Sample records for narrow spectral line

  1. Temporal intensity interferometry for characterization of very narrow spectral lines

    NASA Astrophysics Data System (ADS)

    Tan, P. K.; Kurtsiefer, C.

    2017-08-01

    Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.

  2. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito

  3. Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bo; Tong, Xin; Jiang, Chenyang

    2015-06-05

    In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.

  4. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less

  5. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  6. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  7. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applicationsmore » and other topics in quantum electronics)« less

  8. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  9. Spectral line narrowing in PPLN OPO devices for 1-μm wavelength doubling

    NASA Astrophysics Data System (ADS)

    Perrett, Brian J.; Terry, Jonathan A. C.; Mason, Paul D.; Orchard, David A.

    2004-12-01

    One route to generating mid-infrared (mid-IR) radiation is through a two-stage non-linear conversion process from the near-IR, exploiting powerful neodymium lasers operating at wavelengths close to 1 μm. In the first stage of this process non-linear conversion within a degenerate optical parametric oscillator (OPO) is used to double the wavelength of the 1 μm laser. The resultant 2 μm radiation is then used to pump a second OPO, based on a material such as ZGP, for conversion into the 3 to 5 μm mid-IR waveband. Periodically poled lithium niobate (PPLN) is a useful material for conversion from 1 to 2 μm due to its high non-linear coefficient (deff ~ 16 pm/V) and the long crystal lengths available (up to 50 mm). Slope efficiencies in excess of 40% have readily been achieved using a simple plane-plane resonator when pumped at 10 kHz with 3.5 mJ pulses from a 1.047 μm Nd:YLF laser. However, the OPO output was spectrally broad at degeneracy with a measured full-width-half-maximum (FWHM) linewidth of approximately 65 nm. This output linewidth is significantly broader than the spectral acceptance bandwidth of ZGP for conversion into the mid-IR. In this paper techniques for spectral narrowing the output from a degenerate PPLN OPO are investigated using two passive elements, a diffraction grating and an air spaced etalon. Slope efficiencies approaching 20% have been obtained using the grating in a dog-leg cavity configuration producing spectrally narrow 2 μm output with linewidths as low as 2 nm. A grating-narrowed degenerate PPLN OPO has been successfully used to pump a ZGP OPO.

  10. Spectral Engineering of Slow Light, Cavity Line Narrowing, and Pulse Compression

    NASA Astrophysics Data System (ADS)

    Sabooni, Mahmood; Li, Qian; Rippe, Lars; Mohan, R. Krishna; Kröll, Stefan

    2013-11-01

    More than 4 orders of magnitude of cavity-linewidth narrowing in a rare-earth-ion-doped crystal cavity, emanating from strong intracavity dispersion caused by off-resonant interaction with dopant ions, is demonstrated. The dispersion profiles are engineered using optical pumping techniques creating significant semipermanent but reprogrammable changes of the rare-earth absorption profiles. Several cavity modes are shown within the spectral transmission window. Several possible applications of this phenomenon are discussed.

  11. Acquisition and visualization techniques for narrow spectral color imaging.

    PubMed

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  12. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  13. Narrow Quasar Absorption Lines and the History of the Universe

    NASA Astrophysics Data System (ADS)

    Liebscher, Dierck-Ekkehard

    In order to get an estimation of the parameters of the cosmological model the statistics of narrow absorption lines in quasar spectra is evaluated. To this end a phenomenological model of the evolution of the corresponding absorbers in density, size, number and dimension is presented and compared with the observed evolution in the spectral density of the lines and their column density seen in the equivalent width. In spite of the wide range of possible models, the Einstein-deSitter model is shown to be unlikely because of the implied fast evolution in mass.

  14. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    NASA Astrophysics Data System (ADS)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  15. A TALE OF TWO NARROW-LINE REGIONS: IONIZATION, KINEMATICS, AND SPECTRAL ENERGY DISTRIBUTIONS FOR A LOCAL PAIR OF MERGING OBSCURED ACTIVE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting

    2016-05-20

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (∼23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirmmore » the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton . These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”.« less

  16. Universal Representation of the H-like Spectral Line Shapes

    NASA Astrophysics Data System (ADS)

    Bureyeva, L.

    2009-05-01

    A universal approach for the calculation of Rydberg atom line shapes in plasmas is developed. It is based on analytical formulas for the intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principal quantum numbers n, n'≫1, with Δ n = n-n'≪n, and on the Frequency Fluctuation Model (FFM) to account of electron and ion thermal motion effects. The theory allows to describe a transition from the static to the impact broadening domains for every hydrogen spectral line. A new approach to extremely fast line shape calculations with account of charged particle dynamic effect was proposed. The approach is based on the close analogy between the static-impact broadening transition in the spectral line shape theory and the Doppler-Lorentz broadening in the Dicke narrowing effect theory. The precision of the new approach was tested by the comparison of hydrogen-alpha and beta line shapes calculations with the FFM results. The excellent agreement was discovered, the computer time decreased two orders of magnitudes as compared with the FFM.

  17. All-optical laser spectral narrowing and line fixing at atomic absorption transition by injection competition and gain knock-down techniques

    NASA Astrophysics Data System (ADS)

    Gacheva, Lazarina I.; Deneva, Margarita A.; Kalbanov, Mihail H.; Nenchev, Marin N.

    2008-12-01

    We present two original, all optical techniques, to produce a narrowline laser light, fixed at the frequency of a chosen reference atomic absorption transition. The first type of systems is an essential improvement of our method 3,4 for laser spectral locking using a control by two frequency scanned, competitive injections with disturbed power ratio by the absorption at the reference line. The new development eliminates the narrowing limiting problem, related with the fixed laser longitudinal mode structure. We have proposed an original new technique for continuously tunable single mode laser operation in combination with synchronously and equal continuous tuning of the modes of the amplifier. By adapting the laser differential rate equations, the system is analyzed theoretically in details and is shown its feasibility. The results are in agreement with previous our experiments. The essential advantage, except simplicity of realization, is that the laser line can be of order of magnitude and more narrowed than the absorption linewidth. The second system is based of the laser amplifier arrangement with a gain knock-down from the competitive frequency scanned pulse, except at the wavelength of the desired absorption reference line. The essential advantages of the last system are that the problem of fixing laser mode presence is naturally avoided. The theoretical modeling and the numerical investigations show the peculiarity and advantages of the system proposed. The developed approaches are of interest for applications in spectroscopy, in DIAL monitoring of the atmospheric pollutants, in isotope separation system and potentially - for creation of simple, all optical, frequency standards for optical communications. Also, the continuously tunable single mode laser (and the combination with the simultaneously tunable amplifier) presents itself the interest for many practical applications in spectroscopy, metrology, and holography. We compare the action and the

  18. Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    2000-01-01

    The primary work during this year has been the analysis and interpretation of our HST spectra from two extreme Narrow-line Seyfert 1 galaxies (NLS1s) Infrared Astronomy Satellite (IRAS) 13224-3809 and 1H 0707-495. This work has been presented as an invited talk at the workshop entitled "Observational and theoretical progress in the Study of Narrow-line Seyfert 1 Galaxies" held in Bad Honnef, Germany December 8-11, as a contributed talk at the January 2000 AAS meeting in Atlanta, Georgia, and as a contributed talk at the workshop "Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring" held at Goddard Space Flight Center June 20-22, 2000.

  19. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  20. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    NASA Technical Reports Server (NTRS)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; hide

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  1. Two active states of the narrow-line gamma-ray-loud AGN GB 1310+487

    DOE PAGES

    Sokolovsky, K. V.

    2014-04-28

    Context. Previously unremarkable, the extragalactic radio source GB1310+487 showed a γ-ray flare on 2009 November 18, reaching a daily flux of ~ 10 -6 photons cm -2 s -1 at energies E > 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object’s radio-to-GeV spectral energy distribution (SED) during and after the prominent γ-ray flare with the aim of determining the naturemore » of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at γ-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH andWISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The γ-ray/radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and γ-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during γ-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the γ-ray flux and spectral index, with the hardest spectrum observed during the brightest γ-ray state. The γ-ray flares occurred before and during a slow rising trend in the radio, but no direct association between γ-ray and radio flares could be established. Conclusions. If the

  2. Connections between Narrow Line Seyfert 1 Galaxies and Stellar Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    Negoro, H.

    Connections between narrow line Seyfert 1 galaxies (NLS1s) and black hole candidates are described. It has been pointed out that X-ray properties of NLS1s are simlar to those of stellar black hole candidates (BHCs). It is, however, not clear that NLS1s are corresponding to what `state' in the BHCs. Recently, rapid spectral variations during X-ray flares in a few NLS1s have been discovered using ASCA data. The properties of the spectral variations are very similar to those seen in stellar black hole candidates in the hard state. Such temporal variability accompanying the spectral change has not been recognized in black hole candidates in other states. These and recent theoretical progress based on a time variability model of the BHCs in the hard state imply that the advection plays an important role in the accretion process not only in the BHCs in the hard state, but also in NLS1s.

  3. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  4. Visible and Near-Infrared Spectroscopy of Seyfert 1 and Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, Alberto; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-01-01

    This paper studies the continuum and emission-line properties of a sample composed of 16 normal Seyfert 1 and seven narrow-line Seyfert 1 (NLS1) galaxies using optical and near-IR CCD spectroscopy. The continuum emission of the galaxies can be described in terms of a combination of stellar population, a nonstellar continuum of power-law form, and Fe II emission. A significative difference in the optical spectral index between NLS1's and normal Seyfert 1's is observed; the latter is steeper. Most NLS1's show Fe II/Hβ ratios larger than those observed in the other Seyfert 1's. In the IRAS band, both groups of galaxies have very similar properties. We have searched for the presence of optically thin gas in the broad-line region (BLR) of the galaxies by comparing the broad O I λ8446 and Hα emission-line profiles. Our analysis show that in the NLS1's, both profiles are similar in shape and width. This result contradicts the hypothesis of thin gas emission in the high-velocity part of the BLR to explain the ``narrowness'' of broad optical permitted lines in these objects. Evidence of narrow O I λ8446 emission is found in six galaxies of our sample, implying that this line is not restricted to a pure BLR phenomenon. In the narrow-line region, we find similar luminosities in the permitted and high-ionization lines of NLS1's and normal Seyfert 1's. However, low-ionization lines such as [O I] λ6300, [O II] λ3727, and [S II] λλ6717, 6731 are intrinsically less luminous in NLS1's. Physical properties derived from density- and temperature-sensitive line ratios suggest that the [O II] and [S II] emitting zones are overlapping in normal Seyfert 1's and separated in NLS1's. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.

  5. [Study on the Spectral Characteristics of the Narrow-Band Filter in SHS].

    PubMed

    Luo, Hai-yan; Shi, Hai-liang; Li, Zhi-wei; Li, Shuang; Xiong, Wei; Hong, Jin

    2015-04-01

    The spectral response of spatial heterodyne spectroscopy (SHS) is determined by the spectrum property of narrow-band filter. As discussed in previous studies, the symmetric heterodyned interferogram of high frequency waves modulated by SHS and lack of sample lead to spectral confusion, which is associated with the true and ghost spectra. Because of the deviation from theoretical index of narrow-band filter in the process of coating, the boarded spectral response and middle wave shift are presented, and conditions in the theoretical Littrow wavelength made the effective wavelength range of SHS reduced. According to the measured curve of filter, a new wavenumber of zero spatial frequency can be reset by tunable laser, and it is easy for SHS to improve the spectral aliasing distortion. The results show that it is utilized to the maximum extent of the effective bandwidth by adjusting the grating angle of rotation to change the Littrow wavelength of the basic frequency, and the spectral region increased to 14.9 nm from original 12.9 nm.

  6. NARROW-LINE X-RAY-SELECTED GALAXIES IN THE CHANDRA -COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, E.; Watson, M. G.; Elvis, M.

    2016-04-20

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg{sup 2} of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10{sup −16} erg cm{sup −2} s{sup −1} in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra -COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of thismore » sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ 3727, [Ne iii] λ 3869, H β , [O iii] λλ 4959, 5007, H α , and [N ii] λλ 6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.« less

  7. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, whichmore » leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10 -5 .« less

  8. A search for spectral lines in gamma-ray bursts using TGRS

    NASA Astrophysics Data System (ADS)

    Kurczynski, P.; Palmer, D.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Madden, N. W.; Pehl, R. H.

    1998-05-01

    We present the results of an ongoing search for narrow spectral lines in gamma-ray burst data. TGRS, the Transient Gamma-Ray Spectrometer aboard the Wind satellite is a high energy-resolution Ge device. Thus it is uniquely situated among the array of space-based, burst sensitive instruments to look for line features in gamma-ray burst spectra. Our search strategy adopts a two tiered approach. An automated `quick look' scan searches spectra for statistically significant deviations from the continuum. We analyzed all possible time accumulations of spectra as well as individual spectra for each burst. Follow-up analysis of potential line candidates uses model fitting with F-test and χ2 tests for statistical significance.

  9. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  10. Broadband spectral study of the jet-disc emission in the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab

    2018-06-01

    We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.

  11. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.

    PubMed

    Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H

    2009-12-07

    We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.

  12. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers

    NASA Astrophysics Data System (ADS)

    Duan, J.; Huang, H.; Lu, Z. G.; Poole, P. J.; Wang, C.; Grillot, F.

    2018-03-01

    This paper reports on the spectral linewidth of InAs/InP quantum dot distributed feedback lasers. Owing to a low inversion factor and a low linewidth enhancement factor, a narrow spectral linewidth of 160 kHz (80 kHz intrinsic linewidth) with a low sensitivity to temperature is demonstrated. When using anti-reflection coatings on both facets, narrow linewidth operation is extended to high powers, believed to be due to a reduction in the longitudinal spatial hole burning. These results confirm the high potential of quantum dot lasers for increasing transmission capacity in future coherent communication systems.

  13. Investigating powerful jets in radio-loud narrow-line Seyfert 1s

    DOE PAGES

    Orienti, M.; D'Ammando, F.; Larsson, J.; ...

    2015-09-14

    Here, we report results on multiband observations from radio to γ-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Furthermore, both sources show a core–jet structure on parsec scale, while they are unresolved at the arcsecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good γ-ray source candidates. Fermi-Large Area Telescope detected γ-ray emission only from PKS 2004-447, with a γ-ray luminosity comparable to that observed in blazars. There was no γ-ray emission observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of themore » spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM–Newton in 2012 are described by a single power law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.« less

  14. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  15. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1980-01-01

    A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.

  16. The multi-spectral line-polarization MSE system on Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M.; Scott, S. D.

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less

  17. The multi-spectral line-polarization MSE system on Alcator C-Mod

    DOE PAGES

    Mumgaard, R. T.; Scott, S. D.; Khoury, M.

    2016-08-17

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. Furthermore, all system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less

  18. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-03-01

    Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.

  19. The Radio-Loud Narrow-Line Quasar SDSS J172206.03+565451.6

    NASA Astrophysics Data System (ADS)

    Komossa, Stefanie; Voges, Wolfgang; Adorf, Hans-Martin; Xu, Dawei; Mathur, Smita; Anderson, Scott F.

    2006-03-01

    We report identification of the radio-loud narrow-line quasar SDSS J172206.03+565451.6, which we found in the course of a search for radio-loud narrow-line active galactic nuclei (AGNs). SDSS J172206.03+565451.6 is only about the fourth securely identified radio-loud narrow-line quasar and the second-most radio loud, with a radio index R1.4~100-700. Its black hole mass, MBH~=(2-3)×107 Msolar estimated from Hβ line width and 5100 Å luminosity, is unusually small given its radio loudness, and the combination of mass and radio index puts SDSS J172206.03+565451.6 in a scarcely populated region of MBH-R diagrams. SDSS J172206.03+565451.6 is a classical narrow-line Seyfert 1-type object with FWHMHβ~=1490 km s-1, an intensity ratio of [O III]/Hβ~=0.7, and Fe II emission complexes with Fe II λ4570/Hβ~=0.7. The ionization parameter of its narrow-line region, estimated from the line ratio [O II]/[O III], is similar to Seyferts, and its high ratio of [Ne V]/[Ne III] indicates a strong EUV-to-soft X-ray excess. We advertise the combined usage of [O II]/[O III] and [Ne V]/[Ne III] diagrams as a useful diagnostic tool to estimate ionization parameters and to constrain the EUV-soft X-ray continuum shape relatively independently from other parameters.

  20. Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7

    NASA Astrophysics Data System (ADS)

    Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.

    2012-12-01

    Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.

  1. Extended Narrow-Line Region in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Congiu, Enrico; Contini, Marcella.; Ciroi, Stefano; Cracco, Valentina; Di Mille, Francesco; Berton, Marco; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-10-01

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modelling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as a) the contribution of shocks in ionizing the high velocity gas, b) the complex kinematics showed by the profile of the emission lines, c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  2. PROBING THE PHYSICS OF NARROW LINE REGIONS IN ACTIVE GALAXIES. II. THE SIDING SPRING SOUTHERN SEYFERT SPECTROSCOPIC SNAPSHOT SURVEY (S7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa

    2015-03-15

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine themore » Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.« less

  3. Searching for Variability of NV Intrinsic Narrow Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane; Ganguly, Rajib

    2018-01-01

    The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000 km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 75 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.

  4. High speed parallel spectral-domain OCT using spectrally encoded line-field illumination

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo

    2018-01-01

    We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.

  5. Spectrally-Narrowed Emissions from Organic Crystals Having a One-Dimensional Grating on Their Surface.

    PubMed

    Yamamoto, Hiroyuki; Obara, Keiji; Higashihara, Shohei; Obama, Yuki; Yamao, Takeshi; Hotta, Shu

    2016-04-01

    We have succeeded in directly engraving one-dimensional diffraction gratings on the surface of organic semiconducting oligomer crystals by using focused ion beam (FIB) lithography and laser ablation (LA) methods. The FIB method enabled us to shape the gratings with varying periods down to ~150 nm. With the LA method a large-area grating with a ~500-nm period was readily accessible. All the above crystals indicated spectrally-narrowed emission (SNE) lines even in the case of shallow groove depths ~2-4 nm. In particular, we definitively observed the SNE pertinent to the first-order diffraction with the crystal having the diffraction grating of a 148.3-nm average period. The present results indicate utility of the built-in gratings that can directly be fabricated on the surface of the crystals.

  6. An Extreme, Blueshifted Iron Line in the Narrow Line Seyfert 1 PG 1402+261

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-01-01

    We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.

  7. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms.

    PubMed

    Berglund, Andrew J; Hanssen, James L; McClelland, Jabez J

    2008-03-21

    Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin polarized with temperatures reaching below 2 muK. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.

  8. An XMM-Newton Study of the Bright Ultrasoft Narrow-Line Quasar NAB 0205+024

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    The broad-band X-ray continuum of NAB 0205424 is well constrained due to the excellent photon statistics obtained (about 97,700 counts), and its impressive soft X-ray excess is clearly apparent. The hard X-ray power law has become notably steeper than when NAB 0205424 was observed with ASCA, attesting to the presence of significant X-ray spectral variability. A strong and broad emission feature is detected from about 5 to 6.4 keV, and we have modeled this as a relativistic line emitted close to the black hole from a narrow annulus of the accretion disk. Furthermore, a strong X-ray flare is detected with a hard X-ray spectrum; this flare may be responsible for illuminating the inner line-emitting part of the accretion disk. The combined observational results can be broadly interpreted in terms of the "thundercloud model proposed by Merloni & Fabian (2001).

  9. An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.

  10. Narrow-line Seyfert 1 galaxies at hard X-rays

    NASA Astrophysics Data System (ADS)

    Panessa, F.; de Rosa, A.; Bassani, L.; Bazzano, A.; Bird, A.; Landi, R.; Malizia, A.; Miniutti, G.; Molina, M.; Ubertini, P.

    2011-11-01

    Narrow-line Seyfert 1 (NLSy1) galaxies are a peculiar class of type 1 active galactic nuclei (broad-line Seyfert 1 galaxies, hereinafter BLSy1). The X-ray properties of individual objects belonging to this class are often extreme and associated with accretion at high Eddington ratios. Here, we present a study on a sample of 14 NLSy1 galaxies selected at hard X-rays (>20 keV) from the fourth INTEGRAL/IBIS catalogue. The 20-100 keV IBIS spectra show hard-X-ray photon indices flatly distributed (Γ20-100 keV ranging from ˜1.3 to ˜3.6) with an average value of <Γ20-100 keV>= 2.3 ± 0.7, compatible with a sample of hard-X-ray BLSy1 average slopes. Instead, NLSy1 galaxies show steeper spectral indices with respect to BLSy1 galaxies when broad-band spectra are considered. Indeed, we combine XMM-Newton and Swift/XRT with INTEGRAL/IBIS data sets to obtain a wide energy spectral coverage (0.3-100 keV). A constraint on the high energy cut-off and on the reflection component is achieved only in one source, SWIFT J2127.4+5654 (Ecut-off˜ 50 keV, R= 1.0+0.5- 0.4). Hard-X-ray-selected NLSy1 galaxies do not display particularly strong soft excess emission, while absorption fully or partially covering the continuum is often measured as well as Fe line emission features. Variability is a common trait in this sample, both at X-rays and at hard X-rays. The fraction of NLSy1 galaxies in the hard-X-ray sky is likely to be ˜15 per cent, in agreement with estimates derived in optically selected NLSy1 samples. We confirm the association of NLSy1 galaxies with small black hole masses with a peak at 107 M⊙ in the distribution; however, hard-X-ray NLSy1 galaxies seem to occupy the lower tail of the Eddington ratio distribution of classical NLSy1 galaxies. Based on observations obtained with the INTEGRAL/IBIS, XMM-Newton and Swift/XRT.

  11. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1981-01-01

    A computer accessible catalogue of submillimeter, millimeter and microwave spectral lines in the frequency range between 0 and 3000 GHZ (i.e., wavelengths longer than 100 mu m) is presented which can be used a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (133 species) as new data appear. The catalogue is available as a magnetic tape recorded in card images and as a set of microfiche records.

  12. Reddening and He i{sup ∗} λ 10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng

    We report the detection of heavy reddening and the He i* λ 10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ 10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E ( B − V ) ∼ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those ofmore » narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ 10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.« less

  13. Coherent Optical Transients and Spectral Line Narrowing Phenomena in Four Wave Mixing Spectroscopies: Theoretical and Experimental Studies.

    NASA Astrophysics Data System (ADS)

    Dugan, Mark Allen

    1990-08-01

    The theoretical basis for new signal transients and spectral features generated in field correlated four wave mixing (4WM) spectroscopies is developed. Special attention is given to those signal responses that are sensitive to phase/amplitude correlation among the input driving fields and not simply their intensity correlation. Thus, the cases of incoherent broadband excitation and of coherent short pulsed excitation will be discussed and compared. Applications to the coherent Raman spectroscopies, both electronically nonresonant and fully resonant, are analyzed. Novel interferometric oscillatory behavior is exposed in terms of field-matter detuning beats and matter-matter bi-level and tri-level quantum beats. In addition new detuning resonances are found that have sub-material linewidths and lock onto the mode frequency of the driven chromophore. These spectral features are a member of a class of bichromophore resonant lineshapes arising from nonlinear mixing with correlated driving fields. The origin of such bichromophore resonances can be based on a coupling between two field-matter superposition states driven by correlated fields on separate chromophores. Analytic results are presented and modelled to anticipate the experimental results presented in a following chapter. The onset of resolvable homogeneous electronic memory is reported in room temperature solutions of dye molecules. A narrowing of the homogeneous linewidths with increasing concentration of these dye solutions is observed in sub-picosecond photon echo experiments. This effect is attributed to aggregation which results in a delocalization of the electronic states over several molecules. Ultra -fast spectral diffusion in these dye aggregates is observed in stimulated photon echo measurements. Aggregate bands, seen in the linear absorption spectrum only at high concentrations, can be probed in more dilute solutions with nonlinear four wave mixing.

  14. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1984-01-01

    This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10000 GHz (i.e., wavelengths longer than 30 micrometers). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue has been constructed using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (151 species) as new data appear. The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.

  15. The ordinary life of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Doi, A.; ...

    2013-06-03

    In this paper, we report on multifrequency observations of the γ-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036 performed from radio to γ-rays during 2008 August–2012 November by Fermi-Large Area Telescope (LAT), Swift (X-ray Telescope and Ultraviolet/Optical Telescope), Owens Valley Radio Observatory, Very Long Baseline Array (VLBA) and Very Large Array. No significant variability has been observed in γ-rays, with 0.1–100 GeV flux that ranged between (3–7) × 10 –8 ph cm –2 s –1 using 3-month time bins. The photon index of the LAT spectrum (Γ = 2.60 ± 0.06) and the apparent isotropic γ-ray luminosity (L0.1-100 GeV =more » 7.8 × 10 45 erg s –1) over 51 months are typical of a flat spectrum radio quasar. The radio spectral variability and the one-sided structure, in addition to the observed γ-ray luminosity, suggest a relativistic jet with a high Doppler factor. In contrast to SBS 0846+513, the VLBA at 15 GHz did not observe superluminal motion for PKS 1502+036. Despite having the optical characteristics typical of a narrow-line Seyfert 1 galaxy, radio and γ-ray properties of PKS 1502+036 are found to be similar to those of a blazar at the low end of the black hole mass distribution for blazars. As a result, this is in agreement with what has been found in the case of the other γ-ray emitting narrow-line Seyfert 1 SBS 0846+513.« less

  16. Narrow vs. Broad line Seyfert 1 galaxies: X-ray, optical and mid-infrared AGN characteristics

    NASA Astrophysics Data System (ADS)

    Lakićević, Maša; Popović, Luka Č.; Kovačević-Dojčinović, Jelena

    2018-05-01

    We investigated narrow line Seyfert 1 galaxies (NLS1s) at optical, mid-infrared (MIR) and X-ray wavelengths, comparing them to the broad line active galactic nuclei (BLAGNs). We found that black hole mass, coronal line luminosities, X-ray hardness ratio and X-ray, optical and MIR luminosities are higher for the BLAGNs than for NLS1s, while policyclic aromatic hydrocarbon (PAH) contribution and the accretion rates are higher for the NLS1s. Furthermore, we found some trends among spectral parameters that NLS1s have and BLAGNs do not have. The evolution of FWHM(Hβ) with the luminosities of MIR and coronal lines, continuum luminosities, PAH contribution, Hβ broad line luminosity, FWHM[O III] and EW(HβNLR), are important trends found for NLS1s. That may contribute to the insight that NLS1s are developing AGNs, growing their black holes, while their luminosities and FWHM(Hβ) consequently grow, and that BLAGNs are mature, larger objects of slower and/or different evolution. Black hole mass is related to PAH contribution only for NLS1s, which may suggest that PAHs are more efficiently destroyed in NLS1s.

  17. Tunable resonator-based devices for producing variable delays and narrow spectral linewidths

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)

    2006-01-01

    Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.

  18. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei

    2015-12-01

    Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow

  19. Cavity mode-width spectroscopy with widely tunable ultra narrow laser.

    PubMed

    Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman

    2013-12-02

    We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.

  20. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  1. Contamination of the 5394 Å spectral region by telluric lines

    NASA Astrophysics Data System (ADS)

    Vince, I.; Vince, O.

    2010-11-01

    The spectral region in the vicinity of 5394 Å contains three prominent photospheric spectral lines, which can be used as a solar plasma diagnostic tool. The occurrence of telluric lines in this region is a potential source of systematic and random errors in these solar spectral lines. The goal of our investigation was to determine the telluric line contamination of this interesting spectral region. Several series of high-resolution solar spectra within an interval of about 4 Å around the 5394 Å wavelength were observed at different zenith distances of the Sun. Comparison of these spectra has permitted identification of telluric lines in this spectral interval. The observations were carried out with the horizontal solar spectrograph of the Heliophysical Observatory in Debrecen. Telluric feature blending was identified in the blue and red wings of the Fe I 5393.2 Å line, and in the local continuum of the Mn I 5394.7 Å line. The blue wing of the Fe I 5395.2 Å line is contaminated by a weak telluric feature too. The red continuum of this line has a more prominent telluric contamination. A dozen of water vapor telluric lines that determined the observed telluric features were identified in this spectral interval. The profiles of three telluric lines that have a significant influence on both the profiles of solar spectral lines and the level of local continuum were derived, and the variation of their parameters (equivalent width and central depth) with air mass were analyzed.

  2. Handwritten text line segmentation by spectral clustering

    NASA Astrophysics Data System (ADS)

    Han, Xuecheng; Yao, Hui; Zhong, Guoqiang

    2017-02-01

    Since handwritten text lines are generally skewed and not obviously separated, text line segmentation of handwritten document images is still a challenging problem. In this paper, we propose a novel text line segmentation algorithm based on the spectral clustering. Given a handwritten document image, we convert it to a binary image first, and then compute the adjacent matrix of the pixel points. We apply spectral clustering on this similarity metric and use the orthogonal kmeans clustering algorithm to group the text lines. Experiments on Chinese handwritten documents database (HIT-MW) demonstrate the effectiveness of the proposed method.

  3. Spectral line polarimetry with a channeled polarimeter.

    PubMed

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  4. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  5. Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.

    1996-01-01

    We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in

  6. Submillimeter, millimeter, and microwave spectral line catalogue, revision 3

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.; Poynter, R. L.; Cohen, E. A.

    1992-01-01

    A computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10,000 GHz (i.e., wavelengths longer than 30 micrometers) is described. The catalog can be used as a planning or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, the lower state energy, and the quantum number assignment. This edition of the catalog has information on 206 atomic and molecular species and includes a total of 630,924 lines. The catalog was constructed by using theoretical least square fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalog will add more atoms and molecules and update the present listings as new data appear. The catalog is available as a magnetic data tape recorded in card images, with one card image per spectral line, from the National Space Science Data Center, located at Goddard Space Flight Center.

  7. Spectral properties of rf emission from high Tc films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, G.; Konopka, J.; Vitale, S.

    1990-09-15

    Spectral properties of rf radiation from intrinsic Josephson junctions in high {Tc} Y-Ba-Cu-O thin film have been measured in the frequency range up to 1.5 GHz. Narrow emission lines with the 3 dB bandwidth of the order of 20 MHz were detected indicating that Josephson clusters radiate coherently. Synchronization conditions are determined by dc current and external magnetic field bias. Frequency locking of radiation to external resonant circuit was also observed. Spectral line narrowing due to resonant lock was distinguished from the coherence-induced narrowing by different tuning properties of the emission line. Noncoherent Josephson radiation manifests itself as a broadbandmore » background noise increase. A pronounced 1/{ital f}-like tail sensitive to dc bias and magnetic field was observed in a low frequency part of the spectrum.« less

  8. Narrow Angle Wide Spectral Range Radiometer Design FEANICS/REEFS Radiometer Design Report

    NASA Technical Reports Server (NTRS)

    Camperchioli, William

    2005-01-01

    A critical measurement for the Radiative Enhancement Effects on Flame Spread (REEFS) microgravity combustion experiment is the net radiative flux emitted from the gases and from the solid fuel bed. These quantities are measured using a set of narrow angle, wide spectral range radiometers. The radiometers are required to have an angular field of view of 1.2 degrees and measure over the spectral range of 0.6 to 30 microns, which presents a challenging design effort. This report details the design of this radiometer system including field of view, radiometer response, radiometric calculations, temperature effects, error sources, baffling and amplifiers. This report presents some radiometer specific data but does not present any REEFS experiment data.

  9. Probing the Physics of Narrow-line Regions in Active Galaxies. IV. Full Data Release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Dopita, Michael A.; Shastri, Prajval; Davies, Rebecca; Hampton, Elise; Kewley, Lisa; Banfield, Julie; Groves, Brent; James, Bethan L.; Jin, Chichuan; Juneau, Stéphanie; Kharb, Preeti; Sairam, Lalitha; Scharwächter, Julia; Shalima, P.; Sundar, M. N.; Sutherland, Ralph; Zaw, Ingyin

    2017-09-01

    We present the second and final data release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). Data are presented for 63 new galaxies not included in the first data release, and we provide 2D emission-line fitting products for the full S7 sample of 131 galaxies. The S7 uses the WiFeS instrument on the ANU 2.3 m telescope to obtain spectra with a spectral resolution of R = 7000 in the red (540-700 nm) and R = 3000 in the blue (350-570 nm), over an integral field of 25 × 38 arcsec2 with 1 × 1 arcsec2 spatial pixels. The S7 contains both the largest sample of active galaxies and the highest spectral resolution of any comparable integral field survey to date. The emission-line fitting products include line fluxes, velocities, and velocity dispersions across the WiFeS field of view, and an artificial neural network has been used to determine the optimal number of Gaussian kinematic components for emission-lines in each spaxel. Broad Balmer lines are subtracted from the spectra of nuclear spatial pixels in Seyfert 1 galaxies before fitting the narrow lines. We bin nuclear spectra and measure reddening-corrected nuclear fluxes of strong narrow lines for each galaxy. The nuclear spectra are classified on optical diagnostic diagrams, where the strength of the coronal line [Fe vii] λ6087 is shown to be correlated with [O III]/Hβ. Maps revealing gas excitation and kinematics are included for the entire sample, and we provide notes on the newly observed objects.

  10. Intensity Variations of Narrow Bands of Solar UV Radiation during Descending Phases of SACs 21-23

    NASA Astrophysics Data System (ADS)

    Gigolashvili, M.; Kapanadze, N.

    2014-12-01

    The study of variations of four narrow bands of solar spectral irradiance (SSI) in the ultraviolet (UV) range for period 1981-2008 is presented. Observational data obtained by space-flight missions SORCE, UARS, SME and daily meanings of international sunspot number (ISN) have been used. The investigated data cover the decreasing phases of the solar activity cycles (SACs) 21, 22 and 23. We have revealed a peculiar behavior of intensity variability of some solar ultraviolet spectral lines originated in the solar chromospheres for period corresponding to the declining phase of the solar cycle 23. It is found that variability of emission of different solar spectral narrow bands (289.5 nm, 300.5 nm) does not agree equally well with ISN variability during decreasing phase of the solar activity cycle 23. The negative correlations between total solar irradiance and the solar spectral narrow bands of UV emission (298.5 nm, 300.5 nm) had been revealed. The existence of the negative correlation can be explained by the sensitivity of SSI of some emission lines to the solar global magnetic field.

  11. Relative spectral response calibration using Ti plasma lines

    NASA Astrophysics Data System (ADS)

    Teng, FEI; Congyuan, PAN; Qiang, ZENG; Qiuping, WANG; Xuewei, DU

    2018-04-01

    This work introduces the branching ratio (BR) method for determining relative spectral responses, which are needed routinely in laser induced breakdown spectroscopy (LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.

  12. Spectral Line Shapes. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoppi, M.; Ulivi, L.

    1997-02-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple{minus}free and ultra{minus}fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction{minus}induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energymore » Science and Technology database.(AIP)« less

  13. Narrow linewidth operation of a spectral beam combined diode laser bar.

    PubMed

    Zhu, Zhanda; Jiang, Menghua; Cheng, Siqi; Hui, Yongling; Lei, Hong; Li, Qiang

    2016-04-20

    Our experiment is expected to provide an approach for realizing ultranarrow linewidth for a spectral beam combined diode laser bar. The beams of a diode laser bar are combined in a fast axis after a beam transformation system. With the help of relay optics and a transform lens with a long focal length of 1.5 m, the whole wavelength of a spectral combined laser bar can be narrowed down to 0.48 nm from more than 10 nm. We have achieved 56.7 W cw from a 19-element single bar with an M2 of 1.4  (in horizontal direction)×11.6  (in vertical direction). These parameters are good evidence that all the beams from the diode laser bar are combined together to increase the brightness.

  14. Microwave spectral line listing

    NASA Technical Reports Server (NTRS)

    White, W. F., Jr.

    1975-01-01

    The frequency, intensity, and identification of 9615 spectral lines belonging to 75 molecules are tabulated in order of increasing frequency. Measurements for all 75 molecules were made in the frequency range from 26500 to 40000 MHz by a computer controlled spectrometer. Measurements were also made in the 18000 to 26500 MHz range for some of the molecules.

  15. Probing the Physics of Narrow-line Regions in Active Galaxies. IV. Full Data Release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Adam D.; Dopita, Michael A.; Davies, Rebecca

    We present the second and final data release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). Data are presented for 63 new galaxies not included in the first data release, and we provide 2D emission-line fitting products for the full S7 sample of 131 galaxies. The S7 uses the WiFeS instrument on the ANU 2.3 m telescope to obtain spectra with a spectral resolution of R  = 7000 in the red (540–700 nm) and R  = 3000 in the blue (350–570 nm), over an integral field of 25 × 38 arcsec{sup 2} with 1 × 1 arcsec{sup 2} spatial pixels. The S7 contains bothmore » the largest sample of active galaxies and the highest spectral resolution of any comparable integral field survey to date. The emission-line fitting products include line fluxes, velocities, and velocity dispersions across the WiFeS field of view, and an artificial neural network has been used to determine the optimal number of Gaussian kinematic components for emission-lines in each spaxel. Broad Balmer lines are subtracted from the spectra of nuclear spatial pixels in Seyfert 1 galaxies before fitting the narrow lines. We bin nuclear spectra and measure reddening-corrected nuclear fluxes of strong narrow lines for each galaxy. The nuclear spectra are classified on optical diagnostic diagrams, where the strength of the coronal line [Fe vii] λ 6087 is shown to be correlated with [O iii]/H β . Maps revealing gas excitation and kinematics are included for the entire sample, and we provide notes on the newly observed objects.« less

  16. Rapid trench initiated recrystallization and stagnation in narrow Cu interconnect lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Brendan B.; Rizzolo, Michael; Prestowitz, Luke C.

    2015-10-26

    Understanding and ultimately controlling the self-annealing of Cu in narrow interconnect lines has remained a top priority in order to continue down-scaling of back-end of the line interconnects. Recently, it was hypothesized that a bottom-up microstructural transformation process in narrow interconnect features competes with the surface-initiated overburden transformation. Here, a set of transmission electron microscopy images which captures the grain coarsening process in 48 nm lines in a time resolved manner is presented, supporting such a process. Grain size measurements taken from these images have demonstrated that the Cu microstructural transformation in 48 nm interconnect lines stagnates after only 1.5 h atmore » room temperature. This stubborn metastable structure remains stagnant, even after aggressive elevated temperature anneals, suggesting that a limited internal energy source such as dislocation content is driving the transformation. As indicated by the extremely low defect density found in 48 nm trenches, a rapid recrystallization process driven by annihilation of defects in the trenches appears to give way to a metastable microstructure in the trenches.« less

  17. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Kenneth Paul

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonancemore » (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.« less

  18. Simulator spectral characterization using balloon calibrated solar cells with narrow band pass filters

    NASA Technical Reports Server (NTRS)

    Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.

    1981-01-01

    The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.

  19. Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines

    NASA Astrophysics Data System (ADS)

    Kornbluth, Y. S.; Mathews, R. H.; Parameswaran, L.; Racz, L. M.; Velásquez-García, L. F.

    2018-04-01

    We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism is modelled via COMSOL Multiphysics simulations and validated with experiments. A microplasma sputter head with gold target is constructed and used to deposit imprints with minimum feature sizes as narrow as 9 µm, roughness as small as 55 nm, and electrical resistivity as low as 1.1 µΩ · m.

  20. The Correlated Variations of {\\rm{C}}\\,{\\rm{IV}} Narrow Absorption Lines and Quasar Continuum

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Pang, Ting-Ting; He, Bing; Huang, Yong

    2018-06-01

    We assemble 207 variable quasars from the Sloan Digital Sky Survey, all with at least 3 observations, to analyze C IV narrow absorption doublets, and obtain 328 C IV narrow absorption line systems. We find that 19 out of 328 C IV narrow absorption line systems were changed by | {{Δ }}{W}rλ 1548| ≥slant 3{σ }{{Δ }{W}rλ 1548} on timescales from 15.9 to 1477 days at rest-frame. Among the 19 obviously variable C IV systems, we find that (1) 14 systems have relative velocities {\\upsilon }r> 0.01c and 4 systems have {\\upsilon }r> 0.1c, where c is the speed of light; (2) 13 systems are accompanied by other variable C IV systems; (3) 9 systems were changed continuously during multiple observations; and (4) 1 system with {\\upsilon }r = 16,862 km s‑1 was enhanced by {{Δ }}{W}rλ 1548=2.7{σ }{{Δ }{W}rλ 1548} in 0.67 day at rest-frame. The variations of absorption lines are inversely correlated with the changes in the ionizing continuum. We also find that large variations of C IV narrow absorption lines are form differently over a short timescale.

