Science.gov

Sample records for narrow submarine canyon

  1. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins. PMID:17108962

  2. Influence of San Gabriel submarine canyon on narrow-shelf sediment dynamics, southern California

    USGS Publications Warehouse

    Karl, Herman A.

    1980-01-01

    A conceptual model attributes the PTC to modification of shelf circulation patterns by San Gabriel Canyon. Surface waves diverge over the canyon head resulting in differential wave set up at the shore face. This forces back turbid nearshore water for a distance of a few kilometers toward the canyon. At some point on the shelf, seaward nearshore flow overlaps offshore currents generated or modified by internal waves focused onto the shelf by the canyon and/or turbulent eddies produced by flow separation in currents moving across the canyon axis. At times, these subtle processes overprint tidal and wind-driven currents and thereby create the PTC. The model suggests that canyons heading several kilometers from shore can have a regulatory effect on narrow-shelf sediment dynamics.

  3. Sedimentary facies in submarine canyons

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.; Gwiazda, R.; Anderson, K.; Lundsten, E. M.; McGann, M.

    2013-12-01

    Submarine canyons are the major conduits by which sediment, pollutants and nutrients are transported from the continental shelf out into the deep sea. The sedimentary facies within these canyons are remarkably poorly understood because it has proven difficult to accurately sample these heterogeneous and bathymetrically complex environments using traditional ship-based coring techniques. This study exploits a suite of over 100 precisely located vibracores collected using remotely operated vehicles in ten canyons along the northern Californian margin, enabling better understanding of the facies that exist within submarine canyons, their distribution, and the processes responsible for their formation. The dataset reveals three major facies types within the submarine canyons: extremely poorly sorted, coarse-grained sands and gravels with complex and indistinct internal grading patterns and abundant floating clasts; classical normally graded thin bedded turbidites; and a variety of fine-grained muddy deposits. Not all facies are observed within individual canyons, in particular coarse-grained deposits occur exclusively in canyons where the canyon head cuts up to the modern day beach, whereas finer grained deposits have a more complex distribution that relates to processes of sediment redistribution on the shelf. Pairs of cores collected within 30 meters elevation of one another reveal that the coarse-grained chaotic deposits are restricted to the basal canyon floor, with finer-grained deposits at higher elevations on the canyon walls. The remarkable heterogeneity of the facies within these sediment cores illustrate that distinctive processes operate locally within the canyon. In the authors' experience the canyon floor facies represent an unusual facies rarely observed in ancient outcrops, which potentially results from the poor preservation of ancient coarse-grained canyon deposits in the geological record.

  4. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  5. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  6. "Internal Waves" Advancing along Submarine Canyons.

    PubMed

    Shepard, F P; Marshall, N F; McLoughlin, P A

    1974-01-18

    Patterns of alternating up- and downcanyon currents have been traced along the axes of submarine canyons off California. The patterns arrive later at stations nearer the heads of coastal canyons. Where a canyon heads between two islands, the patterns advance down the axis. The propagation speeds of these patterns were estimated as 25 to 88 centimeters per second. Internal waves are the probable explanation. PMID:17777263

  7. Seismic expression of Late Quaternary Banda submarine canyon and fan offshore northern Baja California

    SciTech Connect

    Legg, M.R.

    1987-05-01

    High-resolution seismic reflection profiles obtained throughout the inner California continental borderland offshore northwestern Baja California, Mexico, show the presence of numerous modern submarine canyons and associated fans. One set of these, the Banda submarine canyon/fan, is of relatively recent origin, as demonstrated by onlap of the basal fan sediments against an acoustically transparent, presumably hemipelagic deposit. Late Quaternary sedimentation rates inferred from isotopically dated piston core samples place the age of the postulated hemipelagic unit at approximately 650,000 years ago. The Banda submarine canyon heads within the Bahia Todos Santo and passes through a narrow gorge between Punta Banda and Islas Todos Santos. It is proposed that this submarine canyon and fan system formed entirely during late Quaternary time, following the breach of the Punta Banda ridge during a late Pleistocene high sea level stand. The presence of an ancient, buried channel exiting to the north out of Bahia Todos Santos probably marks the head of an earlier submarine canyon which acted as the conduit of clastic sediments from Valle Maneadero to the deep borderland basins. The now active Banda submarine canyon pirated the supply of terrigenous clastics from this older canyon. The active Agua Blanca fault zone cuts across the head of Banda submarine canyon, suggesting that tectonic movements may have played a role in the development of the Banda submarine canyon and fan system.

  8. The key to Understand Submarine Canyon Evolution

    NASA Astrophysics Data System (ADS)

    Baztan, J.; Berne, S.; Olivet, J.; Rabineau, M.; Aslanian, D.

    2004-12-01

    Submarine canyons are the preferential path of sediment transfer from the shelf to the deep sea, they are the key to understand the source-to-sink sedimentation and, in consequence, the shelf, slope and rise evolution. Pioneer works on submarine canyons described and proposed hypothesis to explain the formation and evolution of them. However, submarine canyons remain a matter of speculation. Our work in the Gulf of Lions (Mediterranean Sea) is based on swath bathymetry data together with sub-bottom profiles, high resolution seismic reflection profiles and cores. These data allow a detailed morphologic and stratigraphic study from the shelf to the rise through time, from 2.600.000 yrs to present. We show that two main erosive features, of very different dimensions, constitute the canyons: the axial incision and the canyon's major valley. The axial incision is interpreted as an erosive path related to the passage of hyperpycnal turbidity currents, generated up-slope by river connection. In the Gulf of Lions such currents are most likely to have formed during each Glacial Maxima (with a cyclicity of 100.000 years for the last 900.000 years and 40.000 years between 900.000 and 2.600.000 years) as both proximity of the shoreline (due to the lowstand of sea level) and high detrital sediment supply (due to glacial abrasion upstream) increased the flow of sediments delivered to the canyon heads. The axial incisions observed at the sea floor and fossil incisions observed on seismic lines, are related to equivalent conditions. The axial incision activity has a key influence on canyon evolution, it triggers mass wasting that affect the canyon's major valley (head and flanks) allowing the progressive widening and deepening of the canyon. Consequently the canyon's major valley (typically bounded by flanks of more than 700 meters in height) is the result of the axial incision activity through successive lowering of sea level. In summary: our cross-disciplinary approach (morphology, seismic stratigraphy, sedimentology and glacioeustacy) provides a regional and detailed vision of canyons. This work (i) explains the mechanism that controls the evolution of the submarine canyons and the sediment transfer from the shelf to the rise and (ii) shows the sedimentary evolution of the margin (from source to sink) in relation with sea level changes from 2.600.000 years to present.

  9. Flow dynamics around downwelling submarine canyons

    NASA Astrophysics Data System (ADS)

    Spurgin, J. M.; Allen, S. E.

    2014-10-01

    Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (?) was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate), as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  10. Wilmington Submarine Canyon: a marine fluvial-like system.

    USGS Publications Warehouse

    McGregor, B.; Stubblefield, W.L.; Ryan, William B. F.; Twichell, D.C.

    1982-01-01

    Midrange sidescan sonar data show that a system of gullies and small channels feeds into large submarine canyons on the Middle Atlantic Continental Slope of the US. The surveyed canyons all have relatively flat floors, but they have different channel morphologies. Wilmington Canyon has a meandering channel that extends down the Continental Slope and across the Continental Rise, whereas two canyons south of Wilmington Canyon have straight channels that trend directly downslope onto the rise. The morphology of these submarine canyon systems is remarkably similar to that of terrestrial fluvial systems.-Authors

  11. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures. PMID:23937169

  12. Submarine canyon and fan systems of the California Continental Borderland

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Romans, B.W.; Covault, J.A.; Dartnell, P.; Sliter, R.W.

    2009-01-01

    Late Quaternary turbidite and related gravity-flow deposits have accumulated in basins of the California Borderland under a variety of conditions of sediment supply and sea-level stand. The northern basins (Santa Barbara, Santa Monica, and San Pedro) are closed and thus trap virtually all sediment supplied through submarine canyons and smaller gulley systems along the basin margins. The southern basins (Gulf of Santa Catalina and San Diego Trough) are open, and, under some conditions, turbidity currents flow from one basin to another. Seismic-reflection profiles at a variety of resolutions are used to determine the distribution of late Quaternary turbidites. Patterns of turbidite-dominated deposition during lowstand conditions of oxygen isotope stages 2 and 6 are similar within each of the basins. Chronology is provided by radiocarbon dating of sediment from two Ocean Drilling Program sites, the Mohole test-drill site, and large numbers of piston cores. High-resolution, seismic-stratigraphic frameworks developed for Santa Monica Basin and the open southern basins show rapid lateral shifts in sediment accumulation on scales that range from individual lobe elements to entire fan complexes. More than half of the submarine fans in the Borderland remain active at any given position of relative sea level. Where the continental shelf is narrow, canyons are able to cut headward during sea-level transgression and maintain sediment supply to the basins from rivers and longshore currents during highstands. Rivers with high bedload discharge transfer sediment to submarine fans during both highstand and lowstand conditions. ?? 2009 The Geological Society of America.

  13. An Experimental Study of Submarine Canyon Evolution on Continental Slopes

    NASA Astrophysics Data System (ADS)

    Lai, S. Y.; Gerber, T. P.; Amblas, D.

    2013-12-01

    Submarine canyons define the morphology of many continental slopes and are conduits for the transport of sediment from shallow to deep water. Though the origin and evolution of submarine canyons is still debated, there is general agreement that sediment gravity flows play an important role. Here we present results from a simple, reduced-scale sandbox experiment designed to investigate how sediment gravity flows generate submarine canyons. In the experiments, gravity flows were modeled using either sediment-free or turbid saline currents. Unconfined flows were released onto an inclined bed of sand bounded on the downstream end by a movable floor that was incrementally lowered during the course of an experiment to produce an escarpment. This design was developed to represent the growth of relief across the continental slope. To monitor canyon evolution on the slope, we placed an overhead DSLR camera to record vivid time-lapse videos. At the end of each experimental stage we scanned the topography by imaging a series of submerged laser stripes, each projected from a motor-driven transverse laser sheet, onto a calibrated Cartesian coordinate system to produce high resolution bathymetry without draining the ambient water. In areas unaffected by the flows, we observe featureless, angle-of-repose submarine slopes formed by retrogressive breaching processes. In contrast, areas influenced by gravity flows cascading across the shelf break are deeply incised by submarine canyons with well-developed channel networks. Our results show that downslope gravity flows and submarine falling base level are both required to produce realistic canyon morphologies at laboratory scale. Though our mechanism for generating relief may be a rather crude analogue for the processes driving slope evolution, we hope our novel approach can stimulate new questions about the coevolution of canyons and slopes and motivate further experimental work to address them.

  14. Regional impact of submarine canyons during seasonal upwelling

    NASA Astrophysics Data System (ADS)

    Connolly, Thomas P.; Hickey, Barbara M.

    2014-02-01

    A numerical model of the northern California Current System along the coasts of Washington and British Columbia is used to quantify the impact of submarine canyons on upwelling from the continental slope onto the shelf. Comparisons with an extensive set of observations show that the model adequately represents the seasonal development of near-bottom density, as well as along-shelf currents that are critical in governing shelf-slope exchange. Additional model runs with simplified coastlines and bathymetry are used to isolate the effects of submarine canyons. Near submarine canyons, equatorward flow over the outer shelf is correlated with dense water at canyon heads and subsequent formation of closed cyclonic eddies, which are both associated with cross-shelf ageostrophic forces. Lagrangian particles tracked from the slope to midshelf show that canyons are associated with upwelling from depths of ˜140-260 m. Source depths for upwelling are shallower than 150 m at locations away from canyons and in a model run with bathymetry that is uniform in the along-shelf direction. Water upwelled through canyons is more likely to be found near the bottom over the shelf. Onshore fluxes of relatively saline water through submarine canyons are large enough to increase volume-averaged salinity over the shelf by 0.1-0.2 psu during the early part of the upwelling season. The nitrate input from the slope to the Washington shelf associated with canyons is estimated to be 30-60% of that upwelled to the euphotic zone by local wind-driven upwelling.

  15. Origin of Izu-Bonin forearc submarine canyons

    SciTech Connect

    Fujioka, Kantaro ); Yoshida, Haruko )

    1990-06-01

    Submarine canyons on the Izu-Bonin forearc are morphologically divided from north to south into four types based on their morphology, long profiles, and seismic profiles: Mikura, Aogashima, Sofu, and Chichijima types, respectively. These types of canyons are genetically different from each other. Mikura group is formed by the faults related to bending of the subducting Philippine Sea Plate. Aogashima type genetically relates to the activity of large submarine calderas that supply large amounts of volcaniclastic material to the consequent forearc slope. The third, Sofu group, is thought to be formed by the large-scale mega mass wasting in relation to the recent movement of the Sofugan tectonic line. The last, Chichijima group, is formed by collision of the Uyeda Ridge and the Ogasawara Plateau on the subducting Pacific Plate with Bonin Arc. Long profiles of four types of submarine canyons also support this.

  16. Depositional framework and genesis of Wilcox Submarine Canyon systems, Northwest Gulf Coast

    SciTech Connect

    Galloway, W.F.; Dinqus, W.F.; Paige, R.E.

    1988-01-01

    Wilcox (late Paleocene-early Eocene) slope systems of the Texas coastal plain contain two families of paleosubmarine canyons that exhibit distinctly different characteristics and stratigraphic settings: Yoakum and Lavaca type canyons occur as widely separated features within the generally retrogradational middle Wilcox interval. Four such canyons exhibit high length to width ratios, extend far updip of the contemporaneous shelf edge, were excavated deeply into paralic and coastal-plain deposits, and were filled primarily by mud. Fills consist of a lower onlapping unit and capping progradational deposits that are genetically related to deposition of the upper Wilcox fluvial-deltaic sequence. Significantly, the canyon fills correlate with widespread transgressive marine mudstones (the Yoakum shale-Sabinetown Formation and ''Big Shale''). In contrast, Lavaca-type canyons form a system of erosional features created along the rapidly prograding, unstable lower Wilcox continental margin. Comparative analysis of the two canyon system suggests a general process model for submarine canyon formation on prograding basin margins. Key elements are depositional loading of the continental margin creating instability, initiation of a large-scale slump, family of slumps, or listric bedding-plane fault creating a depression or indentation in the margin, and headward and lateral expansion of the depression by slumping and density-underflow erosion. Extent of canyon evolution varies according to time and submerged space available for maturation; short, broad canyons form on narrow shelves of actively prograding margins, and elongate mature canyons form in retrogradational or transgressive settings.

  17. Anatomy of La Jolla submarine canyon system; offshore southern California

    USGS Publications Warehouse

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  18. Geology and biology of Oceanographer submarine canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.

    1980-01-01

    Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors

  19. Morpho-sedimentary features and sediment dispersal of the Fangliao Submarine Canyon in the active margin offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.; Chiang, C. S.; Yu, H. S.

    2009-04-01

    Using newly collected multi-channel seismic profiles and bathymetric data this paper characterizes morphology and relates it to structural and sedimentary processes in the Fangliao Submarine Canyon and contrasts with the nearby Kaoping Canyon about 20 km in distance by the sediment dispersal in terms of source to sink. The Fangliao Canyon consists of three distinct morphologic parts: an upper canyon, a lower canyon and a distal submarine fan. The upper canyon indents into and begins at the shelf edge and extends downsope in a relatively straight course for a distance of about 22 km and ends at water depth of about 600 where the canyon turns sharply to the southwest. The deflection of canyon course is caused by the presence of a structural high of diapiric mud ridge. The lower canyon runs southwestwards along the western edge of the elongate ridge for a distance of about 45 km and is in water depth of about of 900 m where the canyon mouth opens and sediments disperse laterally and downslope, forming a relatively small submarine fan of about 400 square kilometers. The upper canyon is represented by a relatively narrow (3-4.5 km), V-shaped valley with canyon relief less than 300 m. Seismic profiles reveal terminations of parallel reflectors against steep canyon walls and slumping and sliding features, suggesting erosional canyon down-cutting. In the lower canyon, the canyon width increases to 12 km wide and canyon relief greater than 400 meters, indicating intense down-cutting of canyon floor and lateral erosion of canyon walls. However, the cross-sectional morphology is characterized by varying V-and U-shaped valleys. Relatively flat reflectors onlap the canyon floor and result in U-shaped cross sections, indicating combined effects of erosion and deposition. The distal submarine fan is a low-relief depositional feature probably resulting from channelized and overbank deposition. Although under the same conditions of climate, sea-level changes and tectonics of the SW Taiwan margin the Fangliao Canyon differs greatly from the nearby Kaoping Canyon in terms of sediment dispersal. The sediment source of the Fangliao Canyon is mainly derived from the canyon head indenting the shelf edge where neither major rivers nor deltas are close to or present, resulting in limited sediment supply from the shelf to the canyon head. Therefore, the Fangliao Canyon serves as a sediment pathway fed by limited sediments from the shelf edge, allowing to transport sediments for a relatively short distance of about 70 km and depositing them at the upper continental slope in water depth of about 1000 m, forming a small fan, the ultimate sediment sink. In contrast, the head of Kaoping canyon is connected to the Kaoping River, a small mountainous river with a high sediment yield. Recurrent hyperpycnal flows during the flood seasons are transporting great amounts of sediments to the Kaoping canyon head to generate powerful down-slope sediment flows, transporting sediments for a long distance of about 260 km across the entire continental slope and reaching the deep-sea Manila Trench, the ultimate sediment sink. Without continuous and large supply of sediments to the canyon head the Fangliao Canyon can be considered as a sediment pathway with limited capacity for transporting shallow marine sediments to the deep sea. Key words: submarine canyon, morphology, sediment dispersal, seismics,Taiwan

  20. Role of submarine canyons in shaping the rise between Lydonia and Oceanographer canyons, Georges Bank

    USGS Publications Warehouse

    McGregor, B.A.

    1985-01-01

    Three large submarine canyons, Oceanographer, Gilbert, and Lydonia, indent the U.S. Atlantic continental shelf and, with four additional canyons, dissect the continental slope in the vicinity of Georges Bank. On the upper rise, these canyons merge at a water depth of approximately 3100 m to form only two valleys. Differences in channel morphology of the canyons on the upper rise imply differences in relative activity, which is inconsistent with observations in the canyon heads. At present, Lydonia Canyon incises the upper rise more deeply than do the other canyons: however, seismic-reflection profiles show buried channels beneath the rise, which suggests that these other six canyons were periodically active during the Neogene. The rise morphology and the thickness of inferred Neogene- and Quaternary-age sediments on the rise are attributed to the presence and activity of the canyons. The erosional and depositional processes and the morphology of these canyons are remarkably similar to those of fluvial systems. Bear Seamount, which has approximately 2000 m of relief on the rise, has acted as a barrier to downslope sediment transport since the Late Cretaceous. Sediment has piled up on the upslope side, whereas much less sediment has accumulated in the "lee shadow" on the downslope side. Seismic-reflection profile data show that Lydonia Canyon has not eroded down to the volcanic rock of Bear Seamount. ?? 1985.

