narrow-band filter evolves with nonlinear propagation into an intense localised spectral peak. Our setup consists of creation of a red-shifted optical soliton by propagation of pulses from a fibre laser in standard single-mode optical fibre, followed by imposition of a spectrally narrow LPG near to the soliton peak, and then continuing propagation. The wavelength and the peak value of the resulting local enhancement can be tuned by adjustment of the applied acoustic frequency and amplitude. The physics of the observed local spectral enhancement will be discussed in detail here.

  6. Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy.

    PubMed

    Kliner, D A; Koplow, J P; Goldberg, L

    1997-09-15

    Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated. PMID:18188256

  7. New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films.

    PubMed

    Saw, K G; Aznan, N M; Yam, F K; Ng, S S; Pung, S Y

    2015-01-01

    The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants. PMID:26517364

  8. New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films

    PubMed Central

    Saw, K. G.; Aznan, N. M.; Yam, F. K.; Ng, S. S.; Pung, S. Y.

    2015-01-01

    The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants. PMID:26517364

  9. Trap State Introduction versus Band Gap Narrowing in Nitrogen-Doped La2Ti2O7

    NASA Astrophysics Data System (ADS)

    Yost, Brandon; Cushing, Scott; Wu, Nianqiang; Bristow, Alan

    2015-03-01

    Nitrogen doping was reported to extend lanthanum dititanate's (LTO), La2Ti2O7, absorption from 380 nm to 500 nm by narrowing the band gap without introducing trap states. N-LTO holds promise for solar water splitting if, unlike in N-doped TiO2, spectral coverage can be increased without decreasing carrier lifetimes and decrementing the overall performance. Therefore, in this presentation, the effect of N-doping on LTO is confirmed using transient absorption spectroscopy with a supercontinuum and THz probe. The supercontinuum probe reveals carrier evolution in both band edge and mid-gap defect states. By exciting above and below the band edge, the influence of N-doping on the density of trap states is directly compared to the band edge position. Further, comparison of dynamics measured with the supercontinuum and THz probes reveals which changes in lifetime correspond to increased mobility or increased trapping, showing how the shifted band edge modifies carrier dynamics, and that N-doping in LTO is an efficient strategy for solar energy harvesting.

  10. ALEXIS (Array of Low-Energy X-Ray Imaging Sensors): A narrow-band survey/monitor of the ultrasoft x-ray sky

    SciTech Connect

    Priedhorsky, W.C.; Bloch, J.J.; Cordova, F.; Smith, B.W.; Ulibarri, M.; Chavez, J.; Evans, E.; Seigmund, O.H.W.; Marshall, H.; Vallerga, J.

    1989-01-01

    Los Alamos and Sandia National Laboratories are building an ultrasoft X-ray monitor experiment. This experiment, called ALEXIS (Array of Low-Energy X-Ray Imaging Sensors), consists of six compact normal-incidence telescopes. ALEXIS will operate in the range 70--110 eV. The ultrasoft X-ray/EUV band is nearly uncharted territory for astrophysics. ALEXIS, with its wide fields-of-view and well-defined wavelength bands, will complement the upcoming NASA Extreme Ultraviolet Explorer and ROSAT EUV Wide Field Camera, which are sensitive broad-band survey experiments. The program objectives of ALEXIS are to (1) demonstrate the feasibility of a wide field-of-view, normal incidence ultrasoft X-ray telescope system and (2) to determine ultrasoft X-ray backgrounds in the space environment. As a dividend, ALEXIS will pursue the following scientific objectives: (1) to map the diffuse background, with unprecedented angular resolution, in several emission-line bands, (2) to perform a narrow-band survey of point sources, (3) to search for transient phenomena in the ultrasoft X-ray band, and (4) to provide synoptic monitoring of variable ultrasoft X-ray sources such as cataclysmic variables and flare stars. ALEXIS is designed to be flown on a small autonomous payload carrier (a minisat) that could be launched from any expendable launch vehicle. The experiment weighs 100 pounds, draws 40 watts, and produces 10 kbps of data. It can be flown in any low earth orbit. Onboard data storage allows operation and tracking from a single ground station at Los Alamos. 57 refs., 12 figs.

  11. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source.

    PubMed

    Liu, Wei; Ma, Pengfei; Lv, Haibin; Xu, Jiangming; Zhou, Pu; Jiang, Zongfu

    2016-04-18

    In this paper the stimulated Raman scattering (SRS) effect in high-power fiber amplifiers seeded by the narrow-band filtered superfluorescent source (SFS) is firstly analyzed both theoretically and experimentally. Spectral models for the formation of the SFS and the spectral evolution in high-power fiber amplifiers seeded by filtered SFS are proposed. It is found that the SRS effect in high-power fiber amplifiers depends on the spectral width of the filtered SFS seed. The theoretical predictions are in qualitative agreements with the experimental results. PMID:27137305

  12. SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam

    SciTech Connect

    Paley, J.; Djurcic, Z.; Harris, D.; Tesarek, R.; Feldman, G.; Corwin, L.; Messier, M.D.; Mayer, N.; Musser, J.; Paley, J.; Tayloe, R.; /Indiana U. /Iowa State U. /Minnesota U. /South Carolina U. /Wichita State U. /William-Mary Coll.

    2010-10-15

    We propose to construct and deploy a fine-grained detector in the Fermilab NOvA 2 GeV narrow-band neutrino beam. In this beam, the detector can make unique contributions to the measurement of quasi-elastic scattering, neutral-current elastic scattering, neutral-current {pi}{sup 0} production, and enhance the NOvA measurements of electron neutrino appearance. To minimize cost and risks, the proposed detector is a copy of the SciBar detector originally built for the K2K long baseline experiment and used recently in the SciBooNE experiment.

  13. Optical Observations of the Nearby Galaxy IC342 with Narrow Band [SII] and H_alpha Filters. I

    NASA Astrophysics Data System (ADS)

    Vucetic, M. M.; Arbutina, B.; Urosevic, D.; Dobardzic, A.; Pavlovic, M. Z.; Pannuti, T. G.; Petrov, N.

    2013-12-01

    We present observations of a portion of the nearby spiral galaxy IC342 using narrow band [SII] and Hα filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, Hα and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 5 times higher than previously known in these two parts of the galaxy.

  14. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    SciTech Connect

    Piot, P.; Sun, Y. -E; Maxwell, T. J.; Ruan, J.; Lumpkin, A. H.; Rihaoui, M. M.; Thurman-Keup, R.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  15. Accretion disc/corona emission from a radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Dewangan, G. C.; Raychaudhuri, B.

    2016-02-01

    Approximately 10-20 per cent of active galactic nuclei (AGN) are known to eject powerful jets from the innermost regions. There is very little observational evidence if the jets are powered by spinning black holes and if the accretion discs extend to the innermost regions in radio-loud AGN. Here, we study the soft X-ray excess, the hard X-ray spectrum and the optical/UV emission from the radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504 using Suzaku and Swift observations. The broad-band X-ray continuum of PKS 0558-504 consists of a soft X-ray excess emission below 2 keV that is well described by a blackbody (kT ˜ 0.13 keV) and high-energy emission that is well described by a thermal Comptonization (compps) model with kTe ˜ 250 keV, optical depth τ ˜ 0.05 (spherical corona) or kTe ˜ 90 keV, τ ˜ 0.5 (slab corona). The Comptonizing corona in PKS 0558-504 is likely hotter than in radio-quiet Seyferts such as IC 4329A and Swift J2127.4+5654. The observed soft X-ray excess can be modelled as blurred reflection from an ionized accretion disc or optically thick thermal Comptonization in a low-temperature plasma. Both the soft X-ray excess emission when interpreted as the blurred reflection and the optical/UV to soft X-ray emission interpreted as intrinsic disc Comptonized emission implies spinning (a > 0.6) black hole. These results suggest that disc truncation at large radii and retrograde black hole spin both are unlikely to be the necessary conditions for launching the jets.

  16. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.

    PubMed

    Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn

    2002-03-01

    We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge. PMID:11884754

  17. Enhanced-efficiency, narrow-band gigawatt microwave output of the reditron oscillator

    NASA Astrophysics Data System (ADS)

    Davis, Harold A.; Fulton, Robert D.; Sherwood, E. G.; Kwan, Thomas J. T.

    1990-06-01

    Experiments are described which confirm theoretical predictions of higher-efficiency, narrower-bandwidth microwave output of the reditron oscillator over simple vircator high-power microwave devices. The authors produced 1.6 GW of microwave power at 2.46 GHz. The conversion efficiency from beam power to microwave power was 5.5 to 6 percent, exceeding the usual 1 to 3 percent efficiency obtained with conventional vircators. The 1 percent bandwidth was about a factor of 10 less than the usual value for virtual cathode oscillators. Results of computer calculations in reasonable agreement with the experimental findings are presented.

  18. Perfect narrow-band absorber based on a monolayer of metallodielectric microspheres

    SciTech Connect

    Dyachenko, P. N. Petrov, A. Yu.; Eich, M.

    2013-11-18

    We have studied how two-dimensional arrays of metallodielectric core-shell microspheres on a metal substrate can efficiently absorb infrared electromagnetic radiation in a narrow wavelength range under normal incidence. Our simulations indicate that perfect absorption efficiencies can be achieved for resonance wavelengths. The influence of core-shell microspheres geometry and lattice geometry is studied on absorption properties. For wavelength from 1.2 μm to 2.6 μm, an optimal combination of sphere and core radius was obtained to provide perfect absorption which can be wavelength adjusted.

  19. Pansharpening on the Narrow Vnir and SWIR Spectral Bands of SENTINEL-2

    NASA Astrophysics Data System (ADS)

    Vaiopoulos, A. D.; Karantzalos, K.

    2016-06-01

    In this paper results from the evaluation of several state-of-the-art pansharpening techniques are presented for the VNIR and SWIR bands of Sentinel-2. A procedure for the pansharpening is also proposed which aims at respecting the closest spectral similarities between the higher and lower resolution bands. The evaluation included 21 different fusion algorithms and three evaluation frameworks based both on standard quantitative image similarity indexes and qualitative evaluation from remote sensing experts. The overall analysis of the evaluation results indicated that remote sensing experts disagreed with the outcomes and method ranking from the quantitative assessment. The employed image quality similarity indexes and quantitative evaluation framework based on both high and reduced resolution data from the literature didn't manage to highlight/evaluate mainly the spatial information that was injected to the lower resolution images. Regarding the SWIR bands none of the methods managed to deliver significantly better results than a standard bicubic interpolation on the original low resolution bands.

  20. Modulation transfer function testing of FPA using narrow-band laser speckle

    NASA Astrophysics Data System (ADS)

    Hua, Qing; Zheng, Wenlong; Li, Yuguang; Liang, Yinzhong; He, Ping'an; Li, Song; Xu, Jing

    2000-10-01

    This paper shows an approach using tunable narrowband speckle pattern generated by a double-slit aperture laid behind a new microcrystalline glass material scattering screen, for testing MTF of FPA between zero and twice Nyquist frequency. The measurement near to the Nyquist frequency, this method proved highly effective much better than that obtained by the Wide-band Laser Speckle.

  1. Commissioning results of the narrow-band beam position monitor system upgrade in the APS storage ring.

    SciTech Connect

    Singh, O.

    1999-04-20

    When using a low emittance storage ring as a high brightness synchrotron radiation source, it is critical to maintain a very high degree of orbit stability, both for the short term and for the duration of an operational fill. A fill-to-fill reproducibility is an additional important requirement. Recent developments in orbit correction algorithms have provided tools that are capable of achieving a high degree of orbit stability. However, the performance of these feedback systems can be severely limited if there are errors in the beam position monitors (BPMs). The present orbit measurement and correction system at the APS storage ring utilizes 360 broad-band-type BPMs that provide turn-by-turn diagnostics and an ultra-stable orbit: < 1.8 micron rms vertically and 4.5 microns rms horizontally in a frequency band of 0.017 to 30 Hz. The effects of beam intensity and bunch pattern dependency on these BPMs have been significantly reduced by employing offset compensation correction. Recently, 40 narrow-band switching-type BPMs have been installed in the APS storage ring, two in each of 20 operational insertion device straight sections, bringing the total number of beam position monitors to 400. The use of narrow-band BPM electronics is expected to reduce sensitivity to beam intensity, bunch pattern dependence, and long-term drift. These beam position monitors are used for orbit correction/feedback and machine protection interlocks for the insertion device beamlines. The commissioning results and overall performance for orbit stability are provided.

  2. Magnetism switching and band-gap narrowing in Ni-doped PbTiO{sub 3} thin films

    SciTech Connect

    Zhou, Wenliang; Yu, Lu; Yang, Pingxiong Chu, Junhao; Deng, Hongmei

    2015-05-21

    Ions doping-driven structural phase transition accompanied by magnetism switching and band-gap narrowing effects has been observed in PbTi{sub 1−x}Ni{sub x}O{sub 3−δ} (xPTNO, x = 0.00, 0.06, and 0.33) thin films. With the increase of x, the xPTNO thin films exhibit not only a phase transition from the pseudotetragonal structure to a centrosymmetric cubic structure but also a drastic decrease of grain size. Moreover, the as-grown Ni-doped PbTiO{sub 3} (PTO) thin films show obvious room-temperature ferromagnetism and an increased saturation magnetization with increasing the Ni content, in contrast to undoped PTO, which shows diamagnetism. A bound magnetic polaron model was proposed to understand the observed ferromagnetic behavior of PTO-derived perovskite thin films. Furthermore, the 0.33PTNO thin film presents a narrowed band-gap, much smaller than that of PTO, which is attributed to new states of both the highest occupied molecular orbital and the lowest unoccupied molecular orbital in an electronic structure with the presence of Ni. These findings may open up a route to explore promising perovskite oxides as candidate materials for use in multiferroics and solar-energy devices.

  3. Forward-bias capacitance and current measurements for determining lifetimes and band narrowing in p-n junction solar cells

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Chen, P. J.; Pao, S. C.; Lindholm, F. A.

    1978-01-01

    A new method is described and illustrated for determining the minority-carrier diffusion length and lifetime in the base region of p-n junction solar cells. The method requires only capacitance measurements at the device terminals and its accuracy is estimated to be + or - 5%. It is applied to a set of silicon p-n junction devices and the values of the diffusion lengths agree with those obtained using the current response to X-ray excitation but disagree with those obtained by the OCVD method. The reasons for the relative inaccuracy of OCVD applied to silicon devices are discussed. The capacitance method includes corrections for a two-dimensional fringing effects which occur in small area devices. For a device having highly-doped base region and surface (emitter) layer, the method can be extended to enable the determination of material properties of the degenerately doped surface layer. These material properties include the phenomenological emitter lifetime and a measure of the energy band-gap narrowing in the emitter. An alternate method for determining the energy band-gap narrowing from temperature dependence of emitter current is discussed and demonstrated.

  4. [Neuroendocrine tumor of the terminal ileum observed by magnifying endoscopy with narrow-band imaging: a case report].

    PubMed

    Ishibashi, Hiroyuki; Fukita, Yosho; Toyomizu, Michifumi; Asaki, Tsutoshi; Adachi, Seitaro; Yasuda, Ikuma; Katakura, Yoshiki; Saito, Toru; Nozawa, Satoshi; Suematsu, Naomi

    2015-11-01

    We report the case of an 88-year-old woman with localized intestinal obstruction caused by a midgut neuroendocrine tumor (NET) without endocrine symptoms. She was referred to our hospital for lower abdominal pain. Abdominal enhanced computed tomography revealed a thickened wall in the terminal ileum with dilated small bowel and multiple hepatic metastases upstream. Although the presenting symptoms resolved with short-term fasting and defecation, we performed further investigation. Colonoscopy confirmed the presence of submucosal tumors in the terminal ileum with a yellow-discolored surface but without ulceration or erosion. Magnifying endoscopy with narrow-band imaging clearly showed extended and dilated vessels, with the existing vessels maintained under the epithelium. Biopsies from these lesions were immunohistochemically positive for all neuroendocrine markers, and the Ki-67 index was 10%. Therefore, the patient was diagnosed with NET, and she underwent laparoscopic surgery to relieve the intestinal obstruction. Pathological examination of the resected specimen confirmed grade 2 NET with intramural metastasis and dissemination. After follow-up for a month, octreotide long-acting repeatable therapy was initiated and the patient was free of symptoms at the 6-month follow-up. This is the first report of midgut NET observed by magnifying endoscopy with narrow-band imaging. PMID:26537328

  5. A polynomial chaos approach to narrow band modeling of radiative heat transfer in non-uniform gaseous media

    NASA Astrophysics Data System (ADS)

    André, Frédéric

    2016-05-01

    An accurate treatment of non-uniformities is required in many applications involving radiative heat transfer in gaseous media. Usual techniques to handle path non-uniformities rely on simplifying assumptions, such as scaling or correlation of gas spectra. Those approximations are usually accurate but may also fail to provide accurate results, especially when large temperature gradients are considered. The objective of the present work is to show that this problem can be treated rigorously. The proposed method can be applied to any arbitrary narrow band model. It is based on some results from Polynomial Chaos' framework and copulas theory. Although the mathematical derivation may appear sophisticated, applying the method is straightforward. It is shown that adding only one coefficient to any uniform narrow band model (for a simple case involving a non-uniform column discretized into two uniform sub-paths) allows to achieve almost LBL accuracy for radiative heat transfer calculations. The technique is described and applied to some "severe" test cases from the literature.

  6. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  7. The infrared emission bands. III. Southern IRAS sources.

    PubMed

    Cohen, M; Tielens, A G; Bregman, J; Witteborn, F C; Rank, D M; Allamandola, L J; Wooden, D H; de Muizon, M

    1989-06-01

    We present airborne 5-8 micrometers spectra of southern IRAS sources which reveal strong polycyclic aromatic hydrocarbon (PAH) emission features. The good correlation between the bands, in particular the dominant 6.2 and "7.7" micrometers features, strongly imply a common carrier, reinforcing the PAH hypothesis. However, small but detectable spectral variations exist. Planetaries have a distinctly different ratio of I(6.2)/I(7.7) than other nebulae, accompanied by a redward shift in the actual wavelength of the "7.7" micrometers peak. Further, we have detected a new feature, previously predicted from laboratory spectra of PAH molecules, at 5.2 micrometers in many of these sources. Spectra of two rare [WC 10] planetary nebular nuclei indicate a very prominent plateau of emission, linking the 6.2 and 7.7 micrometers bands. Several of our sources show definite evidence for emission structure between 14 and 23 micrometers in their IRAS Low-Resolution Spectral Atlas spectra: we attribute this structure to PAH bands. too. We have defined the "generic" spectrum of emission bands relating the mean intensities of each band to that of the strongest, near 7.7 micrometers. We have added three more planetary or protoplanetary nebulae to our correlation between 7.7 micrometers band intensity and nebular gas phase C/O ratio, namely NGC 6302, HR 4049, and the highly carbon-rich [WC 10] nucleus, CPD--56 degrees 8032. For the latter we have determined a ratio for C/O of approximately 4.8 from IUE observations. The good correlation between the intensity ratio of the "7.7" micrometers feature relative to the far-infrared dust continuum and nebular C/O also supports a carbonaceous carrier for these emission features. PMID:11542167

  8. Optimized grating as an ultra-narrow band absorber or plasmonic sensor.

    PubMed

    Meng, Lijun; Zhao, Ding; Ruan, Zhichao; Li, Qiang; Yang, Yuanqing; Qiu, Min

    2014-03-01

    Lamellar gratings are investigated via temporal coupled-mode theory and numerical simulations. Total absorption can be achieved by an optimized grating with shallow grooves under normal incidence and the full width at half-maximum (FWHM) is only 0.4 nm. For certain wavelengths, the structure shows high absorption only within an ultra-narrow angle, which suggests that it can be used as a highly directional thermal emitter according to Kirchhoff's law. Besides, the resonant wavelength is sensitive to the refractive index of the environmental dielectric. The large sensitivity (1400  nm/RIU) and simultaneous small FWHM result in a huge figure-of-merit of 2300/RIU, which enables the structure to have great potential in plasmonic sensing. PMID:24690690

  9. Emergent dimensional reduction of the spin sector in a model for narrow-band manganites

    SciTech Connect

    Liang, Shuhua; Daghofer, Maria; Dong, Shuai; Sen, Cengiz; Dagotto, Elbio R

    2011-01-01

    The widely used double-exchange model for manganites is shown to support various striped phases at filling fractions 1/n (n = 3, 4, 5, . . .), in the previously unexplored regime of narrow bandwidth and small Jahn-Teller coupling. Working in two dimensions, our main result is that these stripes can be individually spin flipped without a physically relevant change in the energy, i.e., we find a large ground-state manifold with nearly degenerate energies. The two-dimensional spin system thus displays an unexpected dynamically generated dimensional reduction into decoupled one-dimensional stripes, even though the electronic states remain two dimensional. Relations of our results with recent literature addressing compass models in quantum computing are discussed.

  10. Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy.

    PubMed

    Koplow, J P; Kliner, D A; Goldberg, L

    1998-06-20

    A compact, lightweight, low-power-consumption source of tunable, narrow-bandwidth blue and UV radiation is described. In this source, a single-longitudinal-mode diode laser seeds a pulsed, GaAlAs tapered amplifier whose ~860-nm output is frequency quadrupled by two stages of single-pass frequency doubling. Performance of the laser system is characterized over a wide range of amplifier duty cycles (0.1-1.0), pulse durations (50 ns-1.0 mus), peak currents (

  11. Metal-dielectric-metal based narrow band absorber for sensing applications.

    PubMed

    Lu, Xiaoyuan; Wan, Rengang; Zhang, Tongyi

    2015-11-16

    We have investigated numerically the narrowband absorption property of a metal-dielectric-metal based structure which includes a top metallic nanoring arrays, a metal backed plate, and a middle dielectric spacer. Its absorption is up to 90% with linewidth narrower than 10 nm. This can be explained in terms of surface lattice resonance of the periodic structure. The spectrum with the sharp absorption dip, i.e. the lattice resonance, strongly depends on the refractive index of media surrounding the nanorings. This feature can be explored to devise a refractive index sensor, of which the bulk sensitivity factor is one order larger than that based on gap resonance mode, while the surface sensitivity factor can be two times larger. The proposed narrowband absorber has potential in applications of plasmonic biosensors. PMID:26698467

  12. Narrow band deformable registration of prostate magnetic resonance imaging, magnetic resonance spectroscopic imaging, and computed tomography studies

    SciTech Connect

    Schreibmann, Eduard; Xing Lei . E-mail: lei@reyes.stanford.edu

    2005-06-01

    Purpose: Endorectal (ER) coil-based magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) is often used to obtain anatomic and metabolic images of the prostate and to accurately identify and assess the intraprostatic lesions. Recent advancements in high-field (3 Tesla or above) MR techniques affords significantly enhanced signal-to-noise ratio and makes it possible to obtain high-quality MRI data. In reality, the use of rigid or inflatable endorectal probes deforms the shape of the prostate gland, and the images so obtained are not directly usable in radiation therapy planning. The purpose of this work is to apply a narrow band deformable registration model to faithfully map the acquired information from the ER-based MRI/MRSI onto treatment planning computed tomography (CT) images. Methods and Materials: A narrow band registration, which is a hybrid method combining the advantages of pixel-based and distance-based registration techniques, was used to directly register ER-based MRI/MRSI with CT. The normalized correlation between the two input images for registration was used as the metric, and the calculation was restricted to those points contained in the narrow bands around the user-delineated structures. The narrow band method is inherently efficient because of the use of a priori information of the meaningful contour data. The registration was performed in two steps. First, the two input images were grossly aligned using a rigid registration. The detailed mapping was then modeled by free form deformations based on B-spline. The limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS), which is known for its superior performance in dealing with high-dimensionality problems, was implemented to optimize the metric function. The convergence behavior of the algorithm was studied by self-registering an MR image with 100 randomly initiated relative positions. To evaluate the performance of the algorithm, an MR image was

  13. Effects of laser source parameters on the generation of narrow band and directed laser ultrasound

    NASA Technical Reports Server (NTRS)

    Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.

    1992-01-01

    Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.

  14. The Narrow Band AOTF Based Hyperspectral Microscopic Imaging on the Rat Skin Stratum Configuration

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wang, H.; Huang, J.; Gao, Q.

    2014-08-01

    A noncollinear acousto-optic tunable filter (AOTF) was designed with a comprehensive treatment of the properties of TeO2 as an acoustooptic (A-O) material. The results of optical testing validated that it predicted the performance of the designed AOTF. The bandwidth of the AOTF was very narrow in the visible light range. The high spectral resolution of AOTF was useful in practical applications to the hyperspectral imaging. The experimentally observed spectral pattern of the diffracted light was nearly the same as the theoretical result. The measured tuning relationship between the diffracted central optical wavelength and acoustic frequency was in accordance with the theoretical prediction. It demonstrates the accuracy of our design theory. Furthermore, by selecting the AOTF as the spectroscopic element, a hyperspectral microscopic imaging system was designed. The hyperspectral microscopic images of the rat skin tissue under the different optical center wavelength were acquired. The experimental results indicated that the imaging performance was satisfactory. The stratums of the rat skin can be clearly distinguished. The inner details of the epidermis and the corium can be shown on the hyperspectral microscopic images. Some differences also can be found by the comparison of the hyperspectal images under the different optical wavelengths. The study indicated the applicability and the advantage of our system on biomedicine area.

  15. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  16. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  17. Use of narrow-band spectra to estimate the fraction of absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Huemmrich, Karl F.; Goward, Samuel N.

    1990-01-01

    A novel approach is proposed for using high-spectral resolution imagers to estimate the fraction of photosynthetically active radiation adsorbed, f(apar), by vegetated land surfaces. In comparison to approaches using broad-band vegetation indices, the proposed method appears to be relatively insensitive to the reflectance of nonphotosynthetically active material beneath the canopy, such as leaf litter or soil. The method is based on a relationship between the second derivative of the reflectance vs wavelength function for terrestrial vegetation and f(apar). The relationship can be defined by the second derivatives in either of two windows, one in the visible region centered at 0.69 micron, another in the near-infrared region centered at 0.74 micron.

  18. A search for narrow band signals with Serendip II - A progress report

    NASA Astrophysics Data System (ADS)

    Werthimer, D.; Buhse, R.; Berezin, A.; Bowyer, S.

    1986-10-01

    Commensal programs for SETI, carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. An automated commensal system, Serendip II, searches for 0.49-Hz signals in sequential 64,700 Hz bands of the IF of a radio telescope being used for an astronomical observation. Upon detection of a signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85-ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64-m telescope.

  19. Correlation effects in photoemission from adsorbates: Hydrogen on narrow-band metals

    NASA Astrophysics Data System (ADS)

    Rubio, J.; Refolio, M. C.; López Sancho, M. P.; López Sancho, J. M.

    1988-08-01

    This paper deals with photoemission from a one-level atom adsorbed on a metal surface within the context of Anderson's Hamiltonian. The occupied part of the adsorbate density of states (DOS) is calculated by means of a many-electron approach that incorporates the following ingredients: (1) A neat separation between final-state interactions and initial (ground-state) effects. (2) The method (a Lehmann-type representation) leans heavily on the resolvent operator, R(z)=(z-H)-1, which is obtained by expressing Dyson's equation in terms of the (N-1)-electron states (configurations) that diagonalize the hopping-free part of Anderson's Hamiltonian, thereby including the atomic correlation (U) in a nonperturbative way while expanding in powers of the hopping parameter (V). (3) By using blocking methods, the matrix elements of R are grouped into equivalent 4×4 matrix blocks, with residual interactions, which are then put in correspondence with the sites of a rectangular lattice, thereby making the problem isomorphic to that of finding a noninteracting one-electron Green's function in the Wannier representation. (4) Renormalized perturbation theory, along with a series of convolution theorems due to Hugenholtz and Van Hove, allows one to develop a self-consistency equation that automatically takes into account an infinite number of configurations. The resulting DOS is compared with photoemission spectra from hydrogen adsorbed on tungsten (half-filled metal band) and nickel (almost full). Correlation effects turn out to produce peaks at the appropriate energies, so that an unusually good agreement is found despite the featureless, semielliptical DOS adopted for the metal. Only gross features of this quantity, such as width, center, and occupation of the band, seem to matter in a photoemission calculation.

  20. Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping

    NASA Astrophysics Data System (ADS)

    Berger, Christoph; Lesnik, Andreas; Zettler, Thomas; Schmidt, Gordon; Veit, Peter; Dadgar, Armin; Bläsing, Jürgen; Christen, Jürgen; Strittmatter, André

    2016-04-01

    We report on metalorganic vapor phase epitaxy (MOVPE) of distributed Bragg reflectors (DBR) applying a periodic modulation of the GaN doping concentration only. The doping modulation changes the refractive index of GaN via the Burstein-Moss-effect. MOVPE growth of highly doped GaN:Ge and modulation of the dopant concentration by at least two orders of magnitude within few nanometers is required to achieve a refractive index contrast of 2-3%. Such modulation characteristic is achieved despite the presence of Ge memory effects and incorporation delay. We realized DBRs with up to 100 layer pairs by combining GaN:Ge with a nominal doping concentration of 1.6×1020 cm-3 as low-refractive index material with unintentionally doped GaN as high-refractive index layer. Scanning transmission electron microscope images reveal DBR structures with abrupt interfaces and homogenous layer thicknesses in lateral and vertical direction. Reflectance measurements of DBRs designed for the blue and near UV-spectral region show a narrow stopband with a maximum reflectivity of 85% at 418 nm and even 95% at 370 nm. InGaN/GaN multi-quantum well structures grown on top of such DBRs exhibit narrow emission spectra with linewidths below 3 nm and significantly increased emission intensity.

  1. 500 days of Stromgren b, y and narrow-band [OIII], H α photometric evolution of gamma-ray Nova Del 2013 (=V339 Del)

    NASA Astrophysics Data System (ADS)

    Munari, Ulisse; Maitan, Alessandro; Moretti, Stefano; Tomaselli, Salvatore

    2015-10-01

    We present and discuss highly accurate photometry obtained through medium Stromgren y, b bands and narrow [OIII], Hα bands covering 500 days of the evolution of Nova Del 2013 since its maximum brightness. This is by far the most complete study of any nova observed in such photometric systems. The nova behavior in these photometric bands is very different from that observed with the more conventional broad bands like UBVRC IC or u‧g‧r‧i‧z‧ , providing unique information about extent and ionization of the ejecta, the onset of critical phases like the transition between optically thick and thin conditions, and re-ionization by the central super-soft X-ray source. The actual transmission profiles of the y, b , [OIII] and Hα photometric filters have been accurately measured at different epochs and different illumination angles, to evaluate in detail their performance under exact operating conditions. The extreme smoothness of both the Hα and [OIII] lightcurves argues for absence of large and abrupt discontinuities in the ejecta of Nova Del 2013. Should they exist, glitches in the lightcurves would have appeared when the ionization and/or recombination fronts overtook them. During the period of recorded very large variability (up to 100× over a single day) in the super-soft X-ray emission (from day +69 to +86 past V maximum), no glitch in excess of 1% was observed in the optical photometry, either in the continuum (Stromgren y) or in the lines ([OIII] and Hα filters), or in a combination of the two (Stromgren b, Johnson B and V). Considering that the recombination time scale in the ejecta was one week at that time, this excludes global changes of the white dwarf as the source of the X-ray variability and supports instead clumpy ejecta passing through the line of sight to us as its origin.

  2. T-shaped plasmonic array as a narrow-band thermal emitter or biosensor.

    PubMed

    Chang, Yia-Chung; Wang, Chih-Ming; Abbas, Mohammed N; Shih, Ming-Hsiung; Tsai, Din Ping

    2009-08-01

    A T-shaped plasmonic array is proposed for application as an effective thermal emitter or biosensor. The reflection and thermal radiation properties of a T-shaped array are investigated theoretically. The angular dependent reflectance spectrum shows a clear resonant dip at 0.36 eV for full polar angles. No other significant localized resonant mode is found in the investigated spectral range from 0.12 eV to 0.64 eV. According to the Kirchhoff's law, the thermal radiation of the proposed structure can lead to a sharp peak at 3.5 microm with low sideband emission. We have also found that the T-shaped structure filled with organic material such as PMMA with different thicknesses (10 nm -50 nm) can lead to significant shift of the resonance wavelength. Thus, the T-shaped structure can also be used as a good sensor for organic materials. PMID:19654760

  3. Strong Narrow-Band Luminescence from Silicon-Vacancy Color Centers in Spatially Localized Sub-10 nm Nanodiamond

    PubMed Central

    Catledge, Shane A.; Singh, Sonal

    2011-01-01

    Discrete nanodiamond particles of 500 nm and 6 nm average size were seeded onto silicon substrates and plasma treated using chemical vapor deposition to create silicon-vacancy color centers. The resulting narrow-band room temperature photoluminescence is intense, and readily observed even for weakly agglomerated sub-10 nm size diamond. This is in contrast to the well-studied nitrogen-vacancy center in diamond which has luminescence properties that are strongly dependant on particle size, with low probability for incorporation of centers in sub-10 nm crystals. We suggest the silicon-vacancy center to be a viable alternative to nitrogen-vacancy defects for use as a biomarker in the clinically-relevant sub-10 nm size regime, for which nitrogen defect-related luminescent activity and stability is reportedly poor. PMID:21603120

  4. Technique for narrow-band imaging in the far ultraviolet based on aberration-corrected holographic gratings.

    PubMed

    Wilkinson, E; Indebetouw, R; Beasley, M

    2001-07-01

    We have developed a new family of imaging spectrometer designs that combine the imaging power of two-element telescopes with the aberration control of first-generation holographic gratings. The resulting optical designs provide high spatial resolution over modest fields of view at selectable wavelengths. These all-reflective designs are particularly suited for narrow-band imaging below 1050 A, the wavelength below which there are no transmitting materials in the UV. We have developed designs to efficiently map the spatial distribution of UV-emitting material. This mapping capability is absent in current and future astronomical instruments but is crucial to the understanding of the nature of a variety of astrophysical phenomena. Although our examples focus on UV wavelengths, the design concept is applicable to any wavelength. PMID:11958267

  5. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks.