  1. SBS 0846+513: a New Gamma-ray Emitting Narrow-line Seyfert 1 Galaxy

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; hide

    2012-01-01

    We report Fermi-LAT observations of the radio-loud AGN SBS 0846+513 (z=0.5835), optically classified as a Narrow-Line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at ?-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular a strong gamma-ray flare was observed in 2011 June reaching an isotropic ?-ray luminosity (0.1-300 GeV) of 1.0×10(sup 48) erg s(sup -1), comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in gamma rays. An apparent superluminal velocity of (8.2+/-1.5)c in the jet was inferred from 2011-2012 VLBA images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and gamma-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  2. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our

  3. Simple Spectral Lines Data Model Version 1.0

    NASA Astrophysics Data System (ADS)

    Osuna, Pedro; Salgado, Jesus; Guainazzi, Matteo; Dubernet, Marie-Lise; Roueff, Evelyne; Osuna, Pedro; Salgado, Jesus

    2010-12-01

    This document presents a Data Model to describe Spectral Line Transitions in the context of the Simple Line Access Protocol defined by the IVOA (c.f. Ref[13] IVOA Simple Line Access protocol) The main objective of the model is to integrate with and support the Simple Line Access Protocol, with which it forms a compact unit. This integration allows seamless access to Spectral Line Transitions available worldwide in the VO context. This model does not provide a complete description of Atomic and Molecular Physics, which scope is outside of this document. In the astrophysical sense, a line is considered as the result of a transition between two energy levels. Under the basis of this assumption, a whole set of objects and attributes have been derived to define properly the necessary information to describe lines appearing in astrophysical contexts. The document has been written taking into account available information from many different Line data providers (see acknowledgments section).

  4. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  5. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    NASA Astrophysics Data System (ADS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  6. Simultaneous NuSTAR and XMM-Newton 0.5-80 KeV Spectroscopy of the Narrow-Line Seyfert 1 Galaxy SWIFT J2127.4+5654

    NASA Technical Reports Server (NTRS)

    Marinucci, A.; Matt, G.; Kara, E.; Miniutti, G.; Elvis, M.; Arevalo, P.; Ballantyne, D. R.; Balokovic, M.; Bauer, F.; Brenneman, L.; hide

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 kiloseconds performed during three XMM-Newton orbits. We detect a relativistic broadened iron K-alpha line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of a = 0.58 (sup +0.11) (sub -0.17). The intrinsic spectrum is steep (gamma = 2.08 plus or minus 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy (E (sub c) = 108 (sup +11) (sub -10) kiloelectronvolts) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10-20 radius of gyration. These timing results independently support an intermediate black hole spin and a compact corona.

  7. SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine

    NASA Astrophysics Data System (ADS)

    Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C.; Burton, M.; Cunningham, M. R.; Dale, J. E.; Ginsburg, A.; Immer, K.; Jones, P. A.; Kendrew, S.; Mills, E. A. C.; Molinari, S.; Moore, T. J. T.; Ott, J.; Pillai, T.; Rathborne, J.; Schilke, P.; Schmiedeke, A.; Testi, L.; Walker, D.; Walsh, A.; Zhang, Q.

    2016-01-01

    The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.

  8. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs

    NASA Astrophysics Data System (ADS)

    Ferdous, Fahmida; Miao, Houxun; Leaird, Daniel E.; Srinivasan, Kartik; Wang, Jian; Chen, Lei; Varghese, Leo Tom; Weiner, Andrew M.

    2011-12-01

    Recently, on-chip comb generation methods based on nonlinear optical modulation in ultrahigh-quality-factor monolithic microresonators have been demonstrated, where two pump photons are transformed into sideband photons in a four-wave-mixing process mediated by Kerr nonlinearity. Here, we investigate line-by-line pulse shaping of such combs generated in silicon nitride ring resonators. We observe two distinct paths to comb formation that exhibit strikingly different time-domain behaviours. For combs formed as a cascade of sidebands spaced by a single free spectral range that spread from the pump, we are able to compress stably to nearly bandwidth-limited pulses. This indicates high coherence across the spectra and provides new data on the high passive stability of the spectral phase. For combs where the initial sidebands are spaced by multiple free spectral ranges that then fill in to give combs with single free-spectral-range spacing, the time-domain data reveal partially coherent behaviour.

  9. Diagnosing the Kinematics of the Tori in Active Galactic Nuclei with the Velocity-resolved Reverberation Mapping of the Narrow Iron K α Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yuan; Li Xiaobo, E-mail: liuyuan@ihep.ac.cn, E-mail: lixb@ihep.ac.cn

    The properties of the dusty tori in active galactic nuclei (AGNs) have been investigated in detail, mainly focusing on the geometry and components; however, the kinematics of the torus are still not clear. The narrow iron K α line at 6.4 keV is thought to be produced by the X-ray reflection from the torus. Thus, the velocity-resolved reverberation mapping of it is able to constrain the kinematics of the torus. Such effort is limited by the spectral resolution of current charged coupled device (CCD) detectors and should be possible with the microcalorimeter on the next generation X-ray satellite. In thismore » paper, we first construct the response functions of the torus under a uniform inflow, a Keplerian rotation, and a uniform outflow. Then the energy-dependent light curve of the narrow iron K α line is simulated according to the performance of the X-ray Integral Field Unit in Athena. Finally, the energy-dependent cross-correlation function is calculated to reveal the kinematic signal. According to our results, 100 observations with 5 ks exposure of each are sufficient to distinguish the above three velocity fields. Although the real geometry and velocity field of the torus could be more complex than we assumed, the present result proves the feasibility of the velocity-resolved reverberation mapping of the narrow iron K α line. The combination of the dynamics of the torus with those of the broad-line region and the host galaxy is instructive for the understanding of the feeding and feedback process of AGNs.« less

  10. Dependence of astigmatism, far-field pattern, and spectral envelope width on active layer thickness of gain guided lasers with narrow stripe geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamine, T.

    1984-06-15

    The effects of active layer thickness on the astigmatism, the angle of far-field pattern width parallel to the junction, and the spectral envelope width of a gain guided laser with a narrow stripe geometry have been investigated analytically and experimentally. It is concluded that a large level of astigmatism, a narrow far-field pattern width, and a rapid convergence of the spectral envelope width are inherent to the gain guided lasers with thin active layers.

  11. Stark broadening of several Bi IV spectral lines of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.

    2017-09-01

    The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.

  12. Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Covas, P. B.; Effler, A.; Goetz, E.; Meyers, P. M.; Neunzert, A.; Oliver, M.; Pearlstone, B. L.; Roma, V. J.; Schofield, R. M. S.; Adya, V. B.; Astone, P.; Biscoveanu, S.; Callister, T. A.; Christensen, N.; Colla, A.; Coughlin, E.; Coughlin, M. W.; Crowder, S. G.; Dwyer, S. E.; Eggenstein, H.-B.; Hourihane, S.; Kandhasamy, S.; Liu, W.; Lundgren, A. P.; Matas, A.; McCarthy, R.; McIver, J.; Mendell, G.; Ormiston, R.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Rao, K.; Riles, K.; Sammut, L.; Schlassa, S.; Sigg, D.; Strauss, N.; Tao, D.; Thorne, K. A.; Thrane, E.; Trembath-Reichert, S.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Austin, C.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bejger, M.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Blair, R. M.; Bork, R.; Brooks, A. F.; Cao, H.; Ciani, G.; Clara, F.; Clearwater, P.; Cooper, S. J.; Corban, P.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Edo, T. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Galiana, A. Fernández; Ferreira, E. C.; Fisher, R. P.; Fong, H.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gateley, B.; Giaime, J. A.; Giardina, K. D.; Goetz, R.; Goncharov, B.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Inta, R.; Izumi, K.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kennedy, R.; Kijbunchoo, N.; Kim, W.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Laxen, M.; Liu, J.; Lockerbie, N. A.; Lormand, M.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Marsh, P.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McClelland, D. E.; McCormick, S.; McCuller, L.; McIntyre, G.; McRae, T.; Merilh, E. L.; Miller, J.; Mittleman, R.; Mo, G.; Mogushi, K.; Moraru, D.; Moreno, G.; Mueller, G.; Mukund, N.; Mullavey, A.; Munch, J.; Nelson, T. J. N.; Nguyen, P.; Nuttall, L. K.; Oberling, J.; Oktavia, O.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Parker, W.; Pele, A.; Penn, S.; Perez, C. J.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Radkins, H.; Raffai, P.; Ramirez, K. E.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Romel, C. L.; Romie, J. H.; Ross, M. P.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sanchez, L. E.; Sandberg, V.; Savage, R. L.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shoemaker, D. H.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Spencer, A. P.; Staley, A.; Strain, K. A.; Sun, L.; Tanner, D. B.; Tasson, J. D.; Taylor, R.; Thomas, M.; Thomas, P.; Toland, K.; Torrie, C. I.; Traylor, G.; Tse, M.; Tuyenbayev, D.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Wade, M.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Wofford, J.; Worden, J.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zhu, S.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2018-04-01

    Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning.

  13. Improved documentation of spectral lines for inductively coupled plasma emission spectrometry

    NASA Astrophysics Data System (ADS)

    Doidge, Peter S.

    2018-05-01

    An approach to improving the documentation of weak spectral lines falling near the prominent analytical lines used in inductively coupled plasma optical emission spectrometry (ICP-OES) is described. Measurements of ICP emission spectra in the regions around several hundred prominent lines, using concentrated solutions (up to 1% w/v) of some 70 elements, and comparison of the observed spectra with both recent published work and with the output of a computer program that allows calculation of transitions between the known energy levels, show that major improvements can be made in the coverage of spectral atlases for ICP-OES, with respect to "classical" line tables. It is argued that the atomic spectral data (wavelengths, energy levels) required for the reliable identification and documentation of a large majority of the weak interfering lines of the elements detectable by ICP-OES now exist, except for most of the observed lines of the lanthanide elements. In support of this argument, examples are provided from a detailed analysis of a spectral window centered on the prominent Pb II 220.353 nm line, and from a selected line-rich spectrum (W). Shortcomings in existing analyses are illustrated with reference to selected spectral interferences due to Zr. This approach has been used to expand the spectral-line library used in commercial ICP-ES instruments (Agilent 700-ES/5100-ES). The precision of wavelength measurements is evaluated in terms of the shot-noise limit, while the absolute accuracy of wavelength measurement is characterised through comparison with a small set of precise Ritz wavelengths for Sb I, and illustrated through the identification of Zr III lines; it is further shown that fractional-pixel absolute wavelength accuracies can be achieved. Finally, problems with the wavelengths and classifications of certain Au I lines are discussed.

  14. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc)more » across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.« less

  15. Demonstrating the limitations of line ratio temperature diagnostic using Fe X and Fe XIV spectral line intensity observations

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Esser, Ruth; Habbal, Shadia R.

    1995-01-01

    The electron temperature in the inner corona can be derived from spectral line intensity measurements by comparing the ratio of the measured intensities of two spectral lines to the ratio calculated from theoretical models. In a homogeneous plasma the line ratio technique can be used for any two lines if the ratio of the intensities is independent of the density. The corona, however, is far from homogeneous. Even large coronal holes present at the solar poles at solar minimum can be partly or completely obscured by emission from hotter and denser surrounding regions. In this paper we investigate the effect of these surrounding regions on coronal hole temperatures. using daily intensity measurements at 1.15 Rs of the Fe XIV 5303 A and Fe X 6374 A spectral lines carried out at the National Solar Observatory at Sacramento Peak. We show that the temperatures derived using the line ratio technique for these two spectral lines can vary by more than 0.8 x 10(exp 6) K due to the contribution from surrounding regions. This example demonstrates the inadequacy of spectral lines with widely separate peak temperatures for temperature diagnostic.

  16. SBS 0846+513: a new γ-ray-emitting narrow-line Seyfert 1 galaxy

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Finke, J.; ...

    2012-10-11

    In this paper, we report Fermi Large Area Telescope (LAT) observations of the radio-loud active galactic nucleus SBS 0846+513 (z = 0.5835), optically classified as a narrow-line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at γ-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October–2011 August. In particular, a strong γ-ray flare was observed in 2011 June reaching an isotropic γ-ray luminosity (0.1–300 GeV) of 1.0 × 10 48 erg s -1, comparable to that of the brightest flat spectrum radio quasars,more » and showing spectral evolution in γ rays. An apparent superluminal velocity of (8.2 ± 1.5)c in the jet was inferred from 2011 to 2012 Very Long Baseline Array (VLBA) images, suggesting the presence of a highly relativistic jet. Finally, both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and γ-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.« less

  17. THE SDSS-III APOGEE SPECTRAL LINE LIST FOR H-BAND SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetrone, M.; Bizyaev, D.; Chojnowski, D.

    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists containsmore » 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.« less

  18. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliya, Vaidehi S.; Stalin, C. S.; Ravikumar, C. D., E-mail: vaidehi@iiap.res.in

    2015-02-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra ofmore » 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.« less

  19. Extreme gaseous outflows in radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-07-01

    We present four radio-loud narrow-line Seyfert 1 (NLS1) galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km s-1, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km s-1. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [O III] λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [Ne V] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  20. Temporal measurement on and using pulses from spectrally narrowed emission in styrylpyridinium cyanine dye

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Bhowmik, Achintya K.; Ahyi, Ayayi C.; Thakur, Mrinal

    2001-11-01

    Highly efficient spectrally narrowed emission (SNE) was observed in the solution of strylpyridinium cyanine dye (SPCD) pumped by fundamental and second harmonic of a picosecond Nd:YAG laser in two separate arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of the SNE was measured by background free SHG intensity autocorrelation technique. The measured duration of the pulses was 40 ps. These pulses, having a spectral linewidth of 10 nm (full width at half maximum), were used as a probe to measure the transient changes in the transmission in SPCD solution using a pump-probe setup. The transient optical transmission indicated a gain at the overlap and no gain was observed beyond a delay of 40 ps.

  1. A Moderate Resolution NIR Spectral Library of Weak-Lined T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Cooper, Rachel; Covey, K. R.

    2013-01-01

    We present a spectral library of high-quality moderate resolution (R ~ 3500) NIR spectra for 44 weak-lined T Tauri Stars (WTTS) in the Taurus-Auriga Molecular Cloud. These spectra, obtained with the TripleSpec spectrograph on the Astrophysical Research Consortium (ARC) 3.5 meter telescope, provide full coverage of the J, H, and K near-infrared bands in a single epoch. Analyzing these spectra, along with those of dwarf and giant spectral type standards from the SpeX Spectral Library, we have identified several elemental and molecular absorption lines that vary in strength with respect to each star's spectral type and luminosity class. Calibrating each of these features as a spectral type indicator, we provide a detailed characterization for each of the WTTSs in our sample, identifying each star's NIR spectral type and line-of-sight extinction, estimated both from the shape of the overall continuum and from the fluxes of the Paschen beta and Brackett gamma emission lines. In addition to improving our understanding of the properties of these WTTSs, this well characterized spectral library will be a valuable resource for analyses of the NIR continuum veiling and line emission present in the spectra of accreting classical T Tauri stars. This research was made possible by NSF Grant AST-1004107.

  2. Narrow absorption lines complex I: one form of broad absorption line

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Jian; Lin, Ying-Ru

    2018-03-01

    We discover that some of the broad absorption lines (BALs) are actually a complex of narrow absorption lines (NALs). As a pilot study of this type of BAL, we show this discovery through a typical example in this paper. Utilizing the two-epoch observations of J002710.06-094435.3 (hereafter J0027-0944) from the Sloan Digital Sky Survey (SDSS), we find that each of the C IV and Si IV BAL troughs contains at least four NAL doublets. By resolving the Si IV BAL into multiple NALs, we present the following main results and conclusions. First, all these NALs show coordinated variations between the two-epoch SDSS observations, suggesting that they all originate in the quasar outflow, and that their variations are due to global changes in the ionization condition of the absorbing gas. Secondly, a BAL consisting of a number of NAL components indicates that this type of BAL is basically the same as the intrinsic NAL, which tends to support the inclination model rather than the evolution model. Thirdly, although both the C IV and Si IV BALs originate from the same clumpy substructures of the outflow, they show different profile shapes: multiple absorption troughs for the Si IV BAL in a wider velocity range, while P-Cygni for the C IV BAL in a narrower velocity range. This can be interpreted by the substantial differences in fine structure and oscillator strength between the Si IVλλ1393, 1402 and C IVλλ1548, 1551 doublets. Based on the above conclusions, we consider that the decomposition of a BAL into NALs can serve as a way to resolve the clumpy structure for outflows, and it can be used to learn more about characteristics of the clumpy structure and to test the outflow model, when utilizing high-resolution spectra and photoionization model.

  3. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude thanmore » radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.« less

  4. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Stalin, C. S.

    2017-06-01

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.

  5. THE DUST SUBLIMATION RADIUS AS AN OUTER ENVELOPE TO THE BULK OF THE NARROW Fe Kα LINE EMISSION IN TYPE 1 AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, Poshak; Hönig, Sebastian F.; Kishimoto, Makoto

    2015-10-20

    The Fe Kα emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGNs), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe Kα core emission regions and the measured sizes of the dusty tori in 13 local Type 1 AGNs. The observed Fe Kα emission radii (R{sub Fe}) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (R{sub dust}) are measured either from optical/near-infrared (NIR) reverberation time lags or from resolved NIR interferometric data. This directmore » comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe Kα emission. R{sub Fe} matches R{sub dust} well in the AGNs, with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, R{sub Fe} is similar to, or smaller than, the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of R{sub Fe}, finding that the Eddington ratio is not a prime driver in determining the line location in our sample. We also discuss in detail potential caveats of data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, and sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.« less

  6. Properties of Narrow line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang

    2018-04-01

    Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line <2000 km s-1 and the flux ratio of [O III] to Hα <3. Their properties are not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z˜ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.

  7. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  8. Soliton communication lines based on spectrally efficient modulation formats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushko, O V; Redyuk, A A

    2014-06-30

    We report the results of mathematical modelling of optical-signal propagation in soliton fibre-optic communication lines (FOCLs) based on spectrally efficient signal modulation formats. We have studied the influence of spontaneous emission noise, nonlinear distortions and FOCL length on the data transmission quality. We have compared the characteristics of a received optical signal for soliton and conventional dispersion compensating FOCLs. It is shown that in the presence of strong nonlinearity long-haul soliton FOCLs provide a higher data transmission performance, as well as allow higher order modulation formats to be used as compared to conventional communication lines. In the context of amore » coherent data transmission, soliton FOCLs allow the use of phase modulation with many levels, thereby increasing the spectral efficiency of the communication line. (optical communication lines)« less

  9. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  10. Are Narrow Line Seyfert 1 Galaxies Viewed Pole-on?

    DTIC Science & Technology

    2011-04-01

    0.2’’ respectively. Figure 1 displays the position of each slit over a Barbosa et al. (2009) GMOS IFU image of the [S III] flux (which originates...C. Winge, H. Schmitt: Gemini/ GMOS IFU gas velocity ’tomography’ of the narrow line region of nearby active galaxies, MNRAS, 396 (2009) 2. [2] D...1995) 81. 4 P o S ( N L S 1 ) 0 5 0 Are NLS1s Pole-on? Travis C. Fischer 5 Figure 1: NGC 4051 GMOS IFU image showing integrated [SIII] flux

  11. Coronal Magnetism: Hanle Effect in UV and IR Spectral Lines

    NASA Astrophysics Data System (ADS)

    Raouafi, N. E.; Riley, P.

    2014-12-01

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for the progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. Here we use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Lyman series (i.e., α, β, and γ), O VI 103.2 nm line, and the He I 1083 nm line. We show that the selected lines may be useful for the diagnostic of coronal magnetic fields. We also show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for the interpretation of the data. We propose that UV coronal magnetic field mapper should be a central part of the science payload of any future spacebased solar observatory.

  12. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  13. Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; González-Gaitan, Santiago; Stritzinger, Maximilian D.; Phillips, Mark M.; Galbany, Lluis; Folatelli, Gastón; Dessart, Luc; Contreras, Carlos; Della Valle, Massimo; Freedman, Wendy L.; Hsiao, Eric Y.; Krisciunas, Kevin; Madore, Barry F.; Maza, José; Suntzeff, Nicholas B.; Prieto, Jose Luis; González, Luis; Cappellaro, Enrico; Navarrete, Mauricio; Pizzella, Alessandro; Ruiz, Maria T.; Smith, R. Chris; Turatto, Massimo

    2017-11-01

    We present 888 visual-wavelength spectra of 122 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post-explosion. In this first paper, we outline our observations and data reduction techniques, together with a characterization based on the spectral diversity of SNe II. A statistical analysis of the spectral matching technique is discussed as an alternative to nondetection constraints for estimating SN explosion epochs. The time evolution of spectral lines is presented and analyzed in terms of how this differs for SNe of different photometric, spectral, and environmental properties: velocities, pseudo-equivalent widths, decline rates, magnitudes, time durations, and environment metallicity. Our sample displays a large range in ejecta expansion velocities, from ˜9600 to ˜1500 km s-1 at 50 days post-explosion with a median {{{H}}}α value of 7300 km s-1. This is most likely explained through differing explosion energies. Significant diversity is also observed in the absolute strength of spectral lines, characterized through their pseudo-equivalent widths. This implies significant diversity in both temperature evolution (linked to progenitor radius) and progenitor metallicity between different SNe II. Around 60% of our sample shows an extra absorption component on the blue side of the {{{H}}}α P-Cygni profile (“Cachito” feature) between 7 and 120 days since explosion. Studying the nature of Cachito, we conclude that these features at early times (before ˜35 days) are associated with Si II λ 6355, while past the middle of the plateau phase they are related to high velocity (HV) features of hydrogen lines. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere

  14. Coherent Detector Arrays for Continuum and Spectral Line Applications

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.

    2006-01-01

    This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.

  15. The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421

    NASA Astrophysics Data System (ADS)

    Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.

    2018-01-01

    Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.

  16. Transient enhancement and spectral narrowing of the photothermal effect of plasmonic nanoparticles under pulsed excitation.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Volkov, Alexey N; Wu, Xiangwei; Lapotko, Dmitri O

    2013-02-06

    The transient 100-fold enhancement and spectral narrowing to 2 nm of the photothermal conversion by solid gold nanospheres under near-infrared excitation with a short laser pulse is reported. This non-stationary effect was observed for a wide range of optical fluences starting from 10 mJ cm(-2) for single nanospheres, their ensembles and aggregated clusters in water, in vitro and in vivo. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The awakening of the γ-ray narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Finke, J.; Hovatta, T.; Giroletti, M.; Max-Moerbeck, W.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R. A.; Richards, J. L.

    2016-12-01

    After a long low-activity period, a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) was detected by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1-300 GeV band, of (93 ± 19) × 10-8 ph cm-2 s-1, attaining a flux of (237 ± 71) × 10-8 ph cm-2 s-1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 1047 erg s-1. The γ-ray flare was not accompanied by significant spectral changes. We report on multiwavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August-2016 March by Fermi-LAT, Swift, XMM-Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. This suggests that the γ-ray-emitting region is located beyond the broad-line region. We compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. The fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.

  18. The awakening of the γ-ray narrow-line Seyfert 1 galaxy PKS 1502+036

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Finke, J.; ...

    2016-09-14

    After a long low-activity period, we detected a γ-ray flare from the narrow-line Seyfert 1 PKS 1502+036 (z = 0.4089) by the Large Area Telescope (LAT) on board Fermi in 2015. On 2015 December 20, the source reached a daily peak flux, in the 0.1–300 GeV band, of (93 ± 19) × 10 -8 ph cm -2 s -1, attaining a flux of (237 ± 71) × 10 -8 ph cm -2 s -1 on 3-h time-scales, which corresponds to an isotropic luminosity of (7.3 ± 2.1) × 10 47 erg s -1. The γ-ray flare was not accompanied bymore » significant spectral changes. We report on multiwavelength radio-to-γ-ray observations of PKS 1502+036 during 2008 August–2016 March by Fermi-LAT, Swift, XMM–Newton, Catalina Real-Time Transient Survey and the Owens Valley Radio Observatory (OVRO). An increase in activity was observed on 2015 December 22 by Swift in optical, UV and X-rays. The OVRO 15 GHz light curve reached the highest flux density observed from this source on 2016 January 12, indicating a delay of about three weeks between the γ-ray and 15 GHz emission peaks. Furthermore, this suggests that the γ-ray-emitting region is located beyond the broad-line region. We also compared the spectral energy distribution (SED) of an average activity state with that of the flaring state. The two SED, with the high-energy bump modelled as an external Compton component with seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. Furthermore, the fit of the disc emission during the average state constrains the black hole mass to values lower than 108 M⊙. The SED, high-energy emission mechanisms and γ-ray properties of the source resemble those of a flat spectrum radio quasar.« less

  19. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    NASA Astrophysics Data System (ADS)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  20. Semiclassical perturbation Stark widths of singly charged argon spectral lines

    NASA Astrophysics Data System (ADS)

    Hamdi, Rafik; Ben Nessib, Nabil; Sahal-Bréchot, Sylvie; Dimitrijević, Milan S.

    2018-03-01

    Using a semiclassical perturbation approach with the impact approximation, Stark widths for singly charged argon (Ar II) spectral lines have been calculated. Energy levels and oscillator strengths needed for this calculation have been determined using the Hartree-Fock method with relativistic corrections. Our Stark widths are compared with experimental results for 178 spectral lines. Our results may be of interest not only for laboratory plasma, lasers and technological plasmas but also for white dwarfs and A- and B-type stars.

  1. Gamma-Ray-emitting Narrow-line Seyfert 1 Galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Ajello, M.; Rakshit, S.; Mandal, Amit Kumar; Stalin, C. S.; Kaur, A.; Hartmann, D.

    2018-01-01

    The detection of significant γ-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1s) galaxies enables us to study jets in environments different than those in blazars. However, due to the small number of known γ-ray-emitting NLSy1 (γ-NLSy1) galaxies, a comprehensive study could not be performed. Here, we report the first detection of significant γ-ray emission from four active galactic nuclei (AGNs), recently classified as NLSy1 from their Sloan Digital Sky Survey (SDSS) optical spectrum. Three flat-spectrum radio quasars (FSRQs) present in the third Large Area Telescope AGN catalog (3LAC) are also found as γ-NLSy1 galaxies. Comparing the γ-ray properties of these objects with 3LAC blazars reveals their spectral shapes to be similar to FSRQs, however, with low γ-ray luminosity (≲1046–47 erg s‑1). In the Wide-field Infrared Survey Explorer color–color diagram, these objects occupy a region mainly populated by FSRQs. Using the H β emission line parameters, we find that on average γ-NLSy1 have smaller black hole masses than FSRQs at similar redshifts. In the low-resolution SDSS image of one of the γ-NLSy1 source, we find the evidence of an extended structure. We conclude by noting that overall many observational properties of γ-NLSy1 sources are similar to FSRQs, and therefore these objects could be their low black hole mass counterparts, as predicted in the literature.

  2. Narrow-line region kinematics in Seyfert nuclei

    NASA Astrophysics Data System (ADS)

    Moore, David J.

    1994-01-01

    We present results of a study of narrow-line region (NLR) kinematics in Seyfert nuclei. This study has involved extensive modeling which includes collimated emission, radially dependent rotation and turbulence, explicit photoionization calculations, realistic treatments of both internal and external obscuration, and allows for gradients in the electron density and the radial velocity of clouds throughout the NLR. Line profiles of (O II) lambda 3727, (Ne III) lambda 3869, (O III) lambda 5007, (Fe VII) lambda 6087, (Fe X) lambda 6374, (O I) lambda 6300, H alpha lambda 6563, and (S II) lambda 6731 are calculated for a wide range of physical conditions throughout the NLR. The model profiles are compared with line profiles derived from data taken with the Mount Palomar 5 m Hale Telescope as well as from profiles taken from the literature. The scenario in agreement with the largest of observational considerations consists of clouds which are accelerating outward with v varies as square root of r (i.e., constant force) and ne varies as 1/r2. The cloud start out at the inner NLR radium with ne approximately equal to 106/cu cm and with a very large column density (1023 - 10(exp 24/sq cm). These clouds are uniformly accelerated from a few tens of km/sec to approximately less than 1,000 km/sec. When the clouds reached the outer NLR radius, they have ne approximately greater than 102/cu cm and a column density of 1021-1022/sq cm. The clouds maintain an ionization parameter of about 0.3 throughout the NLR.

  3. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K. L.; Shields, G. A.; Salviander, S.

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotatingmore » ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.« less

  4. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; hide

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  5. Spectral line intensity irreversibility in circulatory plasma magnetization processes

    NASA Astrophysics Data System (ADS)

    Qu, Z. Q.; Dun, G. T.

    2012-01-01

    Spectral line intensity variation is found to be irreversible in circulatory plasma magnetization process by experiments described in this paper, i.e., the curves illustrating spectral line photon fluxes irradiated from a light source immerged in a magnetic field by increasing the magnetic induction cannot be reproduced by decreasing the magnetic induction within the errors. There are two plasma magnetization patterns found. One shows that the intensities are greater at the same magnetic inductions during the magnetic induction decreasing process after the increasing, and the other gives the opposite effect. This reveals that the magneto-induced excitation and de-excitation process is irreversible like ferromagnetic magnetization. But the two irreversible processes are very different in many aspects stated in the text.

  6. The First GeV Outburst of the Radio-loud Narrow-line Seyfert 1 Galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Stalin, C. S.

    2016-03-01

    The γ-ray-loud narrow-line Seyfert 1 (γ-NLSy1) galaxy PKS 1502+036 (z = 0.409) exhibited its first γ-ray outburst on 2015 December 20. In the energy range of 0.1-300 GeV, the highest flux measured by the Fermi-Large Area Telescope is (3.90 ± 1.52) × 10-6 {ph} {{cm}}-2 {{{s}}}-1, which is the highest γ-ray flux ever detected from this object. The associated spectral shape is soft (Γ0.1-300 GeV = 2.57 ± 0.17) and this corresponds to an isotropic γ-ray luminosity of (1.2 ± 0.6) × 1048 erg s-1. We generate the broadband spectral energy distribution (SED) during the GeV flare and reproduce it using a one-zone leptonic emission model. The optical-UV spectrum can be explained by a combination of synchrotron and accretion disk emission, whereas the X-ray-to-γ-ray SED can be satisfactorily reproduced by inverse-Compton scattering of thermal photons that originated from the torus. The derived SED parameters hint that the increase in the bulk Lorentz factor is a major cause of the flare and the location of the emission region is estimated as being outside the broad-line region but still inside the torus. A comparison of the GeV-flaring SED of PKS 1502+036 with that of two other γ-NLSy1 galaxies, namely, 1H 0323+342 (z = 0.061) and PMN J0948+0022 (z = 0.585), and also with flat spectrum radio quasar (FSRQ) 3C 279 (z = 0.536), has led to the conclusion that the GeV-flaring SEDs of γ-NLSy1 galaxies resemble FSRQs and a major fraction of their bolometric luminosities are emitted at γ-ray energies.

  7. Spectral filtering using active metasurfaces compatible with narrow bandgap III-V infrared detectors

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Kim, Jin; ...

    2016-01-01

    Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in amore » focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. Lastly, we further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.« less

  8. [Building Mass Spectrometry Spectral Libraries of Human Cancer Cell Lines].

    PubMed

    Faktor, J; Bouchal, P

    Cancer research often focuses on protein quantification in model cancer cell lines and cancer tissues. SWATH (sequential windowed acquisition of all theoretical fragment ion spectra), the state of the art method, enables the quantification of all proteins included in spectral library. Spectral library contains fragmentation patterns of each detectable protein in a sample. Thorough spectral library preparation will improve quantitation of low abundant proteins which usually play an important role in cancer. Our research is focused on the optimization of spectral library preparation aimed at maximizing the number of identified proteins in MCF-7 breast cancer cell line. First, we optimized the sample preparation prior entering the mass spectrometer. We examined the effects of lysis buffer composition, peptide dissolution protocol and the material of sample vial on the number of proteins identified in spectral library. Next, we optimized mass spectrometry (MS) method for spectral library data acquisition. Our thorough optimized protocol for spectral library building enabled the identification of 1,653 proteins (FDR < 1%) in 1 µg of MCF-7 lysate. This work contributed to the enhancement of protein coverage in SWATH digital biobanks which enable quantification of arbitrary protein from physically unavailable samples. In future, high quality spectral libraries could play a key role in preparing of patient proteome digital fingerprints.Key words: biomarker - mass spectrometry - proteomics - digital biobanking - SWATH - protein quantificationThis work was supported by the project MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 7. 5. 2016Accepted: 9. 6. 2016.

  9. Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao

    2017-09-01

    Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ  = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature,more » density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.« less

  10. Polarizers tuned at key far-UV spectral lines for space instrumentation

    NASA Astrophysics Data System (ADS)

    Larruquert, Juan I.; Malvezzi, A. Marco; Rodríguez-de Marcos, Luis; Giglia, Angelo; Gutiérrez-Luna, Nuria; Espinosa-Yáñez, Lucía.; Honrado-Benítez, Carlos; Aznárez, José A.; Massone, Giuseppe; Capobianco, Gerardo; Fineschi, Silvano; Nannarone, Stefano

    2017-05-01

    Polarimetry is a valuable technique to help us understand the role played by the magnetic field of the coronal plasma in the energy transfer processes from the inner parts of the Sun to the outer space. Polarimetry in the far ultraviolet (FUV: 100-200 nm), which must be performed from space due to absorption in terrestrial atmosphere, supplies fundamental data of processes that are governed by the Doppler and Hanle effects on resonantly scattered line-emission. To observe these processes there are various key spectral lines in the FUV, from which H I Lyman α (121.6 nm) is the strongest one. Hence some solar physics missions that have been proposed or are under development plan to perform polarimetry at 121.6 nm, like the suborbital missions CLASP I (2015) and CLASP II (2018), and the proposed solar missions SolmeX and COMPASS and stellar mission Arago. Therefore, the development of efficient FUV linear polarizers may benefit these and other possible future missions. C IV (155 nm) and Mg II (280 nm) are other spectral lines relevant for studies of solar and stellar magnetized atmospheres. High performance polarizers can be obtained with optimized coatings. Interference coatings can tune polarizers at the spectral line(s) of interest for solar and stellar physics. Polarizing beamsplitters consist in polarizers that separate one polarization component by reflection and the other by transmission, which enables observing the two polarization components simultaneously with a single polarizer. They involve the benefit of a higher efficiency in collection of polarization data due to the use of a single polarizer for the two polarization components and they may also facilitate a simplified design for a space polarimeter. We present results on polarizing beamsplitters tuned either at 121.6 nm or at the pair of 155 and 280 nm spectral lines.

  11. Location of Bare Soil Surface and Soil Line on the RED-NIR Spectral Plane

    NASA Astrophysics Data System (ADS)

    Koroleva, P. V.; Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Kulyanitsa, A. L.; Trubnikov, A. V.; Kalinina, N. V.; Simakova, M. S.

    2017-12-01

    Soil as a separate natural body occupies certain area with its own set of spectral characteristics within the RED-NIR spectral space. This is an ellipse-shaped area, and its semi-major axis is the soil line for a satellite image. The spectral area for a bare soil surface is neighboring to the areas of black carbon, straw, vegetating plants, and missing RED-NIR values. A reliable separation of the bare soil surface within the spectral space is possible with the technology of spectral neighborhood of soil line. The accuracy of this method is 90%. The determination of the bare soil surface using vegetation indices, both relative (NDVI), and perpendicular (PVI), is incorrect; the accuracy of these methods does not exceed 65%, and for most of the survey seasons it may be lower than 50%. The flat part of the "tasseled cap" described as the soil line, is not a synonym for the area of the bare soil surface. The bare soil surface on the RED-NIR plots occupies significantly smaller areas than the area of soil line according to Kauth and Thomas.

  12. Reminiscences and Reflections on the History of International Conferences on Spectral Line Shapes

    NASA Astrophysics Data System (ADS)

    Szudy, J.

    2017-02-01

    A brief account of the history of International Conferences on Spectral Line Shapes (ICSLS) is given. Although in common use the “Europhysics Study Conference on Spectral Line Broadening and Related Topics” held in Meudon in 1973 is referred to as the first in the current sequence of ICSLS meetings, it is noted that five conferences dealing with line shape topics were organized before 1973 both in the USA and in Europe. Some details are given about their format and program. In particular, “The First International Conference on Spectral Lines” held in 1972 at the University of Tennessee at Knoxville is remembered as a meeting fully devoted to line shape problems, and as such should be regarded, in addition to the Meudon conference, as one of the roots of the line-shape community. Some of the highlights of particular ICSLS conferences as well as characteristics of their proceedings are briefly reviewed.

  13. Diode laser spectroscopy: precise spectral line shape measurements

    NASA Astrophysics Data System (ADS)

    Nadezhdinskii, A. I.

    1996-07-01

    When one speaks about modern trends in tunable diode laser spectroscopy (TDLS) one should mention that precise line shape measurements have become one of the most promising applications of diode lasers in high resolution molecular spectroscopy. Accuracy limitations of TDL spectrometers are considered in this paper, proving the ability to measure spectral line profile with precision better than 1%. A four parameter Voigt profile is used to fit the experimental spectrum, and the possibility of line shift measurements with an accuracy of 2 × 10 -5 cm -1 is shown. Test experiments demonstrate the error line intensity ratios to be less than 0.3% for the proposed approach. Differences between "soft" and "hard" models of line shape have been observed experimentally for the first time. Some observed resonance effects are considered with respect to collision adiabacity.

  14. [The research on separating and extracting overlapping spectral feature lines in LIBS using damped least squares method].

    PubMed

    Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo

    2015-02-01

    In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral

  15. An experimental system for spectral line ratio measurements in the TJ-II stellarator.

    PubMed

    Zurro, B; Baciero, A; Fontdecaba, J M; Peláez, R; Jiménez-Rey, D

    2008-10-01

    The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C(5+) 5290 A and C(4+) 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.

  16. Spectrally narrowed laserlike emission in a novel organic salt, DEST: cooperative emission

    NASA Astrophysics Data System (ADS)

    Tan, Shida; Mishra, Alpana; Ahyi, Ayayi; Bhowmik, Achintya; Dharmadhikari, Aditya; Thakur, Mrinal

    2001-03-01

    We have synthesized a novel organic salt, 4'-diethylamino-N-methyl-4-stilbazolium p-toluenesulfonate (DEST). Frequency-doubled pulses (55 ps) from a Nd:YAG laser at 10 Hz repetition rate were used to pump DEST solution in methanol and a 20% conversion efficiency in laserlike emission was observed without external mirrors. The low energy PL quantum efficiency of DEST is very low. The peak of the emission spectrum was at 617 nm and the threshold pump energy for spectral-narrowing was less than 1 μJ. Beyond the threshold, the FWHM of the spectrum was found to have reduced from 70 nm to 14 nm The characteristics are similar to that of another organic salt, SPCD^1, which has been recently reported. Cooperative emission appears to play a dominant role in this emission process. 1. A. K. Bhowmik, A. Dharmadhikari, and M. Thakur, OSA Technical Digest, 467, CLEO (1999).

  17. Large Scale Spectral Line Mapping of Galactic Regions with CCAT-Prime

    NASA Astrophysics Data System (ADS)

    Simon, Robert

    2018-01-01

    CCAT-prime is a 6-m submillimeter telescope that is being built on the top of Cerro Chajnantor (5600 m altitude) overlooking the ALMA plateau in the Atacama Desert. Its novel Crossed-Dragone design enables a large field of view without blockage and is thus particularly well suited for large scale surveys in the continuum and spectral lines targeting important questions ranging from star formation in the Milky Way to cosmology. On this poster, we focus on the large scale mapping opportunities in important spectral cooling lines of the interstellar medium opened up by CCAT-prime and the Cologne heterodyne instrument CHAI.

  18. [Analysis of software for identifying spectral line of laser-induced breakdown spectroscopy based on LabVIEW].

    PubMed

    Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2012-03-01

    Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.

  19. NARROW-LINE-WIDTH UV BURSTS IN THE TRANSITION REGION ABOVE SUNSPOTS OBSERVED BY IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, fourmore » events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s{sup −1}, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s{sup −1} found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.« less

  20. An improved ultraviolet spectral line list for the symbiotic star RR Telescopii

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feibelman, W. A.

    1993-01-01

    We have remeasured wavelengths and intensities of International Ultraviolet Explorer (IUE) spectra of the symbiotic star, RR Tel. The main work is centered on the long 820 minute exposure high-resolution spectrum obtained on 1983 June 18. The list is intended to serve as a source of improved intensities and wavelengths for the ultraviolet spectrum of this star. A complete line list with intensities based on this exposure has not been published previously. The strongest spectral lines are saturated in the 820 minute exposure, and intensities for these lines are mostly obtained from a 20 minute exposure obtained on the same day. A few intensities are obtained from other exposures if neither the 820 nor the 20 minute exposure is satisfactory. There are 111 lines in our list between 1168 and 1980 A. Some of the very weakest lines may not be real. These are indicated by question marks. We also discuss some of the plasma diagnostics available using spectral lines of O v and O iv.