  1. Space-for-time substitution and the evolution of a submarine canyon-channel system in a passive progradational margin

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2014-09-01

    Space-for-time substitution is a concept that has been widely applied, but not thoroughly tested, in some fields of geomorphology. The objective of this study is to test whether the concept of space-for-time substitution is valid in reconstructing the evolution of a submarine canyon-channel system in a passive progradational margin. We use multibeam echosounder data and in situ measurements from the south Ebro Margin to analyse the morphology and morphometry of a sequence of submarine valleys ordered in terms of increasing valley thalweg length. The morphological model of submarine valley evolution that we can propose from this analysis is very similar to established models in the literature, which leads us to conclude that time can be substituted by space when reconstructing the evolution of submarine canyon and channel systems in the south Ebro Margin. By extracting morphometric information from the application of the space-for-time substitution model to our data, we identify a series of morphological patterns as a submarine canyon evolves in a passive progradational margin. These include the geometric similarity of canyon planform shape, an increase in canyon draining efficiency and in the influence of flank slope failures, and an evolution towards equilibrium between canyon form and imposed water and sediment load without net erosion or deposition taking place. We also observe that canyon elongation is higher downslope and that the canyon undergoes an early stage of rapid incision similar to the process of "erosion narrowing" reported in terrestrial rivers. We demonstrate that the conclusions of our study are not limited to submarine valleys in the south Ebro Margin but are applicable to other margins around the world.

  2. Giant submarine canyons: is size any clue to their importance in the rock record?

    USGS Publications Warehouse

    Normark, William R.; Carlson, Paul R.

    2003-01-01

    Submarine canyons are the most important conduits for funneling sediment from continents to oceans. Submarine canyons, however, are zones of sediment bypassing, and little sediment accumulates in the canyon until it ceases to be an active conduit. To understand the potential importance in the rock record of any given submarine canyon, it is necessary to understand sediment-transport processes in, as well as knowledge of, deep-sea turbidite and related deposits that moved through the canyons. There is no straightforward correlation between the final volume of the sedimentary deposits and size o fthe associated submarine canyons. Comparison of selected modern submarine canyons together with their deposits emphasizes the wide range of scale differences between canyons and their impact on the rock record. Three of the largest submarine canyons in the world are incised into the Beringian (North American) margin of the Bering Sea. Zhemchug Canyon has the largest cross-section at the shelf break and greatest volume of incision of slope and shelf. The Bering Canyon, which is farther south in the Bering Sea, is first in length and total area. In contrast, the largest submarine fans-e.g., Bengal, Indus, and Amazon-have substantially smaller, delta-front submarine canyons that feed them; their submarine drainage areas are one-third to less than one-tenth the area of Bering Canyon. some very large deep-sea channells and tubidite deposits are not even associated with a significant submarine canyon; examples include Horizon Channel in the northeast Pacific and Laurentian Fan Valley in the North Atlantic. Available data suggest that the size of turbidity currents (as determined by volume of sediment transported to the basins) is also not a reliable indicator of submarine canyon size.

  3. Currents in la jolla and scripps submarine canyons.

    PubMed

    Shepard, F P; Marshall, N F

    1969-07-11

    Velocities up to 34 centimeters per second have been recorded near the floors of submarine canyons off La Jolla, California. Currents move alternately down- and upcanyon with variable periods. All 3- to 6-day measurements show net current transport downcanyon. Many of the downcanyon currents of higher velocity correlate with ebbing tides, as measured at the nearby pier. Other factors producing the currents probably include internal waves. Velocities are sufficient to transport large quantities of fine sand. PMID:17834739

  4. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    USGS Publications Warehouse

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  5. Submarine canyons: multiple causes and long-time persistence

    SciTech Connect

    Shepard, F.P.

    1981-06-01

    Submarine canyons are of composite origin and that many of the hypotheses suggested in the past were partly correct but did not appreciate that coordination of other processes was required. Thus there is growing evidence that, in the history of many canyons, there was a period in which subaerial erosion was an important precursor, but that present features are predominantly the result of marine erosion. Those advocating turbidity currents as the unique cause of canyons failed to appreciate that debris flows down the incipient valleys, as well as other types of landslides, could be an almost equally important factor in marine erosion. The great effect of biologic activity on the rock walls of incipient canyons has been almost completely neglected in explanations, and various types of currents such as those of the tides have been left largely out of the picture. Perhaps the most important feature absent in these various hypotheses has been the realization that canyons may well be the result of a long period of formation, much longer than the short episodes of Pleistocene glacial sea-level lowering usually considered explanation enough of these giant features which commonly cut into hard crystalline rock. New information is showing that the canyons may date back to at least the Cretaceous. (JMT)

  6. Sandwave migration in Monterey Submarine Canyon, Central California

    USGS Publications Warehouse

    Xu, J. P.; Wong, F.L.; Kvitek, R.; Smith, D.P.; Paull, C.K.

    2008-01-01

    Repeated high-resolution multibeam bathymetric surveys from 2002 through 2006 at the head of the Monterey Submarine Canyon reveal a sandwave field along the canyon axis between 20 and 250??m water depth. These sandwaves range in wavelength from 20 to 70??m and 1 to 3??m in height. A quantitative measure was devised to determine the direction of sandwave migration based on the asymmetry of their profiles. Despite appreciable spatial variation the sandwaves were found to migrate in a predominantly down-canyon direction, regardless of season and tidal phases. A yearlong ADCP measurement at 250??m water depth showed that intermittent internal tidal oscillations dominated the high-speed canyon currents (50-80??cm/s), which are not correlated with the spring-neap tidal cycle. Observed currents of 50??cm/s or higher were predominantly down-canyon. Applying a simple empirical model, flows of such magnitudes were shown to be able to generate sandwaves of a size similar to the observed ones. ?? 2007 Elsevier B.V. All rights reserved.

  7. Submarine canyons as important habitat for cetaceans, with special reference to the Gully: A review

    NASA Astrophysics Data System (ADS)

    Moors-Murphy, Hilary B.

    2014-06-01

    There has been much research interest in the use of submarine canyons by cetaceans, particularly beaked whales (family Ziphiidae), which appear to be especially attracted to canyon habitats in some areas. However, not all submarine canyons are associated with large numbers of cetaceans and the mechanisms through which submarine canyons may attract cetaceans are not clearly understood. This paper reviews some of the cetacean associations with submarine canyons that have been anecdotally described or presented in scientific literature and discusses the physical, oceanographic and biological mechanisms that may lead to enhanced cetacean abundance around these canyons. Particular attention is paid to the Gully, a large submarine canyon and Marine Protected Area off eastern Canada for which there exists some of the strongest evidence available for submarine canyons as important cetacean habitat. Studies demonstrating increased cetacean abundance in the Gully and the processes that are likely to attract cetaceans to this relatively well-studied canyon are discussed. This review provides some limited evidence that cetaceans are more likely to associate with larger canyons; however, further studies are needed to fully understand the relationship between the physical characteristics of canyons and enhanced cetacean abundance. In general, toothed whales (especially beaked whales and sperm whales) appear to exhibit the strongest associations with submarine canyons, occurring in these features throughout the year and likely attracted by concentrating and aggregating processes. By contrast, baleen whales tend to occur in canyons seasonally and are most likely attracted to canyons by enrichment and concentrating processes. Existing evidence thus suggests that at least some submarine canyons are important foraging areas for cetaceans, and should be given special consideration for cetacean conservation and protection.

  8. Internal tidal currents in the Gaoping (Kaoping) Submarine Canyon

    USGS Publications Warehouse

    Lee, I.-H.; Wang, Y.-H.; Liu, J.T.; Chuang, W.-S.; Xu, Jie

    2009-01-01

    Data from five separate field experiments during 2000-2006 were used to study the internal tidal flow patterns in the Gaoping (formerly spelled Kaoping) Submarine Canyon. The internal tides are large with maximum interface displacements of about 200??m and maximum velocities of over 100cm/s. They are characterized by a first-mode velocity and density structure with zero crossing at about 100??m depth. In the lower layer, the currents increase with increasing depth. The density interface and the along-channel velocity are approximately 90?? out-of-phase, suggesting a predominant standing wave pattern. However, partial reflection is indicated as there is a consistent phase advance between sea level and density interface along the canyon axis. ?? 2008 Elsevier B.V. All rights reserved.

  9. Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons

    USGS Publications Warehouse

    Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.

    1990-01-01

    Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ?3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.

  10. Ascension Submarine Canyon, California - Evolution of a multi-head canyon system along a strike-slip continental margin

    USGS Publications Warehouse

    Nagel, D.K.; Mullins, H.T.; Greene, H. Gary

    1986-01-01

    Ascension Submarine Canyon, which lies along the strike-slip (transform) dominated continental margin of central California, consists of two discrete northwestern heads and six less well defined southeastern heads. These eight heads coalesce to form a single submarine canyon near the 2700 m isobath. Detailed seismic stratigraphic data correlated with 19 rock dredge hauls from the walls of the canyon system, suggest that at least one of the two northwestern heads was initially eroded during a Pliocene lowstand of sea level ???3.8 m.y. B.P. Paleogeographic reconstructions indicate that at this time, northwestern Ascension Canyon formed the distal channel of nearby Monterey Canyon and has subsequently been offset by right-lateral, strike-slip faulting along the San Gregorio fault zone. Some of the six southwestern heads of Ascension Canyon may also have been initially eroded as the distal portions of Monterey Canyon during late Pliocene-early Pleistocene sea-level lowstands (???2.8 and 1.75 m.y. B.P.) and subsequently truncated and offset to the northwest. There have also been a minimum of two canyon-cutting episodes within the past 750,000 years, after the entire Ascension Canyon system migrated to the northwest past Monterey Canyon. We attribute these late Pleistocene erosional events to relative lowstands of sea level 750,000 and 18,000 yrs B.P. The late Pleistocene and Holocene evolution of the six southeastern heads also appears to have been controlled by structural uplift of the Ascension-Monterey basement high at the southeastern terminus of the Outer Santa Cruz Basin. We believe that uplift of this basement high sufficiently oversteepened submarine slopes to induce gravitational instability and generate mass movements that resulted in the erosion of the canyon heads. Most significantly, though, our results and interpretations support previous proposals that submarine canyons along strike-slip continental margins can originate by tectonic trunction and lateral offset. ?? 1986.

  11. Hudson Submarine Canyon Head Offshore New York and New Jersey: A Dynamic Interface

    NASA Astrophysics Data System (ADS)

    Rona, P.; Guida, V.; Sullivan, M.; Haag, S.; Macelloni, L.; Sweeney, E.; Scranton, M.; Hobbs, J.; Asper, V.

    2007-12-01

    Hudson Canyon is the largest submarine canyon on the U. S. Atlantic continental margin. Having completed a surface ship multi-beam bathymetric map of the Hudson Canyon region (resolution 100m; http://pubs.usgs.gov/of/2004/1441/index/html), we report preliminary results of mapping portions of the canyon head (75 square km, water depth 200-500 m) using the Eagle Ray autonomous underwater vehicle (Explorer 27- BO1-2200 AUV, ISE Ltd.) of the University of Southern Mississippi. The AUV was equipped with a Simrad EM2000 multi-beam sonar system and flown 50 m above the seafloor for resolution (3 m), and with a CTD to map water column properties. Shipboard CTD casts were also made and water sampled from the shelf break (depth 200 m) to the upper continental rise (3000 m) for detection of methane. The canyon head is of interest as an essential fish habitat (squid, hake, tilefish, and lobster) that may contribute to sustain a regional fishery and that may conduct sediment to the ocean basin. A shallow trough, the Hudson Shelf Valley, extends ~185 km across the continental shelf connecting the mouth of the Hudson River to the canyon head where it indents the seaward edge of the shelf. The canyon head bifurcates with branch 1 (6 km-long) oriented NW-SE aligned with the Shelf Valley, and branch 2 (4 km-long) oriented N-S. The two branches merge into a segment 10 km-long oriented NW-SE aligned with branch 1. Branch 1 has symmetric walls with mean inclinations of 10 degrees and smooth seafloor, suggesting that it is presently inactive and accumulating a cover of hemipelagic sediment. In contrast, the walls of both the N-S branch 2 and of the contiguous NW-SE segment are asymmetric. The walls of the NW-SE segment have a mean inclination of 15 degrees and exhibit semicircular escarpments 800-900 m long and 600-700 m wide, separated by narrow ravines perpendicular to the canyon axis. Slump blocks with sharp rims occur where N-S branch 1 joins the NW- SE segment. Two circular depressions (diameter 100 and 300 m; relief c.15 m; depths 345 m and 390 m) occur at the base of the SW wall of the segment and may be collapse features related to gas discharge evidenced by a high methane anomaly at the shelf edge. The head of Hudson Canyon encompasses diverse habitats and is a dynamic interface between shelf and slope processes. We thank NOAA's National Undersea Research Program for support.

  12. Deep-sea scavenging amphipod assemblages from the submarine canyons of the Western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Duffy, G. A.; Horton, T.; Billett, D. S. M.

    2012-11-01

    Submarine canyons have often been identified as hotspots of secondary production with the potential to house distinct faunal assemblages and idiosyncratic ecosystems. Within these deep-sea habitats, assemblages of scavenging fauna play a vital role in reintroducing organic matter from large food falls into the wider deep-sea food chain. Free-fall baited traps were set at different depths within three submarine canyons on the Iberian Margin. Amphipods from the traps were identified to species level and counted. Scavenging amphipod assemblages were compared at different depths within each canyon and between individual canyon systems. Using data from literature, abyssal plain assemblages were compared to submarine canyon assemblages. Samples from canyons were found to contain common abyssal plain species but in greater than expected abundances. It is proposed that this is a result of the high organic carbon input into canyon systems owing to their interception of sediment from the continental shelf and input from associated estuarine systems. Community composition differed significantly between the submarine canyons and abyssal plains. The cause of this difference cannot be attributed to one environmental variable due to the numerous inherent differences between canyons and abyssal plains.

  13. Deep-sea scavenging amphipod assemblages from the submarine canyons of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Duffy, G. A.; Horton, T.; Billett, D. S. M.

    2012-06-01

    Submarine canyons have often been identified as hotspots of secondary production with the potential to house distinct faunal assemblages and idiosyncratic ecosystems. Within these deep-sea habitats, assemblages of scavenging fauna play a vital role in reintroducing organic matter from large food falls into the wider deep-sea food chain. Free-fall baited traps were set at different depths within three submarine canyons on the Iberian Margin. Amphipods from the traps were identified to species level and counted. Scavenging amphipod assemblages were compared at different depths within each canyon, between individual canyon systems, and between the abyssal plain and submarine canyon sites. Samples from canyons were found to contain common abyssal plain species but in greater than expected abundances. Community composition differed significantly between the submarine canyons and abyssal plains. It is proposed that this is a result of the high organic carbon input into canyon systems owing to their interception of sediment from the continental shelf and input from associated estuarine systems.

  14. Delaware River: Evidence for its former extension to Wilmington Submarine Canyon

    USGS Publications Warehouse

    Twichell, D.C.; Knebel, H. J.; Folger, D.W.

    1977-01-01

    Seismic-reflection profiles indicate that during the Pleistocene the Delaware River flowed across the continental shelf east of Delaware Bay and emptied into Wilmington Submarine Canyon. The ancestral valley (width, 3 to 8 kilometers; relief, 10 to 30 meters) is buried, is not reflected in the surface topography, and probably predates the formation of the present canyon head.

  15. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  16. Recent sea beam mapping of Ascension-Monterey Submarine Canyon System

    SciTech Connect

    Greene, H.G. )

    1990-06-01

    Extensive Sea Beam and Bathymetric Swatch Survey System (BS{sup 3}) data covering the Ascension-Monterey Submarine Canyon system and adjoining areas and canyons were collected offshore central California. Many discovered geomorphological features lead to significant new geologic conclusions about the formation and processes of submarine canyons in general and disclose unique sedimentary and tectonic features of the Ascension-Monterey Canyon system. The highly detailed bathymetric maps constructed from the Sea Beam data indicate that the seafloor topographic pattern is influenced by sedimentary and tectonic processes; both remain active along the central California margin. Interpretations of MOAA composite maps, final raw Sea Beam bathymetric maps, and three-dimensional physiographic renditions from bathymetric data indicate a diverse and complex geomorphology for the Ascension-Monterey Submarine Canyon system and adjoining region. Five distinct geomorphologic provinces and four well-defined geographic areas are mapped. Canyons cut by faults and canyon walls actively undergoing mass wasting are prominently displayed in the Sea Beam data. Sedimentary processes illustrating canyon channel capture and the formation of extensive mega-sedimentary wave fields where the canyons debouch onto the abyssal plain are spectacularly well defined. This new tool of seafloor mapping is contributing significant data for the geological interpretation of continental margins and seafloor in the world's oceans.

  17. Rapid changes in the head of the Rio Balsas Submarine Canyon system, Mexico

    USGS Publications Warehouse

    Reimnitz, E.; Gutierrez-Estrada, M.

    1970-01-01

    The investigation of a river delta and the heads of several nearby submarine canyons in western Mexico produced evidence for rapid changes in the configuration and depth of the nearshore portions of canyon tributaries. General scarcity of data on the rates of submarine canyon formation and the relationship to river discharge should make these results of special interest. The Rio Balsas, one of Mexico's largest rivers, empties into the ocean near the heads of a large submarine canyon that terminates in the Middle America Trench. One of the distributaries of the Rio Balsas presently is discharging at the head of Can??o??n de la Necesidad, which is being eroded actively. Two inactive canyons are related to former discharge channels of the river. Their heads lie at some distance from shore and are being filled with sediment. The Can??o??n de Petacalco, not now receiving sediment directly from a Rio Balsas distributary, has remained active because the shoreline has not retreated far. Until about 100 years ago its head was being filled with fine-grained and highly organic sediments from a nearby rivermouth, while the coarse portion of the sediment supply joined the canyon via a tributary farther seaward. Since then the river has shifted away from this canyon, and the horizontally stratified sediments in the canyon head have been incised as much as 20-30 m, as evidenced by three 14C dates of organic material exposed in the steep to overhanging canyon walls. The changes in the shallow portion of the Rio Balsas submarine canyons seem to be related to changes in river discharge pattern, either directly or indirectly. A shifting point source of sediment supply either activates a pre-existing, partly filled canyon, or erodes a new one near the new river mouth, whereas the canyon at the abandoned river mouth is deactivated following retreat of the shoreline. The heads of the different tributaries form a dendritic pattern in Holocene unconsolidated sediment. Subaerial processes are not involved in the formation of these submarine canyons. Thus, a dendritic pattern of submarine canyons is not necessarily indicative of subaerial erosion. ?? 1970.

  18. Holocene sedimentary activity in a non-terrestrially coupled submarine canyon: Cook Strait Canyon system, New Zealand

    NASA Astrophysics Data System (ADS)

    Mountjoy, J. J.; Micallef, A.; Stevens, C. L.; Stirling, M. W.

    2014-06-01

    The Cook Strait Canyon system, located between the North and South islands of New Zealand, is a large (1800 km2), multi-branching, shelf-indenting canyon on an active subduction margin. The canyon comes within 1 km of the coast, but does not intercept fluvial or littoral sediment systems and is therefore defined as a non-terrestrially coupled system. Sediment transport associated with a strong tidal stream, and seafloor disturbance related to numerous high-activity faults, is known from previous studies. Little is known, however, about the rates of sedimentary activity in the canyon and the processes driving it. A substantial dataset of EM300 multibeam bathymetry, gravity cores, 3.5 kHz seismic reflection profiles, camera and video transects and current meter data have been collected across the region between 2002 and 2011. The canyon system therefore provides an excellent study area for understanding sediment transport in a non-coupled submarine canyon system. Analysis of the data reveals a two-staged sediment transport system where: (1) oceanographic (tidal) processes mobilise sediment from the continental shelf and transport it to depocentres in the upper-central canyons, and (2) tectonic (earthquake) processes remobilise sediment that is transported through the lower canyon to the deep ocean. Tidal boundary-layer currents within the canyon reach velocities up to 0.53 m/s and are capable of mobilising fine sand in the central reach of the upper canyons. The velocity is higher at the canyon rim and capable of mobilising coarse sand. Sediment depocentres resulting from this tidally forced sediment transport have a well formed geomorphology within the mid-upper canyon arms of Cook Strait and Nicholson Canyons. Pseudo-static stability modelling, supported by sediment core analysis, indicates that sediment accumulated in the upper canyons fails during seismic events approximately every 100 years. The 100 year return period ground shaking-level (peak ground acceleration, ignoring the effect of the water column above the seabed) at this site is estimated to be 0.23g. Fresh rock outcrops and bed-scour in the lower canyon floor indicate that remobilised material is transported to the deep ocean. The processes identified here are likely to be analogous to those occurring in many non-coupled shelf-indenting canyons on active margins globally, and provide a framework within which the biological response to geomorphic processes in submarine canyons can be assessed.