    PubMed

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  6. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    NASA Astrophysics Data System (ADS)

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-06-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks.

  7. Tunable millisecond narrow-band Nd:GSGG laser around 1336.6 nm for 27Al+ optical clock

    NASA Astrophysics Data System (ADS)

    Wang, M.-Q.; Zhang, F.-F.; Li, J.-J.; Wang, Z.-M.; Zong, N.; Zhang, S.-J.; Yang, F.; Yuan, L.; Bo, Y.; Cui, D.-F.; Peng, Q.-J.; Xu, Z.-Y.

    2016-05-01

    We developed a narrow-band, Nd:GSGG ring laser tunable around 1336.6 nm with a tuning range more than 24 pm. The maximum output energy is 0.26 J per pulse with a pulse width of 900 μs and a pulse repetition rate of 10 Hz. The root-mean-square of wavelength stability in 1 h is 0.27 pm, and M2 factor is 1.06 at the output energy of 0.16 J per pulse. It can be a good candidate of the fundamental laser, of which the eighth-harmonic generation at 167.0787 nm can be used to induce the 27Al+ ion by the 1S0↔1P1 transition for laser cooling when it is used as the medium for optical clock.

  8. Total neutrino and antineutrino charged current cross section measurements in 100, 160, and 200 GeV narrow band beams

    NASA Astrophysics Data System (ADS)

    Berge, P.; Blondel, A.; Böckmann, P.; Burkhardt, H.; Dydak, F.; de Groot, J. G. H.; Grant, A. L.; Hagelberg, R.; Hughes, E. W.; Krasny, M.; Meyer, H. J.; Palazzi, P.; Ranjard, F.; Rothberg, J.; Steinberger, J.; Taureg, H.; Wachsmuth, H.; Wahl, H.; Williams, R. W.; Wotschack, J.; Wysłouch, B.; Blümer, H.; Brummel, H. D.; Buchholz, P.; Duda, J.; Eisele, F.; Kampschulte, B.; Kleinknecht, K.; Knobloch, J.; Müller, E.; Pszola, B.; Renk, B.; Belusević, R.; Falkenburg, B.; Fiedler, M.; Geiges, R.; Geweniger, C.; Hepp, V.; Keilwerth, H.; Kurz, N.; Tittel, K.; Debu, P.; Guyot, C.; Merlo, J. P.; Para, A.; Perez, P.; Perrier, F.; Rander, J.; Schuller, J. P.; Turlay, R.; Vallage, B.; Abramowicz, H.; Królikowski, J.; Lipniacka, A.

    1987-12-01

    Neutrino and antineutrino total charged current cross sections on iron were measured in the 100, 160, and 200 GeV narrow band beams at the CERN SPS in the energy range 10 to 200 GeV. Assuming σ/ E to be constant, the values corrected for non-isoscalarity are σv/E = (0.686 ± 0.019) * 10-38 cm2/ (GeV · nucleon) and σv/E = (0.339 ± 0.010) * 10-38 cm2/ (GeV·nucleon). Between 50 and 150 GeV no energy dependence of σ/ E was observed within ±3% for neutrino and ±4% for antineutrino interactions.

  9. Prediction of corridor effect from the launching of the satellite power system. [air pollutant concentration into narrow band of latitude

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Woodward, H. T.; Capone, L. A.; Riegel, C. A.

    1982-01-01

    A diagnostic model is developed to define the parameters which control the corridor effect of contaminants deposited in a narrow latitudinal band of the earth's atmosphere by numerous launches of the STS and heavy lift launch vehicles for construction of satellite solar power systems. Identified factors included the pollution injection rate, the ambient background levels of the pollutant species, and the transport properties related to the dilution rate of the chemicals. If the chemical life of the pollutant was shorter or the same length of time as the transport time, alterations in the chemical production and loss rates were found to be parameters necessarily added to the model. A comparison with NASA Ames Research Center two-dimensional model results indicate that the corridor effect was possile with operations above 60 km in the case of H2O, H2, and NO production.

  10. Using narrow-band J-PAS photometry to assess the properties of the stellar population in galaxies

    NASA Astrophysics Data System (ADS)

    Bruzual, Gustavo; Mejia-Narvaez, Alfredo; Magris C., Gladis

    2015-08-01

    We study the uncertainties and biases on the properties of the stellar population content of galaxies retrieved from narrow-band (J-PAS) photometry using the non-parametric method of spectral fitting dubbed DynBaS. We construct a star formation history library à la Chen et al. (2012), and then SED-fit a selection of synthetic spectra with observational properties similar to SDSS galaxies. We confront the results obtained from the photometric fits to those obtained from spectroscopic data for synthetic and real galaxies at various redshift ranges. Since no assumption on the star formation history is made, the so called template mismatch biases are naturally overcome. We find that biases in our estimations are the consequence of the several degeneracies between mass, age, metallicity, and internal dust extinction present in galaxy properties.

  11. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  12. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  13. Defect-induced emission band in CdTe

    NASA Astrophysics Data System (ADS)

    Seto, S.; Tanaka, A.; Takeda, F.; Matsuura, K.

    1994-04-01

    We report on a distinct correlation between the 1.47 eV emission band and the dislocation density in bulk CdTe. The 1.47 eV band intensifies around the high-dislocation area (lineage structure) and at the position just on dislocation bundle. On the other hand, the 1.47 eV band was hardly observed in the low-dislocation area (etch pit density less than 2 × 10 5 cm -2) or at the position away from the dislocation bundle. Furthermore, the 1.47 eV band was intensified by γ-ray irradiation of 1.7 × 10 7 Gy, which produced a great number of Frenkel defects. It was shown that the 1.47 eV band is related not only to an extended defect such as a dislocation, but also to a point defect such as a Frenkel defect. These results suggest that the strain field induced in the vicinity of the defects is responsible for the recombination center of the 1.47 eV band.

  14. Versatile 1 W narrow band 976 nm and 1064 nm light sources

    NASA Astrophysics Data System (ADS)

    Mohrdiek, S.; Pfeiffer, H.-U.; Zibik, E. A.; Sverdlov, B.; Pliska, T.; Lichtenstein, N.

    2011-02-01

    We report on development of novel curved waveguide (CWG) laser devices, where the emission wavelength centered at ~976 nm is stabilized to a 20 dB bandwidth of less than 100 picometer by using fiber Bragg gratings (FBG). Radiation from the curved waveguide laser is coupled using an anamorphic fiber lens into a single mode polarization maintaining fiber containing the FBG, the latter acting as a front reflector. The high power gain chip is based on Oclaro's InGaAs/AlGaAs quantum well laser. Use of the curved waveguide geometry allows to eliminate residual reflections in the optical path of the cavity, which is formed by the rear chip facet and the FBG. It is well known that additional reflections lead to significant deterioration of the spectral and power stability. The devices, assembled in telecom type housings, provide up to 1 W of low-noise and kink-free CW power. In addition pulse operation in nanosecond range is also investigated. The spectral stabilization time to the wavelength of the FBG is limited by the external cavity roundtrip of ~2 ns. A side mode suppression ratio of about 40 dB and higher is achieved for pulsed and CW operation. Results are also presented for a device at 1064 nm. Numerous applications can be envisioned for these devices. For instance devices with high power and ultranarrow spectral bandwidth allow greater flexibility in the choice of parameters for frequency conversion applications. In pulsed mode the device can be used in the special sensing applications where spectral stability is crucial.

  15. Methane Band and Continuum Band Imaging of Titan's Atmosphere Using Cassini ISS Narrow Angle Camera Pictures from the CURE/Cassini Imaging Project

    NASA Astrophysics Data System (ADS)

    Shitanishi, Jennifer; Gillam, S. D.

    2009-05-01

    The study of Titan's atmosphere, which bears resemblance to early Earth's, may help us understand more of our own. Constructing a Monte Carlo model of Titan's atmosphere is helpful to achieve this goal. Methane (MT) and continuum band (CB) images of Titan taken by the CURE/Cassini Imaging Project, using the Cassini Narrow Angle Camera (NAC) were analyzed. They were scheduled by Cassini Optical Navigation. Images were obtained at phase 53°, 112°, 161°, and 165°. They include 22 total MT1(center wavelength at 619nm), MT2(727nm), MT3(889nm), CB1(635nm), CB2(751nm), and CB3(938nm) images. They were reduced with previously written scripts using the National Optical Astronomy Observatory Image Reduction and Analysis Facility scientific analysis suite. Correction for horizontal and vertical banding and cosmic ray hits were made. The MT images were registered with corresponding CB images to ensure that subsequently measured fluxes ratios came from the same parts of the atmosphere. Preliminary DN limb-to-limb scans and loci of the haze layers will be presented. Accurate estimates of the sub-spacecraft points on each picture will be presented. Flux ratios (FMT/FCB=Q0) along the scans and total absorption coefficients along the lines of sight from the spacecraft through the pixels (and into Titan) will also be presented.

  16. Precise photometric redshifts with a narrow-band filter set: the PAU survey at the William Herschel Telescope

    NASA Astrophysics Data System (ADS)

    Martí, P.; Miquel, R.; Castander, F. J.; Gaztañaga, E.; Eriksen, M.; Sánchez, C.

    2014-07-01

    The Physics of the Accelerating Universe (PAU) survey at the William Herschel Telescope will use a new optical camera (PAUCam) with a large set of narrow-band filters to perform a photometric galaxy survey with a quasi-spectroscopic redshift precision of σ(z)/(1 + z) ˜ 0.0035 and map the large-scale structure of the universe in three dimensions up to iAB < 22.5-23.0. In this paper, we present a detailed photo-z performance study using photometric simulations for 40 equally spaced 12.5-nm-wide (full width at half-maximum) filters with an ˜25 per cent overlap and spanning the wavelength range from 450 to 850 nm, together with a ugrizY broad-band filter system. We then present the migration matrix rij, containing the probability that a galaxy in a true redshift bin j is measured in a photo-z bin i, and study its effect on the determination of galaxy auto- and cross-correlations. Finally, we also study the impact on the photo-z performance of small variations of the filter set in terms of width, wavelength coverage, etc., and find a broad region where slightly modified filter sets provide similar results, with the original set being close to optimal.

  17. Echolocation in sympatric Peale's dolphins (Lagenorhynchus australis) and Commerson's dolphins (Cephalorhynchus commersonii) producing narrow-band high-frequency clicks.

    PubMed

    Kyhn, L A; Jensen, F H; Beedholm, K; Tougaard, J; Hansen, M; Madsen, P T

    2010-06-01

    An increasing number of smaller odontocetes have recently been shown to produce stereotyped narrow-band high-frequency (NBHF) echolocation clicks. Click source parameters of NBHF clicks are very similar, and it is unclear whether the sonars of individual NBHF species are adapted to specific habitats or the presence of other NBHF species. Here, we test whether sympatric NBHF species sharing the same habitat show similar adaptations in their echolocation clicks and whether their clicks display signs of character displacement. Wide-band sound recordings were obtained with a six-element hydrophone array from wild Peale's (Lagenorhynchus australis) and Commerson's (Cephalorhynchus commersonii) dolphins off the Falkland Islands. The centroid frequency was different between Commerson's (133+/-2 kHz) and Peale's (129+/-3 kHz) dolphins. The r.m.s. bandwidth was 12+/-3 kHz for both species. The source level was higher for Peale's dolphin (185+/-6 dB re 1 muPa p.-p.) than for Commerson's (177+/-5 dB re 1 muPa p.-p.). The mean directivity indexes were 25 dB for both species. The relatively low source levels in combination with the high directivity index may be an adaptation to reduce clutter when foraging in a coastal environment. We conclude that the small species-specific shifts in distribution of centroid frequencies around 130 kHz may reflect character displacement in otherwise-stereotyped NBHF clicks. PMID:20472781

  18. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  19. Spectral imaging of the 3.3 and 11.3 micron emission bands in NGC 1333 - Discovery of spatially separate band emissions

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Rank, David; Sandford, Scott A.; Temi, Pasquale

    1993-01-01

    Spectral images in the 3.3 and 11.3 micron IR emission band around the star SVS 3 in NGC 1333 indicate that the two bands have their origin in different locations, rendering them useless in estimates of the sizes of the molecules emitting the bands. This is in keeping with the emission bands' generation by a mixture of variously sized polycyclic aromatic hydrocarbons (PAHs) whose smallest species have been dehydrogenated in the vicinity of SVS 3. Hot bands and overtone/combination bands may account for the 3.4-micron band, rather than molecular side-groups of the PAHs.

  20. A search for methane in the atmosphere of GJ 1214b via GTC narrow-band transmission spectrophotometry

    NASA Astrophysics Data System (ADS)

    Wilson, P. A.; Colón, K. D.; Sing, D. K.; Ballester, G. E.; Désert, J.-M.; Ehrenreich, D.; Ford, E. B.; Fortney, J. J.; Lecavelier des Etangs, A.; López-Morales, M.; Morley, C. V.; Pettitt, A. R.; Pont, F.; Vidal-Madjar, A.

    2014-03-01

    We present narrow-band photometric measurements of the exoplanet GJ 1214b using the 10.4 m Gran Telescopio Canarias and the Optical System for Imaging and low Resolution Integrated Spectroscopy instrument. Using tuneable filters, we observed a total of five transits, three of which were observed at two wavelengths nearly simultaneously, producing a total of eight individual light curves, six of these probed the possible existence of a methane absorption feature in the 8770-8850 Å region at high resolution. We detect no increase in the planet-to-star radius ratio across the methane feature with a change in radius ratio of Δ overline{R} = -0.0007 ± 0.0017 corresponding to a scaleheight (H) change of -0.5 ± 1.2H across the methane feature, assuming a hydrogen-dominated atmosphere. We find that a variety of water and cloudy atmospheric models fit the data well, but find that cloud-free models provide poor fits. These observations support a flat transmission spectrum resulting from the presence of a high-altitude haze or a water-rich atmosphere, in agreement with previous studies. In this study, the observations are pre-dominantly limited by the photometric quality and the limited number of data points (resulting from a long observing cadence), which make the determination of the systematic noise challenging. With tuneable filters capable of high-resolution measurements (R ≈ 600-750) of narrow absorption features, the interpretation of our results are also limited by the absence of high-resolution methane models below 1 μm.

  1. Full-sky survey searching for ultra-narrow-band artificial CW signals: analysis of the results of Project META

    NASA Astrophysics Data System (ADS)

    Lemarchand, Guillermo A.

    1996-06-01

    Project META (Megachannel ExtraTerrestrial Assay), a full-sky survey for artificial narrow-band signals, has been conducted from the Harvard/Smithsonian 26 m radiotelescope at Agassiz Station and from one of the two 30 m radiotelescopes of the Instituto Argentino de Radioastronomia (IAR). The search was performed near the 1420 MHz line of neutral hydrogen, and its second harmonic, using two 8.4 X 10(superscript 6) channel Fourier spectrometers of 0.05 Hz resolution and 400 kHz of instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 6 X 10(superscript 13) spectral channels searched in the northern hemisphere, Horowitz and Sagan reported 37 candidates events exceeding the average threshold of 1.7 X 10(superscript -23) W m(superscript -2), while in the southern hemisphere among 2 X 10(superscript 13) spectral channels analyzed we found 19 events exceeding the same threshold. The strongest signals that survive culling for terrestrial interference lie in or near the Galactic Plane. The first high resolution southern target search around 71 stars (-90 degrees

  2. Spectral evolution and extreme value analysis of non-linear numerical simulations of narrow band random surface gravity waves.

    NASA Astrophysics Data System (ADS)

    Socquet-Juglard, H.; Dysthe, K. B.; Trulsen, K.; Liu, J.; Krogstad, H. E.

    2003-04-01

    Numerical simulations of a narrow band gaussian spectrum of random surface gravity waves have been carried out in two and three spatial dimensions [7]. Different types of non-linear Schr&{uml;o}dinger equations, [1] and [4], have been used in these simulations. Simulations have now been carried with a JONSWAP spectrum associated with a spreading function of the type cosine-squared [5]. The evolution of the spectrum, skewness, kurtosis, ... will be presented. In addition, some results about stochastic properties of the surface will be shown. Based on the approach found in [2], [3] and [6], the results are presented in terms of deviations from linear Gaussian theory and the standard second order small slope perturbation theory. begin{thebibliography}{9} bibitem{kk96} Trulsen, K. &Dysthe, K. B. (1996). A modified nonlinear Schr&{uml;o}dinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, pp. 281-289. bibitem{BK2000} Krogstad, H.E. and S.F. Barstow (2000). A uniform approach to extreme value analysis of ocean waves, Proc. ISOPE'2000, Seattle, USA, 3, pp. 103-108. bibitem{PRK} Prevosto, M., H. E. Krogstad and A. Robin (2000). Probability distributions for maximum wave and crest heights, Coast. Eng., 40, 329-360. bibitem{ketal} Trulsen, K., Kliakhandler, I., Dysthe, K. B. &Velarde, M. G. (2000) On weakly nonlinear modulation of waves on deep water, Phys. Fluids, 12, pp. L25-L28. bibitem{onorato} Onorato, M., Osborne, A.R. and Serio, M. (2002) Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, pp. 2432-2437. bibitem{BK2002} Krogstad, H.E. and S.F. Barstow (2002). Analysis and Applications of Second Order Models for the Maximum Crest height, % Proc. 21nd Int. Conf. Offshore Mechanics and Arctic Engineering, Oslo. Paper no. OMAE2002-28479. bibitem{JFMP} Dysthe, K. B., Trulsen, K., Krogstad, H. E. and Socquet-Juglard, H. (2002, in press) Evolution of a narrow band spectrum of random surface gravity waves, J. Fluid

  3. Cyclotron side-band emissions from ring-current electrons

    NASA Technical Reports Server (NTRS)

    Maeda, K.

    1976-01-01

    The paper examines temporal variations in electron energy spectra and pitch-angle distributions during a VLF-emission event observed by Explorer 45 in the main phase of a magnetic storm. It is noted that the observed event occurred outside the plasmasphere on the night side of the magnetosphere and that the dusk-side plasmapause had a double structure during the event. It is found that the VLF emissions consisted of two frequency bands, corresponding to the whistler and electrostatic modes, and that there was a sharp band of 'missing emissions' along frequencies equal to half the equatorial electron gyrofrequency. A peculiar pitch-angle distribution for high-energy electrons (50 to 350 keV) is noted. It is concluded that the VLF-producing particles were enhanced low-energy (about 5 keV) ring-current electrons which penetrated into the night side of the magnetosphere from the magnetotail plasma sheet and which drifted eastward after encountering the steep gradient of the geomagnetic field.

  4. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure.

    PubMed

    Naumov, P; Barkalov, O; Mirhosseini, H; Felser, C; Medvedev, S A

    2016-09-28

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4-300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range. PMID:27439023

  5. Atomic and electronic structures evolution of the narrow band gap semiconductor Ag2Se under high pressure

    NASA Astrophysics Data System (ADS)

    Naumov, P.; Barkalov, O.; Mirhosseini, H.; Felser, C.; Medvedev, S. A.

    2016-09-01

    Non-trivial electronic properties of silver telluride and other chalcogenides, such as the presence of a topological insulator state, electronic topological transitions, metallization, and the possible emergence of superconductivity under pressure have attracted attention in recent years. In this work, we studied the electronic properties of silver selenide (Ag2Se). We performed direct current electrical resistivity measurements, in situ Raman spectroscopy, and synchrotron x-ray diffraction accompanied by ab initio calculations to explore pressure-induced changes to the atomic and electronic structure of Ag2Se. The temperature dependence of the electrical resistivity was measured up to 30 GPa in the 4–300 K temperature interval. Resistivity data showed an unusual increase in the thermal energy gap of phase I, which is a semiconductor under ambient conditions. Recently, a similar effect was reported for the 3D topological insulator Bi2Se3. Raman spectroscopy studies revealed lattice instability in phase I indicated by the softening of observed vibrational modes with pressure. Our hybrid functional band structure calculations predicted that phase I of Ag2Se would be a narrow band gap semiconductor, in accordance with experimental results. At a pressure of ~7.5 GPa, Ag2Se underwent a structural transition to phase II with an orthorhombic Pnma structure. The temperature dependence of the resistivity of Ag2Se phase II demonstrated its metallic character. Ag2Se phase III, which is stable above 16.5 GPa, is also metallic according to the resistivity data. No indication of the superconducting transition is found above 4 K in the studied pressure range.

  6. Preparation of narrow band gap V2O5/TiO2 composite films by micro-arc oxidation

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Li, Xin-wei; Cai, Qi-zhou; Yan, Qing-song; Pan, Zhen-hua

    2012-11-01

    V2O5/TiO2 composite films were prepared on pure titanium substrates via micro-arc oxidation (MAO) in electrolytes consisting of NaVO3. Their morphology and elements were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Phase composition and valence states of species in the films were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were also employed to evaluate the photophysical property of the films. The V2O5/TiO2 composite films show a sheet-like morphology. Not only V2O5 phase appears in the films when the NaVO3 concentration of the electrolyte is higher than 6.10 g/L and is loaded at the surface of anatase, but also V4+ is incorporated into the crystal lattice of anatase. In comparison with pure TiO2 films the V2O5/TiO2 composite films exhibit significantly narrow band gap energy. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the narrowest band gap energy, which is approximately 1.89 eV. The V2O5/TiO2 composite films also have the significantly enhanced visible light photocatalytic activity. The film prepared in an electrolyte consisting of NaVO3 with a concentration of 8.54 g/L exhibits the best photocatalytic activity and about 93% of rhodamine is degraded after 14 h visible light radiation.

  7. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  8. Empirical determination of the energy band gap narrowing in p{sup +} silicon heavily doped with boron

    SciTech Connect

    Yan, Di Cuevas, Andres

    2014-11-21

    In the analysis of highly doped silicon, energy band gap narrowing (BGN) and degeneracy effects may be accounted for separately, as a net BGN in conjunction with Fermi-Dirac statistics, or lumped together in an apparent BGN used with Boltzmann statistics. This paper presents an experimental study of silicon highly doped with boron, with the aim of evaluating the applicability of previously reported BGN models. Different boron diffusions covering a broad range of dopant densities were prepared, and their characteristic recombination current parameters J{sub 0} were measured using a contactless photoconductance technique. The BGN was subsequently extracted by matching theoretical simulations of carrier transport and recombination in each of the boron diffused regions and the measured J{sub 0} values. An evaluation of two different minority carrier mobility models indicates that their impact on the extraction of the BGN is relatively small. After considering possible uncertainties, it can be concluded that the BGN is slightly larger in p{sup +} silicon than in n{sup +} silicon, in qualitative agreement with theoretical predictions by Schenk. Nevertheless, in quantitative terms that theoretical model is found to slightly underestimate the BGN in p{sup +} silicon. With the two different parameterizations derived in this paper for the BGN in p{sup +} silicon, both statistical approaches, Boltzmann and Fermi-Dirac, provide a good agreement with the experimental data.

  9. Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search

    SciTech Connect

    Astone, Pia; Borkowski, Kazimierz M.; Jaranowski, Piotr; Pietka, Maciej; Krolak, Andrzej

    2010-07-15

    We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the F-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the F-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform in calculation of the F-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the F-statistic into Fourier transforms so that the fast Fourier transform algorithm can be applied in their evaluation. We have implemented our methods and algorithms into computer codes and we present results of the Monte Carlo simulations performed to test these codes.

  10. Optimization of narrow-band uvb with a 5% oleic acid cream in the treatment of psoriasis.

    PubMed

    Martín-Ezquerra, G; Sánchez-Regaña, M; Umbert-Millet, P

    2007-03-01

    Oleic acid is a monounsaturated fatty acid with a known action of penetration enhancer which has been used for various purposes, such as a tanning increaser. Narrow-band ultraviolet B (UVB) is a also first-line treatment for psoriasis. The purpose of this study was to evaluate if the use of a 5% oleic acid emulsion previous to the phototherapy sessions was useful in reducing the total dosage necessary for whitening in patients with psoriasis. Forty-four patients were included, 24 received application of the emulsion before phototherapy and 20 received phototherapy with no emulsion. Patients received the UVB sessions just to achieve a reduction of 80% of the basal PASI. The total dose received and number of sessions were compared within the 2 groups. A reduction in these parameters (29.68 J/cm(2) vs. 18.16 J/cm(2); 24 vs. 19 sessions) was seen in the group that received application of the emulsion. However, this was not statistically significant. The fact that we did not achieve the statistical significance may be due to the small sample size. These results must be cautiously interpreted and confirmed with further studies. PMID:17373190

  11. Banks of templates for all-sky narrow-band searches of gravitational waves from spinning neutron stars

    NASA Astrophysics Data System (ADS)

    Pisarski, Andrzej; Jaranowski, Piotr

    2015-07-01

    We construct efficient banks of templates suitable for all-sky narrow-band searches of almost monochromatic gravitational waves originating from spinning neutron stars in our Galaxy in data collected by interferometric detectors. We consider waves with one spindown parameter included, and we assume that both the position of the gravitational-wave source in the sky and the wave's frequency, together with spindown parameter, are unknown. In the construction we employ a simplified model of the signal with constant amplitude and phase which is a linear function of unknown parameters. Our template banks enable the usage of the fast Fourier transform algorithm in the computation of the maximum-likelihood {F}-statistic for nodes of the grids defining the bank, and fulfill an additional constraint needed to resample the data to barycentric time efficiently. All these template bank features were employed in the recent all-sky {F}-statistic-based search for continuous gravitational waves in Virgo VSR1 data (Aasi et al 2014 Class. Quantum Grav. 31 165014). Here we improve that template bank by constructing templates suitable for a larger range of search parameters and of smaller thicknesses for certain values of search parameters. One of our template banks has a thickness 12% smaller than that of the template bank used in the all-sky search of Virgo VSR1 data and only 4% larger than the thickness of the four-dimensional optimal lattice covering {A}4\\star .

  12. New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect

    PubMed Central

    Zhang, Ganghua; Wu, Hui; Li, Guobao; Huang, Qingzhen; Yang, Chongyin; Huang, Fuqiang; Liao, Fuhui; Lin, Jianhua

    2013-01-01

    Intrinsic polarization of ferroelectrics (FE) helps separate photon-generated charge carriers thus enhances photovoltaic effects. However, traditional FE with transition-metal cations (M) of d0 electron in MO6 network typically has a band gap (Eg) exceeding 3.0 eV. Although a smaller Eg (2.6 eV) can be obtained in multiferroic BiFeO3, the value is still too high for optimal solar energy applications. Computational “materials genome” searches have predicted several exotic MO6 FE with Eg < 2.0 eV, all thus far unconfirmed because of synthesis difficulties. Here we report a new FE compound with MO4 tetrahedral network, KBiFe2O5, which features narrow Eg (1.6 eV), high Curie temperature (Tc ~ 780 K) and robust magnetic and photoelectric activities. The high photovoltage (8.8 V) and photocurrent density (15 μA/cm2) were obtained, which is comparable to the reported BiFeO3. This finding may open a new avenue to discovering and designing optimal FE compounds for solar energy applications. PMID:23405279

  13. 1.064-μm laser damage studies of silicon oxy-nitride narrow band reflectors

    NASA Astrophysics Data System (ADS)

    Milward, Jonathan R.; Lewis, Keith L.; Sheach, K.; Heinecke, Rudolf A.

    1994-07-01

    In a paper presented at the 1992 Boulder Damage Symposium, we discussed the role of electric field effects, defect type, surface roughness, film thickness and coating absorption on the laser damage thresholds of sinusoidally modulated, plasma deposited, silicon oxy-nitride narrow band reflectors. We concluded that the damage threshold, which was essentially constant at 2 J/cm2 at the test wavelength of 0.532 micrometers , was defect dominated. A sizeable fraction of the damage events occurred at a particular type of defect--a hemispherical hillock feature typically 5 micrometers in diameter as identified by SEM and interferometric surface profiling. We postulated that this defect initiated damage because of either a microlensing effect or an enhanced electric field effect. We have since measured the laser damage thresholds of all these samples at 1.064 micrometers , and found significant variations in the damage thresholds, which were a factor of three higher on average than those at 0.532 micrometers . The microlens model presented can explain damage thresholds up to a factor of four higher at the longer wavelength, and predicts a minimum nodule height for increased damage susceptibility. The minimum nodule height is dependent on the wavelength and the coating average index. The wavelength scaling of the fluence enhancement and the minimum nodule height imply that nodule initiated damage will become an even more serious problem as the wavelength approaches the UV.

  14. Effects of Narrow-band IR-A and of Water-Filtered Infrared A on Fibroblasts.

    PubMed

    Knels, Lilla; Valtink, Monika; Piazena, Helmut; de la Vega Marin, Jamlec; Gommel, Kerstin; Lupp, Amelie; Roehlecke, Cora; Mehner, Mirko; Funk, Richard H W

    2016-05-01

    Exposures of the skin with electromagnetic radiation of wavelengths between 670 nm and 1400 nm are often used as a general treatment to improve wound healing and reduce pain, for example, in chronic diabetic skin lesions. We investigated the effects of water-filtered infrared A (wIRA) and of narrow-band IR-A provided by a light-emitting diode LED (LED-IR-A) irradiation in vitro on 3T3 fibroblast cultures under defined conditions with and without glyoxal administration. Glyoxal triggers the formation of advanced glycation end products, thereby mimicking a diabetic metabolic state. Cell viability and apoptotic changes were determined by flow cytometry after vital staining with Annexin V, YO-PRO-1 and propidium iodide (PI), and by SubG1 assay. Mitochondrial function and oxidative stress were examined by vital staining for radical production, mitochondrial membrane potential (MMP) and the ratio of reduced-to-oxidized glutathione (GSH/GSSG). The metabolic state was monitored by a resazurin conversion assay. The numbers of apoptotic cells were reduced in cultures irradiated with wIRA or LED-IR-A. More mitochondria showed a well-polarized MMP after wIRA irradiation in glyoxal damaged cells. LED-IR-A treatment specifically restored the GSH/GSSG ratio. The immediate positive effects of wIRA and LED-IR-A observed in living cells, particularly on mitochondria, reflect the therapeutic benefits of wIRA and LED-IR-A. PMID:26876482

  15. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors.

    PubMed

    Goldstein, Nathaniel B; Koster, Maranke I; Hoaglin, Laura G; Spoelstra, Nicole S; Kechris, Katerina J; Robinson, Steven E; Robinson, William A; Roop, Dennis R; Norris, David A; Birlea, Stanca A

    2015-08-01

    In vitiligo, the autoimmune destruction of epidermal melanocytes produces white spots that can be repigmented by melanocyte precursors from the hair follicles, following stimulation with UV light. We examined by immunofluorescence the distribution of melanocyte markers (C-KIT, DCT, PAX3, and TYR) coupled with markers of proliferation (KI-67) and migration (MCAM) in precursors and mature melanocytes from the hair follicle and the epidermis of untreated and narrow band UVB (NBUVB)-treated human vitiligo skin. NBUVB was associated with a significant increase in the number of melanocytes in the infundibulum and with restoration of the normal melanocyte population in the epidermis, which was lacking in the untreated vitiligo. We identified several precursor populations (melanocyte stem cells, melanoblasts, and other immature phenotypes), and progressively differentiating melanocytes, some with putative migratory and/or proliferative abilities. The primary melanocyte germ was present in the untreated and treated hair follicle bulge, whereas a possible secondary melanocyte germ composed of C-KIT+ melanocytes was found in the infundibulum and interfollicular epidermis of UV-treated vitiligo. This is an exceptional model for studying the mobilization of melanocyte stem cells in human skin. Improved understanding of this process is essential for designing better treatments for vitiligo, ultimately based on melanocyte stem cell activation and mobilization. PMID:25822579

  16. Objective quantification of the vocal fold vascular pattern: comparison of narrow band imaging and white light endoscopy.

    PubMed

    Pliske, Gerald; Voigt-Zimmermann, Susanne; Glaßer, Sylvia; Arens, Christoph

    2016-09-01

    No clinical standard procedure has yet been defined to quantify the vascular pattern of vocal folds. Subjective classification trials have shown a lot of promise. Narrow band imaging (NBI) as an endoscopic imaging tool is useful, because it shows the vascular structure clearer than white light endoscopy (WL) alone. Endoscopic images of 74 human vocal folds (NBI and WL) were semi-automatically evaluated after image processing with respect to pixels of vessels and mucosa by the software MeVisLab. The ratios of vessel/mucosa pixels were compared. Using NBI, more vocal fold vessels are visible compared with WL alone (p = 0.000). There may be a difference between the right and left vocal folds due to the handedness of the examiner (p = 0.033) without any interaction between the method (NBI/WL) and the side (right/left) (p = 0.467). MeVisLab is a suitable tool for the objective quantification of the vessel/mucosa ratio for NBI and WL endoscopic images. NBI is an appropriate endoscopic tool for examination of diseases of vocal folds with changes in the vascular pattern. There is evidence that the handedness of the examiner may have an influence on the quality of the examination between the right and left vocal folds. PMID:27126337

  17. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  18. First Light for the Near-Infrared Narrow-Band Tunable Birefringent Filter of the Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Cao, W.; Hartkorn, K.; Ma, J.; Wang, J.; Xu, Y.; Spirock, T.; Denker, C.; Wang, H.

    2005-05-01

    A new near-infrared, narrow-band tunable birefringent filter has been developed by BBSO/NJIT. This filter, one of the first Lyot filters in the near-infrared, has a FWHM of about 2.5 ~Å at the design wavelength of 1.5648 μm and is used to observe the deepest levels of the photosphere. New techniques were employed in the design, including liquid crystal retarders to tune the center wavelength in range of ± 100 ~Å. After finishing the calibration and evaluation of the filter at the Evans Facility of the NSO at Sacramento Peak, high spatial resolution filtergrams and imaging spectroscopy observations were carried out at the Dunn Solar Telescope of NSO in December 2004 with the use of the high-order Adaptive Optics System. For some of these observations, the Lyot filter was combined with a Fabry-Perot Etalon to achieve a much higher spectral resolution. We discuss the calibration methods and present some preliminary observation results.