  1. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  2. Spectral Line-Shape Model to Replace the Voigt Profile in Spectroscopic Databases

    NASA Astrophysics Data System (ADS)

    Lisak, Daniel; Ngo, Ngoc Hoa; Tran, Ha; Hartmann, Jean-Michel

    2014-06-01

    The standard description of molecular line shapes in spectral databases and radiative transfer codes is based on the Voigt profile. It is well known that its simplified assumptions of absorber free motion and independence of collisional parameters from absorber velocity lead to systematic errors in analysis of experimental spectra, and retrieval of gas concentration. We demonstrate1,2 that the partially correlated quadratic speed-dependent hardcollision profile3. (pCqSDHCP) is a good candidate to replace the Voigt profile in the next generations of spectroscopic databases. This profile takes into account the following physical effects: the Doppler broadening, the pressure broadening and shifting of the line, the velocity-changing collisions, the speed-dependence of pressure broadening and shifting, and correlations between velocity- and phase/state-changing collisions. The speed-dependence of pressure broadening and shifting is incorporated into the pCqSDNGP in the so-called quadratic approximation. The velocity-changing collisions lead to the Dicke narrowing effect; however in many cases correlations between velocityand phase/state-changing collisions may lead to effective reduction of observed Dicke narrowing. The hard-collision model of velocity-changing collisions is also known as the Nelkin-Ghatak model or Rautian model. Applicability of the pCqSDHCP for different molecular systems was tested on calculated and experimental spectra of such molecules as H2, O2, CO2, H2O in a wide span of pressures. For all considered systems, pCqSDHCP is able to describe molecular spectra at least an order of magnitude better than the Voigt profile with all fitted parameters being linear with pressure. In the most cases pCqSDHCP can reproduce the reference spectra down to 0.2% or better, which fulfills the requirements of the most demanding remote-sensing applications. An important advantage of pCqSDHCP is that a fast algorithm for its computation was developedab4,5 and allows

  3. Spectral and spread-spectral teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  4. Determination of the vinyl fluoride line intensities by TDL spectroscopy: the object oriented approach of Visual Line Shape Fitting Program to line profile analysis

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi

    2010-03-01

    In this work the self-broadening coefficients and the integrated line intensities for a number of ro-vibrational transitions of vinyl fluoride have been determined for the first time by means of TDL spectroscopy. The spectra recorded in the atmospheric window around 8.7 µm appear very crowded with a density of about 90 lines per cm-1. In order to fit these spectral features a new fitting software has been implemented. The program, which is designed for laser spectroscopy, can fit many lines simultaneously on the basis of different theoretical profiles (Doppler, Lorentz, Voigt, Galatry and Nelkin-Ghatak). Details of the object oriented implementation of the application are given. The reliability of the program is demonstrated by determining the line parameters of some ro-vibrational lines of sulphur dioxide in the ν1 band region around 9 µm. Then the software is used for the line profile analysis of vinyl fluoride. The experimental line shapes show deviations from the Voigt profile, which can be well modelled by using a Dicke narrowed line shape function. This leads to the determination of the self-narrowing coefficient within the framework of the strong collision model.

  5. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  6. Smooth Upgrade of Existing Passive Optical Networks With Spectral-Shaping Line-Coding Service Overlay

    NASA Astrophysics Data System (ADS)

    Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.

    2005-09-01

    A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.

  7. Experimental Line List of Water Vapor Absorption Lines in the Spectral Ranges 1850 - 2280 CM-1 and 2390-4000 CM-1

    NASA Astrophysics Data System (ADS)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2017-06-01

    A new experimental line parameter list of water vapor absorption lines in the spectral ranges 1850 - 2280 cm-1 and 2390 - 4000 cm-1 is presented. The line list is based on the analysis of several transmittance spectra measured using a Bruker IFS 125 HR high resolution Fourier transform spectrometer. A total of 54 measurements of pure water and water/air-mixtures at 296 K as well as water/air-mixtures at high and low temperatures were performed. A multispectrum fitting approach was used applying a quadratic speed-dependent hard collision line shape model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation in order to retrieve line positions, intensities, self- and air-broadening parameters, their speed-dependence, self- and air-shifts as well as line mixing and in some cases collisional narrowing parameters. Additionally, temperature dependence parameters for widths, shifts and in a few cases line mixing were retrieved. For every parameter an extensive error estimation calculation was performed identifying and specifying systematic error sources. The resulting parameters are compared to the databases HITRAN12 as well as experimental values. For intensities, a detailed comparison to results of recent ab initio calculations performed at University College London was done showing an agreement within 2 % for a majority of the data. However, for some bands there are systematic deviations attributed to ab initio calculation errors. .H. Ngo et al. JQSRT 129, 89-100 (2013) doi:10.1016/j.jqsrt.2013.05.034; JQSRT 134, 105 (2014) doi:10.1016/j.jqsrt.2013.10.016. H. Tran et al. JQSRT 129, 199-203 (2013) doi:10.1016/j.jqsrt.2013.06.015; JQSRT 134, 104 (2014) doi:10.1016/j.jqsrt.2013.10.015. L.S. Rothman et al. JQSRT 130, 4-50 (2013) doi:10.1016/j.jqsrt.2013.07.002. N. Jacquinet-Husson et al. JMS 112, 2395-2445 (2016) doi:10.1016/j.jms.2016.06.007.

  8. Experimental transition probabilities for Mn II spectral lines

    NASA Astrophysics Data System (ADS)

    Manrique, J.; Aguilera, J. A.; Aragón, C.

    2018-06-01

    Transition probabilities for 46 spectral lines of Mn II with wavelengths in the range 2000-3500 Å have been measured by CSigma laser-induced breakdown spectroscopy (Cσ-LIBS). For 28 of the lines, experimental data had not been reported previously. The Cσ-LIBS method, based in the construction of generalized curves of growth called Cσ graphs, avoids the error due to self-absorption. The samples used to generate the laser-induced plasmas are fused glass disks prepared from pure MnO. The Mn concentrations in the samples and the lines included in the study are selected to ensure the validity of the model of homogeneous plasma used. The results are compared to experimental and theoretical values available in the literature.

  9. Spectral Variability of the Herbig Ae/Be Star HD 37806

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Pavlovskiy, S. E.; Kozlova, O. V.; Beskrovnaya, N. G.; Alekseev, I. Yu.; Valyavin, G. G.

    2018-03-01

    Results are reported from a spectroscopic study of the Herbig Ae/Be star HD 37806 from 2009 through 2017 using high resolution spectrographs at the Crimean Astrophysical Observatory and the OAN SPM Observatory in Mexico. 72 spectra of this object near the Hα, Hβ, HeI 5876 and D NaI lines are analyzed. The following results were obtained: 1. The type of spectral profile of the Hα line can change from P Cyg III to double emission and vice versa over a time scale on the order of a month. 2. Narrow absorption components are observed in the profiles of the Hα and D NaI lines with radial velocities that vary over a characteristic time on the order of a day. 3. On some days, the profiles of the Hβ, HeI 5876, and D NaI lines show signs of accretion of matter to the star with a characteristic lifetime of a few days. A possible interpretation of these phenomena was considered. The transformation of the Hα profile may be related to a change in the outer latitudinal width of the boundary of the wind zone. The narrow variable absorption lines may be caused by the rotation of local azimuthal inhomogeneities in the wind zone owing to the interaction of the disk with the star's magnetosphere in a propeller regime. Several current theoretical papers that predict the formation of similar inhomogeneous wind structures were examined. It is suggested that the episodes with signs of accretion in the spectral line profiles cannot be a consequence of the modulation of these profiles by the star's rotation but are more likely caused by sudden, brief changes in the accretion rate. These spectral observations of HD 37806 should be continued in a search for cyclical variability in the spectral parameters in order to identify direct signs of magnetospheric accretion and detect possible binary behavior in this object.

  10. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    PubMed

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust

    NASA Astrophysics Data System (ADS)

    Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.

    2018-05-01

    Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.

  12. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songaila, A.; Cowie, L. L., E-mail: acowie@ifa.hawaii.edu

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure inmore » even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements

  13. A narrow band pattern-matching model of vowel perception

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.; Houde, Robert A.

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  14. Spectral analysis comparisons of Fourier-theory-based methods and minimum variance (Capon) methods

    NASA Astrophysics Data System (ADS)

    Garbanzo-Salas, Marcial; Hocking, Wayne. K.

    2015-09-01

    In recent years, adaptive (data dependent) methods have been introduced into many areas where Fourier spectral analysis has traditionally been used. Although the data-dependent methods are often advanced as being superior to Fourier methods, they do require some finesse in choosing the order of the relevant filters. In performing comparisons, we have found some concerns about the mappings, particularly when related to cases involving many spectral lines or even continuous spectral signals. Using numerical simulations, several comparisons between Fourier transform procedures and minimum variance method (MVM) have been performed. For multiple frequency signals, the MVM resolves most of the frequency content only for filters that have more degrees of freedom than the number of distinct spectral lines in the signal. In the case of Gaussian spectral approximation, MVM will always underestimate the width, and can misappropriate the location of spectral line in some circumstances. Large filters can be used to improve results with multiple frequency signals, but are computationally inefficient. Significant biases can occur when using MVM to study spectral information or echo power from the atmosphere. Artifacts and artificial narrowing of turbulent layers is one such impact.

  15. Very narrow band model calculations of atmospheric fluxes and cooling rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L.S.; Berk, A.; Acharya, P.K.

    1996-10-15

    A new very narrow band model (VNBM) approach has been developed and incorporated into the MODTRAN atmospheric transmittance-radiance code. The VNBM includes a computational spectral resolution of 1 cm{sup {minus}1}, a single-line Voigt equivalent width formalism that is based on the Rodgers-Williams approximation and accounts for the finite spectral width of the interval, explicit consideration of line tails, a statistical line overlap correction, a new sublayer integration approach that treats the effect of the sublayer temperature gradient on the path radiance, and the Curtis-Godson (CG) approximation for inhomogeneous paths. A modified procedure for determining the line density parameter 1/d ismore » introduced, which reduces its magnitude. This results in a partial correction of the VNBM tendency to overestimate the interval equivalent widths. The standard two parameter CG approximation is used for H{sub 2}O and CO{sub 2}, while the Goody three parameter CG approximation is used for O{sub 3}. Atmospheric flux and cooling rate predictions using a research version of MODTRAN, MODR, are presented for H{sub 2}O (with and without the continuum), CO{sub 2}, and O{sub 3} for several model atmospheres. The effect of doubling the CO{sub 2} concentration is also considered. These calculations are compared to line-by-line (LBL) model calculations using the AER, GLA, GFDL, and GISS codes. The MODR predictions fall within the spread of the LBL results. The effects of decreasing the band model spectral resolution are illustrated using CO{sub 2} cooling rate and flux calculations. 36 refs., 18 figs., 1 tab.« less

  16. Single steady frequency and narrow-linewidth external-cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhao, Weirui; Jiang, Pengfei; Xie, Fuzeng

    2003-11-01

    A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10-3°C by temperature control system. The experiments have been carried out and the results obtained - the spectral line width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.

  17. Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser

    NASA Astrophysics Data System (ADS)

    Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa

    2018-02-01

    A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.

  18. A spectroscopic analysis of a sample of narrow-line Seyfert 1 galaxies selected from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Cracco, V.; Ciroi, S.; Berton, M.; Di Mille, F.; Foschini, L.; La Mura, G.; Rafanelli, P.

    2016-10-01

    We revisited the spectroscopic characteristics of narrow-line Seyfert 1 galaxies (NLS1s) by analysing a homogeneous sample of 296 NLS1s at redshift between 0.028 and 0.345, extracted from the Sloan Digital Sky Survey (SDSS-DR7) public archive. We confirm that NLS1s are mostly characterized by Balmer lines with Lorentzian profiles, lower black hole masses and higher Eddington ratios than classic broad-line Seyfert 1 (BLS1s), but they also appear to be active galactic nuclei (AGNs) contiguous with BLS1s and sharing with them common properties. Strong Fe II emission does not seem to be a distinctive property of NLS1s, as low values of Fe II/Hβ are equally observed in these AGNs. Our data indicate that Fe II and Ca II kinematics are consistent with the one of Hβ. On the contrary, O I λ8446 seems to be systematically narrower and it is likely emitted by gas of the broad-line region more distant from the ionizing source and showing different physical properties. Finally, almost all NLS1s of our sample show radial motions of the narrow-line region highly ionized gas. The mechanism responsible for this effect is not yet clear, but there are hints that very fast outflows require high continuum luminosities (>1044 erg s-1) or high Eddington ratios (log (Lbol/LEdd) > -0.1).

  19. PHL 1092: A narrow-line quasar emerging from the darkness

    NASA Astrophysics Data System (ADS)

    Gallo, Luigi

    2013-10-01

    The radio quiet, narrow line quasar, PHL1092 exhibits the extreme behaviour associated with 1H0707 and IRAS13224, but at a high redshift (z=0.396) and with high luminosity (~10^45 erg/s). From a short, bright state observation of PHL1092 we discovered a super soft excess, possible relativistically broadened FeL and K emission, high radiative efficiency, and possible high velocity outflow. Follow up observations between 2008-10 caught the quasar in a deep minimum that could be attributed to disruption of the corona. We will monitor PHL1092 with Swift to catch the quasar emerging from its current low-flux state so that we can study the bright state of the AGN with a triggered 130ks XMM observation.

  20. Discovery of Peculiar Periodic Spectral Modulations in a Small Fraction of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.; Trottier, Eric

    2016-11-01

    A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal-to-noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines, and signals generated by extraterrestrial intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally, we consider the possibility, predicted in a previous published paper, that the signals are caused by light pulses generated by ETI to makes us aware of their existence. We find that the detected signals have exactly the shape of an ETI signal predicted in the previous publication and are therefore in agreement with this hypothesis. The fact that they are only found in a very small fraction of stars within a narrow spectral range centered near the spectral type of the Sun is also in agreement with the ETI hypothesis. However, at this stage, this hypothesis needs to be confirmed with further work. Although unlikely, there is also a possibility that the signals are due to highly peculiar chemical compositions in a small fraction of galactic halo stars.

  1. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  2. Formation of spectral lines in planetary atmospheres. I - Theory for cloudy atmospheres: Application to Venus.

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.

    1972-01-01

    The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.

  3. Anisotropic ionizing radiation in Seyfert galaxies. I - The extended narrow-line region in Markarian 573

    NASA Technical Reports Server (NTRS)

    Tsvetanov, Zlatan; Walsh, J. R.

    1992-01-01

    The morphology, kinematics, and ionization state of the nuclear extended narrow-line region (ENLR) of the Seyfert 2 galaxy Mrk 573 are studied using narrow-band images of a grid of long-slit spectra. The entire ENLR is mapped spectroscopically, and velocity structure is studied. The velocity field map shows a typical galactic rotation picture with some important deviations. A simple geometric model, in accordance with the 'unified schemes', is employed to study the effects of various parameters of the observed picture. The best match is achieved when a biconical radiation field illuminates the ISM of the host galaxy that takes part in a normal galaxy rotation but also has radial motions close to the nucleus. The emission-line images reveal an ENLR elongated along the radio axis in the northwest-southeast direction, but a map of the flux ratio forbidden O III 5007/(H-alpha + forbidden N II) shows a different structure, with the highest excitation peak offset by about 4 arcsec along the radio axis to the southeast.

  4. Spectral Confusion for Cosmological Surveys of Redshifted C II Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-01-01

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencilbeam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150-1300 µm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 µm [C II] line and other lines. Although the [C II] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C II] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20? and 10', sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  5. Spectral line and continuum studies using Haystack antenna

    NASA Technical Reports Server (NTRS)

    1973-01-01

    During the last half of 1972, the Haystack antenna was utilized 88% of the time. Of this useful time, 81% was devoted to radio astronomy investigations, 8% was spent on radar-related research and 11% was scheduled for maintenance and system improvements. Thirteen programs were completed of which 10 were spectral-line studies involving primarily recombination lines and H2O vapor investigations. The others involved 2 cm and 1.3 cm continuum observations. Fifteen new programs were accepted and the currently active radio observing programs totalled 24 as of 31 December 1973. The last radar measurements in the lunar topography program have now been completed. Radar activity, including measurements on Mercury, Venus and synchronous satellites has continued.

  6. Signal and noise level estimation for narrow spectral width returns observed by the Indian MST radar

    NASA Astrophysics Data System (ADS)

    Hooper, D. A.

    1999-07-01

    Use is made of five sets of multibeam observations of the lower atmosphere made by the Indian mesosphere-stratosphere-troposphere (MST) radar. Two aspects of signal processing which can lead to serious underestimates of the signal-to-noise ratio are considered. First, a comparison is made of the effects of different data weighting windows applied to the inphase and quadrature components of the radar return samples prior to Fourier transformation. The relatively high degree of spectral leakage associated with the rectangular and Hamming windows can give rise to overestimates of the noise levels by up to 28 dB for the strongest signals. Use of the Hanning window is found to be the most appropriate for these particular data. Second, a technique for removing systematic dc biases from the data in the time domain is compared with the more well-known practice of correction in the frequency domain. The latter technique, which is often used to remove the effects of ground clutter, is shown to be particularly inappropriate for the characteristically narrow spectral width signals observed by the Indian MST radar. For cases of near-zero Doppler shift it can remove up to 30 dB of signal information. The consequences of noise and signal level discrepancies for studies of refractivity structures are discussed. It is shown that neither problem has a significant effect on Doppler shift or spectral width estimates.

  7. Spectral line profiles for a planetary corona

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1976-01-01

    The Lyman and Balmer emissions of a planetary corona depend on the exospheric temperature, the integrated column density of solar-illuminated hydrogen, and the region of phase space occupied by particles. Measurements of the intensity alone are incapable of defining the exosphere unambiguously. Line profiles with high spectral resolution can show whether a nonthermal component of the escaping hydrogen is present and can indicate at what altitude orbits of hydrogen atoms are depleted. It is necessary, however, to plan the observations carefully if they are to be fitted usefully to a model.

  8. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-07-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereinafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey (SDSS) revealed a small linewidth of the broad component of the Hβ line (full width at half-maximum = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multiwavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in five months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy, and the synchronous variations in the multiwavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  9. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-04-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey revealed a small linewidth of the broad component of the Hβ line (FWHM = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multi-wavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in 5 months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy and the synchronous variations in the multi-wavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  10. Detection of spectral line curvature in imaging spectrometer data

    NASA Astrophysics Data System (ADS)

    Neville, Robert A.; Sun, Lixin; Staenz, Karl

    2003-09-01

    A procedure has been developed to measure the band-centers and bandwidths for imaging spectrometers using data acquired by the sensor in flight. This is done for each across-track pixel, thus allowing the measurement of the instrument's slit curvature or spectral 'smile'. The procedure uses spectral features present in the at-sensor radiance which are common to all pixels in the scene. These are principally atmospheric absorption lines. The band-center and bandwidth determinations are made by correlating the sensor measured radiance with a modelled radiance, the latter calculated using MODTRAN 4.2. Measurements have been made for a number of instruments including Airborne Visible and Infra-Red Imaging Spectrometer (AVIRIS), SWIR Full Spectrum Imager (SFSI), and Hyperion. The measurements on AVIRIS data were performed as a test of the procedure; since AVIRIS is a whisk-broom scanner it is expected to be free of spectral smile. SFSI is an airborne pushbroom instrument with considerable spectral smile. Hyperion is a satellite pushbroom sensor with a relatively small degree of smile. Measurements of Hyperion were made using three different data sets to check for temporal variations.

  11. Physical conditions in broad and associated narrow absorption-line systems toward APM 08279+5255

    NASA Astrophysics Data System (ADS)

    Srianand, R.; Petitjean, P.

    2000-05-01

    Results of a careful analysis of the absorption systems with z_abs =~ z_em seen toward the bright, z_em ~ 3.91, gravitationally lensed quasar APM 08279+5255 are presented. Two of the narrow-line systems, at z_abs = 3.8931 and z_abs = 3.9135, show absorptions from singly ionized species with weak or no N v and O vi absorptions at the same redshift. Absorption due to fine structure transitions of C ii and S ii i (excitation energies corresponding to, respectively, 156mu m and 34mu m) are detected at z_abs = 3.8931. Excitation by IR radiation is favored as the column density ratios are consistent with the shape of APM 08279+5255 IR spectrum. The low-ionization state of the system favors a picture where the cloud is closer to the IR source than to the UV source, supporting the idea that the extension of the IR source is larger than ~ 200 pc. The absence of fine structure lines at z_abs = 3.9135 suggests that the gas responsible for this system is farther away from the IR source. Abundances are ~ 0.01 and 1 Zsun at z_abs = 3.913 and 3.8931 and aluminum could be over-abundant with respect to silicon and carbon by at least a factor of two and five. All this suggests that whereas the z_abs = 3.8931 system is probably located within 200 pc from the QSO and ejected at a velocity larger than 1000 km s-1, the z_abs = 3.9135 system is farther away and part of the host-galaxy. Several narrow-line systems have strong absorption lines due to C iv, O vi and N v and very low neutral hydrogen optical depths. This probably implies metallicities Z>= Z_sun although firm conclusion cannot be drawn as the exact value depends strongly on the shape of the ionizing spectrum. The C iv broad absorption has a complex structure with mini-BALs (width <= 1000 km s-1) and narrow components superposed on a continuous absorption of smaller optical depth. The continuous absorption is much stronger in O vi indicating that the corresponding gas-component is of higher ionization than the other components

  12. The Jet-driven Outflow in the Radio Galaxy SDSS J1517+3353: Implications for Double-peaked Narrow-line Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Shields, G. A.; Taylor, G. B.; Salviander, S.; Smith, K. L.

    2010-06-01

    We report on the study of an intriguing active galaxy that was selected as a potential multiple supermassive black hole merger in the early-type host SDSS J151709.20+335324.7 (z = 0.135) from a complete search for double-peaked [O III] lines from the SDSS spectroscopic quasi-stellar object (QSO) database. Ground-based SDSS imaging reveals two blue structures on either side of the photometric center of the host galaxy, separated from each other by about 5.7 kpc. From a combination of SDSS fiber and Keck/HIRES long-slit spectroscopy, it is demonstrated that, in addition to these two features, a third distinct structure surrounds the nucleus of the host galaxy. All three structures exhibit highly ionized line emission with line ratios characteristic of Seyfert II active galactic nuclei. The analysis of spatially resolved emission-line profiles from the HIRES spectrum reveal three distinct kinematic subcomponents, one at rest and the other two moving at -350 km s-1 and 500 km s-1 with respect to the systemic velocity of the host galaxy. A comparison of imaging and spectral data confirm a strong association between the kinematic components and the spatial knots, which implies a highly disturbed and complex active region in this object. A comparative analysis of the broadband positions, colors, kinematics, and spectral properties of the knots in this system lead to two plausible explanations: (1) a multiple active galactic nucleus (AGN) produced due to a massive dry merger, or (2) a very powerful radio jet-driven outflow. Subsequent VLA radio imaging reveals a clear jet aligned with the emission-line gas, confirming the latter explanation. We use the broadband radio measurements to examine the impact of the jet on the interstellar medium of the host galaxy, and find that the energy in the radio lobes can heat a significant fraction of the gas to the virial temperature. Finally, we discuss tests that may help future surveys distinguish between jet-driven kinematics and

  13. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    PubMed

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  14. Fermi/Large Area Telescope Discovery of Gamma-Ray Emission from a Relativistic Jet in the Narrow-Line Quasar PMN J0948+0022

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-06-17

    In this paper, we report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow Hβ (FWHM(Hβ) ~1500 km s –1), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-raymore » and γ-ray observations are presented. Both radio and γ-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the γ-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and γ-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and γ-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. Finally, we suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.« less

  15. Determining fast orientation changes of multi-spectral line cameras from the primary images

    NASA Astrophysics Data System (ADS)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  16. Narrow Line Cooling of 88Sr Atoms in the Magneto-optical Trap for Precision Frequency Standard

    NASA Astrophysics Data System (ADS)

    Strelkin, S. A.; Galyshev, A. A.; Berdasov, O. I.; Gribov, A. Yu.; Sutyrin, D. V.; Khabarova, K. Yu.; Kolachevsky, N. N.; Slyusarev, S. N.

    We report on our progress toward the realization of a Strontium optical lattice clock, which is under development at VNIIFTRI as a part of GLONASS program. We've prepared the narrow line width laser system for secondary cooling of 88Sr atoms which allows us to reach atom cloud temperature below 3 μK after second cooling stage.

  17. Origin of the X-ray Spectral Variation and Seemingly Broad Iron Line Strucuture in the Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Ebisawa, Ken; Naoki, Iso

    2012-07-01

    X-ray intensities and spectra of the Seyfert galaxies are known to be variable. Some of the sources have characteristic seemingly broad iron line structure, and their spectral variations are small in the iron line energy band. MCG-6-30-15 is such an archetypal source, and Miyakawa (2011) proposed a "Variable Partial Covering (VPC)" model to explain its continuum spectral variation, seemingly broad iron line structure, and small spectral variation in the iron energy band simultaneously, only due to variation of a single parameter. That single parameter is the "partial covering fraction" to describe the geometrical fraction of the X-ray emitting area covered by the ionized absorbers in the line of sight. The intrinsic X-ray luminosity is hardly variable in this model. We have applied the VPC model to the 27 Seyfert galaxies observed with Suzaku, and found that spectral variations of the 22 sources are successfully explained by this model only varying the partial covering fraction. Intrinsic X-ray luminosities of Seyfert galaxies are not variable, as opposed to what they apparently seem, and gravitationally red-shifted iron line is not necessary. Those ionized absorbing clouds are most likely to be Broad Line Region (BLR) clouds, and we will be able to constrain the BLR structure from X-ray observations.

  18. Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.

    2016-07-01

    The analysis of 34 cloudless fragments of Landsat 5, 7, and 8 images (1985-2014) on the territory of Plavsk, Arsen'evsk, and Chern districts of Tula oblast has been performed. It is shown that bare soil surface on the RED-NIR plots derived from the images cannot be described in the form of a sector of spectral plane as it can be done for the NDVI values. The notion of spectral neighborhood of soil line (SNSL) is suggested. It is defined as the sum of points of the RED-NIR spectral space, which are characterized by spectral characteristics of the bare soil applied for constructing soil lines. The way of the SNSL separation along the line of the lowest concentration density of points on the RED-NIR spectral space is suggested. This line separates bare soil surface from vegetating plants. The SNSL has been applied to construct soil line (SL) for each of the 34 images and to delineate bare soil surface on them. Distances from the points with averaged RED-NIR coordinates to the SL have been calculated using the method of moving window. These distances can be referred to as averaged spectral deviations (ASDs). The calculations have been performed strictly for the SNSL areas. As a result, 34 maps of ASDs have been created. These maps contain ASD values for 6036 points of a grid used in the study. Then, the integral map of normalized ASD values has been built with due account for the number of points participating in the calculation (i.e., lying in the SNSL) within the moving window. The integral map of ASD values has been compared with four traditional soil maps on the studied territory. It is shown that this integral map can be interpreted in terms of soil taxa: the areas of seven soil subtypes (soddy moderately podzolic, soddy slightly podzolic, light gray forest. gray forest, dark gray forest, podzolized chernozems, and leached chernozems) belonging to three soil types (soddy-podzolic, gray forest, and chernozemic soils) can be delineated on it.

  19. Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

    NASA Astrophysics Data System (ADS)

    Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi

    2017-05-01

    In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection

  20. The Spectral Energy Distribution of the Seyfert Galaxy Ton S180

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.; hide

    2001-01-01

    We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.

  1. An Interferometric 270--355 GHz Spectral Line Survey of the Red Supergiant VY CMa

    NASA Astrophysics Data System (ADS)

    Menten, K. M.; Young, K. H.; Patel, N. A.; Gottlieb, C. A.; Thaddeus, P.; McCarthy, M. C.; Gurwell, M. A.; Belloche, A.; Kaminski, T.; Verheyen, L.; Decin, L.; Brunken, S.; Holger, S. P. M.

    2011-05-01

    We have used the Submillimeter Array to image the molecular line emission in the circumstellar envelope of the peculiar red supergiant star VY Canis Majoris over the whole 870 μm atmospheric window. Employing adaptive calibration using the object's continuum emission we achieve high quality one arcsecond resolution imaging of the whole 280--355 GHz range within which we find 211 distinct spectral lines from 33 molecules (including isotopologues) plus 40 unidentified lines. From the distribution of molecules we are obtaining their abundances and isotopologic abundance ratios. Using data for multiple transitions in a number of molecules we are deriving the physical conditions in the circumstellar envelope to reach a picture of the star's chemistry that can be compared with models. Our legacy survey is accompanied by a strong laboratory effort that helps with the identification of possibly newly found molecules traced by unidentified lines. We shall create a publicly accessible database of spectral-line channel-maps of the emission from all the lines detected in the survey.

  2. Spectral comb mitigation to improve continuous-wave search sensitivity in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Neunzert, Ansel; LIGO Scientific Collaboration; Virgo Collaboration

    2017-01-01

    Searches for continuous gravitational waves, such as those emitted by rapidly spinning non-axisymmetric neutron stars, are degraded by the presence of narrow noise ``lines'' in detector data. These lines either reduce the spectral band available for analysis (if identified as noise and removed) or cause spurious outliers (if unidentified). Many belong to larger structures known as combs: series of evenly-spaced lines which appear across wide frequency ranges. This talk will focus on the challenges of comb identification and mitigation. I will discuss tools and methods for comb analysis, and case studies of comb mitigation at the LIGO Hanford detector site.

  3. SPECTRAL LINE DE-CONFUSION IN AN INTENSITY MAPPING SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yun-Ting; Bock, James; Bradford, C. Matt

    2016-12-01

    Spectral line intensity mapping (LIM) has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, LIM makes use of all available photons and measures the integrated light in the source confusion limit to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube.more » The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [C ii] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [C ii] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [C ii] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible LIM experiments.« less

  4. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Implications for Spectral Line Intensity Mapping at Millimeter Wavelengths and CMB Spectral Distortions

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Chluba, J.; Decarli, R.; Walter, F.; Aravena, M.; Wagg, J.; Popping, G.; Cortes, P.; Hodge, J.; Weiss, A.; Bertoldi, F.; Riechers, D.

    2016-12-01

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C II] 158 μm line emission from very high redshift galaxies (z ˜ 6-7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T B = 0.94 ± 0.09 μK. In the 242 GHz band, the mean brightness is: T B = 0.55 ± 0.033 μK. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.

  5. Investigating the Temperature Problem in Narrow Line Emitting AGN

    NASA Astrophysics Data System (ADS)

    Jenkins, Sam; Richardson, Chris T.

    2018-06-01

    Our research investigates the physical conditions in gas clouds around the narrow line region of AGN. Specifically, we explore the necessary conditions for anomalously high electron temperatures, Te, in those clouds. Our 321 galaxy data set was acquired from SDSS DR14 after requiring S/N > 5.0 in [OIII] 4363 and S/N > 3.0 in all BPT diagram emission lines, to ensure both accurate Te and galaxy classification, with 0.04 < z < 1.0. Interestingly, our data set contained no LINERs. We ran simulations using the simulation code Cloudy, and focused on matching the emission exhibited by the hottest of the 70 AGN in our data set. We used multicore computing to cut down on run time, which drastically improved the efficiency of our simulations. We varied hydrogen density, ionization parameter, and metallicity, Z, only to find these three parameters alone were incapable of recreating anomalously high Te, but successfully matched galaxies showing low- to moderate Te. These highest temperature simulations were at low Z, and were able to facilitate higher temperatures because they avoided the cooling effects of high Z. Our most successful simulations varied Z and grain content, which matched approximately 10% of our high temperature data. Our simulations with the highest grain content produced the highest Te because of the photoelectric heating effect that grains provide, which we confirmed by monitoring each heating mechanism as a function of depth. In the near future, we plan to run simulations varying grain content and ionization parameter in order to study the effects these conditions have on gas cloud Te.

  6. Determining inclinations of active galactic nuclei via their narrow-line region kinematics

    NASA Astrophysics Data System (ADS)

    Fischer, Travis Cody

    Active Galactic Nuclei (AGN) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight. However, except for a few special cases, the specific inclinations of individual AGN are unknown. We have developed a promising technique for determining the inclinations of nearby AGN by mapping the kinematics of their narrow-line regions (NLRs), which are easily resolved with Hubble Space Telescope (HST) [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph (STIS). Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our line of sight. We present NLR analysis of 53 Seyfert galaxies and resultant inclinations from models of 17 individual AGN with clear signatures of biconical outflow. From these AGN, which we can for the first time assess the effect of inclination on other observable properties in radio-quiet AGN, including the discovery of a distinct correlation between AGN inclination and X-ray column density. INDEX WORDS: AGN, Seyfert galaxies, NLR, Outflows, Kinematics, Bicones, Unified Model Graduation.

  7. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases.more » Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G 2 or G 3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N 2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N 2-dG.« less

  8. Spatially Resolved Spectroscopy of Narrow-line Seyfert 1 Host Galaxies

    NASA Astrophysics Data System (ADS)

    Scharwächter, J.; Husemann, B.; Busch, G.; Komossa, S.; Dopita, M. A.

    2017-10-01

    We present optical integral field spectroscopy for five z< 0.062 narrow-line Seyfert 1 (NLS1) galaxies, probing their host galaxies at ≳ 2{--}3 {kpc} scales. Emission lines from the active galactic nucleus (AGN) and the large-scale host galaxy are analyzed separately, based on an AGN-host decomposition technique. The host galaxy gas kinematics indicates large-scale gas rotation in all five sources. At the probed scales of ≳ 2{--}3 {kpc}, the host galaxy gas is found to be predominantly ionized by star formation without any evidence of a strong AGN contribution. None of the five objects shows specific star formation rates (SFRs) exceeding the main sequence of low-redshift star-forming galaxies. The specific SFRs for MCG-05-01-013 and WPVS 007 are roughly consistent with the main sequence, while ESO 399-IG20, MS 22549-3712, and TON S180 show lower specific SFRs, intermediate to the main sequence and the red quiescent galaxies. The host galaxy metallicities, derived for the two sources with sufficient data quality (ESO 399-IG20 and MCG-05-01-013), indicate central oxygen abundances just below the low-redshift mass-metallicity relation. Based on this initial case study, we outline a comparison of AGN and host galaxy parameters as a starting point for future extended NLS1 studies with similar methods.

  9. What Do Millimeter Continuum and Spectral Line Observations Tell Us about Solar System Bodies?

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.

    2013-01-01

    Solar system objects are generally cold and radiate at low frequencies and tend to have strong molecular rotational transitions. Millimeter continuum and spectral line observations provide detailed information for nearly all solar system bodies. At these wavelengths, details of the bulk physical composition of icy surfaces, the size and albedo of small objects, the composition of planetary atmospheres can be measured as well as monitoring of time variable phenomena for extended periods (not restricted to nighttime observations), etc. Major issues in solar system science can be addressed by observations in the millimeter/sub-millimeter regime such as the origin of the solar system (isotope ratios, composition) and the evolution of solar system objects (dynamics, atmospheric constituents, etc). ALMA s exceptional sensitivity, large spectral bandwidth, high spectral resolution, and angular resolution (down to 10 milliarcsec) will enable researchers for the first time to better resolve the smallest bodies in the solar system and provide detailed maps of the larger objects. Additionally, measurements with nearly 8 GHz of instantaneous bandwidth to fully characterize solar system object s spectrum and detect trace species. The spatial information and line profiles can be obtained over 800 GHz of bandwidth in 8 receiver bands to not only assist in the identification of spectral lines and emission components for a given species but also to help elucidate the chemistry of the extraterrestrial bodies closest to us.

  10. Investigations of glass structure using fluorescence line narrowing and moleuclar dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, M.J.; Brawer, S.A.

    1982-07-02

    The local structure at individual ion sites in simple and multicomponent glasses is simulated using methods of molecular dynamics. Computer simulations of fluoroberyllate glasses predict a range of ion separations and coordination numbers that increases with increasing complexity of the glass composition. This occurs at both glass forming and glass modifying cation sites. Laser-induced fluorescence line-narrowing techniques provide a unique probe of the local environments of selected subsets of ions and are used to measure site to site variations in the electronic energy levels and transition probabilities of rare earth ions. These and additional results from EXAFS, neutron and x-raymore » diffraction, and NMR experiments are compared with simulated glass structures.« less

  11. Multiwavelength observations of the γ-ray-emitting narrow-line Seyfert 1 PMN J0948+0022 in 2011

    DOE PAGES

    D'Ammando, F.; Larsson, J.; Orienti, M.; ...

    2014-01-28

    Here, we report on radio-to-γ-ray observations during 2011 May–September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in γ-rays by Fermi-Large Area Telescope. Strong variability was observed in γ-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in γ-rays. The difference in behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multicell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates abovemore » ~2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonization of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expected from the high accretion rate. Except for the soft X-ray excess, unusual in jet-dominated active galactic nuclei, PMN J0948+0022, shows all characteristics of the blazar class.« less

  12. Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO{sub 2} electron blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Xiaoming; Long, Hao; Wang, Haoning

    2014-08-11

    We demonstrated the capability of realizing enhanced ZnO-related UV emissions by using the low-cost and solution-processable ZnO quantum dots (QDs) with the help of a high-k HfO{sub 2} electron blocking layer (EBL) for the ZnO QDs/p-GaN light-emitting diodes (LEDs). Full-width at half maximum of the LED devices was greatly decreased from ∼110 to ∼54 nm, and recombinations related to nonradiative centers were significantly suppressed with inserting HfO{sub 2} EBL. The electroluminescence of the ZnO QDs/HfO{sub 2}/p-GaN LEDs demonstrated an interesting spectral narrowing effect with increasing HfO{sub 2} thickness. The Gaussian fitting revealed that the great enhancement of the Zn{sub i}-related emissionmore » at ∼414 nm whereas the deep suppression of the interfacial recombination at ∼477 nm should be the main reason for the spectral narrowing effect.« less

  13. THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: IMPLICATIONS FOR SPECTRAL LINE INTENSITY MAPPING AT MILLIMETER WAVELENGTHS AND CMB SPECTRAL DISTORTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, C. L.; Walter, F.; Chluba, J.

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii]more » 158 μ m line emission from very high redshift galaxies ( z  ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B}  = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B}  = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.« less

  14. PREFACE: XXII International Conference on Spectral Line Shapes 2014

    NASA Astrophysics Data System (ADS)

    Parigger, C. G.

    2014-11-01

    The 22nd International Conference on Spectral Line Shapes (ICSLS) was convened at The University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee, USA, during June 1 to 6, 2014. A variety of topics of interest to the line shape community were addressed during invited and contributed oral and poster presentations. General categories of the ICSLS 2014 scientific contents included Astrophysics, Biomedical Physics, High and Low Temperature Plasma Physics, Magnetic Fusion Physics, Neutrals Atomic-Molecular-Optical (AMO) Physics, and Applied Physics. Research interests at UTSI and at the Center for Laser Applications (CLA) focus on Applied Physics and Plasma Physics areas such as laser-induced breakdown spectroscopy, spectroscopy with ultra-short light pulses, combustion diagnostics, to name a few. Consequently, the presentations during the conference addressed a variety of these topics. Attendance at the conference included researchers from North America, Africa, Asia and Europe, with an international representation showing 250 authors and co-authors with over 25 different citizenships, and 100 participants at the Conference. Figure 1 shows a photo of Conference attendees. The schedule included 82 contributions, 41 oral and 41 poster presentations. The 29 invited, 12 contributed oral and 41 contributed poster presentations were selected following communication with the international organizing committee members. A smart phone ''app'' was also utilized, thanks to Elsevier, to communicate electronic versions of the posters during the conference. Special thanks go to the members of the international and local committees for their work in organizing the 22nd ICSLS. In addition, thank you notes also go to the peer reviewers for the proceedings. Following the success of the IOP: Journal of Physics Conference Series selected for the 21st ICSLS publication, the proceedings papers report ongoing research activities. Papers submitted amount to 68 in number, or 83% of

  15. Line transport in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Nikoghossian, Artur

    We consider the spectral line transfer in turbulent atmospheres with a spatially correlated velocity field. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. New approach proposed in solving this problem is based on invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity and the line width on the mean correlation length and average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulent one occurs within a comparatively narrow range of variation in the correlation length. The diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere is examined. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  16. The first gamma-ray outburst of a narrow-line Seyfert 1 galaxy: The case of PMN J0948+0022 in 2010 July

    DOE PAGES

    Foschini, Luigi; Ghisellini, G.; Kovalev, Y. Y.; ...