  19. Discovery of two new large submarine canyons in the Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.

    1984-01-01

    The Beringian continental margin is incised by some of the world's largest submarine canyons. Two newly discovered canyons, St. Matthew and Middle, are hereby added to the roster of Bering Sea canyons. Although these canyons are smaller and not cut back into the Bering shelf like the five very large canyons, they are nonetheless comparable in size to most of the canyons that have been cut into the U.S. eastern continental margin and much larger than the well-known southern California canyons. Both igneous and sedimentary rocks of Eocene to Pliocene age have been dredged from the walls of St. Matthew and Middle Canyons as well as from the walls of several of the other Beringian margin canyons, thus suggesting a late Tertiary to Quaternary genesis of the canyons. We speculate that the ancestral Yukon and possibly Anadyr Rivers were instrumental in initiating the canyon-cutting processes, but that, due to restrictions imposed by island and subsea bedrock barriers, cutting of the two newly discovered canyons may have begun later and been slower than for the other five canyons. ?? 1984.

  20. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea.

    PubMed

    De Leo, Fabio C; Smith, Craig R; Rowden, Ashley A; Bowden, David A; Clark, Malcolm R

    2010-09-22

    Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42 degrees 01' S, 173 degrees 03' E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study. PMID:20444722

  1. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea

    PubMed Central

    De Leo, Fabio C.; Smith, Craig R.; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.

    2010-01-01

    Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42°01? S, 173°03? E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study. PMID:20444722

  2. Clast-contact conglomerates in submarine canyons: possible subaqueous sieve deposits

    SciTech Connect

    Fitzgerald, M.S.

    1987-05-01

    Thick, coarse, clast-contact conglomerates in submarine canyon fill have previously been attributed to rock-fall, grain-flow, or winnowing processes. However, these processes do not adequately explain some thick conglomeratic sequences. The proposed process of subaqueous sieve deposition could account for these clast-contact conglomerates. Subaerial sieve deposition has been documented on small-scale fan models and on alluvial fans. A subaerial sieve deposit begins as a debris flow which at some point freezes up. The matrix is then lost by subsequent filtration or outflow, and the emplacement of a clast-contact gravel ensues. A subaqueous sieve deposit would be slightly modified in that the matrix would not be lost by filtration into the submarine canyon floor, but rather by outflow at the terminus of the lobe immediately after deposition, or possibly from the top and/or sides of the freezing flow mass during transport. Besides forming in submarine canyons, subaqueous sieve deposits might also occur in paralic, submarine fan channel, and base-of-the-slope settings. In substantiating the existence of subaqueous sieve deposits, the sedimentary structures and grain-size data from recent sieve deposits on alluvial fans are compared to those of ancient submarine canyon deposits. Numerous similarities are found supporting this new method of deposition. Some discrepancies are encountered, but these are expected due to modifications caused by an aqueous medium.

  3. Does littoral sand bypass the head of Mugu Submarine Canyon? - a modeling study

    USGS Publications Warehouse

    Xu, Jingping; Elias, Edwin; Kinsman, Nicole

    2011-01-01

    A newly developed sand-tracer code for the process-based model Delft3D (Deltares, The Netherlands) was used to simulate the littoral transport near the head of the Mugu Submarine Canyon in California, USA. For westerly swells, which account for more than 90% of the wave conditions in the region, the sand tracers in the downcoast littoral drift were unable to bypass the canyon head. A flow convergence near the upcoast rim of the canyon intercepts the tracers and moves them either offshore onto the shelf just west of the canyon rim (low wave height conditions) or into the canyon head (storm wave conditions). This finding supports the notion that Mugu Canyon is the true terminus of the Santa Barbara Littoral Cell.

  4. Submarine canyon and slope processes of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    McGregor, B.A.

    1983-01-01

    Two regions on the U.S. Atlantic continental margin were surveyed using single-channel, seismic-reflection profiling techniques: the Mid-Atlantic Continental Slope and Rise seaward of New Jersey in the vicinity of Baltimore Canyon and the Continental Slope and upper Rise just north of Cape Hatteras. Submarine canyons are the dominant morphologic feature in both areas. The Continental Slope in the Baltimore Canyon area has a general sea-floor gradient of 3?-4? and a width of approximately 40 km, whereas the study area north of Cape Hatteras has a general sea-floor gradient of approximately 9? and a width of 20 km. The dominant slope process differs in each area. In the Baltimore Canyon area, subbottom reflectors suggest that sediment deposition with progradation of the slope is related to canyon processes. In the study area north of Cape Hatteras, the canyons appear erosional and mass wasting is the dominant erosional process. Dominant slope processes appear to be correlated with the width and sea-floor gradient of the Continental Slope. Although the absolute age of the canyons is difficult to determine without rotary-drill cores for stratigraphic control, Baltimore Canyon is suggested to be older than the shelf-indenting canyon just north of Cape Hatteras. An anomalously large ridge flanking Baltimore Canyon on the upper rise appears to be related to canyon depositional and erosional processes.

  5. Evolution of Paleogene submarine Canyon-Fan systems, southern Sacramento basin, California

    SciTech Connect

    Fischer, P.J.; Cherven, V.B.; Almgren, A.A.

    1986-04-01

    The evolutionary development of the Paleogene Martinez and Meganos Submarine Canyon and Fan systems of the southern Sacramento basin was controlled by a complex interplay of eustatic sea level change and tectonism. In this brief synthesis, the authors postulated that eustatic sea level changes were the dominant or controlling factor, and tectonism, although significant, was of secondary importance. The development of the Paleogene canyon and fan systems is correlated with low sea level stands or regressions at 60 Ma and 56 Ma. Intermittent tectonism, beginning at least 5-10 m.y. earlier, particularly along the western and southwestern margins of the Sacramento basin, controlled the location of the canyon and fan systems. The controlling tectonic elements of the southern basin were north-trending, high-angle faults related to the Kirby Hills and Midland fault zones and the Diablo-Kirby Hills(.) uplift. Both canyons were probably active (that is, channeling coarse sediment to their fans) during most of the late Paleocene. The authors suggest that canyon activity was maintained by south-flowing longshore drift or feeder systems, down-canyon gravity flows (turbidites, etc) and up-down canyon current systems, all of which are typical of modern, active submarine canyon and fan systems. The canyons filled with fine-grained sediments when the canyons were beheaded or separated from the longshore drift system by rising sea level, or when tectonism(.) shifted the major river drainage that supplied the canyon with sediment. Truncation and erosion of the canyon-fill and fan facies of the late Paleocene-early Eocene Meganos Formation along the Diablo outcrop belt was primarily due to the major early middle Eocene lowstand (49.5 Ma).

  6. Submarine canyons and channels in the Lower St. Lawrence Estuary (Eastern Canada): Morphology, classification and recent sediment dynamics

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lajeunesse, Patrick; St-Onge, Guillaume

    2015-07-01

    Series of submarine canyons and channels observed in the Lower St. Lawrence Estuary (LSLE) provide an opportunity to analyze in great detail the morphology, spatial distribution and modern activity of such systems in a relatively shallow (≤ 300 m) semi-enclosed basin. Based on their geomorphology and physical settings, the canyons and channels were classified into four categories according to their feeding sources (ancient or recent): glacially-fed, river-fed, longshore drift-fed and sediment-starved systems. Their activity was interpreted based on geomorphological characteristics such as the presence of bedforms related to gravity flows, backscatter intensity, axial incision and the presence of rapidly deposited layers in surficial sediments. River-fed deltas were interpreted as inactive, mainly because suspended sediment concentrations at river mouths are low, preventing the generation of hyperpycnal currents or delta-lip failures related to high sediment supply. Longshore drift-fed canyons, present where the coastal shelf narrows, were found to be episodically active probably due to earthquakes or extreme storm events. Unlike other longshore drift-fed canyons observed elsewhere in the world, they are active infrequently because of the modern low rates of sediment supply to their heads. The most active canyons are the sediment-starved type and were observed near Pointe-des-Monts. Their activity is probably due to slope failures and to the presence of strong hydrodynamic processes. Therefore, sediment supply is not the main mechanism responsible for modern canyon and channel activity in the LSLE. However, sediment supply has been an important factor during the formation of the submarine channels and canyons. Their quasi-exclusive occurrence on the Québec North Shore is attributed to its larger watershed and important sedimentary delivery during deglaciation. The Québec North Shore watershed is 20 times greater than the Québec South Shore watershed, which favored the transport of greater volumes of sediment during the early-Holocene. Moreover, the slope proximity to the shore led to the formation of longshore-drift fed systems on the North Shore when sediment supplied to rivers were transferred on a narrow shelf.

  7. Sediment dynamics and post-glacial evolution of the continental shelf around the Blanes submarine canyon head (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Durán, Ruth; Canals, Miquel; Lastras, Galderic; Micallef, Aaron; Amblas, David; Pedrosa-Pàmies, Rut; Sanz, José Luis

    2013-11-01

    The Blanes submarine canyon (BC) deeply incises the Catalan continental shelf in the NW Mediterranean Sea. As a consequence of the closeness (only 4 km) of its head to the coastline and the mouth of the Tordera River, the canyon has a direct influence on the shelf dispersal system as it collects large amounts of sediment, mainly during high-energy events. Multibeam bathymetry, backscatter imagery and very-high resolution seismic reflection profiles have allowed characterizing the morphology of the continental shelf around the canyon head, also identifying sediment sources and transport pathways into the canyon. The morphological data have also been used to reconstruct the evolution of the continental shelf during the last sea-level transgression so that the current understanding of shelf-to-canyon sediment exchanges through time could be improved. The continental shelf surrounding the BC consists of both depositional and erosional or non-depositional areas. Depositional areas display prominent sediment bodies, a generally smooth bathymetry and variable backscatter. These include: (i) an area of modern coarse-grained sediment accumulation that comprises the inner shelf; (ii) a modern fine-grained sedimentation area on the middle shelf offshore Tossa de Mar; and (iii) a modern sediment depleted area that covers most of the middle and outer shelf to the west of the canyon head. Erosional and non-depositional areas display a rough topography and high backscatter, and occur primarily to the east of the canyon head, where the arrival of river-fed inputs is very small. In agreement with this pattern, the continental shelf north and west of the canyon head likely is the main source of shelf sediment into the canyon. To the north, a pattern of very high backscatter extends from the coastline to the canyon head, suggesting the remobilization and off-shelf export of fines. Additionally, relict near-shore sand bodies developed over the Barcelona shelf that extend to the canyon head rim constitute a source of coarse sediment. High-energy processes, namely river floods and coastal storms, are the main controls over the river-shelf-canyon sediment exchange. River floods increase the delivery of terrigenous particles to the coastal system. Storms, mainly from the east, remobilize the sediment temporarily accumulated on the shelf towards the canyon head, so that the finer fractions are preferentially removed and a coarse lag is normally left on the shelf floor. Exceptionally, very strong storms also remove the coarse fractions from the shelf drive them into the canyon. Processes like dense shelf water cascading, which is much more intense in canyons to the north of BC, and the Northern Current also contribute to the transport of suspended sediment from far distant northern sources. During the last post-glacial transgression the BC had a strong influence on the evolution of the inner continental margin, as it interrupted the shelf sediment dispersal system by isolating the shelves to its north and south, named La Planassa and Barcelona shelves, respectively. The detailed study of the geomorphology and uppermost sediment cover of the continental shelf surrounding the Blanes submarine canyon yields insight into the past and present shelf sediment dynamics and the shelf-to-canyon sediment exchanges. The continental shelf near the canyon head consists of mosaic where erosional, or non-depositional, and depositional zones coexist. East of the canyon and offshore Tossa de Mar, the modern sediment deposition is mostly confined to the inner and middle shelf, whilst most of the La Planassa shelf is sediment depleted with numerous relict morphosedimentary features cropping out. Rocky outcrops, narrow ridges and relict coarse sand deposits suggesting erosion or non-deposition of fine sediments in modern times occupy the middle and outer shelf floor east and northeast of the canyon head. In contrast, north and west of the canyon head, the middle and outer shelf comprises several large relict sand bodies that point out to long-term deposition. However, the lack of modern sediments on top of these bodies supports active erosion or by-pass in present times. The morphology of the continental shelf near the canyon head records the imprint of the main factors controlling the shelf sediment-dispersal system and provides evidence for the main sources and transport pathways of sediment from the shelf into the canyon. The depletion of fine sediments on the continental shelf, as evidenced by backscatter data, suggests that the Blanes Canyon acts as a sediment trap collecting the finest fractions resuspended primarily from the adjacent shelf to the north. The main processes that control the shelf-to-canyon transfer of sediment are eastern storms, which enhance the off-shelf export of mainly fine sediment from the shelf. Particularly severe storms are also able to remobilize and transport coarse sediment from the shelf and also from the relict sand bodies into the canyon. Other processes, such as DSWC and the Northern Current, contribute to a lesser extent to the transport of sediment along the shelf and into the canyon. During the last post-glacial transgression, the BC played a crucial role in the shaping of the continental shelf surrounding it by cutting the littoral drift of sediment between the shelf areas to the north and south, thus severely modifying the across- and along-shelf sediment pathways. As a result, to the east of the canyon, the poor development of transgressive deposits indicates the prevalence of erosion and non-deposition associated to a limited sediment supply and an effective action of the littoral drift leading to a south-westward transport of sediment towards the canyon head. To the north and west of the canyon the morphology of the continental shelf changed significantly during the sea-level rise. At the early stage of the transgression, the sediment supplied by the Tordera River was discharged directly into the canyon, thus preventing deposition over the shelf. Later, the progressive sea-level rise favoured the development of large depositional bodies on the Barcelona shelf favoured by the increase of accommodation space and the augmenting distance between the river mouth and the canyon head. A drastic change in the configuration of the shelf occurred when the sea-level raised enough to flood the entire continental shelf. The along-shelf sediment transport between the shelf areas to the north and south of the canyon head was then restored and new sediment bodies were formed between the coastline and the canyon tip. At present, these sediment bodies constitute the primary source of coarse sediment into the BC. These results confirm that the Blanes submarine canyon head is highly dynamic and sensitive to a variety of processes that enhance the transport of sediment from the shelf into the canyon, particularly during major storms.

  8. Headless submarine canyons and fluid flow on the toe of the Cascadia accretionary complex

    USGS Publications Warehouse

    Orange, D.L.; McAdoo, B.G.; Moore, J.C.; Tobin, H.; Screaton, E.; Chezar, H.; Lee, H.; Reid, M.; Vail, R.

    1997-01-01

    Headless submarine canyons with steep headwalls and shallowly sloping floors occur on both the second and third landward vergent anticlines on the toe of the Cascadia accretionary complex off central Oregon (45 ??N, 125?? 30??W). In September 1993, we carried out a series of nine deep tow camera sled runs and nine ALVIN dives to examine the relationship between fluid venting, structure and canyon formation. We studied four canyons on the second and third landward vergent anticlines, as well as the apparently unfailed intercanyon regions along strike. All evidence of fluid expulsion is associated with the canyons; we found no evidence of fluid flow between canyons. Even though all fluid seeps are related to canyons, we did not find seeps in all canyons, and the location of the seeps within the canyons differed. On the landward facing limb of the second landward vergent anticline a robust cold seep community occurs at the canyon's inflection point. This seep is characterized by chemosynthetic vent clams, tube worms and extensive authigenic carbonate. Fluids for this seep may utilize high-permeability flow paths either parallel to bedding within the second thrust ridge or along the underlying thrust fault before leaking into the overriding section. Two seaward facing canyons on the third anticlinal ridge have vent clam communities near the canyon mouths at approximately the intersection between the anticlinal ridge and the adjacent forearc basin. No seeps were found along strike at the intersection of the slope basin and anticlinal ridge. We infer that the lack of seepage along strike and the presence of seeps in canyons may be related to fluid flow below the forearc basin/slope unconformity (overpressured by the impinging thrust fault to the west?) directed toward canyons at the surface.

  9. The structure and origin of the large submarine canyons of the Bering Sea

    USGS Publications Warehouse

    Scholl, D. W.; Buffington, E.C.; Hopkins, D.M.; Alpha, T.R.

    1970-01-01

    Three exceptionally large and long submarine canyons - Bering, Pribilof, and Zhemchug - incise the continental slope underlying the southeastern Bering Sea. Bering Canyon, the world's longest known slope valley, is approximately 400 km long and has a volume of 4,300 km3. The volume of Pribilof Canyon is 1,300 km3 and that of Zhemchug is 8,500 km3; Zhemchug Canyon may well be the world's largest slope valley; most other large submarine canyons have volumes less than 500 km3. Pribilof and Zhemchug canyons are further distinguished by the headward bifurcation of their slope axes to form elongated trough-shaped basins behind the regionally projected position of the shelf edge. These troughs are superimposed over structural depressions formed by down-faulted basement rocks of Mesozoic and older ages. Prior to canyon cutting these depressions were filled with as much as 2,600 m of shallow-water diatomaceous, tuffaceous, and detrital sediments largely of Tertiary age. Deposition of these sediments took place concurrently with general margin subsidence of at least 2,000 m. The data and conclusions presented in this paper stress that the location, trend, and shape of the enormous submarine canyons cutting the Bering margin are structurally determined. However, axial cutting and headward erosion within the relatively unconsolidated Tertiary strata and the older, lithified basement rock is thought to have been caused by basinward-sliding masses of sediment; these unstable sediment bodies accumulated on the upper continental slope and outer shelf, probably near the mouths of major Alaskan rivers. Bering Canyon was periodically cut and filled by axial sedimentation during Late Tertiary and Quaternary time. Pribilof and Zhemchug canyons, however, are thought to have been excavated entirely during the Pleistocene. It is presumed that, during one or more periods of glacially lowered sea level, the Kuskokwim and Yukon rivers emptied into or near the heads of Pribilof and Zhemchug canyons. The enormous size and unusual shape of Zhemchug Canyon resulted from the breaching of the seaward wall of an outer-shelf basement depression and the subsequent removal of nearly 4,500 km3 of Tertiary deposits filling it. ?? 1970.

  10. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    USGS Publications Warehouse

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  11. Submarine canyons as the preferred habitat for wood-boring species of Xylophaga (Mollusca, Bivalvia)

    NASA Astrophysics Data System (ADS)

    Romano, C.; Voight, J. R.; Company, J. B.; Plyuscheva, M.; Martin, D.

    2013-11-01

    Submarine canyons are often viewed as natural “debris concentrators” on the seafloor. Organic substrates may be more abundant inside than outside canyon walls. To determine the effects of the presence these substrates in the Blanes submarine canyon (NW Mediterranean) and its adjacent western open slope, we deployed wood to study colonizing organisms. Three replicate pine and oak cubes (i.e. most common trees inland) were moored at 900, 1200, 1500 and 1800 m depth and collected after 3, 9 and 12 months. Wood from inside the canyon was significantly more heavily colonized by the five morphotypes of wood-boring bivalves than was wood on the adjacent open slope. Xylophaga sp. A dominated all wood types and locations, with peak abundance at 900 and 1200 m depth. Its growth rate was highest (0.070 mm d-1) during the first three months and was faster (or it recruits earlier) in pine than in oak. Size distribution showed that several recruitment events may have occurred from summer to winter. Xylophaga sp. B, appeared first after 9 months and clearly preferred pine over oak. As the immersion time was the same, this strongly supported a specific association between recruiters and type of substrate. Three morphotypes, pooled as Xylophaga spp. C, were rare and seemed to colonize preferentially oak inside the canyon and pine in the adjacent open slope. Individuals of Xylophaga were more abundant inside the canyon than in nearby off-canyon locations. Blanes Canyon may serve as a long-term concentrator of land-derived vegetal fragments and as a consequence sustain more animals. Are the species richness and abundance of wood-boring bivalves higher inside the canyon than on the adjacent open slope? Do the composition and density of the wood-boring bivalves change with deployment time and depth, as well as on the type of the sunken wood? What is the growth rate of the dominant wood-boring species?