  19. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors

    PubMed Central

    Goldstein, Nathaniel B.; Koster, Maranke I.; Hoaglin, Laura G.; Spoelstra, Nicole S.; Kechris, Katerina J.; Robinson, Steven E.; Robinson, William A.; Roop, Dennis R.; Norris, David A.; Birlea, Stanca A.

    2015-01-01

    In vitiligo, the autoimmune destruction of epidermal melanocytes produces white spots that can be repigmented by melanocyte precursors from the hair follicles, following stimulation with UV light. We examined by immunofluorescence the distribution of melanocyte markers (C-KIT, DCT, PAX3, and TYR) coupled with markers of proliferation (KI-67) and migration (MCAM) in precursors and mature melanocytes from the hair follicle and the epidermis of untreated and narrow band UVB (NBUVB)-treated human vitiligo skin. NBUVB was associated with a significant increase in the number of melanocytes in the infundibulum and with restoration of the normal melanocyte population in the epidermis, which was lacking in the untreated vitiligo. We identified several precursor populations (melanocyte stem cells, melanoblasts, and other immature phenotypes), and progressively differentiating melanocytes, some with putative migratory and/or proliferative abilities. The primary melanocyte germ was present in the untreated and treated hair follicle bulge, whereas a possible secondary melanocyte germ composed of C-KIT+ melanocytes was found in the infundibulum and interfollicular epidermis of UV-treated vitiligo. This is an exceptional model for studying the mobilization of melanocyte stem cells in human skin. Improved understanding of this process is essential for designing better treatments for vitiligo, ultimately based on melanocyte stem cell activation and mobilization. PMID:25822579

  20. Grating-assisted spectrally-narrowed emissions from an organic slab crystal excited with a mercury lamp.

    PubMed

    Hotta, Shu; Sakurai, Yoichi; Okuda, Yuki; Mikit, Tomoharu; Matsunaga, Kazuyuki; Hirato, Fumio; Yamao, Takeshi; Jinnai, Hiroshi

    2010-01-01

    We report spectrally-narrowed emissions that take place from an organic semiconductor slab crystal of 2,5-bis(4-biphenylyl)thiophene (BP1T) under a low excitation-intensity regime. These emissions are caused with a mercury lamp that operates on a household power supply with an electric current approximately 1 A. The BP1T slab crystal is equipped with a distributed Bragg reflector. To complete this structure the slab crystal is attached to a diffraction grating that is engraved on a surface of a quartz glass substrate. The diffraction gratings have precisely been formed using a focused ion beam with a nanometer-defined precision. The spectral narrowing accompanied by the emission intensity increment is related to the strong mode-coupling between the forward electromagnetic wave and the backward (i.e., reflected) wave within the grating zone. Using a laser we also carried out the emission measurements on the BP1T crystals under a high excitation-intensity regime. The emissions are characterized as the longitudinal multimode laser oscillation, enabling us to determine the group refractive index of 4.56 for the BP1T slab crystal. Under both the low and high excitation-intensity regimes excitons are dominant species of the emission. Their participation in the spectrally-narrowed emissions is briefly discussed. PMID:20352875

  1. High-resolution spectra of distant compact narrow emission line galaxies: Progrenitors of spheroidal galaxies

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Guzman, Rafael; Faber, S. M.; Illingworth, Garth D.; Bershady, Matthew A.; Kron, Richard G.; Takamiya, Marianne

    1995-01-01

    Emission-line velocity widths have been determined for 17 faint (B approximately 20-23) very blue, compact galaxies whose redshifts range from z = 0.095 to 0.66. The spectra have a resolution of 8 Km/s and were taken with the HIRES echelle spectrograph of the Keck 10 m telescope. The galaxies are luminous with all but two within 1 mag of M(sub B) approximately -21. Yet they exhibit narrow velocity widths between sigma = 28-157 km/s, more consistent with typical values of extreme star-forming galaxies than with those of nearby spiral galaxies of similar luminosity. In particular, objects with sigma is less than or equal to 65 km/s follow the same correlations between sigma and both blue and H beta luminosities as those of nearby H II galaxies. These results strengthen the identification of H II glaxies as thier local counterparts. The blue colors and strong emission lines suggest these compact galaxies are undergoing a recent, strong burst of star formation. Like those which characterize some H II galaxies, this burst could be a nuclear star-forming event within a much larger, older stellar population. If the burst is instead a major episode in the total star-forming history, these distant galaxies could fade enough to match the low luminosities and surface brightnesses typical of nearby spheroidals like NGC 185 or NGC 205. Together with evidence for recent star formation, exponential light profiles, and subsolar metallicities, the postfading correlations between luminosity and velocity width and bewtween luminosity and surface brightness suggest that among the low-sigma galaxies, we may be witnessing, in situ, the progenitors of today's spheroidal galaxies.

  2. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  3. MODIS thermal emissive band calibration stability derived from surface targets

    NASA Astrophysics Data System (ADS)

    Wenny, B. N.; Xiong, X.; Dodd, J.

    2009-09-01

    The 16 MODIS Thermal Emissive Bands (TEB), with wavelengths covering from 3.7μm to 14.4μm, are calibrated using scan-by-scan observations of an on-orbit blackbody (BB). Select Earth surface targets can be used to track the long-term consistency, stability and relative bias between the two MODIS instruments currently in orbit. Measurements at Dome C, Antarctica have shown a relative bias of less than 0.01K over a 5 year period between Terra and Aqua MODIS Band 31 (11μm). Dome C surface temperatures are typically outside the MODIS BB calibration range. Sea surface temperature (SST) measurements from data buoys provide a useful reference at higher scene temperatures. This paper extends the techniques previously applied only to Band 31 to the remaining TEB using both Dome C and SST sites. The long-term calibration stability and relative bias between Terra and Aqua MODIS is discussed.

  4. Optical spectroscopy of IRAS sources with infrared emission bands. 1: IRAS 21282+5050 and the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Jones, B. F.

    1987-01-01

    Spectroscopy of the starlike optical counterpart to IRAS 21282+5050, a source with the hydrocarbon infrared emission band spectrum, shows an 07(f)-(WC11) planetary nebula nucleus suffering an extinction of 5.7 mag. Emission line widths in the WC spectrum are only approx. 100 km/s, indicating a very slow stellar wind. Optical diffuse interstellar bands (DIBs) are prominent. Five DIBs are strongly enhanced, namely lamda lamda 5797, 6196, 6203, 6283, and 6613. The presence of circumstellar hydrocarbon molecules may explain both the infrared emission bands and the enhanced DIBs.

  5. GTC OSIRIS transiting exoplanet atmospheric survey: detection of potassium in HAT-P-1b from narrow-band spectrophotometry

    NASA Astrophysics Data System (ADS)

    Wilson, P. A.; Sing, D. K.; Nikolov, N.; Lecavelier des Etangs, A.; Pont, F.; Fortney, J. J.; Ballester, G. E.; López-Morales, M.; Désert, J.-M.; Vidal-Madjar, A.

    2015-06-01

    We present the detection of potassium in the atmosphere of HAT-P-1b using optical transit narrow-band photometry. The results are obtained using the 10.4-m Gran Telescopio Canarias together with the OSIRIS instrument in tunable filter imaging mode. We observed four transits, two at continuum wavelengths outside the potassium feature, at 6792 and 8844 Å, and two probing the potassium feature in the line wing at 7582.0 Å and the line core at 7664.9 Å using a 12 Å filter width (R ˜ 650). The planet-to-star radius ratios in the continuum are found to be Rpl/R⋆ = 0.1176 ± 0.0013 at 6792 Å and Rpl/R⋆ = 0.1168 ± 0.0022 at 8844 Å, significantly lower than the two observations in the potassium line: Rpl/R⋆ = 0.1248 ± 0.0014 in the line wing at 7582.0 Å and Rpl/R⋆ = 0.1268 ± 0.0012 in the line core at 7664.9 Å. With a weighted mean of the observations outside the potassium feature Rpl/R⋆ = 0.1174 ± 0.0010, the potassium is detected as an increase in the radius ratio of ΔRpl/R⋆ = 0.0073 ± 0.0017 at 7582.0 Å and ΔRpl/R⋆ = 0.0094 ± 0.0016 at 7664.9 Å (a significance of 4.3σ and 6.1σ, respectively). We hypothesize that the strong detection of potassium is caused by a large scaleheight, which can be explained by a high temperature at the base of the upper atmosphere. A lower mean molecular mass caused by the dissociation of molecular hydrogen into atomic hydrogen by the extreme ultraviolet flux from the host star may also partly explain the amplitude of our detection.

  6. Measurements of global UV irradiance at Terranova Bay, Antactica, by a home made narrow band filter radiometer

    NASA Astrophysics Data System (ADS)

    Salvatore, Scaglione; di Sarcina, Ilaria; Flori, Daniele; Menchini, Francesca

    2010-05-01

    Filter radiometers measure the solar radiation in several channels (typically 4 to 7) with a bandwith from 2 to 10 nm. They require less maintenance than the spectroradiometer and they are able to work in hostile environment as for instance the polar regions. The spectral resolution depends on the width at half maximum (FWHM) of the filters and is generally lower than the spectroradiometer resolution (0.5 nm). Other than the robustness of this instruments, the main advantage of the filter radiometers is the high frequency with which all wavelengths can be measured, making this class of instrument well suited for investigating short term irradiance variation. In this work is presented the results of UV irradiance measurements performed by a very narrow band (FWHM less than 1 nm) filter radiometer at Antarctica Italia Base, Mario Zucchelli Station, Terranova Bay, lat. 74° 41.6084' south and lon. 164° 05.9224' est. All-dielectric Fabry-Perot filters were manufactured in the laboratories of the Optical Coating Group, ENEA, by the ion beam assistance physical vapor deposition technique. Nine filters select nine different wavelengths in the UV spectral range from 296.5 nm to 377 nm with about 1 minute of measurement period, i.e. each wavelength is measured about 1250 times per day. At the moment the radiometer are permanently located near MZS and the data are daily downloaded in ENEA, Rome, by a dedicated satellite channel. During the Antarctica winter the radiometer will be in standby mode, in this season MZS is closed, and it will be start to measure again in the Antarctica spring.

  7. Value of Magnifying Endoscopy With Narrow-Band Imaging and Confocal Laser Endomicroscopy in Detecting Gastric Cancerous Lesions

    PubMed Central

    Gong, Shuai; Xue, Han-Bing; Ge, Zhi-Zheng; Dai, Jun; Li, Xiao-Bo; Zhao, Yun-Jia; Zhang, Yao; Gao, Yun-Jie; Song, Yan

    2015-01-01

    Abstract Although the respective potentials of magnifying endoscopy with narrow-band imaging (ME-NBI) and confocal laser endomicroscopy (CLE) in predicting gastric cancer has been well documented, there is a lack of studies in comparing the value and diagnostic strategy of these 2 modalities. Our primary aim is to investigate whether CLE is superior to ME-NBI for differentiation between gastric cancerous and noncancerous lesions. A secondary aim is to propose an applicable clinical strategy. We conducted a diagnostic accuracy study involving patients with suspected gastric superficial cancerous lesions. White light endoscopy, ME-NBI, and CLE were performed diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value between ME-NBI and CLE were assessed, as well as agreements between ME-NBI/CLE and histopathology. This study involved 86 gastric lesions in 82 consecutive patients who underwent white light endoscopy, ME-NBI, and CLE before biopsy. The accuracy, sensitivity, and specificity for ME-NBI were 93.75%, 91.67%, and 95.45%, compared with 91.86%, 90%, and 93.48%, respectively, for CLE, for discrimination cancerous/noncancerous lesion (all P > 0.05). For undifferentiated/differentiated adenocarcinoma, CLE had a numerically but not statistically significantly higher accuracy than ME-NBI (81.25% vs 73.33%, P = 0.46). Agreements between ME-NBI/CLE and histopathology were near perfect (ME-NBI, κ = 0.87; CLE, κ = 0.84). CLE is not superior to ME-NBI for discriminating gastric cancerous from noncancerous lesions. Endoscopist could make an optimal choice according to the specific indication and advantages of ME-NBI and CLE in daily practices. PMID:26554797

  8. Problems involving the determination of the column-only band broadening in columns producing narrow and tailed peaks.

    PubMed

    Vanderheyden, Yoachim; Vanderlinden, Kim; Broeckhoven, Ken; Desmet, Gert

    2016-04-01

    We have investigated which of the different existing peak variance read-out methods (including the effect of a deconvolution pre-treatment method) are most suited to eliminate the system contribution from the total observed band broadening observed in LC systems. Emphasis is put on the most demanding case, i.e., the measurement of non-retained component peaks, which typically are very narrow and tailed. The problem with such peaks is that the method that is generally considered to be the only mathematically correct method (i.e., the method of moments) leads to peak variance values that are so strongly dominated by the tail of the peak that they become highly exaggerated and practically meaningless (i.e., they are dominated by the peak width at 10 or 12σt, which corresponds to resolutions and peak purities that are so high they are never pursued in practice). Interestingly, filtering away the extra-column contribution from the entire peak shape using peak deconvolution (wherein not only the second order moment is corrected but also all other moments) produces corrected 4σt- and half height peak widths that are physically meaningful, i.e., the corrected values allow to make sufficiently accurate predictions of how the peak width at 4σt and at half height changes when the column length changes. This result now allows to navigate away from the classical method of moments to define the column plate height, and resort to plate heights based on the practically much more relevant 4σt- and 5σt-widths, provided theses are corrected via peak deconvolution. PMID:26947164

  9. THE DIFFERENCE IN NARROW Fe K{alpha} LINE EMISSION BETWEEN SEYFERT 1 AND SEYFERT 2 GALAXIES

    SciTech Connect

    Liu Teng; Wang Junxian E-mail: jxw@ustc.edu.c

    2010-12-20

    We compile a sample of 89 Seyfert galaxies with both [O IV] 25.89 {mu}m line luminosities observed by Spitzer IRS and X-ray spectra observed by XMM-Newton EPIC. Using [O IV] emission as a proxy for active galactic nucleus (AGN) intrinsic luminosity, we find that although type 2 AGNs have higher line equivalent widths, the narrow Fe K{alpha} lines in Compton-thin and Compton-thick Seyfert 2 galaxies are 2.9{sup +0.8}{sub -0.6} and 5.6{sup +1.9}{sub -1.4} times weaker in terms of luminosity than Seyfert 1 galaxies, respectively. This indicates that different correction factors need to be applied for various types of AGNs before the narrow Fe K{alpha} line luminosity could serve as an intrinsic AGN luminosity indicator. We also find that Seyfert 1 galaxies in our sample have on average marginally larger line widths and higher line centroid energies, suggesting contamination from highly ionized Fe line or broader line emission from much smaller radius, but this effect is too weak to explain the large difference in narrow Fe K{alpha} line luminosity between type 1 and type 2 AGNs. This is the first observational evidence showing that the narrow Fe K{alpha} line emission in AGNs is anisotropic. The observed difference is consistent with theoretical calculations assuming a smoothly distributed obscuring torus and could provide independent constraints on the clumpiness of the torus.

  10. Simultaneous multi-spectral narrow-band auroral imagery from space (1150A to 6300A2)

    SciTech Connect

    Schenkel, F.W.; Ogorzalek, B.S.; Gardner, R.R.; Hutchins, R.A.; Huffman, R.E.

    1986-01-01

    The design of a multi-mode instrument known as the Auroral Ionospheric Remote Sensor, AIRS, is described. The goal of the AIRS instrument is to produce data on the global imaging of the auroral display in both dark and sunlit hemispheres with the remote sensing of ionospheric airglows to deduce ionospheric parameters such as electron-density profiles and atmospheric background emissions. The AIRS will fly on a the POLAR BEAR spacecraft in a near-polar circular orbit at an altitude of 1000 km with a scheduled launch in the fall of 1986. The AIRS instrument is designed as a multi-mode system with four (4) channels of data to yield simultaneous operation in the vacuum ultraviolet (VUV), near ultraviolet (UV), and visible spectral bands. Two of the data channels are designed to operate in the VUV with 30A windows having a 240A separation. These two channels utilize an Ebert-Fastile spectrometer which can provide total coverage for each of these channels from 1150A to 1800A. The other two channels utilize a filter selector system to provide preselected, 10A bandwidth spectral channels at 3371A, 3914A, and 6300A, and a 200A wide channel centered at 2250A. These spectral bands are paired to provide simultaneous pair coverage of 2250A and 3371A and simultaneous pair coverage of 3914A and 6300A. All four channels view the auroral scene of the north polar cap via appropriate optics and scan mirror system. In effect, a line-scan image of the auroral scene is produced via the scan mirror operating in the orbit cross plane with the longitudinal direction provided by the forward motion of the spacecraft.

  11. A Catalog of z=3.1 Lyman Alpha Emitting Galaxies Discovered in Narrow-band Imaging of MUSYC 1030+05

    NASA Astrophysics Data System (ADS)

    Christenson, Holly; Gangolli, Nakul; Raney, Catie Ann; Walker, Jean P.; Gawiser, Eric J.; MUSYC Collaboration

    2016-01-01

    We present a catalog of ~200 Lyman Alpha Emitting galaxies (LAEs) at redshift z=3.1 found in a 5015 Å narrow-band image of the MUSYC 1030+05 field. We reduced raw optical images taken with the MOSAIC II CCD camera at the CTIO 4m telescope with the IRAF MSCRED package. The reduction included the crucial steps of bias subtraction, flat-field correction, cosmic ray and satellite trail rejection, astrometric calibration, tangent plane projection, weighted stacking, and sky background removal. Our initial catalog of sources detected in the narrow-band filter contains ~20,000 sources. We used additional photometric measurements in the MUSYC broad-band filters to identify LAEs via their flux density excess in the narrow-band. This catalog of LAEs will undergo further analysis to characterize how the number density, clustering, colors, and star formation rates of LAEs vary with position and evolve with redshift.We gratefully acknowledge support from NSF grants AST-1055919 & PHY-1263280.

  12. HAWC+: A Detector, Polarimetry, and Narrow-Band Imaging Upgrade to SOFIA's Far-Infrared Facility Camera

    NASA Astrophysics Data System (ADS)

    Dowell, C. D.; Staguhn, J.; Harper, D. A.; Ames, T. J.; Benford, D. J.; Berthoud, M.; Chapman, N. L.; Chuss, D. T.; Dotson, J. L.; Irwin, K. D.; Jhabvala, C. A.; Kovacs, A.; Looney, L.; Novak, G.; Stacey, G. J.; Vaillancourt, J. E.; HAWC+ Science Collaboration

    2013-01-01

    HAWC, the High-resolution Airborne Widebandwidth Camera, is the facility far-infrared camera for SOFIA, providing continuum imaging from 50 to 250 microns wavelength. As a result of NASA selection as a SOFIA Second Generation Instruments upgrade investigation, HAWC will be upgraded with enhanced capability for addressing current problems in star formation and interstellar medium physics prior to commissioning in early 2015. We describe the capabilities of the upgraded HAWC+, as well as our initial science program. The mapping speed of HAWC is increased by a factor of 9, accomplished by using NASA/Goddard's Backshort-Under-Grid bolometer detectors in a 64x40 format. Two arrays are used in a dual-beam polarimeter format, and the full complement of 5120 transition-edge detectors is read using NIST SQUID multiplexers and U.B.C. Multi-Channel Electronics. A multi-band polarimeter is added to the HAWC opto-mechanical system, at the cryogenic pupil image, employing rotating quartz half-wave plates. Six new filters are added to HAWC+, bringing the full set to 53, 63, 89, 155, and 216 microns at R = 5 resolution and 52, 63, 88, 158, and 205 microns at R = 300 resolution. The latter filters are fixed-tuned to key fine-structure emission lines from [OIII], [OI], [CII], and [NII]. Polarimetry can be performed in any of the filter bands. The first-light science program with HAWC+ emphasizes polarimetry for the purpose of mapping magnetic fields in Galactic clouds. The strength and character of magnetic fields in molecular clouds before, during, and after the star formation phase are largely unknown, despite pioneering efforts on the KAO and ground-based telescopes. SOFIA and HAWC+ provide significant new capability: sensitivity to extended dust emission (to A_V ~ 1) which is unmatched, ~10 arcsec angular resolution combined with wide-field mapping which allows statistical estimates of magnetic field strength, and wavelength coverage spanning the peak of the far

  13. Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers

    SciTech Connect

    Ljunggren, Daniel; Tengner, Maria

    2005-12-15

    We present a theoretical and experimental investigation of the emission characteristics and the flux of photon pairs generated by spontaneous parametric downconversion in quasi-phase matched bulk crystals for the use in quantum communication sources. We show that, by careful design, one can attain well defined modes close to the fundamental mode of optical fibers and obtain high coupling efficiencies also for bulk crystals, these being more easily aligned than crystal waveguides. We distinguish between singles coupling, {gamma}{sub s} and {gamma}{sub i}, conditional coincidence, {mu}{sub i|s}, and pair coupling, {gamma}{sub c}, and show how each of these parameters can be maximized by varying the focusing of the pump mode and the fiber-matched modes using standard optical elements. Specifically we analyze a periodically poled KTP-crystal pumped by a 532 nm laser creating photon pairs at 810 nm and 1550 nm. Numerical calculations lead to coupling efficiencies above 93% at optimal focusing, which is found by the geometrical relation L/z{sub R} to be {approx_equal}1 to 2 for the pump mode and {approx_equal}2 to 3 for the fiber-modes, where L is the crystal length and z{sub R} is the Rayleigh-range of the mode-profile. These results are independent on L. By showing that the single-mode bandwidth decreases {proportional_to}1/L, we can therefore design the source to produce and couple narrow bandwidth photon pairs well into the fibers. Smaller bandwidth means both less chromatic dispersion for long propagation distances in fibers, and that telecom Bragg gratings can be utilized to compensate for broadened photon packets--a vital problem for time-multiplexed qubits. Longer crystals also yield an increase in fiber photon flux {proportional_to}{radical}(L), and so, assuming correct focusing, we can only see advantages using long crystals.

  14. First-principles study of direct and narrow band gap semiconducting β -CuGaO2

    SciTech Connect

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.

  15. Narrow-band emission in Thomson sources operating in the high-field regime.

    PubMed

    Terzić, Balša; Deitrick, Kirsten; Hofler, Alicia S; Krafft, Geoffrey A

    2014-02-21

    We present a novel and quite general analysis of the interaction of a high-field chirped laser pulse and a relativistic electron, in which exquisite control of the spectral brilliance of the up-shifted Thomson-scattered photon is shown to be possible. Normally, when Thomson scattering occurs at high field strengths, there is ponderomotive line broadening in the scattered radiation. This effect makes the bandwidth too large for some applications and reduces the spectral brilliance. We show that such broadening can be corrected and eliminated by suitable frequency modulation of the incident laser pulse. Furthermore, we suggest a practical realization of this compensation idea in terms of a chirped-beam-driven free electron laser oscillator configuration and show that significant compensation can occur, even with the imperfect matching to be expected in these conditions. PMID:24579606

  16. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    PubMed

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-01

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose. PMID:18521161

  17. Terahertz emission upon the band-to-band excitation of Group-IV semiconductors at room temperature

    SciTech Connect

    Zakhar’in, A. O.; Bobylev, A. V.; Egorov, S. V.; Andrianov, A. V.

    2015-03-15

    Terahertz emission upon the band-to-band excitation of Group-IV semiconductors (Si:B and Ge:Ga) at room temperature by a semiconductor laser emitting in the visible range (660 nm) is observed and investigated. It is established that, as the crystal temperature is elevated above room temperature, the emission intensity increases considerably, while the emission spectrum shifts to higher frequencies. The terahertz-emission spectra of germanium and silicon are quite similar to each other. The pump-intensity dependence of the terahertz-emission intensity is nearly linear. The above features make it possible to attribute the observed terahertz emission to the effect of crystal heating by absorbed pump radiation.

  18. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields

    PubMed Central

    Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P. J.; Mouritsen, Henrik

    2016-01-01

    Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth’s magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356

  19. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields.

    PubMed

    Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P J; Mouritsen, Henrik

    2016-01-01

    Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth's magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356

  20. The O2 atmospheric 0-0 band and related emissions at night from Spacelab 1

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Torr, D. G.; Laher, R. R.

    1985-01-01

    A comparison of theoretically determined and measured O2 atmospheric (0-0) band intensities is presented. In view of suggestions that the O2 atmospheric emission and the atomic oxygen O(1S) emission both arise from the same intermediate state of O2, the measured 5577 A emission is also compared with theory; a similar comparison is made for the Herzberg bands of O2. It is concluded that the theories explaining these emissions do not yet provide a consistent picture.

  1. VLF-emissions from ring current electrons. An interpretation of the band of missing emissions

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Smith, P. H.; Anderson, R. R.

    1976-01-01

    VLF-emissions associated with the enhancement of ring current electrons during magnetic storms and substorms which were detected by the equatorially orbiting S-A satellite (Explorer 45) are described. The emissions observed near the geomagnetic equator consist of essentially two frequency regimes, i.e., one above the electron gyrofrequency, f sub H at the equator and the other below f sub H. This is indicated as a part of the wide-band data obtained during the main phase of the December 17, 1971 magnetic storm. The upper figure is the ac-magnetic field data measured by the search-coil magnetometer with the upper cutoff of 3kHz and the lower figure is the ac-electric field data obtained by the electric field sensor with the upper cutoff of 10kHz. These figures show the time sequence of the observed emissions along the inbound orbit (No. 101) of the satellite as f sub H changes approximately from 3 kHz at 20 UT to 6 kHz at 21 UT. The emissions above f sub H are electrostatic mode, which peak near the frequencies of (n + 1/2) f sub H where n is positive integer, and sometimes emissions up to n = 10 are observed. The emissions below f sub H are whistler mode, which have a conspicuous gap along exactly half electron gyrofrequency, f sub H/2.

  2. Narrow polarized components in the OH 1612-MHz maser emission from supergiant OH-IR sources

    NASA Technical Reports Server (NTRS)

    Cohen, R. J.; Downs, G.; Emerson, R.; Grimm, M.; Gulkis, S.; Stevens, G.

    1987-01-01

    High-resolution (300 Hz) OH 1612-MHz spectra of the supergiant OH-IR sources VY CMa, VX Sgr, IRC 10420, and NML Cyg are presented. Linewidths as small as 550 Hz (0.1 km/s) are found for narrow components in the spectra. The present results are consistent with current models for maser line-narrowing and for the physical properties in the OH maser regions. A significant degree of circular polarization is noted in many of the narrow components. The circular polarization suggests the presence of magnetic fields of about 1 mG in the circumstellar envelopes which would be strong enough to influence the outflow from the stars, and which may explain asymmetries found in the circumstellar envelopes.

  3. MODIS on-orbit thermal emissive bands lifetime performance

    NASA Astrophysics Data System (ADS)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  4. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    SciTech Connect

    Li, Jia; Zhang, Zhidong; Lu, Zunming; Xie, Hongxian; Fang, Wei; Li, Shaomin; Liang, Chunyong; Yin, Fuxing

    2015-11-15

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part of the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.

  5. Accretion disc-corona and jet emission from the radio-loud Narrow Line Seyfert 1 galaxy RXJ1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-05-01

    We perform X-ray/UV spectral and X-ray variability studies of the radio-loud Narrow Line Seyfert 1 (NLS1) galaxy RXJ1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultra-soft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power-law due to the thermal Comptonization (Γ =1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of two lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power-law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RXJ1633.3+4719 is variable with fractional variability amplitude Fvar=13.5±1.0%. In contrast to radio-quiet AGN, X-ray emission from the source becomes harder with increasing flux. The fractional RMS variability increases with energy and the RMS spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anti-correlated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RXJ1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  6. Accretion disc-corona and jet emission from the radio-loud narrow-line Seyfert 1 galaxy RX J1633.3+4719

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, G. C.; Gandhi, P.; Misra, R.; Kembhavi, A. K.

    2016-08-01

    We perform X-ray/ultraviolet (UV) spectral and X-ray variability studies of the radio-loud narrow-line Seyfert 1 (NLS1) galaxy RX J1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultrasoft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power law due to the thermal Comptonization (Γ = 1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of 2 lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RX J1633.3+4719 is variable with fractional variability amplitude Fvar = 13.5 ± 1.0 per cent. In contrast to radio-quiet active galactic nuclei (AGN), X-ray emission from the source becomes harder with increasing flux. The fractional rms variability increases with energy and the rms spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anticorrelated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RX J1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.

  7. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter. PMID:25402069

  8. DOUBLE-PEAKED NARROW EMISSION-LINE GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. I. SAMPLE AND BASIC PROPERTIES

    SciTech Connect

    Ge Junqiang; Hu Chen; Wang Jianmin; Zhang Shu; Bai Jinming

    2012-08-01

    Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we find that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.

  9. Assessment of low-frequency hearing with narrow-band chirp-evoked 40-Hz sinusoidal auditory steady-state response.

    PubMed

    Wilson, Uzma S; Kaf, Wafaa A; Danesh, Ali A; Lichtenhan, Jeffery T

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp-evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study sample Thirty young adults aged 18-25 with normal hearing participated in this study. Results When 4000 equivalent response averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17-22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11-15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging. Conclusion Narrow-band chirp-evoked 40-Hz s-ASSR requires a ∼15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  10. Observations of an intense field-aligned thermal ion flow and associated intense narrow band electric field oscillations. [at auroral arc edge

    NASA Technical Reports Server (NTRS)

    Bering, E. A.; Kelley, M. C.; Mozer, F. S.

    1975-01-01

    An investigation is conducted concerning the conditions encountered during a Javelin sounding rocket experiment conducted on Apr. 3, 1970 at Fort Churchill, Canada. Evidence is presented that near the equatorward edge of the auroral arc an intense beam of cold plasma ions was flowing parallel to the earth's magnetic field. The beam was associated with intense narrow band electric field oscillations near the local ion gyrofrequency. The data support the hypothesis that intense electrostatic ion cyclotron waves were driven unstable by field-aligned currents.

  11. Holmium-161 produced using 11.6 MeV protons: A practical source of narrow-band X-rays.

    PubMed

    Stephens, Bryan J; Mendenhall, Marcus H

    2010-10-01

    We present a novel technique to produce narrow-band X-rays by preparing (161)Ho from the bombardment of dysprosium foil by 11.6 MeV protons. The activated foil produces predominantly 45-55 keV X-rays, which are suitable for activating iodinated radio-sensitizing agents (e.g. IUdR) for oncological therapy. We demonstrate that clinically useful quantities of the nuclide are easily produced with a medical cyclotron which is far from the current state of the art. PMID:20554211

  12. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    PubMed

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized. PMID:26531849

  13. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  14. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  15. Narrow-band amplified photoluminescence of amorphous silicon quantum dots via the coupling between localized surface plasmon and Fabry-Pérot cavity modes

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Lin, Ming-Yi; Hsiao, Li-Jen; Choi, Wing-Kit; Lin, Hoang Yan

    2016-02-01

    We experimentally investigate the multifold intensity enhancement and spectral narrowing of photoluminescence (PL) from amorphous silicon quantum dots (a-Si QDs) embedded in a silicon-rich SiOx film of the Ag/SiOx:a-Si QDs/Au plasmonic nanocavity, through the resonance coupling between the localized surface plasmon (LSP) mode and the Fabry-Pérot (FP) cavity mode, by tuning a one-dimensional (1-D) Ag grating on the top. The LSP resonance can be precisely tuned by adjusting the Ag line widths of the 1-D Ag grating. It is found that the LSP mode strongly couples with the FP cavity mode, resulting in a narrower emission line width and a larger PL enhancement. An optimized Ag grating structure is found to exhibit a narrow emission line width of 15 nm and 2.77-fold enhancement in the PL peak intensity, as compared to an SiOx:a-Si QDs/Au structure without 1-D Ag grating, due to the strong resonance coupling between the two modes.

  16. Shocked Post-starbust Galaxy Survey: Candidate Post-Starbust Galaxies with Narrow Emission Line Ratios Arising from Shocks

    NASA Astrophysics Data System (ADS)

    Cales, Sabrina; Alatalo, Katherine A.; Appleton, Philip N.; Lisenfeld, Ute; Rich, Jeffrey; Nyland, Kristina; Lacy, Mark; Kewley, Lisa J.

    2015-01-01

    As galaxies age they move from the blue cloud (star forming) to the red sequence (`dead' galaxies) in the color-magnitude diagram of galaxies. Galaxies between the blue cloud and red sequence (i.e., the green valley) are caught in the act of transitioning and they show large Balmer jump and high order Balmer absorption lines in their optical spectra. These galaxies answer to many names (i.e., E+A, K+A, Hdelta-strong, post-starburst), all with similar but slightly different selection criteria. Many studies of transitioning galaxies invoke strong constraints on emission lines in order to guarantee a dominant post-starburst (rather that actively star bursting) stellar population, however these constraints bias the sample against narrow-line emission not arising from star formation, namely active galactic nuclei, low-ionization nuclear emission regions and shocks. Using the Oh-Sarzi-Schawinski-Yi (OSSY) emission and absorption line measurements for SDSS DR7 galaxies we study the intersection between transitioning galaxies and those with shock line ratios. We show that a significant fraction of transitioning galaxies have emission-line ratios indicative of shocks. We postulate that these shocks may be in part responsible for the shepherding of blue star forming galaxies to passive early-types.

  17. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  18. Configuration dependence of band-gap narrowing and localization in dilute GaAs1 -xBix alloys

    NASA Astrophysics Data System (ADS)

    Bannow, Lars C.; Rubel, Oleg; Badescu, Stefan C.; Rosenow, Phil; Hader, Jörg; Moloney, Jerome V.; Tonner, Ralf; Koch, Stephan W.