    2011-05-11

    We report on a multiwavelength campaign for the radio-loud narrow-line Seyfert 1 (NLS1) galaxy PMN J0948+0022 (z= 0.5846) performed in 2010 July–September and triggered by a high-energy γ-ray outburst observed by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The peak flux in the 0.1–100 GeV energy band exceeded, for the first time in this type of source, the value of ~10–6 photon cm–2 s–1, corresponding to an observed luminosity of ~1048 erg s–1. Although the source was too close to the Sun position to organize a densely sampled follow-up, it was possible to gather some multiwavelength datamore » that confirmed the state of high activity across the sampled electromagnetic spectrum. Furthermore, the comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar – such as 3C 273 – shows that the power emitted at γ-rays is extreme.« less

  17. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    NASA Technical Reports Server (NTRS)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  18. Scattering in infrared radiative transfer: A comparison between the spectrally averaging model JURASSIC and the line-by-line model KOPRA

    NASA Astrophysics Data System (ADS)

    Griessbach, Sabine; Hoffmann, Lars; Höpfner, Michael; Riese, Martin; Spang, Reinhold

    2013-09-01

    The viability of a spectrally averaging model to perform radiative transfer calculations in the infrared including scattering by atmospheric particles is examined for the application of infrared limb remote sensing measurements. Here we focus on the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Envisat. Various spectra for clear air and cloudy conditions were simulated with a spectrally averaging radiative transfer model and a line-by-line radiative transfer model for three atmospheric window regions (825-830, 946-951, 1224-1228 cm-1) and compared to each other. The results are rated in terms of the MIPAS noise equivalent spectral radiance (NESR). The clear air simulations generally agree within one NESR. The cloud simulations neglecting the scattering source term agree within two NESR. The differences between the cloud simulations including the scattering source term are generally below three and always below four NESR. We conclude that the spectrally averaging approach is well suited for fast and accurate infrared radiative transfer simulations including scattering by clouds. We found that the main source for the differences between the cloud simulations of both models is the cloud edge sampling. Furthermore we reasoned that this model comparison for clouds is also valid for atmospheric aerosol in general.

  19. The size-luminosity relationship of quasar narrow-line regions

    NASA Astrophysics Data System (ADS)

    Dempsey, Ross; Zakamska, Nadia L.

    2018-07-01

    The presence of an active galactic nucleus (AGN) can strongly affect its host. Due to the copious radiative power of the nucleus, the effects of radiative feedback can be detected over the entire host galaxy and sometimes well into the intergalactic space. In this paper we model the observed size-luminosity relationship of the narrow-line regions (NLRs) of AGN. We model the NLR as a collection of clouds in pressure equilibrium with the ionizing radiation, with each cloud producing line emission calculated by Cloudy. The sizes of the NLRs of powerful quasars are reproduced without any free parameters, as long as they contain massive (105-107 M⊙) ionization-bounded clouds. At lower AGN luminosities the observed sizes are larger than the model sizes, likely due to additional unmodeled sources of ionization (e.g. star formation). We find that the observed saturation of sizes at ˜10 kpc which is observed at high AGN luminosities (Lion ≃ 1046 erg s-1) is naturally explained by optically thick clouds absorbing the ionizing radiation and preventing illumination beyond a critical distance. Using our models in combination with observations of the [O III]/IR ratio and the [O III] size-IR luminosity relationship, we calculate the covering factor of the obscuring torus (and therefore the type 2 fraction within the quasar population) to be f = 0.5, though this is likely an upper bound. Finally, because the gas behind the ionization front is invisible in ionized gas transitions, emission-based NLR mass calculations underestimate the mass of the NLR and therefore of the energetics of ionized-gas winds.

  20. Large-scale environments of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Järvelä, E.; Lähteenmäki, A.; Lietzen, H.; Poudel, A.; Heinämäki, P.; Einasto, M.

    2017-09-01

    Studying large-scale environments of narrow-line Seyfert 1 (NLS1) galaxies gives a new perspective on their properties, particularly their radio loudness. The large-scale environment is believed to have an impact on the evolution and intrinsic properties of galaxies, however, NLS1 sources have not been studied in this context before. We have a large and diverse sample of 1341 NLS1 galaxies and three separate environment data sets constructed using Sloan Digital Sky Survey. We use various statistical methods to investigate how the properties of NLS1 galaxies are connected to the large-scale environment, and compare the large-scale environments of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to study how they are related. NLS1 galaxies reside in less dense environments than any of the comparison samples, thus confirming their young age. The average large-scale environment density and environmental distribution of NLS1 sources is clearly different compared to BLS1 galaxies, thus it is improbable that they could be the parent population of NLS1 galaxies and unified by orientation. Within the NLS1 class there is a trend of increasing radio loudness with increasing large-scale environment density, indicating that the large-scale environment affects their intrinsic properties. Our results suggest that the NLS1 class of sources is not homogeneous, and furthermore, that a considerable fraction of them are misclassified. We further support a published proposal to replace the traditional classification to radio-loud, and radio-quiet or radio-silent sources with a division into jetted and non-jetted sources.

  1. The Size-Luminosity Relationship of Quasar Narrow-Line Regions

    NASA Astrophysics Data System (ADS)

    Dempsey, Ross; Zakamska, Nadia L.

    2018-04-01

    The presence of an active galactic nucleus (AGN) can strongly affect its host. Due to the copious radiative power of the nucleus, the effects of radiative feedback can be detected over the entire host galaxy and sometimes well into the intergalactic space. In this paper we model the observed size-luminosity relationship of the narrow-line regions (NLRs) of AGN. We model the NLR as a collection of clouds in pressure equilibrium with the ionizing radiation, with each cloud producing line emission calculated by Cloudy. The sizes of the NLRs of powerful quasars are reproduced without any free parameters, as long as they contain massive (105M⊙ to 107M⊙) ionization-bounded clouds. At lower AGN luminosities the observed sizes are larger than the model sizes, likely due to additional unmodeled sources of ionization (e.g., star formation). We find that the observed saturation of sizes at ˜10kpc which is observed at high AGN luminosities (Lion ≃ 1046erg/s) is naturally explained by optically thick clouds absorbing the ionizing radiation and preventing illumination beyond a critical distance. Using our models in combination with observations of the [O III]/IR ratio and the [O III] size - IR luminosity relationship, we calculate the covering factor of the obscuring torus (and therefore the type 2 fraction within the quasar population) to be f = 0.5, though this is likely an upper bound. Finally, because the gas behind the ionization front is invisible in ionized gas transitions, emission-based NLR mass calculations underestimate the mass of the NLR and therefore of the energetics of ionized-gas winds.

  2. On the Origin of the Flare Emission in IRIS ’ SJI 2832 Filter:Balmer Continuum or Spectral Lines?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleint, Lucia; Krucker, Säm; Heinzel, Petr

    Continuum (“white-light,” WL) emission dominates the energetics of flares. Filter-based observations, such as the IRIS SJI 2832 filter, show WL-like brightenings during flares, but it is unclear whether the emission arises from real continuum emission or enhanced spectral lines, possibly turning into emission. The difficulty in filter-based observations, contrary to spectral observations, is to determine which processes contribute to the observed brightening during flares. Here we determine the contribution of the Balmer continuum and the spectral line emission to IRIS ’ SJI 2832 emission by analyzing the appropriate passband in simultaneous IRIS NUV spectra. We find that spectral line emissionmore » can contribute up to 100% to the observed slitjaw images (SJI) emission, that the relative contributions usually temporally vary, and that the highest SJI enhancements that are observed are most likely because of the Balmer continuum. We conclude that care should be taken when calling SJI 2832 a continuum filter during flares, because the influence of the lines on the emission can be significant.« less

  3. Wavelength-Filter Based Spectral Calibrated Wave number - Linearization in 1.3 mm Spectral Domain Optical Coherence.

    PubMed

    Wijeisnghe, Ruchire Eranga Henry; Cho, Nam Hyun; Park, Kibeom; Shin, Yongseung; Kim, Jeehyun

    2013-12-01

    In this study, we demonstrate the enhanced spectral calibration method for 1.3 μm spectral-domain optical coherence tomography (SD-OCT). The calibration method using wavelength-filter simplifies the SD-OCT system, and also the axial resolution and the entire speed of the OCT system can be dramatically improved as well. An externally connected wavelength-filter is utilized to obtain the information of the wavenumber and the pixel position. During the calibration process the wavelength-filter is placed after a broadband source by connecting through an optical circulator. The filtered spectrum with a narrow line width of 0.5 nm is detected by using a line-scan camera. The method does not require a filter or a software recalibration algorithm for imaging as it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. One of the main drawbacks of SD-OCT is the broadened point spread functions (PSFs) with increasing imaging depth can be compensated by increasing the wavenumber-linearization order. The sensitivity of our system was measured at 99.8 dB at an imaging depth of 2.1 mm compared with the uncompensated case.

  4. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  5. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascucci, I.; Simon, M. N.; Edwards, S.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within themore » circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.« less

  6. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddeningmore » increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.« less

  7. Collision Induced Velocity Changes from Molecular Dynamic Simulations. Application to the Spectral Shape of the Q(1) Raman Lines of H{_2}/H{_2}

    NASA Astrophysics Data System (ADS)

    Tran, H.; Hartmann, J. M.

    2011-06-01

    Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.

  8. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlasmore » of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.« less

  9. Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles.

    PubMed

    Grewal, D S; Brar, G S; Jain, R; Grewal, S P S

    2011-05-01

    To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898-0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm(3), ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4-10.0) and 0.11 (95% CI=0.03-0.4), respectively. ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using SD-ASOCT for detecting narrow angles.

  10. Comparison of Scheimpflug imaging and spectral domain anterior segment optical coherence tomography for detection of narrow anterior chamber angles

    PubMed Central

    Grewal, D S; Brar, G S; Jain, R; Grewal, S P S

    2011-01-01

    Purpose To compare the performance of anterior chamber volume (ACV) and anterior chamber depth (ACD) obtained using Scheimpflug imaging with angle opening distance (AOD500) and trabecular-iris space area (TISA500) obtained using spectral domain anterior segment optical coherence tomography (SD-ASOCT) in detecting narrow angles classified using gonioscopy. Methods In this prospective, cross-sectional observational study, 265 eyes of 265 consecutive patients underwent sequential Scheimpflug imaging, SD-ASOCT imaging, and gonioscopy. Correlations between gonioscopy grading, ACV, ACD, AOD500, and TISA500 were evaluated. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and likelihood ratios (LRs) were calculated to assess the performance of ACV, ACD, AOD500, and TISA500 in detecting narrow angles (defined as Shaffer grade ≤1 in all quadrants). SD-ASOCT images were obtained at the nasal and temporal quadrants only. Results Twenty-eight eyes (10.6%) were classified as narrow angles on gonioscopy. ACV correlated with gonioscopy grading (P<0.001) for temporal (r=0.204), superior (r=0.251), nasal (r=0.213), and inferior (r=0.236) quadrants. ACV correlated with TISA500 for nasal (r=0.135, P=0.029) and temporal (P=0.160, P=0.009) quadrants and also with AOD500 for nasal (r=0.498, P<0.001) and temporal (r=0.517, P<0.001) quadrants. For detection of narrow angles, ACV (AUC=0.935; 95% confidence interval (CI) =0.898–0.961) performed similar to ACD (AUC=0.88, P=0.06) and significantly better than AOD500 nasal (AUC=0.761, P=0.001), AOD500 temporal (AUC=0.808, P<0.001), TISA500 nasal (AUC=0.756, P<0.001), and TISA500 temporal (AUC=0.738, P<0.001). Using a cutoff of 113 mm3, ACV had 90% sensitivity and 88% specificity for detecting narrow angles. Positive and negative LRs for ACV were 8.63 (95% CI=7.4–10.0) and 0.11 (95% CI=0.03–0.4), respectively. Conclusions ACV measurements using Scheimpflug imaging outperformed AOD500 and TISA500 using

  11. NGC 5506 unmasked as a Narrow Line Seyfert 1:. A direct view of the broad line region using near-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagar, N. M.; Oliva, E.; Marconi, A.; Maiolino, R.

    2002-08-01

    This letter presents incontrovertible evidence that NGC 5506 is a Narrow Line Seyfert 1 (NLSy1). Our new 0.9-1.4 mu m spectrum of its nucleus clearly shows the permitted O I lambda 1.1287 mu m line (with full width at half maximum <2000 km s-1) and the ``1 micron Fe II lines''. These lines can only originate in the optically-thick broad line region (BLR) and, among Seyfert nuclei the latter series of lines are seen only in NLSy1s. The obscuration to the BLR, derived from a rough estimate of the O I lambda 1.1287 mu m/O I lambda 8446 ratio and from the reddening of the near-IR Paschen lines, is AV > 5. Together, these results make NGC 5506 the first identified case of an optically-obscured NLSy1. This new classification helps explain its radio to X-ray properties, which until now were considered highly anomalous. However, interesting new concerns are raised: e.g., NGC 5506 is unusual in hosting both a ``type 1'' AGN and a nuclear water vapor megamaser. As the brightest known NLSy1, NGC 5506 is highly suitable for study at wavebands less affected by obscuration. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Centro Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  12. Consequences of narrow cyclotron emission from Hercules X-1

    NASA Technical Reports Server (NTRS)

    Weaver, R. P.

    1978-01-01

    The implications of the recent observations of a narrow cyclotron line in the hard X-ray spectrum of Hercules X-1 are studied. A Monte Carlo code is used to simulate the X-ray transfer of an intrinsically narrow feature at approximately 56 keV through an opaque, cold magnetospheric shell. The results of this study indicate that if a narrow line can be emitted by the source region, then only about 10% of the photons remain in a narrow feature after scattering through the shell. The remaining photons are scattered into a broad feature (FWHM approximately 30 keV) that peaks near 20 keV. Thus, these calculations indicate that the intrinsic source luminosity of the cyclotron line is at least an order of magnitude greater than the observed luminosity.

  13. The origin of N III lambda 990 and C III lambda 977 emission in AGN narrow-line region gas

    NASA Technical Reports Server (NTRS)

    Ferguson, J. W.; Ferland, G. J.; Pradhan, A. K.

    1995-01-01

    We discuss implications of Hopkins Ultraviolet Telescope (HUT) detections of C III lambda 977 and N III lambda 990 emission from the narrow-line region of the Seyfert 2 galaxy NGC 1068. In their discovery paper Kriss et al. showed that the unexpectedly great strength of these lines implies that the emitting gas must be shock-heated if the lines are collisionally excited. Here we investigate other processes which excite these lines in photoionization equilibrium. Recombination, mainly dielectronic, and continuum fluorescence are strong contributors to the line. The resulting intensities are sensitive to the velocity field of the emitting gas and require that the turbulence be of the same order of magnitude as the observed line width. We propose optical observations that will decide whether the gas is collisionally or radiatively heated.

  14. Applications of statistical and atomic physics to the spectral line broadening and stock markets

    NASA Astrophysics Data System (ADS)

    Volodko, Dmitriy

    The purpose of this investigation is the application of time correlation function methodology on the theoretical research of the shift of hydrogen and hydrogen-like spectral lines due to electrons and ions interaction with the spectral line emitters-dipole ionic-electronic shift (DIES) and the describing a behavior of stock-market in terms of a simple physical model simulation which obeys Levy statistical distribution---the same as that of the real stock-market index. Using Generalized Theory of Stark broadening of electrons in plasma we discovered a new source of the shift of hydrogen and hydrogen-like spectral lines that we called a dipole ionic-electronic shift (DIES). This shift results from the indirect coupling of electron and ion microfields in plasmas which is facilitated by the radiating atom/ion. We have shown that the DIES, unlike all previously known shifts, is highly nonlinear and has a different sign for different ranges of plasma parameters. The most favorable conditions for observing the DIES correspond to plasmas of high densities, but of relatively low temperature. For the Balmer-alpha line of hydrogen with the most favorable observational conditions Ne > 1018 cm-3, T < 2 eV, the DIES has been already confirmed experimentally. Based on the study of the time correlations and of the probability distribution of fluctuations in the stock market, we developed a relatively simple physical model, which simulates the Dow Jones Industrials index and makes short-term (a couple of days) predictions of its trend.

  15. Exploring the spectral variability of the Seyfert 1.5 galaxy Markarian 530 with Suzaku

    NASA Astrophysics Data System (ADS)

    Ehler, H. J. S.; Gonzalez, A. G.; Gallo, L. C.

    2018-05-01

    A 2012 Suzaku observation of the Seyfert 1.5 galaxy Markarian 530 was analysed and found to exhibit two distinct modes of variability, which were found to be independent from one another. Firstly, the spectrum undergoes a smooth transition from a soft to a hard spectrum. Secondly, the spectrum displays more rapid variability seemingly confined to a very narrow energy band (˜1 - 3 keV). Three physical models (blurred reflection, partial covering, and soft Comptonisation) were explored to characterise the average spectrum of the observation as well as the spectral state change. All three models were found to fit the average spectrum and the spectral changes equally well. The more rapid variability appears as two cycles of a sinusoidal function, but we cannot attribute this to periodic variability. The Fe Kα band exhibits a narrow 6.4 keV emission line consistent with an origin from the distant torus. In addition, features blueward of the neutral iron line are consistent with emission from He-like and H-like iron that could be originating from the highly ionised layer of the torus, but a broad Gaussian profile at ˜6.7 keV also fits the spectrum well.

  16. Atomic Data and Spectral Line Intensities for Be-like Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand; Landi, E.

    2008-01-01

    Atomic data and collision rates are needed to model the spectrum of optically thin astrophysical sources. Recent observations from solar instrumentation such as SOH0 and Hinode have revealed the presence of hosts of lines emitted by high-energy configurations from ions belonging to the Be-like to the 0-like isoelectronic sequences. Data for such configurations are often unavailable in the literature. We have started a program to calculate the atomic parameters and rates for the high-energy configurations of Be-like ions of the type ls2.21.nl' where n=3,4,5. We report on the results of this project and on the diagnostic application of the predicted spectral lines.

  17. VizieR Online Data Catalog: BOSS narrow CIV absorption lines. III. (Chen+, 2016)

    NASA Astrophysics Data System (ADS)

    Chen, Z.-F.; Gu, Q.-S.; Zhou, L.; Chen, Y.-M.

    2018-03-01

    In this paper, we extend our previous search of CIV NALs released in Papers I (Chen et al., 2014, Cat. J/ApJS/210/7) and II (Chen et al., 2014, Cat. J/ApJS/215/12) to spectral data redwards of CIV 1549 emission lines. Therefore, the quasar sample and selection criteria are the combination of Papers I (Chen et al., 2014, Cat. J/ApJS/210/7) and II (Chen et al., 2014, Cat. J/ApJS/215/12). (1 data file).

  18. Spectral line discriminator for passive detection of fluorescence

    NASA Technical Reports Server (NTRS)

    Kebabian, Paul L. (Inventor)

    1996-01-01

    A method and apparatus for detecting fluorescence from sunlit plants is based on spectral line discrimination using the A-band and B-band absorption of atmospheric oxygen. Light from a plant including scattered sunlight and the fluorescence from chlorophyll is passed through a chopper into a cell containing low-pressure, high-purity oxygen. A-band or B-band wavelengths present in the light are absorbed by the oxygen in the cell. When the chopper is closed, the absorbed light is remitted as fluorescence into a detector. The intensity of the fluorescence from the oxygen is proportional to the intensity of fluorescence from the plant.

  19. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.

    NASA Astrophysics Data System (ADS)

    Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.

  20. No Compton Reflection In a Chandra/RXTE Observation of Mkn 509: Implications for the Fe-K Line Emission From Accreting X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Padmanabhan, Urmila; Kraemer, Steven B.; Crenshaw, D. Michael; Mckernan, Barry; George, Ian M.; Turner, T. Jane; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the results of simultaneous Chandra and RXTE observations of the Seyfert 1 galaxy Mkn 509. We deconvolve the broad and narrow Fe-K emission-line components for which we measure rest-frame equivalent widths of 119+/-18 eV and 57+/-13 eV respectively. The broad line has a FWHM of 57,600((sup 14,400)(sub -21,000)) km/s and the narrow line is unresolved, with an upper limit on the FWHM of 4,940 km/s. Both components must originate in cool matter since we measure rest-frame center energies of 6.36((sup +0.13)(sub -0.12)) keV and 6.42+/-0.01 keV for the broad and narrow line respectively. This rules out He-like and H-like Fe for the origin of both the broad and narrow lines. If, as is widely accepted, the broad Fe-K line originates in Thomson-thick matter (such as an accretion disk), then one expects to observe spectral curvature above approximately 10 keV, (commensurate with the observed broad line), characteristic of the Compton-reflection continuum. However our data sets very stringent limits on deviations of the observed continuum from a power law. Light travel-time delays cannot be invoked to explain anomalies in the relative strengths of the broad Ferry line and Compton-reflection continuum since they are supposed to originate in the same physical location. We are forced to conclude that both the broad and narrow Fe-K lines had to originate in Thomson-thin matter during our observation. This result, for a single observation of just one source, means that our understanding of Fe K line emission and Compton reflection from accreting X-ray sources in general needs to be re-examined. For example, if an irradiated accretion disk existed in Mkn 509 at the time of the observations, the lack of spectral curvature above approximately 10 keV suggests two possibilities. Either the disk was Thomson-thick and highly ionized, having negligible Fe-K line emission and photoelectric absorption or the disk was Thomson-thin producing some or all of the broad Fe-K line

  1. Voigt equivalent widths and spectral-bin single-line transmittances: Exact expansions and the MODTRAN®5 implementation

    NASA Astrophysics Data System (ADS)

    Berk, Alexander

    2013-03-01

    Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.

  2. Line Transport in Turbulent Atmospheres

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.

    2017-07-01

    The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  3. Measurement of atomic Stark parameters of many Mn I and Fe I spectral lines using GMAW process

    NASA Astrophysics Data System (ADS)

    Zielinska, S.; Pellerin, S.; Dzierzega, K.; Valensi, F.; Musiol, K.; Briand, F.

    2010-11-01

    The particular character of the welding arc working in pure argon, whose emission spectrum consists of many spectral lines strongly broadened by the Stark effect, has allowed measurement, sometimes for the first time, of the Stark parameters of 15 Mn I and 10 Fe I atomic spectral lines, and determination of the dependence on temperature of normalized Stark broadening in Ne = 1023 m-3 of the 542.4 nm atomic iron line. These results show that special properties of the MIG plasma may be useful in this domain because composition of the wire-electrode may be easily adapted to the needs of an experiment.

  4. Spectral Atlas of X-ray Lines Emitted During Solar Flares Based on CHIANTI

    NASA Technical Reports Server (NTRS)

    Landi, E.; Phillips, K. J. H.

    2005-01-01

    A spectral atlas of X-ray lines in the wavelength range 7.47-18.97 Angstroms is presented, based on high-resolution spectra obtained during two M-class solar flares (on 1980 August 25 and 1985 July 2) with the Flat Crystal Spectrometer on board the Solar Maximum Mission. The physical properties of the flaring plasmas are derived as a function of time using strong, isolated lines. From these properties predicted spectra using the CHIANTI database have been obtained which were then compared with wavelengths and fluxes of lines in the observed spectra to establish line identifications. identifications for nearly all the observed lines in the resulting atlas are given, with some significant corrections to previous analysis of these flare spectra.

  5. Geocoronal structure. 3. Optically thin, Doppler-broadened line profiles

    NASA Astrophysics Data System (ADS)

    Bishop, James; Chamberlain, Joseph W.

    1987-11-01

    Theoretical line profiles, applicable to the analysis of geocoronal Hα prifile measurements, are presented for illustrative cases. While retaining a number of simplifications (classical exobase and diffusive equilibrium plasmasphere conditions), distinctive spectral signatures of mechanisms governing the geocorona are isolated. Examining the consequences of solar radiation pressure dynamics is the main point here. In the prototype evaporative case, radiation pressure acts to form narrow profiles via the creation of an extensive quasi-satellite component. Comparison with a simple extension of the earlier analytic theory discloses the influence of an exopause in this regard. The main modifications to evaporative spectral shapes in the geocoronal application, for shadow heights greater than 2 RE, are predicted to be (1) a blueward ``shift'' or bias near line center, for look directions parallel to the antisolar axis, generated by loss mechanisms acting over the time of flight of exospheric constituents (for example, solar ionization) and (2) an enhanced redward wing at spectral displacements exceeding that defined by the shadow height escape speed, produced by plasmaspheric charge exchange collisions. Implications of these results for recent observations of geocoronal Hα line profiles are briefly discussed.

  6. Hyperfine structure of excited states and quadrupole moment of Ne-21 using laser-induced line-narrowing techniques.

    NASA Technical Reports Server (NTRS)

    Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.

    1972-01-01

    Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.

  7. Universal FFM Hydrogen Spectral Line Shapes Applied to Ions and Electrons

    NASA Astrophysics Data System (ADS)

    Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.

    2008-10-01

    We present a method for the calculation of hydrogen spectral line shapes based on two combined approaches: Universal Model and FFM procedure. We start with the analytical functions for the intensities of the Stark components of radiative transitions between highly excited atomic states with large values of principal quantum numbers n,n'γ1, with Δn = n-n'≪n for the specific cases of Hn-α line (Δn = 1) and Hn-β line (Δn = 2). The FFM line shape is obtained by averaging on the electric field of the Hooper's field distribution for ion and electron perturber dynamics and by mixing the Stark components with a jumping frequency rate ve (vi) where v = N1/3u (N is electron density and u is the ion or electron thermal velocity). Finally, the total line shape is given by convolution of ion and electron line shapes. Hydrogen line shape calculations for Balmer Hα and Hβ lines are compared to experimental results in low density plasma (Ne˜1016-1017cm-3) and low electron temperature in order of 10 000K. This method relying on analytic expressions permits fast calculation of Hn-α and Hn-β lines of hydrogen and could be used in the study of the Stark broadening of radio recombination lines for high principal quantum number.

  8. Stark widths and shifts for spectral lines of Sn IV

    NASA Astrophysics Data System (ADS)

    de Andrés-García, I.; Alonso-Medina, A.; Colón, C.

    2016-01-01

    In this paper, we present theoretical Stark widths and shifts calculated corresponding to 66 spectral lines of Sn IV. We use the Griem semi-empirical approach and the COWAN computer code. For the intermediate coupling calculations, the standard method of least-squares fitting from experimental energy levels was used. Data are presented for an electron density of 1017 cm-3 and temperatures T = 1.1-5.0 (104 K). The matrix elements used in these calculations have been determined from 34 configurations of Sn IV: 4d10ns(n = 5-10), 4d10nd(n = 5-8), 4d95s2, 4d95p2, 4d95s5d, 4d85s5p2 and 4d105g for even parity and 4d10np(n = 5-8), 4d10nf (n = 4-6), 4d95snp(n = 5-8), 4d85s25p and 4d95snf (n = 4-10) for odd parity. Also, in order to test the matrix elements used in our calculations, we present calculated values of radiative lifetimes of 14 levels of Sn IV. There is good agreement between our calculations and the experimental radiative lifetimes obtained from the bibliography. The spectral lines of Sn IV are observed in UV spectra of HD 149499 B obtained with the Far Ultraviolet Spectroscopic Explorer, the Goddard High Resolution Spectrograph and the International Ultraviolet Explorer. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. Also our values of Stark broadening parameters have been compared with the data available in the bibliography.

  9. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.

    2010-10-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  10. Spectral narrowing of a 980 nm tapered diode laser bar

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  11. Solar Spectral Lines with Special Polarization Properties for the Calibration of Instrument Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Casini, R.; Alemán, T. del Pino

    We investigate atomic transitions that have previously been identified as having zero polarization from the Zeeman effect. Our goal is to identify spectral lines that can be used for the calibration of instrumental polarization of large astronomical and solar telescopes, such as the Daniel K. Inouye Solar Telescope, which is currently under construction on Haleakala. We use a numerical model that takes into account the generation of scattering polarization and its modification by the presence of a magnetic field of arbitrary strength. We adopt values for the Landé factors from spectroscopic measurements or semi-empirical results, thus relaxing the common assumptionmore » of LS-coupling previously used in the literature. The mechanisms dominating the polarization of particular transitions are identified, and we summarize groups of various spectral lines useful for the calibration of spectropolarimetric instruments, classified according to their polarization properties.« less

  12. Multifrequency studies of the narrow-line Seyfert 1 galaxy SBS 0846+513

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Finke, J.; ...

    2013-09-16

    Here, the narrow-line Seyfert 1 galaxy SBS 0846+513 was first detected by the Large Area Telescope on board Fermi in 2011 June–July when it underwent a period of flaring activity. Since then, as Fermi continues to accumulate data on this source, its flux has been monitored on a daily basis. Two further γ-ray flaring episodes from SBS 0846+513 were observed in 2012 May and August, reaching a daily peak flux integrated above 100 MeV of (50 ± 12) × 10 –8 ph cm –2 s –1, and (73 ± 14) × 10 –8 ph cm –2 s –1 on Maymore » 24 and August 7, respectively. Three outbursts were detected at 15 GHz by the Owens Valley Radio Observatory 40 m telescope in 2012 May, 2012 October and 2013 January, suggesting a complex connection with the γ-ray activity. The most likely scenario suggests that the 2012 May γ-ray flare may not be directly related to the radio activity observed over the same period, while the two γ-ray flaring episodes may be related to the radio activity observed at 15 GHz in 2012 October and 2013 January. The γ-ray flare in 2012 May triggered Swift observations that confirmed that SBS 0846+513 was also exhibiting high activity in the optical, UV and X-ray bands, thus providing a firm identification between the γ-ray source and the lower energy counterpart. We compared the spectral energy distribution (SED) of the flaring state in 2012 May with that of a quiescent state. The two SEDs, modelled as an external Compton component of seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. No significant evidence of thermal emission from the accretion disc has been observed. Interestingly, in the 5 GHz radio luminosity versus synchrotron peak frequency plot SBS 0846+513 seems to lie in the flat spectrum radio quasar part of the so-called ‘blazar sequence’.« less

  13. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  14. fd3: Spectral disentangling of double-lined spectroscopic binary stars

    NASA Astrophysics Data System (ADS)

    Ilijić, Saša

    2017-05-01

    The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.

  15. Spectral analysis of IGR J01572-7259 during its 2016 outburst

    NASA Astrophysics Data System (ADS)

    La Palombara, N.; Esposito, P.; Mereghetti, S.; Pintore, F.; Sidoli, L.; Tiengo, A.

    2018-03-01

    We report on the results of the XMM-Newton observation of IGR J01572-7259 during its most recent outburst in 2016 May, the first since 2008. The source reached a flux f ˜ 10-10 erg cm-2 s-1, which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period Pspin = 11.58208(2) s. The pulse profile is double peaked and strongly energy dependent, as the second peak is prominent only at low energies and the pulsed fraction increases with energy. The main spectral component is a power-law model, but at low energies, we also detected a soft thermal component, which can be described with either a blackbody or a hot plasma model. Both the EPIC and RGS spectra show several emission lines, which can be identified with the transition lines of ionized N, O, Ne, and Fe and cannot be described with a thermal emission model. The phase-resolved spectral analysis showed that the flux of both the soft excess and the emission lines vary with the pulse phase: the soft excess disappears in the first pulse and becomes significant only in the second, where also the Fe line is stronger. This variability is difficult to explain with emission from a hot plasma, while the reprocessing of the primary X-ray emission at the inner edge of the accretion disc provides a reliable scenario. On the other hand, the narrow emission lines can be due to the presence of photoionized matter around the accreting source.

  16. Synthetic Absorption Lines for a Clumpy Medium: A Spectral Signature for Cloud Acceleration in AGN?

    NASA Technical Reports Server (NTRS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionized multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called warm absorbers. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds that are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line-of-sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result that can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  17. Spectral filters for laser communications

    NASA Technical Reports Server (NTRS)

    Shaik, K.

    1991-01-01

    Optical communication systems must perform reliabily under strong background light interference. Since the transmitting lasers operate within a narrow spectral band, high signal to noise ratios can be achieved when narrowband spectral optical filters can be used to reject out of band light. Here, a set of general requirements for such filters are developed, and an overview is given of suitable spectral filter technologies for optical communication systems.

  18. First Detection of the [O(sub III)] 88 Micrometers Line at High Redshifts: Characterizing the Starburst and Narrow-Line Regions in Extreme Luminosity Systems

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Parshley, S. C.; Stacey, G. J.; Benford, D. J.; Staguhn, J. G.

    2010-01-01

    We have made the first detections of the 88 micrometers [O(sub III)] line from galaxies in the early universe, detecting the line from the lensed active galactic nucleus (AGN)/starburst composite systems APM 08279+5255 at z 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities approx.10(exp 11) Solar Luminosity, For APM 08279, the [O(sub III)] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, T(sub eff) > 36,000 K, similar to the starburst found in M82. The model implies approx.35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 881,tm line can also be generated in the narrow-line region of the AGN if gas densities are around a few 1000 cu cm. For SMM J02399, the [O(sub III)] line likely arises from HII regions formed by hot (T(sub eff) > 40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [O(sub III)] line for characterizing starbursts and AGN within galaxies in the early universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.s

  19. Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator.

    PubMed

    Thackray, Benjamin D; Thomas, Philip A; Auton, Gregory H; Rodriguez, Francisco J; Marshall, Owen P; Kravets, Vasyl G; Grigorenko, Alexander N

    2015-05-13

    We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 μm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.

  20. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  1. High-resolution spectroscopy of the extended narrow-line region of IC 5063 and NGC 7212

    NASA Astrophysics Data System (ADS)

    Congiu, E.; Contini, M.; Ciroi, S.; Cracco, V.; Berton, M.; Di Mille, F.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2017-10-01

    We studied the properties of the gas of the extended narrow-line region (ENLR) of two Seyfert 2 galaxies: IC 5063 and NGC 7212. We analysed high-resolution spectra to investigate how the main properties of this region depend on the gas velocity. We divided the emission lines in velocity bins and we calculated several line ratios. Diagnostic diagrams and suma composite models (photoionization + shocks) show that in both galaxies there might be evidence of shocks significantly contributing in the gas ionization at high |V|, even though photoionization from the active nucleus remains the main ionization mechanism. In IC 5063, the ionization parameter depends on V and its trend might be explained assuming an hollow bi-conical shape for the ENLR, with one of the edges aligned with the galaxy disc. On the other hand, NGC 7212 does not show any kind of dependence. The models show that solar O/H relative abundances reproduce the observed spectra in all the analysed regions. They also revealed an high fragmentation of the gas clouds, suggesting that the complex kinematics observed in these two objects might be caused by interaction between the interstellar medium and high-velocity components, such as jets.

  2. IDEN2-A program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules

    NASA Astrophysics Data System (ADS)

    Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.

    2018-04-01

    The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.

  3. Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping

    PubMed Central

    Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.

    2010-01-01

    Abstract Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures. PMID:20409492

  4. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948 0022 in March-July 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    Following the recent discovery of {gamma} rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to {gamma} rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to {gamma}-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the {gamma}-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest wasmore » at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.« less

  5. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    NASA Astrophysics Data System (ADS)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  6. Solar Spectral Irradiance Variability of Some Chromospheric Emission Lines Through the Solar Activity Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Göker, Ü. D.; Gigolashvili, M. Sh.; Kapanadze, N.

    2017-06-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers such as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We reduced these data by using the MATLAB software package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs) 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs), contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  7. Spectral lines behavior of Be I and Na I isoelectronic sequence in Debye plasma environment

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Rajat K.; Chattopadhyay, Sudip; Sinha Mahapatra, Uttam

    2012-08-01

    We report the plasma screening effect on the first ionization potential (IP) and [He]2s2(1S0)→[He]2s2p /2s3p allowed (P11) and inter-combination transitions (P31) in some selected Be-like ions. In addition, we investigate the spectral properties of [Ne]3s (2S1/2)→[Ne]np(2P1/2 and P23/2 for n = 3, 4) transitions in Ca X and Fe XVI ions (Na I isoelectronic sequence) and [He]3s(2S1/2)→[He]np(2P1/2 and P23/2 for n = 2, 3) transitions in Li, B II, and N IV (Li I isoelectronic sequence) under plasma environment. The state-of-the-art relativistic coupled cluster calculations using the Debye model of plasma for electron-nucleus interaction show that (a) the ionization potential decreases sharply with increasing plasma strength and (b) the gap between the [He]2s2(1S0)→[He]2s2p(1,3P1) energy levels increases with increasing plasma potential and nuclear charge. It is found that the [He]2s2 (1S0)→2s3p(1,3P1) transition energy decreases uniformly with increasing plasma potential and nuclear charge. In other words, the spectral lines associated with 2s-2p (i.e., Δn=0, where n corresponds to principle quantum number) transitions in Be I isoelectronic sequence exhibit a blue-shift (except for Be I, B II, and the lowest inter-combination line in C III, which exhibit a red-shift), whereas those associated with 2s-3p (i.e., Δn≠0) transitions are red-shifted. Similar trend is observed in Li I and Na I isoelectronic sequences, where spectral lines associated with Δn=0 (Δn≠0) are blue-shifted (red-shifted). The effect of Coulomb screening on the spectral lines of ions subjected to plasma is also addressed.

  8. The Radio to Gamma-ray SED of the Narrow-line Seyfert 1 1H0323+342

    NASA Astrophysics Data System (ADS)

    Ward, M.

    2017-10-01

    A sub-set of radio-loud narrow line Seyfert 1s, have been detected in gamma-rays by the Fermi Gamma-Ray satellite. Their gamma-ray emission is thought to arise from a relativistic jet. We have obtained new near-infrared spectra and used the profiles of the Paschen lines to estimate the mass of the black hole. Combining this with results from optical lines and X-ray timing analysis we arrive at a value of 2 x 10**E7 solar masses. From modelling the broad-band SED, we drive an Eddington ratio of 0.5, rising to 1.0 for a spinning black hole (a=0.8). Furthermore, we constrain the external photon field, and use a single-zone leptonic jet model to obtain a range of jet-parameters which are consistent with Compton up-scattering to produce the observed gamma-ray spectrum. This low-redshift very well studied AGN can potentially provide a useful laboratory to further our understanding of the jet/disc connection in extragalactic sources.

  9. On The Stark Shift of Ar II 472.68 nm Spectral Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijatovic, Z.; Gajo, T.; Vujicic, B.

    The Stark shift of Ar II 472.68 nm (transition 4s2P - 4p2D deg. ) spectral lines emitted from T-tube plasmas was considered. The electron density ranged from (1.63-2.2){center_dot}1023 m-3 and was determined using laser interferometry. The plasma temperature, derived from the Gaussian part of recorded line profiles was found to be in the range (15000-43300) K. Experimental shifts were compared to theoretical values obtained from the semiempirical formula [M. S. Dimitrijevic and N. Konjevic, J. Quant. Spectrosc. Radiat. Transfer 24, 451 (1980)]. This comparison showed good agreement between experimental results and theory.

  10. Discovery of Dramatic Optical Variability in SDSS J1100+4421: A Peculiar Radio-loud Narrow-line Seyfert 1 Galaxy?

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  11. Generation of spectral clusters in a mixture of noble and Raman-active gases.

    PubMed

    Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  12. Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas-Utilization of Optimal Spectral Detuning of Fano Resonances.

    PubMed

    Mesch, Martin; Weiss, Thomas; Schäferling, Martin; Hentschel, Mario; Hegde, Ravi S; Giessen, Harald

    2018-05-25

    We analyze and optimize the performance of coupled plasmonic nanoantennas for refractive index sensing. The investigated structure supports a sub- and super-radiant mode that originates from the weak coupling of a dipolar and quadrupolar mode, resulting in a Fano-type spectral line shape. In our study, we vary the near-field coupling of the two modes and particularly examine the influence of the spectral detuning between them on the sensing performance. Surprisingly, the case of matched resonance frequencies does not provide the best sensor. Instead, we find that the right amount of coupling strength and spectral detuning allows for achieving the ideal combination of narrow line width and sufficient excitation strength of the subradiant mode, and therefore results in optimized sensor performance. Our findings are confirmed by experimental results and first-order perturbation theory. The latter is based on the resonant state expansion and provides direct access to resonance frequency shifts and line width changes as well as the excitation strength of the modes. Based on these parameters, we define a figure of merit that can be easily calculated for different sensing geometries and agrees well with the numerical and experimental results.