  12. Axial Channel Morphology Fill and Movement Within Submarine Canyons off California

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Ussler, W.; Lundsten, E.; Thomas, H.

    2008-12-01

    Axial channels of seven submarine canyons off California have recently been investigated with ultrahigh resolution multibeam surveys. Vibracores collected from remotely operated vehicles (ROVs) provide ground truth data on the materials within the axis of six of these canyons. Acoustic beacons were used to track movement of the seafloor within the axis of Monterey Canyon. Multibeam bathymetry (0.15 m vertical precision and 1.0 m horizontal resolution at 50 m survey altitude) and chirp seismic-reflection profiles (0.11 m vertical resolution) were collected from an autonomous underwater vehicle (AUV). Inertial navigation combined with Doppler velocity sonar allows the AUV to navigate the sinuous canyons at 3 kt on a pre-programmed route ~50 m above the seafloor. Submarine canyons that head near the shoreline (Monterey, Hueneme, Mugu, Redondo and La Jolla) contain similar wave-like bedforms with 20-100 m wavelengths and amplitudes up to 2.5 m oriented roughly perpendicular to the channel axis. These bedforms are asymmetric in profile with a steep down-canyon face and crescent-shaped, concave down-canyon. They are observed throughout the surveys (80-800 m water depth) and appear to form genetically similar packages (0.1 to 3 km long) that terminate upslope at a somewhat higher topographic step. Generally, bedform groups are found within the axial channel, but occasionally extend up the canyon walls. ROV-collected vibracores show that the wave-like bedforms comprise recent, coarse-grained gravity flow deposits, suggesting these canyons are active. In contrast, two submarine canyons with heads on the outer shelf (Soquel and Santa Monica) lack these wave-like bedforms and have relatively smooth axial channel floors. Vibracores show these canyons are filled with generally uniform fine-grained sediments, suggesting they are inactive. Apparently wave-like bedforms are common features of active submarine canyons. To assess whether sediment within a canyon floor is moved by traction currents or mass transport, three acoustic beacons were deployed in Monterey Canyon (~290 m water depth) in February 2007. The beacons were placed in 50-cm-high ~45 kg concrete monuments. These boulder-sized monuments were buried leaving only the top of the beacon extending ~6 cm above the seafloor. The position of these beacons was re-surveyed 8 times between February 2007 and July 2008. While the beacons did not move between most surveys, two down-canyon shifts of ~150 m and >1,200 m were measured. The episodic movement of the buried monuments suggests that the seafloor was remobilized to more than 50-cm- depth during sediment transport events. Four repeat AUV multibeam surveys were also conducted during the first half of 2007. These surveys show that the wave-shaped bedforms occur in the canyon axis down to at least 1,100 m water depth. Because the buried monuments have moved more than two wavelengths down- canyon during an individual event, identification and tracking of individual bedforms between events has proven to be difficult. Apparently, these wave-shaped bedforms are produced during brief, discrete mass transport events.

  13. Spatial and temporal variability of meiobenthic density in the Blanes submarine canyon (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Romano, C.; Coenjaerts, J.; Flexas, M. M.; Zúñiga, D.; Vanreusel, A.; Company, J. B.; Martin, D.

    2013-11-01

    Meiofaunal density distribution was studied from 400 m to 1500 m depth inside Blanes submarine canyon (NW Mediterranean), and on the eastern open slope in autumn 2003 and spring 2004. Our multidisciplinary approach allowed to study the hydrodynamics and sedimentary processes in the Blanes Canyon that characterize it as highly heterogeneous environment. Inside the canyon area, particle fluxes were higher than on the slope area, increased from autumn to spring and mostly consisted of lithogenic material. Moreover the canyon’s locations experienced more intense bottoms’ currents and sediment disturbance, being reflected in a greater variability of meiobenthic densities, both between stations and sampling times than on the open slope. No clear trends (e.g. declining densities) associated with increasing depths were observed. Contrary in the open slope, current velocities were relatively lower compared with the canyon area and showed lower temporal variability. At the same time, the nutritional quality of the particle fluxes at deeper grounds were higher, probably allowing the meiofaunal densities not to change over time. In conclusion, the meiobenthos in our system apparently showed a higher temporal variability, inside the canyon area, strongly affected by particle fluxes or erosive and sediment-mixing processes linked to current modifications induced by the canyon topography.

  14. Small-scale turbidity currents in a big submarine canyon

    USGS Publications Warehouse

    Xu, Jingping; Barry, James P.; Paull, Charles K.

    2013-01-01

    Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ?30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.

  15. Multibeam bathymetric survey of the Ipala Submarine Canyon, Jalisco, Mexico (20°N): The southern boundary of the Banderas Forearc Block?

    NASA Astrophysics Data System (ADS)

    Urías Espinosa, J.; Bandy, W. L.; Mortera Gutiérrez, C. A.; Núñez Cornú, Fco. J.; Mitchell, N. C.

    2016-03-01

    The Middle America Trench bends sharply northward at 20°N. This, along with the close proximity of the Rivera-North America Euler pole to the northern end of this trench, sharply increases the obliquity of subduction at 20°N. By analogy with other subduction zones with similar sharply changing obliquity, significant trench parallel extension is expected to exist in the forearc region near the bend. To evaluate this possibility, multibeam bathymetric, seafloor backscatter and sub-bottom seismic reflection data were collected in this area during the MORTIC08 campaign of the B.O. El Puma. These data image in detail a large submarine canyon (the Ipala Canyon) extending from the coast at 20°05‧N to the Middle America Trench at 19°50‧N. This canyon is 114 km long and is fed by sediments originating from two, possibly three, small rivers: the Ipala, Tecolotlán and Maria Garza. This canyon deeply incises (up to 600 m) the entire continental slope and at least the outer part of the shelf. Within the canyon, we observe meanders and narrow channels produced by turbidity flows indicating that the canyon is active. In the marginal areas of the canyon slumps, rills, and uplifts suggest that mass movements and fluid flow have had a major impact on the seafloor morphology. The seafloor bathymetry, backscatter images and sub-bottom reflection profiles evidence the tectonic processes occurring in this area. Of particular interest, the canyon is deflected by almost 90° at three locations, the deflections all having a similar azimuth of between 125° and 130°. Given the prominence and geometry of this canyon, along with its tectonic setting, we propose that the presence of the canyon is related to extension produced by the sharp change in the plate convergence. If so, the canyon may lie along the southeast boundary of a major forearc block (the Banderas Forearc Block).

  16. Role of submarine canyons in the US Atlantic Continental Slope and upper Continental rise development

    SciTech Connect

    McGregor, B.A.

    1984-04-01

    Three areas of the US Atlantic continental slope and rise (seaward of George Bank, Delaware Bay, and Pamlico Sound north of Cape Hatteras) have been studied using seismic reflection profiles and mid-range sidescan-sonar data. The continental slope in all three areas is dissected by numerous submarine canyons. The general sea floor gradient of the slope and the morphology of the rise, however, vary among the areas. Submarine canyons are dominant morphologic features on the slope and have an important function in sediment transport and distribution on the rise. In the study area north of Cape Hatteras, however, the low relief of the rise topography indicates that ocean currents flowing parallel to the margin may also affect sediment distribution on the rise. Morphology and sedimentation patterns suggest that differences in canyon ages exist both within each area and among the areas. Spatial and temporal variability of canyon activity is important in determining sediment sources for the construction of the rise. Although the US Atlantic slope and rise are relatively sediment-starved at present, mid-range sidescan data and submersible observations and samples suggest that periodic sediment transport events occur within the canyons.

  17. Characterization and classification of the erosional shapes of submarine canyon systems

    NASA Astrophysics Data System (ADS)

    Vachtman, D.; Mitchell, N. C.

    2009-04-01

    Canyons and gullies are an integral part of slope morphology on most continental margins. The submarine systems extend out for up to a thousand kilometres from the continental margin, forming branched networks whose origin is not well understood. The gradual accumulation of world-wide bathymetric and seismic data on continental margins provides a basis for the classification of slope morphology and consequent erosional and depositional processes which contribute to the formation of the shapes of the submarine systems network. Discussion and development of models for analysis of erosional shapes of submarine networks along continental margins has been confusing and controversial. Since canyon systems may cross both shelf and slope, so that limiting discussion to parts of the system can be problematic. Turbidity currents are generally credited with the excavation of submarine canyons and with transporting sediment down the canyon to the base of the continental slopes to the marine basin. However, studies indicate that turbidity currents are not necessarily the initial cause of the valley formation and, similar to subaerial river valleys, submarine systems are formed by various processes. The valleys of the sea floor appear to have had several origins, producing distinctive types; submarine features may include numerous tributaries entering from both sides, and relief comparable to major land canyons. This study aims to establish to what extent the same origin can be applied to the hundreds of canyons found around various coasts of the world along convergent, divergent and transform continental margins. In the detailed manner, we use examples of available evidence for subaerial erosion and bathymetric data that correspond to different slope curvatures and display unique canyon branching-system morphology. The methodology for quantative classification of canyon systems is based on the bathymetric data and involves 2-D depiction of tributary-like channel networks and the establishment of their spacing, paths of the tributaries and channel patterns. Additionally, we examine main channel and tributary cross-sections with emphasis on the position of the river channel thalwegs, along with the 3-D analysis of shapes of various morphological elements and bedforms. These are performed so that differences in canyon morphology can be related statistically to the properties of downslope progression of slope profile, slope shape and curvature, as well as the competence of the transport mechanism with increasing distance from sediment source. This is in analogy to both subaerial fluvial systems and erosional processes at the shelf break. Quantitative methodologies based on computational geometry used in this study have the potential to construct deductive spatial models of sequences of topological structures, spatial relationships of "non-connected" objects, and integration of objects and space, which might open ways of re-thinking traditional parameter-based approaches for classification of the erosional shapes and processes of submarine canyon systems.

  18. Impact of the continental shelf slope on upwelling through submarine canyons

    NASA Astrophysics Data System (ADS)

    Howatt, T. M.; Allen, S. E.

    2013-10-01

    Submarine canyons that cut into the continental shelf are regions of enhanced upwelling. The depth of upwelling and flux through the canyons determines their role in exchange between the shelf and the open ocean. Scaling analyses that relate these quantities to the strength of the flow, stratification, Coriolis parameter, and topographic shape parameters allow their estimation in the absence of a full numerical simulation or a detailed field study. Here we add the effect of the continental shelf slope to the scaling of the depth of upwelling, upwelling flux, and deep water stretching. The scaling is then tested using a three-dimensional primitive equation model over 18 distinct geometries. The impact of the continental shelf is significant for real canyons with changes in the depth of upwelling of up to 11% and of the flux of upwelling of up to 70%. The numerical simulations clearly show three types of canyon upwelling, a symmetric time-dependent flux, the dominant advection-driven flux, and a new flux that appears to be related to internal waves. They also suggest that the canyon width is more important than the upstream canyon shape in determining the strength of the flow across the canyon.

  19. Reconstruction of submarine canyon systems associated with proto-Stockton arch during Late Cretaceous

    SciTech Connect

    Rider, J.

    1986-04-01

    A hypothetical depositional model of the middle Great Valley gas fields of California includes the area from the Southwest Vernalis gas field in the south (T3S) to the Nicolaus gas field in the north (T12N). The model assumes that (1) the early Campanian Dobbins Shale Member was deposited at or near the shelf/slope break, and (2) the absence of the Dobbins Shale Member indicates scouring processes of active submarine canyon systems. A striking correlation exists between the proposed distribution of the Dobbins Shale Member scour channels and the position of river systems operating today in the valley. The model distinguishes six submarine canyon systems: (1) Feather River/Nicolaus, (2) American River/Florin, (3) Cosumnes River/Poppy Ridge, (4) Mokelumne River/Lodi, (5) Calaveras delta/Mulligan Hill, and (6) Stanislaus River/East Collegeville. The model implies that an extensive delta system was associated with the Calaveras River during deposition of the Dobbins Shale Member, before its erosive exit southwest of the Mulligan Hill gas field, just east of the Los Medanos, Concord, and Willow Pass fields. The presence of possible equivalents of the Dobbins Shale Member of this latter area suggests an early Campanian highland, the proto-Stockton arch. Subsequent Forbes Formation deposition appears to involve apronlike drapes or overlaps of the early Campanian canyons. However, during deposition of the Kione Formation, the canyon systems were reactivated, and canyon scour predominated, matching the scour patterns of the Dobbins Shale Member. From these ancestral canyons, younger canyons could have evolved easily.

  20. Sedimentary Filling of the Submarine Canyon "Swatch of No Ground", Bengal Shelf

    NASA Astrophysics Data System (ADS)

    Palamenghi, L.; Schwenk, T.; Kudrass, H. R.; Spiess, V.

    2008-12-01

    The submarine canyon "Swatch of No Ground" (SoNG), deeply incised into the Bengal Shelf, plays an important role in the source to sink system Himalaya-Bengal Fan by connecting the Ganges and Brahmaputra rivers, which drain the Himalayas, with the largest submarine fan on Earth. It is believed that around one third of the delivered sediments of at least 1 billion ton per year are transported through this canyon to the deep sea fan. In general the SoNG acts as a temporary trap and releases the sediments episodically by turbidity currents to the fan. Transportation of the sediments to the head of the canyon under quite weather conditions is done by tidal currents during high discharge periods. More effective, passages of cyclones remobilize shelf sediments and transport them to the canyon, and trigger also failures in the canyon flanks with consequent mass wasting downward. Finally all processes lead to high sedimentation rates of 50 cm per year in the head of the canyon. To understand the filling architecture and depositional processes, high-resolution multichannel seismic data were collected in summer 2006 in the upper canyon with the German research vessel "Sonne". Additionally, multibeam and sediment echosounder data were gathered, together with gravity cores. Hydroacoustic data and cores were also already collected on cruises in 1994 and 1997 and consequently, some lines and stations were revisited to study the deposition within the last years. The seismic data, shot on a dense grid of lines along and across the axis including flanks and shoulders, reveal a thick (1.5 sec TWT) sedimentary fill. Well stratified layer alternate with transparent to chaotic units intercalated by filled channels. Two main unconformities could be identified in the seismic data. Faulting is also found in the study area, probably caused by sediment compaction. The data set should be used to develop an IODP proposal to drill into this unique high resolution archive.

  1. Modelling bottom trawling-generated sediment flows in La Fonera submarine canyon (Northwestern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Payo-Payo, Marta; Silva Jacinto, Ricardo; Lastras, Galderic; Canals, Miquel; Puig, Pere; Martín, Jacobo; Sanchez-Vidal, Anna; Rabineau, Marina

    2015-04-01

    Bottom-trawling is one of the anthropogenic activities with a stronger and more widespread impact on the seafloor. Physical processes involved in sediment resuspension due to trawling and the resulting sediment-laden flows are not fully understood. The amount and fate of remobilized sediments are of the utmost relevance for establishing present-day continental margin sediment budgets. Resuspension by bottom trawling leads to massive transfer of sediment from shallower to deeper areas practically worldwide. La Fonera submarine canyon is a large, deeply-incised active canyon in the Northwestern Mediterranean Sea. It presents complex sediment transport dynamics associated to littoral drift and extreme events such as dense shelf water cascading and severe storms. Recent studies have revealed recurrent peaks in near-bottom current speed and suspended sediment concentration in the northern flank of the canyon synchronously with trawling. Aiming at simulating sediment-loaded fluxes triggered by trawling and their interaction with the seafloor in La Fonera canyon, we have implemented a numerical process-based model developed to reproduce such flows. Mooring data have been used both to calibrate the modelled sediment fluxes. Good agreement between model and monitoring data has been found, with modelled peaks of suspended sediment concentration values exceeding 120 mg-l-1 and current speed measurements of up to 40 cm-s-1 at the mooring site. Moreover, we have quantified fishing activity over the canyon flanks through modelling and have obtained the propagation pattern of sediment flows from the fishing ground downward the canyon. Our results confirm the value of numerical models to complete and enlarge our understanding of the sedimentary transfer processes from shallow to deep in the ocean. Besides, they allow establishing quantitative comparisons between trawling impact and natural forcing on the sediments dynamics of La Fonera submarine canyon.

  2. Acoustical Detection of High-Density Krill Demersal Layers in the Submarine Canyons off Georges Bank.

    PubMed

    Greene, C H; Wiebe, P H; Burczynski, J; Youngbluth, M J

    1988-07-15

    High-density demersal layers of krill have been detected in the submarine canyons off Georges Bank by means of a high-frequency, dual-beam bioacoustical technique. Krill densities in these demersal layers were observed to be two to three orders of magnitude greater than the highest densities observed in water-column scattering layers. Such abundances may help explain the unusually high squid and demersal fish production estimates attributed to the Georges Bank ecosystem. PMID:17734865

  3. Submarine sand dunes and sedimentary environments in Oceanographer Canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Cooper, R.A.; Uzmann, J.R.

    1984-01-01

    Reveals an extensive field of large sand dunes on the canyon floor. The dunes are medium to coarse sand, are oriented across the axis, and the largest of them are as high as 3m and have wavelengths up to 15m. Their asymmetry, grain size, and height suggest that they are formed by axial currents flowing up- and downcanyon and that the largest dunes require flows of at least 70 cm/sec.-from Authors

  4. Litter in submarine canyons off the west coast of Portugal

    NASA Astrophysics Data System (ADS)

    Mordecai, Gideon; Tyler, Paul A.; Masson, Douglas G.; Huvenne, Veerle A. I.

    2011-12-01

    Marine litter is of global concern and is present in all the world's oceans, including deep benthic habitats where the extent of the problem is still largely unknown. Litter abundance and composition were investigated using video footage and still images from 16 Remotely Operated Vehicle (ROV) dives in Lisbon, Setúbal, Cascais and Nazaré Canyons located west of Portugal. Litter was most abundant at sites closest to the coastline and population centres, suggesting the majority of the litter was land sourced. Plastic was the dominant type of debris, followed by fishing gear. Standardised mean abundance was 1100 litter items km -2, but was as high as 6600 litter items km -2 in canyons close to Lisbon. Although all anthropogenic material may be harmful to biota, debris was also used as a habitat by some macro-invertebrates. Litter composition and abundance observed in the canyons of the Portuguese margin were comparable to those seen in other deep sea areas around the world. Accumulation of litter in the deep sea is a consequence of human activities both on land and at sea. This needs to be taken into account in future policy decisions regarding marine pollution.

  5. Sedimentologic evolution of a submarine canyon in a forearc basin, Upper Cretaceous Rosario Formation, San Carlos, Mexico

    SciTech Connect

    Morris, W.R.; Busby-Spera, C.J.