    2016-05-01

    Anion substitution with bismuth (Bi) in III-V semiconductors is an effective method for experimental engineering of the band gap Eg at low Bi concentrations (≤2 % ), in particular in gallium arsenide (GaAs). The inverse Bi-concentration dependence of Eg has been found to be linear at low concentrations x and dominated by a valence band defect level anticrossing between As and Bi occupied p levels. Predictive models for the valence band hybridization require a first-principle understanding which can be obtained by density functional theory with the main challenges being the proper description of Eg and the spin-orbit coupling. By using an efficient method to include these effects, it is shown here that at high concentrations Eg is modified mainly by a Bi-Bi p orbital interaction and by the large Bi atom-induced strain. In particular, we find that at high concentrations, the Bi-Bi interactions depend strongly on model periodic cluster configurations, which are not captured by tight-binding models. Averaging over various configurations supports the defect level broadening picture. This points to the role of different atomic configurations obtained by varying the experimental growth conditions in engineering arsenide band gaps, in particular for telecommunication laser technology.

  19. Iterative re-weighted approach to high-resolution optical coherence tomography with narrow-band sources.

    PubMed

    Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee Bowden, Audrey K

    2016-01-25

    Optical coherence tomography (OCT) is a non-invasive optical imaging modality capable of high resolution imaging of internal tissue structures. It is widely believed that the high axial resolution in OCT systems requires a wide-bandwidth light source. As a result, often the potential advantages of narrow-bandwidth sources (in terms of cost and/or imaging speed) are understood to come at the cost of significant reduction in imaging resolution. In this paper, we argue that this trade-off between resolution and speed is a shortcoming imposed by the-state-of-the-art A-scan reconstruction algorithm, Fast Fourier Transform, and can be circumvented through use of alternative processing methods. In particular, we investigate the shortcomings of the FFT as well as previously proposed alternatives and demonstrate the first application of an iterative regularized re-weighted l(2) norm method to improve the axial resolution of fast scan rate OCT systems in the narrow-bandwidth imaging conditions. We validate our claims via experimental results generated from a home-built OCT system used to image layered phantom and in vivo data. Our results rely on new, sophisticated signal processing algorithms to generate higher precision (i.e., higher resolution) OCT images at correspondingly fast scan rates. In other words, our work demonstrates the feasibility of simultaneously more reliable and more comfortable medical imaging systems for patients by reducing the overall scan time, without sacrificing image quality. PMID:26832556

  20. Using Lunar Observations to Assess Terra MODIS Thermal Emissive Bands Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, Hongda

    2010-01-01

    MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues.

  1. Preparation of Narrow Band-Gap Cu2Sn(S,Se)3 and Fabrication of Film by Non-Vacuum Process

    NASA Astrophysics Data System (ADS)

    Nomura, Takeshi; Maeda, Tsuyoshi; Wada, Takahiro

    2013-04-01

    We successfully prepared a Cu2Sn(S1-xSex)3 (CTSSe) solid solution with 0≤x≤1.0. CTSSe solid solution powders were synthesized by mixing the elemental powders and post-annealing at 600 °C. The crystal structure of Cu2SnS3 (CTS) was characterized by Rietveld refinement of the powder X-ray diffraction data and determined to be a monoclinic crystal system. The band gaps of CTSSe solid solution were determined by the diffuse reflectance spectra of the powder samples and the transmittance spectrum of the film fabricated by a non-vacuum thin-film fabrication process called printing and high-pressure sintering (PHS). The band gap (Eg) of CTS is 0.87 eV, which is in good agreement with the recently reported value of monoclinic CTS film. The band gap of the Cu2Sn(S1-xSex)3 solid solution linearly decreases from 0.87 eV (x = 0.0) to 0.67 eV (x = 0.6) with increasing Se content. The CTSSe solid solution has potential as a narrow band-gap absorber material for thin-film full spectrum solar cells.

  2. Narrow band noise as a model of time-dependent accelerations - Study of the stability of a fluid surface in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Casademunt, Jaume; Zhang, Wenbin; Vinals, Jorge; Sekerka, Robert F.

    1993-01-01

    We introduce a stochastic model to analyze in quantitative detail the effect of the high frequency components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion. The residual acceleration field is modeled as a narrow band noise characterized by three independent parameters: its intensity G squared, a dominant frequency Omega, and a characteristic spectral width tau exp -1. The white noise limit corresponds to Omega tau goes to O, with G squared tau finite, and the limit of a periodic g-jitter (or deterministic limit) can be recovered for Omega tau goes to infinity, G squared finite. The analysis of the response of a fluid surface subjected to a fluctuating gravitational field leads to the stochastic Mathieu equation driven by both additive and multiplicative noise. We discuss the stability of the solutions of this equation in the two limits of white noise and deterministic forcing, and in the general case of narrow band noise. The results are then applied to typical microgravity conditions.

  3. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions.

    PubMed

    Chakraborty, Subrata; Vijay, Amrendra

    2016-04-14

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases. PMID:27083708

  4. Efficacy of Biofeedback and Cognitive-behavioural Therapy in Psoriatic PatientsA Single-blind, Randomized and Controlled Study with Added Narrow-band Ultraviolet B Therapy.

    PubMed

    Piaserico, Stefano; Marinello, Elena; Dessi, Andrea; Linder, Michael Dennis; Coccarielli, Debora; Peserico, Andrea

    2016-08-23

    Increasing data suggests that there is a connection between stress and the appearance of psoriasis symptoms. We therefore performed a clinical trial enrolling 40 participants who were randomly allocated to either an 8-week cognitive-behavioural therapy (CBT) (treatment group) plus narrow-band UVB phototherapy or to an 8-week course of only narrow-band UVB phototherapy (control group). We evaluated the clinical severity of psoriasis (PASI), General Health Questionnaire (GHQ)-12, Skindex-29 and State-Trait Anxiety Inventory (STAI) at baseline and by the end of the study. Sixty-five percent of patients in the treatment group achieved PASI75 compared with 15% of standard UVB patients (p = 0.007). GHQ-12 cases were reduced from 45% to 10% in the treatment group and from 30% to 20% in the control group (p = 0.05). The Skindex-29 emotional domain showed a significant improvement in the CBT/biofeedback group compared with control patients (-2.8 points, p = 0.04). This study shows that an adjunctive 8-week intervention with CBT combined with biofeedback increases the beneficial effect of UVB therapy in the overall management of psoriasis, reduces the clinical severity of psoriasis, improving quality of life and decreases the number of minor psychiatric disorders. PMID:27283367

  5. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subrata; Vijay, Amrendra

    2016-04-01

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.

  6. Peculiarities of Forming Single-Frequency Generation in a Monopulse YAG:Nd-Laser with Transverse Diode Pumping and Injection of Narrow-Band Radiation

    NASA Astrophysics Data System (ADS)

    Bogdanovich, M. V.; Kalinov, V. S.; Kostik, O. E.; Lantsov, K. I.; Lepchenkov, K. V.; Mashko, V. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Teplyashin, L. L.

    2016-05-01

    The features of forming output radiation in a powerful monopulse single-frequency side diode-pumped laser operating in external narrow-band signal seeding mode were investigated. The monopulse single-frequency laser was fabricated of a YAG:Nd active element excited by three laser diode matrices. A compact continuous-wave YAG:Nd-laser with longitudinal diode pumping served as the seeding laser. It was shown experimentally that the transition of the monopulse laser from multimode to single-frequency lasing with a spectral line width of about 54 MHz (0.2 pm) occurs at seeding-laser radiation power P th ≈ 0.14 mW (radiation intensity of 1.8·10-2 W/cm2). Increasing the seeding-laser power over P th does not lead to a noticeable change of the output characteristics of the monopulse laser for a given pump level (above the threshold). If the pump power varies from 1.5 to 3.0 kW, the P th value is not changed but the energy of the output pulses of single-frequency monopulse generation increases to 40 MJ. The low level of the external narrow-band seeding signal allows us to consider the single-frequency low-power semiconductor laser as a promising source of the seeding signal.

  7. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb:YAG laser.

    PubMed

    Goldberg, Lew; Cole, Brian; McIntosh, Chris; King, Vernon; Hays, A D; Chinn, Stephen R

    2016-07-25

    We describe generation of 1.1 W of 257 nm emission by frequency quadrupling the 1030 nm emission from a compact passively Q-switched Yb:YAG laser. The laser utilized a volume Bragg grating to achieve a 0.1 nm linewidth required for UV-Raman spectroscopic applications, generated 100 kW peak power, 250 μJ pulses and 3.6 W of average power at 1030 nm. Fourth harmonic generation (FHG) was carried out using a 10 mm lithium triborate (LBO) crystal to generate 515 nm second harmonic with 70% conversion efficiency, followed by a 7 mm beta-barium borate (BBO) crystal to generate 257 nm fourth harmonic with 45% efficiency, resulting in an overall nonlinear conversion efficiency of 31%. Far-field and near-field of the FHG emission were characterized. PMID:27464186

  8. Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing

    SciTech Connect

    Kazarinov, R.F.; Henry, C.H.; Olsson, N.A.

    1987-09-01

    The authors propose a new way of making highly resonant integrated optical circuits based on weak side-by-side coupling between waveguides and high Q distributed Bragg resonators. This method can be used to design a resonant optical reflector which, when used as a feedback element to a laser, will result in a compact structure that has both extremely narrow line width and very low chirp. By coupling the resonator to two waveguides, one on either side, an optical analog of the resonant transformer can be made. This device can be used for wavelength division multiplexing. Such multiplexer elements will both resonantly transform optical power from the laser to a common output channel and also provide feedback which locks the laser to the channel wavelength.

  9. A search for nitric oxide gamma band emission in an aurora

    NASA Technical Reports Server (NTRS)

    Beiting, E. J., III; Feldman, P. D.

    1978-01-01

    A strong emission feature at 2150 A has been observed by a rocket-borne spectrophotometer in an IBC II(+) aurora. This feature, commonly identified with the NO gamma (1,0) band, is comparable in intensity to the nearby N2 Vegard-Kaplan bands. Comparison of the observed spectra with a theoretically produced synthetic spectrum allows all but this feature to be assigned to N2 transitions. No bands of the v prime = 0 or 2 progressions or any other bands from v prime = 1 appear, casting serious doubt on the identification of this feature as the NO gamma (1,0) band.

  10. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  11. Defect-Band Emission Photoluminescence Imaging on Multi-Crystalline Si Solar Cells

    SciTech Connect

    Yan, F.; Johnston, S.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-01-01

    Defect-band photoluminescence (PL) imaging with an InGaAs camera was applied to multicrystalline silicon (mc-Si) wafers, which were taken from different heights of different Si bricks. Neighboring wafers were picked at six different processing steps, from as-cut to post-metallization. By using different cut-off filters, we were able to separate the band-to-band emission images from the defect-band emission images. On the defect-band emission images, the bright regions that originate from the grain boundaries and defect clusters were extracted from the PL images. The area fraction percentage of these regions at various processing stages shows a correlation with the final cell electrical parameters.

  12. Defect-Band Emission Photoluminescence Imaging on Multi-Crystalline Si Solar Cells: Preprint

    SciTech Connect

    Yan, F.; Johnston, S.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-07-01

    Defect-band photoluminescence (PL) imaging with an InGaAs camera was applied to multicrystalline silicon (mc-Si) wafers, which were taken from different heights of different Si bricks. Neighboring wafers were picked at six different processing steps, from as-cut to post-metallization. By using different cut-off filters, we were able to separate the band-to-band emission images from the defect-band emission images. On the defect-band emission images, the bright regions that originate from the grain boundaries and defect clusters were extracted from the PL images. The area fraction percentage of these regions at various processing stages shows a correlation with the final cell electrical parameters.

  13. CONNECTION BETWEEN MID-INFRARED EMISSION PROPERTIES AND NARROW-LINE REGION OUTFLOWS IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Zhang Kai; Wang Tinggui; Dong Xiaobo; Yan Lin

    2013-05-01

    The location of warm dust producing the mid-infrared (MIR) emission in type 1 active galactic nuclei (AGNs) is complex and not yet fully known. We explore this problem by studying how the MIR covering factor (CF{sub MIR} = L{sub MIR}/L{sub bol}) correlates with the fundamental parameters of AGN accretion process (such as L{sub bol}, black hole mass M{sub BH}, and Eddington ratio L/L{sub Edd}) and the properties of narrow emission lines (as represented by [O III] {lambda}5007), using large data sets derived from the Sloan Digital Sky Spectroscopic Survey (SDSS) and the Wide Infrared Sky Survey (WISE). First, we find that the luminosity of the [O III] wing component (L{sub wing}) correlates more tightly with the continuum luminosity ({lambda}L{sub {lambda}}(5100)) than the luminosity of the line core component (L{sub core}) does, which is in line with our previous conclusion that the wing component, generally blueshifted, originates from the polar outflows in the inner narrow-line region (NLR). We then find that the MIR CF shows the strongest correlation with L{sub wing}/L{sub bol} rather than with L{sub core}/L{sub bol} or the above fundamental AGN parameters, and the correlation becomes stronger as the infrared wavelength increases. We also confirm the anti-correlations of CF{sub MIR} with L{sub bol} and M{sub BH}, and the lack of dependence of CF{sub MIR} on the Eddington ratio. These results suggest that a large fraction of the warm dust producing MIR emission in AGNs is likely embedded in polar outflows in the NLR instead of in the torus.

  14. Masking of low-frequency signals by high-frequency, high-level narrow bands of noisea

    PubMed Central

    Patra, Harisadhan; Roup, Christina M.; Feth, Lawrence L.

    2011-01-01

    Low-frequency masking by intense high-frequency noise bands, referred to as remote masking (RM), was the first evidence to challenge energy-detection models of signal detection. Its underlying mechanisms remain unknown. RM was measured in five normal-hearing young-adults at 250, 350, 500, and 700 Hz using equal-power, spectrally matched random-phase noise (RPN) and low-noise noise (LNN) narrowband maskers. RM was also measured using equal-power, two-tone complex (TC2) and eight-tone complex (TC8). Maskers were centered at 3000 Hz with one or two equivalent rectangular bandwidths (ERBs). Masker levels varied from 80 to 95 dB sound pressure level in 5 dB steps. LNN produced negligible masking for all conditions. An increase in bandwidth in RPN yielded greater masking over a wider frequency region. Masking for TC2 was limited to 350 and 700 Hz for one ERB but shifted to only 700 Hz for two ERBs. A spread of masking to 500 and 700 Hz was observed for TC8 when the bandwidth was increased from one to two ERBs. Results suggest that high-frequency noise bands at high levels could generate significant low-frequency masking. It is possible that listeners experience significant RM due to the amplification of various competing noises that might have significant implications for speech perception in noise. PMID:21361445

  15. THE SOFT X-RAY AND NARROW-LINE EMISSION OF Mrk 573 ON KILOPARSEC SCALES

    SciTech Connect

    Gonzalez-Martin, O.; Acosta-Pulido, J. A.; Garcia, A. M. Perez

    2010-11-10

    We present a study of the circumnuclear region of the nearby Seyfert galaxy Mrk 573 using Chandra, XMM-Newton, and Hubble Space Telescope (HST) data. We have studied the morphology of the soft (<2 keV) X-rays comparing it with the [O III] and H{alpha} HST images. The soft X-ray emission is resolved into a complex extended region. The X-ray morphology shows a biconical region extending up to 12 arcsec (4 kpc) in projection from the nucleus. A strong correlation between the X-rays and the highly ionized gas seen in the [O III]{lambda}5007 A image is reported. Moreover, we have studied the line intensities detected with the XMM-Newton Reflection Grating Spectrometer (RGS) and used them to fit the low-resolution EPIC/XMM-Newton and ACIS/Chandra spectra. The RGS/XMM-Newton spectrum is dominated by emission lines of C VI, O VII, O VIII, Fe XVII, and Ne IX, among other highly ionized species. A good fit is obtained using these emission lines found in the RGS/XMM-Newton spectrum as a template for Chandra spectra of the nucleus and extended emission, coincident with the cone-like structures seen in the [O III]/H{alpha} map. The photoionization model Cloudy provides a reasonable fit for both the nuclear region and the cone-like structures showing that the dominant excitation mechanism is photoionization. For the nucleus the emission is modeled using two phases: a high ionization [log (U) = 1.23] and a low ionization [log (U) = 0.13]. For the high-ionization phase the transmitted and reflected components are in a 1:2 ratio, whereas for the low ionization the reflected component dominates. For the extended emission, we successfully reproduced the emission with two phases. The first phase shows a higher ionization parameter for the northwest (log (U) = 0.9) than for the southeast cone (log (U) = 0.3). Moreover, this phase is transmission dominated for the southeast cone and reflection dominated for the northwest cone. The second phase shows a low-ionization parameter (log (U

  16. The Soft X-ray and Narrow-line Emission of Mrk 573 on Kiloparsec Scales

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, O.; Acosta-Pulido, J. A.; Perez Garcia, A. M.; Ramos Almeida, C.

    2010-11-01

    We present a study of the circumnuclear region of the nearby Seyfert galaxy Mrk 573 using Chandra, XMM-Newton, and Hubble Space Telescope (HST) data. We have studied the morphology of the soft (<2 keV) X-rays comparing it with the [O III] and Hα HST images. The soft X-ray emission is resolved into a complex extended region. The X-ray morphology shows a biconical region extending up to 12 arcsec (4 kpc) in projection from the nucleus. A strong correlation between the X-rays and the highly ionized gas seen in the [O III]λ5007 Å image is reported. Moreover, we have studied the line intensities detected with the XMM-Newton Reflection Grating Spectrometer (RGS) and used them to fit the low-resolution EPIC/XMM-Newton and ACIS/Chandra spectra. The RGS/XMM-Newton spectrum is dominated by emission lines of C VI, O VII, O VIII, Fe XVII, and Ne IX, among other highly ionized species. A good fit is obtained using these emission lines found in the RGS/XMM-Newton spectrum as a template for Chandra spectra of the nucleus and extended emission, coincident with the cone-like structures seen in the [O III]/Hα map. The photoionization model Cloudy provides a reasonable fit for both the nuclear region and the cone-like structures showing that the dominant excitation mechanism is photoionization. For the nucleus the emission is modeled using two phases: a high ionization [log (U) = 1.23] and a low ionization [log (U) = 0.13]. For the high-ionization phase the transmitted and reflected components are in a 1:2 ratio, whereas for the low ionization the reflected component dominates. For the extended emission, we successfully reproduced the emission with two phases. The first phase shows a higher ionization parameter for the northwest (log (U) = 0.9) than for the southeast cone (log (U) = 0.3). Moreover, this phase is transmission dominated for the southeast cone and reflection dominated for the northwest cone. The second phase shows a low-ionization parameter (log (U) = -3) and is

  17. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    NASA Technical Reports Server (NTRS)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  18. Nature of the emission band of Dergaon meteorite in the region 5700-6700 Å

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Gohain Barua, A.; Konwer, R.; Changmai, R.; Baruah, G. D.

    2004-06-01

    An emission band system in the region 5700--6700 Å from Dergaon stoney iron meteorite which fell at Dergaon, India on March 2, 16.40 local time (2001) was excited with the help of a continuous 500 mW Ar^+ laser. The band system is attributed to silicate (olivine), a major component of the meteorite.

  19. Si3N4 emissivity and the unidentified infrared bands

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Chatelain, M. A.; Hecht, James H.; Stephens, John R.

    1989-01-01

    Infrared spectroscopy of warm (about 150 to 750 K), dusty astronomical sources has revealed a structured emission spectrum which can be diagnostic of the composition, temperature, and in some cases, even size and shape of the grains giving rise to the observed emission. The identifications of silicate emission in oxygen rich objects and SiC in carbon rich object are two examples of this type of analysis. Cometary spectra at moderate resolution have similarly revealed silicate emission, tying together interstellar and interplanetary dust. However, Goebel has pointed out that some astronomical sources appear to contain a different type of dust which results in a qualitatively different spectral shape in the 8 to 13 micron region. The spectra shown make it appear unlikely that silicon nitride can be identified as the source of the 8 to 13 micron emission in either NGC 6572 or Nova Aql 1982. The similarity between the general wavelength and shape of the 10 micron emission from some silicates and that from the two forms of silicon nitride reported could allow a mix of cosmic grains which include some silicon nitride if only the 8 to 13 micron data are considered.

  20. Narrow-band pass filter array for integrated opto-electronic spectroscopy detectors to assess esophageal tissue

    PubMed Central

    Ferreira, Débora S.; Mirkovic, Jelena; Wolffenbuttel, Reinoud F.; Correia, José H.; Feld, Michael S.; Minas, Graça

    2011-01-01

    A strategy for spectroscopy tissue diagnosis using a small number of wavelengths is reported. The feasibility to accurately quantify tissue information using only 16 wavelengths is demonstrated with several wavelength reduction simulations of the existing esophageal data set. These results are an important step for the development of a miniaturized, robust and low-cost spectroscopy system. This system is based on a sub-millimeter high-selective filter array that offers prospects for a simplified miniature spectrographic detector for a future diagnostic tool to improve the diagnosis of dysplasia. Several thin-film optical filters are optimized and fabricated and its spectral performance is shown to be sufficient for the selection of specific wavelength bands. PMID:21698030

  1. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  2. External-cavity-controlled 32-MHz narrow-band cw GaA1As-diode lasers.

    PubMed

    Voumard, C

    1977-08-01

    By coupling a cw GaA1As-diode laser to an external resonator with Fabry-Perot etalons as dispersive elements, emission was reduced to a single-axial mode of 32-MHz width. The wavelength could be coarsely tuned over a spectral range of over 10 nm. Fine tuning over about 500 MHz was achieved by varying the external cavity length by less than lambda/3. At single-axial-mode operation, the commonly observed high- and low-frequency self-pulsing of the light output was found to disappear almost completely. PMID:19680331

  3. The origin of N III lambda 990 and C III lambda 977 emission in AGN narrow-line region gas

    NASA Technical Reports Server (NTRS)

    Ferguson, J. W.; Ferland, G. J.; Pradhan, A. K.

    1995-01-01

    We discuss implications of Hopkins Ultraviolet Telescope (HUT) detections of C III lambda 977 and N III lambda 990 emission from the narrow-line region of the Seyfert 2 galaxy NGC 1068. In their discovery paper Kriss et al. showed that the unexpectedly great strength of these lines implies that the emitting gas must be shock-heated if the lines are collisionally excited. Here we investigate other processes which excite these lines in photoionization equilibrium. Recombination, mainly dielectronic, and continuum fluorescence are strong contributors to the line. The resulting intensities are sensitive to the velocity field of the emitting gas and require that the turbulence be of the same order of magnitude as the observed line width. We propose optical observations that will decide whether the gas is collisionally or radiatively heated.

  4. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  5. Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor

    NASA Astrophysics Data System (ADS)

    Oumar, Z.; Mutanga, O.; Ismail, R.

    2013-04-01

    Thaumastocoris peregrinus (T. peregrinus) is a sap sucking insect that feeds on Eucalyptus leaves. It poses a threat to the forest industry by reducing the photosynthetic ability of the tree, resulting in stunted growth and even death of severely infested trees. Remote sensing techniques offer the potential to detect and map T. peregrinus infestations in plantation forests using current operational hyperspectral scanners. This study resampled field spectral data measured from a field spectrometer to the band settings of the Hyperion sensor in order to assess its potential in predicting T. peregrinus damage. Normalized indices based on NDVI ratios were calculated using the resampled visible and near-infrared bands of the Hyperion sensor to assess its utility in predicting T. peregrinus damage using Partial Least Squares (PLS) regression. The top 20 normalized indices were based on specific biochemical absorption features that predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.63 on an independent test dataset. The top 20 indices were located in the near-infrared region between 803.3 nm and 894.9 nm. Twenty three previously published hyperspectral indices which have been used to assess stress in vegetation were also used to predict T. peregrinus damage and resulted in a mean bootstrapped R2 value of 0.59 on an independent test dataset. The datasets were combined to assess its collective strength in predicting T. peregrinus damage and significant indices were chosen based on variable importance scores (VIP) and were then entered into a PLS model. The indices chosen by VIP predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.71 on an independent test dataset. A greedy backward variable selection model was further tested on the VIP selected indices in order to find the best subset of indices with the best predictive accuracy. The greedy backward variable selection model identified 3 indices and performed the best by predicting damage

  6. 33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Yuan; Xie, Shi-Yong; Bo, Yong; Wang, Bao-Shan; Zuo, Jun-Wei; Wang, Zhi-Chao; Shen, Yu; Zhang, Feng-Feng; Wei, Kai; Jin, Kai; Xu, Yi-Ting; Xu, Jia-Lin; Peng, Qin-Jun; Zhang, Jing-Yuan; Lei, Wen-Qiang; Cui, Da-Fu; Zhang, Yu-Dong; Xu, Zu-Yan

    2014-09-01

    We demonstrate an all-solid quasi-continuous-wave (QCW) narrow-band source tunable to sodium D2a line at 589.159 nm. The source is based on sum-frequency mixing between lasers at 1064 nm and 1319 nm in a LBO crystal. The 1064 nm and 1319 nm lasers are produced from two diode side-pumped Nd:YAG master oscillator power amplifier (MOPA) laser systems, respectively. A 33 W output of 589 nm laser is obtained with beam quality factor M2 = 1.25, frequency stability better than ±0.2 GHz and linewidth less than 0.44 GHz. A prototype 589 nm laser system is assembled, and a sodium laser guided star has been successfully observed in the field test.

  7. Side-chain effects on the conductivity, morphology, and thermoelectric properties of self-doped narrow-band-gap conjugated polyelectrolytes.

    PubMed

    Mai, Cheng-Kang; Schlitz, Ruth A; Su, Gregory M; Spitzer, Daniel; Wang, Xiaojia; Fronk, Stephanie L; Cahill, David G; Chabinyc, Michael L; Bazan, Guillermo C

    2014-10-01

    This contribution reports a series of anionic narrow-band-gap self-doped conjugated polyelectrolytes (CPEs) with π-conjugated cyclopenta-[2,1-b;3,4-b']-dithiophene-alt-4,7-(2,1,3-benzothiadiazole) backbones, but with different counterions (Na(+), K(+), vs tetrabutylammonium) and lengths of alkyl chains (C4 vs C3). These materials were doped to provide air-stable, water-soluble conductive materials. Solid-state electrical conductivity, thermopower, and thermal conductivity were measured and compared. CPEs with smaller counterions and shorter side chains exhibit higher doping levels and form more ordered films. The smallest countercation (Na(+)) provides thin films with higher electrical conductivity, but a comparable thermopower, compared to those with larger counterions, thereby leading to a higher power factor. Chemical modifications of the pendant side chains do not influence out of plane thermal conductivity. These studies introduce a novel approach to understand thermoelectric performance by structural modifications. PMID:25179403

  8. Magnifying endoscopy with narrow-band imaging is more accurate for determination of horizontal extent of early gastric cancers than chromoendoscopy

    PubMed Central

    Asada-Hirayama, Itsuko; Kodashima, Shinya; Sakaguchi, Yoshiki; Ono, Satoshi; Niimi, Keiko; Mochizuki, Satoshi; Tsuji, Yosuke; Minatsuki, Chihiro; Shichijo, Satoki; Matsuzaka, Keisuke; Ushiku, Tetsuo; Fukayama, Masashi; Yamamichi, Nobutake; Fujishiro, Mitsuhiro; Koike, Kazuhiko

    2016-01-01

    Background and study aims: Although magnifying endoscopy with narrow-band imaging (ME-NBI) is reported to be useful for delineating the horizontal extent of early gastric cancers (EGCs), there are few reports which have objectively demonstrated the superiority of ME-NBI over chromoendoscopy with indigo carmine for this purpose. We conducted an exploratory comparison of the diagnostic accuracy of both modalities for the delineation of EGCs using prospectively collected data, and clarified the clinicopathological features related to inaccurate evaluation of the horizontal extent of EGCs. Patients and methods: EGCs were assigned to the oral narrow-band imaging (O-NBI) group or the oral chromoendoscopy (O-CE) group before endoscopic submucosal dissection (ESD). The oral border was observed according to assignment, and the anal border with the other modality. The horizontal extent of the tumor was evaluated by each modality and a marking dot was placed on the visible delineation line. After ESD, the marking dots were identified pathologically and defined as “accurate evaluation” if they were located within 1 mm of the pathological tumor border. We compared the rate of accurate evaluation of ME-NBI and chromoendoscopy, and analyzed the clinicopathological features related to inaccurate evaluation. Results: A total of 113 marking dots evaluated by ME-NBI and 116 evaluated by chromoendoscopy were analyzed. The rate of accurate evaluation by ME-NBI was significantly higher than that by chromoendoscopy (89.4 % vs 75.9 %, P = 0.0071). The EGCs with flat borders and large EGCs were significantly related to inaccurate evaluation using ME-NBI. There were no significant factors related to inaccurate evaluation with chromoendoscopy. Conclusions: The accurate evaluation rate of the horizontal extent of EGCs by ME-NBI is significantly higher than that by chromoendoscopy. Study registration: UMIN000007641 PMID:27556080

  9. Study of the parametric oscillator driven by narrow-band noise to model the response of a fluid surface to time-dependent accelerations

    SciTech Connect

    Zhang, W.; Casademunt, J.; Vinals, J. )

    1993-12-01

    A stochastic formulation is introduced to study the large amplitude and high-frequency components of residual accelerations found in a typical microgravity environment (or [ital g]-jitter). The linear response of a fluid surface to such residual accelerations is discussed in detail. The analysis of the stability of a free fluid surface can be reduced in the underdamped limit to studying the equation of the parametric harmonic oscillator for each of the Fourier components of the surface displacement. A narrow-band noise is introduced to describe a realistic spectrum of accelerations, that interpolates between white noise and monochromatic noise. Analytic results for the stability of the second moments of the stochastic parametric oscillator are presented in the limits of low-frequency oscillations, and near the region of subharmonic parametric resonance. Based upon simple physical considerations, an explicit form of the stability boundary valid for arbitrary frequencies is proposed, which interpolates smoothly between the low frequency and the near resonance limits with no adjustable parameter, and extrapolates to higher frequencies. A second-order numerical algorithm has also been implemented to simulate the parametric stochastic oscillator driven with narrow-band noise. The simulations are in excellent agreement with our theoretical predictions for a very wide range of noise parameters. The validity of previous approximate theories for the particular case of Ornstein--Uhlenbeck noise is also checked numerically. Finally, the results obtained are applied to typical microgravity conditions to determine the characteristic wavelength for instability of a fluid surface as a function of the intensity of residual acceleration and its spectral width.

  10. EXTENDED NARROW-LINE EMISSION IN THE BRIGHT SEYFERT 1.5 GALAXY HE 2211-3903

    SciTech Connect

    Scharwaechter, J.; Dopita, M. A.; Zuther, J.; Fischer, S.; Eckart, A.; Komossa, S.

    2011-08-15

    Extended narrow-line regions (ENLRs) and extended emission-line regions have been the focus of integral field spectroscopy aiming at the inner kiloparsecs of nearby Seyfert galaxies as well as the larger environment of high-redshift QSOs. Based on observations with the Wide Field Spectrograph at the 2.3 m telescope of the Australian National University, we present spatially resolved emission-line diagnostics of the bright Seyfert 1.5 galaxy HE 2211-3903 which is drawn from a sample of the brightest Seyfert galaxies at z < 0.06 with luminosities around the classical Seyfert/QSO demarcation. In addition to the previously known spiral arms of HE 2211-3903, the emission-line maps reveal a large-scale ring with a radius of about 6 kpc which is connected to the active galactic nucleus (AGN) through a bar-like structure. The overall gas kinematics indicates a disk rotation pattern. The emission-line ratios show Seyfert-type, H II region-type, and composite classifications, while there is no strong evidence of LINER-type ratios. Shock ionization is likely to be negligible throughout the galaxy. The composite line ratios are explained via a mixing line between AGN and H II region photoionization. Composite line ratios are predominantly found in between the H II regions in the circum-nuclear region, the bar-like structure to the east of the nucleus, and the eastern half of the ring, suggesting AGN photoionization of the low-density interstellar medium in an ENLR on galaxy scales. The line ratios in the nucleus indicate N enrichment, which is discussed in terms of chemical enrichment by Wolf-Rayet and asymptotic giant branch stars during past and ongoing nuclear starburst activity.

  11. Ortho-Rectification of Narrow Band Multi-Spectral Imagery Assisted by Dslr RGB Imagery Acquired by a Fixed-Wing Uas

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.

    2015-08-01

    Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at

  12. An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Fraenkel, E. D.; Glas, Dariusz; Legumina, Remigiusz

    2013-12-01

    The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages.

  13. Techniques to minimize adjacent band emissions from Earth Exploration Satellites to protect the Space Research (Category B) Earth Stations in the 8400-8450 MHz band

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Sue, Miles K.; Manshadi, Farzin

    2004-01-01

    The Earth Exploration Satellites operating in the 8025-8400 MHz band can have strong adjacent band emissions on the8400-8450 MHz band which is allocated for Space Research (Category-B). The unwanted emission may exceed the protection criterion establish by the ITU-R for the protection of the Space Research (Category B) earth stations, i.e., deep-space earth stations. An SFCG Action Item (SF 23/14) was created during the 23rd SFCG meeting to explore technical and operational techniques to reduce the adjacent band emissions. In response to this action item, a study was conducted and results are presented in this document.

  14. Narrow-linewidth red-emission Eu3+-doped TiO2 spheres for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Peifen; Zhu, Hongyang; Qin, Weiping; Dantas, Breno H.; Sun, Wei; Tan, Chee-Keong; Tansu, Nelson

    2016-03-01

    In this work, the amorphous Eu3+-doped TiO2 spheres were synthesized by low cost mixed-solvent method, while the anatase and rutile spheres can be obtained by annealing the as-synthesized amorphous TiO2 spheres at elevated temperatures. The optical properties of Eu3+-doped TiO2 spheres were also investigated, and strong red emission (centered at 610 nm) with narrow line-width of 30 nm was observed under 465 nm or 394 nm excitations for the Eu3+-doped anatase TiO2 spheres. Our findings indicate the potential of using Eu3+-doped TiO2 spheres to achieve red emission with InGaN blue light emitting diodes (LEDs). Owing to the high light extraction efficiency in the GaN-based LEDs using anatase TiO2 spheres as demonstrated in our previous works, this work shows the strong potential of Eu3+-doped TiO2 spheres as the red phosphor material for high efficiency GaN-based white light-emitting diode.