  13. Effects of distributions of energy of transfer rates on spectral hole burning in photosynthetic pigment-protein complexes

    NASA Astrophysics Data System (ADS)

    Ahmouda, Somaya

    To perform photosynthesis, plants, algae and bacteria possess well organized and closely coupled photosynthetic pigment-protein complexes. Information on energy transfer in photosynthetic complexes is important to understand their functioning and possibly to design new and improved photovoltaic devices. The information on energy transfer processes contained in the narrow zero-phonon lines at low temperatures is hidden under the inhomogeneous broadening. Thus, it has been proven difficult to analyze the spectroscopic properties of these complexes in sufficient detail by conventional spectroscopy methods. In this context the high resolution spectroscopy techniques such as Spectral Hole Burning are powerful tools designed to get around the inhomogeneous broadening. Spectral Hole Burning involves selective excitation by a laser which removes molecules with the zero-phonon transitions resonant with this laser. This thesis focuses on the effects of the distributions of the energy transfer rates (homogeneous line widths) on the evolution of spectral holes. These distributions are a consequence of the static disorder in the photosynthetic pigment-protein complexes. The qualitative effects of different types of the line width distributions on the evolution of spectral holes have been and explored by numerical simulations, an example of analysis of the original experimental data has been presented as well.

  14. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    NASA Astrophysics Data System (ADS)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  15. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    NASA Astrophysics Data System (ADS)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  16. Temperature dependence of the pressure broadening of spectral lines

    NASA Astrophysics Data System (ADS)

    Roston, G. D.; Helmi, M. S.

    2012-12-01

    The aim of this work is to obtain a formula relating the pressure broadening coefficient of the spectral line β with the temperature T, when the difference potential ΔV(R) between the upper and lower states of the emitting atom is represented by (Lennard - Jones) potential, The obtained formula is a power index law of β on T. This formula is applied for calculating β for different interactions of Ar, Ne, TI, Hg, Cd and Zn with the inert gases (Xe, Kr, Ar, Ne and He) at different temperatures. The results of these calculations are in good agreement with the corresponding values obtained before numerically. The obtained formula is considered very important in astrophysical problems.

  17. Sets of spectral lines for spectrographic thermometry and manometry in d.c. arcs of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.

    1977-01-01

    Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.

  18. Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges

    NASA Astrophysics Data System (ADS)

    Tibuleac, Sorin

    In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an

  19. Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-04

    In this work, we report the discovery with Fermi/LAT of γ-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z = 0.409), 1H 0323+342 (z = 0.061), and PKS 2004 – 447 (z = 0.24). In addition to PMN J0948+0022 (z = 0.585), the first source of this type to be detected in γ rays, they may form an emerging new class of γ-ray active galactic nuclei (AGNs). Lastly, these findings can have strong implications on our knowledge about relativistic jets and the unified model of the AGN.

  20. Eta Carinae across the 2003.5 Minimum: Analysis in the Visible and Near Infrared Spectral Region

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Kober, G. Vieira; Weis, K.; Gull, T.; Stahl, O.; Bomans, D. J.

    2008-01-01

    We present analysis of the visible through near infrared spectrum of eta Car and its ejecta obtained during the 'eta Car Campaign with the Ultraviolet Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)'. This is a part of larger effort to present a complete eta Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 A) to 10,430 A. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 A, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments apertures. This paper provide a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 A.

  1. Eta Carinae across the 2003.5 Minimum: Analysis in the Visible and Near Infrared Spectral Region

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Kober, G. Vieira; Weis, K.; Gull, T. R.; Stahl, O.; Bomans, D. J.

    2009-01-01

    We present an analysis of the visible through near infrared spectrum of Eta Car and its ejecta obtained during the "Eta Car Campaign with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)". This is a part of the larger effort to present a complete Eta Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 Angstrom) to 10,430 Angstrom. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 Angstroms, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 Angstroms.

  2. The influence of temperature on narrow I 1 and I 2 lines in the luminescence spectrum of Ni0.6Zn0.4O

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Pustovarov, V. A.; Ivanov, V. Yu.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.

    2014-05-01

    The behavior of the luminescence spectrum of solid solution Ni0.6Zn0.4O, in which two intense narrow lines were recently discovered, is investigated as a function of temperature. It is shown that the intensity of one of the lines drops in accordance with the Mott law with increasing temperature in the range between 10 and 50 K. The lines experience broadening, and the ratio of their intensities changes. In addition, the lines shift toward lower energies. This shift and broadening of both lines occur differently, suggesting that they are of different nature.

  3. Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra

    PubMed Central

    Cundill, Sharon L.; van der Werff, Harald M. A.; van der Meijde, Mark

    2015-01-01

    The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices’ values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important. PMID:25781511

  4. Influence of Laser Radiation Power Density on the Intensity of Spectral Lines for Main Components in a Clay Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Anufrik, S. S.; Kurian, N. N.; Znosko, K. F.; Belkov, M. V.

    2018-05-01

    We have studied the intensity of the spectral lines for the main components in clay: Al I 309.4 nm, Al II 358.7 nm, Mg II 279.6 nm, Ti II 323.6 nm vs. the position of the object relative to the focus of the optical system when the samples are exposed to single laser pulses from a YAG:Nd3+ laser. We have determined the permissible ranges for positioning the object relative to the focus of the optical system (positive and negative defocusing) for which there is practically no change in the reproducibility of the intensity for the spectral lines for red and white clay samples. We show that the position of the object relative to the focus of the optical system should be within the range ΔZ ±1.5 mm for optimal laser pulse energies for the analyte spectral lines. We have calculated the radiation flux density for different laser pulse energies and different distances from the focus to the object. We have shown experimentally that reducing the radiation flux density leads to a decrease in the intensity of the analyte spectral lines.

  5. Using spectral information in forensic imaging.

    PubMed

    Miskelly, Gordon M; Wagner, John H

    2005-12-20

    Improved detection of forensic evidence by combining narrow band photographic images taken at a range of wavelengths is dependent on the substance of interest having a significantly different spectrum from the underlying substrate. While some natural substances such as blood have distinctive spectral features which are readily distinguished from common colorants, this is not true for visualization agents commonly used in forensic science. We now show that it is possible to select reagents with narrow spectral features that lead to increased visibility using digital cameras and computer image enhancement programs even if their coloration is much less intense to the unaided eye than traditional reagents. The concept is illustrated by visualising latent fingermarks on paper with the zinc complex of Ruhemann's Purple, cyanoacrylate-fumed fingerprints with Eu(tta)(3)(phen), and soil prints with 2,6-bis(benzimidazol-2-yl)-4-[4'-(dimethylamino)phenyl]pyridine [BBIDMAPP]. In each case background correction is performed at one or two wavelengths bracketing the narrow absorption or emission band of these compounds. However, compounds with sharp spectral features would also lead to improved detection using more advanced algorithms such as principal component analysis.

  6. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-25

    For this research, following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band.more » The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. In conclusion, these results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.« less

  7. The Influence of Solar Spectral Lines on Electron Concentration in Terrestrial Ionosphere

    NASA Astrophysics Data System (ADS)

    Nina, A.; Čadež, V.; Srećković, V. A.; Šulić, D.

    One of the methods of detection and analysis of solar flares is observing the time variations of certain solar spectral lines. During solar flares, a raise of electron concentration occurs in Earth's ionosphere which results in amplitude and phase variations of the recorded very low frequency (VLF) waves. We compared the data obtained by the analysis of recorded VLF signals and line spectra for different solar flares. In this paper we treated the DHO VLF signal transmitted from Germany at the frequency of 23.4 kHz recorded by the AWESOME system in Belgrade (Serbia) during solar flares in the period between 10:40 UT and 13:00 UT on 2011 April 22.

  8. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  9. SHIELD: EVLA HI Spectral Line Observations of Low-mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Miazzo, Masao; Ruvolo, Elizabeth; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. These systems harbor neutral gas reservoirs smaller than 3x10^7 M_sun, thus populating the faint end of the HI mass function with statistical confidence for the first time. Here we present new Karl G. Jansky Very Large Array D-configuration HI spectral line observations of 32 previously unobserved galaxies. These low angular resolution (~40" beam) images localize the HI gas; with a few exceptions, the HI gas is co-spatial with the optical centers of the galaxies. These images provide the first glimpse of the neutral interstellar medium in these systems.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  10. New assignment of 14N NQR spectral lines for tetrazoles derivatives

    NASA Astrophysics Data System (ADS)

    Mamadazizov, Sultonazar; Shelyapina, Marina G.; Kupriyanova, Galina S.; Mozzhukhin, George V.

    2018-04-01

    In recent years, considerable interest has been shown in the study of tetrazole derivatives, which attract attention as highly nitrogenous compounds for use as an isosteric substitutes for various functional groups that leads to creation of novel biologically active substances. NQR techniques, being sensitive to the local environment of 14N nuclei, provide great opportunities to study these new substances. To make investigation of complex compounds containing tetrazoles derivatives easier and more reliable a correctly assigned 14N NQR spectra of tetrazoles are required. Here we report on the results of our DFT B3LYP calculations of 14N NQR spectral parameters (quadrupole coupling constant Qcc and the asymmetry parameter of the electric field gradient η) for tetrazole, 5-aminotetrazole and 5-aminotetrazole monohydrate. It has been found that the commonly accepted assignment of the 14N NQR spectral lines for these molecules is incorrect. A new assignment for these molecules is proposed.

  11. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  12. Super-massive binary black holes and emission lines in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Popović, Luka Č.

    2012-02-01

    It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called 'core ellipticals' and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines. The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow

  13. Broad Low-Intensity Wings in the Emission-Line Profiles of Four Wolf-Rayet Galaxies

    NASA Astrophysics Data System (ADS)

    Méndez, David I.; Esteban, César

    1997-10-01

    High-resolution spectroscopic observations have been obtained for the Wolf-Rayet galaxies He 2-10, II Zw 40, POX 4, and Tol 35. Several subregions have been selected in each slit position in order to investigate possible spatial variations in the line profiles, radial velocities, and ionization conditions of the gas. The most remarkable feature of the spectra is the presence of asymmetric broad low-intensity wings in the profiles of the brightest emission lines. These spectral features are detected farther out from the star-forming knots, showing linear dimensions between 300 pc and 4.1 kpc. The maximum expansion velocity measured for this gas is between 120 and 340 km s-1 and appears to be quite constant along the slit for all the objects. Additional general properties of the spectra are (1) the quoted emission-line ratios are similar in the narrow and broad components, (2) no systematic differences of the behavior of the broad and narrow components have been found along the major and minor axis of the galaxies, and (3) the spatial distribution of the ionized gas is peaked centrally. Different mechanisms capable of producing the observed broad spectral features are discussed: cloud-cloud collisions in virialized gas, ``academic'' superbubbles, champagne flows, and superbubble blowout. It is concluded that superbubble blowout expanding over a cloudy medium can explain the observational properties in a reasonable manner.

  14. Near-infrared spectral image analysis of pork marbling based on Gabor filter and wide line detector techniques.

    PubMed

    Huang, Hui; Liu, Li; Ngadi, Michael O; Gariépy, Claude; Prasher, Shiv O

    2014-01-01

    Marbling is an important quality attribute of pork. Detection of pork marbling usually involves subjective scoring, which raises the efficiency costs to the processor. In this study, the ability to predict pork marbling using near-infrared (NIR) hyperspectral imaging (900-1700 nm) and the proper image processing techniques were studied. Near-infrared images were collected from pork after marbling evaluation according to current standard chart from the National Pork Producers Council. Image analysis techniques-Gabor filter, wide line detector, and spectral averaging-were applied to extract texture, line, and spectral features, respectively, from NIR images of pork. Samples were grouped into calibration and validation sets. Wavelength selection was performed on calibration set by stepwise regression procedure. Prediction models of pork marbling scores were built using multiple linear regressions based on derivatives of mean spectra and line features at key wavelengths. The results showed that the derivatives of both texture and spectral features produced good results, with correlation coefficients of validation of 0.90 and 0.86, respectively, using wavelengths of 961, 1186, and 1220 nm. The results revealed the great potential of the Gabor filter for analyzing NIR images of pork for the effective and efficient objective evaluation of pork marbling.

  15. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr; Ferrier, Alban

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase ofmore » up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.« less

  16. In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik

    2015-11-01

    The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.

  17. The Ca II V/R ratio and mass loss. [stellar spectral emission lines

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1978-01-01

    High-dispersion coude spectrograms of 181 MK standards of types early F through late M, including luminosity classes Ia, Ib, II, and III, are analyzed. It is shown that the brightness ratio of the V and R self-reversed emission peaks (denoted V/R) in the center of the Ca II K line is correlated with spectral type as well as with certain other spectral-type and luminosity-sensitive parameters, including indicators of mass loss and the H-K wing emission lines. The observations indicate that V/R varies smoothly from less than unity in late K and M giants to greater than unity for G giants. This trend appears to be true for bright giants as well but not necessarily for supergiants and seems to hold for the average V/R for a given star, although short-term variations in V/R occur. It is suggested that the V/R values, which can be interpreted in terms of atmospheric motions, may indirectly relate to effects of evolutionary changes in stellar structure and that V/R among late-type stars could be useful as an indicator of both chromospheric activity and the state of stellar evolution.

  18. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  19. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.

  20. Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots

    NASA Astrophysics Data System (ADS)

    Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando

    2015-12-01

    We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.

  1. 3-D interactive visualisation tools for Hi spectral line imaging

    NASA Astrophysics Data System (ADS)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2017-06-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.

  2. Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es

    Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended timemore » integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.« less

  3. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  4. Overlapping communities detection based on spectral analysis of line graphs

    NASA Astrophysics Data System (ADS)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  5. Convective blueshifts in the solar atmosphere. I. Absolute measurements with LARS of the spectral lines at 6302 Å

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, J.; Schmidt, W.; Stief, F.; Steinmetz, T.; Holzwarth, R.

    2018-03-01

    Context. The solar convection manifests as granulation and intergranulation at the solar surface. In the photosphere, convective motions induce differential Doppler shifts to spectral lines. The observed convective blueshift varies across the solar disk. Aim. We focus on the impact of solar convection on the atmosphere and aim to resolve its velocity stratification in the photosphere. Methods: We performed high-resolution spectroscopic observations of the solar spectrum in the 6302 Å range with the Laser Absolute Reference Spectrograph at the Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the spectra to an absolute wavelength scale with an accuracy of 1 m s-1. We systematically scanned the quiet Sun from the disk center to the limb at ten selected heliocentric positions. The analysis included 99 time sequences of up to 20 min in length. By means of ephemeris and reference corrections, we translated wavelength shifts into absolute line-of-sight velocities. A bisector analysis on the line profiles yielded the shapes and convective shifts of seven photospheric lines. Results: At the disk center, the bisector profiles of the iron lines feature a pronounced C-shape with maximum convective blueshifts of up to -450 m s-1 in the spectral line wings. Toward the solar limb, the bisectors change into a "\\"-shape with a saturation in the line core at a redshift of +100 m s-1. The center-to-limb variation of the line core velocities shows a slight increase in blueshift when departing the disk center for larger heliocentric angles. This increase in blueshift is more pronounced for the magnetically less active meridian than for the equator. Toward the solar limb, the blueshift decreases and can turn into a redshift. In general, weaker lines exhibit stronger blueshifts. Conclusions: Best spectroscopic measurements enabled the accurate determination of absolute convective shifts in the solar photosphere. We convolved the results to lower spectral

  6. PREFACE: XXI International Conference on Spectral Line Shapes (ICSLS 2012)

    NASA Astrophysics Data System (ADS)

    Devdariani, Alexander Z.

    2012-12-01

    The 21st International Conference on Spectral Line Shapes, ICSLS, was held in the historic main building of St Petersburg State University (St. Petersburg, Russia) on 3-9 June 2012. The event continued the tradition started in 1978 in Meudon Observatory in Paris. Representatives of line shape physics have since met every two years in different locations in Europe and North America. The most recent events were held in St John's, Newfoundland, Canada (2010), Valladolid, Spain (2008), and Auburn, AL (USA). Traditionally, the conferences consider experimental and theoretical issues of studying spectral line shapes, diagnostic utilization of spectral line profiles observed in absorption, emission or scattering of electromagnetic radiation by atoms, molecules, and clusters in different environments, including neutral environments, laboratory low and fusion plasmas, astrophysical conditions, and planetary atmospheres. The Conference was attended by over 100 professionals from Europe, Asia, America, Africa and New Zealand. The conference program was put together in such a way so as to exclude any parallel sessions. Five afternoon sessions featured 19 invited talks and 20 oral contributions, and two evening sessions offered 61 poster presentations, including post-deadline posters. This setup allowed for a relaxed and unhurried discussion of results and facilitated productive networking. The invited talks were selected by recommendation of members of the International Scientific Committee. The Organizers would like to thank all the members of the International Scientific Committee for their proposals on the agenda and their valuable advice. When considering candidates for oral contributions, the organizers took into account the suggestions and preferences of potential conference participants. When selecting the theses of poster presentations, the organizers focused on the topics in line with the theme of the conference and studies with well-formulated results. It must be

  7. A new mathematical formulation of the line-by-line method in case of weak line overlapping

    NASA Technical Reports Server (NTRS)

    Ishov, Alexander G.; Krymova, Natalie V.

    1994-01-01

    A rigorous mathematical proof is presented for multiline representation on the equivalent width of a molecular band which consists in the general case of n overlapping spectral lines. The multiline representation includes a principal term and terms of minor significance. The principal term is the equivalent width of the molecular band consisting of the same n nonoverlapping spectral lines. The terms of minor significance take into consideration the overlapping of two, three and more spectral lines. They are small in case of the weak overlapping of spectral lines in the molecular band. The multiline representation can be easily generalized for optically inhomogeneous gas media and holds true for combinations of molecular bands. If the band lines overlap weakly the standard formulation of line-by-line method becomes too labor-consuming. In this case the multiline representation permits line-by-line calculations to be performed more effectively. Other useful properties of the multiline representation are pointed out.

  8. Theory and Simulation of Exoplanetary Atmospheric Haze: Giant Spectral Line Broadening

    NASA Astrophysics Data System (ADS)

    Sadeghpour, Hossein; Felfeli, Zineb; Kharchenko, Vasili; Babb, James; Vrinceanu, Daniel

    2018-01-01

    Prominent spectral features in observed transmission spectra of exoplanets are obscured. Atmospheric haze is the leading candidate for the flattening of spectral transmission of expolanetray occultation, but also for solar system planets, Earth and cometary atmospheres. Such spectra which carry information about how the planetary atmospheres become opaque to stellar light in transit, show broad absorption where strong absorption lines from sodium or potassium and water are predicted to exist. In this work, we develop a detailed atomistic theoretical model, taking into account interaction between an atomic or molecular radiator with dust and haze particulates. Our model considers a realistic structure of haze particulates from small seed particles up to sub-micron irregularly shaped aggregates. This theory of interaction between haze and radiator particles allows to consider nearly all realistic structure, size and chemical composition of haze particulates. The computed shift and broadening of emission spectra will include both quasi-static (mean field) and collisional (pressure) shift and broadening. Our spectral calculations will be verified with available laboratory experimental data on spectra of alkali atoms in liquid droplet, solid ice, dust and dense gaseous environments. The simplicity, elegance and generality of the proposed model makes it amenable to a broad community of users in astrophysics and chemistry. The verified models can be used for analysis of emission and absorption spectra of alkali atoms from exoplanets, solar system planets, satellites and comets.

  9. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  10. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  11. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  12. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  13. Hemispherical-field-of-view, nonimaging narrow-band spectral filter.

    PubMed

    Miles, R B; Webb, S G; Griffith, E L

    1981-12-01

    Two compound parabolic concentrators are used to create a 180 degrees -field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  14. Persistent optical hole-burning spectroscopy of nano-confined dye molecules in liquid at room temperature: Spectral narrowing due to a glassy state and extraordinary relaxation in a nano-cage

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroshi

    2018-04-01

    Persistent optical hole-burning spectroscopy has been conducted for a dye molecule within a very small (˜1 nm) reverse micelle at room temperature. The spectra show a spectral narrowing due to site-selective excitation. This definitely demonstrates that the surroundings of the dye molecule are in a glassy state regardless of a solution at room temperature. On the other hand, the hole-burning spectra exhibit large shifts from excitation frequencies, and their positions are almost independent of excitation frequencies. The hole-burning spectra have been theoretically calculated by taking account of a vibronic absorption band of the dye molecule under the assumption that the surroundings of the dye molecule are in a glassy state. The calculated results agree with the experimental ones that were obtained for the dye molecule in a polymer glass for comparison, where it has been found that the ratio of hole-burning efficiencies of vibronic- to electronic-band excitations is quite high. On the other hand, the theoretical results do not explain the large spectral shift from the excitation frequency and small spectral narrowing observed in the hole-burning spectra measured for the dye-containing reverse micelle. It is thought that the spectral shift and broadening occur within the measurement time owing to the relaxation process of the surroundings that are hot with the thermal energy deposited by the dye molecule optically excited. Furthermore, the relaxation should be temporary because the cooling of the inside of the reverse micelle takes place with the dissipation of the excess thermal energy to the outer oil solvent, and so the surroundings of the dye molecule return to the glassy state and do not attain the thermal equilibrium. These results suggest that a very small reverse micelle provides a unique reaction field in which the diffusional motion can be controlled by light in a glassy state.

  15. A spectrally tunable calibration source using Ebert-Fastie configuration

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Li, Zhigang

    2018-03-01

    A novel spectrally tunable calibration source based on a digital micromirror device (DMD) and Ebert-Fastie optical configuration with two working modes (narrow-band mode and broad-band mode) was designed. The DMD is set on the image plane of the first spectral tuner, and controls the wavelength and intensity of the light reflected into the second spectral tuner by switching the micromirror array’s condition, which in turn controls the working mode of the spectrally tunable source. When working in narrow-band mode, the spectrally tunable source can be calibrated by a Gershun tube radiant power radiometer and a spectroradiometer. In broad-band mode, it can be used to calibrate optical instruments as a standard spectral radiance source. When using a xenon lamp as a light source, the stability of the spectrally tunable source is better than 0.5%, the minimum spectral bandwidth is 7 nm, and the uncertainty of the spectral radiance of the spectrally tunable source is estimated as 14.68% at 450 nm, 1.54% at 550 nm, and 1.48% at 654.6 nm. The uncertainty of the spectral radiance of the spectrally tunable source calibrated by the Gershun tube radiometer and spectroradiometer can be kept low during the radiometric calibration procedure so that it can meet the application requirement of optical quantitative remote sensing calibration.

  16. Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light

    DOE PAGES

    Hosseinzadeh, Griffin; Arcavi, Iair; Valenti, Stefano; ...

    2017-02-16

    Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the classmore » as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. Here, we find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day -1 during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Finally, together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.« less

  17. Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseinzadeh, Griffin; Arcavi, Iair; McCully, Curtis

    2017-02-20

    Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the classmore » as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day{sup −1} during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.« less

  18. Spectral Analysis of the Accretion Flow in NGC 1052 with Suzaku

    NASA Technical Reports Server (NTRS)

    Brenneman, L. W.; Weaver, K. A.; Kadler, M.; Tueller, J.; Marscher, A.; Ros, E.; Zensus,A.; Kovalev, Y. Y.; Aller, M.; Aller, H.; hide

    2008-01-01

    We present an analysis of the 101 ks, 2007 Suzaku spectrum of the LINER galaxy NGC 1052. The 0:3..10 keV continuum is well-modeled by a power-law continuum modified by Galactic and intrinsic absorption, and exhibits a soft, thermal emission component below 1 keV. Both a narrow core and a broader component of Fe-Ka emission are robustly detected at 6:4 keV. While the narrow line is consistent with an origin in material distant from the black hole, the broad line is best fit empirically by a model that describes fluorescent emission from the inner accretion disk around a rapidly rotating black hole. We find no direct evidence for Comptonized reflection of the hard X-ray source by the disk above 10 keV, however, which casts doubt on the hypothesis that the broad iron line is produced in a standard accretion disk. We explore other possible scenarios for producing this spectral feature and conclude that the high equivalent width and full width half maximum velocity of the broad iron line (v greater than or equals 0:37c) necessitate an origin within d approx. 8r(sub g) of the hard X-ray source. Based on the confirmed presence of a strong radio jet in this source, the broad iron line may be produced in dense plasma at the base of the jet, implying that emission mechanisms in the central-most portions of active galactic nuclei are more complex than previously thought.

  19. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    PubMed

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  20. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. I. The X-ray View

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Schulz, R.; Kadler, M.; Wilms, J.; Markowitz, A.; Chang, C. S.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Mannheim, K.; Müller, C.; Ojha, R.; Ros, E.; Trüstedt, J.

    2016-01-01

    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004-447 are in the range of (0.5-2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band.

  1. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Neutral Vanadium (V i)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saloman, Edward B.; Kramida, Alexander

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of the neutral vanadium atom, V i, have been compiled. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g -factors and leading percentage compositions for the levels are included where available, as well as wavelengths calculated from the energy levels (Ritz wavelengths). Wavelengths are reported for 3985 transitions, and 549 energy levels are determined. The observed relative intensities normalized to a common scale are provided.

  2. ULTRA-NARROW NEGATIVE FLARE FRONT OBSERVED IN HELIUM-10830 Å USING THE 1.6 m NEW SOLAR TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yan; Liu, Chang; Jing, Ju

    2016-03-10

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negativemore » contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.« less

  3. Ultra-sensitive probe of spectral line structure and detection of isotopic oxygen

    NASA Astrophysics Data System (ADS)

    Garner, Richard M.; Dharamsi, A. N.; Khan, M. Amir

    2018-01-01

    We discuss a new method of investigating and obtaining quantitative behavior of higher harmonic (> 2f) wavelength modulation spectroscopy (WMS) based on the signal structure. It is shown that the spectral structure of higher harmonic WMS signals, quantified by the number of zero crossings and turnings points, can have increased sensitivity to ambient conditions or line-broadening effects from changes in temperature, pressure, or optical depth. The structure of WMS signals, characterized by combinations of signal magnitude and spectral locations of turning points and zero crossings, provides a unique scale that quantifies lineshape parameters and, thus, useful in optimization of measurements obtained from multi-harmonic WMS signals. We demonstrate this by detecting weaker rotational-vibrational transitions of isotopic atmospheric oxygen (16O18O) in the near-infrared region where higher harmonic WMS signals are more sensitive contrary to their signal-to-noise ratio considerations. The proposed approach based on spectral structure provides the ability to investigate and quantify signals not only at linecenter but also in the wing region of the absorption profile. This formulation is particularly useful in tunable diode laser spectroscopy and ultra-precision laser-based sensors where absorption signal profile carries information of quantities of interest, e.g., concentration, velocity, or gas collision dynamics, etc.

  4. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlatedmore » with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.« less

  5. FBQS J1644+2619: multiwavelength properties and its place in the class of γ-ray emitting Narrow Line Seyfert 1s

    NASA Astrophysics Data System (ADS)

    Larsson, J.; D'Ammando, F.; Falocco, S.; Giroletti, M.; Orienti, M.; Piconcelli, E.; Righini, S.

    2018-05-01

    A small fraction of Narrow Line Seyfert 1s (NLSy1s) are observed to be γ-ray emitters. Understanding the properties of these sources is of interest since the majority of NLSy1s are very different from typical blazars. Here, we present a multifrequency analysis of FBQS J1644+2619, one of the most recently discovered γ-ray emitting NLSy1s. We analyse an ˜80 ks XMM-Newton observation obtained in 2017, as well as quasi-simultaneous multiwavelength observations covering the radio-γ-ray range. The spectral energy distribution of the source is similar to the other γ-ray NLSy1s, confirming its blazar-like nature. The X-ray spectrum is characterized by a hard photon index (Γ = 1.66) above 2 keV and a soft excess at lower energies. The hard photon index provides clear evidence that inverse Compton emission from the jet dominates the spectrum, while the soft excess can be explained by a contribution from the underlying Seyfert emission. This contribution can be fitted by reflection of emission from the base of the jet, as well as by Comptonization in a warm, optically thick corona. We discuss our results in the context of the other γ-ray NLSy1s and note that the majority of them have similar X-ray spectra, with properties intermediate between blazars and radio-quiet NLSy1s.

  6. CONTINUUM INTENSITY AND [O i] SPECTRAL LINE PROFILES IN SOLAR 3D PHOTOSPHERIC MODELS: THE EFFECT OF MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es

    2015-04-01

    The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the matchmore » of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.« less

  7. How Wolf-Rayet winds are driven by starlight and spectral lines

    NASA Astrophysics Data System (ADS)

    Onifer, Andrew Joseph, III

    Finding the cause of the enormous increase in the mass- loss rate of a Wolf-Rayet (W-R) star, as compared to its O star progenitor, has remained a challenge for many years. This thesis explores the hypothesis that line driving causes the large observed W-R mass-loss rates. Frequency redistribution can cause the photons to filter into gaps in the line spectrum, reducing the efficiency of line driving. Therefore, the role that frequency redistribution plays in lowering the predicted mass-loss rate is explored, both via simple two-domain idealizations of the line list and via a real W-R line list. A simple analytic theory, called the Statistical Sobolev Rosseland (SSR) theory, is developed that calculates the local efficiency of line driving in a completely redistributing wind. In the process a conceptual language is developed to explain the key issues in W-R wind line driving. The results are that with no redistribution, the reduction in radius, and corresponding increase in temperature, of an O star as it evolves into a W-R star causes roughly a six-fold increase in the mass-loss rate. However, with large amounts of redistribution, the efficiency of the wind drops greatly in the presence of spectral gaps. In the most extreme case of SSR, the mass- loss rate drops by a factor of up to an order of magnitude relative to the gray value. To avoid this it is necessary to fill the gaps in the spectrum, and the effect that ionization stratification has in filling the gaps globally over the wind is explored. It is found that with the current line list ionization changes can only fill the gaps sufficiently to cause about a factor of two increase over the SSR value. The conclusion is that in order for line driving to explain the mass-loss rates of W-R winds, more opacity needs to be discovered to fill the gaps, either locally, or globally over a realistic range of ionization strata.

  8. Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.

    PubMed

    Matyushov, Dmitry V; Newton, Marshall D

    2017-03-23

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.

  9. A spectral line survey of IRC +10216 between 13.3 and 18.5 GHz

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yan; Zhu, Qing-Feng; Li, Juan; Chen, Xi; Wang, Jun-Zhi; Zhang, Jiang-Shui

    2017-10-01

    A spectral line survey of IRC +10216 between 13.3 and 18.5 GHz was carried out using the Shanghai Tian Ma 65 m Radio Telescope (TMRT-65 m) with a sensitivity of <7 mK. Thirty-five spectral lines of 12 different molecules and radicals were detected in total. Except for SiS, the detected molecules are all carbon-chain molecules, including HC3N, HC5N, HC7N, HC9N, C6H, C6H-, C8H, SiC2, SiC4, c-C3H2, and l-C5H. The presence of rich carbon-bearing molecules is consistent with the identity of IRC +10216 as a carbon-rich asymptotic giant branch (AGB) star. The excitation temperatures and column densities of the observed species are derived by assuming a local thermodynamic equilibrium and homogeneous conditions. The reduced spectrum as a FITS file is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A74

  10. An Interferometric Spectral Line and Imaging Survey of VY Canis Majoris in the 345 GHz Band

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Gottlieb, C. A.; Young, K. H.; Menten, K. M.; Patel, N. A.

    2013-12-01

    A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array (SMA). Two hundred twenty-three spectral features from 19 molecules (not counting isotopic species of some of them) were observed, including the rotational spectra of TiO, TiO2, and AlCl for the first time in this source. The parameters and an atlas of all spectral features are presented. Observations of each line with a synthesized beam of ~0.''9, reveal the complex kinematics and morphology of the nebula surrounding VY CMa. Many of the molecules are observed in high-lying rotational levels or in excited vibrational levels. From these, it was established that the main source of the submillimeter-wave continuum (dust) and the high-excitation molecular gas (the star) are separated by about 0.''15. Apparent coincidences between the molecular gas observed with the SMA, and some of the arcs and knots observed at infrared wavelengths and in the optical scattered light by the Hubble Space Telescope are identified. The observations presented here provide important constraints on the molecular chemistry in oxygen-dominated circumstellar environments and a deeper picture of the complex circumstellar environment of VY CMa.

  11. A resonant absorption line in the ASCA spectrum of NGC 985?

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Fiore, F.; Brandt, N.; Reynolds, C. S.

    1999-01-01

    We present timing and spectral analyses of the ASCA observation of the Seyfert 1 galaxy NGC 985. The 0.6-10keV spectrum of this source is complex: large residuals are evident below 1keV when fitting the spectrum with a power-law model. Fitting a warm absorber model to the 0.6-2.5keV spectrum gives α=1.12+/-0.04, LogNWAH=21.97+/-0.08 and LogU=0.06+/-0.09, but the residuals continue to show a deficit of counts between 0.9 and 1keV. Adding an absorption line improves the fit, and the energy of the line is consistent with that of Kα NeIX-X resonant absorption lines. Hence, we confirm the presence of an ionized absorber along the line of sight to this source and interpret the further 1keV spectral feature as the first detection of a strong resonant absorption line associated with this system. The extrapolation of this model above 2.5keV produces large positive residuals above 3-4keV. Fitting the data with a broken power law plus warm absorber model gives an acceptable χ2 and Δα~0.5. A narrow iron line at 6.4keV (quasar frame) of equivalent width 138+64-110eV is also present in the ASCA data.

  12. Spectral changes induced by a phase modulator acting as a time lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phasemore » shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.« less

  13. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to -3.2 ≲ log U ≲ -3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  14. Radio-emitting narrow-line Seyfert 1 galaxies in the JVLA perspective

    NASA Astrophysics Data System (ADS)

    Berton, M.; Congiu, E.; Järvelä, E.; Antonucci, R.; Kharb, P.; Lister, M. L.; Tarchi, A.; Caccianiga, A.; Chen, S.; Foschini, L.; Lähteenmäki, A.; Richards, J. L.; Ciroi, S.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2018-06-01

    We report the first results of a survey on 74 narrow-line Seyfert 1 galaxies (NLS1s) carried out in 2015 with the Karl G. Jansky Very Large Array (JVLA) at 5 GHz in A-configuration. So far, this is the largest survey aimed to image the radio continuum of NLS1s. We produced radio maps in order to compare the general properties of three different samples of objects: radio-quiet NLS1s (RQNLS1s), steep-spectrum radio-loud NLS1s (S-NLS1s), and flat-spectrum radio-loud NLS1s (F-NLS1s). We find that the three classes correspond to different radio morphologies, with F-NLS1s being more compact, and RQNLS1s often showing diffuse emission on kpc scales. We also find that F-NLS1s might be low-luminosity and possibly young blazars, and that S-NLS1s are part of the parent population of F-NLS1s. Dedicated studies to RQNLS1s are needed to fully understand their role in the unification pictures. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A87

  15. Spectral narrowing and spin echo for localized carriers with heavy-tailed L evy distribution of hopping times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Z.; Mkhitaryan, Vagharsh; Raikh, M. E.

    2016-02-02

    We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, , are widely spread according to the L evy distribution. The power-law tail ∝ τ -1-∝ in the distribution of does not affect the conventional spectral narrowing for α > 2, but leads to a dramatic acceleration of the free induction decay in the domain 2 > α > 1. The next abrupt acceleration of the decay takes place as becomesmore » smaller than 1. In the latter domain the decay does not follow a simple-exponent law. To capture the behavior of the average spin in this domain, we solve the evolution equation for the average spin using the approach different from the conventional approach based on the Laplace transform. Unlike the free induction decay, the tail in the distribution of the residence times leads to the slow decay of the spin echo. The echo is dominated by realizations of the carrier motion for which the number of sites, visited by the carrier, is minimal.« less

  16. The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Przybilla, N.; Hubrig, S.

    2015-06-01

    Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.

  17. Radio jets and gamma-ray emission in radio-silent narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Lähteenmäki, A.; Järvelä, E.; Ramakrishnan, V.; Tornikoski, M.; Tammi, J.; Vera, R. J. C.; Chamani, W.

    2018-06-01

    We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections. 37 GHz data are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/L1

  18. Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2015-06-15

    Dark matter in the Milky Way may annihilate directly into γ rays, producing a monoenergetic spectral line. Therefore, detecting such a signature would be strong evidence for dark matter annihilation or decay. We search for spectral lines in the Fermi Large Area Telescope observations of the Milky Way halo in the energy range 200 MeV–500 GeV using analysis methods from our most recent line searches. The main improvements relative to previous works are our use of 5.8 years of data reprocessed with the Pass 8 event-level analysis and the additional data resulting from the modified observing strategy designed to increasemore » exposure of the Galactic center region. Furthermore, we search in five sky regions selected to optimize sensitivity to different theoretically motivated dark matter scenarios and find no significant detections. In addition to presenting the results from our search for lines, we also investigate the previously reported tentative detection of a line at 133 GeV using the new Pass 8 data.« less

  19. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  20. SCDU (Spectral Calibration Development Unit) Testbed Narrow Angle Astrometric Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Wehmeier, Udo J.; Weilert, Mark A.; Werne, Thomas A.; Wu, Janet P.; Zhai, Chengxing

    2010-01-01

    The most stringent astrometric performance requirements on NASA's SIM(Space Interferometer Mission)-Lite mission will come from the so-called Narrow-Angle (NA) observing scenario, aimed at finding Earth-like exoplanets, where the interferometer chops between the target star and several nearby reference stars multiple times over the course of a single visit. Previously, about 20 pm NA error with various shifts was reported. Since then, investigation has been under way to understand the mechanisms that give rise to these shifts. In this paper we report our findings, the adopted mitigation strategies, and the resulting testbed performance.

  1. Tunable Fano resonance using weak-value amplification with asymmetric spectral response as a natural pointer

    NASA Astrophysics Data System (ADS)

    Singh, Ankit K.; Ray, Subir K.; Chandel, Shubham; Pal, Semanti; Gupta, Angad; Mitra, P.; Ghosh, N.

    2018-05-01

    Weak measurement enables faithful amplification and high-precision measurement of small physical parameters and is under intensive investigation as an effective tool in metrology and for addressing foundational questions in quantum mechanics. Here we demonstrate weak-value amplification using the asymmetric spectral response of Fano resonance as the pointer arising naturally in precisely designed metamaterials, namely, waveguided plasmonic crystals. The weak coupling between the polarization degree of freedom and the spectral response of Fano resonance arises due to a tiny shift in the asymmetric spectral response between two orthogonal linear polarizations. By choosing the preselected and postselected polarization states to be nearly mutually orthogonal, we observe both real and imaginary weak-value amplifications manifested as a spectacular shift of the Fano-resonance peak and narrowing (or broadening) of the resonance linewidth, respectively. The remarkable control and tunability of Fano resonance in a single device enabled by weak-value amplification may enhance active Fano-resonance-based applications in the nano-optical domain. In general, weak measurements using Fano-type spectral response broadens the domain of applicability of weak measurements using natural spectral line shapes as a pointer in a wide range of physical systems.

  2. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  3. Line Narrowing of Excited-State Transitions in Nonlinear Polarization Spectroscopy: Application to Water-Soluble Chlorophyll-Binding Protein

    NASA Astrophysics Data System (ADS)

    Schoth, Mario; Richter, Marten; Knorr, Andreas; Renger, Thomas

    2012-04-01

    The homogeneous linewidth of dye aggregates like photosynthetic light-harvesting complexes contains important information about energy transfer and relaxation times that is, however, masked by inhomogeneous broadening caused by static disorder. Whereas there exist line narrowing techniques for the study of low-energy exciton states, the homogeneous linewidth of the high-energy states is not so easy to decipher. Here we present a microscopic theory for nonlinear polarization spectroscopy in the frequency domain that contains a dynamic aggregate selection revealing the homogeneous linewidth of these states. The theory is applied to the water-soluble chlorophyll-binding protein for which the high-energy exciton state was predicted to exhibit a sub-100-fs lifetime.

  4. Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-03-09

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less

  5. Investigation of Tree Spectral Reflectance Characteristics Using a Mobile Terrestrial Line Spectrometer and Laser Scanner

    PubMed Central

    Lin, Yi; Puttonen, Eetu; Hyyppä, Juha

    2013-01-01

    In mobile terrestrial hyperspectral imaging, individual trees often present large variations in spectral reflectance that may impact the relevant applications, but the related studies have been seldom reported. To fill this gap, this study was dedicated to investigating the spectral reflectance characteristics of individual trees with a Sensei mobile mapping system, which comprises a Specim line spectrometer and an Ibeo Lux laser scanner. The addition of the latter unit facilitates recording the structural characteristics of the target trees synchronously, and this is beneficial for revealing the characteristics of the spatial distributions of tree spectral reflectance with variations at different levels. Then, the parts of trees with relatively low-level variations can be extracted. At the same time, since it is difficult to manipulate the whole spectrum, the traditional concept of vegetation indices (VI) based on some particular spectral bands was taken into account here. Whether the assumed VIs capable of behaving consistently for the whole crown of each tree was also checked. The specific analyses were deployed based on four deciduous tree species and six kinds of VIs. The test showed that with the help of the laser scanner data, the parts of individual trees with relatively low-level variations can be located. Based on these parts, the relatively stable spectral reflectance characteristics for different tree species can be learnt. PMID:23877127

  6. Searches for H2O masers toward narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yoshiaki, Hagiwara; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji

    2018-05-01

    We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.