    1988-06-01

    The walls, floor, and fill of a submarine canyon are well-exposed near San Carlos, Mexico, in forecarc strata of the Upper Cretaceous Rosario Formation. The submarine canyon is about 7 km wide and at least 230 m deep and has eroded a minimum of 150 m into underlying fluvial red beds. It is unclear whether subaerial or submarine processes initiated the canyon cutting; however, marine processes, especially debris flows, modified the morphology of the submarine canyon. The submarine canyon fill and overlying slope deposits form two major fining-upward sequences. The first includes a 120 m thick lower conglomerate-sandstone unit (LCSU) at the base of the canyon fill overlain by a 50-110 m thick middle mudstone-sandstone unit (MMSU). The MMSU consists predominantly of mudstone and thin-bedded sandstone, but includes a channel filled with sandstone beds that form a fining- and thinning-upward sequence. This sequence is overlain by the second major sequence, a 0-60 m thick upper conglomerate-sandstone unit (UCSU), which is confined to three channels within the submarine canyon and passes gradationally upward into slope mudstone. Each of the two major fining-upward sequences records a gradual decrease in supply of coarse-grained sediment to the submarine canyon head. The first fining-upward sequence may correspond to a lowstand and subsequent rise in global sea level or, alternatively, may have resulted from local downdropping of the basin. The second fining-upward sequence does not correspond to global sea level fluctuations but is age-correlative with a drop then rise in relative sea level recognized by other workers 300-400 km to the north in the San Diego-Ensenada area. This sea level drop is inferred to have been a regional-scale tectonic event that affect the forearc basin along its length. 18 figures, 2 tables.

  6. Dispersal of natural and anthropogenic lead through submarine canyons at the Portuguese margin

    NASA Astrophysics Data System (ADS)

    Richter, T. O.; de Stigter, H. C.; Boer, W.; Jesus, C. C.; van Weering, T. C. E.

    2009-02-01

    Submarine canyons represent natural conduits for preferential transport of particulate material, including anthropogenic contaminants, from coastal zones directly to the deep sea. To assess related dispersal of natural and anthropogenic lead (Pb), we analyzed Pb concentrations and stable isotope ratios in surface sediments and sediment trap particulate material from the Portuguese margin Nazaré and Setúbal/Lisbon canyons. Geochemical data are integrated with previously obtained data on near-bottom hydrodynamics and processes and pathways of sediment transport. The two canyon systems are located in close geographic proximity to each other, but represent contrasting settings in terms of sediment input and down-canyon sediment transport processes. Concentration-isotope diagrams and three-isotope plots ( 206Pb/ 207Pb vs. 208Pb/ 206Pb) suggest binary mixing between natural and anthropogenic end members. The inferred isotopic signature of pollutant Pb ( 206Pb/ 207Pb=1.143 [1.134-1.149, 95% confidence interval]) is most consistent with industrial Pb; ongoing influence from gasoline Pb additives is at most of minor importance. Two proposed natural end members most likely bracket the isotopic signature of natural Pb. Accordingly, binary mixing calculations indicate that on average 20-45% vs. 35-55% of total Pb is derived from anthropogenic sources in the Nazaré and Setúbal-Lisbon canyon systems, respectively. Enhanced anthropogenic influence in the latter area is consistent with its proximity to heavily populated and industrialized areas and with sediment input from the Tagus and Sado rivers, potential major carriers of pollutant particles. In both canyon systems, the anthropogenic component generally decreases with increasing water depth. Isotopic signatures of sediment trap particulate material are generally consistent with surface sediment data at similar water depth, but show large variability in the upper Nazaré canyon and major deviations from surface sediments in the lower canyon. In the lower canyon, Pb isotopic ratios of sediment trap particulate material mostly reflect low pelagic fluxes from the overlying water column, whereas surface sediment signatures are dominated by episodic down-canyon mass transport events. Such gravity flows appear to incorporate older (pre-industrial) material masking the isotopic signature of pollutant Pb. Large variability in the upper canyon reflects continuous sediment resuspension by bottom currents. Stronger average bottom currents are associated with higher 206Pb/ 207Pb ratios of sediment trap particulate material and hence decreased influence of pollutant Pb. This may reflect preferential resuspension of natural Pb at the canyon floor and/or additional remobilization of older, less-polluted sediment in adjacent areas such as the canyon walls.

  7. Rapid Changes on Sediment Accumulation Rates within Submarine Canyons Caused By Bottom Trawling Activities

    NASA Astrophysics Data System (ADS)

    Puig, P.; Masque, P.; Martin, J.; Paradis, S.; Juan, X.; Toro, M.; Palanques, A.

    2014-12-01

    The physical disturbance of the marine sedimentary environments by commercial bottom trawling is a matter of concern. The direct physical effects of this fishing technique include scraping and ploughing of the seabed and increases of the near-bottom water turbidity by sediment resuspension. However, the quantification of the sediment that has been resuspended by this anthropogenic activity over years and has been ultimately exported across the margin remains largely unaddressed. The analysis of sediment accumulation rates from sediment cores collected along the axes of several submarine canyons in the Catalan margin (northwestern Mediterranean) has allowed to estimate the contribution of this anthropogenic activity to the present-day sediment dynamics. 210Pb chronologies, occasionally supported by 137Cs dating, indicate a rapid increase of sediment accumulation rates since the 1970s, in coincidence with a strong impulse in the industrialization of the trawling fleets of this region. Such increase has been associated to the enhanced delivery of sediment resuspended by trawlers from the shelves and upper slope regions towards the canyon's interior, and to the rapid technical development at that time, in terms of engine power and gear size. This change has been observed in La Fonera (or Palamós) Canyon at depths greater than 1700 m, while in other canyons it is restricted to shallower regions (~1000 m in depth) closer to fishing grounds. Two sampling sites from La Fonera and Foix submarine canyons that exhibited high sediment accumulation rates (0.6-0.7 cm/y) were reoccupied several years after the first chronological analyses. These two new cores reveal a second and more rapid increase of sediment accumulation rates in both canyons occurring circa 2002 and accounting for about 2 cm/y. This second change at the beginning of the XXI century has been attributed to a preferential displacement of the trawling fleet towards slope fishing grounds surrounding submarine canyons, and also to technical improvements in trawling vessels, presumably related to subsidies and aids provided by the European Commission to the fishing industry.

  8. Typhoon associated hyperpycnal turbidity current in a submarine canyon off a river mouth

    NASA Astrophysics Data System (ADS)

    Hsu, R. T.; Liu, J. T.

    2013-12-01

    As the result of the interplay between frequent earthquake occurrence, typhoon invasion, and heavy rainfall, many rivers in Taiwan have the potential to generate hyperpycnal plume especially when the typhoon passes through the Taiwan Island and brings a large amount of rainfall. In order to capture the hyperpcnal turbidity current signal, two moorings each configured with an SCTD and ADCP, one with an additional non-sequential sediment trap, were deployed in the head region of the Gaoping Submarine Canyon three days after the typhoon-induced peak of the river discharge and suspended sediment concentration (SSC) of the Gaoping River in southern Taiwan. Our data show a demarcation between a tidal and hyperpycnal regimes. The latter lasted for the first 5 days for the 18-day deployment, as defined by higher water density due to high suspended sediment concentration. Several lines of evidence indicate the presence of the tail end of a hyperpycnal turbidity current (HTC), including the retention of warm water near the canyon floor, high SSC, down-canyon directed flow and its vertical structure, and high terrestrial fraction (larger than 70%) of the organic particles carried in the flow. The decreasing mass flux during the passing of the HTC is also an indication of a waning HTC. Our findings also show that the vertical flow structure and the direction of the gravity-driven down-canyon HTC were little affected by the instantaneous tidal oscillations in the canyon. Typhoon Fanapi hit Taiwan on Sep. 19th. (a) The satellite image indicated the cyclonic clouds covered all over the island. (b) The heavy rainfall accumulated over 1000 mm in one day in the southwestern Taiwan. Especially, the high precipitation was concentrated mostly in the drainage basin of the Gaoping River in the southern central range. (Graphs in a and b are by courtesy of Central Weather Bureau-CWB in Taiwan) (c) This graph was taken by FORMOSAT-2 on Sep. 21st and superimposed by the Gaoping Submarine Canyon bathy contour (From Center for Space and Remote Sensing Research-CSRSR, National Central University, Taiwan). The pink line illustrated the thalweg of the submarine canyon. Two mooring's locations were pointed out by red circle in the thalweg. Another red circle was the weather buoy site maintained by CWB.

  9. Increasing sediment accumulation rates in La Fonera (Palamós) submarine canyon axis and their relationship with bottom trawling activities

    NASA Astrophysics Data System (ADS)

    Puig, P.; Martín, J.; Masqué, P.; Palanques, A.

    2015-10-01

    Previous studies conducted in La Fonera (Palamós) submarine canyon (NW Mediterranean) found that trawling activities along the canyon flanks cause resuspension and transport of sediments toward the canyon axis. 210Pb chronology supported by 137Cs dating applied to a sediment core collected at 1750 m in 2002 suggested a doubling of the sediment accumulation rate since the 1970s, coincident with the rapid industrialization of the local trawling fleet. The same canyon area has been revisited a decade later, and new data are consistent with a sedimentary regime shift during the 1970s and also suggest that the accumulation rate during the last decade could be greater than expected, approaching ~2.4 cm yr-1 (compared to ~0.25 cm yr-1 pre-1970s). These results support the hypothesis that commercial bottom trawling can substantially affect sediment dynamics and budgets on continental margins, eventually initiating the formation of anthropogenic depocenters in submarine canyon environments.

  10. A comparison of megafaunal communities in five submarine canyons off Southern California, USA

    NASA Astrophysics Data System (ADS)

    Duffy, Grant A.; Lundsten, Lonny; Kuhnz, Linda A.; Paull, Charles K.

    2014-06-01

    Remotely operated vehicle surveys were conducted in five submarine canyons off Southern California during research expeditions in 2005 and 2010. Video transects from a range of depths were analysed to produce presence/absence data of megafauna for each site. A comparison of benthic communities at various depths, locales, and canyons was performed. No significant difference was found between canyon communities based on the level of sediment transport activity, however this may be due to the unbalanced sampling of this opportunistic study. There was significant variation in biological community composition and abundance amongst water depths. These depth-related trends are in agreement with the findings of the previous studies and are likely tied to depth-correlated variables such as hydrostatic pressure, temperature, salinity, and oxygen concentration. Species richness was found to initially increase with depth before declining rapidly at the mouths of the studied canyons. Low oxygen levels in the Santa Monica Basin, into which four of the surveyed canyons empty, may explain this.

  11. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.

  12. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Obelcz, Jeffrey; Brothers, Daniel; Chaytor, Jason; Brink, Uri ten; Ross, Steve W.; Brooke, Sandra

    2014-06-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5-10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.

  13. Contemporary Suspended Sediment Fluxes Through the Gulf of Lion Submarine Canyons.

    NASA Astrophysics Data System (ADS)

    Palanques, A.; Puig, P.; de Madron, X. D.; Guillen, J.; Calafat, A.; Fabres, J.; Heussner, S.; Canals, M.

    2004-12-01

    The Gulf of Lion continental margin receives sediment inputs from the River Rhone as well as from some smaller rivers. From the west to the east ends of this margin, the slope is incised by numerous submarine canyons and the shelf-slope suspended sediment transfer through these canyons is not well known. In the framework of the EUROSTRATAFORM Project (EVK3-CT-2002-00079, EU Fifth Framework Programme: Energy, Environment and Sustainable Development), contemporary suspended sediment transport in the head of seven submarine canyon of the Gulf of Lion was studied by deploying moorings with Aanderaa RCM9/11 current meters equipped with turbidimeters 5 m above bottom at 300 m depth from November 2003 to May 2004. In these time period, there were several sediment transport events, but two of them were especially relevant: one in Early December 2003 and another one in late February 2004. The December event was generated by a "wet storm" during which rivers discharges increased up to one order of magnitude and a cyclonic along-shore advection of a cold, brackish and turbid stream developed in the shelf, whereas the February event was generated by a "dry storm" without associated relevant rivers discharges increases and with an advective transport of fine sediment across the shelf due to cascading of cold, dense water. During these events, the maximum suspended sediment transport took place through the Cap de Creus canyon (at the western end of the Gulf of Lion) where sediment fluxes increased up to two orders of magnitude, and also a relevant transport occurred in other western (Lacaze-Duthier) and central canyons (Herault and Petit Rhone) where sediment fluxes increased up to one order of magnitude. However sediment fluxes in the eastern canyons (Planier and Grand Rhone) did not increase during these events. Other minor sediment flux increases in winter were associated to dense water cascading. This study indicates a preferential shelf-slope sediment transfer through the central and western canyons of the Gulf of Lion and especially through the Cap de Creus canyon.

  14. Hudson Submarine Canyon Head Offshore New York and New Jersey: a Dynamic Interface II

    NASA Astrophysics Data System (ADS)

    Rona, P.; Guida, V.; Scranton, M.; Gong, D.; Sullivan, M.; Haag, S.; Diercks, A.; Asper, V.

    2008-12-01

    Hudson Canyon is the largest submarine canyon on the US Atlantic continental margin. Our multidisciplinary study focuses on the canyon head from where it begins as an indentation in the outer continental shelf (water depth 100 m) to 75 km seaward along the canyon axis (water depth 2000 m). A shallow trough, the Hudson Shelf Valley extends about 185 km across the continental shelf and connects the mouth of the Hudson River where the river discharges into New York Bay to the head of the canyon. Our study comprises high-resolution bathymetry using Autonomous Underwater Vehicle (AUV) Eagle Ray (100 square km area),and delineation of interacting shelf and slope water masses using shipboard and AUV hydrocasts including water samples for methane analysis. The initial 10 km of the canyon head (axial depth 100 m to 300 m) bifurcates where it indents the outer shelf, with one branch aligned NW-SE with the Hudson Shelf Valley and a second branch aligned N-S along the shelf. The walls and floor of the NW-SE branch are smoothed by sediment accumulation and appear inactive in terms of sediment transport. The N-S branch is rough and appears active. Ravines orthogonal to the axis progressively increase in frequency and relief seaward through successive 10 km-long N-S and NW-SE trending sections of the canyon attaining a 1 km spacing. Two circular depressions (diameters 100 m and 300 m; relief c.15 m; depths 345 m and 390 m) occur at the base of the W wall of the N-S segment. The depressions may be collapse features related to gas discharge evidenced by a high methane anomaly (50 nM) detected in the adjacent canyon axis (water depth 421 m). Multiple layers of inter-leaved shelf (fresh) and slope (warm, salty) water masses were observed in the canyon head in summer 2007 and 2008. The dynamic interaction of these water masses is being studied in context of shelf-slope exchange and potential influence on canyon topography and ecosystems. We thank NOAA for support.

  15. Lateral advection of organic matter in cascading-dominated submarine canyons

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Puig, P.; Palanques, A.; Goñi, M. A.

    2010-03-01

    In the Gulf of Lions (GoL), dense water overflowing off the shelf occurs seasonally and represents the main mechanism affecting the shelf-slope exchange of particulate organic matter (OM). Most of the dense water export takes place in the south-western GoL and in particular through Cap de Creus (CdC) submarine canyon. Here, benthic instruments were deployed to collect down-canyon particulate fluxes whereas surface sediments were taken after the cascading event along the sediment dispersal system on the shelf, in CdC canyon and in the nearby Lacaze-Duthiers (LD) canyon. The chemical composition of the suspended material and surface sediments were investigated using several proxies including organic and inorganic carbon, total nitrogen, biogenic silica, ? 13C, ? 14C, and alkaline CuO oxidation products. Thermohaline anomalies and high current speed events were measured in CdC canyon since December 2004 until mid-April 2005 indicating a marked off-shelf export of dense water trough the canyon. During the cascading, mud and relatively coarse shelf and upper canyon sediments were the major component of the mass flux. Conversely, advection of fine material via nepheloid layers dominated down-slope fluxes during pre- and post-cascading. The resulting change in grain-size affected the flux of mineral-bound terrigenous OC, indicating that the down-canyon transport of land-derived OM did not occur as bulk but rather its composition is driven by sediment sorting associated with different transport mechanisms. Both surface sediments and sediment trap samples indicated that CdC canyon is well connected to the GoL terrigenous dispersal system. Conversely, our results suggest an overall limited influence of land-derived OM in LD canyon. In spite of the reduced fluvial nutrient supply, a significant pulsed input of modern marine OM was observed in April 2005 at the end of the cascading period. Both intense mixing and lack of strong water column stratification likely played a key role allowing for both diffusion of nutrients-rich waters into the euphotic zone and efficient vertical sink of marine OC. On its way toward the seafloor, this fresh pool of OC interacted with the dense plume overflowing off the shelf, becoming part of the material laterally advected to the slope.

  16. Food quality determines sediment community responses to marine vs. terrigenous organic matter in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Jamieson, A.; Huvenne, V. A. I.; Witte, U.

    2012-08-01

    The Whittard canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard canyon testing short term (3-7 day) responses of sediment communities to deposition of nitrogen-rich marine (Thallassiosira weissflogii) and nitrogen-poor terrigenous (Triticum aestivum) phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs). Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time). Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest, in the western branch of the Whittard canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0-1 cm) sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal-bacterial interactions influence benthic C cycling in the Whittard canyon, resulting in differential fates for marine and terrigenous OM.

  17. Tectonic controls on nearshore sediment accumulation and submarine canyon morphology offshore La Jolla, Southern California

    USGS Publications Warehouse

    Le, Dantec N.; Hogarth, L.J.; Driscoll, N.W.; Babcock, J.M.; Barnhardt, W.A.; Schwab, W.C.

    2010-01-01

    CHIRP seismic and swath bathymetry data acquired offshore La Jolla, California provide an unprecedented three-dimensional view of the La Jolla and Scripps submarine canyons. Shore-parallel patterns of tectonic deformation appear to control nearshore sediment thickness and distribution around the canyons. These shore-parallel patterns allow the impact of local tectonic deformation to be separated from the influence of eustatic sea-level fluctuations. Based on stratal geometry and acoustic character, we identify a prominent angular unconformity inferred to be the transgressive surface and three sedimentary sequences: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. Beneath the transgressive surface, steeply dipping reflectors with several dip reversals record faulting and folding along the La Jolla margin. Scripps Canyon is located at the crest of an antiform, where the rocks are fractured and more susceptible to erosion. La Jolla Canyon is located along the northern strand of the Rose Canyon Fault Zone, which separates Cretaceous lithified rocks to the south from poorly cemented Eocene sands and gravels to the north. Isopach and structure contour maps of the three sedimentary units reveal how their thicknesses and spatial distributions relate to regional tectonic deformation. For example, the estuarine unit is predominantly deposited along the edges of the canyons in paleotopographic lows that may have been inlets along barrier beaches during the Holocene sea-level rise. The distribution of the infilling unit is controlled by pre-existing relief that records tectonic deformation and erosional processes. The thickness and distribution of the upper transparent unit are controlled by long-wavelength, tectonically induced relief on the transgressive surface and hydrodynamics. ?? 2009 Elsevier B.V.

  18. Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Cunha, Marina R.; Paterson, Gordon L. J.; Amaro, Teresa; Blackbird, Sabena; de Stigter, Henko C.; Ferreira, Clarisse; Glover, Adrian; Hilário, Ana; Kiriakoulakis, Konstadinos; Neal, Lenka; Ravara, Ascensão; Rodrigues, Clara F.; Tiago, Áurea; Billett, David S. M.