  15. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking.

    PubMed

    Chen, Ou; Zhao, Jing; Chauhan, Vikash P; Cui, Jian; Wong, Cliff; Harris, Daniel K; Wei, He; Han, Hee-Sun; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G

    2013-05-01

    High particle uniformity, high photoluminescence quantum yields, narrow and symmetric emission spectral lineshapes and minimal single-dot emission intermittency (known as blinking) have been recognized as universal requirements for the successful use of colloidal quantum dots in nearly all optical applications. However, synthesizing samples that simultaneously meet all these four criteria has proven challenging. Here, we report the synthesis of such high-quality CdSe-CdS core-shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors. In contrast with previous observations, single-dot blinking is significantly suppressed with only a relatively thin shell. Furthermore, we demonstrate the elimination of the ensemble luminescence photodarkening that is an intrinsic consequence of quantum dot blinking statistical ageing. Furthermore, the small size and high photoluminescence quantum yields of these novel quantum dots render them superior in vivo imaging agents compared with conventional quantum dots. We anticipate these quantum dots will also result in significant improvement in the performance of quantum dots in other applications such as solid-state lighting and illumination. PMID:23377294

  16. Origin of multi-band emission from the microquasar Cygnus X-1

    SciTech Connect

    Zhang, Jianfu; Lu, Jufu; Xu, Bing

    2014-06-20

    We study the origin of non-thermal emissions from the Galactic black hole X-ray binary Cygnus X-1, which is a confirmed high-mass microquasar. By analogy with the methods used in studies of active galactic nuclei, we propose a two-dimensional, time-dependent radiation model from the microquasar Cygnus X-1. In this model, the evolution equation for relativistic electrons in a conical jet are numerically solved by including escape, adiabatic, and various radiative losses. The radiative processes involved are synchrotron emission, its self-Compton scattering, and inverse Compton scatterings of an accretion disk and its surrounding stellar companion. This model also includes an electromagnetic cascade process of an anisotropic γ-γ interaction. We study the spectral properties of electron evolution and its emission spectral characteristic at different heights of the emission region located in the jet. We find that radio data from Cygnus X-1 are reproduced by the synchrotron emission, the Fermi Large Area Telescope measurements by the synchrotron emission and Comptonization of photons of the stellar companion, and the TeV band emission fluxes by the Comptonization of the stellar photons. Our results show the following. (1) The radio emission region extends from the binary system scales to the termination of the jet. (2) The GeV band emissions should originate from the distance close to the binary system scales. (3) The TeV band emissions could be inside the binary system, and these emissions could be probed by the upcoming Cherenkov Telescope Array. (4) The MeV tail emissions, which produce a strongly linearly polarized signal, are emitted inside the binary system. The location of the emissions is very close to the inner region of the jet.

  17. Discovery of SiO Band Emission from Galactic B[e] Supergiants

    NASA Astrophysics Data System (ADS)

    Kraus, M.; Oksala, M. E.; Cidale, L. S.; Arias, M. L.; Torres, A. F.; Borges Fernandes, M.

    2015-02-01

    B[e] supergiants (B[e]SGs) are evolved massive stars in a short-lived transition phase. During this phase, these objects eject large amounts of material, which accumulate in a circumstellar disk-like structure. The expelled material is typically dense and cool, providing the cradle for molecule and dust condensation and for a rich, ongoing chemistry. Very little is known about the chemical composition of these disks, beyond the emission from dust and CO revolving around the star on Keplerian orbits. As massive stars preserve an oxygen-rich surface composition throughout their life, other oxygen-based molecules can be expected to form. As SiO is the second most stable oxygen compound, we initiated an observing campaign to search for first-overtone SiO emission bands. We obtained high-resolution near-infrared L-band spectra for a sample of Galactic B[e]SGs with reported CO band emission. We clearly detect emission from the SiO first-overtone bands in CPD-52 9243 and indications for faint emission in HD 62623, HD 327083, and CPD-57 2874. From model fits, we find that in all these stars the SiO bands are rotationally broadened with a velocity lower than observed in the CO band forming regions, suggesting that SiO forms at larger distances from the star. Hence, searching for and analyzing these bands is crucial for studying the structure and kinematics of circumstellar disks, because they trace complementary regions to the CO band formation zone. Moreover, since SiO molecules are the building blocks for silicate dust, their study might provide insight in the early stage of dust formation. Based on observations collected with the ESO VLT Paranal Observatory under program 093.D-0248(A).

  18. CO Cameron band and CO2+ UV doublet emissions in the dayglow of Venus: Role of CO in the Cameron band production

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Jain, Sonal Kumar

    2013-06-01

    The present study deals with the model calculations of CO Cameron band and CO2+ ultraviolet doublet emissions in the dayglow of Venus. The overhead and limb intensities of CO Cameron band and CO2+ UV doublet emissions are calculated for low, moderate, and high solar activity conditions. Using updated cross sections, the impact of different e-CO cross sections for Cameron band production is estimated. The electron impact on CO is the major source mechanism of Cameron band, followed by electron and photon impact dissociation of CO2. The overhead intensities of CO Cameron band and CO2+UV doublet emissions are about a factor of 2 higher in solar maximum than those in solar minimum condition. The effect of solar EUV flux models on the emission intensity is ˜30-40% in solar minimum condition and ˜2-10% in solar maximum condition. At the altitude of emission peak (˜135 km), the model predicted limb intensity of CO Cameron band and CO2+ UV doublet emissions in moderate (F10.7=130) solar activity condition is about 2400 and 300 kR, respectively, which is in agreement with the very recently published SPICAV/Venus Express observation. The model limb intensity profiles of CO Cameron band and CO2+UV doublet are compared with SPICAV observation. We also calculated intensities of N2Vegard-Kaplan UV bands and O I 2972 Å emissions during moderate and high solar activity conditions.

  19. The Luminosity Function and Star Formation Rate Between Redshifts of 0.07 and 1.47 for Narrow-band Emitters in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, M.; Kashikawa, N.; Shimasaku, K.; Doi, M.; Nagao, T.; Iye, M.; Kodama, T.; Morokuma, T.; Motohara, K.

    2006-06-01

    Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple narrow-band filters are used to distinguish Hα, [OII], and [OIII] emitters between redshifts of 0.07 and 1.47 to construct their averaged rest-frame optical-to-UV SED and luminosity functions. These luminosity functions are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N 200-900) sample for each redshift interval, a Schechter profile is fitted to each luminosity function. Prior to dust extinction corrections, the [OIII] and [OII] luminosity functions reported in this paper agree reasonably well with those of Hippelein et al (2003). The z=0.066-0.092 Hα LF agrees with those of Jones & Bland-Hawthorn (2001), but for z=0.24 and 0.40, their number density is higher by a factor of two or more. The z=0.08 Hα LF, which reaches two orders of magnitude fainter than Gallego et al. (1995), is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1 than predicted. The faint end slope α and φ* show a strong evolution with redshift while L* show little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Hα for 0.07

  20. Anatomy of the AGN in NGC 5548. V. A clear view of the X-ray narrow emission lines

    NASA Astrophysics Data System (ADS)

    Whewell, M.; Branduardi-Raymont, G.; Kaastra, J. S.; Mehdipour, M.; Steenbrugge, K. C.; Bianchi, S.; Behar, E.; Ebrero, J.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Kriss, G. A.; Paltani, S.; Peterson, B. M.; Petrucci, P.-O.; Pinto, C.; Ponti, G.

    2015-09-01

    Context. Our consortium performed an extensive multi-wavelength campaign of the nearby Seyfert 1 galaxy NGC 5548 in 2013-14. The source appeared unusually heavily absorbed in the soft X-rays, and signatures of outflowing absorption were also present in the UV. He-like triplets of neon, oxygen and nitrogen, and radiative recombination continuum (RRC) features were found to dominate the soft X-ray spectrum due to the low continuum flux. Aims: Here we focus on characterising these narrow emission features using data obtained from the XMM-Newton RGS (770 ks stacked spectrum). Methods: We use spex for our initial analysis of these features. Self-consistent photoionisation models from Cloudy are then compared with the data to characterise the physical conditions of the emitting region. Results: Outflow velocity discrepancies within the O VII triplet lines can be explained if the X-ray narrow-line region (NLR) in NGC 5548 is absorbed by at least one of the six warm absorber components found by previous analyses. The RRCs allow us to directly calculate a temperature of the emitting gas of a few eV (~104 K), favouring photoionised conditions. We fit the data with a Cloudy model of log ξ = 1.45 ± 0.05 erg cm s-1, log NH = 22.9 ± 0.4 cm-2 and log vturb = 2.25 ± 0.5 km s-1 for the emitting gas; this is the first time the X-ray NLR gas in this source has been modelled so comprehensively. This allows us to estimate the distance from the central source to the illuminated face of the emitting clouds as 13.9 ± 0.6 pc, consistent with previous work.

  1. Fourier Transform Emission Spectra of the (000)-(000) Band of the λ4051.6 Band of C3

    NASA Astrophysics Data System (ADS)

    Tanabashi, A.; Hirao, T.; Amano, T.; Bernath, P. F.

    2005-05-01

    The (000)-(000) band of the 4051.6 Å group (A˜1Πu-X˜1Σ+g) of C3 was recorded in emission with a Bruker IFS 120HR Fourier transform (FT) spectrometer at the University of Waterloo. The band was excited by a microwave discharge in isopropanol (less than a few mtorr) diluted in helium (2 torr). Our new FT data provide more reliable and accurately calibrated transition wavenumbers than those from the grating spectra given by Gausset and coworkers. Analysis of our new spectrum combined with the data by McCall and coworkers confirmed that the lower J levels in the A˜ state were strongly perturbed, as reported by Gausset and coworkers. The unidentified lines observed by McCall and coworkers could be attributed to extra transitions to an unknown perturbing state.

  2. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    SciTech Connect

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; Dalla Bontà, E.; Ciroi, S.

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  3. Unidirectional total variation destriping using difference curvature in MODIS emissive bands

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Zheng, Xinghui; Pan, Jun; Wang, Bin

    2016-03-01

    This paper presents a method of unidirectional total variation destriping using difference curvature in MODIS (Moderate Resolution Imaging Spectrometer) emissive bands. First, difference curvature is utilized to extract spatial information at each pixel; and the spatially weighted parameters that constructed by extracted spatial information are incorporated into the unidirectional total variation model to adaptively adjust the destriping strength for achieving a better destriping result and preserving the detail information meantime. Second, the split Bregman iteration method is employed to optimize the proposed model. Finally, experimental results from MODIS emissive bands and comparisons with other methods demonstrate the potential of the presented method for MODIS image destriping.

  4. Monitoring radiation belt particle precipitation - automatic detection of enhanced transient ionisation in the lower plasmasphere using subionospheric narrow band VLF signals

    NASA Astrophysics Data System (ADS)

    Steinbach, P.; Lichtenberger, J.; Ferencz, Cs.

    2009-04-01

    Signals of naval VLF transmitters, propagating long distances along the Earth-ionosphere waveguide (EIWG) have been widely applied as effective tools for monitoring transient ionization at mesospheric altitudes. Perturbations in recorded amplitude and/or phase data series of stable frequency signals may refer to the effect of transient enhanced ionization in the EIWG, due to e.g. loss-cone precipitation of trapped energetic electrons (Carpenter et al., 1984, Dowden and Adams, 1990), burst of solar plasma particles (Clilverd et al., 2001). The contribution of precipitating particles are thought to be substantial in certain Sun-to-Earth energy flow processes in the upper atmosphere (Rodger et al., 2005). Narrow band VLF measuring network has been set up, developed and operated in Hungary, running in the last decade almost continuously, dedicated to monitor ionization enhancement regions along numerous transmitter-receiver paths. This setup is based on Omnipal and Ultra-MSK equipment, logging amplitude and phase data of received signals, sampled at frequencies of selected VLF transmitters. Signal trajectories, selected for recording represent proper configuration to survey transient ionization caused by energetic particles in the sub-polar region, such as effect of scattered particles of the inner radiation belt. Reprocessing of the mass archived recordings has been started using a newly developed signal processing code, detecting and classifying different sort of perturbations automatically on narrow band VLF series. Occurrence rates, daily and seasonal variation, statistics of transient ionization enhancements, their geographic distribution within the surveyed range and time period, and correlation with intense geomagnetic and/or Solar event is yielded by this analysis. References: Carpenter, D.L., Inan, U.S., Trimpi, M.L., Helliwell, R.A., and Katsufrakis, J.P.: Perturbations of subionospheric LF and MF signals due to whistler-induced electron precipitation burst

  5. Comparison of narrow-band reflectance spectroscopy and tristimulus colorimetry for measurements of skin and hair color in persons of different biological ancestry.

    PubMed

    Shriver, M D; Parra, E J

    2000-05-01

    We have used two modern computerized handheld reflectometers, the Photovolt ColorWalk colorimeter (a tristimulus colorimeter; Photovolt, UMM Electronics, Indianapolis, IN) and the DermaSpectrometer (a specialized narrow-band reflectometer; Cortex Technology, Hadsund, Denmark), to compare two methods for the objective determination of skin and hair color. These instruments both determine color by measuring the intensity of reflected light of particular wavelengths. The Photovolt ColorWalk instrument does so by shining a white light and sensing the intensity of the reflected light with a linear photodiode array. The ColorWalk results can then be expressed in terms of several standard color systems, most importantly, the Commission International d'Eclairage (CIE) Lab system, in which any color can be described by three values: L*, the lightness; a*, the amount of green or red; and b*, the amount of yellow or blue. Instead of a white light and photodiodes, the DermaSpectrometer uses two light-emitting diodes (LEDs), one green and one red, to illuminate a surface, and then it records the intensity of the reflected light. The results of these readings are expressed in terms of erythema (E) and melanin (M) indices. We measured the unexposed skin of the inner upper arm, the exposed skin of the forehead, and the hair, of 80 persons using these two instruments. Since it is important for the application of these measures in anthropology that we understand their relationship across a number of different pigmentation levels, we sampled persons from several different groups, namely, European Americans (n = 55), African Americans (n = 9), South Asians (n = 7), and East Asians (n = 9). In these subjects, there is a very high correlation between L* and the M index for the inner arm (R(2) = 0.928, P < 0.001), the forehead (R(2) = 0.822, P < 0.001), and the hair (R(2) = 0.827, P < 0.001). The relationship between a* and the E index is complex and dependent on the pigmentation level

  6. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  7. N2 triplet band emissions in the dayglow of Venus, Mars, and Titan

    NASA Astrophysics Data System (ADS)

    Jain, Sonal Kumar; Bhardwaj, Anil

    2012-07-01

    Vegard-Kaplan (VK) and Second Positive emissions of N_2 are common features in the terrestrial dayglow and aurora and have been studied extensively. Recent discoveries of N_2 triplet band emissions on Mars by SPICAM/Mars-Express and on Titan by Cassini UVIS have led planetary scientists to look for the processes governing the N_2 triplet band emissions in different planetary atmospheres. Present work deals with the modeling of N_2 triplet band emission on Mars, Venus, and Titan. A model for N_2 triplet band emissions has been developed and used to explain the recent observations of N_2 Vegard-Kaplan (VK) (A^3Σ_u^+ - X^1Σ^+_g ) band on Mars and Titan. Steady state photoelectron fluxes and volume excitation rates have been calculated using the Analytical Yield Spectra technique. Since interstate cascading is important for triplet states of N_2, the population of any given level of N_2 triplet states is calculated under statistical equilibrium considering direct excitation, cascading, and quenching effects. Relative population of all vibrational levels of each triplet state is calculated in the model. Line of sight intensities and height-integrated overhead intensities have been calculated for VK, First Positive ( B^3Π_g - A^3Σ^+_u ), Second Positive ( C^3Π_u - B^3Π_g ), Wu-Benesch (W^3Δ_u - B^3Π_g), Reverse First Positive, Herman--Kaplan (E → A), E → B, and E → C bands of N_2. The N_2 VK band span wavelength range from far ultraviolet to visible, and some transitions even originate at wavelength more than 1000 nm . Our calculations show that the overhead intensity of VK bands in the wavelength range 400--800, 300--190, 200--300, and 150--200 nm are 22%, 39%, 35%, and 4% of the total VK band emission. Emissions between 600 and 800 nm wavelength consist of about 50% of the total First Positive band system. Major portion of Second Positive band emissions lie in wavelengths between 300 and 400 nm, which is more than 90% of the total Second Positive band

  8. Clicking in a Killer Whale Habitat: Narrow-Band, High-Frequency Biosonar Clicks of Harbour Porpoise (Phocoena phocoena) and Dall’s Porpoise (Phocoenoides dalli)

    PubMed Central

    Kyhn, Line A.; Tougaard, Jakob; Beedholm, Kristian; Jensen, Frants H.; Ashe, Erin; Williams, Rob; Madsen, Peter T.

    2013-01-01

    Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall’s porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall’s (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall’s porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring. PMID:23723996

  9. Clicking in a killer whale habitat: narrow-band, high-frequency biosonar clicks of harbour porpoise (Phocoena phocoena) and Dall's porpoise (Phocoenoides dalli).

    PubMed

    Kyhn, Line A; Tougaard, Jakob; Beedholm, Kristian; Jensen, Frants H; Ashe, Erin; Williams, Rob; Madsen, Peter T

    2013-01-01

    Odontocetes produce a range of different echolocation clicks but four groups in different families have converged on producing the same stereotyped narrow band high frequency (NBHF) click. In microchiropteran bats, sympatric species have evolved the use of different acoustic niches and subtly different echolocation signals to avoid competition among species. In this study, we examined whether similar adaptations are at play among sympatric porpoise species that use NBHF echolocation clicks. We used a six-element hydrophone array to record harbour and Dall's porpoises in British Columbia (BC), Canada, and harbour porpoises in Denmark. The click source properties of all porpoise groups were remarkably similar and had an average directivity index of 25 dB. Yet there was a small, but consistent and significant 4 kHz difference in centroid frequency between sympatric Dall's (137±3 kHz) and Canadian harbour porpoises (141±2 kHz). Danish harbour porpoise clicks (136±3 kHz) were more similar to Dall's porpoise than to their conspecifics in Canada. We suggest that the spectral differences in echolocation clicks between the sympatric porpoises are consistent with evolution of a prezygotic isolating barrier (i.e., character displacement) to avoid hybridization of sympatric species. In practical terms, these spectral differences have immediate application to passive acoustic monitoring. PMID:23723996

  10. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers.

    PubMed

    Taylor, Luke R; Feng, Yan; Calia, Domenico Bonaccini

    2010-04-12

    We demonstrate the cascaded coherent collinear combination of a seed-split triplet of 1178nm high-power narrow-band (sub-1.5MHz) SBS-suppressed CW Raman fibre amplifiers via nested free-space constructive quasi-Mach-Zehnder interferometry, after analysing the combination of the first two amplifiers in detail. Near-unity combination and cascaded-combination efficiencies are obtained at all power levels up to a maximum P(1178) > 60W. Frequency doubling of this cascaded-combined output in an external resonant cavity yields P(589) > 50W with peak conversion efficiency eta(589) ~85%. We observe no significant differences between the SHG of a single, combined pair or triplet of amplifiers. Although the system represents a successful power scalability demonstrator for fibre-based Na-D(2a)-tuned mesospheric laser-guide-star systems, we emphasise its inherent wavelength versatility and consider its spectroscopic and near-diffraction-limited qualities equally well suited to other applications. PMID:20588700

  11. A case of gastric mucosa-associated lymphoid tissue lymphoma in which magnified endoscopy with narrow band imaging was useful in the diagnosis.

    PubMed

    Nonaka, Kouichi; Ishikawa, Keiko; Arai, Shin; Nakao, Masamitsu; Shimizu, Michio; Sakurai, Takaki; Nagata, Koji; Nishimura, Makoto; Togawa, Osamu; Ochiai, Yasutoshi; Sasaki, Yutaka; Kita, Hiroto

    2012-04-16

    Recently, we reported a case of gastric mucosa-associated lymphoid tissue (MALT) lymphoma presenting with unique vascular features. In the report, we defined the tree-like appearance (TLA) on the images of abnormal blood vessels which resembled branches from the trunk of a tree in the shiny mucosa, in which the glandular structure was lost. The 67-year-old female was diagnosed with gastric MALT lymphoma. The patient received eradication therapy for H. pylori. Conventional endoscopy revealed multiple ill-delineated brownish depressions in the stomach and cobblestone-like mucosa was observed at the greater curvature to the posterior wall of the upper gastric body 7 mo after successful eradication. Unsuccessful treatment of gastric MALT lymphoma was suspected on conventional endoscopy. Conventional endoscopic observations found focal depressions and cobblestone-like appearance, and these lesions were subsequently observed using magnified endoscopy combined with narrow band imaging to identify abnormal vessels presenting with a TLA within the lesions. Ten biopsies were taken from the area where abnormal vessels were present within these lesions. Ten biopsies were also taken from the lesions without abnormal vessels as a control. A total of 20 biopsy samples were evaluated to determine whether the diagnosis of MALT lymphoma could be obtained histologically from each sample. A positive diagnosis was obtained in 8/10 TLA (+) sites and in 2/10 TLA(-) sites. Target biopsies of the site with abnormal blood vessels can potentially improve diagnostic accuracy of gastric MALT lymphoma. PMID:22523617

  12. A Direct Linkage between AGN Outflows in the Narrow-line Regions and the X-Ray Emission from the Accretion Disks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, D. W.; Wei, J. Y.

    2016-03-01

    The origin of outflow in the narrow-line region (NLR) of the active galactic nucleus (AGN) is studied in this paper by focusing on the relationship between the [O iii]λ5007 line profile and the hard-X-ray (in a bandpass of 2-10 keV) emission from the central super-massive black hole (SMBH) in type-I AGNs. A sample of 47 local X-ray selected type-I AGNs at z\\lt 0.2 is extracted from the 2XMMi/SDSS-DR7 catalog, which was originally cross-matched by Pineau et al. The X-ray luminosities in an energy band from 2 to 10 keV of these luminous AGNs range from 1042 to {10}44 {erg} {{{s}}}-1. A joint spectral analysis is performed on their optical and X-ray spectra, in which the [O iii] line profile is modeled by a sum of several Gaussian functions to quantify its deviation from a pure Gaussian function. The statistics allow us to identify a moderate correlation with a significance level of 2.78σ: luminous AGNs with stronger [O iii] blue asymmetry tend to have steeper hard-X-ray spectra. By identifying the role of L/{L}{Edd} on the correlation at a 2-3σ significance level in both direct and indirect ways, we argue that the photon index versus the asymmetry correlation provides evidence that the AGN’s outflow commonly observed in its NLR is related to the accretion process occurring around the central SMBH, which favors the wind/radiation model as the origin of the outflow in luminous AGNs.

  13. Analysis of multi-band pyrometry for emissivity and temperature measurements of gray surfaces at ambient temperature

    NASA Astrophysics Data System (ADS)

    Araújo, António

    2016-05-01

    A multi-band pyrometry model is developed to evaluate the potential of measuring temperature and emissivity of assumably gray target surfaces at 300 K. Twelve wavelength bands between 2 and 60 μm are selected to define the spectral characteristics of the pyrometers. The pyrometers are surrounded by an enclosure with known background temperature. Multi-band pyrometry modeling results in an overdetermined system of equations, in which the solution for temperature and emissivity is obtained through an optimization procedure that minimizes the sum of the squared residuals of each system equation. The Monte Carlo technique is applied to estimate the uncertainties of temperature and emissivity, resulting from the propagation of the uncertainties of the pyrometers. Maximum reduction in temperature uncertainty is obtained from dual-band to tri-band systems, a small reduction is obtained from tri-band to quad-band, with a negligible reduction above quad-band systems (a reduction between 6.5% and 12.9% is obtained from dual-band to quad-band systems). However, increasing the number of bands does not always reduce uncertainty, and uncertainty reduction depends on the specific band arrangement, indicating the importance of choosing the most appropriate multi-band spectral arrangement if uncertainty is to be reduced. A reduction in emissivity uncertainty is achieved when the number of spectral bands is increased (a reduction between 6.3% and 12.1% is obtained from dual-band to penta-band systems). Besides, emissivity uncertainty increases for pyrometers with high wavelength spectral arrangements. Temperature and emissivity uncertainties are strongly dependent on the difference between target and background temperatures: uncertainties are low when the background temperature is far from the target temperature, tending to very high values as the background temperature approaches the target temperature.

  14. Interfacial Stresses and Strains Effect on Band-Gap Emission from Silicon

    NASA Astrophysics Data System (ADS)

    Abedrabbo, Sufian; Fiory, Anthony

    Czochralski silicon wafer materials were interfaced with silica films formed by sol-gel deposition and thermal annealing. Under optimal annealing conditions (~700 °C), stresses in the silica films induce variations in elastic strains on the order of 1% in the silicon. Concomitantly, emission of band-gap photons at 1.1 eV observed by photoluminescence is increased by two orders of magnitude relative to unperturbed silicon. The enhancement in photon emission is produced by band-gap modulations estimated as ~0.1 eV. Elastic reversibility of the strains is inferred from recovery of relatively weak photon emission for annealing above the glass reflow temperature of deposited silica films (~950 °C). Films with largest stress variations exhibit enhanced absorption signatures in the infrared and broadening of Si-O-Si stretching vibrations. Examples of Si-based photonics based on the observed effect will be presented.

  15. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  16. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  17. Characteristics of banded chorus-like emission measured by the TC-1 Double Star spacecraft

    NASA Astrophysics Data System (ADS)

    Macúšová, Eva; Santolík, Ondřej; Cornilleau-Wehrlin, Nicole; Yearby, Keith

    2013-04-01

    We present a study of the spatio-temporal characteristics of banded whistler-mode emissions. It covers the full operational period of the TC-1 spacecraft, between January 2004 and the end of September 2007. The analyzed data set has been visually selected from the onboard-analyzed time-frequency spectrograms of magnetic field fluctuations below 4 kHz measured by the STAFF/DWP wave instrument situated onboard the TC-1 spacecraft with a low inclination elliptical equatorial orbit. This orbit covers magnetic latitudes between -39o and 39o. The entire data set has been collected between L=2 and L=12. Our results show that almost all intense emissions (above a threshold of 10-5nT2Hz-1) occur at L-shells from 6 to 12 and in the MLT sector from 2 to 11 hours. This is in a good agreement with previous observations. We determine the bandwidth of the observed emission by an automatic procedure based on the measured spectra. This allows us to reliably calculate the integral amplitudes of the measured signals. The majority of the largest amplitudes of chorus-like emissions were found closer to the Earth. The other result is that the upper band chorus-like emissions (above one half of the electron cyclotron frequency) are much less intense than the lower band chorus-like emissions (below one half of the electron cyclotron frequency) and are usually observed closer to the Earth than the lower band. This work has received EU support through the FP7-Space grant agreement n 284520 for the MAARBLE collaborative research project.

  18. Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1985-01-01

    The unidentified infrared emission features (UIR bands) are attributed to a collection of partially hydrogenated, positively charged polycyclic aromatic hydrocarbons (PAHs). This assignment is based on a spectroscopic analysis of the UIR bands. Comparison of the observed interstellar 6.2 and 7.7-micron bands with the laboratory measured Raman spectrum of a collection of carbon-based particulates (auto exhaust) shows a very good agreement, supporting this identification. The infrared emission is due to relaxation from highly vibrationally and electronically excited states. The excitation is probably caused by UV photon absorption. The infrared fluorescence of one particular, highly vibrationally excited PAH (chrysene) is modeled. In this analysis the species is treated as a molecule rather than bulk material and the non-thermodynamic equilibrium nature of the emission is fully taken into account. From a comparison of the observed ratio of the 3.3 to 11.3-micron UIR bands with the model calculations, the average number of carbon atoms per molecule is estimated to be about 20. The abundance of interstellar PAHs is calculated to be about 2 x 10 to the -7th with respect to hydrogen.

  19. Field emission analysis of band bending in donor/acceptor heterojunction

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Li, Shuai; Wang, Guiwei; Zhao, Tianjiao; Zhang, Gengmin

    2016-06-01

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction. Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.

  20. Calculations of N 2 triplet states vibrational populations and band emissions in venusian dayglow

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Jain, Sonal Kumar

    2012-02-01

    A model for N 2 triplet states band emissions in the venusian dayglow has been developed for low and high solar activity conditions. Steady state photoelectron fluxes and volume excitation rates for N 2 triplet states have been calculated using the Analytical Yield Spectra (AYS) technique. Model calculated photoelectron flux is in good agreement with Pioneer Venus Orbiter-observed electron flux. Since inter-state cascading is important for the triplet states of N 2, populations of different levels of N 2 triplet states are calculated under statistical equilibrium considering direct electron impact excitation, and cascading and quenching effects. Densities of all vibrational levels of each triplet state are calculated in the model. Height-integrated overhead intensities of N 2 triplet band emissions are calculated, the values for Vegard-Kaplan (A3Σu+-X1Σg+), First Positive (B3Πg-A3Σu+), Second Positive ( C3Π u - B3Π g), and Wu-Benesch ( W3Δ u - B3Π g) bands of N 2, are 1.9 (3.2), 3 (6), 0.4 (0.8), and 0.5 (1.1) kR, respectively, for solar minimum (maximum) conditions. The intensities of the three strong Vegard-Kaplan bands (0, 5), (0, 6), and (0, 7) are 94 (160), 120 (204), and 114 (194) R, respectively, for solar minimum (maximum) conditions. Limb profiles are calculated for VK (0, 4), (0, 5), (0, 6) and (0, 7) bands. The calculated intensities on Venus are about a factor 10 higher than those on Mars. The present study provides a motivation for a search of N 2 triplet band emissions in the dayglow of Venus.

  1. COMPARATIVE THERAPEUTIC EVALUATION OF DIFFERENT TOPICALS AND NARROW BAND ULTRAVIOLET B THERAPY COMBINED WITH SYSTEMIC METHOTREXATE IN THE TREATMENT OF PALMOPLANTAR PSORIASIS

    PubMed Central

    Gupta, Sunil K; Singh, K K; Lalit, Mohan

    2011-01-01

    Background: The incidence of uncomplicated psoriasis is 1–3% in the general population. The involvement of palm and sole is seen in 7–14.5% of cases. There are different topicals and systemic therapies available for treating the case of psoriasis but none is satisfactory for longer duration. Aim: The study involved the comparative therapeutic evaluation of the different topical regimens and narrow band ultraviolet B (NB-UVB) therapy in combination with systemic methotrexate. Materials and Methods: The study was held in out-patient department of Skin, VD and Leprosy of B.R.D. Medical College, Gorakhpur, from July 2007 to December 2008. The group included 98 new cases of palmoplantar psoriasis. These cases were divided into eight groups according to the eight regimens involved in the study. The severity of psoriasis was assessed by the ESIF (erythema, scaling, induration and fissuring) score. Results: The study showed that all the regimens had significant response rates. The combination of NB-UVB with systemic methotrexate had maximum response rate (64.85±4.52%) that was statistically significant (paired “t” at 16d.f. = 33.329, P<0.001) with minimum number of recurrences after stopping the treatment. The combination of halobetasol ointment with systemic methotrexate also had significant response rate (paired “t” at 19d.f. = 13.5183, P<0.001) but had maximum number of cases with recurrence (70%) after stopping the treatment. Conclusion: These results suggest that the combination of every regimen with systemic methotrexate resulted in an early and a good improvement in the quality of life of patients suffering from psoriasis. It also shows that NB-UVB in combination with systemic methotrexate is more efficacious and has minimum recurrence rate and side effects in the treatment of palmoplantar psoriasis. PMID:21716541

  2. Effects of Narrow Band Ultraviolet B on Serum Levels of Vascular Endothelial Growth Factor and Interleukin-8 in Patients with Psoriasis.