  7. Searches for H2O masers toward narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yoshiaki; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji

    2018-06-01

    We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.

  8. Monte Carlo modeling of light-tissue interactions in narrow band imaging.

    PubMed

    Le, Du V N; Wang, Quanzeng; Ramella-Roman, Jessica C; Pfefer, T Joshua

    2013-01-01

    Light-tissue interactions that influence vascular contrast enhancement in narrow band imaging (NBI) have not been the subject of extensive theoretical study. In order to elucidate relevant mechanisms in a systematic and quantitative manner we have developed and validated a Monte Carlo model of NBI and used it to study the effect of device and tissue parameters, specifically, imaging wavelength (415 versus 540 nm) and vessel diameter and depth. Simulations provided quantitative predictions of contrast-including up to 125% improvement in small, superficial vessel contrast for 415 over 540 nm. Our findings indicated that absorption rather than scattering-the mechanism often cited in prior studies-was the dominant factor behind spectral variations in vessel depth-selectivity. Narrow-band images of a tissue-simulating phantom showed good agreement in terms of trends and quantitative values. Numerical modeling represents a powerful tool for elucidating the factors that affect the performance of spectral imaging approaches such as NBI.

  9. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    PubMed Central

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  10. Spectral CT Reconstruction with Image Sparsity and Spectral Mean

    PubMed Central

    Zhang, Yi; Xi, Yan; Yang, Qingsong; Cong, Wenxiang; Zhou, Jiliu

    2017-01-01

    Photon-counting detectors can acquire x-ray intensity data in different energy bins. The signal to noise ratio of resultant raw data in each energy bin is generally low due to the narrow bin width and quantum noise. To address this problem, here we propose an image reconstruction approach for spectral CT to simultaneously reconstructs x-ray attenuation coefficients in all the energy bins. Because the measured spectral data are highly correlated among the x-ray energy bins, the intra-image sparsity and inter-image similarity are important prior acknowledge for image reconstruction. Inspired by this observation, the total variation (TV) and spectral mean (SM) measures are combined to improve the quality of reconstructed images. For this purpose, a linear mapping function is used to minimalize image differences between energy bins. The split Bregman technique is applied to perform image reconstruction. Our numerical and experimental results show that the proposed algorithms outperform competing iterative algorithms in this context. PMID:29034267

  11. Narrow-Line Seyfert 1 Galaxies and their place in the Universe

    NASA Astrophysics Data System (ADS)

    Foschini, L.; Colpi, M.; Gallo, L.; Grupe, D.; Komossa, S.; Leighly, K.; Mathur, S.

    In 1978, Davidson and Kinman wrote about Markarian 359: "This unusual object merits further observations...". In 1985, Osterbrock and Pogge defined a new class of active galactic nuclei (AGN), named Narrow-Line Seyfert 1 (NLS1). Twenty-five years later, NLS1s still continue to intrigue and bewilder. NLS1s manifest extreme behaviour at all wavelengths. They exhibit the most extreme X-ray variability seen in radio-quiet AGN, the most intense optical FeII emission, and high rates of star formation. In general, their characteristics are consistent of AGNs with relatively low mass black holes accreting close to the Eddington rate. The 2009 Fermi Gamma-ray Space Telescope discovery of high-energy (E>100 MeV) gamma rays in a handful of NLS1s has established the existence of relativistic jets in these systems -- a fact previously hinted at by the flat radio spectrum and high brightness temperature seen in some objects. Since NLS1 are generally hosted by spirals, this poses some intriguing questions on the galaxy evolution and on how relativistic jets are generated. It is therefore time for the broad community to come together and discuss what we have discovered in the last quarter century and lay the foundation for future work. Workshop Topics: * Central engine: BH mass, accretion disk, BLR/NLR, jet * Host galaxy: morphology, star formation, merging history * NLS1 in the Universe: comparison with other types of AGN, surveys/statistics, formation/merging, cosmological evolution

  12. The influence of microlensing on spectral line shapes generated by a relativistic accretion disc

    NASA Astrophysics Data System (ADS)

    Popović, L. Č; Mediavilla, E. G.; Muñoz, J. A.

    2001-10-01

    We study the influence of gravitational microlensing on the spectral line profiles originating from a relativistic accretion disc. Using the Chen & Halpern model for the disc, we show the noticeable changes that microlensing can induce in the line shape when the Einstein radius associated with the microlens is of a size comparable to that of the accretion disc. Of special interest is the relative enhancement between the blue and red peaks of the line when an off-center microlens affects the approaching and receding parts of the accretion disc asymmetrically. In an AGN formed by a super-massive binary in which the accretion disc is located around one of the super-massive companions (the primary), we discuss the possibility of microlensing by the secondary. In this case the ratio between the blue and red peaks of the line profile would depend on the orbital phase. We have also considered the more standard configuration of microlensing by a star-sized object in an intervening galaxy and find that microlensing may also be detected in the broad emission lines of multiply imaged QSOs. The changes observed in the line profile of Arp 102 B are taken as a reference for exploring both scenarios.

  13. A Deep Chandra ACIS Study of NGC 4151. III. The Line Emission and Spectral Analysis of the Ionization Cone

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-11-01

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L 0.3-2 keV ~ 1040 erg s-1) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] λ5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be lsim12% of the extended emission. Presence of both low- and high-ionization spectral components and extended emission in the X-ray image perpendicular to the bicone indicates leakage of nuclear ionization, likely filtered through warm absorbers, instead of being blocked by a continuous obscuring torus. The ratios of [O III]/soft X-ray flux are approximately constant (~15) for the 1.5 kpc radius spanned by these measurements, indicating similar relative contributions from the low- and high-ionization gas phases at different radial distances from the nucleus. If the [O III] and X-ray emission arise from a single photoionized medium, this further implies an outflow with a wind-like density profile. Using spatially resolved X-ray features, we estimate that the mass outflow rate in NGC 4151 is ~2 M ⊙ yr-1 at 130 pc and the kinematic power of the ionized outflow is 1.7 × 1041 erg s-1, approximately 0.3% of the bolometric luminosity of the active nucleus in NGC 4151.

  14. On-line surface inspection using cylindrical lens-based spectral domain low-coherence interferometry.

    PubMed

    Tang, Dawei; Gao, Feng; Jiang, X

    2014-08-20

    We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.

  15. Emission-line studies of young stars. 4: The optical forbidden lines

    NASA Astrophysics Data System (ADS)

    Hamann, Fred

    1994-08-01

    Optical forbidden line strengths and profiles are discussed for a sample of 30 T Tauri stars and 12 Herbig Ae-Be stars. Transitions of (C I), (N II), (O I), (O II), (S II), (Ca II), (Cr II), (Fe II), and (Ni II) are detected. Profile variability occurred in DG Tau and probably other sources. The ensemble profiles can be divided into four generic components that may represent distinct emitting regions; (1) narrow rest-velocity lines, (2) 'low'-velocity lines (peaking at less than or approximately +/- 50 km s-1), (3) 'high'-velocity (usually greater than or approximately +/- 100 km s-1) blueshifted peaks or wings, and (4) high-velocity redshifted peaks. Among T Tauri stars, the rest-velocity lines appear most often in sources with weak and narrow permitted lines, such as the Ca II triplet. The low- and high-velocity blueshifted components usually appear together in sources with strong and broad Ca II triplet lines. If the velocity-shifted lines form in jets, the smallest (full) opening angles required by the profiles are less than or approximately 20 deg for the narrow, blueshifted (Ca II) lines of DG Tau and HL Tau. Other lines in DG Tau are much broader, implying larger opening angles or greater velocity dispersions. The variability in DG Tau also implies significant changes in the collimation or velocity coherence on timescales of a few years. RW Aur and AS 353A have blue- and redshifted line peaks that could form in oppositely directed jets. The strong (S II) lambda 6716 and lambda 6731 lines in RW Aur are exclusively redshifted and require opening angles less than or approximately 60 deg. Measurements of different profiles in the same spectrum show that the physical conditions change with the line-of-sight velocities. The most persistent trends are for more (N II) and (O II) and less (O I) lambda 5577 flux at high velocities. Constraints on the physical conditions are derived by modeling the emission lines via multilevel ions in 'coronal ionization equilibrium

  16. Emission-line studies of young stars. 4: The optical forbidden lines

    NASA Technical Reports Server (NTRS)

    Hamann, Fred

    1994-01-01

    Optical forbidden line strengths and profiles are discussed for a sample of 30 T Tauri stars and 12 Herbig Ae-Be stars. Transitions of (C I), (N II), (O I), (O II), (S II), (Ca II), (Cr II), (Fe II), and (Ni II) are detected. Profile variability occurred in DG Tau and probably other sources. The ensemble profiles can be divided into four generic components that may represent distinct emitting regions; (1) narrow rest-velocity lines, (2) 'low'-velocity lines (peaking at less than or approximately +/- 50 km s(exp -1)), (3) 'high'-velocity (usually greater than or approximately +/- 100 km s(exp -1)) blueshifted peaks or wings, and (4) high-velocity redshifted peaks. Among T Tauri stars, the rest-velocity lines appear most often in sources with weak and narrow permitted lines, such as the Ca II triplet. The low- and high-velocity blueshifted components usually appear together in sources with strong and broad Ca II triplet lines. If the velocity-shifted lines form in jets, the smallest (full) opening angles required by the profiles are less than or approximately 20 deg for the narrow, blueshifted (Ca II) lines of DG Tau and HL Tau. Other lines in DG Tau are much broader, implying larger opening angles or greater velocity dispersions. The variability in DG Tau also implies significant changes in the collimation or velocity coherence on timescales of a few years. RW Aur and AS 353A have blue- and redshifted line peaks that could form in oppositely directed jets. The strong (S II) lambda 6716 and lambda 6731 lines in RW Aur are exclusively redshifted and require opening angles less than or approximately 60 deg. Measurements of different profiles in the same spectrum show that the physical conditions change with the line-of-sight velocities. The most persistent trends are for more (N II) and (O II) and less (O I) lambda 5577 flux at high velocities. Constraints on the physical conditions are derived by modeling the emission lines via multilevel ions in 'coronal ionization

  17. A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Sun, Guang-Lan; Li, Pei-Yu; Lei, Yu-Ming; Wang, Jian

    2015-10-01

    The emission-lines of galaxies originate from massive young stars or supermassive blackholes. As a result, spectral classification of emission-line galaxies into star-forming galaxies, active galactic nucleus (AGN) hosts, or compositions of both relates closely to formation and evolution of galaxy. To find efficient and automatic spectral classification method, especially in large surveys and huge data bases, a support vector machine (SVM) supervised learning algorithm is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). A two-step approach is adopted. (i) The SVM must be trained with a subset of objects that are known to be AGN hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in an n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After training on a sample of emission-line galaxies, the remaining galaxies are automatically classified. In the classification process, we use a 10-fold cross-validation technique. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959+[O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 99 per cent to separate the three classes of objects. The other diagrams above give an accuracy of ˜91 per cent.

  18. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    NASA Astrophysics Data System (ADS)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  19. Narrow-linewidth Q-switched random distributed feedback fiber laser.

    PubMed

    Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu

    2016-08-22

    A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.

  20. Measurements of the broadening and shift parameters of the water vapor spectral lines in the 10,100-10,800 cm-1 region induced by pressure of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Borkov, Yu. G.; Petrova, T. M.; Solodov, A. M.; Solodov, A. A.

    2018-02-01

    The absorption spectra of a mixture of H2O with CO2 at different partial pressures of CO2 have been recorded at room temperature in the 10,100-10,800 cm-1 region using a Bruker IFS 125 HR FTIR spectrometer. The multispectrum fitting procedure has been applied to these spectra to recover the broadening and shift parameters of the water vapor spectral lines. To obtain the spectral lines parameters two models of the line shape were used: the Voigt profile and the quadratic speed-dependent Voigt profile. The CO2 pressure induced broadening and shift coefficients for 168 spectral lines with rather large values of the signal to noise ratio have been measured.

  1. SMA Spectral Line Survey of the Proto-Planetary Nebula CRL 618

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Gottlieb, Carl; Young, Ken; Kaminski, Tomasz Tomek; McCarthy, Michael; Menten, Karl; Primiani, Rurik; Lee, Chin-Fei; Gupta, Harshal

    2018-01-01

    Carbon-rich Asymptotic Giant Branch (AGB) stars are major sources of gas and dust in the interstellar medium. AGB stars remain in their evolutionary stage for 1 to 10 Myrs, during which they have very high mass loss rates that increase at the end. During the brief (~1000 yr) period in the evolution from the AGB to the Planetary Nebula (PN) stage there are dramatic changes in the morphology from nearly spherical symmetry, to bipolar, quadrupolar and more complex structures, with the development of both slow and fast (100 km/s) outflows. The molecular composition of these objects' cirumstellar envelopes also evolves from being similar to that of parent AGB star (mainly diatomic and small polyatomic species), to more complex molecules (including ions).We have started an observational study of a sample of Proto-Planetary nebulae (PPN) with the Submillimeter Array to carry out spectral-line surveys of ~60 GHz frequency coverage in the 345 GHz band (similar to our published IRC+10216 line survey of 2011). Here we present preliminary results from the line survey of the carbon-rich PPN CRL 618, covering a frequency range of 281.9 to 359.4 GHz. Observations were carried out in January 2016 and September 2017, with the SMA in compact (3" angular resolution) and very extended (0.5") configurations, respectively.More than 1100 lines were detected in CRL 618. The majority of them can be attributed to HC3N and c-C3H2, and their isotopologues. About 350 lines are as yet unassigned. The continuum emission is unresolved even at 0.5" resolution. Several hydrogen recombination lines are detected from the central HII region. Lines of CO, HCO+, CS show the fast outflow wings, while the majority of molecular emission arises from a compact region of about 1" diameter. We present LTEmodeling and rotation temperature diagram analysis of HC3N, c-C3H2, CH3CN, and their isotopologues. We plan to observe another PPN, CRL 2688 with the SMA in 2018. Together, these imaging line surveys will

  2. Revealing the ultrafast outflow in IRAS 13224-3809 through spectral variability

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Alston, W. N.; Buisson, D. J. K.; Fabian, A. C.; Jiang, J.; Kara, E.; Lohfink, A.; Pinto, C.; Reynolds, C. S.

    2017-08-01

    We present an analysis of the long-term X-ray variability of the extreme narrow-line Seyfert 1 galaxy IRAS 13224-3809 using principal component analysis (PCA) and fractional excess variability (Fvar) spectra to identify model-independent spectral components. We identify a series of variability peaks in both the first PCA component and Fvar spectrum which correspond to the strongest predicted absorption lines from the ultrafast outflow (UFO) discovered by Parker et al. (2017). We also find higher order PCA components, which correspond to variability of the soft excess and reflection features. The subtle differences between RMS and PCA results argue that the observed flux-dependence of the absorption is due to increased ionization of the gas, rather than changes in column density or covering fraction. This result demonstrates that we can detect outflows from variability alone and that variability studies of UFOs are an extremely promising avenue for future research.

  3. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes

    PubMed Central

    Winnard, Paul T.; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-01-01

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities – a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy. PMID:28145887

  4. Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes.

    PubMed

    Winnard, Paul T; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu

    2017-03-21

    Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.

  5. Dynamic Stark broadening as the Dicke narrowing effect

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Mossé, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.

    2010-01-01

    A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high- n series emission lines. It is not limited to hydrogen spectra. Results on helium- β and Lyman- α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.

  6. Fermi LAT Detection of a GeV Flare from the Radio-Loud Narrow-Line Sy1 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Carpenter, Bryce; Ojha, Roopesh

    2013-08-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with 1H 0323+342 (RA=03h24m41.1613s, Dec=+34d10m45.856s, J2000; Beasley et al. 2002, ApJS, 141, 13) at z= 0.061 (Marcha et al. 1996, MNRAS, 281, 425). This is the second nearest radio-loud Narrow-Line Seyfert 1 galaxy, a small and important class of gamma-ray loud AGN (Abdo et al.

  7. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

    PubMed

    Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui

    2015-11-10

    In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.

  8. Effect of narrow band nonuniformity on unsteady heat up of water vapor under radiation-conduction combined heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Tatsuyuki; Tanaka, Tomohiro; Morimune, Atsushi

    Effect of narrow band nonuniformity on unsteady heat up process of water vapor under radiation-conduction combined heat transfer is examined by comparing the result of numerical simulations with and without incorporation of narrow band nonuniformity. The authors propose a rational and comprehensive computational approach for incorporating the narrow band nonuniformity into numerical simulations of radiative heat transfer when the considered field is nonisothermal. Results of examination exhibited that the contribution of radiative heat transfer to the heat up rate of water vapor may be almost twice overestimated, if the narrow band nonuniformity effect is neglected. Separate analyses of radiative energymore » attributed to wall emission and gas emission clarified that the absorption of wall emission is overestimated and, on the contrary, the absorption of radiation energy emitted by water vapor itself is underestimated if the narrow band nonuniformity is neglected. The reason why such over- or under-estimation is induced is understood by examining the influence of line overlap parameter on the transmittance averaged within a narrow band. Smaller value of line overlap parameter {gamma}/d means more violent narrow band nonuniformity. The broken lines show the narrow band transmittance for flat incident power spectrum, and the solid lines show that for the radiative emission from the absorbing gas itself. It is also clarified that the disregard of the narrow band nonuniformity give rise to serious error in the estimation of absorption rate of wall and gas emission even in the case where the disregard of narrow band nonuniformity bring little change to the temperature distribution. The results illustrated in this paper suggest that the narrow band nonuniformity should not be neglected.« less

  9. Pulse Shaped 8-PSK Bandwidth Efficiency and Spectral Spike Elimination

    NASA Technical Reports Server (NTRS)

    Tao, Jian-Ping

    1998-01-01

    The most bandwidth-efficient communication methods are imperative to cope with the congested frequency bands. Pulse shaping methods have excellent effects on narrowing bandwidth and increasing band utilization. The position of the baseband filters for the pulse shaping is crucial. Post-modulation pulse shaping (a low pass filter is located after the modulator) can change signals from constant envelope to non-constant envelope, and non-constant envelope signals through non-linear device (a SSPA or TWT) can further spread the power spectra. Pre-modulation pulse shaping (a filter is located before the modulator) will have constant envelope. These two pulse shaping methods have different effects on narrowing the bandwidth and producing bit errors. This report studied the effect of various pre-modulation pulse shaping filters with respect to bandwidth, spectral spikes and bit error rate. A pre-modulation pulse shaped 8-ary Phase Shift Keying (8PSK) modulation was used throughout the simulations. In addition to traditional pulse shaping filters, such as Bessel, Butterworth and Square Root Raised Cosine (SRRC), other kinds of filters or pulse waveforms were also studied in the pre-modulation pulse shaping method. Simulations were conducted by using the Signal Processing Worksystem (SPW) software package on HP workstations which simulated the power spectral density of pulse shaped 8-PSK signals, end to end system performance and bit error rates (BERS) as a function of Eb/No using pulse shaping in an AWGN channel. These results are compared with the post-modulation pulse shaped 8-PSK results. The simulations indicate traditional pulse shaping filters used in pre-modulation pulse shaping may produce narrower bandwidth, but with worse BER than those in post-modulation pulse shaping. Theory and simulations show pre- modulation pulse shaping could also produce discrete line power spectra (spikes) at regular frequency intervals. These spikes may cause interference with adjacent

  10. Ultraviolet and optical spectral morphology of Melnick 42 and Radcliffe 136a in 30 Doradus

    NASA Technical Reports Server (NTRS)

    Walborn, Nolan R.; Ebbets, Dennis C.; Parker, Joel WM.; Nichols-Bohlin, Joy; White, Richard L.

    1992-01-01

    HST/GHRS ultraviolet spectrograms of the individual O3 If*/WN6-A object Mk 42 in 30 Dor and the adjacent, central multiple system R136a are compared with each other and with an appropriate sequence of O3 If* and WN6-A standards from the IUE archive. The analogous spectral montages covering the blue-violet regino, based on new, homogeneous, digital observations of the same stars with the CTIO 4 m telescope, are also presented. These comparisons show clearly the intermediate O3/WN nature of the Mk 42 spectrum, in terms of both emission-line strength (increasing with envelope density) and stellar-wind velocity (decreasing with envelope density). It is also shown that R136a possesses stronger WN spectral characteristics than Mk 42, in agreement with HST narrow-band imaging by the WF/PC Team.

  11. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    NASA Astrophysics Data System (ADS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  12. Narrow-line laser cooling by adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.

    2018-02-01

    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.

  13. Zone lines

    Treesearch

    Kevin T. Smith

    2001-01-01

    Zone lines are narrow, usually dark markings formed in decaying wood. Zone lines are found most frequently in advanced white rot of hardwoods, although they occasionally are associated both with brown rot and with softwoods.

  14. Fabrication of precise aperiodic multichannel fibre Bragg grating filters for spectral line suppression in hydrogenated standard telecommunications fibre.

    PubMed

    Gbadebo, Adenowo A; Turitsyna, Elena G; Williams, John A R

    2018-01-22

    We demonstrate the design and fabrication of multichannel fibre Bragg gratings (FBGs) with aperiodic channel spacings. These will be suitable for the suppression of specific spectral lines such as OH emission lines in the near infrared (NIR) which degrade ground based astronomical imaging. We discuss the design process used to meet a given specification and the fabrication challenges that can give rise to errors in the final manufactured device. We propose and demonstrate solutions to meet these challenges.

  15. Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

    DOE PAGES

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-29

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90° which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this paper, after performing a systematic, automated search over more thanmore » 9 × 10 6 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every He α or K α x-ray source for the elements Ne to Sn. Finally, using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.« less

  16. Using the Properties of Broad Absorption Line Quasars to Illuminate Quasar Structure

    NASA Astrophysics Data System (ADS)

    Yong, Suk Yee; King, Anthea L.; Webster, Rachel L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen

    2018-06-01

    A key to understanding quasar unification paradigms is the emission properties of broad absorption line quasars (BALQs). The fact that only a small fraction of quasar spectra exhibit deep absorption troughs blueward of the broad permitted emission lines provides a crucial clue to the structure of quasar emitting regions. To learn whether it is possible to discriminate between the BALQ and non-BALQ populations given the observed spectral properties of a quasar, we employ two approaches: one based on statistical methods and the other supervised machine learning classification, applied to quasar samples from the Sloan Digital Sky Survey. The features explored include continuum and emission line properties, in particular the absolute magnitude, redshift, spectral index, line width, asymmetry, strength, and relative velocity offsets of high-ionisation C IV λ1549 and low-ionisation Mg II λ2798 lines. We consider a complete population of quasars, and assume that the statistical distributions of properties represent all angles where the quasar is viewed without obscuration. The distributions of the BALQ and non-BALQ sample properties show few significant differences. None of the observed continuum and emission line features are capable of differentiating between the two samples. Most published narrow disk-wind models are inconsistent with these observations, and an alternative disk-wind model is proposed. The key feature of the proposed model is a disk-wind filling a wide opening angle with multiple radial streams of dense clumps.

  17. Long-term Spectral Evolution of Tidal Disruption Candidates Selected by Strong Coronal Lines

    NASA Astrophysics Data System (ADS)

    Yang, Chen-Wei; Wang, Ting-Gui; Ferland, Gary; Yuan, Weimin; Zhou, Hong-Yan; Jiang, Peng

    2013-09-01

    We present results of follow-up optical spectroscopic Multi-Mirror Telescope (MMT) observations of seven rare, extreme coronal line-emitting galaxies reported by Wang et al. Large variations in coronal lines are found in four objects, making them strong candidates for tidal disruption events (TDEs). For the four TDE candidates, all the coronal lines with ionization states higher than [Fe VII] disappear within 5-9 yr. The [Fe VII] line faded by a factor of about five in one object (J0952+2143) within 4 yr, whereas the line emerged in another two objects that previously did not show the line. A strong increment in the [O III] flux is observed, shifting the line ratios toward the loci of active galactic nuclei on the BPT diagram. Surprisingly, we detect a non-canonical [O III] λ5007/[O III] λ4959 ratio of ~= 2 in two objects, indicating a large column density of O2 + and thus probably optically thick gas. This result also requires a very large ionization parameter and a relatively soft ionizing spectral energy distribution (e.g., a blackbody with T < 5 × 104 K). Our observations can be explained as the echoing of a strong ultraviolet to soft X-ray flare caused by TDEs on molecular clouds in the inner parsecs of the galactic nuclei. Reanalyzing the Sloan Digital Sky Survey spectra reveals double-peaked or strongly blue-shouldered broad lines in three of the objects, which disappeared in the MMT spectra of two objects and faded by a factor of 10 in 8 yr in the remaining object with a decrease in both the line width and centroid offset. We interpret these broad lines as arising from decelerating biconical outflows. Our results demonstrate that the signatures of echoing can persist for as long as 10 yr and can be used to probe the gas environment in quiescent galactic nuclei.

  18. Atomic Data and Spectral Line Intensities for Ni XXI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XXI. The configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2p(sup 6), 2s(sup 2)2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 58 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 85, 170, 255, 340, and 425 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of log T(sub e)(K)=6.9, corresponding to maximum abundance of Ni XXI. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted intensity ratios are compared with available observations.

  19. The application of the piecewise linear approximation to the spectral neighborhood of soil line for the analysis of the quality of normalization of remote sensing materials

    NASA Astrophysics Data System (ADS)

    Kulyanitsa, A. L.; Rukhovich, A. D.; Rukhovich, D. D.; Koroleva, P. V.; Rukhovich, D. I.; Simakova, M. S.

    2017-04-01

    The concept of soil line can be to describe the temporal distribution of spectral characteristics of the bare soil surface. In this case, the soil line can be referred to as the multi-temporal soil line, or simply temporal soil line (TSL). In order to create TSL for 8000 regular lattice points for the territory of three regions of Tula oblast, we used 34 Landsat images obtained in the period from 1985 to 2014 after their certain transformation. As Landsat images are the matrices of the values of spectral brightness, this transformation is the normalization of matrices. There are several methods of normalization that move, rotate, and scale the spectral plane. In our study, we applied the method of piecewise linear approximation to the spectral neighborhood of soil line in order to assess the quality of normalization mathematically. This approach allowed us to range normalization methods according to their quality as follows: classic normalization > successive application of the turn and shift > successive application of the atmospheric correction and shift > atmospheric correction > shift > turn > raw data. The normalized data allowed us to create the maps of the distribution of a and b coefficients of the TSL. The map of b coefficient is characterized by the high correlation with the ground-truth data obtained from 1899 soil pits described during the soil surveys performed by the local institute for land management (GIPROZEM).

  20. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    NASA Technical Reports Server (NTRS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  1. Radio-to-Gamma-Ray Monitoring of the Narrow-line Seyfert 1 Galaxy PMN J0948+0022 from 2008 to 2011

    NASA Technical Reports Server (NTRS)

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; Ghisellini, G.; Hovatta, T.; Lahteenmaki, A.; Lister, M. L.; Braito, V.; Gallo, L.; Hamilton, T. S.; hide

    2012-01-01

    We present more than three years of observations at different frequencies, from radio to high-energy ?-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of ?-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948+0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at gamma-rays of the order of 1048 erg per second, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (gamma-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of gamma-ray spectra before and including 2011 data suggested that there was a softening of the highenergy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at gamma-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at gamma-rays is 2.3 +/- 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.

  2. Narrow-band filters for the lightning imager

    NASA Astrophysics Data System (ADS)

    Piegari, Angela; Di Sarcina, Ilaria; Grilli, Maria Luisa; Menchini, Francesca; Scaglione, Salvatore; Sytchkova, Anna; Zola, Danilo; Cuevas, Leticia P.

    2017-11-01

    The study of lightning phenomena will be carried out by a dedicated instrument, the lightning imager, that will make use of narrow-band transmission filters for separating the Oxygen emission lines in the clouds, from the background signal. The design, manufacturing and testing of these optical filters will be described here.

  3. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  4. Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band

    NASA Astrophysics Data System (ADS)

    Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.

    2018-02-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.

  5. The Zeeman effect or linear birefringence? VLA polarimetric spectral line observations of H2O masers

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Goss, W. M.; Diamond, P.

    We present line profiles of the four Stokes parameters of H2O masers at 22 GHz observed with the VLA in full polarimetric spectral line mode. With careful calibration, the instrumental effects such as linear leakage and the difference of antenna gain between RCP and LCP, can be minimized. Our measurements show a few percent linear polarization. Weak circular polarization was detected at a level of 0.1 percent of the peak intensity. A large uncertainty in the measurements of weak circular polarization is caused by telescope pointing errors. The observed polarization of H2O masers can be interpreted as either the Zeeman effect or linear birefringence.

  6. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  7. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2017-02-01

    In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.

  8. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    NASA Astrophysics Data System (ADS)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  9. Photoplethysmographic imaging via spectrally demultiplexed erythema fluctuation analysis for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander

    2016-03-01

    Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.

  10. Observation of the spin-orbit components of the 3B 2g( 3A 2g) ground state in the system Ni 2+:MgF 2 by fluorescence line narrowing

    NASA Astrophysics Data System (ADS)

    Tonucci, R. J.; Jacobsen, S. M.; Yen, W. M.

    1990-10-01

    Using a tunable narrow-band infrared laser, we demonstrate for the first time infrared-fluorescnece line narrowing in the system Ni 2+:MgF 2. High-resolution emission spectra were obtained by pumping the lowest spin-orbit component B 3 ( 3T 2g) (orthorhombic notation with octahedral notation in parentheses) of the 3T 2g multiplet and observing the B 3( 3T 2g)→B 1, A, B 2( 3A 2g) luminescent transitions at low temperature. By tuning the narrow-band laser over the B 3( 3T 2g) band, resonant and non-resonant fluorescence were obtained which narrowed with respect to the inhomogeneously broadened profile, and additional lines were observed. The spectra can be understood in terms of a simultaneous excitation of two different subsets of Ni 2+ ions which have their B 2( 3A 2g)→B 3( 3T 2g) and A( 3A 2g)→B 3( 3T 2g) transitions in resonance with the laser. The A( 3A 2g) and B 1( 3A 2g) spin-orbit components of the ground-state multiplet lie 1.9 cm -1 and 6.5 cm -1 above the B 2( 3A 2g) ground state, respectively, at 2 K.

  11. Line strength measurements and relative isotopic ratio 13C/12C measurements in carbon dioxide using cavity ring down spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiseleva, M.; Mandon, J.; Persijn, S.; Harren, F. J. M.

    2018-01-01

    Accurate intensity measurements were performed for several lines of the two main isotopologues of carbon dioxide, using cavity ring down spectroscopy. Absorption spectra of the R52e line at 6112.8902 cm-1 (30014←00001 band) of 12CO2 and the P6e line at 6114.8580 cm-1 (30013←00001 band) of 13CO2 were recorded at pressures between 15 and 50 mbar at 298 K. Line shape analysis shows that Galatry profile, taking into account Dicke narrowing of spectral lines, better describes the measured spectra at all pressures than the Voigt profile. The values of Dicke narrowing parameter for both lines were found to be significantly smaller than those predicted based on the mass diffusion constant. The values of the line strength for R52e line of 12CO2 and P6e line of 13CO2 were determined with an uncertainty of 0.5%. These values were found to be in good agreement with the corresponding data available in literature, in particular with the most recent ab initio calculations. The results of relative isotopic ratio 13CO2/12CO2 measurements are also presented in pure carbon dioxide samples and in 400 μmol/mol carbon dioxide in air samples, using cavity ring down spectroscopy.

  12. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  13. Diatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 114 Diatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.

  14. Triatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 117 Triatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  15. 1-kW monolithic narrow linewidth linear-polarized fiber laser at 1030 nm

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Fang, Qiang; Cui, Xuelong; Hou, Bowen; Fu, Shijie; Xie, Zhaoxin; Shi, Wei

    2018-02-01

    We demonstrate an all-fiberized, linear-polarized, narrow spectral linewidth laser system with kilowatts-level output power at 1030 nm in master oscillator-power amplifier (MOPA) configuration. The laser system consists of a linear-polarized, narrow linewidth ( 28 GHz) fiber laser oscillator and two stages of linear-polarized fiber amplifiers. A 925 W linear-polarized fiber laser with a polarization extinction ratio (PER) of 15.2 dB and a spectral width of 60 GHz at the central wavelength of 1030.1 nm is achieved. Owing to the setting of the appropriate parameters for the laser, no indication of Stimulate Brillouin Scattering (SBS) is observed in the system. Moreover, thanks to the excellent quantum efficiency of the laser and the thightly coiling of the active fiber in the main amplifier, the mode instability (MI) is successfully avoided. As a result, the near diffraction-limited beam quality (M2<1.3) is achieved.

  16. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-03-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and

  17. Solar Spectral Irradiance Changes During Cycle 24

    NASA Technical Reports Server (NTRS)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  18. Narrow-stripe broad-area lasers with distributed-feedback surface gratings as brilliant sources for high power spectral beam combining systems

    NASA Astrophysics Data System (ADS)

    Decker, J.; Crump, P.; Fricke, J.; Wenzel, H.; Maaβdorf, A.; Erbert, G.; Tränkle, G.

    2014-03-01

    Laser systems based on spectral beam combining (SBC) of broad-area (BA) diode lasers are promising tools for material processing applications. However, the system brightness is limited by the in-plane beam param- eter product, BPP, of the BA lasers, which operate with a BPP of < 3mm-mrad. The EU project BRIDLE (www.bridle.eu) is developing novel diode laser sources for such systems, and several technological advances are sought. For increased system brightness and optimal ber-coupling the diode lasers should operate with reduced BPP and vertical far eld angle (95% power content), μV 95. The resulting diode lasers are fabricated as mini- bars for reduced assembly costs. Gratings are integrated into the mini-bar, with each laser stripe emitting at a different wavelength. In this way, each emitter can be directed into a single bre via low-cost dielectric filters. Distributed-feedback narrow-stripe broad-area (DFB-NBA) lasers are promising candidates for these SBC sys- tems. We review here the design process and performance achieved, showing that DFB-NBA lasers with stripe width, W = 30 μm, successfully cut of higher-order lateral modes, improving BPP. Uniform, surface-etched, 80th-order Bragg gratings are used, with weak gratings essential for high e ciency. To date, such DFB-NBA sources operate with < 50% effciency at output power, Pout < 6 W, with BPP < 1.8 mm-mrad and offV 95 36 . The emission wavelength is about 970 nm and the spectral width is < 0.7 nm (95% power). The BPP is half that of a DFB-BA lasers with W = 90 um. We conclude with a review of options for further performance improvements.

  19. Centaur feedline dynamics study using power spectral methods. [fundamental mode resonant frequencies of RL-10 oxygen and hydrogen feed lines

    NASA Technical Reports Server (NTRS)

    Lorenzo, C. F.

    1974-01-01

    Tests were conducted to determine the dynamic characteristics of the Centaur/RL-10 oxygen and hydrogen feedlines. The fundamental-mode resonant frequencies were determined by applying power spectral methods to noise-generated data from hot firings of the RL-10 engine. The effect of net positive suction pressure of the main feed pumps on resonant frequency characteristics was determined to be a straight-line relation. Power spectral methods were also used to determine the dynamic characteristics of the boost pumps.

  20. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but ismore » close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.« less

  1. The first γ-ray detection of the narrow-line Seyfert 1 FBQS J1644+2619

    DOE PAGES

    D'Ammando, F.; Orienti, M.; Larsson, J.; ...

    2015-07-06

    Here, we report the discovery of γ-ray emission from the narrow-line Seyfert 1 (NLSy1) galaxy FBQS J1644+2619 by the Large Area Telescope on board the Fermi satellite. The Third Fermi LAT Source catalogue reports an unidentified γ-ray source, detected over the first four years of Fermi operation, 0.°23 from the radio position of the NLSy1. Analysing 76 months of γ-ray data (2008 August 4–2014 December 31) we are able to better constrain the localization of the γ-ray source. The new position of the γ- ray source is 0.°05 from FBQS J1644+2619, suggesting a spatial association with the NLSy1. This ismore » the sixth NLSy1 detected at high significance by Fermi-LAT so far. Notably, a significant increase of activity was observed in γ-rays from FBQS J1644+2619 during 2012 July–October, and an increase of activity in V -band was detected by the Catalina Real-Time Sky Survey in the same period.« less

  2. The first γ-ray detection of the narrow-line Seyfert 1 FBQS J1644+2619

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.; Larsson, J.; Giroletti, M.

    2015-09-01

    We report the discovery of γ-ray emission from the narrow-line Seyfert 1 (NLSy1) galaxy FBQS J1644+2619 by the Large Area Telescope on board the Fermi satellite. The Third Fermi LAT Source catalogue reports an unidentified γ-ray source, detected over the first four years of Fermi operation, 0.23° from the radio position of the NLSy1. Analysing 76 months of γ-ray data (2008 August 4-2014 December 31) we are able to better constrain the localization of the γ-ray source. The new position of the γ-ray source is 0.05° from FBQS J1644+2619, suggesting a spatial association with the NLSy1. This is the sixth NLSy1 detected at high significance by Fermi-LAT so far. Notably, a significant increase of activity was observed in γ-rays from FBQS J1644+2619 during 2012 July-October, and an increase of activity in the V band was detected by the Catalina Real-Time Sky Survey in the same period.

  3. Observation of soft X-ray spectra from a Seyfert 1 and a narrow emission-line galaxy

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Garmire, G. P.; Nousek, J.

    1985-01-01

    The 0.2-40 keV X-ray spectra of the Seyfert 1 galaxy Mrk 509 and the narrow emission-line galaxy NGC 2992 are analyzed. The results suggest the presence of a steep soft X-ray component in Mrk 509 in addition to the well-known Gamma = 1.7 component found in other active galactic nuclei in the 2-40 keV energy range. The soft X-ray component is interpreted as due to thermal emission from a hot gas, probably associated with the highly ionized gas observed to be outflowing from the galaxy. The X-ray spectrum of NGC 2992 does not show any steepening in the soft X-ray band and is consistent with a single power law (Gamma = 1.78) with very low absorbing column density of 4 x 10 to the 21st/sq cm. A model with partial covering of the nuclear X-ray source is preferred, however, to a simple model with a single power law and absorption.

  4. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    NASA Astrophysics Data System (ADS)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  5. The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring

    USGS Publications Warehouse

    Hedman, M.M.; Nicholson, P.D.; Showalter, M.R.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.; Sotin, Christophe

    2011-01-01

    Stellar occultations by Saturn's rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87??m. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100??m across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ~30??m across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring's particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously

  6. Survey for C-Band High Spectral Lines with the Arecibo Telescope

    NASA Astrophysics Data System (ADS)

    Tan, Wei Siang

    High-mass stars have masses greater than 8 solar masses and are the main source of heavy elements such as iron in the interstellar medium. This type of stars form in giant molecular clouds. Studying the molecular environment in star-forming regions is crucial to understand the physical structure and conditions that lead to the formation of high-mass stars. This thesis presents observations conducted with the 305m Arecibo Telescope in Puerto Rico of twelve high-mass star forming regions. Every source was observed in multiple transitions of molecular species including CH, CH3OH, H2CS, and OH lines, and a radio recombination line. The observations were conducted with the C-Band High receiver of the Arecibo Telescope in the frequency range of 6.0 to 7.4GHz. The goals of the observations were to investigate the detectability of different molecular species (including new possible molecular masers) and obtain high sensitivity observations of the 6.7GHz CH3OH line to detect absorption and use it as a probe of the kinematics of the molecular material with respect to the ionized gas. Among the results of the observations, we report detection of 6.7GHz CH3OH masers toward nine regions, OH masers toward five sources, 6.7GHz CH3OH absorption toward four sources (including tentative detections), and detection of H2CS toward the star forming region G34.26+0.15. We also found a variable and recurrent 6.7GHz CH3OH maser in G45.12+0.13. The 6.7GHz CH 3OH and 6278.65MHz H2CS absorption lines were modeled using the radiative transfer code RADEX to investigate the physical conditions of the molecular clouds responsible for the absorption lines. Our analysis of the absorption lines supports the interpretation that the spectral lines are tracing molecular envelopes of HII regions. In the case of 6.7GHz CH 3OH absorption, our results and data from an extensive literature review indicate that absorption is rare, but that a population of 6.7GHz CH 3OH absorbers may be present at levels

  7. Computational Spectrally Correlated Thermal Radiation through Gaseous Mixture

    NASA Astrophysics Data System (ADS)

    Lakhal, W.; Trabelsi, S.; Sediki, E.; Soufiani, A.; Moussa, M.