    2011-12-01

    The macrofaunal assemblages from three Portuguese submarine canyons, Nazaré, Cascais and Setúbal were studied from samples collected at their upper (900-1000 m), middle (3200-3500 m) and lower sections (4200-4500 m) and at the adjacent open slopes (˜1000 m), during the HERMES cruises D297 (R.R.S. Discovery, 2005) CD179 (R.R.S. Charles Darwin, 2006) and 64PE252 (R.V. Pelagia, 2006). The taxonomic composition and patterns in biodiversity, abundance and community structure of the benthic macrofauna were described. Annelida (42.1% of total abundance; 137 species) and Arthropoda (20.6%; 162 species) were, respectively, the most abundant and the most species-rich Phyla among the 342 taxa identified during this study. Multivariate analyses showed significant differences between and within canyons and between canyons and open slope assemblages. At their upper section, canyons supported higher macrofauna abundance but slightly lower biodiversity than the adjacent slopes at similar depth. In all canyons abundance reached the highest value in the middle section and the lowest in the upper section, with marked fluctuations in Nazaré (474-4599 ind. m -2) and lower variability in Cascais (583-1125 ind. m -2). The high abundance and dominance of the assemblages in the middle section of Nazaré and Setúbal was accompanied by depressed biodiversity, while in Cascais, Hurlbert's expected species richness showed increasing values from the upper to the middle canyon, and maintained the high values at the lower section. Overall, the Nazaré Canyon showed the lowest expected species richness (ES (100): 16-39) and the Cascais Canyon the highest (39-54). There was a significant negative Kendall's correlation between total organic carbon concentrations in the superficial sediments and ES (100) and a significant positive correlation between total nitrogen and macrofauna density. The influences of organic enrichment, sediment heterogeneity and hydrodynamic regime on the abundance, diversity and community structure of the macrofauna are discussed. It is suggested that altered and localised environmental conditions in the Portuguese canyons play an important role in modifying more common abundance and diversity bathymetric patterns evident in many continental slope environments.

  19. Submarine canyon deposits, central California coast, and their possible relation to an Eocene low sea-level stand

    SciTech Connect

    Seiders, V.M.; Joyce, J.M.

    1984-01-01

    A cliff exposure in the northern Santa Lucia Range is interpreted to represent the north margin of an Eocene submarine canyon. The exposure shows an unconformity between The Rocks Sandstone Member of the Reliz Canyon Formation and the underlying crystalline basement rocks. Sandstone beds overlie the unconformity at an angle of about 20/sup 0/. Stratigraphic relations exposed nearby show that about 220 m of the Reliz Canyon and Church Creek Formations pinches out northward against the basement across a distance of about 900 m of the Reliz Canyon and Church Creek Formations pinches out northward against the basement across a distance of about 900 m. This corresponds to an original southward slope of the unconformity of about 14/sup 0/. Farther south, an even steeper slope to the north may be indicated, but a fault of uncertain horizontal displacement intervenes. The Reliz Canyon Formation seems to have been deposited in a small northwest-trending submarine canyon in the vicinity of the exposed unconformity; elsewhere in the region the Reliz Canyon Formation may have been deposited in two other canyons or restricted basins. Fossil data show that the voluminous sand of The Rocks Sandstone Member was deposited near the early-middle Eocene boundary, a postulated time of worldwide low sea level. 20 refs., 7 figs.

  20. The surface sediment distribution and sedimentary environment of the Pearl River Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Han, X.; Chu, F.; Li, J.; Xu, D.; Zhang, W.

    2012-12-01

    The grain size composition, particle size parameters, clay mineral, and detrital mineral of surface sediment of this The Pearl River Submarine Canyon (the PRSC, for short) area have been measured and analyzed, which were took sampling in 2005 and 2006 in the northern South China Sea. The results show that the isolines distribution features of these parameters have very good corresponding relation with the geomorphology of the PRSC. On the continental-shelf slope break of the PRSC head (123m-1500m water depth), the close interval isolines of the surface sediment particle size percentage content and size parameters nearly parallel with the water depth isolines. The data of sand percentage content and mean grain size, sorting coefficient and skewness decreases with the increase of water depth. The other way around, the silt and clay percentage content and kurtosis value increase with deeper water. These show that in the canyon head sediment distribution was controlled by the material source (mainly comes from the Pearl River), slope and the northern South China Sea offshore current. In the main PRSC area, the surface sediment grain size composition content and grain size parameter numerical isolines have become a isoline platform which has the similar shape with the main PRSC and extended to the northeast and southwest deep sea basin. This means that the sedimentary environment of main canyon is apparently different with the head environment, that is affected by the high-temperature and high-salt the South China Sea Branch of by the Kuroshio along the 3500 m water depth isoline and alone the canyon to bending. The 25% percentage content isoline of the calcium biological and 45% percentage content isoline of the light mineral show a broadband distribution along the head and upside of the PRSC, and reduces in the entrance with the water depth isolines, apparently influenced by the South China Sea Branch of the Kuroshio. A high value area of the silt, clay mineral, light mineral, heavy mineral, silicon biological, and calcium biological appears to the entrance of the PRSC, which may be controlled by a perennial anticlockwise current. But how the materials passed through the South China Sea Branch of the Kuroshio and sediment here still is not be solved. The distribution of clay minerals close to the distribution of grain size, around the main canyon with more loose and uniform interval value isolines. It is lower of the percentage content isolines value of the Illite, Kaolinite and Chlorite in the canyon than the values around the canyon (specially at northeast, northwest, southwest ). And the Smectite percentage content has the opposite distribution, the value is higher in the canyon than out the canyon. Which means that the Traditional knowledge about ocean clay minerals distribution is influenced by the latitude is not adaptive at submarine canyon area. To sum up, the existence of the PRSC has changed the material transport mode from land to deep ocean basin in the northern South China Sea. Not only it played a transfer passageway, but also it played the role of the sorting and aggregation, which is beneficial to the formation and gathering of certain minerals. This work were supported by the NSFC (41106046), the Youth Ocean Science Fund Project, SOA(2011333) and the Basic Scientific Researching Specific Funds of SIO, SOA (JT1002)

  1. Tales of Two Turbidity Currents Recorded in Monterey Submarine Canyon, USA

    NASA Astrophysics Data System (ADS)

    Xu, J.; Sequeiros, O.; Noble, M. A.

    2013-12-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in submarine environment has attracted the attention of researchers from different disciplines. Yet not only field measurements of oceanic turbidity currents are a rare achievement but also when such measurements do occur they consist mostly of velocity records with very limited or no data of suspended sediment concentration and grain size distribution. This work focus on two turbidity currents measured in the Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, defined by the source of the gravity flows, play a significant role in shaping the characteristics of the currents as they travel downstream the canyon. Before the flows reach their normal state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through an adjusting preliminary stage where they are subject to capacity-driven deposition releasing heavy material in excess. Flows composed with fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm the different flow patterns between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  2. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons.

    PubMed

    McClain, Craig R; Barry, James P

    2010-04-01

    Habitat heterogeneity is a major structuring agent of ecological assemblages promoting beta diversity and ultimately contributing to overall higher global diversity. The exact processes by which heterogeneity increases diversity are scale dependent and encompass variation in other well-known processes, e.g., productivity, disturbance, and temperature. Thus, habitat heterogeneity likely triggers multiple and cascading diversity effects through ecological assemblages. Submarine canyons, a pervasive feature of the world's oceans, likely increase habitat heterogeneity at multiple spatial scales similar to their terrestrial analogues. However, our understanding of how processes regulating diversity, and the potential for cascading effects within these important topographic features, remains incomplete. Utilizing remote-operated vehicles (ROVs) for coring and video transects, we quantified faunal turnover in the deep-sea benthos at a rarely examined scale (1 m-1 km). Macrofaunal community structure, megafaunal density, carbon flux, and sediment characteristics were analyzed for the soft-bottom benthos at the base of cliff faces in Monterey Canyon (northeast Pacific Ocean) at three depths. We documented a remarkable degree of faunal turnover and changes in overall community structure at scales < 100 m, and often < 10 m, related to geographic features of a canyon complex. Ultimately, our findings indicated that multiple linked processes related to habitat heterogeneity, ecosystem engineering, and bottom-up dynamics are important to deep-sea biodiversity. PMID:20462112

  3. A multidisciplinary study of the role of submarine canyons off western Portugal

    NASA Astrophysics Data System (ADS)

    Vitorino, J.; Oliveira, A.; Rodrigues, A.

    2003-04-01

    A multidisciplinary research aimed to characterise the dominant aspects of the Portuguese canyon systems and their role on the shelf-deep ocean sediment exchanges is being conducted in the framework of EU project Eurostrataform. Three contrasting systems are studied: (1) the Nazaré Canyon is a narrow and deep canyon which extends from the deep ocean and completely cuts the NW Portuguese shelf, with no local riverine sources; (2) the Setubal-Lisbon canyon system affects an area marked by complex topography and coastline configuration and with riverine contributions provided by the Tagus and Sado rivers; (3) the Oporto canyon is restricted to the outer shelf, with a major local riverine source (Douro river). We present preliminary results from the ongoing program of observations, which includes multidisciplinary surveys (CTD, suspended particle matter measurments, shallow seismic) and both long- and short-term moorings. Process studies are extended with the use of system MOCASSIM, an operational system for the forecast of oceanographic conditions off the Portuguese coast, which is presently being developped at Instituto Hidrografico. The system integrates wave and circulation models and makes use of data assimilation methods to provide numerical results which are consistent with the observed conditions.

  4. Flow and mixing in Ascension, a steep, narrow canyon

    NASA Astrophysics Data System (ADS)

    Gregg, M. C.; Hall, R. A.; Carter, G. S.; Alford, M. H.; Lien, R.-C.; Winkel, D. P.; Wain, D. J.

    2011-07-01

    A thin gash in the continental slope northwest of Monterey Bay, Ascension Canyon, is steep, with sides and axis both strongly supercritical to M2 internal tides. A hydrostatic model forced with eight tidal constituents shows no major sources feeding energy into the canyon, but significant energy is exchanged between barotropic and baroclinic flows along the tops of the sides, where slopes are critical. Average turbulent dissipation rates observed near spring tide during April are half as large as a two week average measured during August in Monterey Canyon. Owing to Ascension's weaker stratification, however, its average diapycnal diffusivity, 3.9 × 10-3 m2 s-1, exceeded the 2.5 × 10-3 m2 s-1 found in Monterey. Most of the dissipation occurred near the bottom, apparently associated with an internal bore, and just below the rim, where sustained cross-canyon flow may have been generating lee waves or rotors. The near-bottom mixing decreased sharply around Ascension's one bend, as did vertically integrated baroclinic energy fluxes. Dissipation had a minor effect on energetics, which were controlled by flux divergences and convergences and temporal changes in energy density. In Ascension, the observed dissipation rate near spring tide was 2.1 times that predicted from a simulation using eight tidal constituents averaged over a fortnightly period. The same observation was 1.5 times the average of an M2-only prediction. In Monterey, the previous observed average was 4.9 times the average of an M2-only prediction.

  5. The effects of submarine canyons and the oxygen minimum zone on deep-sea fish assemblages off Hawai'i

    NASA Astrophysics Data System (ADS)

    De Leo, Fabio C.; Drazen, Jeffrey C.; Vetter, Eric W.; Rowden, Ashley A.; Smith, Craig R.

    2012-06-01

    Submarine canyons are reported to be sites of enhanced fish biomass and productivity on continental margins. However, little is known about the effects of canyons on fish biodiversity, in particular on oceanic islands, which are imbedded in regions of low productivity. Using submersibles and high-definition video surveys, we investigated demersal fish assemblages in two submarine canyons and slope areas off the island of Moloka'i, Hawai'i, at depths ranging from 314 to 1100 m. We addressed the interactions between the abundance, species richness and composition of the fish assemblage, and organic matter input and habitat heterogeneity, testing the hypotheses that heterogeneous bottom habitats and higher organic matter input in canyons enhance demersal fish abundance, and species density, richness and diversity, thereby driving differences in assemblage structure between canyons and slopes. Sediment type, substrate inclination, water-mass properties (temperature and dissolved oxygen) and organic matter input (modeled POC flux and percent detritus occurrence) were put into multivariate multiple regression models to identify potential drivers of fish assemblage structure. A total of 824 fish were recorded during ?13 h of video yielding 55 putative species. Macrouridae was the most diverse family with 13 species, followed by Congridae (5), Ophidiidae (4) and Halosauridae (3). Assemblage structure changed markedly with depth, with the most abrupt change in species composition occurring between the shallowest stratum (314-480 m) and intermediate and deep strata (571-719 m, 946-1100 m). Chlorophthalmus sp. dominated the shallow stratum, macrourids and synaphobranchid eels at intermediate depths, and halosaurs in the deepest stratum. Assemblages only differed significantly between canyon and slope habitats for the shallow stratum, and the deep stratum at one site. Dissolved oxygen explained the greatest proportion of variance in the multivariate data, followed by POC flux and percent organic-detritus occurrence. Fish abundances were generally higher in canyons but only statistically significant for the deepest stratum. Reduced fish abundances both in canyon and slope transects occurred at intermediate depths within the core of the oxygen minimum zone (OMZ). Species density, diversity and richness and abundance were usually higher in the canyons, but only statistically higher in the deepest stratum. Possible causes for increased abundance and species densities and richness in the deepest stratum in canyons include reduced disturbance at deeper depths. We conclude that submarine canyons on oceanic islands are likely to be sites of enhanced fish abundance and species richness, but that these enhancing effects are offset when oxygen concentrations fall below ?0.7 ml l-1 in OMZs.

  6. The summer assemblage of large pelagic Crustacea in the Gully submarine canyon: Major patterns

    NASA Astrophysics Data System (ADS)

    MacIsaac, K. G.; Kenchington, T. J.; Kenchington, E. L. R.; Best, M.

    2014-06-01

    We describe the trawl-vulnerable crustacean micronekton and macrozooplankton of the Gully, a large, shelf-incising submarine canyon off Nova Scotia, Canada, and a Marine Protected Area. Over 68 species of pelagic crustacea were collected with an International Young Gadoid Pelagic Trawl during three annual summer surveys at one fixed station in the canyon. Depths sampled ranged from the surface to the upper bathypelagic zone, concentrated in the upper 1250 m, with a maximum depth of 1500 m. The crustacean fauna was dominated by cold temperate species typical of mid- to higher-latitudes in the North Atlantic. Meganyctiphanes norvegica and Eusergestes arcticus were particularly dominant in terms of both observed biomass and abundance above 750 m depth. At least 17 species were new records for Canadian waters. The species assemblage of the station varied primarily with depth and diel cycle, the only dominant members of the assemblage showing pronounced inter-annual variations in catch being M. norvegica and Themisto gaudichaudii, both relatively shallow living species.

  7. Modeled alongshore circulation and morphologic evolution onshore of a large submarine canyon

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.; Raubenheimer, B.; List, J. H.; Elgar, S.; Guza, R. T.; Lippmann, T. C.

    2012-12-01

    Alongshore circulation and morphologic evolution observed at an ocean beach during the Nearshore Canyon Experiment, onshore of a large submarine canyon in San Diego, CA (USA), are investigated using a two-dimensional depth-averaged numerical model (Delft3D). The model is forced with waves observed in ~500 m water depth and tidal constituents derived from satellite altimetry. Consistent with field observations, the model indicates that refraction of waves over the canyon results in wave focusing ~500 m upcoast of the canyon and shadowing onshore of the canyon. The spatial variability in the modeled wave field results in a corresponding non-uniform alongshore circulation field. In particular, when waves approach from the northwest the alongshore flow converges near the wave focal zone, while waves that approach from the southwest result in alongshore flow that diverges away from the wave focal zone. The direction and magnitude of alongshore flows are determined by a balance between the (often opposing) radiation stress and alongshore pressure gradients, consistent with observations and previous results. The largest observed morphologic evolution, vertical accretion of about 1.5 m in about 3 m water depth near the wave focal zone, occurred over a one-week period when waves from the northwest reached heights of 1.8 m. The model, with limited tuning, replicates the magnitude and spatial extent of the observed accretion and indicates that net accretion of the cross-shore profile was owing to alongshore transport from converging alongshore flows. The good agreement between the observed and modeled morphology change allows for an in-depth examination of the alongshore force balance that resulted in the sediment convergence. These results indicate that, at least in this case, a depth-averaged hydrodynamic model can replicate observed surfzone morphologic change resulting from forcing that is strongly non-uniform in the alongshore. Funding was provided by the Office of Naval Research, The National Science Foundation, a Woods Hole Oceanographic Institution and United States Geological Survey joint postdoctoral fellowship, and a National Security Science and Engineering Faculty Fellowship.

  8. Shelf-slope exchanges and particle dispersion in Blanes submarine canyon (NW Mediterranean Sea): A numerical study

    NASA Astrophysics Data System (ADS)

    Ahumada-Sempoal, M.-A.; Flexas, M. M.; Bernardello, R.; Bahamon, N.; Cruzado, A.; Reyes-Hernández, C.

    2015-10-01

    A climatological simulation performed with a fine-resolution (?1.2 km) 3D circulation model nested in one-way to a coarse-resolution (?4 km) 3D regional model is used to examine the cross-shelf break water exchange in the Blanes submarine canyon (?41°00?-41°46?N; ?02°24?-03°24?E). A Lagrangian particle-tracking model coupled to the fine-resolution 3D circulation model is used to investigate the role of the incident regional flow (i.e. the Northern Current, NC) and its seasonal variability on the dispersion and residence time of passive particles inside Blanes Canyon. The NC flows southwestward, along the slope, with the coastline to the right. Water is advected offshore/onshore at the upstream/downstream canyon walls, with a net water transport toward the slope (i.e. offshore). The amount of water moved across the shelf break of the upstream wall is approximately three times larger than the amount moved across the shelf break of the downstream wall. This preferential zone for cross-shelf break water exchange is explained by the asymmetric geometry of the canyon and the orientation of the incident current with respect to the canyon bathymetry. Passive particles released upstream Blanes Canyon between the mid-shelf and the upper-slope drift within the NC and accumulate over the shelf edge of the canyon. About half of the particles released at depths above the shelf break move towards shallower areas inside the canyon. In contrast, about two-thirds of particles released below the shelf break move to deeper areas. Particle dispersion is higher under weakly (e.g. winter) than strongly (e.g. summer) stratified conditions. The residence time of passive particles inside the canyon (?4-6 days) is double than the residence time downstream of the canyon, indicating that the canyon acts as an efficient retention zone for passive particles.

  9. Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex

    USGS Publications Warehouse

    McAdoo, B.G.; Orange, D.L.; Screaton, E.; Lee, H.; Kayen, R.

    1997-01-01

    A combination of geomorphological, seismic reflection and geotechnical data constrains this study of sediment erosion and deposition at the toe of the Cascadia accretionary prism. We conducted a series of ALVIN dives in a region south of Astoria Canyon to examine the interrelationship of fluid flow and slope failure in a series of headless submarine canyons. Elevated head gradients at the inflection point of canyons have been inferred to assist in localized failures that feed sediment into a closed slope basin. Measured head gradients are an order of magnitude too low to cause seepage-induced slope failure alone; we therefore propose transient slope failure mechanisms. Intercanyon slopes are uniformly unscarred and smooth, although consolidation tests indicate that up to several metres of material may have been removed. A sheet-like failure would remove sediment uniformly, preserving the observed smooth intercanyon slope. Earthquake-induced liquefaction is a likely trigger for this type of sheet failure as the slope is too steep and short for sediment flow to organize itself into channels. Bathymetric and seismic reflection data suggest sediment in a trench slope basin between the second and third ridges from the prism's deformation is derived locally. A comparison of the amounts of material removed from the slopes and that in the basin shows that the amount of material removed from the slopes may slightly exceed the amount of material in the basin, implying that a small amount of sediment has escaped the basin, perhaps when the second ridge was too low to form a sufficient dam, or through a gap in the second ridge to the south. Regardless, almost 80% of the material shed off the slopes around the basin is deposited locally, whereas the remaining 20% is redeposited on the incoming section and will be re-accreted.

  10. Morphology of submarine canyon system and geotechnical properties of surficial sediments across the Peru-Chile forearc

    SciTech Connect

    Bergersen, D.D.; Coulbourn, W.T.; Moberly, R.