    PubMed

    Chen, Hong-Quan; Li, Xia; Tang, Rong

    2016-01-01

    The aim of this study was to investigate the effects of narrow band ultraviolet B (NB-UVB) therapy on serum levels of vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) in patients with psoriasis. Relevant Chinese and English scientific literature databases were searched to identify studies published before November, 2013 that included serum VEGF and IL-8 levels in patients with psoriasis. The studies retrieved from database searches were screened on the basis of predefined selection criteria, and data from finally selected studies were extracted for meta-analysis. Analyses were conducted using STATA 12.0 software. Our systematic search resulted in retrieval of 700 studies (500 studies in Chinese, 200 studies in English), and after a multistep screening process, 13 studies met the inclusion criteria and were enrolled for meta-analysis. The 13 studies contained a combined total of 400 patients with psoriasis and 221 healthy controls. The results of meta-analysis revealed that healthy controls exhibited significantly lower serum level of VEGF, compared to patients with psoriasis before therapy. After NB-UVB, VEGF levels were significantly decreased in patients with psoriasis, as compared to their pretherapy VEGF levels. Although no statistically significant differences were detected in IL-8 serum levels between patients with psoriasis and healthy controls before therapy, after NB-UVB therapy, the serum IL-8 levels in patients with psoriasis were markedly decreased. Corresponding reductions in the psoriasis area and severity index scores of patients with psoriasis were observed after NB-UVB treatment. Our results revealed that NB-UVB therapy significantly decreased the serum levels of VEGF and IL-8 in patients with psoriasis. Furthermore, VEGF and IL-8 levels correlated with disease status, indicating that they are sensitive biomarkers for evaluating the effectiveness of psoriasis therapy. PMID:26308328

  3. Local corticosterone activation by 11β-hydroxysteroid dehydrogenase 1 in keratinocytes: the role in narrow-band UVB-induced dermatitis

    PubMed Central

    Itoi-Ochi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2016-01-01

    ABSTRACT Keratinocytes are known to synthesize cortisol through activation of the enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). To confirm the function of 11β-HSD1 in keratinocytes during inflammation in vivo, we created keratinocyte-specific-11β-HSD1 knockout mice (K5-Hsd11b1-KO mice) and analyzed the response to narrow-band ultraviolet B (NB-UVB) irradiation. Firstly, we measured the mRNA and protein levels of 11β-HSD1 following NB-UVB irradiation and found that the expression of 11β-HSD1 in keratinocytes of mouse ear skin was enhanced at 3 and 24 hours after 250 mJ/cm2, 500 mJ/cm2, 1 J/cm2, and 2 J/cm2 NB-UVB irradiation. Next, we determined that 24 hours after exposure to 1 J/cm2 NB-UVB irradiation, the numbers of F4/80-, CD45-, and Gr-1-positive cells were increased in K5-Hsd11b1-KO mice compared to wild type (WT) mice. Furthermore, the expression of the chemokine (C-X-C-motif) ligand 1 (CXCL1) and interleukin (IL)-6 was also significantly enhanced in NB-UVB-irradiated K5-Hsd11b1-KO mice compared with WT mice. In addition, activation of nuclear factor-kappa B (NF-κB) after NB-UVB irradiation was enhanced in K5-Hsd11b1-KO mice compared to that in WT mice. Thus, NB-UVB-induced inflammation is augmented in K5-Hsd11b1-KO mice compared with WT mice. These results indicate that 11β-HSD1 may suppress NB-UVB-induced inflammation via inhibition of NF-κB activation. PMID:27195053

  4. Diagnosis of small intramucosal signet ring cell carcinoma of the stomach by non-magnifying narrow-band imaging: A pilot study

    PubMed Central

    Watari, Jiro; Tomita, Toshihiko; Ikehara, Hisatomo; Taki, Masato; Ogawa, Tomohiro; Yamasaki, Takahisa; Kondo, Takashi; Toyoshima, Fumihiko; Sakurai, Jun; Kono, Tomoaki; Tozawa, Katsuyuki; Ohda, Yoshio; Oshima, Tadayuki; Fukui, Hirokazu; Hirota, Seiichi; Miwa, Hiroto

    2015-01-01

    AIM: To examine the efficacy of non-magnifying narrow-band imaging (NM-NBI) imaging for small signet ring cell carcinoma (SRC). METHODS: We retrospectively analyzed 14 consecutive small intramucosal SRCs that had been treated with endoscopic submucosal dissection (ESD) and 14 randomly selected whitish gastric ulcer scars (control). The strength and shape of the SRCs and whitish scars by NM-NBI and white-light imaging (WLI) were assessed with Image J (NIH, Bethesda). RESULTS: NM-NBI findings of SRC showed a clearly isolated whitish area amid the brown color of the surrounding normal mucosa. The NBI index, which indicates the potency of NBI for visualizing SRC, was significantly higher than the WLI index (P = 0.001), indicating SRC was more clearly identified by NM-NBI. Although the NBI index was not significantly different between SRCs and controls, the circle (C)-index, as an index of circularity of tumor shape, was significantly higher in SRCs (P = 0.001). According to the receiver-operating characteristic analysis, the resulting cut-off value of the circularity index (C-index) for SRC was 0.60 (85.7% sensitivity, 85.7% specificity). Thus a lesion with a C-index ≥ 0.6 was significantly more likely to be an SRC than a gastric ulcer scar (OR = 36.0; 95%CI: 4.33-299.09; P = 0.0009). CONCLUSION: Small isolated whitish round area by NM-NBI endoscopy is a useful finding of SRCs which is the indication for ESD. PMID:26380053

  5. Of narrow lines and beaming in the strong-field SSC emission model. [synchrotron self-Compton for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Preece, Robert D.

    1992-01-01

    The synchrotron self-Compton (SSC) emission model for gamma-ray bursts is capable of producing narrow line features for a variety of modelled field strengths, primary electron injection distributions and burst luminosities. Multiple resonant scattering with synchrotron continuum photons efficiently traps and cools pairs in the ground state to an average energy where the Compton energy loss rate is zero. Annihilation between pairs in these cooled distributions can be very efficient. For isotropic injection of primary electrons, there is an anti-correlation of the intensity of the angular-binned emission between the portions of the continuum spectrum below the cyclotron peak and above the annihilation line feature. Small-angle emission dominates the continuum above the annihilation line feature and is smooth through the line up to the pair production cut-off, which can be above several MeV for small enough angles. The angle-averaged annihilation line is made of components which can have peak emission centered at energies away from 511 keV, due to Doppler shifting. For beamed injection,the annihilation line breaks up into relatively narrow components in the angular emission, which sum into a broad feature in the angle-averaged emission.

  6. Dayglow emissions of the O2 Herzberg bands and the Rayleigh backscattered spectrum of the earth

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Abrams, R. B.

    1982-01-01

    It is pointed out that numerous fluorescent emissions from the Herzberg bands of molecular oxygen lie in the spectral region 242-300 nm. This coincides with the wavelength range used by orbiting spectrometers that observe the Rayleigh backscattered spectrum of the earth for the purpose of monitoring the vertical distribution of stratospheric ozone. Model calculations suggest that Herzberg band emissions in the dayglow could provide significant contamination of the ozone measurements if the quenching rate of O2(A3Sigma) is sufficiently small. It is noted that this is especially true near 255 nm, where the most intense fluorescent emissions relative to the Rayleigh scattered signal are located and where past satellite measurements have shown a persistent excess radiance above that expected for a pure ozone absorbing and molecular scattering atmosphere. Very small quenching rates, however, are adequate to reduce the dayglow emission to negligible levels. Noting that available laboratory data have not definitely established the quenching on the rate of O2(A3Sigma) as a function of vibration level, it is emphasized that such information is required before the Herzberg band contributions can be evaluated with confidence.

  7. Modeled and observed N2 Lyman-Birge-Hopfield band emissions: A comparison

    NASA Astrophysics Data System (ADS)

    Eastes, R. W.; Murray, D. J.; Aksnes, A.; Budzien, S. A.; Daniell, R. E.; Krywonos, A.

    2011-12-01

    A thorough understanding of how the N2 Lyman-Birge-Hopfield (LBH) band emissions vary with altitude is essential to the use of this emission by space-based remote sensors. In this paper, model-to-model comparisons are first performed to elucidate the influence of the solar irradiance spectrum, intrasystem cascade excitation, and O2 photoabsorption on the limb profile. Next, the observed LBH emissions measured by the High resolution Ionospheric and Thermospheric Spectrograph aboard the Advanced Research and Global Observation Satellite are compared with modeled LBH limb profiles to determine which combination of parameters provides the best agreement. The analysis concentrates on the altitude dependence of the LBH (1,1) band, the brightest LBH emission in the observations. In the analysis, satellite drag data are used to constrain the neutral densities used for the data-to-model comparisons. For the average limb profiles on two of the three days analyzed (28, 29, and 30 July 2001), calculations using direct excitation alone give slightly better agreement with the observations than did calculations with cascading between the singlet electronic N2 states (a1Πg, a‧Σ-u, and w1Δu) however, the differences between the observed profiles and either model are possibly greater than the differences between the models. Nevertheless, both models give excellent agreement with the observations, indicating that current models provide an adequate description of the altitude variation of the N2 LBH (1,1) band emissions. Consequently, when using the LBH bands to remotely sense thermospheric temperatures, which can be used to provide an unprecedented view of the thermosphere, the temperatures derived have a negligible dependence on the model used.

  8. Review of Terra MODIS thermal emissive band L1B radiometric performance

    NASA Astrophysics Data System (ADS)

    Moeller, Chris; Menzel, W. P.; Quinn, Greg

    2014-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) on NASA's Earth Observing System Terra satellite, launched into orbit on 18 December 1999, will have a "first light" 15th anniversary on 24 February 2015. For nearly 15 years the MODIS instrument has provided radiances in all spectral bands. Though some detectors have fallen below SNR thresholds, the vast majority of spectral bands continue to provide high quality L1B measurements for use in L2 science algorithms supporting global climate research. Radiometric accuracy of the Terra MODIS thermal emissive bands (TEBs) in the C6 L1B product has been assessed using various approaches over the nearly 15 year Terra MODIS data record, including comparisons with instruments on the ground, in aircraft under-flights, and on other satellites. All of these approaches contribute to the understanding of the Terra MODIS radiometric L1B performance. Early in the lifetime of Terra, ground-based measurements and NASA ER-2 aircraft under-flights revealed that TEBs in the infrared window ("window" bands) are well calibrated and performing within accuracy specifications. The ER-2 under-flights also suggested that many atmospheric bands may be performing outside of specification, especially LWIR CO2 sensitive bands that are subject to optical crosstalk, although analysis uncertainties are larger for atmospheric bands. Beginning in 2007, MetOp-A IASI observations were used to evaluate Terra MODIS TEB performance through Simultaneous Nadir Overpass (SNO) comparisons. These inter-satellite comparisons largely affirm the early aircraft and ground-based evaluations, showing that all Terra MODIS window bands have small biases, minimal trending, and minor detector and mirror side striping over the 2007-2013 timeframe. Most atmospheric bands are performing satisfactorily near to specification; however, biases, striping and trending are large and significantly out of specification in the water vapor sensitive band 27 and ozone sensitive

  9. High brightness field emission from printed carbon nanotubes in an S-band microwave gun

    NASA Astrophysics Data System (ADS)

    Wang, Qilong; Li, Xiangkun; Di, Yusong; Yu, Cairu; Zhang, Xiaobing; Li, Ming; Lei, Wei

    2016-02-01

    Printed carbon nanotubes (CNTs) were applied as cold cathode and placed into an S-band microwave gun operating at 2856 MHz with the pulse duration of 2.8 μs. High brightness field emission was demonstrated and the current density achieves the value more than 4.2 A/cm2. The emittance of field emission beam is calculated to be nearly 21 μm based on the beam profile of emission electrons monitored via yttrium aluminum garnet screen. The infrared image of printed CNTs confirms that the emitters in the center contributed more electrons and the heat generated during the large current density field emission. The results in the paper imply that randomly distributed printed CNTs have the potential to be applied as the high brightness electron sources for free electron lasers.

  10. VIIRS thermal emissive bands on-orbit calibration coefficient performance using vicarious calibration results

    NASA Astrophysics Data System (ADS)

    Moyer, D.; Moeller, C.; De Luccia, F.

    2013-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS), a primary sensor on-board the Suomi-National Polar-orbiting Partnership (SNPP) spacecraft, was launched October 28, 2011. It has 22 bands: 7 thermal emissive bands (TEBs), 14 reflective solar bands (RSBs) and a Day Night Band (DNB). The TEBs cover the spectral wavelengths between 3.7 to 12 μm and have two 371 m and five 742 m spatial resolution bands. A VIIRS Key Performance Parameter (KPP) is the sea surface temperature (SST) which uses bands M12 (3.7 μm), M15 (10.8 μm) and M16's (12.0 μm) calibrated Science Data Records (SDRs). The TEB SDRs rely on pre-launch calibration coefficients used in a quadratic algorithm to convert the detector's response to calibrated radiance. This paper will evaluate the performance of these prelaunch calibration coefficients using vicarious calibration information from the Cross-track Infrared Sounder (CrIS) also onboard the SNPP spacecraft and the Infrared Atmospheric Sounding Interferometer (IASI) on-board the Meteorological Operational (MetOp) satellite. Changes to the pre-launch calibration coefficients' offset term c0 to improve the SDR's performance at cold scene temperatures will also be discussed.

  11. The influence of deformation bands upon fluid flow using profile permeametry and positron emission tomography

    NASA Astrophysics Data System (ADS)

    Ogilvie, S. R.; Orribo, J. M.; Glover, P. W. J.

    Cataclastic deformation bands are significant discontinuities in sandstone reservoirs since they have dramatically reduced porosity and permeability relative to their host rock, despite their mm-scale displacements. Consequently, these discontinuities often have a large impact upon the flow of fluids at both micro and macro-scales. The effect of this impact in highly porous sandstone has been analyzed using a range of novel and conventional techniques, including pressure decay profile permeametry (PDPK) and positron emission tomography (PET). There are greater reductions in PDPK permeability in deformation bands relative to their host rock compared to conventional nitrogen permeametry measurements. This apparent discrepancy is the outcome of the higher spatial resolution of PDPK technique in measurements of much smaller rock volumes. There are greater porosity reductions using image analysis than conventional core techniques. These changes are reflected in a significant increase in irreducible water saturations (Swi) in deformation bands indicating much reduced fluid storage capacities. PET was used to monitor fluid flow as a function of pore volume of a sandstone plug containing deformation bands, demonstrating the direct effect of deformation bands as a potential barrier to fluid flow. The results of this study provide a detailed characterization of deformation bands at high resolution, which can be included in advanced reservoir simulation models.

  12. GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM THE DENSE HOT JUPITER WASP-43b IN THE H AND K{sub s} BANDS

    SciTech Connect

    Wang, W.; Zhao, G.; Van Boekel, R.; Henning, Th.; Madhusudhan, N.; Chen, G.

    2013-06-10

    We report new detections of thermal emission from the transiting hot Jupiter WASP-43b in the H and K{sub s} bands as observed at secondary eclipses. The observations were made with the WIRCam instrument on the Canada-France-Hawaii Telescope. We obtained a secondary eclipse depth of 0.103{sub -0.017}{sup +0.017}%$ and 0.194{sub -0.029}{sup +0.029} in the H and K{sub s} bands, respectively. The K{sub s}-band depth is consistent with the previous measurement in the narrow band centered at 2.09 {mu}m by Gillon et al. Our eclipse depths in both bands are consistent with a blackbody spectrum with a temperature of {approx}1850 K, slightly higher than the dayside equilibrium temperature without day-night energy redistribution. Based on theoretical models of the dayside atmosphere of WASP-43b, our data constrain the day-night energy redistribution in the planet to be {approx}< 15%-25%, depending on the metal content in the atmosphere. Combined with energy balance arguments, our data suggest that a strong temperature inversion is unlikely in the dayside atmosphere of WASP-43b. However, a weak inversion cannot be strictly ruled out at the current time. Future observations are required to place detailed constraints on the chemical composition of the atmosphere.

  13. Nitric oxide delta band emission in the earth's atmosphere - Comparison of a measurement and a theory

    NASA Technical Reports Server (NTRS)

    Rusch, D. W.; Sharp, W. E.

    1981-01-01

    Attention is given to the altitude dependent emission rate in the delta-bands of nitric oxide as measured in the earth's atmosphere at night by a scanning ultraviolet spectrometer. It is noted that the reaction responsible is the two-body association of nitrogen and oxygen atoms. The measurements show a vertical intensity beneath the layer for the delta-band system of 19 R. The horizontal emission rate is found to increase from 70 R at 117 km to 140 R at 150 km. The data are analyzed with a one-dimensional, time-dependent, vertical-transport model of odd nitrogen photochemistry. The calculated and measured intensities agree so long as the quenching of N(2D) by atomic oxygen is near 5 x 10 to the -13 cu cm/sec.

  14. L to X-band scatter and emission measurements of vegetation

    NASA Astrophysics Data System (ADS)

    Hueppi, R.; Schanda, E.

    1986-08-01

    A broad-band H and V polarization radiometer was combined with a noise transmitter to an instrument for measuring active and passive microwave signatures at seven frequencies between L and X band. This radiometer-scatterometer is operated from a cherry picker over agricultural fields. During the growing seasons the development of sugar-beet, wheat, and corn was measured. The geometrical structure of the vegetation cover was described by recording the crop type, the distances between the plants, and the canopy height. The soil underneath was characterized by moisture, temperature profile, and dielectric constant. Another variable was the seasonal change in water content of the plants. Relating these parameters to the microwave signatures reveals the interaction of scatter and emission processes between soil and vegetation. Significant differences of the emission and scattering behavior for the measured crops are found.

  15. Anomalous Series of Bands in the Edge Emission Spectra of CdS(О)

    NASA Astrophysics Data System (ADS)

    Morozova, N. K.; Kanakhin, A. A.; Galstyan, V. G.; Shnitnikov, A. S.

    2015-02-01

    The region of the edge emission spectrum of CdS(O) single crystals with cadmium excess is examined. An anomalous series of equidistant bands with leading line at 514 nm and phonon replicas has been revealed. These bands grow in intensity with increase of the excitation density up to 1026-1027 cm-3ṡs-1 at 80 K, and the leading line of the series is observed even at 300 K. It is shown that luminescence is conditioned by the exciton spectrum in perfect bulk single-crystals of CdO. Some characteristics of this spectrum are presented, in particular, the dependence on temperature, excitation intensity, composition and size of the crystals, and the LO interaction. The results experimentally confirm the theoretically calculated magnitude of the direct band gap of CdO.

  16. Photoconvertible Behavior of LSSmOrange Applicable for Single Emission Band Optical Highlighting.

    PubMed

    De Keersmaecker, Herlinde; Fron, Eduard; Rocha, Susana; Kogure, Takako; Miyawaki, Atsushi; Hofkens, Johan; Mizuno, Hideaki

    2016-09-01

    Photoswitchable fluorescent proteins are capable of changing their spectral properties upon light irradiation, thus allowing one to follow a chosen subpopulation of molecules in a biological system. Recently, we revealed a photoinduced absorption band shift of LSSmOrange, which was originally engineered to have a large energy gap between excitation and emission bands. Here, we evaluated the performance of LSSmOrange as a fluorescent tracer in living cells. The absorption maximum of LSSmOrange in HeLa cells shifted from 437 nm to 553 nm upon illumination with a 405-, 445-, 458-, or 488-nm laser on a laser-scanning microscope, whereas the emission band remained same (∼570 nm). LSSmOrange behaves as a freely diffusing protein in living cells, enabling the use of the protein as a fluorescence tag for studies of protein dynamics. By targeting LSSmOrange in mitochondria, we observed an exchange of soluble molecules between the matrices upon mitochondrial fusion. Since converted and unconverted LSSmOrange proteins have similar emission spectra, this tracer offers unique possibilities for multicolor imaging. The fluorescence emission from LSSmOrange was spectrally distinguishable from that of eYFP and mRFP, and could be separated completely by applying linear unmixing. Furthermore, by using a femtosecond laser at 850 nm, we showed that a two-photon process could evoke a light-induced red shift of the absorption band of LSSmOrange, providing a strict confinement of the conversion volume in a three-dimensional space. PMID:27602729

  17. Electron emission from conduction band of heavily phosphorus doped diamond negative electron affinity surface

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Masuzawa, Tomoaki; Mimura, Hidenori; Okano, Ken

    2016-02-01

    Hydrogen (H)-terminated surfaces of diamond have attracted significant attention due to their negative electron affinity (NEA), suggesting high-efficiency electron emitters. Combined with n-type doping technique using phosphorus (P) as donors, the unique NEA surface makes diamond a promising candidate for vacuum cold-cathode applications. However, high-electric fields are needed for the electron emission from the n-type doped diamond with NEA. Here we have clarified the electron emission mechanism of field emission from P-doped diamond having NEA utilizing combined ultraviolet photoelectron spectroscopy/field emission spectroscopy (UPS/FES). An UP spectrum has confirmed the NEA of H-terminated (1 1 1) surface of P-doped diamond. Despite the NEA, electron emission occurs only when electric field at the surface exceeds 4.2  ×  106 V cm-1. Further analysis by UPS/FES has revealed that the emitted energy level is shifted, indicating that the electron emission mechanism of n-type diamond having NEA surface does not follow a standard field emission theory, but is dominated by potential barrier formed within the diamond due to upward band bending. The reduction of internal barrier is the key to achieve high-efficiency electron emitters using P-doped diamond with NEA, of which application ranges from high-resolution electron spectroscopy to novel vacuum nanoelectronics devices.

  18. Deep Narrow-Band Imaging of M87: a Close Look at the Disk of Ionized Gas Fueling a Massive Black Hole

    NASA Astrophysics Data System (ADS)

    Ford, Holland

    1995-07-01

    M87 provides a unique example of a 100 pc scale disk of ionized gasfueling a massive black hole (Ford et al. 1994, Harms et al. 1994).The disk shows tantalizing evidence for spiral structure and a possibleconnection to large scale, wrapped filaments. Sparks, Ford, and Kinney(1993) used observations of dust absorption in the filaments andblueshifted velocities with respect to M87 to conclude that thefilaments are an outflow from the nucleus. If the wrapped filamentsare in fact an outflow, we are witnessing the solution to anoutstanding problem in astrophysics, that of removing angular momentumfrom a disk to allow the gas to flow onto the central massive black hole.We propose to use 6 orbits to take deep, half-pixel stepped,Halpha+[Nii] on-band images to study the morphology in the disk andfilaments. The images will be one magnitude deeper than previousimages and will reach the 0.06'' diffraction limit of the telescopeat Halpha. Our goals are to use the deep, high resolution images to:1) Investigate and understand the apparent connection between thefilaments and the disk.2) Delineate the apparent spiral structure in the disk.3) Confirm the presence of faint Halpha+[Nii] emission associated withthe jet, which could be gas which has been entrained by the jet.

  19. A large narrow-band Hα survey at z˜ 0.2: the bright end of the luminosity function, cosmic variance and clustering across cosmic time

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Sobral, David

    2015-10-01

    We have carried out the largest (>3.5 × 105 Mpc3, 26 deg2) Hα narrow-band survey to date at z ˜ 0.2 in the SA22, W2 and XMMLSS extragalactic fields. Our survey covers a large enough volume to overcome cosmic variance and to sample bright and rare Hα emitters up to an observed luminosity of ˜1042.4 erg s-1, equivalent to ˜11 M⊙ yr-1. Using our sample of 220 sources brighter than >1041.4 erg s-1 (>1 M⊙ yr-1), we derive Hα luminosity functions, which are well described by a Schechter function with φ★ = 10-2.85 ± 0.03 Mpc-3 and L^*_Hα = 10^{41.71± 0.02} erg s-1 (with a fixed faint end slope α = -1.35). We find that surveys probing smaller volumes (˜3 × 104 Mpc3) are heavily affected by cosmic variance, which can lead to errors of over 100 per cent in the characteristic density and luminosity of the Hα luminosity function. We derive a star formation rate density of ρSFRD = 0.0094 ± 0.0008 M⊙ yr-1, in agreement with the redshift-dependent Hα parametrization from Sobral et al. The two-point correlation function is described by a single power law ω(θ) = (0.159 ± 0.012)θ(-0.75 ± 0.05), corresponding to a clustering length of r0 = 3.3 ± 0.8 Mpc h-1. We find that the most luminous Hα emitters at z ˜ 0.2 are more strongly clustered than the relatively fainter ones. The L^*_Hα Hα emitters at z ˜ 0.2 in our sample reside in ˜1012.5-13.5 M⊙ dark matter haloes. This implies that the most star-forming galaxies always reside in relatively massive haloes or group-like environments and that the typical host halo mass of star-forming galaxies is independent of redshift if scaled by L_Hα /L^*_Hα (z), as proposed by Sobral et al.

  20. Real-Time Characterization of Diminutive Colorectal Polyp Histology Using Narrow-Band Imaging: Implications for the Resect and Discard Strategy

    PubMed Central

    Patel, Swati G.; Schoenfeld, Philip; Kim, Hyungjin Myra; Ward, Emily K.; Bansal, Ajay; Kim, Yeonil; Hosford, Lindsay; Myers, Aimee; Foster, Stephanie; Craft, Jenna; Shopinski, Samuel; Wilson, Robert H.; Ahnen, Dennis J.; Rastogi, Amit; Wani, Sachin

    2016-01-01

    BACKGROUND & AIMS Narrow-band imaging (NBI) allows real-time histologic classification of colorectal polyps. We investigated whether endoscopists without prior training in NBI can achieve the following thresholds recommended by the American Society for Gastrointestinal Endoscopy: for diminutive colorectal polyps characterized with high confidence, a ≥90% negative predictive value for adenomas in the rectosigmoid and a ≥90% agreement in surveillance intervals. METHODS Twenty-six endoscopists from 2 tertiary care centers underwent standardized training in NBI interpretation. Endoscopists made real-time predictions of diminutive colorectal polyp histology and surveillance interval predictions based on NBI. Their performance was evaluated by comparing predicted with actual findings from histologic analysis. Multilevel logistic regression was used to assess predictors of performance. Cumulative summation analysis was used to characterize learning curves. RESULTS The endoscopists performed 1451 colonoscopies and made 3012 diminutive polyp predictions (74.3% high confidence) using NBI. They made 898 immediate post-procedure surveillance interval predictions. An additional 505 surveillance intervals were determined with histology input. The overall negative predictive value for high-confidence characterizations in the rectosigmoid was 94.7% (95% confidence interval: 92.6%–96.8%) and the surveillance interval agreement was 91.2% (95% confidence interval: 89.7%–92.7%). Overall, 97.0% of surveillance interval predictions would have brought patients back on time or early. High-confidence characterization was the strongest predictor of accuracy (odds ratio = 3.42; 95% confidence interval: 2.72–4.29; P < .001). Performance improved over time, however, according to cumulative summation analysis, only 7 participants (26.9%) identified adenomas with sufficient sensitivity such that further auditing is not required. CONCLUSIONS With standardized training

  1. Bandwidths and amplitudes of chorus-like banded emissions measured by the TC-1 Double Star spacecraft

    NASA Astrophysics Data System (ADS)

    Macúšová, E.; Santolík, O.; Cornilleau-Wehrlin, N.; Yearby, K. H.

    2015-02-01

    Characteristics of banded whistler-mode emissions are derived from a database of chorus-like events obtained from the complete data set of the wave measurements provided by the Spatio-Temporal Analysis of Field Fluctuation-Digital Wave Processing (STAFF-DWP) wave instrument on board the TC-1 Double Star spacecraft. Our study covers the full operational period of this spacecraft (almost 4 years). Our entire data set has been collected within 30° of geomagnetic latitude at L shells between 2 and 12 and below 4 kHz. All events have been processed automatically to accurately determine their power spectral density (PSD), bandwidth, and amplitude. We found most cases of chorus-like banded emissions at L≤10 on the dawnside and dayside. The upper band emissions (above one half of the equatorial electron cyclotron frequency) occur almost 20 times less often than the lower band, and their average amplitude is almost 3 times smaller than for the lower band. Intense upper band emissions cover smaller L shell, magnetic local time (MLT), and magnetic latitudes regions than intense lower band emissions. The intense nightside and dawnside chorus-like banded emissions were observed at low magnetic latitudes, while the intense dayside and duskside emissions were mostly found at higher magnetic latitudes. The amplitudes of dayside lower band waves slightly increase as they propagate away from the geomagnetic equator and are smaller than chorus amplitudes on nightside and dawnside. The PSD, the amplitude of the lower band, its frequency bandwidth, and its occurrence rate significantly increase with increasing geomagnetic activity, while all these parameters for the upper band are not so strongly dependent on the geomagnetic activity.

  2. Excitation temperatures determined from H{sup +}{sub 3} hot band emission in the Jovian ionosphere

    SciTech Connect

    Jagod, M.F.; Oka, T.; Geballe, T.R.

    1996-12-31

    Since the observation of the 3.544 {mu}m 2v{sup 0}{sub 2} {r_arrow} v{sub 2} (J = 9, K = 9 {r_arrow} J = 8, G = 9, U = 1) hot band transition of H{sup +}{sub 3} in the polar regions of Jupiter, the authors have pursued the simultaneous detection of additional hot band transitions with fundamental band transitions in order to derive well determined H+ excitation temperatures. The authors report 9 additional resolved 2{nu}{sub 2}{sup 2} {r_arrow} {nu}{sub 2} and {nu}{sub 1} + {nu}{sub 2} {r_arrow} {nu}{sub 1} hot band transitions observed in emission at 3.52, 3.63, 3.66, and 3.84 {mu}m. The hot band transitions have thus far only been detected in the polar regions, with the occasional exception being the 3.544 {mu}m 2{nu}{sup 0}{sub 2} {r_arrow} {nu}{sub 2} transition around 45{degrees}S latitude during the 1994 Comet Shoemaker Levy-9 encounter. Temporal and spatial variation of the excitation temperatures as well as their dependence on vibrational mode will be presented. Anomalous line intensities, e.g. {sup r}R(3,3){sup -b} will also be discussed. All observations were made with the CGS4 spectrometer at the United Kingdom Infrared Telescope on Mauna Kea, Hawaii.

  3. Epitaxy, phase separation and band-edge emission of spontaneously formed InGaN nanorods

    NASA Astrophysics Data System (ADS)

    De, Arpan; Shivaprasad, S. M.

    2016-09-01

    An In-flux dependent study of the nature of epitaxy, compositional phase separation and band-edge emission of spontaneously formed c-oriented InGaN nanorods on c-sapphire is performed. At higher In flux-rates, m-faceted thick nanorods (≈700 nm) form with two in-plane epitaxial orientations, and display compositional phases with In composition varying from 14 to 63%. In these rods, photo-luminescent (PL) emission is seen to originate only from the localized high-In phase (63%) that is embedded in the low-In (14%) InGaN matrix. As the In flux-rate is reduced, nanorods of smaller diameter (≈60 nm) and a coalesced nanorod network are formed, with In incorporation of 15% and 9%, respectively. These faceted, c-aligned thinner nanorods are of a single compositional phase and epitaxy and display room-temperature PL emission. Optical absorption and emission properties of these nanostructures follow Vegard’s law of band-gaps, and the observed bowing parameter and Stokes shifts correlate to the observed compositional inhomogeneity and carrier localization.

  4. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    NASA Astrophysics Data System (ADS)

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-01

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  5. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    SciTech Connect

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-28

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  6. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices

    NASA Astrophysics Data System (ADS)

    Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M. L.; Zarco-Tejada, P. J.

    2012-07-01

    This paper deals with the monitoring of water status and the assessment of the effect of stress on citrus fruit quality using structural and physiological remote sensing indices. Four flights were conducted over a citrus orchard in 2009 using an unmanned aerial vehicle (UAV) carrying a multispectral camera with six narrow spectral bands in the visible and near infrared. Physiological indices such as the Photochemical Reflectance Index (PRI570), a new structurally robust PRI formulation that uses the 515 nm as the reference band (PRI515), and a chlorophyll ratio (R700/R670) were compared against the Normalized Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI) and Modified Triangular Vegetation Index (MTVI) canopy structural indices for their performance in tracking water status and the effects of sustained water stress on fruit quality at harvest. The irrigation setup in the commercial orchard was compared against a treatment scheduled to satisfy full requirements (based on estimated crop evapotranspiration) using two regulated deficit irrigation (RDI) strategies. The water status of the trees throughout the experiment was monitored with frequent field measurements of stem water potential (Ψx), while titratable acidity (TA) and total soluble solids (TSS) were measured at harvest on selected trees from each irrigation treatment. The high spatial resolution of the multispectral imagery (30 cm pixel size) enabled identification of pure tree crown components, extracting the tree reflectance from shaded, sunlit and aggregated pixels. The physiological and structural indices were then calculated from each tree at the following levels: (i) pure sunlit tree crown, (ii) entire crown, aggregating the within-crown shadows, and (iii) simulating a lower resolution pixel, including tree crown, sunlit and shaded soil pixels. The resulting analysis demonstrated that both PRI formulations were able to track water status, except when water stress

  7. The microwave emission and transmission characters of deciduous forest at L-band

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongjun; Yuan, Yu; Zheng, Xingming; Zhu, Xiaoming; Fu, Xiuli

    2014-11-01

    Forest covers about 30% of earth surface, which plays an important role in global forecast and carbon cycle. Monitoring forest biomass, and retrieving soil moisture at forest area, are the main goals of most passive microwave sensors on satellite missions. L-band is the most sensitive frequency among all the frequencies due to its good penetration ability. Because of its variety of the size of scattering components, the complicated structures and species of forest, it is difficult to describe the scattering and attenuation characters of forest in modeling microwave emission at forest area. In this paper, we studied the emissivity and transmissivity of deciduous forest at L(1.4GHz) by model simulation and field experiment. The microwave emission model was based on Matrix-Doubling algorithm. The comparison between simulated emissivity and measured data collected during an experiment at Maryland, USA in 2007 was good. Since theoretical model like Matrix-Doubling is too complicated to be used in retrial application, we mapped the results of Matrix-Doubling to a simple 0th-order model, also called ω-τ model, by setting the simulated emissivity to be the emissivity of 0th-order model at the same environment, which 2 unknown variables---opacity τ and effective single scattering albedo ω need to be determined. To valited τ (transmissivity of forest) simulated by Matrix-Doubling, we took an deciduous forest experiment by an L band microwave radiometer under trees at JingYueTan area, Changchun, Jilin Province in April to June in 2014. Thus the ω of forest can be determined. The matching results are presented in this paper. The relationship between LAI and forest microwave characters are discussed.

  8. Successful treatment with narrow-band UVB therapy for a case of generalized Hailey-Hailey disease with a novel splice-site mutation in ATP2C1 gene.