    2007-09-01

    The Treatment of the spectral nature of thermal radiation in absorbing emitting gases at high temperature inside a heated or cooled duct is presented with taking into account the non-gray behavior of gas. Radiative properties of the flowing gases (H2O or CO2) are modeled by using narrow-band and global models. Although the narrow-band models are considered more accurate, global model are more adequate for combined heat transfer study in complex geometry. Thus, accuracy of narrow-band and global models study is provide. In this investigation, we focus our attention on the practical way to use the Correlated-K narrow-band model in radiative transfer, as the asymptotic limit of accuracy of the global model. Results are presented in terms of radiative power fields.

  8. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    NASA Astrophysics Data System (ADS)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  9. Interactive Spectral Analysis and Computation (ISAAC)

    NASA Technical Reports Server (NTRS)

    Lytle, D. M.

    1992-01-01

    Isaac is a task in the NSO external package for IRAF. A descendant of a FORTRAN program written to analyze data from a Fourier transform spectrometer, the current implementation has been generalized sufficiently to make it useful for general spectral analysis and other one dimensional data analysis tasks. The user interface for Isaac is implemented as an interpreted mini-language containing a powerful, programmable vector calculator. Built-in commands provide much of the functionality needed to produce accurate line lists from input spectra. These built-in functions include automated spectral line finding, least squares fitting of Voigt profiles to spectral lines including equality constraints, various filters including an optimal filter construction tool, continuum fitting, and various I/O functions.

  10. Beyond the Standard Scheme for Relativistic Spectral Line Profiles from Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Sochora, V.; Svoboda, J.; Dovciak, M.

    2011-09-01

    Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of strong gravitational field acting on the light emitting gas. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus we show that the required sensitivity and energy resolution could be reached with Large Area Detector of the proposed LOFT mission.

  11. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    PubMed

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  12. Photometric Type Ia supernova surveys in narrow-band filters

    NASA Astrophysics Data System (ADS)

    Xavier, Henrique S.; Abramo, L. Raul; Sako, Masao; Benítez, Narciso; Calvão, Maurício O.; Ederoclite, Alessandro; Marín-Franch, Antonio; Molino, Alberto; Reis, Ribamar R. R.; Siffert, Beatriz B.; Sodré, Laerte.

    2014-11-01

    We study the characteristics of a narrow-band Type Ia supernova (SN) survey through simulations based on the upcoming Javalambre Physics of the accelerating Universe Astrophysical Survey. This unique survey has the capabilities of obtaining distances, redshifts and the SN type from a single experiment thereby circumventing the challenges faced by the resource-intensive spectroscopic follow-up observations. We analyse the flux measurements signal-to-noise ratio and bias, the SN typing performance, the ability to recover light-curve parameters given by the SALT2 model, the photometric redshift precision from Type Ia SN light curves and the effects of systematic errors on the data. We show that such a survey is not only feasible but may yield large Type Ia SN samples (up to 250 SNe at z < 0.5 per month of search) with low core-collapse contamination (˜1.5 per cent), good precision on the SALT2 parameters (average σ _{m_B}=0.063, σ _{x_1}=0.47 and σc = 0.040) and on the distance modulus (average σμ = 0.16, assuming an intrinsic scatter σint = 0.14), with identified systematic uncertainties σsys ≲ 0.10σstat. Moreover, the filters are narrow enough to detect most spectral features and obtain excellent photometric redshift precision of σz = 0.005, apart from ˜2 per cent of outliers. We also present a few strategies for optimizing the survey's outcome. Together with the detailed host galaxy information, narrow-band surveys can be very valuable for the study of SN rates, spectral feature relations, intrinsic colour variations and correlations between SN and host galaxy properties, all of which are important information for SN cosmological applications.

  13. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    NASA Astrophysics Data System (ADS)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  14. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    NASA Astrophysics Data System (ADS)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  15. SOFIA: a flexible source finder for 3D spectral line data

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Westmeier, Tobias; Giese, Nadine; Jurek, Russell; Flöer, Lars; Popping, Attila; Winkel, Benjamin; van der Hulst, Thijs; Meyer, Martin; Koribalski, Bärbel S.; Staveley-Smith, Lister; Courtois, Hélène

    2015-04-01

    We introduce SOFIA, a flexible software application for the detection and parametrization of sources in 3D spectral line data sets. SOFIA combines for the first time in a single piece of software a set of new source-finding and parametrization algorithms developed on the way to future H I surveys with ASKAP (WALLABY, DINGO) and APERTIF. It is designed to enable the general use of these new algorithms by the community on a broad range of data sets. The key advantages of SOFIA are the ability to: search for line emission on multiple scales to detect 3D sources in a complete and reliable way, taking into account noise level variations and the presence of artefacts in a data cube; estimate the reliability of individual detections; look for signal in arbitrarily large data cubes using a catalogue of 3D coordinates as a prior; provide a wide range of source parameters and output products which facilitate further analysis by the user. We highlight the modularity of SOFIA, which makes it a flexible package allowing users to select and apply only the algorithms useful for their data and science questions. This modularity makes it also possible to easily expand SOFIA in order to include additional methods as they become available. The full SOFIA distribution, including a dedicated graphical user interface, is publicly available for download.

  16. An Imaging Spectral Line Survey of IRC+10216 using the Expanded Very Large Array (EVLA)

    NASA Astrophysics Data System (ADS)

    Claussen, Mark J.; EVLA Scientific Commissioning Team

    2011-01-01

    The Expanded Very Large Array (EVLA) is currently undergoing scientific commissioning, with full scientific operations expected in 2013. During the commissioning, we have performed a rather coarse ( 25 km/s) and shallow imaging spectral survey of the circumstellar environment of the well-known and nearby carbon-rich asymptotic giant branch (AGB) star IRC+10°216 (CW Leo) in the frequency range 18 - 26.5 GHz, using the capability of the WIDAR correlator to simultaneously observe 2 GHz of bandwidth. In addition we have used the additional capability of WIDAR to observe widely spaced sub-bands to observe eight pairs of targeted lines with much better spectral resolution (1.0 - 2.0 km/s) in the 18 - 26.5 GHz receiver band (selected from the coarse survey) and the 26.5 - 40 GHz receiver band (selected from the single-dish survey of Kawaguchi et al. (1995, PASJ, 47, 853). In the coarse survey, we detected twenty-one transitions of eleven molecules including eight transitions of HC7N, ranging from 18.049 GHz to 25.946 GHz, the J = 1 - 0 maser transition of SiS at 18.156 GHz, and three transitions of HC5N. We will present further results of the survey and images of the emission from the targeted lines. The National Radio Astronomy is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  17. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  18. Atmospheric Sensitivity to Spectral Top-of-Atmosphere Solar Irradiance Perturbations, Using MODTRAN-5 Radiative Transfer Algorithm

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Berk, A.; Harder, G.; Fontenla, J.; Shettle, E.; Pilewski, P.; Kindel, B.; Chetwynd, J.; Gardner, J.; Hoke, M.; Jordan, A.; Lockwood, R.; Felde, G.; Archarya, P.

    2006-12-01

    The opportunity to insert state-of-the-art solar irradiance measurements and calculations, with subtle perturbations, into a narrow spectral resolution radiative transfer model has recently been facilitated through release of MODTRAN-5 (MOD5). The new solar data are from: (1) SORCE satellite measurements of solar variability over solar rotation cycle, & (2) ultra-narrow calculation of a new solar source irradiance, extending over the full MOD5 spectral range, from 0.2 um to far-IR. MODTRAN-5, MODerate resolution radiance and TRANsmittance code, has been developed collaboratively by Air Force Research Laboratory and Spectral Sciences, Inc., with history dating back to LOWTRAN. It includes approximations for all local thermodynamic equilibrium terms associated with molecular, cloud, aerosol and surface components for emission, scattering, and reflectance, including multiple scattering, refraction and a statistical implementation of Correlated-k averaging. The band model is based on 0.1 cm-1 (also 1.0, 5.0 and 15.0 cm-1 statistical binning for line centers within the interval, captured through an exact formulation of the full Voigt line shape. Spectroscopic parameters are from HITRAN 2004 with user-defined options for additional gases. Recent validation studies show MOD5 replicates line-by-line brightness temperatures to within ~0.02ºK average and <1.0ºK RMS. MOD5 can then serve as a surrogate for a variety of perturbation studies, including the two modes for the solar source function, Io. (1) Data from the Solar Radiation and Climate Experiment (SORCE) satellite mission provide state-of-the-art measurements of UV, visible, near-IR, plus total solar radiation, on near real-time basis. These internally consistent estimates of Sun's output over solar rotation and longer time scales are valuable inputs for studying effects of Sun's radiation on Earth's atmosphere and climate. When solar rotation encounters bright plage and dark sunspots, relative variations are

  19. Collision-induced stimulated photon echo generated at transition 0-1 on broad spectral line conditions

    NASA Astrophysics Data System (ADS)

    Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.

    2018-04-01

    For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb  +  Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.

  20. The effect of spatial and spectral heterogeneity of ground-based light sources on night-sky radiances

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Aubé, M.; Kohút, I.

    2010-12-01

    Nowadays, light pollution is a permanent problem at many observatories around the world. Elimination of excessive lighting during the night is not only about reduction of the total luminous power of ground-based light sources, but also involves experimenting with the spectral features of single lamps. Astronomical photometry is typically made at specific wavelengths, and thus the analysis of the spectral effects of light pollution is highly important. Nevertheless, studies on the spectral behaviour of night light are quite rare. Instead, broad-band or integral quantities (such as sky luminance) are preferentially measured and modelled. The knowledge of night-light spectra is necessary for the proper interpretation of narrow-band photometry data. In this paper, the night-sky radiances in the nominal spectral lines of the B (445 nm) and V (551 nm) filters are determined numerically under clear-sky conditions. Simultaneously, the corresponding sky-luminance patterns are computed and compared against the spectral radiances. It is shown that spectra, patterns and distances of the most important light sources (towns) surrounding an observatory are essential for determining the light pollution levels. In addition, the optical characteristics of the local atmosphere can change the angular behaviour of the sky radiance or luminance. All these effects are evaluated for two Slovakian observatories: Stará Lesná and Vartovka.

  1. A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite. I. The observational data

    NASA Astrophysics Data System (ADS)

    Olofsson, A. O. H.; Persson, C. M.; Koning, N.; Bergman, P.; Bernath, P. F.; Black, J. H.; Frisk, U.; Geppert, W.; Hasegawa, T. I.; Hjalmarson, Å.; Kwok, S.; Larsson, B.; Lecacheux, A.; Nummelin, A.; Olberg, M.; Sandqvist, Aa.; Wirström, E. S.

    2007-12-01

    Aims:Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. The subsequent multi-transition analysis will provide improved knowledge of molecular abundances, cloud temperatures and densities, and may also reveal previously unsuspected blends of molecular lines, which otherwise may lead to erroneous conclusions. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H{2}O and O{2} in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm - regions largely unobservable from the ground. Methods: Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486-492 and 541-576 GHz with rather uniform sensitivity (22-25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 h each). An on-source integration time of 20 h was achieved for most bands. The entire campaign consumed 1100 orbits, each containing one hour of serviceable astro-observation. Results: We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1{1,0}-1{0,1} transitions of ortho-H{2}O, H{2}18O and H{2}17O, the high energy 6{2,4}-7{1,7} line of para-H{2}O (Eu=867 K) and the HDO(2{0,2}-1{1,1}) line have been observed, as well as the 1{0}-0{1} lines from NH{3} and its rare isotopologue 15NH{3}. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the

  2. Spectral Indices of Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su

    2015-01-01

    The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.

  3. Effect of narrow spectral filter position on the characteristics of active similariton mode-locked femtosecond fiber laser.

    PubMed

    Kotb, Hussein; Abdelalim, Mohamed A; Anis, Hanan

    2015-11-16

    A significant change in active similariton characteristics, both numerically and experimentally, is observed as a function of the location of the lumped spectral filter. The closer the spectral filter is to the input of the Yb(3+)-doped fiber, the shorter the de-chirped pulse width. The peak power of the de-chirped pulse has its maximum value at a certain location of the spectral filter. Four different positions of the spectral filter inside the laser cavity have been theoretically studied and two of them have been verified experimentally.

  4. X-ray flux of the Narrow-Line Seyfert 1 galaxy WPVS 007 during a high UV flux state

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk

    2016-09-01

    We request a short, 10ks, observation with Chandra ACIS-S of the highly X-ray variable Narrow Line Seyfert 1 Galaxy WPVS 007 quasi-simultaneously with HST between March 13 and 26. WPVS 007 is one of the most unusual AGN showing strong variabilty in broad absorption lines - a feature that is only seen in high-luminous quasars. We have monitored WPVS 007 since October 2005 with Swift, but we can typically not detect it in X-rays. Our last observation of WPVS 007 by Chandra in March 2015 when it was fount to be in an extremely low UV flux state (Leighgly et al. 2015) found it at a level of 8e-4 counts/s in ACIS-s corresponding to a flux in the 0.3-10 keV band of 1e-17 W/m2. Merging all Swift observaton since then (66ks) results in an 3sigma ul of 1.4e-17 W/m2. Obtaining a Chandra observation close to the HST observation will provide us with a crucial flux measurement that will allow us to determine the intrinsic luminosity of the AGN. Note, WPVS007 is currently at a bright UV state.

  5. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei

    2016-11-01

    In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.

  6. Radio-to- γ-ray monitoring of the narrow-line Seyfert 1 galaxy PMN J0948 + 0022 from 2008 to 2011

    DOE PAGES

    Foschini, L.; Angelakis, E.; Fuhrmann, L.; ...

    2012-11-30

    Here, we present more than three years of observations at different frequencies, from radio to high-energy γ-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948 + 0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of γ-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948 + 0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at γ-rays of the order of 10 48more » erg s -1, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (γ-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of γ-ray spectra before and including 2011 data suggested that there was a softening of the high-energy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at γ-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at γ-rays is 2.3 ± 0.5 days. Finally, these small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.« less

  7. Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics

    DOE PAGES

    Scott, S. D.; Mumgaard, R. T.

    2016-07-20

    A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less

  8. Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S. D.; Mumgaard, R. T.

    A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using amore » numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. As a result, the software suite is modular, parallelized, and portable to other facilities.« less

  9. Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    The goal of this article is to present a novel method for spectral characterization and calibration of spectrometers and hyper-spectral imaging systems based on non-collinear acousto-optical tunable filters. The method characterizes the spectral tuning curve (frequency-wavelength characteristic) of the AOTF (Acousto-Optic Tunable Filter) filter by matching the acquired and modeled spectra of the HgAr calibration lamp, which emits line spectrum that can be well modeled via AOTF transfer function. In this way, not only tuning curve characterization and corresponding spectral calibration but also spectral resolution assessment is performed. The obtained results indicated that the proposed method is efficient, accurate and feasible for routine calibration of AOTF spectrometers and hyper-spectral imaging systems and thereby a highly competitive alternative to the existing calibration methods.

  10. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    NASA Astrophysics Data System (ADS)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  11. Why Hart found narrow ecospheres--a minor science mystery solved.

    PubMed

    Levenson, Barton Paul

    2015-05-01

    To explain why two NASA computer simulation studies in the 1970s (Hart, 1978 , 1979 ) briefly rocked the subfield of astrobiology and SETI studies by showing very narrow habitable zones (HZs) for solar-type stars. Although other studies later supported wider HZs, it was never clear why the Hart simulations found the narrow limits they did. Investigation of the state of climate studies and radiative transfer models in the period 1960-1970 provides a likely explanation. Hart's findings were in line with earlier results, preventing him from noticing that his radiation model was inadequate.

  12. Type Ia supernovae with and without blueshifted narrow Na I D lines - how different is their structure?

    NASA Astrophysics Data System (ADS)

    Hachinger, S.; Röpke, F. K.; Mazzali, P. A.; Gal-Yam, A.; Maguire, K.; Sullivan, M.; Taubenberger, S.; Ashall, C.; Campbell, H.; Elias-Rosa, N.; Feindt, U.; Greggio, L.; Inserra, C.; Miluzio, M.; Smartt, S. J.; Young, D.

    2017-10-01

    In studies on intermediate- and high-resolution spectra of Type Ia supernovae (SNe Ia), some objects exhibit narrow Na I D absorptions often blueshifted with respect to the rest wavelength within the host galaxy. The absence of these in other SNe Ia may reflect that the explosions have different progenitors: blueshifted Na I D features might be explained by the outflows of 'single-degenerate' systems (binaries of a white dwarf with a non-degenerate companion). In this work, we search for systematic differences among SNe Ia for which the Na I D characteristics have been clearly established in previous studies. We perform an analysis of the chemical abundances in the outer ejecta of 13 'spectroscopically normal' SNe Ia (five of which show blueshifted Na lines), modelling time series of photospheric spectra with a radiative-transfer code. We find only moderate differences between 'blueshifted-Na', 'redshifted-Na' and 'no-Na' SNe Ia, so that we can neither conclusively confirm a 'one-scenario' nor a 'two-scenario' theory for normal SNe Ia. Yet, some of the trends we see should be further studied using larger observed samples: models for blueshifted-Na SNe tend to show higher photospheric velocities than no-Na SNe, corresponding to a higher opacity of the envelope. Consistently, blueshifted-Na SNe show hints of a somewhat larger iron-group content in the outer layers with respect to the no-Na subsample (and also to the redshifted-Na subsample). This agrees with earlier work where it was found that the light curves of no-Na SNe - often appearing in elliptical galaxies - are narrower, that is, decline more rapidly.

  13. VizieR Online Data Catalog: Quasars narrow absorption lines from SDSS (Chen+, 2015)

    NASA Astrophysics Data System (ADS)

    Chen, Z.-F.; Gu, Q.-S.; Chen, Y.-M.; Cao, Y.

    2017-11-01

    The Baryon Oscillation Spectroscopic Survey (BOSS: Eisenstein et al. 2011AJ....142...72E; Paris et al. 2012, Cat. VII/269) is the main dark-time legacy survey of the third stage of the SDSS, which used the same 2.5-m telescope (Gunn et al. 2006AJ....131.2332G; Ross et al. 2012, J/ApJS/199/3) as the first and second stages of the SDSS (hereafter SDSS-I/II). SDSS-I/II spectra have a wavelength coverage from 3800-9200Å with a spectral resolution of 1800-2200 (e.g. York et al. 2000AJ....120.1579Y). BOSS spectra span a range from 3600-10500Å at a resolution of 1300-2500 (Paris et al. 2012, Cat. VII/269). During the first two years, BOSS detected 87822 quasars over an area of 3275 deg2, including 7932 quasars that were observed by SDSS-I/II as well. Quasars observed by both SDSS-I/II and BOSS provide a remarkable chance to study the variabilities of absorption lines in a large population. Throughout this work, we take the quasar emission redshifts provided by Hewett & Wild (2010, J/MNRAS/405/2302, http://das.sdss.org/va/HewettWilddr7qso_newz/) directly. (2 data files).

  14. A 1.3 cm line survey toward Orion KL

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Henkel, C.; Thorwirth, S.; Spezzano, S.; Menten, K. M.; Walmsley, C. M.; Wyrowski, F.; Mao, R. Q.; Klein, B.

    2015-09-01

    Context. The nearby Orion Kleinmann-Low nebula is one of the most prolific sources of molecular line emission. It has served as a benchmark for spectral line searches throughout the (sub)millimeter regime. Aims: The main goal is to systematically study the spectral characteristics of Orion KL in the λ ~ 1.3 cm band. Methods: We carried out a spectral line survey with the Effelsberg-100 m telescope toward Orion KL. It covers the frequency range between 17.9 GHz and 26.2 GHz, i.e., the radio "K band". We also examined ALMA maps to address the spatial origin of molecules detected by our 1.3 cm line survey. Results: In Orion KL, we find 261 spectral lines, yielding an average line density of about 32 spectral features per GHz above 3σ (a typical value of 3σ is 15 mJy). The identified lines include 164 radio recombination lines (RRLs) and 97 molecular lines. The RRLs, from hydrogen, helium, and carbon, stem from the ionized material of the Orion Nebula, part of which is covered by our beam. The molecular lines are assigned to 13 different molecular species including rare isotopologues. A total of 23 molecular transitions from species known to exist in Orion KL are detected for the first time in the interstellar medium. Non-metastable (J>K) 15NH3 transitions are detected in Orion KL for the first time. Based on the velocity information of detected lines and the ALMA images, the spatial origins of molecular emission are constrained and discussed. A narrow feature is found in SO2 (81,7 - 72,6), but not in other SO2 transitions, possibly suggesting the presence of a maser line. Column densities and fractional abundances relative to H2 are estimated for 12 molecules with local thermodynamic equilibrium (LTE) methods. Rotational diagrams of non-metastable 14NH3 transitions with J = K + 1 to J = K + 4 yield different results; metastable (J = K) 15NH3 is found to have a higher excitation temperature than non-metastable 15NH3, also indicating that they may trace different

  15. Spectral Simulations and Abundance Determinations in the Interstellar Medium of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ferguson, Jason W.

    The narrow emission line spectra of gas illuminated by the nuclear region of active galaxies cannot be described by models involving simple photoionization calculations. In this project we develop the numerical tools necessary to accurately simulate observed spectra from such regions. We begin by developing a compact model hydrogen atom, and show that a moderate number of atomic levels can reproduce the emission of much larger, definitive calculations. We discuss the excitation mechanism of the gas, that is, whether the emission we see is a result of either local shock excitation or direct photoionization by the central source. We show that photoionization plus continuum fluorescence can mimic excitation by shocks, and we suggest an observational test to distinguish between photoionization due to shocks and the central source. We extend to the narrow line region of active galaxies the 'locally optimally-emitting cloud' (LOC) model, wherein the observed spectra are predominantly determined by a simple, yet powerful selection effect. Namely, nature provides the emitting line region with clouds of a vast ensemble of properties, and we observe emission lines from those clouds that are most efficient at emitting them. We have calculated large grids of photoionization models of narrow line clouds for a wide range of gas density and distances from the ionizing source. We show that when coupled to a simple Keplerian velocity field, the LOC naturally reproduces the line width - critical density correlation observed in many narrow line objects. In addition, we calculate classical diagnostic line ratios and use simple LOC integrations over gas density to simulate the radial emission of the narrow lines and compare with observations. The effects of including dust in the simulations is discussed and we show that the more neutral gas is likely to be dusty, while the more highly ionized gas is dust-free. This implies a variety of cloud origins.

  16. Interrogating Seyferts with NebulaBayes: Spatially Probing the Narrow-line Region Radiation Fields and Chemical Abundances

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Dopita, Michael A.; Kewley, Lisa J.; Groves, Brent A.; Sutherland, Ralph S.; Hopkins, Andrew M.; Blanc, Guillermo A.

    2018-04-01

    NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow-line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four “pure Seyfert” galaxies from the S7 survey that have extensive ENLRs. NGC 2992 shows steep metallicity gradients from the nucleus into the ionization cones. An inverse metallicity gradient is observed in ESO 138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk 573. Our analysis of IC 5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum E peak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic E peak from the effects of shock or H II region contamination, but E peak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC 4691 using a H II region grid. The NLR and H II region model grids are provided with NebulaBayes for use by the astronomical community.

  17. Design of a modified endoscope illuminator for spectral imaging of colorectal tissues

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    The gold standard for locating colonic polyps is a white light endoscope in a colonoscopy, however, polyps smaller than 5 mm can be easily missed. Modified procedures such as narrow band imaging have shown only marginal increases in detection rates. Spectral imaging is a potential solution to improve the sensitivity and specificity of colonoscopies by providing the ability to distinguish molecular fluorescence differences in tissues. The goal of this work is to implement a spectral endoscopic light source to acquire spectral image data of colorectal tissues. A beta-version endoscope light source was developed, by retrofitting a white light endoscope light source (Olympus, CLK-4) with 16 narrow band LEDs. This redesigned, beta-prototype uses high-power LEDs with a minimum output of 500 mW to provide sufficient spectral output (0.5 mW) through the endoscope. A mounting apparatus was designed to provide sufficient heat dissipation. Here, we report recent results of our tests to characterize the intensity output through the light source and endoscope to determine the flat spectral output for imaging and intensity losses through the endoscope. We also report preliminary spectral imaging data from transverse pig colon that demonstrates the ability to result in working practical spectral data. Preliminary results of this revised prototype spectral endoscope system demonstrate that there is sufficient power to allow the imaging process to continue and potentially determine spectral differences in cancerous and normal tissue from imaging ex vivo pairs. Future work will focus on building a spectral library for the colorectal region and refining the user interface the system for in vivo use.

  18. A New Probe of Line-of-sight Magnetic Field Tangling

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-04-01

    The Galactic neutral hydrogen (H I ) sky at high Galactic latitudes is suffused with linear structure. Particularly prominent in narrow spectral intervals, these linear H I features are well aligned with the plane-of-sky magnetic field orientation as measured with optical starlight polarization and polarized thermal dust emission. We analyze the coherence of the orientation of these features with respect to line-of-sight velocity, and propose a new metric to quantify this H I coherence. We show that H I coherence is linearly correlated with the polarization fraction of 353 GHz dust emission. H I coherence constitutes a novel method for measuring the degree of magnetic field tangling along the line of sight in the diffuse interstellar medium. We propose applications of this property for H I -based models of the polarized dust emission in diffuse regions, and for studies of frequency decorrelation in the polarized dust foreground to the cosmic microwave background (CMB).

  19. Spectral line inversion for sounding of stratospheric minor constituents by infrared heterodyne technique from balloon altitudes

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Allario, F.; Alvarez, J. M.

    1981-01-01

    A combination of two different techniques for the inversion of infrared laser heterodyne measurements of tenuous gases in the stratosphere by solar occulation is presented which incorporates the advantages of each technique. An experimental approach and inversion technique are developed which optimize the retrieval of concentration profiles by incorporating the onion peel collection scheme into the spectral inversion technique. A description of an infrared heterodyne spectrometer and the mode of observations for solar occulation measurement is presented, and the results of inversions of some synthetic ClO spectral lines corresponding to solar occulation limb-scans of the stratosphere are examined. A comparison between the new techniques and one of the current techniques indicates that considerable improvement in the accuracy of the retrieved profiles can be achieved. It is found that noise affects the accuracy of both techniques but not in a straightforward manner since there is interaction between the noise level, noise propagation through inversion, and the number of scans leading to an optimum retrieval.

  20. Experimental Study of Temperature-Dependence Laws of Non-Voigt Absorption Line Shape Parameters

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas; Birk, Manfred; Loos, Joep; Wagner, Georg

    2017-06-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν_3 rovibrational band of CO_2 perturbed by 10, 30, 100, 300 and 1000 mbar of N_2 were measured at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we will present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range. Tran et al. JQSRT 129, 199-203 (2013); JQSRT 134, 104 (2014). Loos et al., 2014; http://doi.org/10.5281/zenodo.11156. Ngo et al. JQSRT 29, 89-100 (2013); JQSRT 134, 105 (2014).

  1. Relativistic quantum mechanical calculations of electron-impact broadening for spectral lines in Be-like ions

    NASA Astrophysics Data System (ADS)

    Duan, B.; Bari, M. A.; Wu, Z. Q.; Jun, Y.; Li, Y. M.; Wang, J. G.

    2012-11-01

    Aims: We present relativistic quantum mechanical calculations of electron-impact broadening of the singlet and triplet transition 2s3s ← 2s3p in four Be-like ions from N IV to Ne VII. Methods: In our theoretical calculations, the K-matrix and related symmetry information determined by the colliding systems are generated by the DARC codes. Results: A careful comparison between our calculations and experimental results shows good agreement. Our calculated widths of spectral lines also agree with earlier theoretical results. Our investigations provide new methods of calculating electron-impact broadening parameters for plasma diagnostics.

  2. How many spectral lines are statistically significant?

    NASA Astrophysics Data System (ADS)

    Freund, J.

    When experimental line spectra are fitted with least squares techniques one frequently does not know whether n or n + 1 lines may be fitted safely. This paper shows how an F-test can be applied in order to determine the statistical significance of including an extra line into the fitting routine.

  3. A narrow-band injection-seeded pulsed titanium:sapphire oscillator-amplifier system with on-line chirp analysis for high-resolution spectroscopy.

    PubMed

    Hannemann, S; van Duijn, E-J; Ubachs, W

    2007-10-01

    A narrow-band tunable injection-seeded pulsed titanium:sapphire laser system has been developed for application in high-resolution spectroscopic studies at the fundamental wavelengths in the near infrared as well as in the ultraviolet, deep ultraviolet, and extreme ultraviolet after upconversion. Special focus is on the quantitative assessment of the frequency characteristics of the oscillator-amplifier system on a pulse-to-pulse basis. Frequency offsets between continuous-wave seed light and the pulsed output are measured as well as linear chirps attributed mainly to mode pulling effects in the oscillator cavity. Operational conditions of the laser are found in which these offset and chirp effects are minimal. Absolute frequency calibration at the megahertz level of accuracy is demonstrated on various atomic and molecular resonance lines.

  4. In-line quality control of moving objects by means of spectral-domain OCT

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Hannesschläger, Günther; Buchsbaum, Andreas; Sacher, Stephan; Khinast, Johannes G.; Leitner, Michael

    2014-08-01

    In-line quality control of intermediate and final products is essential in various industries. This may imply determining the thickness of a foil or evaluating the homogeneity of coating applied to a pharmaceutical tablet. Such a qualitative and quantitative monitoring in a depth-resolved manner can be accomplished using optical coherence tomography (OCT). In-line quality control based on OCT requires additional consideration of motion effects for the system design as well as for data interpretation. This study focuses on transverse motion effects that can arise in spectral-domain (SD-) OCT systems. The impact of a transverse movement is analyzed for a constant relative speed difference up to 0.7 m/s between sample and sensor head. In particular, transverse motion is affecting OCT system properties such as the beam displacement (distance between adjacent A-scans) and transverse resolution. These properties were evaluated theoretically and experimentally for OCT images of a resolution target and pharmaceutical film-coated tablets. Both theoretical and experimental analyses highlight the shift of the transverse resolution limiting factor from the optics to the beam displacement above a relative speed difference between sensor head and sample of 0.42 m/s (for the presented SD-OCT setup). Speeds above 0.4 m/s are often demanded when monitoring industrial processes, such as a coating process when producing film-coated tablets. This emphasizes the importance of a fast data acquisition when using OCT as in-line quality control tool.

  5. Narrow Angle movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief three-frame movie of the Moon was made from three Cassini narrow-angle images as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The purpose of this particular set of images was to calibrate the spectral response of the narrow-angle camera and to test its 'on-chip summing mode' data compression technique in flight. From left to right, they show the Moon in the green, blue and ultraviolet regions of the spectrum in 40, 60 and 80 millisecond exposures, respectively. All three images have been scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is the same in each image. The spatial scale in the blue and ultraviolet images is 1.4 miles per pixel (2.3 kilometers). The original scale in the green image (which was captured in the usual manner and then reduced in size by 2x2 pixel summing within the camera system) was 2.8 miles per pixel (4.6 kilometers). It has been enlarged for display to the same scale as the other two. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  6. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  7. Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe

    2018-02-01

    We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

  8. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.

    PubMed

    Tombez, L; Schilt, S; Hofstetter, D; Südmeyer, T

    2013-12-01

    We report on a technique for frequency noise reduction and linewidth-narrowing of a distributed-feedback mid-IR quantum cascade laser (QCL) that does not involve any optical frequency reference. The voltage fluctuations across the QCL are sensed, amplified and fed back to the temperature of the QCL at a fast rate using a near-IR laser illuminating the top of the QCL chip. A locking bandwidth of 300 kHz and a reduction of the frequency noise power spectral density by a factor of 10 with respect to the free-running laser are achieved. From 2 MHz for the free-running QCL, the linewidth is narrowed below 700 kHz (10 ms observation time).

  9. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  10. Exploring the physics of the accretion and jet in nearby narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yao, Su; Qiao, Erlin; Wu, Xue-Bing; You, B.

    2018-06-01

    In this paper, we explore the physics of the accretion and jet in narrow-line Seyfert 1 (NLS1) galaxy. Specifically, we compile a sample composed of 16 nearby NLS1 with Lbol/LEdd ≳ 0.1. We investigate the mutual correlation between their radio luminosity LR, X-ray luminosity LX, optical luminosity L5100, and black hole mass MBH. By adopting partial correlation analysis, we find (1) a positive correlation between LX and MBH and (2) a weak positive correlation between LR and L5100. However, we don't find significant correlations between LR and LX or between LX and L5100 after considering the effect of the black hole mass, which leads to a finding that LX/LEdd is independent of L5100/LEdd. Interestingly, the findings that LX is correlated with MBH and LX/LEdd is not correlated with L5100/LEdd support that the X-ray emission is saturated with increasing \\dot{M} for Lbol/LEdd ≳ 0.1 in NLS1, which may be understood in the framework of slim disc scenario. Finally, we suggest that a larger NLS1 sample with high-quality radio and X-ray data is needed to further confirm this result in the future.

  11. Atomic Data and Spectral Line Intensities for NI XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database

  12. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  13. [Study on the arc spectral information for welding quality diagnosis].

    PubMed

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  14. A new COmpact hyperSpectral Imaging system (COSI) for UAS

    NASA Astrophysics Data System (ADS)

    Sima, Aleksandra; Baeck, Pieter-Jan; Delalieux, Stephanie; Livens, Stefan; Blommaert, Joris; Delauré, Bavo; Boonen, Miet

    2016-04-01

    This presentation gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for multirotor Remotely Piloted Aircraft Systems (RPAS) platforms. The camera is compact and lightweight, with a total mass of less than 500g including: an embedded computer, storage and power distribution unit. Such device miniaturization was possible thanks to the application of linear variable filters technology, in which image lines in the across flight direction correspond to different spectral bands as well as a different location on the ground (frame camera). The scanning motion is required to retrieve the complete spectrum for every point on the ground. The COSI camera captures data in 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Such spectral information is highly favourable for vegetation studies, since the main chlorophyll absorption feature centred around 680 nm is measured, as well as, the red-edge region (680 nm to 730 nm) which is often linked to plant stress. The NIR region furthermore reflects the internal plant structure, and is often linked to leaf area index and plant biomass. Next to the high spectral resolution, the COSI imager also provides a very high spatial data resolution i.e. images captured with a 9mm lens at 40m altitude cover a swath of ~40m with a ~2cm ground sampling distance. A dedicated data processing chain transforms the raw images into various information and action maps representing the status of the vegetation health and thus allowing for optimization of the management decisions within agricultural fields. In a number of test flights, hyperspectral COSI imager data were acquired covering diverse environments, e.g.: strawberry fields, natural grassland or pear orchards. Next to the COSI system overview, examples of collected data will be presented together with the results of the spectral data analysis. Lessons

  15. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  16. TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics

    NASA Astrophysics Data System (ADS)

    Caux, E.; Kahane, C.; Castets, A.; Coutens, A.; Ceccarelli, C.; Bacmann, A.; Bisschop, S.; Bottinelli, S.; Comito, C.; Helmich, F. P.; Lefloch, B.; Parise, B.; Schilke, P.; Tielens, A. G. G. M.; van Dishoeck, E.; Vastel, C.; Wakelam, V.; Walters, A.

    2011-08-01

    Context. Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. Aims: While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high mass protostars, very little exists on low mass protostars, which are believed to resemble our own Sun's progenitor. To help fill up this gap in our understanding, we carried out a complete spectral survey of the bands at 3, 2, 1, and 0.9 mm towards the solar type protostar IRAS 16293-2422. Methods: The observations covered a range of about 200 GHz and were obtained with the IRAM-30 m and JCMT-15 m telescopes during about 300 h of observations. Particular attention was devoted to the inter-calibration of the acquired spectra with previous observations. All the lines detected with more than 3σ confidence-interval certainty and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Results: More than 4000 lines were detected (with σ ≥ 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (about two-thirds) of the lines are weak and produced by complex organic molecules. The analysis of the profiles of more than 1000 lines belonging to 70 species firmly establishes the presence of two distinct velocity components associated with the two objects, A and B, forming the IRAS 16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 M⊙ object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 M⊙. The difference in the rest velocities

  17. The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.

    2018-07-01

    The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜30 per cent. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the centre of elliptical galaxies.

  18. The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.

    2018-04-01

    The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜ 20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜ 30%. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the center of elliptical galaxies.

  19. Re-analysis of the cell line NALM-1 karyotype by GTG-banding, spectral karyotyping, and whole chromosome painting.

    PubMed

    Pelz, Antje-Friederike; Weilepp, Gisela; Wieacker, Peter F

    2005-01-01

    Chronic myelogenous leukemia (CML) is a clonal bone marrow disease with progression from a chronic phase to an aggressive blast crisis. The cell line NALM-1 was originally established by Minowada and coworkers from the peripheral blood of a patient in CML blastic crisis. A karyotype analysis of the NALM-1 cell line was performed in the 1970s. To the best of our knowledge, this karyotype was not re-analyzed by molecular cytogenetic techniques, although this cell line is the source of many molecular investigations including expression studies. To establish this cell line as a CML control in our own laboratory, NALM-1 was analyzed by GTG banding, fluorescence in situ hybridization, and spectral karyotyping. Our results differ from the original publication of Sonta and coworkers. We describe for the first time the karyotype of the NALM-1 cell line: 44,X,-X,der(7)t(7;9;15)(q10;?;q15),der(9)t(9;9)(p24;q33 approximately q34)t(9;22)(q34;q11),der(15)t(7;9;15) (?;?;q15),der(22)t(9;22)(q34;q11).

  20. Line-by-line transport calculations for Jupiter entry probes. [of radiative transfer

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Cooper, D. M.; Park, C.; Prakash, S. G.

    1979-01-01

    Line-by-line calculations of the radiative transport for a condition near peak heating for entry of the Galileo probe into the Jovian atmosphere are described. The discussion includes a thorough specification of the atomic and molecular input data used in the calculations that could be useful to others working in the field. The results show that the use of spectrally averaged cross sections for diatomic absorbers such as CO and C2 in the boundary layer can lead to an underestimation (by as much as 29%) of the spectral flux at the stagnation point. On the other hand, for the turbulent region near the cone frustum on the probe, the flow tends to be optically thin, and the spectrally averaged results commonly used in coupled radiative transport-flow field calculations are in good agreement with the present line-by-line results. It is recommended that these results be taken into account in sizing the final thickness of the Galileo's heat shield.

  1. Combined optical coherence tomography and hyper-spectral imaging

    NASA Astrophysics Data System (ADS)

    Attendu, Xavier; Guay-Lord, Robin; Strupler, Mathias; Godbout, Nicolas; Boudoux, Caroline

    2017-02-01

    In this proceeding we demonstrate a system combining optical coherence tomography (OCT) and hyper-spectral imaging (HSI) into a single dual-clad fiber (DCF). Combining these modalities gives access to the sample morphology through OCT and to its molecular content through HSI. Both modalities have their illumination through the fiber core. The OCT is then collected through the core while the HSI is collected through the inner cladding of the DCF. A double-clad fiber coupler (DCFC) is used to address both channels separately. A scanning spectral filter was developed to successively inject narrow spectral bands of visible light into the fiber core and sweep across the entire visible spectrum. This allows for rapid HSI acquisition and high miniaturization potential.

  2. Influence of dust particles on the neon spectral line intensities at the uniform positive column of dc discharge at the space apparatus “Plasma Kristall-4”

    NASA Astrophysics Data System (ADS)

    Usachev, A. D.; Zobnin, A. V.; Shonenkov, A. V.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Pustyl'nik, M. Y.; Fink, M. A.; Thoma, M. A.; Thomas, H. M.; Padalka, G. I.