    1989-03-01

    During August 1987, a SeaMARC II side-scan and sampling survey was conducted across the Peru-Chile forearc from 17/degrees/30'S to 19/degrees/30'S. Side-scan images reveal a complex submarine canyon system. Incised canyons meander across the Arequipa basin; their sinuosity results from erosion and cutbank slumping of the basin sediments. Lenticular packets of strata visible in reprocessed digital single-channel seismic profiles are interpreted to be buried channels. Tributary canyons coalesce into a single canyon at the structural high that deviates from its north-south course to a northeast-southwest course as a result of stream piracy. A dendritic drainage basin forming on the midslope may be the rejuvenation of an abandoned channel. Sediment properties were measured on 42 free-fall cores and 7 piston cores recovered both in and around the submarine canyon. Olive-gray (5Y 3/2) hemipelagic mud is the predominant sediment across the forearc. Most cores exhibit a small degree of bioturbation and thin laminae of sand; the number of sand laminae increases as the distance away from the canyon decreases. Shear strengths, averaged over a 1-m core length, decrease slightly with water depth. Carbonate content in all samples from this area is negligible with the exception of one piston core recovered from the upper reaches of the canyon, the bottom of which is composed of gravel- and sand-size shell fragments. Bulk mineralogy, determined from semiquantitative analysis of x-ray diffraction patterns, shows a decrease in relative feldspar percent and an increase in total clay content with increasing water depth. Preliminary analysis of core tops shows a mean grain size in the medium to very fine silt class, with increasing grain size toward the canyon. Smear slide counts generally show a surprisingly low abundance of volcanic glass and biogenic material, particularly diatoms.

  11. Modelling The Time-dependent 3-d Circulation Around A Submarine Canyon During Extreme Weather Conditions

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Lacroix, G.; Djenidi, S.

    The GHER 3D primitive equation model is applied to assess the time-dependent circulation in the coastal area of Calvi (NW Corsica) during the violent storm that affected the Western Europe at the end of December 1999. The region of interest includes a narrow steep-sided canyon, which bisects the continental shelf in front of the Bay of Calvi. The latter is delimited by a pronounced headland (Revellata headland) at its western side. Simulations are carried out using very high sampling data from a local meteorological station in order to take into account the short-term variability of the atmospheric forcing. Model validation is performed by current profile measurements provided by a Doppler currentmeter located within the Bay of Calvi. Results show that the combined effects of canyon/nearshore topography and of the meteorological forcing during the storm are responsible for a large increase of both cross-shore and vertical transports in and around the canyon area. A large anticyclonic eddy is generated with its centre located between the canyon head and the Bay of Calvi. The eddy affects the entire water column and circulates waters around the major part of the bay with a velocity of about 30 cm/s. Extreme current velocity values of order 1 m/s are obtained off the Revellata headland where offshore southeastward currents join the strong alongshore coastal flow which is deflected northwards upstream of the headland. Strong downwelling motion is obtained all along the continental slope, with maximum vertical velocities up to 3 cm/s within the canyon. Model results suggest that during such severe storms the canyon acts as a very efficient conduit for the transfer of nearshore-produced particulate matter to deeper parts of the slope and ultimately to the bottom of the open sea. Furthermore, results illustrate that during wintertime stormy weather conditions, canyon topography along with wind mixing and cooling of the upper water column may lead to a large cascading of dense water, resulting in deep water formation.

  12. Submarine canyons of the north-western Sicilian offshore (Southern Tyrrhenian Sea): variability in morphologies, sedimentary processes and tectonic settings

    NASA Astrophysics Data System (ADS)

    Lo Iacono, Claudio; Sulli, Attilio; Agate, Mauro; Pennino, Valentina

    2013-04-01

    Swath-bathymetry and high-resolution seismic reflection records acquired during the last two decades in the northern Sicilian offshore has unveiled a dense network of submarine canyons within the depth range of 80-2100 m, displaying a relevant variability in their geometry, morphologies and sedimentary processes. The studied margin shows a young, tectonically active shelf to slope setting linking the Sicilian-Maghrebian Thrust Belt to the Tyrrhenian oceanic realm, developed during the Neogene-Quaternary time span. The aim of this study is to highlight the main governing factors that contributed to the evolution and differentiation of the northern Sicilian canyons, mainly focusing on the Gulf of Castellamare and on the Gulf of Palermo areas. Canyons range 10-62 km in length and 1-5 km in amplitude, the slope gradient along their axis ranges between 1.8° and 9° and their sinuosity index ranges between 1 and 1.7. Generally, canyons, tributaries and gullies mapped in the Gulf of Castellamare indent the shelf-edge and display sinuous to meandriform paths on a upward concave gently sloping margin, showing a relevant role of coastal/shelf sedimentary inputs in their evolution. Otherwise, canyons along the upward convex slope in the Palermo Gulf are steep and almost linear, with retrograding submarine landslides controlling their evolution and only one canyon (the Oreto Canyon) showing a proved connection with fluvial sedimentary inputs. Results suggest that the different structural settings of the Castellammare and Palermo basins, together with an inferred difference in fluvial sedimentary inputs, are responsible for the variability of the north-western Sicilian submarine canyon systems, which originated and evolved contemporary with the upper Pliocene(?)-Quaternary sedimentary succession and have probably been more active during the Quaternary glacial maxima. On a local scale, neo-tectonic features, mass-movements and fluid seeps processes are significant controlling factors on the distribution of the canyons. The present day morphology of the margin shows that the most incised canyons are those facing the prominent capes along the coast, suggesting how the interaction of bottom currents with the shelf geometry likely has controlled their recent evolution.

  13. Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements

    USGS Publications Warehouse

    Huh, C.-A.; Liu, J.T.; Lin, H.-L.; Xu, J. P.

    2009-01-01

    Sediment transport and sedimentation processes in the Gaoping submarine canyon were studied using sediment trap and current meter moorings deployed at a location during the winter (January-March) and the summer (July-September) months in 2008. At the end of each deployment, sediment cores were also collected from the canyon floor at the mooring site. Samples from sediment traps and sediment cores were analyzed for 210Pb and 234Th by gamma spectrometry. In conjunction with particle size and flow measurements, the datasets suggest that sediment transport in the canyon is tidally-modulated in the drier winter season and flood (river)-dominated in the wetter summer season. From the magnitude and temporal variation of sediment flux in the canyon with respect to the burial flux and sediment budget on the open shelf and slope region, we reaffirm that, on annual or longer timescales, the Gaoping submarine canyon is an effective conduit transporting sediments from the Gaoping River's drainage basin (the source) to the deep South China Sea (the ultimate sink). ?? 2009 Elsevier B.V.

  14. Analysis of Submarine Landslides and Canyons along the U.S. Atlantic Margin Using Extended Continental Shelf Mapping Data

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Brothers, D. S.; Ten Brink, U. S.; Hoy, S. K.; Baxter, C.; Andrews, B.

    2013-12-01

    U.S. Geological Survey (USGS) studies of the U.S. Atlantic continental slope and rise aim to understand the: 1) the role of submarine landslides in tsunami generation, and 2) the linkages between margin morphology and sedimentary processes, particularly in and around submarine canyon systems. Data from U.S. Extended Continental Shelf (ECS) and numerous subsequent mapping surveys have facilitated the identification and characterization of submarine landslides and related features in fine detail over an unprecedented spatial extent. Ongoing analysis of USGS collected piston cores, sub-bottom and multichannel seismic (MCS) reflection profiles, and an extensive suite of legacy MCS data from two landslides, the Southern New England landslide zone and the Currituck Landslide, suggest that the most recent major landslide events are pre-Holocene, but that failures were complex and most likely multi-phase, at times resulting in extensive overlapping debris deposits. Piston core records plus visual observations of the seafloor from recent TowCam deployments and NOAA Ship Okeanos Explorer ROV dives reveal ongoing development of colluvial wedge-style debris aprons at the base of scarps within these landslides, showing that these regions continue to evolve long after the initial failure events. Multibeam bathymetry data and MCS profiles along the upper slope reveal evidence for vertical fluid migration and possible seabed gas expulsion. These observations underscore the need to reevaluate the sources of pore fluid overpressure in slope sediments and their role in landslide generation. ECS and more recent multibeam mapping have provided the opportunity to investigate the full extent of submarine canyon morphology and evolution from Cape Hatteras up to the US-Canadian EEZ, which has led to better understanding of the important role of antecedent margin physiography on their development. Six submarine canyon systems along the margin (Veatch, Hydrographer, Hudson, Wilmington-Baltimore, Norfolk-Washington, and Hatteras) are being investigated from the canyon heads down to their deep-water submarine fans in an effort to characterize their sediment transport history and constrain the influences of external processes on their morphology. Each canyon-fan system is morphologically unique and is strongly controlled by source region, antecedent margin morphology, landslide and debris flow processes, and the long-term influence of deep-water (along-slope) currents.

  15. Tidal Signatures of the Benthic Nepheloid Layer (BNL) in the Gaoping/Kaoping Submarine Canyon off Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Lee, I.; Wang, Y.

    2008-12-01

    Temporal and spatial variations of benthic nepheloid layer (BNL) have been observed in the head region of the Gaoping/Kaoping Submarine Canyon (KPSC) along the canyon thalweg in different seasons between 1999 and 2000. The top of the BNL could be as high as 100 m above the canyon floor whose suspended sediment concentration (SSC) could be as high as 30 mg/l. In the BNL, silt comprises the largest size-class in the suspended sediment population. In 2000, 2002, and 2004 three taut-line moorings were deployed at different locations in the head region of the KPSC for one month. Time series measurements of along- canyon flow velocity, water temperature, and the volume concentration (VC) of clay, very-fine-to-medium silt, coarse silt and sand size-classes were obtained near the canyon floor from each mooring. Results show that the BNL is strongly modulated by the tides in the descending order at semidiurnal, diurnal, and spring-neap frequencies. In the course of a semidiurnal tidal cycle, the flood (up-canyon) current brings colder water from seaward part of the canyon and the SSC and thickness of the BNL increases. The SSC near the canyon floor also increases in response to the peaks of flood and ebb currents of the semidiurnal tide. The tidal-to-total energy ratio (ER) for the along-canon flow is between 70-80%, and between 50-80% among the suspended sediment of clay, very-fine-to-medium silt, coarse silt and sand size-classes. M2 is the most important constituent in the along-canyon flow, water temperature, and the VC of the four size-classes. The local phase difference between the forcing (velocity), and the responses (temperature and VC) at the M2 frequency suggest the a mixture of progressive and standing waves and that topographic effect caused the phase varied along the canyon. The VC tidal amplitude ratio between M4 and M2 constituents of the four size-classes indicates that the temporal fluctuations of the suspended sediment concentration in the BNL are highly nonlinear. The generation of nonlinearity could be through the flow-topography interaction and through the alternate entrainment and deposition of suspended sediment in the course of a semidiurnal tidal cycle. At this point, the relationship among barotropic tides, internal tides, and typhoon events and BNL is not clear. The role of the BNL in the sediment transport and sedimentation in submarine canyons worldwide is also not fully understood. Studies on these subjects in the KPSC are in progress.

  16. Composition and provenance of terrigenous organic matter transported along submarine canyons in the Gulf of Lion (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pasqual, Catalina; Goñi, Miguel A.; Tesi, Tommaso; Sanchez-Vidal, Anna; Calafat, Antoni; Canals, Miquel

    2013-11-01

    Previous projects in the Gulf of Lion have investigated the path of terrigenous material in the Rhone deltaic system, the continental shelf and the nearby canyon heads. This study focuses on the slope region of the Gulf of Lion to further describe particulate exchanges with ocean’s interior through submarine canyons and atmospheric inputs. Nine sediment traps were deployed from the heads to the mouths of Lacaze-Duthiers and Cap de Creus submarine canyons and on the southern open slope from October 2005 to October 2006. Sediment trap samples were analyzed by CuO oxidation to investigate spatial and temporal variability in the yields and compositional characteristics of terrigenous biomarkers such as lignin-derived phenols and cutin acids. Sediment trap data show that the Dense Shelf Water Cascading event that took place in the months of winter 2006 (January, February and March) had a profound impact on particle fluxes in both canyons. This event was responsible for the majority of lignin phenol (55.4%) and cutin acid (42.8%) inputs to submarine canyons, with lignin compositions similar to those measured along the mid- and outer-continental shelf, which is consistent with the resuspension and lateral transfer of unconsolidated shelf sediment to the canyons. The highest lithogenic-normalized lignin derived phenols contents in sediment trap samples were found during late spring and summer at all stations (i.e., 193.46 ?g VP g-1 lithogenic at deep slope station), when river flow, wave energy and total particle fluxes were relatively low. During this period, lignin compositions were characterized by elevated cinnamyl to vanillyl phenol ratios (>3) at almost all stations, high p-coumaric to ferulic acid ratios (>3) and high yields of cutin acids relative to vanillyl phenols (>1), all trends that are consistent with high pollen inputs. Our results suggest marked differences in the sources and transport processes responsible for terrigenous material export along submarine canyons, mainly consisting of fluvial and shelf sediments during winter and atmospheric dust inputs during spring and summer.

  17. A delta-fed submarine ramp alternative to the canyon-fed depositional model of the Stevens submarine fan system, southeastern San Joaquin basin, Kern County, California

    SciTech Connect

    Harrison, C.P.

    1996-12-31

    Deep-marine sands of the Upper Miocene Stevens Sandstone, one of the most important hydrocarbon-producing units in the United States, were deposited by sediment-gravity flows in the Bakersfield Arch area of the southern San Joaquin basin. The Stevens Sandstone has historically been considered to be a thick turbidite succession shed off the southern Sierra Nevada as four fans in a long-lived submarine fan system fed by several large submarine canyons. Access to previously unavailable proprietary 2-D and 3-D seismic data sets, carefully calibrated by well-log and core data, permits a more complete understanding of the depositional architecture of this highly petroliferous, deep-marine depositional system. This study concludes that these units were deposited in a delta-fed, line- sourced deep-sea system, whose distribution was structurally-controlled. Seismic lines examined in this study show evidence for a large fault-controlled slump feature in the area that has been referred to as {open_quotes}Rosedale Canyon,{close_quotes} and no evidence supports the existence of submarine canyons feeding the system. The highly progradational Stevens interval consists of thick siliciclastic units separated by thin, intervening biosiliceous shales. Seismically, the upper bounding surfaces of these biosiliceous shales represent major downlap surfaces. As sands were deposited by high-density turbidity currents, the area of the present Bakersfield Arch developed into a deep-sea braid plain. Smaller-scale linear features detected on horizon slices through the 3-D seismic data cube have been interpreted in this study as braided channelform features deposited on the deep-sea braid plain. Hydrocarbon production along these linear trends may be associated with porosity and permeability variations resulting from channelized versus non-channelized sedimentation.

  18. A delta-fed submarine ramp alternative to the canyon-fed depositional model of the Stevens submarine fan system, southeastern San Joaquin basin, Kern County, California

    SciTech Connect

    Harrison, C.P. )

    1996-01-01

    Deep-marine sands of the Upper Miocene Stevens Sandstone, one of the most important hydrocarbon-producing units in the United States, were deposited by sediment-gravity flows in the Bakersfield Arch area of the southern San Joaquin basin. The Stevens Sandstone has historically been considered to be a thick turbidite succession shed off the southern Sierra Nevada as four fans in a long-lived submarine fan system fed by several large submarine canyons. Access to previously unavailable proprietary 2-D and 3-D seismic data sets, carefully calibrated by well-log and core data, permits a more complete understanding of the depositional architecture of this highly petroliferous, deep-marine depositional system. This study concludes that these units were deposited in a delta-fed, line- sourced deep-sea system, whose distribution was structurally-controlled. Seismic lines examined in this study show evidence for a large fault-controlled slump feature in the area that has been referred to as [open quotes]Rosedale Canyon,[close quotes] and no evidence supports the existence of submarine canyons feeding the system. The highly progradational Stevens interval consists of thick siliciclastic units separated by thin, intervening biosiliceous shales. Seismically, the upper bounding surfaces of these biosiliceous shales represent major downlap surfaces. As sands were deposited by high-density turbidity currents, the area of the present Bakersfield Arch developed into a deep-sea braid plain. Smaller-scale linear features detected on horizon slices through the 3-D seismic data cube have been interpreted in this study as braided channelform features deposited on the deep-sea braid plain. Hydrocarbon production along these linear trends may be associated with porosity and permeability variations resulting from channelized versus non-channelized sedimentation.

  19. Internal bore seasonality and tidal pumping of subthermocline waters at the head of the Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Phelan, P. Joe

    2016-03-01

    This study utilizes more than a year of observations made in shallow waters (~30 m) at the head of the Monterey Submarine Canyon to assess variability in the physical environment and internal bore field. The interaction of the internal tide with the canyon rim results in a semidiurnal tidal period pumping of cold-water masses (subthermocline waters) onto the adjacent shelf (i.e., internal bores). These internal bores are shown to be significantly coherent with the local sea surface height with minimal spatial variability when comparing two sites near the canyon head region. During the summer months, and periods of strong regional wind-driven upwelling and shoaling of the offshore thermocline, the canyon rim sites display elevated semidiurnal temperature variance. This semidiurnal variability reaches its annual minimum during the winter months when the regional upwelling favorable winds subside and the offshore thermocline deepens. Additionally, the observed internal bores show a distinct asymmetry between the leading (gradual cooling with velocities directed onto the shelf) and trailing edges (sharp warming with velocities directed into the canyon). It appears that the semidiurnal internal tide at the canyon head is a first-order control on the delivery of subthermocline waters to the nearshore coastal environment at this location.

  20. Microbial Communities in Sunken Wood Are Structured by Wood-Boring Bivalves and Location in a Submarine Canyon

    PubMed Central

    Fagervold, Sonja K.; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E.

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  1. The engineering and geological constraints of the intraslope basins and submarine canyons of the northwestern Gulf of Mexico

    SciTech Connect

    Bryant, W.R.; Yuh Liu, J.; Ponthier, J.

    1995-10-01

    It is well realized that future hydrocarbon discoveries on the upper and lower continental slope and rise off Texas and Louisiana necessitate innovative methods for the construction of platforms and pipelines in a very difficult engineering and complex geological environment. There are 105 intraslope basins and 5 major submarine canyons on the continental slope of the northwestern Gulf of Mexico, many of which may be prime targets for hydrocarbon production. Examination of the physiographic, geophysical and geotechnical characteristics of the intraslope basins of Pigmy and Vaca basins and the Alaminos submarine canyon are used as examples to typify the various engineering and geological constraints that are most likely to be encountered on the continental slope and rise and along the Sigsbee Escarpment in the northwestern Gulf of Mexico. High-resolution bathymetry identifies such constraints as high-angle intraslope basin walls, walls that exceed 40 degrees are not uncommon. Sediment slumps and other instabilities, such as long-term sediment creep and other affects of halokenesis and contemporaneous faulting, are illustrated and evaluated from high-resolution geophysics. The small canyons and large gullies that dissect the parameter flanks of Alaminos Canyon, that may be the results of both recent and old turbidity currents and debris flows, are structures that require engineering consideration in the implement of seafloor structures in, near or down slope of these features.

  2. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon.