    PubMed

    Mizuno, Kana; Hamada, Takahiro; Hashimoto, Takashi; Okamoto, Hiroyuki

    2014-01-01

    Hailey-Hailey disease (HHD) is a rare autosomal dominant disorder characterized by development of recurrent blisters, erosions, and crustations in the intertriginous areas. The treatment of HHD is often challenging, and various methods have been tried. We report here a case of a 45-year-old woman with a generalized form of HHD that was dramatically improved and well controlled by narrow-band ultraviolet B phototherapy. PMID:24962025

  9. Multiyear On-orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Kwo-Fu; Wu, Aisheng; Barnes, William; Guenther, Bruce; Salomonson, Vincent

    2007-01-01

    Since launch in December 1999, Terra MODIS has been making continuous Earth observations for more than seven years. It has produced a broad range of land, ocean, and atmospheric science data products for improvements in studies of global climate and environmental change. Among its 36 spectral bands, there are 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS thermal emissive bands cover the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions with wavelengths from 3.7 to 14.4pm. They are calibrated on-orbit using an on-board blackbody (BB) with its temperature measured by a set of thermistors on a scan-by-scan basis. This paper will provide a brief overview of MODIS TEB calibration and characterization methodologies and illustrate on-board BB functions and TEB performance over more than seven years of on-orbit operation and calibration. Discussions will be focused on TEB detector short-term stability and noise characterization, and changes in long-term response (or system gain). Results show that Terra MODIS BB operation has been extremely stable since launch. When operated at its nominal controlled temperature of 290K, the BB temperature variation is typically less than +0.30mK on a scan-by-scan basis and there has been no time-dependent temperature drift. In addition to excellent short-term stability, most TEB detectors continue to meet or exceed their specified noise characterization requirements, thus enabling calibration accuracy and science data product quality to be maintained. Excluding the noisy detectors identified pre-launch and those that occurred post-launch, the changes in TEB responses have been less than 0.7% on an annual basis. The optical leak corrections applied to bands 32-36 have been effective and stable over the entire mission

  10. The average GeV-band emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Lange, J.; Pohl, M.

    2013-03-01

    Aims: We analyze the emission in the 0.3-30 GeV energy range of gamma-ray bursts detected with the Fermi Gamma-ray Space Telescope. We concentrate on bursts that were previously only detected with the Gamma-Ray Burst Monitor in the keV energy range. These bursts will then be compared to the bursts that were individually detected with the Large Area Telescope at higher energies. Methods: To estimate the emission of faint GRBs we used nonstandard analysis methods and sum over many GRBs to find an average signal that is significantly above background level. We used a subsample of 99 GRBs listed in the Burst Catalog from the first two years of observation. Results: Although most are not individually detectable, the bursts not detected by the Large Area Telescope on average emit a significant flux in the energy range from 0.3 GeV to 30 GeV, but their cumulative energy fluence is only 8% of that of all GRBs. Likewise, the GeV-to-MeV flux ratio is less and the GeV-band spectra are softer. We confirm that the GeV-band emission lasts much longer than the emission found in the keV energy range. The average allsky energy flux from GRBs in the GeV band is 6.4 × 10-4 erg cm-2 yr-1 or only ~4% of the energy flux of cosmic rays above the ankle at 1018.6 eV.

  11. EXAMINING THE BROADBAND EMISSION SPECTRUM OF WASP-19b: A NEW z-BAND ECLIPSE DETECTION

    SciTech Connect

    Zhou, George; Bayliss, Daniel D. R.; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2013-09-10

    WASP-19b is one of the most irradiated hot-Jupiters known. Its secondary eclipse is the deepest of all transiting planets and has been measured in multiple optical and infrared bands. We obtained a z-band eclipse observation with a measured depth of 0.080% {+-} 0.029%, using the 2 m Faulkes Telescope South, which is consistent with the results of previous observations. We combined our measurement of the z-band eclipse with previous observations to explore atmosphere models of WASP-19b that are consistent with its broadband spectrum. We use the VSTAR radiative transfer code to examine the effect of varying pressure-temperature profiles and C/O abundance ratios on the emission spectrum of the planet. We find that models with super-solar carbon enrichment best match the observations, which is consistent with previous model retrieval studies. We also include upper atmosphere haze as another dimension in the interpretation of exoplanet emission spectra and find that particles <0.5 {mu}m in size are unlikely to be present in WASP-19b.

  12. Acoustic Emissions, Velocities And Permeability Evolution During Formation Of Compaction Bands In Sandstone.

    NASA Astrophysics Data System (ADS)

    Fortin, J.; Stanchits, S.; Dresen, G.; Schubnel, A.; Gueguen, Y.

    2004-12-01

    Compaction bands are zones of localized deformation observed in high porosity rock (Mollema et al. [1996], Klein et al. [2001], Fortin et al. [2003]). These planar bands form perpendicular to the direction of maximum compression. Compaction bands display significantly reduced porosity and are potentially important permeability barriers in reservoir rocks and aquifers. To investigate localized compaction and changes in physical properties of porous sandstone, we performed triaxial tests on Bleurswiller sandstone, (50% quartz 30% feldspars and 20% clay, 25% porosity), on Fontainebleau sandstone (100% quartz, 25% porosity) and on Flechtingen sandstone (65-75% quartz, calcite and illite 15%, porosity 5.5-7%). Experiments were performed under wet conditions at a pore pressure of 10 MPa. Thirteen experiments were performed at the Laboratoire de Geologie (Ecole Normal Superieur Paris) and at GeoForschungsZentrum Potsdam. Evolution of volumetric strain, elastic wave velocities and permeability were recorded at confining pressures of 12 and 180 MPa. Acoustic Emission (AE) characteristics during deformation were studied at GeoForschungsZentrum Potsdam. To monitor velocity change and microcracking of sandstone, 10 P-wave sensors and 8 polarized S-wave piezoelectric sensors were glued to the cylindrical surface of the samples. To monitor fracture-induced anisotropy, two additional P sensors were installed in axial direction. Fully digitized waveforms were recorded by 10 MHz/16bit Data Acquisition System with an accuracy of AE hypocenters determination of about 2.5 mm. Location of acoustic emission events reveal the evolution of localized compaction bands in sandstone subjected to axial compression. The formation of the bands depends on rock type and effective pressure. Our experiments show a reduction of permeability across compaction bands by about one to two orders of magnitude (Vajdova et al. [2004]; Holcomb et al., [2003]) suggesting that the bands may act as barriers to

  13. Emission line shape of B850 band of light-harvesting complex II

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Jang, Seogjoo

    2011-03-01

    A theoretical framework is developed for the emission line shape of the single complex spectroscopy (SCS). The quantum mechanical characteristics of the single complex emission line shapes for the model B850 band of the light harvesting complex 2 of purple bacteria are studied including both static and quasi-static disorders within the exciton Hamiltonian. The bath is modeled as an infinite sum of harmonic oscillators. For the Gaussian type of disorder, we examined the dependencies of the spectral line shapes on the temperature, polarization of the radiation, and on the type of exciton-bath coupling. Theoretically obtained emission profile is also compared with the absorption profile in the frequency domain. It is observed that emission profile contains an extra inhomogeneous term coming from the entanglement of the system and bath degrees of freedom in the initial equilibrium density operator. Contribution of this term to the overall emission line shape is studied in detail. This research was supported by the Department of Energy, Office of Basic Energy Sciences.

  14. Dielectric properties and emissivity of seawater at C-band microwave frequency.

    PubMed

    Murugkar, A G; Joshi, A S; Kurtadikar, M L

    2012-10-01

    Microwave remote sensing applications over ocean using radar and radiometers, a precise knowledge of emissivity and reflectivity, are required. Emissivity of ocean surface is a function of the surface configuration, frequency of radiation, temperature and its dielectric properties. The emissivity of a smooth ocean surface at a particular wavelength is determined by its complex dielectric properties. In present study, laboratory measurements of complex dielectric properties, real part epsilon', and imaginary part epsilon", of surface seawater samples collected from Bay of Bengal and Arabian Sea are carried out. Measurements of these seawater samples are done at 5 GHz and 30 degrees C using an automated C-band microwave bench set up. The salinity of samples is also measured using autosalinometer. The salinity values are used to determine epsilon' and epsilon" using the Debye equations. The normal incidence emissivity and brightness temperature values for smooth sea surface are reported for surface samples. The dielectric constant epsilon' decreases and dielectric loss increases with increase in salinity at 5 GHz and 30 degrees C. At normal incidence, emissivity is almost constant for varying salinities. PMID:25151713

  15. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    PubMed

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones. PMID:22827043

  16. Studies of collision-induced emission in the fundamental vibration-rotation band of H2

    NASA Astrophysics Data System (ADS)

    Caledonia, G. E.; Krech, R. H.; Wilkerson, T.; Taylor, R. L.; Birnbaum, G.

    Measurements are presented of the collision induced emission (CIE) from the fundamental vibration-rotation band of H2 taken over the temperature range of 900-3000 K. The spectral shape and strength of this IR band centered about 2.4 microns has been measured behind reflected shocks in mixtures of H2/Ar. The observed radiation at elevated temperatures is found to be dominantly in the Q branch. The results, compared with theory, show that radiation at elevated temperatures is primarily the result of an induced dipole moment in H2 induced by the overlap between the H2 and Ar electron clouds during collision. The strength of this interaction has been evaluated by an analysis of the measured temperature dependence of the absolute bandstrengths.

  17. Development of a L-band ocean emissivity electromagnetic model using observations from the Aquarius Radiometer

    NASA Astrophysics Data System (ADS)

    Hejazin, Y.; Jones, W.; El-Nimri, S.

    2012-12-01

    The Aquarius/SAC-D ocean salinity measurement mission was launched into polar orbit during the summer of 2011. The prime sensor is an L-band radiometer/scatterometer developed jointly by NASA Goddard Space Flight Center and the Jet Propulsion Laboratory. This paper deals with the development of an ocean emissivity model using AQ radiometer brightness temperature (Tb) observations. This model calculates the ocean surface emissivity as a function of ocean salinity, sea surface temperature, surface wind speed and direction. One unique aspect of this model is that it calculates ocean emissivity over wide ranges of Earth incidence angles (EIAs) from nadir to > 60°and ocean wind speeds from 0 m/s to > 70 m/s. This physical electromagnetic model with empirical coefficients follows the form of Stogryn [1967] that treats the ocean as a mixture of foam and clean rough water. The CFRSL ocean surface emissivity (ɛocean) is modeled as a linear sum of foam (ɛfoam) and foam-free seawater (ɛrough) emissivities, according to ɛocean = FF * ɛfoam + (1 - FF) * ɛrough (1) where FF is the fractional area coverage by foam. The foam emissivity is modeled as ɛfoam = Q(freq, U10, EIA) (2) where Q( ) is the empirical dependence of foam emissivity on radiometer frequency, the 10-m neutral stability wind speed and EIA according to El-Nimri [2010]. Following Stogryn, the foam-free seawater emissivity (ɛrough) is modeled ɛrough = ɛsmooth +Δɛexcess (3) where ɛsmooth = (1 - Γ) is the smooth surface emissivity, Γ is the Fresnel power reflection coefficient, and Δɛexcess is the wind-induced excess emissivity, given by Δɛexcess = G(freq, U10, WDir, EIA) (4) Where G( ) is the empirical signature of foam-free rough ocean, which depends upon the surface wind speed and wind direction. This function is determined empirically from measured AQ radiometer Tb's associated with surface wind vector from collocated NOAA GDAS numerical weather model. Ocean emissivity calculations are compared

  18. Quantum simulation of the yellow emission band of CsXe

    NASA Technical Reports Server (NTRS)

    Tellinghuisen, J.; Exton, R. J.

    1980-01-01

    Quantum spectral simulations of the yellow excimer emission band of CsXe are presented. Synthetic spectra as a function of wave number are calculated for the 2 Sigma 1/2 + (7s) - 2 Sigma 1/2 + (6s) transition by the use of the equation of Tellinghuisen et al. (1976) with a theoretical potential for the ground state and a Morse potential curve with an electron frequency of 32/cm for the excited state. Results based on emission studies at 450 K and 200 and 800 torr, are found to be consistent with absorption studies. The undulatory structure observed in the spectrum is attributed not to the vibrational spacing in the excited state, but rather to a characteristic reflection structure associated with nearly parallel upper and lower potential curves.

  19. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  20. All-optical programmable shaping of narrow-band nanosecond pulses with picosecond accuracy by use of adapted chirps and quadratic nonlinearities.

    PubMed

    Ribeyre, X; Rouyer, C; Raoult, F; Husson, D; Sauteret, C; Migus, A

    2001-08-01

    We experimentally demonstrate pure optical pulse picosecond shaping of narrow-bandwidth nanosecond pulses. The method used is based on the manipulation in the spectral domain of strongly chirped femtosecond pulses and on the use of either frequency addition or frequency difference. PMID:18049553

  1. The solar wind control of Jupiter's broad-band kilometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Leblanc, Y.; Desch, M. D.

    1988-01-01

    Observations of the solar wind close to Jupiter are compared with the broad-band kilometric radio emission (bKOM), using data recorded by Voyager 1 and Voyager 2 during 1979. The lower bKOM frequencies, less than about 300 kHz, are found to correlate with the solar wind density and pressure and with the interplanetary magnetic field (IMF) magnitude during periods when there is a well-defined magnetic sector structure. The results suggest that lower frequency bKOM events are most likely to occur after a sector boundary has passed Jupiter during the period when the solar wind density and the IMF magnitude are increasing towards the sector center. The average bKOM energy per Jovian rotation tends to have lower values soon after the sector center has passed. Higher-frequency/higher-energy bKOM emission may be contaminated by hectometric emission (HOM) and differently correlated with solar activity. The solar wind control may also be obscured by some stronger control. It is suggested that electron density fluctuations in the Io torus, where the source is believed to be located, may be responsible for variations in the beaming and hence variations in the observed emission.

  2. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    NASA Astrophysics Data System (ADS)

    Le Vine, D. M.; Lang, R. H.; Wentz, F. J.; Meissner, T.

    2012-12-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.2 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest. Second, observations from Aquarius are being used to develop a model for the effect of wind-driven roughness (waves) on the emissivity in the open ocean. This is done by comparing the measured

  3. Emission from the Local Galactic Halo in the 1/4 keV Band

    NASA Astrophysics Data System (ADS)

    Juda, M.

    1994-12-01

    Pointed observations with the ROSAT PSPC toward clouds at high galactic latitude provide a unique opportunity to probe emission from the local galactic halo in the 1/4 keV band. I present data from five fields toward clouds at |b| > 60(deg) identified through their IRAS 100 microns emission, two in the north galactic hemisphere and three in the south. In four of the five fields significant shadows are detected (2 north, 2 south). The derivation of the brightness of the shadowed component depends strongly on the assumed location and amount of absorbing material. Scaling the IRAS 100 microns emission by 10(20) H atom cm(-2) /MJy sr(-1) and correcting for the difference from the observed average 21 cm derived column density, the implied brightness of the distant emitting component is the same for the two northern latitude fields at { ~ 1.2*E(-3) counts s(-1) arcmin(-2}) ; this brightness is lower than that seen in the direction of Draco (Burrows & Mendenhall 1991, Snowden et al. 1991) and higher than in Ursa Major (Snowden et al. 1994). The two southern fields also have the same derived distant brightness at nearly the same level as the northern fields, { ~ 1.0*E(-3) counts s(-1) arcmin(-2}) . Approximately 20% of this emission may be attributed to an extragalactic background (Hasinger et al. 1993). The remaining emission, { ~ 0.8*E(-3) counts s(-1) arcmin(-2}) , would be provided by the local galactic halo. If these x-rays arise from a collisionally excited plasma at a temperature of 10(6) K the required emission measure is { ~ 0.0033 cm(-6) pc}. Burrows & Mendenhall 1991, Nature, 351, 629. Hasinger et al. 1993, A&A, 275, 1. Snowden et al. 1991, Science, 252, 1529. Snowden et al. 1994, ApJ, 430, 601.

  4. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

    PubMed

    Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui

    2015-11-10

    In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%. PMID:26560772

  5. Spatial distribution and variation of narrow L-shell bands in the plasmasphere supporting field-aligned propagating modes as observed by the RPI/IMAGE satellite

    NASA Astrophysics Data System (ADS)

    Sales, G.; Reinisch, B. W.; Song, P.; Huang, X.; Galkin, I.; Gallagher, D. L.

    2002-12-01

    Field-aligned propagating (FAP) modes have been a regular characteristic of the RPI/IMAGE plasmagrams from the beginning of the experiment. LF/MF (in the range of 3 kHz to 3 MHz) transmitted radio signals from the satellite propagate in the magnetic meridian plane along the magnetic field line passing through the satellite position to both the northern and southern hemispheres where they reflect at a level that depends on the sounding frequency. This analysis has shown that these hemispherical reflections occur on about 20% of the plasmagrams while the IMAGE satellite is between L = 2.5 and L = 4.5. Occurrences of these FAP plasmagrams were consistently organized into two L-shell bands. The first band was found at L = 3.2+/- 0.2 moving in and out slowly over a period of a few days. This band, with a width of DL >> 0.2, is always present. The second observed band also supports hemispherical propagation and was found at higher L-shells, ranging from L = 3.5 under quiet magnetic conditions, moving to L = 4.0 as the level of magnetic activity increases. During high magnetic activity conditions this outer band disappears. When RPI/IMAGE passed through the inner band the probability of the appearance of FAP modes was 98% while for the outer band this percentage drops to 91%. Analyzing 5 months of data using an RPI sounding program that makes a new plasmagram every 3 minutes as the satellite traverses the plasmasphere has lead to a comprehensive description of these bands that can be mapped down to the mid-latitude trough region. Comparison is made between the plasmaspause location and the tail region as determined using other sensors with respect to the position of the two bands under changing magnetic conditions.

  6. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.

    2015-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.

  7. Emission control of N{sub 2}O by co-combustion of coal and biomass and narrow pulse corona discharge

    SciTech Connect

    Liu, D.C.; Wang, J.H.; Chen, H.P.; Zhang, S.H.; Huang, L.; Lu, J.D.

    1999-07-01

    N{sub 2}O and NO{sub x} from coal combustion are the main pollutants that contribute to the acid rain, greenhouse effect and depletion of stratospheric ozone layer. The emission controls of N{sub 2}O and NO{sub x} have been investigated by many researchers in recent years. In order to control the N{sub 2}O, NO{sub x} emissions, co-combustion of coal and biomass in a bench-scale fluidized bed and a series of experiments of pulse corona discharge have been carried out in the National Laboratory of Coal Combustion (NLCC). Co-combustion of coal and biomass was studied to reveal the influences of bed temperature, coal nature and biomass fraction on the emission of N{sub 2}O. The test results indicate that the co-combustion of coal and biomass can reduce the emissions of N{sub 2}O. The higher the nitrogen content is and the lower the volatile matter content of coal is, the more the reduction of emission of N{sub 2}O is. The biomass fraction and the bed temperature also influence the emission of N{sub 2}O. Pulse corona discharge has been developed as a de-NO{sub x}/SO{sub x}/dust method in pulverized coal fired boiler. N{sub 2}O fraction in fluidized bed combustion boiler is much higher in comparison with pulverized coal fired boiler. Narrow pulse corona discharge can decompose N{sub 2}O. The test results reveal that the emission of N{sub 2}O decreases with the increase of voltage and pulse duration.

  8. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  9. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  10. Aminorhodamine (ARh): A Bichromophore with Three Emission Bands in Low Temperature Glasses.

    PubMed

    Sørensen, Thomas Just; Kilså, Kristine; Laursen, Bo W

    2015-06-01

    At first glance, aminorhodamine (ARh) is a typical pH responsive fluorescent, rhodamine-type dye. However, hidden under the typical rhodamine absorption band, ARh has another electronic transition of similar energy, but polarized orthogonal to that of the rhodamine chromophore. This transition-assigned to an arylpyrylium type chromophore contained in the system-is responsible for the sensor action of the dye. ARh is non-fluorescent, while protonation of a donor amino group turn on a strong rhodamine-type emission. At low temperature in frozen solution emission from both electronic subsystems of ARh are observed. In order to achieve more complete understanding of the photophysical mechanisms in this type of fluorescent probes, ARh and its protonated counterpart HARh were studied by absorption and fluorescence spectroscopy, computational chemistry, and at low temperatures in solid solution. Results from fluorescence anisotropy and time-resolved fluorescence spectra establish a bichromophore model and suggest that a remarkable weak coupling between the two nearly isoenergetic excited states in ARh enables the dual emission. All the complicated properties observed for ARh was accounted for by a bichromophore model describing the electronic system of ARh as a bichromophore constituted by a rhodamine and an arylpyrylium subsystem. PMID:25916892

  11. Performance of MODIS Thermal Emissive Bands On-orbit Calibration Algorithms

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chang, T.

    2009-01-01

    Two nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODIS) are currently operated on-board the Terra and Aqua spacecrafts, launched in December 1999 and May 2002, respectively. Together, they have produced an unprecedented amount of science data products, which are widely used for the studies of changes in the Earth's system of land, oceans, and atmosphere. MODIS is a cross-track scanning radiometer, which uses a two-sided scan mirror and collects data continuously over a wide scan angle range (+/-55 degree relative to the instrument nadir) each scan of 1.47 seconds. It has 36 spectral bands with wavelengths ranging from visible (VIS) to long-wave infrared (LWIR). MODIS bands 1-19 and 26 are the reflective solar bands (RSB) and bands 20-25 and 27-36 are the thermal emissive bands (TEB). MODIS was developed and designed with improvements made over its heritage sensors (such as AVHRR and Landsat) and, in particular, with more stringent calibration requirements. Because of this, MODIS was built with a set of state-of-art on-board calibrators (OBC), which include a solar diffuser (SD), a solar diffuser stability monitor (SDSM), a blackbody (BB), a spectroradiometric calibration assembly (SRCA), and a space view (SV) port. With the exception of view angle differences, MODIS OBC measurements and the Earth View (EV) observations are made via the same optical path. MODIS TEB have a total of 160 individual TEB detectors (10 per band), which are located on two cold focal plane assemblies (CFPA). For nominal on-orbit operation, the CFPA temperature is controlled at 83K via a passive radiative cooler. For the TEB, the calibration requirements at specified typical scene radiances are less than or equal to 1% with an exception for the fire detection (low gain) band. MODIS TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic calibration algorithm, and data collected from sensor responses to the onboard BB and SV. The BB

  12. A coronagraphic absorbing cloud reveals the narrow-line region and extended Lyman α emission of QSO J0823+0529

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Petitjean, P.; Noterdaeme, P.; Pâris, I.; Finley, H.; López, S.; Srianand, R.; Sánchez, P.

    2015-11-01

    We report long-slit spectroscopic observations of the quasar SDSS J082303.22+052907.6 (z_{C IV}} ˜ 3.1875), whose broad-line region (BLR) is partly eclipsed by a strong damped Lyman α (DLA; logN(H I) = 21.7) cloud. This allows us to study the narrow-line region (NLR) of the quasar and the Lyman α emission from the host galaxy. Using CLOUDY models that explain the presence of strong N V and P V absorption together with the detection of Si II* and O I** absorption in the DLA, we show that the density and the distance of the cloud to the quasar are in the ranges 180 < nH < 710 cm-3 and 580 > r0 > 230 pc, respectively. Sizes of the neutral (˜2-9pc) and highly ionized phases (˜3-80pc) are consistent with the partial coverage of the C IV BLR by the C IV absorption from the DLA (covering factor of ˜0.85). We show that the residuals are consistent with emission from the NLR with C IV/Lyman α ratios varying from 0 to 0.29 through the profile. Remarkably, we detect extended Lyman α emission up to 25 kpc to the north and west directions and 15 kpc to the south and east. We interpret the emission as the superposition of strong emission in the plane of the galaxy up to 10 kpc with emission in a wind of projected velocity ˜500 km s-1 which is seen up to 25 kpc. The low metallicity of the DLA (0.27 solar) argues for at least part of this gas being infalling towards the active galactic nucleus and possibly being located where accretion from cold streams ends up.

  13. Probing the Ionization States of Polycyclic Aromatic Hydrocarbons via the 15-20 μm Emission Bands

    NASA Astrophysics Data System (ADS)

    Shannon, M. J.; Stock, D. J.; Peeters, E.

    2015-10-01

    We report new correlations between ratios of band intensities of the 15-20 μm emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of 57 sources observed with the Spitzer/Infrared Spectrograph. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey survey, two Galactic interstellar medium cirrus sources, and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4, and 17.8 μm band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 μm band intensities. The 15.8 μm band correlates only with the 15-18 μm plateau and the 11.2 μm emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4, and 17.8 μm bands; the 11.2, 15.8 μm bands and the 15-18 μm plateau; and the 11.0 and 17.4 μm bands. We also find that the spatial distribution of the 12.7, 16.4, and 17.8 μm bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 μm and neutral 11.2 μm bands. We conclude that the 17.4 μm band is dominated by cations, the 15.8 μm band by neutral species, and the 12.7, 16.4, and 17.8 μm bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15-20 μm emission variability.

  14. Observational studies on the near-infrared unidentified emission bands in galactic H II regions

    SciTech Connect

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ohsawa, Ryou; Bell, Aaron C.; Ishihara, Daisuke; Shimonishi, Takashi

    2014-03-20

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I {sub 3.4-3.6} {sub μm}/I {sub 3.3} {sub μm} decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I {sub cont,} {sub 3.7} {sub μm}/I {sub 3.3} {sub μm}, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I {sub 9} {sub μm}/I {sub 18} {sub μm} also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I {sub Brα}/I {sub 3.3} {sub μm}. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  15. Observational Studies on the Near-infrared Unidentified Emission Bands in Galactic H II Regions

    NASA Astrophysics Data System (ADS)

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ishihara, Daisuke; Shimonishi, Takashi; Ohsawa, Ryou; Bell, Aaron C.

    2014-03-01

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I 3.4-3.6 μm/I 3.3 μm decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I cont, 3.7 μm/I 3.3 μm, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I 9 μm/I 18 μm also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I Brα/I 3.3 μm. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  16. Impact of Conifer Forest Litter on Microwave Emission at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Cosh, Michael H.; Joseph, Alicia T.; Jackson, Thomas J.

    2011-01-01

    This study reports on the utilization of microwave modeling, together with ground truth, and L-band (1.4-GHz) brightness temperatures to investigate the passive microwave characteristics of a conifer forest floor. The microwave data were acquired over a natural Virginia Pine forest in Maryland by a ground-based microwave active/passive instrument system in 2008/2009. Ground measurements of the tree biophysical parameters and forest floor characteristics were obtained during the field campaign. The test site consisted of medium-sized evergreen conifers with an average height of 12 m and average diameters at breast height of 12.6 cm. The site is a typical pine forest site in that there is a surface layer of loose debris/needles and an organic transition layer above the mineral soil. In an effort to characterize and model the impact of the surface litter layer, an experiment was conducted on a day with wet soil conditions, which involved removal of the surface litter layer from one half of the test site while keeping the other half undisturbed. The observations showed detectable decrease in emissivity for both polarizations after the surface litter layer was removed. A first-order radiative transfer model of the forest stands including the multilayer nature of the forest floor in conjunction with the ground truth data are used to compute forest emission. The model calculations reproduced the major features of the experimental data over the entire duration, which included the effects of surface litter and ground moisture content on overall emission. Both theory and experimental results confirm that the litter layer increases the observed canopy brightness temperature and obscure the soil emission.

  17. Underwater hearing sensitivity of harbor seals (Phoca vitulina) for narrow noise bands between 0.2 and 80 kHz.

    PubMed

    Kastelein, Ronald A; Wensveen, Paul; Hoek, Lean; Terhune, John M

    2009-07-01

    The underwater hearing sensitivities of two 1.5-year-old female harbor seals were quantified in a quiet pool built specifically for acoustic research, by using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not ("go/no-go" response). Fourteen narrowband noise signals (1/3-octave bands but with some energy in adjacent bands), at 1/3-octave center frequencies of 0.2-80 kHz, and of 900 ms duration, were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. Between 0.5 and 40 kHz, the thresholds corresponded to a 1/3-octave band noise level of approximately 60 dB re 1 microPa (SD+/-3.0 dB). At lower frequencies, the thresholds increased to 66 dB re 1 microPa and at 80 kHz the thresholds rose to 114 dB re 1 microPa. The 1/3-octave noise band thresholds of the two seals did not differ from each other, or from the narrowband frequency-modulated tone thresholds at the same frequencies obtained a few months before for the same animals. These hearing threshold values can be used to calculate detection ranges of underwater calls and anthropogenic noises by harbor seals. PMID:19603905

  18. A Narrow Amide I Vibrational Band Observed by Sum Frequency Generation Spectroscopy Reveals Highly Ordered Structures of a Biofilm Protein at the Air/Water Interface†

    PubMed Central

    Wang, Zhuguang; Morales-Acosta, M. Daniela; Li, Shanghao; Liu, Wei; Kanai, Tapan; Liu, Yuting; Chen, Ya-Na; Walker, Frederick J.; Ahn, Charles H.; Leblanc, Roger M.

    2016-01-01

    We characterized BslA, a bacterial biofilm protein, at the air/water interface using vibrational sum frequency generation spectroscopy and observed one of the sharpest amide I band ever reported. Combining methods of surface pressure measurements, thin film X-ray reflectivity, and atomic force microscopy, we showed extremely ordered BslA at the interface. PMID:26779572

  19. Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control

    NASA Astrophysics Data System (ADS)

    de La Rue, Richard M.

    Research into photonic crystal (PhC) and photonic band-gap (PBG) structures has been motivated, from the start, by their possible use in controlling, modifying and enhancing the light emission process from high refractive index solid materials. This chapter considers the possible role of such structures when incorporated into semiconductor diode based light-emitting devices. Both light-emitting diodes (LEDs) and lasers will be considered. In order to provide a proper framework for discussion and analysis, space is devoted to the historical development of III-V semiconductor based LEDs — and to competing alternative approaches that have been demonstrated for enhanced light extraction. The possible advantages of photonic quasi-crystal (PQC) structures over regularly periodic photon crystal structures for advanced LED designs are also considered. Photonic crystal structures potentially provide major enhancements in the performance of laser diodes (LDs) — and progress towards this performance enhancement will be reviewed.

  20. Optical study of narrow band gap InAsxSb1 -x (x =0 , 0.25, 0.5, 0.75, 1) alloys

    NASA Astrophysics Data System (ADS)

    Namjoo, Shirin; Rozatian, Amir S. H.; Jabbari, Iraj; Puschnig, Peter

    2015-05-01

    The structural, electronic, and optical properties of InAs, InSb, and their ternary alloys InAsxSb1 -x (x =0.25 , 0.5, 0.75) are investigated within density functional theory utilizing the wien2k package. We find that the lattice constants and bulk moduli as a function of x are in best agreement with Vegard's linear rule. When computing the electronic band structures with the modified Becke-Johnson exchange-correlation functional (mBJLDA), our results for the band gaps of InAs, InSb, and their ternary alloys are in good agreement with the available experimental results while the conventional Wu-Cohen generalized gradient approximation (GGA) functional leads to zero or close to zero band gaps. In particular, our mBJLDA results confirm experimental evidence that the minimum band gap occurs for As concentrations around x ≈0.3 . Furthermore, we investigate the dielectric function of these compounds within the random phase approximation using both the Wu-Cohen GGA and the mBJLDA functionals. While the mBJLDA results of our fully first-principles calculations show good agreement of the peak positions in ɛ2(ω ) with experiments, the peaks in the optical spectra based on the Wu-Cohen GGA band structure appear redshifted compared to experiment. We further identify the interband transitions responsible for the structures in the spectra. Looking at the optical matrix element, we note that the major peaks are dominated by transition from the Sb 5 p (As 4 p ) states to In s states for InSb and InAs0.25Sb0.75 (InAs, InAs0.75Sb0.25 , and InAs0.5Sb0.5 ).

  1. On-orbit Characterization of RVS for MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V.; Chiang, K.; Wu, A.; Guenther, B.; Barnes, W.

    2004-01-01

    Response versus scan angle (RVS) is a key calibration parameter for remote sensing radiometers that make observations using a scanning optical system, such as a scan mirror in MODIS and GLI or a rotating telescope in SeaWiFS and VIIRS, since the calibration is typically performed at a fixed viewing angle while the Earth scene observations are made over a range of viewing angles. Terra MODIS has been in operation for more than four years since its launch in December 1999. It has 36 spectral bands covering spectral range from visible (VIS) to long-wave infrared (LWIR). It is a cross-track scanning radiometer using a two-sided paddle wheel scan mirror, making observations over a wide field of view (FOV) of +/-55 deg from the instrument nadir. This paper describes on-orbit characterization of MODIS RVS for its thermal emissive bands (TEB), using the Earth view data collected during Terra spacecraft deep space maneuvers (DSM). Comparisons with pre-launch analysis and early on-orbit measurements are also provided.

  2. Crystal and electronic structures and high-pressure behavior of AgSO4, a unique narrow band gap antiferromagnetic semiconductor: LDA(+U) picture.

    PubMed

    Derzsi, Mariana; Stasiewicz, Juliusz; Grochala, Wojciech

    2011-09-01

    We demonstrate that DFT calculations performed with the local density approximation (LDA) allow for significantly better reproduction of lattice constants, the unit cell volume and the density of Ag(II)SO(4) than those done with generalized gradient approximation (GGA). The LDA+U scheme, which accounts for electronic correlation effects, enables the accurate prediction of the magnetic superexchange constant of this strongly correlated material and its band gap at the Fermi level. The character of the band gap places the compound on the borderline between a Mott insulator and a charge transfer insulator. The size of the band gap (0.82 eV) indicates that AgSO(4) is a ferrimagnetic semiconductor, and possibly an attractive material for spintronics. A bulk modulus of 27.0 GPa and a compressibility of 0.037 GPa(-1) were determined for AgSO(4) from the third-order Birch-Murnaghan isothermal equation of state up to 20 GPa. Several polymorphic types compete with the ambient pressure P-1 phase as the external pressure is increased. The P-1 phase is predicted to resist pressure-induced metallization up to at least 20 GPa. PMID:21267751

  3. CH^+ Spectrum and Diffuse Interstellar Bands Toward Herschel 36 Excited by Dust Emission

    NASA Astrophysics Data System (ADS)

    Dahlstrom, Julie; Oka, Takeshi; Johnson, Sean; Welty, Daniel E.; Hobbs, Lew M.; York, Donald G.