    2018-01-01

    Influence of the elongated dust cloud on the intensities of different neon spectral lines in visible and near ir spectral ranges in the uniform positive column has been experimentally investigated using the Russian-European space apparatus “Plasma Kristall-4” (SA PK-4) on board of the International Space Station (ISS). The investigation was performed in the low pressure (0.5 mbar) direct current (dc, 1 mA) gas discharge in neon. Microgravity allowed us to perform experiments with a large dust cloud in the steady-state regime. To avoid the dust cloud drift in the dc electric field a switching dc polarity discharge mode has been applied. During the experiment a dust cloud of 9 mm in diameter in the discharge tube of 30 mm in diameter with the length of about 100 mm has been observed in the steady-state regime. In this regard, the intensities of neon spectral lines corresponding to 3p → 3s electronic transitions have increased by a factor of 1.4 times, while the intensities of neon spectral lines corresponding to 3d → 3p electronic transitions have increased by a factor of 1.6 times. The observed phenomenon is explained on the basis of the Schottky approach by a self-consistent rising dc electric field in the dusty plasma cloud resulting in an increase of the electron temperature.

  3. Hybrid optical and electronic laser locking using slow light due to spectral holes

    NASA Astrophysics Data System (ADS)

    Tay, Jian Wei; Farr, Warrick G.; Ledingham, Patrick M.; Korystov, Dmitry; Longdell, Jevon J.

    2013-06-01

    We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The large group delay of the spectral hole leads to a laser with very low phase noise. The laser has proved useful for quantum optics and sensing applications involving cryogenic rare-earth-ion dopants.

  4. Spectral manipulation and complementary spectra with birefringence polarization control

    NASA Astrophysics Data System (ADS)

    Ding, Pan-Feng; Han, Pin

    2017-03-01

    A polarization control method using crystal birefringence is suggested to manipulate polychromatic light. This scheme can be used with narrower bandwidth to produce various spectral effects, such as a notch filter, a flat top, and triangle-type, nipple-type, and central-frequency-dominant distributions. A modulated spectrum with greater bandwidth can be used as an optical frequency ruler, and phenomena called complementary spectra are also proposed, where the two spectral distributions, produced by rotating the polarizer, complement each other in the sense that the peaks and valleys in one spectrum are the reverse in the other. These results benefit the controlling of the spectral shape and the measurement of an unknown optical frequency.

  5. Nitrogen-broadened lines of ethane at 150 K

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1985-01-01

    Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.

  6. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and yield

    USDA-ARS?s Scientific Manuscript database

    Modern hyperspectral sensors permit reflectance measurements of crop canopies in hundreds of narrow spectral wavebands. While these sensors describe plant canopy reflectance in greater detail than multispectral sensors, they also suffer from issues with data redundancy and spectral autocorrelation. ...

  7. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  8. Imaging crystal/spectral line search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, J.A.

    1998-02-16

    The following table is a compilation of chance coincidences between x- ray line wavelengths and crystal planes which will reflect those wavelengths near normal incidence. The motivation is to explore the possibilities for expanding the range of choices for near normal incidence x-ray crystal imaging.

  9. BAT AGN Spectroscopic Survey - III. An Observed Link Between AGN Eddington Ratio and Narrow-Emission-Line Ratios

    NASA Technical Reports Server (NTRS)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; hide

    2016-01-01

    We investigate the observed relationship between black hole mass (M(sub BH)), bolometric luminosity (L(sub bol)) and Eddington ratio (lambda(sub Edd)) with optical emission-line ratios ([N II] lambda6583/Halpha, [S II]lambda-lamda6716, 6731/Halpha, [O I] lamda6300/Halpha, [O III] lamda5007/Hbeta, [Ne III] lamda3869/Hbeta and He II lamda4686/Hbeta) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] lamda6583/Halpha ratio exhibits a significant correlation with lamda(sub Edd) (R(sub Pear) = -0.44, p-value 3 x 10(exp. -13) sigma = 0.28 dex), and the correlation is not solely driven by M(sub BH) or L(sub bol). The observed correlation between [N II] lamda6583/Halpha ratio and M(sub BH) is stronger than the correlation with L(sub bol), but both are weaker than the lamda(sub Edd) correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] lamda6583/Halpha is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure lambda(sub Edd) and thus M(sub BH) from the measured L(sub bol), even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  10. NEAR-INFRARED SPECTROSCOPY OF NEARBY SEYFERT GALAXIES: IS THERE EVIDENCE FOR SHOCK EXCITATION IN NARROW-LINE REGIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terao, K.; Nagao, T.; Toba, Y.

    2016-12-20

    One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J -band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257  μ m and [P ii]1.188  μ m, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition tomore » our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.« less

  11. Remote optical observations of actively burning biomass fires using potassium line spectral emission

    NASA Astrophysics Data System (ADS)

    Magidimisha, Edwin; Griffith, Derek J.

    2016-02-01

    Wildland fires are a widespread, seasonal and largely man-made hazard which have a broad range of negative effects. These wildfires cause not only the destruction of homes, infrastructure, cultivated forests and natural habitats but also contribute to climate change through greenhouse gas emissions and aerosol particle production. Global satellite-based monitoring of biomass burning using thermal infrared sensors is currently a powerful tool to assist in finding ways to establish suppression strategies and to understand the role that fires play in global climate change. Advances in silicon-based camera technology present opportunities to resolve the challenge of ubiquitous wildfire early detection in a cost-effective manner. This study investigated several feasibility aspects of detecting wildland fires using near-infrared (NIR) spectral line emissions from electronically excited potassium (K) atoms at wavelengths of 766.5 and 769.9 nm, during biomass burning.

  12. Spectral response of atmospheric electric field measurements near AC high voltage power lines

    NASA Astrophysics Data System (ADS)

    Silva, H. G.; Matthews, J. C.; Wright, M. D.; Shallcross, D. E.

    2015-10-01

    To understand the influence of corona ion emission on the atmospheric electrical field, measurements were made near to two AC high voltage power lines. A JCI 131 field-mill recorded the atmospheric electric field over one year. Meteorological measurements were also taken. The data series is divided in four zones (dependent on wind direction): whole zones, Z0; zone 1, Z1; zone 2, Z2; zone 3, Z3. Z3 is the least affected by corona ion emission and for that reason it is used as a reference against Z1 and Z2, which are strongly influenced by this phenomena. Analysis was undertaken for all weather days and dry days only. The Lomb-Scargle strategy developed for unevenly spaced time-series is used to calculate the spectral response of the aforementioned zones. Only frequencies above 1 minute are considered.

  13. Interactive spectral analyzer and comparator (ISAAC)

    NASA Astrophysics Data System (ADS)

    Latković, O.; Cséki, A.; Vince, I.

    2003-10-01

    We are developing an application for graphical comparison of observed and synthetic spectra (ISAAC). Synthetic spectrum calculation is performed by SPECTRUM, Stellar Spectral Synthesis Program by Richard O. Gray that we use with his kind permission. This program computes line profiles under LTE conditions in the given wavelength interval using a stellar (solar) atmosphere model, a spectral line data list (wavelength, energy levels, oscillator strengths, and damping constants), a file containing data for atoms and molecules, as well as a data file for hydrogen line profiles calculation. ISAAC offers a simple interface for viewing and changing any atomic parameter SPECTRUM uses for line profile calculation, enabling quick comparison of the new synthetic line profile with the observed one. In this way parameters like relative abundances, oscillator strengths and van der Waals damping constants can be improved, achieving a better agreement with the observed spectrum.

  14. Spectral line shapes of collision-induced light scattering (CILS) and collision-induced absorption (CIA) using isotropic intermolecular potential for H2-Ar

    NASA Astrophysics Data System (ADS)

    El-Kader, M. S. A.; Godet, J.-L.; El-Sadek, A. A.; Maroulis, G.

    2017-10-01

    Quantum mechanical line shapes of collision-induced light scattering at room temperature (295 K) and collision-induced absorption at T = 195 K are computed for gaseous mixtures of molecular hydrogen and argon using theoretical values for pair-polarisability trace and anisotropy and induced dipole moments as input. Comparison with other theoretical spectra of isotropic and anisotropic light scattering and measured spectra of absorption shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Ab initio models of the trace and anisotropy polarisability which reproduce the recent spectra of scattering are given. Empirical model of the dipole moment which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and/or experimental line shapes of both absorption and scattering is obtained when the potential model which is constructed from the transport and thermo-physical properties is used.

  15. Theoretical Stark broadening parameters for spectral lines arising from the 2p5ns, 2p5np and 2p5nd electronic configurations of Mg III

    NASA Astrophysics Data System (ADS)

    Colón, C.; Moreno-Díaz, C.; Alonso-Medina, A.

    2013-10-01

    In the present work we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, corresponding to 237 spectral lines of Mg III. Data are presented for an electron density of 1017 cm-3 and temperatures T = 0.5-10.0 (104K). The matrix elements used in these calculations have been determined from 23 configurations of Mg III: 2s22p6, 2s22p53p, 2s22p54p, 2s22p54f and 2s22p55f for even parity and 2s22p5ns (n = 3-6), 2s22p5nd (n = 3-9), 2s22p55g and 2s2p6np (n = 3-8) for odd parity. For the intermediate coupling (IC) calculations, we use the standard method of least-squares fitting from experimental energy levels by means of the Cowan computer code. Also, in order to test the matrix elements used in our calculations, we present calculated values of 70 transition probabilities of Mg III spectral lines and 14 calculated values of radiative lifetimes of Mg III levels. There is good agreement between our calculations and experimental radiative lifetimes. Spectral lines of Mg III are relevant in astrophysics and also play an important role in the spectral analysis of laboratory plasma. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. No values of Stark parameters can be found in the bibliography.

  16. On increasing the spectral efficiency and transmissivity in the data transmission channel on the spacecraft-ground tracking station line

    NASA Astrophysics Data System (ADS)

    Andrianov, M. N.; Kostenko, V. I.; Likhachev, S. F.

    2018-01-01

    The algorithms for achieving a practical increase in the rate of data transmission on the space-craft-ground tracking station line has been considered. This increase is achieved by applying spectral-effective modulation techniques, the technology of orthogonal frequency compression of signals using millimeterrange radio waves. The advantages and disadvantages of each of three algorithms have been revealed. A significant advantage of data transmission in the millimeter range has been indicated.

  17. Narrow and Deep Fano Resonances in a Rod and Concentric Square Ring-Disk Nanostructures

    PubMed Central

    Huo, Yanyan; Jia, Tianqing; Zhang, Yi; Zhao, Hua; Zhang, Shian; Feng, Donghai; Sun, Zhenrong

    2013-01-01

    Localized surface plasmon resonances (LSPRs) in metallic nanostructures have been studied intensely in the last decade. Fano interference is an important way to decrease the resonance linewidth and enhance the spectral detection resolution, but realizing a Fano lineshape with both a narrow linewidth and high spectral contrast-ratio is still challenging. Here we propose a metallic nanostructure consisting of a concentric square ring-disk (CSRD) nanostructure and an outside nanorod. Fano linewidth and spectral contrast ratio can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to 5 nm, the quadrupolar Fano linewidth is of 0.025 eV, with a contrast ratio of 80%, and the figure of merit reaches 15. PMID:24064596

  18. Atomic Data and Spectral Line Intensities for Ni XV

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XV.Weinclude in the calculations the 9 lowest configurations, corresponding to 126 fine structure levels: 3s23p2, 3s3p3, 3s23p3d, 3p4, 3s3p23d, and 3s2 3p4l with l =, s, p, d, f. Collision strengths are calculated at five incident energies for all transitions: 7.8, 18.5, 33.5, 53.5, and 80.2 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.004 and 0.28 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted-wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cu cm range and at an electron temperature of log T(sub e)(K) = 6.4, corresponding to the maximum abundance of Ni XV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  19. Atomic Data and Spectral Line Intensities for Ca IX

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2012-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n = 3, 4, 5 complexes, corresponding to 283 fine structure levels in the 3l3l ', 3l4l'' and 3l4l''' configurations, where l,l' = s, p, d, l '' = s, p, d, f and l''' = s, p, d, f, g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6 and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cubic cm range and at an electron temperature of log T(sub e)(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.

  20. Spectral Analysis Flare ribbons by NST and IRIS

    NASA Astrophysics Data System (ADS)

    Huang, Nengyi; Xu, Yan; Wang, Haimin; Jing, Ju

    2017-08-01

    As one of the most powerful phenomena of solar activities, flares have long been observed and studied extensively. Taking advantages of observing capabilities of modern solar telescopes and focal-plane instruments such as the Interface Region Imaging Spectrograph (IRIS) and the 1.6 m New Solar Telescope (NST) at Big Bear Solar observatory (BBSO), we are able to obtain high resolution imaging spectroscopic data in UV, visible and near-infrared (NIR) wavelengths. Here we present the spectral analysis of an M6.5 flare (SOL2015-06-22T18:23) which was well covered by the joint observation of IRIS and NST. In the visible wavelengths H-alpha and TiO, we can separate the flare ribbon into a very narrow leading front and faint trailing component, of which the former is characterized by the intense emission and significant Doppler signals. In the IRIS UV spectra, the ribbon front shows distinct properties, such as the line broadening, Doppler shifts and central reversal pattern, which are consistent with the visible observations. These characteristics suggest that the ribbon front to be the p

  1. Optimization design of spectral discriminator for high-spectral-resolution lidar based on error analysis.

    PubMed

    Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao

    2017-03-06

    Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.

  2. Oil droplets of bird eyes: microlenses acting as spectral filters

    PubMed Central

    Stavenga, Doekele G.; Wilts, Bodo D.

    2014-01-01

    An important component of the cone photoreceptors of bird eyes is the oil droplets located in front of the visual-pigment-containing outer segments. The droplets vary in colour and are transparent, clear, pale or rather intensely yellow or red owing to various concentrations of carotenoid pigments. Quantitative modelling of the filter characteristics using known carotenoid pigment spectra indicates that the pigments’ absorption spectra are modified by the high concentrations that are present in the yellow and red droplets. The high carotenoid concentrations not only cause strong spectral filtering but also a distinctly increased refractive index at longer wavelengths. The oil droplets therefore act as powerful spherical microlenses, effectively channelling the spectrally filtered light into the photoreceptor's outer segment, possibly thereby compensating for the light loss caused by the spectral filtering. The spectral filtering causes narrow-band photoreceptor spectral sensitivities, which are well suited for spectral discrimination, especially in birds that have feathers coloured by carotenoid pigments. PMID:24395968

  3. Narrow bandpass steep edge optical filter for the JAST/T80 telescope instrumentation

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Brauneck, U.; Bourquin, S.; Marín-Franch, A.

    2013-09-01

    The Observatorio Astrofisico de Javalambre in Spain observes with its JAST/T80 telescope galaxies in the Local Universe in a systematic study. This is accomplished with a multi-band photometric all sky survey called Javalambre Photometric Local Universe Survey (J-PLUS). A wide field camera receives the signals from universe via optical filters. In this presentation the development and design of a narrow bandpass steep edge filter with wide suppression will be shown. The filter has a full width half maximum in the range of 13-15 nm (with <1 nm tolerance) with central wavelengths in the range 350-860nm and an average transmission larger than 90% in the passband. Signals beyond the passband (blocking range) have to be suppressed down to 250nm and up to 1050nm (spectral regime), where a blocking of OD 5 (transmission < 10-5) is required. The edges have to be steep for a small transition width from 5% to 80%. The spectral requirements result in a large number of layers which are deposited with magnetron sputtering. The transmitted wavefront error of the optical filter must be less than lambda/2 over the 100mm aperture and the central wavelength uniformity must be better than +/- 0.4% over the clear aperture. The filter consists of optical filter glass and a coated substrate in order to reach the spectral requirements. The substrate is coated with more than 120 layers. The total filter thickness was specified to be 8.0mm. Results of steep edge narrow bandpass filters will be demonstrated fulfilling all these demanding requirements.

  4. Narrow-linewidth, quasi-continuous-wave ASE source based on a multiple-pass Nd:YAG zigzag slab amplifier configuration.

    PubMed

    Chen, Xiaoming; Lu, Yanhua; Hu, Hao; Tong, Lixin; Zhang, Lei; Yu, Yi; Wang, Juntao; Ren, Huaijin; Xu, Liu

    2018-03-05

    We present investigations into a narrow-linewidth, quasi-continuous-wave pulsed all-solid-state amplified spontaneous emission (ASE) source by use of a novel multiple-pass zigzag slab amplifier. The SE fluorescence emitted from a Nd:YAG slab active medium acts as the seed and is amplified back and forth 8 times through the same slab. Thanks to the angular multiplexing nature of the zigzag slab, high-intensity 1064-nm ASE output can be produced without unwanted self-lasing in this configuration. Experimentally, the output energy, optical conversion efficiency, pulse dynamics, spectral property, and beam quality of the ASE source are studied when the Nd:YAG slab end-pumped by two high-brightness laser diode arrays. The maximum single pulse energy of 347 mJ is generated with an optical efficiency of ~5.9% and a beam quality of 3.5/17 in the thickness/width direction of the slab. As expected, smooth pulses without relaxing spikes and continuous spectra are achieved. Moreover, the spectral width of the ASE source narrows versus the pump energy, getting a 3-dB linewidth of as narrow as 20 pm (i.e. 5.3 GHz). Via the sum frequency generation, high-intensity, smooth-pulse, and narrow-linewidth ASE sources are preferred for solving the major problem of saturation of the mesospheric sodium atoms and can create a much brighter sodium guide star to meet the needs of adaptive imaging applications in astronomy.

  5. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  6. Uncovering the Spectral Energy Distribution in Active Galaxies Using High Ionization Mid-Infrared Emission Lines

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S. B.; Weaver, K. A.; Mushotzky, R. F.

    2011-01-01

    The shape of the spectral energy distribution of active galaxies in the EUV soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 microns/[Ne III], [Ne V]24.32 microns/[O IV]25.89 micron and [O IV] 25.89 microns/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV-soft X-ray slope, alpha(sub i), to be between 1.5 - 2.0 and derive a best fit of alpha(sub i) approx. 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T(sub BB) = 10(exp 5.18) K to 10(exp 5.7) K, suggesting that the peak of this component spans a large range of energies extending from approx. (Lambda)600 A to > (Lambda)1900 A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between approx. (Lambda)700-(Lambda)1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies > 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.

  7. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, M.; Diaz, R.; Levenson, N. A.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [Omore » III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.« less

  8. Ortho-Rectification of Narrow Band Multi-Spectral Imagery Assisted by Dslr RGB Imagery Acquired by a Fixed-Wing Uas

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.

    2015-08-01

    Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at

  9. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs

    PubMed Central

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10−7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy. PMID:24448604

  10. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  11. High-resolution 3-μm spectra of Jupiter: Latitudinal spectral variations influenced by molecules, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Sang J.; Geballe, T. R.; Kim, J. H.; Jung, A.; Seo, H. J.; Minh, Y. C.

    2010-08-01

    We present latitudinally-resolved high-resolution ( R = 37,000) pole-to-pole spectra of Jupiter in various narrow longitudinal ranges, in spectral intervals covering roughly half of the spectral range 2.86-3.53 μm. We have analyzed the data with the aid of synthetic spectra generated from a model jovian atmosphere that included lines of CH 4, CH 3D, NH 3, C 2H 2, C 2H 6, PH 3, and HCN, as well as clouds and haze. Numerous spectral features of many of these molecular species are present and are individually identified for the first time, as are many lines of H3+ and a few unidentified spectral features. In both polar regions the 2.86-3.10-μm continuum is more than 10 times weaker than in spectra at lower latitudes, implying that in this wavelength range the single-scattering albedos of polar haze particles are very low. In contrast, the 3.24-3.53 μm the weak polar and equatorial continua are of comparable intensity. We derive vertical distributions of NH 3, C 2H 2 and C 2H 6, and find that the mixing ratios of NH 3 and C 2H 6 show little variation between equatorial and polar regions. However, the mixing ratios of C 2H 2 in the northern and southern polar regions are ˜6 and ˜3 times, respectively, less than those in the equatorial regions. The derived mixing ratio curves of C 2H 2 and C 2H 6 extend up to the 10 -6 bar level, a significantly higher altitude than most previous results in the literature. Further ground-based observations covering other longitudes are needed to test if these mixing ratios are representative values for the equatorial and polar regions.

  12. Spectral amplification models for response spectrum addressing the directivity effect

    NASA Astrophysics Data System (ADS)

    Moghimi, Saed; Akkar, Sinan

    2017-04-01

    Ground motions with forward directivity effects are known with their significantly large spectral ordinates in medium-to-long periods. The large spectral ordinates stem from the impulsive characteristics of the forward directivity ground motions. The quantification of these spectral amplifications requires the identification of major seismological parameters that play a role in their generation. After running a suite of probabilistic seismic hazard analysis, Moghimi and Akkar (2016) have shown that fault slip rate, fault characteristic magnitude, fault-site geometry as well as mean annual exceedance rate are important parameters that determine the level of spectral amplification due to directivity. These parameters are considered to develop two separate spectral amplification equations in this study. The proposed equations rely on Shahi and Baker (SHB11; 2011) and Chiou and Spudich (CHS13; Spudic et al., 2013) narrow-band forward directivity models. The presented equations only focus on the estimation of maximum spectral amplifications that occur at the ends of the fault segments. This way we eliminate the fault-site parameter in our equations for simplification. The proposed equations show different trends due to differences in the narrow-band directivity models of SHB11 and CHS13. The equations given in this study can form bases for describing forward directivity effects in seismic design codes. REFERENCES Shahi. S., Baker, J.W. (2011), "An Empirically Calibrated Framework for Including the Effects of Near-Fault Directivity in Probabilistic Seismic Hazard Analysis", Bulletin of the Seismological Society of America, 101(2): 742-755. Spudich, P., Watson-Lamprey, J., Somerville, P., Bayless, J., Shahi, S. K., Baker, J. W., Rowshandel, B., and Chiou, B. (2013), "Final Report of the NGA-West2 Directivity Working Group", PEER Report 2013/09. Moghimi. S., Akkar, S. (2016), "Implications of Forward Directivity Effects on Design Ground Motions", Seismological Society of

  13. Retrieving the complex refractive index of atmospheric aerosols from ratios of solar spectral extinction measurements

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.; Mease, K. D.

    1978-01-01

    The technique proposed by Fymat (1976) for retrieving the complex refractive index of atmospheric aerosols using narrowband spectral transmission ratios, taken within an overall narrow spectral interval, is investigated in the case of modelled polydispersions of rural, maritime-continental, maritime-sea spray and meteoric dust aerosols. It is confirmed that for not too broad size distributions most of the information comes from a narrow size range of 'active' aerosols so that, under these circumstances, the refractive index components can indeed be retrieved essentially independently of the size distribution. For 0.1% accurate data in three colors, the technique can provide the real and imaginary components of the index respectively within 0.07% and 0.3% accuracy.

  14. Temperature dependence of Lorentz air-broadening and pressure-shift coefficients of (12)CH4 lines in the 2.3-micron spectral region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Rinsland, C. P.

    1994-01-01

    High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.

  15. Star formation relations and CO spectral line energy distributions across the J-ladder and redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greve, T. R.; Leonidaki, I.; Xilouris, E. M.

    2014-10-20

    We present FIR [50-300 μm]–CO luminosity relations (i.e., log L{sub FIR}=αlog L{sub CO}{sup ′}+β) for the full CO rotational ladder from J = 1-0 up to J = 13-12 for a sample of 62 local (z ≤ 0.1) (Ultra) Luminous Infrared Galaxies (LIRGs; L {sub IR[8-1000} {sub μm]} > 10{sup 11} L {sub ☉}) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 submillimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/submillimeter spectral energy distributions (SEDs), so that accurate FIRmore » luminosities can be determined. The addition of luminous starbursts at high redshifts enlarge the range of the FIR–CO luminosity relations toward the high-IR-luminosity end, while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5-4 and higher) that was available prior to Herschel. This new data set (both in terms of IR luminosity and J-ladder) reveals linear FIR–CO luminosity relations (i.e., α ≅ 1) for J = 1-0 up to J = 5-4, with a nearly constant normalization (β ∼ 2). In the simplest physical scenario, this is expected from the (also) linear FIR–(molecular line) relations recently found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However, from J = 6-5 and up to the J = 13-12 transition, we find an increasingly sublinear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (∼100 K) and dense (>10{sup 4} cm{sup –3}) gas component whose thermal state is unlikely to be maintained by star-formation-powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova-driven turbulence and shocks), and not cosmic rays, is the more likely source of energy

  16. Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm

    NASA Astrophysics Data System (ADS)

    Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad

    2016-03-01

    Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.

  17. Searching for the influence radius of AGN in nearby narrow emission-line galaxies using the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Robleto-Orús, A. C.; Torres-Papaqui, J. P.; Coziol, R.; Morales-Vargas, A.; Romero-Cruz, F. J.; Ortega-Minakata, R. A.; Chow-Martinez, M.; Trejo-Alonso, J. J.

    2017-07-01

    In narrow emission-line galaxies, one important problem consists in discriminating gas ionization due to an AGN and gas ionization due to OB stars in active star-forming regions. This problem becomes more acute in case of AGNs classified as transition-type objects (TO), where star formation is relatively intense, and for LINERs, where the AGN is very weak. Thanks to the integral field spectroscopy, we have a new way to attack this problem. By definition, OB stars ionize a definite portion of space, the Strömgren's sphere, which size depends on the total luminosity of the star, its temperature, and the density of the surrounding gas. Therefore one expects gas ionized by OB stars to cover limited areas in a galaxy. On the other hand, due to the huge amount of ionizing photons emitted by an AGN, its "influence radius" is expected do be much more extended, in the order of kpc. Using a sample of galaxies from included in the CALIFA survey DR3, we will test a new way to measure the characteristic "influence radius" of AGN with different intensities.

  18. The relativistic jet of the γ-ray emitting narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Kynoch, Daniel; Landt, Hermine; Ward, Martin J.; Done, Chris; Gardner, Emma; Boisson, Catherine; Arrieta-Lobo, Maialen; Zech, Andreas; Steenbrugge, Katrien; Pereira Santaella, Miguel

    2018-03-01

    The detection of several radio-loud narrow-line Seyfert 1 (NLS1) galaxies by the Fermi Gamma-Ray Space Telescope hints at the existence of a rare, new class of γ-ray emitting active galactic nuclei with low black hole masses. Like flat spectrum radio quasars (FSRQs), their γ-ray emission is thought to be produced via the external Compton mechanism whereby relativistic jet electrons upscatter a photon field external to the jet, e.g. from the accretion disc, broad line region (BLR), and dusty torus, to higher energies. Here we study the origin of the γ-ray emission in the lowest-redshift candidate among the currently known γ-ray emitting NLS1s, 1H 0323+342, and take a new approach. We observationally constrain the external photon field using quasi-simultaneous near-infrared, optical, and X-ray spectroscopy. Applying a one-zone leptonic jet model, we simulate the range of jet parameters for which this photon field, when Compton scattered to higher energies, can explain the γ-ray emission. We find that the site of the γ-ray emission lies well within the BLR and that the seed photons mainly originate from the accretion disc. The jet power that we determine, 1.0 × 1045 erg s-1, is approximately half the accretion disc luminosity. We show that this object is not simply a low-mass FSRQ, its jet is intrinsically less powerful than predicted by scaling a typical FSRQ jet by black hole mass and accretion rate. That γ-ray-emitting NLS1s appear to host underpowered jets may go some way to explaining why so few have been detected to date.

  19. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter.

    PubMed

    Mukhopadhyay, Pranab K; Gupta, Pradeep K; Singh, Amarjeet; Sharma, Sunil K; Bindra, Kushvinder S; Oak, Shrikant M

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  20. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Pranab K.; Gupta, Pradeep K.; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M.

    2014-05-01

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm-1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  1. Note: Broadly tunable all-fiber ytterbium laser with 0.05 nm spectral width based on multimode interference filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Pranab K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Amarjeet

    2014-05-15

    A multimode interference filter with narrow transmission bandwidth and large self-imaging wavelength interval is constructed and implemented in an ytterbium doped fiber laser in all-fiber format for broad wavelength tunability as well as narrow spectral width of the output beam. The peak transmission wavelength of the multimode interference filter was tuned with the help of a standard in-fiber polarization controller. With this simple mechanism more than 30 nm (1038 nm–1070 nm) tuning range is demonstrated. The spectral width of the output beam from the laser was measured to be 0.05 nm.

  2. Photoelectron energy loss and spectral features deduced by the plasma line technique. [in topside F region

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Carlson, H. C.

    1977-01-01

    Plasma line data gathered at the Arecibo Observatory are used to examine relative variations in topside F region differential photoelectron fluxes in the 5- to 20-eV range. A spectral feature not found in present theoretically calculated spectra is noted near 15 eV. A new approach to the interpretation of the measured spectra is taken, which allows a qualitative estimate of the relative importance of different energy loss mechanisms. The altitude variation of the observed photoelectron flux energy spectra at the higher altitudes (above 350 km) and the lower energies (less than 10 eV) agrees quantitatively with the expected variation of the spectrum.

  3. Is There Spectral Variation in the Polarized Reflectance of Leaves?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  4. Is there Spectral Variation in the Polarized Reflectance of Leaves?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  5. WPVS 007: Dramatic Broad Absorption Line Variability in a Narrow-line Seyfert 1

    NASA Astrophysics Data System (ADS)

    Cooper, Erin M.; Leighly, K.; Hamann, F. W.; Grupe, D.; Dietrich, M.

    2014-01-01

    Blue-shifted broad absorption lines are the manifestation of gaseous outflows in astrophysical phenomena. In active galaxies, these outflowing winds may play a key role in the central engine physics by removing angular momentum and in influencing host galaxy evolution by imparting energy and chemically enriched gas to the surrounding medium. AGN wind variability affords us a valuable tool to study this still poorly understood phenomenon. The existence of a high velocity broad line outflow in WPVS007 is especially extraordinary, as Seyfert-luminosity active galaxies are unexpected to produce them. With its lower luminosity and compact size, the NLS1 galaxy WPVS007 (M_V=-19.7, z=0.02882) provides us the ability to study even colossal variability on merely human timescales. Since its 1996 FOS observation, displaying miniBALs but no true broad absorption lines, WPVS007 has experienced a short but rich history of UV BAL variability. By the 2003 FUSE observation, WPVS007 had developed a BAL with v_max ~ 6000km/s, indicating an optically thick, high velocity outflow. We present the 2010 and 2013 June and December HST COS spectra. Between 2003 and 2010, both the maximum and minimum outflow velocity had increased substantially. As of 2013 June, the continuum emission has since dimmed by a factor of ~2 and the BALs have appeared to weaken, with both decreased maximum and minimum velocities. Such dramatic shifts in BAL velocity are unprecedented, as BAL variability is typically confined to changes in optical depth. What is the nature of the variability in this BAL wind? The upcoming (as of the writing of this abstract) December observation should give us more insight into tackling that question, whether it be the transient response of a continuous flow to a fluctuating continuum or perhaps the continued decline of a discrete outflow event.

  6. High spectral resolution spectroscopy of the SiO fundamental lines in red giants and red supergiants with VLT/VISIR

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2014-01-01

    Context. The mass-loss mechanism in red giants and red supergiants is not yet understood well. The SiO fundamental lines near 8 μm are potentially useful for probing the outer atmosphere, which is essential for clarifying the mass-loss mechanism. However, these lines have been little explored until now. Aims: We present high spectral resolution spectroscopic observations of the SiO fundamental lines near 8.1 μm in 16 bright red giants and red supergiants. Our sample consists of seven normal (i.e., non-Mira) K-M giants (from K1.5 to M6.5), three Mira stars, three optically bright red supergiants, two dusty red supergiants, and the enigmatic object GCIRS3 near the Galactic center. Methods: Our program stars were observed between 8.088 μm and 8.112 μm with a spectral resolution of 30 000 using VLT/VISIR. Results: We detected SiO fundamental lines in all of our program stars except for GCIRS3. The SiO lines in normal K and M giants as well as optically bright (i.e., not dusty) red supergiants do not show P-Cyg profiles or blueshifts, which means the absence of systematic outflows in the SiO line forming region. We detected P-Cyg profiles in the SiO lines in the dusty red supergiants VY CMa and VX Sgr, with the latter object being a new detection. These SiO lines originate in the outflowing gas with the thermal dust continuum emission seen as the background. The outflow velocities of the SiO line forming region in VY CMa and VX Sgr are estimated to be 27 km s-1 and 17 km s-1, respectively. We derived basic stellar parameters (effective temperature, surface gravity, luminosity, and mass) for the normal K-M giants and optically bright red supergiants in our sample and compared the observed VISIR spectra with synthetic spectra predicted from MARCS photospheric models. Most of the SiO lines observed in the program stars warmer than ~3400 K are reasonably reproduced by the MARCS models, which allowed us to estimate the silicon abundance as well as the 28Si/29Si and 28Si

  7. Atomic Data and Spectral Line Intensities for CA XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A.K.; Landi, E.

    2007-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca XVII. The configurations used are 2s(sup 2), 2s2p, 2p(sup 2), 2l3l', 214l' and 2s5l', with l = s,p and l' = s,p, d giving rise to 92 fine-structure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (15, 30, 75, 112.5, 150, 187.5 and 225 Ry) for the transitions within the three lowest configurations corresponding to the 10 lowest energy levels, and five incident energies (75, 112.5, 150, 187.5 and 225 Ry) for transitions between the lowest five levels and the n = 3,4,5 configurations. Calculations have been carried out using the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, and R-Matrix results for the 2s2, 2s2p, 2p2 configurations available in the literature, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14)/cu cm at an electron temperature of log Te(K)=6.7, corresponding to the maximum abundance of Ca XVII. Spectral line intensities are calculated, and their diagnostic relevance L; discussed. This dataset will be made available in the next version of the CHIANTI database.

  8. Photospheres of hot stars. IV - Spectral type O4

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.

    1990-01-01

    The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.

  9. A mean-based filter to remove power line harmonic noise from seismic reflection data

    NASA Astrophysics Data System (ADS)

    Karslı, Hakan; Dondurur, Derman

    2018-06-01

    Power line harmonic noise generated by power lines during the seismic data acquisition in land and marine seismic surveys generally appears as a single frequency with 50/60 Hz (or multiples of these frequencies) and contaminates seismic data leading to complicate the identification of fine details in the data. Commonly applied method during seismic data processing to remove the harmonic noise is classical notch filter (or very narrow band-stop filter), however, it also attenuates all recorded data around the notch frequencies and results in a complete loss of available information which corresponds to fine details in the seismic data. In this study, we introduce an application of the algorithm of iterative trimmed and truncated mean filter method (ITTM) to remove the harmonic noise from seismic data, and here, we name the method as local ITTM (LITTM) since we applied it to the seismic data locally in spectral domain. In this method, an optimal value is iteratively searched depending on a threshold value by trimming and truncating process for the spectral amplitude samples within the specified spectral window. Therefore, the LITTM filter converges to the median, but, there is no need to sort the data as in the case of conventional median filters. On the other hand, the LITTM filtering process doesn't require any reference signal or a precise estimate of the fundamental frequency of the harmonic noise, and only approximate frequency band of the noise within the amplitude spectra is considered. The only required parameter of the method is the width of this frequency band in the spectral domain. The LITTM filter is first applied to synthetic data and then we analyze a real marine dataset to compare the quality of the output after removing the power line noise by classical notch, median and proposed LITTM filters. We observe that the power line harmonic noise is completely filtered out by LITTM filter, and unlike the conventional notch filter, without any damage on the

  10. Blend lines in the polarized spectrum of the Sun

    NASA Astrophysics Data System (ADS)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.

    2012-07-01

    Blend lines form an integral part of the theoretical analysis and modelling of the polarized spectrum of the Sun. Their interaction with other spectral lines needs to be explored and understood before we can properly use the main spectral lines to diagnose the Sun. They are known to cause a decrease in the polarization in the wings of the main line on which they superpose, or in the polarization of the continuum, when they are assumed to be formed either under the local thermodynamic equilibrium (LTE) conditions or when their intrinsic polarizability factor is zero. In this paper, we describe the theoretical framework to include the blend lines formed under non-LTE conditions, in the radiative transfer equation, and the numerical techniques to solve it. The properties of a blend line having an intrinsic polarization of its own and its interaction with the main line are discussed. The results of our analysis show that the influence of the blend lines on the main spectral lines, though small in the present context, is important and needs to be considered when interpreting the polarized spectral lines in the second solar spectrum.

  11. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  12. Probing the accretion flow and emission-line regions of M81, the nearest broad-lined low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2017-08-01

    The nucleus of M81 is an object of singular importance as a template for low-luminosity accretion flows onto supermassive black holes. We propose to obtain a complete, small-aperture, high S/N STIS UV/optical spectrum of the M81 nucleus and multi-filter WFC3 imaging covering the UV through near-IR. Such data have never previously been obtained with HST; the only prior archival UV/optical spectra of M81 have low S/N, incomplete wavelength coverage, and are strongly contaminated by starlight. Combined with new Chandra X-ray data, our proposed observations will comprise the definitive reference dataset on the spectral energy distribution of this benchmark low-luminosity AGN. These data will provide unique new constraints on the possible contribution of a truncated thin accretion disk to the AGN emission spectrum, clarifying a fundamental property of low-luminosity accretion flows. The data will additionally provide new insights into broad-line region structure and black hole mass scaling relationships at the lowest AGN luminosities, and spatially resolved diagnostics of narrow-line region excitation conditions at unprecedented spatial resolution to assess the impact of the AGN on the ionization state of the gas in the host galaxy bulge.

  13. Full-range k-domain linearization in spectral-domain optical coherence tomography.

    PubMed

    Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A

    2011-03-10

    A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.

  14. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    NASA Astrophysics Data System (ADS)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S.; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D.

    2015-09-01

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350-810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  15. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Singly Ionized Vanadium (V II)

    NASA Astrophysics Data System (ADS)

    Saloman, Edward B.; Kramida, Alexander

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V II, have been compiled. The experimentally derived energy levels belong to the configurations 3d 4, 3d 3 ns (n = 4, 5, 6), 3d 3 np, and 3d 3 nd (n = 4, 5), 3d 34f, 3d 24s 2, and 3d 24s4p. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g-factors and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm-1, corresponding to 14.634(7) eV. This is 130 cm-1 higher than the previously recommended value from Iglesias et al.

  16. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  17. Linewidth narrowing for 31Phosphorus MRI of cell membranes

    NASA Astrophysics Data System (ADS)

    Barrett, Sean; Frey, Merideth; Madri, Joseph; Michaud, Michael

    2011-03-01

    Most 31 P Magnetic Resonance Spectroscopy studies of tissues try to avoid contamination by a relatively large, but broad, spectral feature attributed to cell membrane phospholipids. MRI using this broad 31 P membrane spectrum is not even attempted, since the spatial resolution and signal-to-noise would be poor, relative to conventional MRI using the narrow 1 H water spectrum. This long-standing barrier has been overcome by a novel pulse sequence, recently discovered in fundamental quantum computation research, which narrows the broad 31 P spectrum by ~ 1000 × . Applying time-dependent gradients in synch with a repeating pulse block enables a new route to high spatial resolution, 3D 31 P MRI of the soft solid components of cells and tissues. So far, intact and sectioned samples of ex vivo fixed mouse organs have been imaged, with (sub-mm)3 voxels. Extending the reach of MRI to broad spectra in natural and artificial tissues opens a new window into cells, enabling progress in biomedical research. W.J. Thoma et al., J. MR 61, 141 (1985); E.J. Murphy et al., MR Med 12, 282 (1989); R. McNamara et al., NMR Biomed 7, 237 (1994).

  18. SHJAR Jet Noise Data and Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2009-01-01

    High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. The measured spectral data are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of 0.0 to 10.0. The measured data are reported as lossless (i.e., atmospheric attenuation is added to measurements), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter (200-in.) arc. Following the work of Viswanathan, velocity power factors are evaluated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit and the confidence margins for the two regression parameters are studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. As an immediate application of the velocity power laws, spectral density in shockcontaining jets are decomposed into components attributed to jet mixing noise and shock noise. From this analysis, jet noise prediction tools can be developed with different spectral components derived from different physics.

  19. Spectral Demultiplexing in Holographic and Fluorescent On-chip Microscopy

    NASA Astrophysics Data System (ADS)

    Sencan, Ikbal; Coskun, Ahmet F.; Sikora, Uzair; Ozcan, Aydogan

    2014-01-01

    Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.

  20. Thermal control design of the Lightning Mapper Sensor narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Flannery, Martin R.; Potter, John; Raab, Jeff R.; Manlief, Scott K.

    1992-01-01

    The performance of the Lightning Mapper Sensor is dependent on the temperature shifts of its narrowband spectral filter. To perform over a 10 degree FOV with an 0.8 nm bandwidth, the filter must be 15 cm in diameter and mounted externally to the telescope optics. The filter thermal control required a filter design optimized for minimum bandpass shift with temperature, a thermal analysis of substrate materials for maximum temperature uniformity, and a thermal radiation analysis to determine the parameter sensitivity of the radiation shield for the filter, the filter thermal recovery time after occultation, and heater power to maintain filter performance in the earth-staring geosynchronous environment.