    2012-06-01

    All electronic CH^+ interstellar absorption lines so far observed had been limited to the R(0) transition starting from the J = 0 ground level; this is because of the very rapid J = 1 → 0 spontaneous emission with the life time of ˜ 140 s. We have observed the R(1) and Q(1) lines of the A^1π ← X^1Σ band from the excited J = 1 level 40.08 K (27.86 cm-1) above the J = 0 level toward Herschel 36 indicating high radiative temperature of T_r = 17.5 K. The high temperature is most likely due to far infrared dust emission from the Her 36 SE. We have also observed the R_1(3/2) line of CH starting from the excited fine structure level J = 3/2 which is 25.76 - 25.57 K above the J = 1/2 level. The effect of high radiative temperature is also noticed as unique lineshapes of diffuse interstellar bands (DIBs) observed toward Her 36. We have examined seven DIBs including λ 5780.5, λ 5797.1, λ 6190.0, and λ 6613.0 that are correlated with each other with correlation coefficients > 0.93. While for ordinary sightlines the lineshapes of these DIBs are more or less symmetric, those toward Her 36 show a long tail toward the red. This is due to far infrared pumping of high J rotational levels of polar carriers of the DIBs by the dust emission. We have developed a model calculation of relaxation taking into account of both radiative and collisional processes. A linear molecule with about 6 carbon atoms can explain some of the DIBs. For the DIBs we have examined, probably the carriers are of this size since we cannot explain the large difference between the DIBs toward ordinary sightlines and toward Her 36 with larger molecules. Goto, M., Stecklum, B., Linz, H., Feldt, M., Henning, Th., Pascucci, I., and Usuda, T. 2006, ApJ, {649} 299.

  4. The mid-infrared emission of narrow-line active galactic nuclei: Star formation, nuclear activity, and two populations revealed by WISE

    SciTech Connect

    Rosario, David J.; Burtscher, Leonard; Davies, Richard; Genzel, Reinhard; Lutz, Dieter; Tacconi, Linda J.

    2013-12-01

    We explore the nature of the long-wavelength mid-infrared (MIR) emission of a sample of 13,000 local Type II (narrow-line) active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) using 12 μm and 22 μm photometry from the WISE all-sky survey. In combination with FIRST 1.4 GHz photometry, we show that AGNs divide into two relatively distinct populations or 'branches' in the plane of MIR and radio luminosity. Seyfert galaxies lie almost exclusively on an MIR-bright branch (Branch A), while low-ionization nuclear emission line galaxies (LINERs) are split evenly into Branch A and the MIR-faint Branch B. We devise various tests to constrain the processes that define the branches, including a comparison to the properties of pure star-forming inactive galaxies on the MIR-radio plane. We demonstrate that the total MIR emission of objects on Branch A, including most Seyfert galaxies, is governed primarily by host star formation, with ≈15% of the 22 μm luminosity coming from AGN-heated dust. This implies that ongoing dusty star formation is a general property of Seyfert host galaxies. We show that the 12 μm broadband luminosity of AGNs on Branch A is suppressed with respect to star-forming galaxies, possibly due to the destruction of PAHs or deeper 10 μm Si absorption in AGNs. We uncover a correlation between the MIR luminosity and [O III] λ5007 luminosity in AGNs. This suggests a relationship between the star formation rate and nuclear luminosity in the AGN population, but we caution on the importance of selection effects inherent to such AGN-dominated emission-line galaxies in driving such a correlation. We highlight the MIR-radio plane as a useful tool in comparative studies of star formation and nuclear activity in AGNs.

  5. Use of IRI to Model the Effect of Ionosphere Emission on Earth Remote Sensing at L-Band

    NASA Technical Reports Server (NTRS)

    Abraham, Saji; LeVine, David M.

    2004-01-01

    Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.

  6. Design concepts for a high-impedance narrow-band 42 GHz power TWT using a fundamental/forward ladder-based circuit

    NASA Technical Reports Server (NTRS)

    Karp, A.

    1980-01-01

    A low-cost, narrowband, millimeter wave space communications TWT design was studied. Cold test interaction structure scale models were investigated and analyses were undertaken to predict the electrical and thermal response of the hypothetical 200 W TWT at 42 GHz and 21 kV beam voltage. An intentionally narrow instantaneous bandwidth (1%, with the possibility of electronic tuning of the center frequency over several percent) was sought with a highly dispersive, high impedance "forward wave' interaction structure based on a ladder (for economy in fabrication) and nonspace harmonic interaction, for a high gain rate and a short, economically focused tube. The "TunneLadder' interaction structure devised combines ladder properties with accommodation for a pencil beam. Except for the impedance and bandwidth, there is much in common with the millimeter wave helix TWTs which provided the ideal of diamond support rods. The benefits of these are enhanced in the TunneLadder case because of spatial separation of beam interception and RF current heating.

  7. Narrow spectral emission CaMoO4: Eu3+, Dy3+, Tb3+ phosphor crystals for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Khanna, A.; Dutta, P. S.

    2013-02-01

    Alkaline earth metal molybdates are promising candidates as a host material for high efficiency narrow spectral emission phosphors. These phosphors could potentially be used for the fabrication of phosphor-converted light emitting diodes (pc-LEDs). Phosphor crystals of calcium molybdate doped with rare earth dopant Ln3+(Ln=Eu, Dy, Tb) grown using flux growth method have been shown to exhibit higher excitation efficiency than the powders synthesized by solid-state reaction process. Molybdenum (VI) oxide has been found to be a suitable flux for growing large size optically transparent high quality crystals at a temperature around 1100 °C. Using the excitation wavelengths of 465 nm, 454 nm and 489 nm for CaMoO4: Eu3+, CaMoO4: Dy3+ and CaMoO4: Tb3+, respectively, intense emission lines at wavelengths of 615 nm, 575 nm and 550 nm were observed. The optimized doping concentrations of 12%, 2% and 5% for Eu3+, Dy3+ and Tb3+, respectively, provided the highest luminescence intensity.

  8. Impact of surface roughness on L-band emissivity of the sea ice

    NASA Astrophysics Data System (ADS)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  9. The Ground-based H-, K-, and L-band Absolute Emission Spectra of HD 209458b

    NASA Astrophysics Data System (ADS)

    Zellem, Robert T.; Griffith, Caitlin A.; Deroo, Pieter; Swain, Mark R.; Waldmann, Ingo P.

    2014-11-01

    Here we explore the capabilities of NASA's 3.0 m Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 m Hale telescope with the TripleSpec spectrometer with near-infrared H-, K-, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L band indicate bright emission hypothesized to result from non-LTE CH4 ν3 fluorescence. We do not detect a similar bright 3.3 μm feature to ~3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations that overlap the H, K, and L bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

  10. The ground-based H-, K-, and L-band absolute emission spectra of HD 209458b

    SciTech Connect

    Zellem, Robert T.; Griffith, Caitlin A.; Deroo, Pieter; Swain, Mark R.; Waldmann, Ingo P.

    2014-11-20

    Here we explore the capabilities of NASA's 3.0 m Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 m Hale telescope with the TripleSpec spectrometer with near-infrared H-, K-, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L band indicate bright emission hypothesized to result from non-LTE CH{sub 4} ν{sub 3} fluorescence. We do not detect a similar bright 3.3 μm feature to ∼3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations that overlap the H, K, and L bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

  11. The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Rossow, W. B.; Pearl, C.; Azarderakhsh, M.; Khanbilvardi, R.

    2011-06-01

    Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively). Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP). Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS) observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands). The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent but small discrepancy introduced by the difference between SSM/I and AMSR-E frequencies and incidence angles has been examined and found to be small. Large differences between emissivity estimates from ascending and descending overpasses were found at the lower frequencies due to the inconsistency between the thermal IR skin temperatures and passive microwave brightness temperatures which can come from below the

  12. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  13. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS2 and Metal/WSe2 Heterojunctions

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Ezhilarasu, Goutham; Chatzakis, Ioannis; Dhall, Rohan; Chen, Chun-Chung; Cronin, Stephen

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds, therefore make more `ideal' Schottky junctions than bulk semiconductors, which produce recombination centers at the interface with metals, inhibiting charge transfer. Here, we observe a more than 10X enhancement in the indirect band gap PL of TMDCs deposited on various metals, while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2, and subsequently recombine radiatively with minority holes. Since the conduction band at the K-point is 0.5eV higher than at the Σ-point, a lower Schottky barrier of the Σ-point band makes electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wavefunctions in the metal. This enhancement only occurs for thick flakes, and is absent in monolayer and few-layer flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures. Reference: DOI: 10.1021/acs.nanolett.5b00885

  14. The origin of yellow band emission and cathodoluminescence of Au-catalyzed wurtzite GaN nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, R. S.; Jiao, J. F.; Wu, X.

    2016-06-01

    GaN nanowires with large yield are directly synthesized by simply ammoniating the gallium oxide powders in the presence of ammonia gas at 1000 °C, under the assistance of Au nanocatalysts. The microstructure and crystallinity of as-synthesized GaN nanowires are well studied by using high-resolution transmission electron microscope (HRTEM) and some structural defects such as stacking faults are found in the GaN nano-crystal. Cathodoluminescence measurement shows that a strong near-band-edge (NBE) emission band centered at 384 nm and a broad yellow band in the range of 500-800 nm are observed. Finally, the growth mechanism and possible optical emission process of GaN nanowires are discussed.

  15. Narrow spectral emission CaMoO{sub 4}: Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+} phosphor crystals for white light emitting diodes

    SciTech Connect

    Khanna, A.; Dutta, P.S.

    2013-02-15

    Alkaline earth metal molybdates are promising candidates as a host material for high efficiency narrow spectral emission phosphors. These phosphors could potentially be used for the fabrication of phosphor-converted light emitting diodes (pc-LEDs). Phosphor crystals of calcium molybdate doped with rare earth dopant Ln{sup 3+}(Ln=Eu, Dy, Tb) grown using flux growth method have been shown to exhibit higher excitation efficiency than the powders synthesized by solid-state reaction process. Molybdenum (VI) oxide has been found to be a suitable flux for growing large size optically transparent high quality crystals at a temperature around 1100 Degree-Sign C. Using the excitation wavelengths of 465 nm, 454 nm and 489 nm for CaMoO{sub 4}: Eu{sup 3+}, CaMoO{sub 4}: Dy{sup 3+} and CaMoO{sub 4}: Tb{sup 3+}, respectively, intense emission lines at wavelengths of 615 nm, 575 nm and 550 nm were observed. The optimized doping concentrations of 12%, 2% and 5% for Eu{sup 3+}, Dy{sup 3+} and Tb{sup 3+}, respectively, provided the highest luminescence intensity. - Graphical Abstract: CaMoO{sub 4}: Eu{sup 3+} phosphor crystals grown using a molybdenum (VI) oxide flux exhibited around 1.5 times the emission intensity of powders obtained from solid-state reaction at the same synthesis temperature. These crystals were found to efficiently emit 615 nm red light when excited by near UV light up to a wavelength of 395 nm. Highlights: Black-Right-Pointing-Pointer CaMoO{sub 4}: Ln{sup 3+} (Ln=Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}) phosphor crystals were successfully grown using high temperature flux (solutions) containing molybdenum (VI) oxide or lithium chloride. Black-Right-Pointing-Pointer Narrow spectral emission at 615 nm, 575 nm and 550 nm, respectively, was observed from CaMoO{sub 4}: Ln{sup 3+} (Ln=Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}) phosphor crystals. Black-Right-Pointing-Pointer The optimized doping concentrations of Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+} in CaMoO{sub 4} for highest

  16. Strong interactions, narrow bands, and dominant spin-orbit coupling in Mott insulating quadruple perovskite CaCo3V4O12

    NASA Astrophysics Data System (ADS)

    Rhee, H. B.; Pickett, W. E.

    2014-11-01

    We investigate the electronic and magnetic structures and the character and direction of spin and orbital moments of the recently synthesized quadruple perovskite compound CaCo3V4O12 using a selection of methods from density functional theory. Implementing the generalized gradient approximation and the Hubbard U correction (GGA+U ), ferromagnetic spin alignment leads to half-metallicity rather than the observed narrow gap insulating behavior. Including spin-orbit coupling (SOC) leaves a Mott insulating spectrum but with a negligible gap. SOC is crucial for the Mott insulating character of the V d1 ion, breaking the dm =±1 degeneracy and also giving a substantial orbital moment. Evidence is obtained of the large orbital moments on Co that have been inferred from the measured susceptibility. Switching to the orbital polarization (OP) functional, GGA+OP+SOC also displays clear tendencies toward very large orbital moments but in its own distinctive manner. In both approaches, application of SOC, which requires specification of the direction of the spin, introduces large differences in the orbital moments of the three Co ions in the primitive cell. We study a fictitious but simpler cousin compound Ca3CoV4O12 (Ca replacing two of the Co atoms) to probe in a more transparent fashion the interplay of spin and orbital degrees of freedom with the local environment of the planar CoO4 units. The observation is made that the underlying mechanisms seem to be local to a CoO4 plaquette, and that there is very strong coupling of the size of the orbital moment to the spin direction. These facts strongly suggest noncollinear spins, not only on Co but on the V sublattice as well.

  17. The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Rossow, W. B.; Pearl, C.; Azarderakhsh, M.; Khanbilvardi, R.

    2011-11-01

    Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively). Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP). Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS) observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands). The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent discrepancy introduced by the difference between SSM/I and AMSR-E frequencies, incidence angles, and calibration has been assessed. Significantly greater standard deviation of estimated emissivities compared to SSM/I land emissivity product was found over desert regions. Large differences between emissivity estimates from ascending and descending overpasses were found at lower frequencies due to the inconsistency

  18. Monitoring MRK 509: The Origin of the Reprocessor and Broad Band X-ray Spectrum of Narrow Line Seyfert 1 AKN 564

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Leighly, Karen M.

    1998-01-01

    The ten monitoring observations of Mrk 509 were made successfully between October 20 and November 26 last year. These observations were simultaneously with RXTE observations. A preliminary analysis of the RXTE observations has been done, and the light curve is shown in figure 1. Our aim in this experiment is to determine the location of the emission region of the reflection component by reverberation mapping. This component could be emitted from the accretion disk, within 100 Scwartzschild radii (R(sub s)) from the source. Note that the monitoring interval of 2.5 days corresponds to 100 R(sub s) for a 2 x 10(exp 8) solar mass black hole, which may be appropriate for this luminous object. In that case, we would expect the reflected component to vary along the direct flux, and there should be no spectral variability between observations. Alternatively, the reflected emission could come from the molecular torus, several parsecs from the nucleus. In that case, the reflection component flux should not vary. The light curve in figure 1 shows that during the monitoring period, the target varied in an ideal way, since significant variability was observed between observations and yet the most rapid variability is apparently sampled. The analysis of this data is not yet completed. The measurement of the reflection component in the combined ASCa and RXTE spectra depends critically on the RXTE background subtraction and calibration, but these have not yet progressed to the point where the analysis can be done.

  19. Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature.

    PubMed

    Huang, Yang; Bando, Yoshio; Tang, Chengchun; Zhi, Chunyi; Terao, Takeshi; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri

    2009-02-25

    Boron nitride (BN) microtubes were synthesized in a vertical induction furnace using Li(2)CO(3) and B reactants. Their structures and morphologies were investigated using x-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The microtubes have diameters of 1-3 microm, lengths of up to hundreds of micrometers, and well-structured ultrathin walls only approximately 50 nm thick. A mechanism combining the vapor-liquid-solid (VLS) and template self-sacrificing processes is proposed to explain the formation of these novel one-dimensional microstructures, in which the Li(2)O-B(2)O(3) eutectic reaction plays an important role. Cathodoluminescence studies show that even at room temperature the thin-walled BN microtubes can possess an intense band-edge emission at approximately 216.5 nm, which is distinct compared with other BN nanostructures. The study suggests that the thin-walled BN microtubes should be promising for constructing compact deep UV devices and find potential applications in microreactors and microfluidic and drug delivery systems. PMID:19417466

  20. Out-of-band emission suppression techniques based on a generalized OFDM framework

    NASA Astrophysics Data System (ADS)

    You, Zihao; Fang, Juan; Lu, I.-Tai

    2014-12-01

    Orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems suffer from the large out-of-band emission (OOBE) that may interfere with other users. Since most existing OFDM OOBE suppression schemes are derived on the base of an original OFDM system without any other scheme, we first propose a generalized OFDM framework that is capable of describing these schemes no matter whether any one or more of the schemes is applied. Then, according to the place where these schemes are implemented in our framework, they are classified into three groups, namely symbol mapping techniques, precoding techniques, and time-domain techniques. Finally, based on the proposed framework, we propose three new schemes by combining a precoding scheme named singular value decomposition (SVD) precoding with three other schemes from the three groups, namely spectral precoding, N-continuous symbol mapping, and filtering. Numerical results show the power spectral density (PSD), peak-to-average power ratio (PAPR), and bit error rate (BER) performances of the three proposed schemes. Since the individual schemes have complementary characteristics, the three proposed combined schemes are constructed to maintain the merits and avoid the drawbacks of the individual schemes involved. Thus, it is demonstrated that the proposed framework can be employed to develop other new combined OOBE suppression schemes tailoring to some specific practical needs.

  1. C{sub 2} swan band emission intensity as a function of C{sub 2} density.

    SciTech Connect

    Goyette, A. N.; Lawler, J. E.; Anderson, L. W.; Gruen, D. M.; McCauley, T. G.; Zhou, D.; Krauss, A. R.; Univ. of Wisconsin

    1998-05-01

    We report the systematic comparison of the optical emission intensity of the d {sup 3}{Pi} {yields} a {sup 3}{Pi} (0, 0) vibrational band of the C{sub 2} Swan system with the absolute C{sub 2} concentration in Ar/H{sub 2}/CH{sub 4} and Ar/H{sub 2}/C{sub 60} microwave plasmas used in the deposition of nanocrystalline diamond. The absolute C{sub 2} concentration is obtained using white-light absorption spectroscopy. Emission intensity correlates linearly with C{sub 2} density for variations of several plasma parameters and across two decades of species concentration. Although optical emission intensity generally is not an accurate quantitative diagnostic for gas phase species concentrations, these results confirm the reliability of the (0,0) Swan band for relative determination of C{sub 2} density with high sensitivity under conditions used for hydrogen-deficient plasma-enhanced chemical vapor deposition of diamond.

  2. Unoccupied-electronic-band structure of graphite studied by angle-resolved secondary-electron emission and inverse photoemission

    NASA Astrophysics Data System (ADS)

    Maeda, F.; Takahashi, T.; Ohsawa, H.; Suzuki, S.; Suematsu, H.

    1988-03-01

    Angle-resolved inverse photoemission spectroscopy (ARIPES) and angle-resolved secondary-electron emission spectroscopy (ARSEES) have been performed for graphite to establish experimentally the unoccupied-electronic-band structure as well as to study the difference between the two techniques. Remarkable differences have been found in the experimental two-dimensional band structures obtained by the two methods. The experimental results have been compared with the two different band calculations by R. C. Tatar and S. Rabii [Phys. Rev. B 25, 4126 (1982)] and by N. A. W. Holzwarth, S. G. Louie, and S. Rabii [Phys. Rev. B 26, 5382 (1982)] with special attention to the energy position of the three-dimensional interlayer band. The possible origin of the difference between ARIPES and ARSEES has also been discussed.

  3. Narrow band gap (1 eV) InGaAsSbN solar cells grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Garrod, T. J.; Kim, K.; Lee, J. J.; LaLumondiere, S. D.; Sin, Y.; Lotshaw, W. T.; Moss, S. C.; Kuech, T. F.; Tatavarti, Rao; Mawst, L. J.

    2012-03-01

    Heterojunction solar cell structures employing InGaAsSbN (Eg ˜ 1 eV) base regions are grown lattice-matched to GaAs substrates using metalorganic vapor phase epitaxy. Room temperature (RT) photoluminescence (PL) measurements indicate a peak spectral emission at 1.04 eV and carrier lifetimes of 471-576 ps are measured at RT from these structures using time-resolved PL techniques. Fabricated devices without anti-reflection coating demonstrate a peak efficiency of 4.58% under AM1.5 direct illumination. Solar cells with a 250 nm-thick InGaAsSbN base layer exhibit a 17% improvement in open circuit voltage (Voc), 14% improvement in fill factor, and 12% improvement in efficiency over the cells with a thicker (500 nm-thick) base layer.

  4. Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: implications of the interfacial charge transfer (IFCT).

    PubMed

    Rtimi, S; Sanjines, R; Pulgarin, C; Houas, A; Lavanchy, J-C; Kiwi, J

    2013-09-15

    This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N₂ and O₂ led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta₂O₅ and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag₂O and Ag(0), and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag₂O conduction band (cb) to the lower laying Ta₂O₅ (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation. PMID:23867967

  5. Passive L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; van der Velde, R.; O'Neill, P. E.; Kim, E. J.; Lang, R. H.; Gish, T. J.

    2012-12-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (TB's) measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These TB measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly TB's could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly TB. Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, hr, on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on TB simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent hr parameterization was responsible for the largest error reduction of TB simulations in the early growth cycle. A.T. Joseph, R. Van der Velde, P.E. O'Neill, R.H. Lang, and T. Gish, "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations", IEEE Transactions on Geoscience and Remote Sensing, vol. 46, DOI:10.1109/TGRS.2008.917214, Aug. 2008. M.C. Dobson, F.T. Ulaby, M

  6. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS₂ and Metal/WSe₂ Heterojunctions.

    PubMed

    Li, Zhen; Ezhilarasu, Goutham; Chatzakis, Ioannis; Dhall, Rohan; Chen, Chun-Chung; Cronin, Stephen B

    2015-06-10

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds and therefore make more "ideal" Schottky junctions than bulk semiconductors, which produce Fermi energy pinning and recombination centers at the interface with bulk metals, inhibiting charge transfer. Here, we observe a more than 10× enhancement in the indirect band gap photoluminescence of transition metal dichalcogenides (TMDCs) deposited on various metals (e.g., Cu, Au, Ag), while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2 and subsequently recombine radiatively with minority holes in the TMDC. Since the conduction band at the K-point is 0.5 eV higher than at the Σ-point, a lower Schottky barrier exists for the Σ-point band, making electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wave functions in the metal. This enhancement in the indirect emission only occurs for thick flakes of MoS2 and WSe2 (≥100 nm) and is completely absent in monolayer and few-layer (∼10 nm) flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures, which is consistent with the hot electron injection model. PMID:25993397

  7. Space Telescope Imaging Spectrograph Long-Slit Spectroscopy of the Narrow-Line Region of NGC 4151. 1; Kinematics and Emission-Line Ratios

    NASA Technical Reports Server (NTRS)

    Nelson, C. H.; Weistrop, D.; Hutchinson, J. B.; Crenshaw, D. M.; Gull, T. R.; Kaiser, M. E.; Kraemer, S. B.; Lindler, D.

    2003-01-01

    Long-slit spectra of the Seyfert galaxy NGC 4151 from the UV to the near-infrared have been obtained with the Space Telescope Imaging Spectrograph (STIS) to study the kinematics and physical conditions in the narrow-line region (NLR). The kinematics shows evidence for three components, a low-velocity system in normal disk rotation, a high-velocity system in radial outflow at a few hundred kilometers per second relative to the systemic velocity, and an additional high-velocity system also in outflow with velocities up to 1400 km s(-l), in agreement with results from STIS slitless spectroscopy. We have explored two simple kinematic models and suggest that radial outflow in the form of a wind is the most likely explanation. We also present evidence indicating that the wind may be decelerating with distance from the nucleus. We find that the emission-line ratios along our slits are all entirely consistent with photoionization from the nuclear continuum source. A decrease in the ratios [O III] lambda 5007/H beta and [O III] lambda 5007/[O II] lambda 3727 suggests that the density decreases with distance from the nucleus. This trend is borne out by the [S II] ratios as well. We find no strong evidence for interaction between the radio jet and the NLR gas in either the kinematics or the emission-line ratios, in agreement with the recent results of Kaiser et al., who found no spatial coincidence of NLR clouds and knots in the radio jet. These results are in contrast to other recent studies of nearby active galactic nuclei that find evidence for significant interaction between the radio source and the NLR gas.

  8. Hydrogenation of polycyclic aromatic hydrocarbons as a factor affecting the cosmic 6.2 micron emission band

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Wdowiak, T. J.; Harrison, J. G.

    2001-01-01

    While many of the characteristics of the cosmic unidentified infrared (UIR) emission bands observed for interstellar and circumstellar sources within the Milky Way and other galaxies, can be best attributed to vibrational modes of the variants of the molecular family known as polycyclic aromatic hydrocarbons (PAH), there are open questions that need to be resolved. Among them is the observed strength of the 6.2 micron (1600 cm(-1)) band relative to other strong bands, and the generally low strength for measurements in the laboratory of the 1600 cm(-1) skeletal vibration band of many specific neutral PAH molecules. Also, experiments involving laser excitation of some gas phase neutral PAH species while producing long lifetime state emission in the 3.3 micron (3000 cm(-1)) spectral region, do not result in significant 6.2 micron (1600 cm(-1)) emission. A potentially important variant of the neutral PAH species, namely hydrogenated-PAH (H(N)-PAH) which exhibit intriguing spectral correlation with interstellar and circumstellar infrared emission and the 2175 A extinction feature, may be a factor affecting the strength of 6.2 micron emission. These species are hybrids of aromatic and cycloalkane structures. Laboratory infrared absorption spectroscopy augmented by density function theory (DFT) computations of selected partially hydrogenated-PAH molecules, demonstrates enhanced 6.2 micron (1600 cm(-1)) region skeletal vibration mode strength for these molecules relative to the normal PAH form. This along with other factors such as ionization or the incorporation of nitrogen or oxygen atoms could be a reason for the strength of the cosmic 6.2 micron (1600 cm(-1)) feature.

  9. Large-amplitude, narrow-linewidth microwave emission in a dual free-layer MgO spin-torque oscillator

    SciTech Connect

    Nagasawa, Tazumi Kudo, Kiwamu; Suto, Hirofumi; Mizushima, Koichi; Sato, Rie

    2014-11-03

    Synchronized magnetization motion among the several magnetic layers composing a spin-torque oscillator (STO) is considered an effective way to improve spectral purity. To utilize this scheme in a MgO-based STO, we have fabricated a dual free-layer STO composed of a CoFeB free layer (FL), a MgO barrier layer, and a CoFe/Ru/CoFeB synthetic ferrimagnet free layer (SyF). Unlike conventional MgO-based STOs, this structure does not have an antiferromagnetic layer that pins the SyF, leading to a large-amplitude oscillation of magnetization in the SyF. The dual free-layer STO exhibits coherent microwave emissions with power spectrum density beyond 800 nW/GHz and narrow spectral linewidth below 5 MHz (Q-factor ≈ 2000). Macrospin simulations confirm that the stable oscillations originate from the synchronized magnetization motion of the FL and the SyF through dynamical dipolar coupling.

  10. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Doi, Akihiro; Asada, Keiichi; Inoue, Makoto; Fujisawa, Kenta; Nagai, Hiroshi; Hagiwara, Yoshiaki; Wajima, Kiyoaki

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  11. DETECTION OF K{sub S} -BAND THERMAL EMISSION FROM WASP-3b

    SciTech Connect

    Zhao Ming; Wright, Jason; Milburn, Jennifer; Hinkley, Sasha; Barman, Travis; Swain, Mark R.; Monnier, John D.

    2012-03-20

    We report the detection of thermal emission from the hot Jupiter WASP-3b in the K{sub S} band, using a newly developed guiding scheme for the WIRC instrument at the Palomar Hale 200 inch telescope. Our new guiding scheme has improved the telescope guiding precision by a factor of {approx}5-7, significantly reducing the correlated systematics in the measured light curves. This results in the detection of a secondary eclipse with depth of 0.181% {+-} 0.020% (9{sigma})-a significant improvement in WIRC's photometric precision and a demonstration of the capability of Palomar/WIRC to produce high-quality measurements of exoplanetary atmospheres. Our measured eclipse depth cannot be explained by model atmospheres with heat redistribution but favors a pure radiative equilibrium case with no redistribution across the surface of the planet. Our measurement also gives an eclipse phase center of 0.5045 {+-} 0.0020, corresponding to an ecos {omega} of 0.0070 {+-} 0.0032. This result is consistent with a circular orbit, although it also suggests that the planet's orbit might be slightly eccentric. The possible non-zero eccentricity provides insight into the tidal circularization process of the star-planet system, but might also have been caused by a second low-mass planet in the system, as suggested by a previous transit timing variation study. More secondary eclipse observations, especially at multiple wavelengths, are necessary to determine the temperature-pressure profile of the planet's atmosphere and shed light on its orbital eccentricity.

  12. Evaluation of Terra and Aqua MODIS thermal emissive band response versus scan angle

    NASA Astrophysics Data System (ADS)

    Wenny, B. N.; Wu, A.; Madhavan, S.; Xiong, X.

    2014-10-01

    Terra and Aqua MODIS have operated near-continuously for over 14 and 12 years, respectively, and are key instruments for NASA's Earth Observing System. Observations from the 16 thermal emissive bands (TEB), covering wavelengths from 3.5 to 14.4 μm with a nadir spatial resolution of 1 km are used to regularly generate a variety of atmosphere, ocean and land science products. The TEB detectors are calibrated using scan-by-scan observations of an on-board blackbody (BB). The current response versus scan angle (RVS) of the scan mirror was derived using a spacecraft deep-space pitch maneuver for Terra MODIS and characterized during prelaunch for Aqua MODIS. Earth view (EV) data over the complete range of angles of incidence (AOI) can be used to evaluate the on-orbit performance of the TEB RVS over the mission lifetime. Three approaches for tracking the TEB RVS on-orbit using EV observations are formulated. The first approach uses the multiple daily observations of Dome C BT at different AOI and their trend relative to coincident measurements from a ground temperature sensor. The second approach uses brightness temperatures (BT) retrieved over the cloud-free ocean to derive the trends at 13 AOI over the mission lifetime. The third approach tracks the dn response (normalized to the BB AOI) across the full swath width for Antarctic granules with the Dome C site at nadir. The viability of the three approaches is assessed and the long-term stability of the TEB RVS for both MODIS instruments is determined.

  13. L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; va der Velde, R.; O'Neill, P. E.; Kim, E.; Lang, R. H.; Gish, T.

    2012-01-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle.

  14. Methane oxidation behind reflected shock waves: Ignition delay times measured by pressure and flame band emission

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Robertson, T. F.

    1986-01-01

    Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure trances enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 58.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microsecond should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 micro sec) for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.

  15. Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities

    NASA Technical Reports Server (NTRS)

    Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.

    1984-01-01

    A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.

  16. Effect of N2 and H2 plasma treatments on band edge emission of ZnO microrods

    PubMed Central

    Rodrigues, Joana; Holz, Tiago; Fath Allah, Rabie; Gonzalez, David; Ben, Teresa; Correia, Maria R.; Monteiro, Teresa; Costa, Florinda M.

    2015-01-01

    ZnO microrods were grown by laser assisted flow deposition technique in order to study their luminescence behaviour in the near band edge spectral region. Transmission electron microscopy analysis put in evidence the high crystallinity degree and microrod’s compositional homogeneity. Photoluminescence revealed a dominant 3.31 eV emission. The correlation between this emission and the presence of surface states was investigated by performing plasma treatments with hydrogen and nitrogen. The significant modifications in photoluminescence spectra after the plasma treatments suggest a connexion between the 3.31 eV luminescence and the surface related electronic levels. PMID:26027718

  17. Nightglow emissions of OH/X 2 pi/ - Comparison of theory and measurements in the /9-3/ band

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Rusch, D. W.; Liu, S. C.

    1978-01-01

    The visible airglow experiments on the Atmosphere Explorer C and E satellites have viewed the (9-3) band nightglow emission of the excited hydroxyl radical in the lower thermosphere at tropical latitudes. The surface brightnesses observed at similar local times vary by approximately a factor of 2. Comparison of the measurements with time-dependent photochemical calculations shows reasonable agreement and indicates that temporal changes in atmospheric transport processes are the most likely explanation of the nightglow variations.

  18. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure

    NASA Astrophysics Data System (ADS)

    Huang, Zhong-Mei; Huang, Wei-Qi; Liu, Shi-Rong; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke; Qin, Cao-Jian

    2016-04-01

    In our experiment, it was observed that the emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional (1D) structure. The results of experiment and calculation demonstrate that the uniaxial tensile strain in the (111) and (110) direction can efficiently transform Ge to a direct bandgap material with the bandgap energy useful for technological application. It is interested that under the tensile strain from Ge-GeSn layers on 1D structure in which the uniaxial strain could be obtained by curved layer (CL) effect, the two bandgaps EΓg and ELg in the (111) direction become nearly equal at 0.83 eV related to the emission of direct-gap band near 1500 nm in the experiments. It is discovered that the red-shift of the peaks from 1500 nm to 1600 nm occurs with change of the uniaxial tensile strain, which proves that the peaks come from the emission of direct-gap band.

  19. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure.

    PubMed

    Huang, Zhong-Mei; Huang, Wei-Qi; Liu, Shi-Rong; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke; Qin, Cao-Jian

    2016-01-01

    In our experiment, it was observed that the emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional (1D) structure. The results of experiment and calculation demonstrate that the uniaxial tensile strain in the (111) and (110) direction can efficiently transform Ge to a direct bandgap material with the bandgap energy useful for technological application. It is interested that under the tensile strain from Ge-GeSn layers on 1D structure in which the uniaxial strain could be obtained by curved layer (CL) effect, the two bandgaps EΓg and ELg in the (111) direction become nearly equal at 0.83 eV related to the emission of direct-gap band near 1500 nm in the experiments. It is discovered that the red-shift of the peaks from 1500 nm to 1600 nm occurs with change of the uniaxial tensile strain, which proves that the peaks come from the emission of direct-gap band. PMID:27097990

  20. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure

    PubMed Central

    Huang, Zhong-Mei; Huang, Wei-Qi; Liu, Shi-Rong; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke; Qin, Cao-Jian

    2016-01-01

    In our experiment, it was observed that the emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional (1D) structure. The results of experiment and calculation demonstrate that the uniaxial tensile strain in the (111) and (110) direction can efficiently transform Ge to a direct bandgap material with the bandgap energy useful for technological application. It is interested that under the tensile strain from Ge-GeSn layers on 1D structure in which the uniaxial strain could be obtained by curved layer (CL) effect, the two bandgaps EΓg and ELg in the (111) direction become nearly equal at 0.83 eV related to the emission of direct-gap band near 1500 nm in the experiments. It is discovered that the red-shift of the peaks from 1500 nm to 1600 nm occurs with change of the uniaxial tensile strain, which proves that the peaks come from the emission of direct-gap band. PMID:27097990