    PubMed

    Fagervold, Sonja K; Romano, Chiara; Kalenitchenko, Dimitri; Borowski, Christian; Nunes-Jorge, Amandine; Martin, Daniel; Galand, Pierre E

    2014-01-01

    The cornerstones of sunken wood ecosystems are microorganisms involved in cellulose degradation. These can either be free-living microorganisms in the wood matrix or symbiotic bacteria associated with wood-boring bivalves such as emblematic species of Xylophaga, the most common deep-sea woodborer. Here we use experimentally submerged pine wood, placed in and outside the Mediterranean submarine Blanes Canyon, to compare the microbial communities on the wood, in fecal pellets of Xylophaga spp. and associated with the gills of these animals. Analyses based on tag pyrosequencing of the 16S rRNA bacterial gene showed that sunken wood contained three distinct microbial communities. Wood and pellet communities were different from each other suggesting that Xylophaga spp. create new microbial niches by excreting fecal pellets into their burrows. In turn, gills of Xylophaga spp. contain potential bacterial symbionts, as illustrated by the presence of sequences closely related to symbiotic bacteria found in other wood eating marine invertebrates. Finally, we found that sunken wood communities inside the canyon were different and more diverse than the ones outside the canyon. This finding extends to the microbial world the view that submarine canyons are sites of diverse marine life. PMID:24805961

  3. Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    De Leo, Fabio C.; Vetter, Eric W.; Smith, Craig R.; Rowden, Ashley A.; McGranaghan, Matthew

    2014-06-01

    The mapping of biodiversity on continental margins on landscape scales is highly relevant to marine spatial planning and conservation. Submarine canyons are widespread topographic features on continental and island margins that enhance benthic biomass across a range of oceanic provinces and productivity regimes. However, it remains unclear whether canyons enhance faunal biodiversity on landscape scales relevant to marine protected area (MPA) design. Furthermore, it is not known which physical attributes and heterogeneity metrics can provide good surrogates for large-scale mapping of canyon benthic biodiversity. To test mechanistic hypotheses evaluating the role of different canyon-landscape attributes in enhancing benthic biodiversity at different spatial scales we conducted 34 submersible dives in six submarine canyons and nearby slopes in the Hawaiian archipelago, sampling infaunal macrobenthos in a depth-stratified sampling design. We employed multivariate multiple regression models to evaluate sediment and topographic heterogeneity, canyon transverse profiles, and overall water mass variability as potential drivers of macrobenthic community structure and species richness. We find that variables related to habitat heterogeneity at medium (0.13 km2) and large (15-33 km2) spatial scales such as slope, backscatter reflectivity and canyon transverse profiles are often good predictors of macrobenthic biodiversity, explaining 16-30% of the variance. Particulate organic carbon (POC) flux and distance from shore are also important variables, implicating food supply as a major predictor of canyon biodiversity. Canyons off the high Main Hawaiian Islands (Oahu and Moloka'i) are significantly affected by organic enrichment, showing enhanced infaunal macrobenthos abundance, whereas this effect is imperceptible around the low Northwest Hawaiian Islands (Nihoa and Maro Reef). Variable canyon alpha-diversity and high rates of species turnover (beta-diversity), particularly for polychaetes, suggest that canyons play important roles in maintaining high levels of regional biodiversity in the extremely oligotrophic system of the North Pacific Subtropical Gyre. This information is of key importance to the process of MPA design, suggesting that canyon habitats be explicitly included in marine spatial planning. The low-islands of Nihoa and Maro Reef in the NWHI showed a lack of sustained input of terrestrial and macrolagae detritus, likely having an influence on the observed low macrofaunal abundances (see further discussion of ‘canyon effects’ in Section 4.3), and showing the fundamental role of coastal landscape characteristics in determining the amount and nature of allochthonous organic matter entering the system. Total and highly-mobile invertebrate megafauna abundances were two to three times higher in the submarine canyons and slopes of the MHI contrasted with the NWHI (Vetter et al., 2010), also demonstrating the role of this larger contribution of terrestrial and coastal organic enrichment in the MHI contrasted with the NWHI.

  4. Limited depth zonation among bathyal epibenthic megafauna of the Gully submarine canyon, northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Kenchington, E. L.; Cogswell, A. T.; MacIsaac, K. G.; Beazley, L.; Law, B. A.; Kenchington, T. J.

    2014-06-01

    The Gully is a large submarine canyon incised into the Scotian Shelf, in the northwest Atlantic. A submersible-mounted camera was used to collect 17 km of high resolution video imagery of the soft sediment flanks and floor of the canyon between 1000 and 2500 m depth. A depth-stratified random survey design with two transects per stratum was followed. Depth strata were drawn at 1000-1500 m, 1500-2000 m and 2000-2500 m reflecting global and regional faunal boundaries. The 47,614 individuals or colonies observed on the transects were identified into 49 unique taxa drawn from 7 phyla, while 21 additional taxa were observed between the transect lines. Cnidaria was the most diverse phylum (22 taxa) on the transects, followed by the Echinodermata (15 taxa). Most fauna were sessile or sedentary suspension feeders. A species of Xenophyophorida, likely Syringammina sp., was the most abundant taxon. Cluster analysis of transects based on a Bray-Curtis (BC) matrix of species abundance identified one cluster of five transects and one independent transect - the deepest transect (2406 m average depth). A similarity profile test indicated that this structure is not random. There was a significant change in the megafaunal assemblage with depth over scales of 10s of kilometers, accounting for 65% of the variation in the BC matrix. Both total organic carbon and labile carbon were higher in cores from the 1000-1500 m stratum than at greater depth, consistent with transport of food and sediments into the canyon from shallower waters. The first principal component calculated from species abundances separated the two transects from the 1000-1500 m depth stratum from the others indicating that sediment food supply influences community structure and composition. Over small spatial scales (?10 m), eight groups of species associations were identified. However, the associations between the species within each group were not strong with the highest correlation between the Xenophyophorida and the Pennatulacea (?=0.66). At this spatial scale substrate type was an important factor, with hard and soft bottom species associations being identified.

  5. Modeled alongshore circulation and force balances onshore of a submarine canyon

    NASA Astrophysics Data System (ADS)

    Hansen, Jeff E.; Raubenheimer, Britt; List, Jeffrey H.; Elgar, Steve

    2015-03-01

    Alongshore force balances, including the role of nonlinear advection, in the shoaling and surf zones onshore of a submarine canyon are investigated using a numerical modeling system (Delft3D/SWAN). The model is calibrated with waves and alongshore flows recorded over a period of 1.5 months at 26 sites along the 1.0, 2.5, and 5.0 m depth contours spanning about 2 km of coast. Field observation-based estimates of the alongshore pressure and radiation-stress gradients are reproduced well by the model. Model simulations suggest that the alongshore momentum balance is between the sum of the pressure and radiation-stress gradients and the sum of the nonlinear advective terms and bottom stress, with the remaining terms (e.g., wind stress and turbulent mixing) being negligible. The simulations also indicate that unexplained residuals in previous field-based estimates of the momentum balance may be owing to the neglect of the nonlinear advective terms, which are similar in magnitude to the sum of the forcing (pressure and radiations stress gradients) and to the bottom stress.

  6. Deep-sea telepresence: a proposed exploration of the Hudson submarine canyon

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory A.

    2002-02-01

    In-situ observation and exploration of the deep-sea environment presents considerable challenges and hazards. Teleoperation of remotely piloted vehicles (RPV) provides an opportunity for continuous telepresence, however, such missions are energy intensive both for propulsion and illumination. Tethered vehicles are limited in range and the need for a weather-dependent surface support ship. An approach is presented which utilizes a shore-based power line/fiber optic cable connected to a deep-sea recharge site. Free flying RPVs periodically recharge batteries and send video and data back to the surface. The recharge site can be relocated to expand the exploration area, and the entire mission remains underwater for the mission duration. The Hudson submarine canyon provides an ideal test site due to its proximity to a large user population area (New York City) and its geological and biological diversity. Alternate test sites and vehicle design issues are detailed. An access fee structure over the Internet for general public participation is discussed, and the possibility of an economically self-supporting venture when conducted on a sufficiently large scale is also considered.

  7. Epibiotic relationships on Zygochlamys patagonica (Mollusca, Bivalvia, Pectinidae) increase biodiversity in a submarine canyon in Argentina

    NASA Astrophysics Data System (ADS)

    Schejter, Laura; López Gappa, Juan; Bremec, Claudia Silvia

    2014-06-01

    The continental slope of the southern SW Atlantic Ocean has many distinguishable deep submarine canyons, varying in depth and extension. The benthic fauna within one of them, detected in April 2005 by means of a multibeam SIMRAD EM1002 sonar, and located at 43°35‧S to 59°33‧W, 325 m depth, was studied to discuss faunal affinities with the neighbouring Patagonian scallop fishing grounds located at upper slope depths. In order to add faunal information to the previous general study, we studied the epibiotic species settled on Patagonian scallops (the dominant species in the area) collected in the reference sampling site using a 2.5-m mouth-opening dredge, 10 mm mesh size. We sampled 103 scallops with shell heights between 22 and 69 mm; epibionts were recorded on both valves. We found 53 epibiotic taxa, which were most conspicuous on the upper valve. Bryozoa was the most diverse group (34 species) while Polychaeta was the most abundant group, recorded on 94% of the scallops. Stylasteridae (2 species) and Clavulariidae (Cnidaria) conform newly recorded epibionts on Z. patagonica and the sponge Tedania (Tedaniopsis) infundibuliformis also represents a new record for the SW Atlantic Ocean.

  8. Submarine canyon morphologies and evolution on a modern carbonate system: the Northern Slope of Little Bahama Bank (Bahamas).

    NASA Astrophysics Data System (ADS)

    Tournadour, Elsa; Mulder, Thierry; Borgomano, Jean; Hanquiez, Vincent; Ducassou, Emmanuelle; Gillet, Hervé; Sorriaux, Patrick

    2013-04-01

    The recent CARAMBAR cruise (Nov. 2010) on the northern slope of Little Bahama Bank (LBB, Bahamas) provided new seafloor and subsurface data, that improve our knowledge on carbonate slope systems. The new high-resolution multibeam bathymetry data (Kongsberg EM302 echosounder) and very high resolution (3.5 kHz/Chirp subbotom profiler) seismic data show that the upper LBB slope is dissected by 18 canyons. These canyons evolve sharply into short channels opening to depositional fan-shaped lobes. These architectural elements form a narrow carbonate gravity system extending over 40 km along the LBB slope. The features previously described as small linear canyons have a more complex morphology than originally supposed. The several architectural elements that can be distinguished share similar characteristics with siliciclastic canyons. The average morphological features of the canyons are: minimum and maximum water depths of 460 and 970 m resp., mean length = 16.3 km and sinuosity = 1.14. Canyons are floored with flat elongated morphologies interpreted as terraces. Some of these terraces are located at the toe of slide scars on canyon heads and canyon sides which suggest that they result from sediment failures. On the Chirp seismic data, wedge-shape aggrading terraces interpreted as "internal levees" can be observed. These terraces would then be formed by overbanking of the upper part of turbidity currents. Between 530 and 630 m water depth, some canyons exhibit an amphitheater-shaped head with a head wall height ranging from 80 to 100 m. The wall edges of these canyon heads consist of coalescing arcuate slump scars, which suggests that the canyons formed by retrogressive erosion. Other canyons show an amphitheater-shaped head that evolves upslope into linear valleys incising the upper slope between 460 m and 530 m water depth. The onset and the spatial distribution of these linear valleys seem to be influenced by sediments transported from oolitic shoals of Walker Cay located 5 km upstream toward the upper slope. Indeed, upslope the canyon heads, the reflectivity map shows low backscatters characteristic of fine grained sediments within small elongated depressions (3-5 km long, 1-5 m deep) that are probably-formed by the flow of sediments coming the platform. These initial results allow a preliminary model of the canyon evolution to be proposed with two stages: (1) a first stage controlled by retrogressive erosion, generating several slides and collapses finally forming the amphitheater-shaped canyon heads, (2) a second stage of retrogressive erosion influenced on the upper slope by the sediment input from the platform along small erosional depressions located seaward of the carbonate bank. These small depressions can locally merge with the canyon heads.

  9. A western thalweg of the Princeton Valley submarine canyon system as a reservoir and a trap near Willows, California

    SciTech Connect

    Blake, R.G. ); Bainer, R.W.

    1990-05-01

    The Princeton Valley submarine canyon system has long been an important reservoir and trapping mechanism in the northern Sacramento Valley, California. Recently a western thalweg of the system, identified north of Willows, California, has proven to be a significant trapping mechanism for gas in truncated Kione Formation sandstones. Both Upper Cretaceous Kione Formation and Paleocene Princeton Valley sandstones are exploratory objectives in the area and are productive in existing wells. The Kione Formation, a sand-rich deltaic sequence approximately 2,000 ft thick, has been truncated to the west by the Princeton Valley submarine canyon system. The canyon (gorge) has been subsequently filed with primarily impermeable shales, providing a trap for migrating gases in the truncated sands. The trend was discovered in 1977 by Shell Oil Company based on seismic and was the first substantiated evidence of a western thalweg of the Princeton Gorge in the Willows area. To date, four wells have been completed along the trend and current exploratory efforts are attempting to follow the gorge trend.

  10. Distribution of Pasiphaea japonica larvae in submarine canyons and adjacent continental slope areas in Toyama Bay, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Nanjo, Nobuaki; Katayama, Satoshi

    2014-09-01

    The horizontal and vertical distribution of Pasiphaea japonica larvae, which included larval stages and postlarval or later stages, were investigated in Toyama Bay located in central Japan. The horizontal distributions in the inner part of the bay were investigated by oblique hauls from 10 m above the sea-bottom to the surface using a Remodeled NORPAC net (LNP net) in May, August, November 2005, January, March, April, July, September, December 2006, March-September, November-December 2007, and January-March 2008. The vertical distributions were investigated by concurrent horizontal hauls at the depths of 0, 50, 100, 150, 200, and 250 m using a Motoda net (MTD net) in January, March, April, July, September, and December 2006. Mean density of larvae was higher in submarine canyons which dissect the continental shelf and run to the mouth of river, than adjacent continental slope areas. Larvae densely aggregated in the canyon head. Vertical distribution of the larval stages concentrated in the depth range of 100-150 m in both daytime and nighttime, and larvae in the postlarval or later stages showed diel vertical distribution over a wider depth range than larval stages. Our results indicate the possibility of a larval aggregation in energy-rich habitats, and indicated two important roles of submarine canyons, which were larval retention and high food supply.

  11. Scleractinian coral recruitment patterns at Salt River submarine canyon, St. Croix, U.S. Virgin Islands

    NASA Astrophysics Data System (ADS)

    Rogers, Caroline S.; Fitz, H. Carl; Gilnack, Marcia; Beets, James; Hardin, John

    1984-10-01

    Scleractinian coral recruitment patterns were studied at depths of 9, 18, 27 and 37 m on the east and west walls of Salt River submarine canyon, St. Croix, U.S. Virgin Islands, by censusing coral juveniles which settled on experimental settling plates placed on the reef for 3 26 months as well as coral juveniles within quadrats on the reef. The most common species in the juvenile population within quadrats were Agaricia agaricites, Porites astreoides, Madracis decactis, Stephanocoenia michelinii, and A. lamarcki. The only species settling on settling plates were Agaricia spp., Madracis decactis, Porites spp., Stephanocoenia michelinii and Favia fragum. A total of 271 corals settled on 342 plates, with 51% of the juveniles on the east wall and 49% on the west wall. Of these 34% settled on horizontal surfaces and 66% on vertical surfaces. Based on results from quadrats, Agaricia agaricites and Porites astreoides had high recruitment rates relative to their abundance on the reef. In contrast, Agaricia lamarcki, Montastraea annularis, M. cavernosa and Siderastrea siderea had high amounts of cover compared to their abundance as juveniles within quadrats. The mean number of juveniles per m2 within quadrats ranged from 3 to 42. In general, there was a decrease in the mean number of juveniles and the number of species with depth. Total number of juveniles on settling plates was highest at 18 m on both walls. The largest number within quadrats was at 18 m on the east wall, followed by 9 m and 18 m on the west wall. High rates of coral recruitment tended to be associated with low algal biomass and relatively high grazing pressure by urchins and fishes.

  12. Hudson submarine canyon head offshore New York and New Jersey: A physical and geochemical investigation

    NASA Astrophysics Data System (ADS)

    Rona, Peter; Guida, Vincent; Scranton, Mary; Gong, Donglai; Macelloni, Leonardo; Pierdomenico, Martina; Diercks, Arne-R.; Asper, Vernon; Haag, Scott

    2015-11-01

    Hudson Canyon is the largest shelf-sourced canyon system off the east coast of the United States, and hosts a productive ecosystem that supports key fisheries. Here we report the results of a multi-year interdisciplinary study of the geological, geochemical, and physical oceanographic features and processes in the canyon that underpin that ecosystem. High-resolution multi-beam bathymetric and backscatter data show that the contrasting morphology of the two perpendicularly oriented branches at the head of the Hudson Canyon is indicative of different states of geomorphological activity and sediment transport. Tightly spaced ridges and gullies extend perpendicularly towards the canyon axis from the canyon walls. Numerous depressions are found at the base of the canyon walls or along the canyon axis at depths from 300 m to 600 m. Elevated concentrations of dissolved methane in the water column, where the highest density of depressions occur, suggests that methane is actively venting there. The topography and reflective floors of circular depressions in canyon walls and their association with methane maxima suggest that these represent active methane gas release-collapse pockmarks with carbonate floors. Patterns of irregular, low-relief, reflective depressions on the canyon floor may also represent methane release points, either as gas release or cold-seep features. The presence of methane maxima in a region of strong advective currents suggests continuous and substantial methane supply. Hydrographic observations in the canyon show that multiple layers of distinct inter-leaved shelf (cold, fresh) and slope (warm, salty) water masses occupy the head of the canyon during the summer. Their interactions with the canyon and with each other produce shifting fronts, internal waves, and strong currents that are influenced by canyon topography. Strong tidal currents with along-canyon-axis flow shear help to drive the advection, dispersion and mixing of dissolved materials in the water column that likely help support the rich canyon ecosystem.

  13. Submarine canyon morphologies in the Gulf of Palermo (Southern Tyrrhenian Sea) and possible implications for geo-hazard

    NASA Astrophysics Data System (ADS)

    Lo Iacono, Claudio; Sulli, Attilio; Agate, Mauro; Lo Presti, Valeria; Pepe, Fabrizio; Catalano, Raimondo

    2011-03-01

    The continental shelf and the upper slope of the Gulf of Palermo (Southern Tyrrhenian Sea) in the depth interval ranging from 50 to 1,500 m were mapped for the first time with Multi Beam echosounder and high resolution seismic. Seven submarine canyons are confined to the upper slope or indent the shelf-edge and enter the Palermo intraslope basin at a depth of around 1,300 m. The canyons evolved through concurrent top-down turbiditic processes and bottom-up retrogressive mass failures. Most of the mass failure features of the area are related to canyon-shaping processes and only few of them are not confined to the upper slope. In general, these features probably do not represent a significant tsunami hazard along the coast. The geological element that controls the evolution of the canyons and induces sediment instability corresponds to the steep slope gradient, especially in the western sector of the Gulf, where the steepest canyons are located. The structural features mapped in the Palermo offshore contributed to the regulation of mass failure processes in the area, with direct faults and antiform structures coinciding with some of the canyon heads. Furthermore, the occurrence of pockmarks and highs that probably consist of authigenic carbonates above faulted and folded strata suggests a local relationship between structural control, fluid escape processes and mass failure. This paper presents a valuable high-resolution morphologic dataset of the Gulf of Palermo, which constitutes a reliable base for evaluating the geo-hazard potential related to slope failure in the area.

  14. Spatial distribution of phytoplankton assemblages in the Nazaré submarine canyon region (Portugal): HPLC-CHEMTAX approach

    NASA Astrophysics Data System (ADS)

    Mendes, Carlos Rafael; Sá, Carolina; Vitorino, João; Borges, Carlos; Tavano Garcia, Virginia Maria; Brotas, Vanda

    2011-07-01

    The distribution and composition of phytoplankton assemblages were studied in the Nazaré submarine canyon, during an upwelling event, using high-performance liquid chromatography (HPLC) pigment analysis, complemented by microscopic qualitative observations. High chlorophyll a (Chl a) concentrations were recorded in the canyon head, near the coast, where values greater than 4 μg L - 1 were observed. In contrast, Chl a was relatively low in offshore regions, with values below 0.5 μg L - 1 . The most abundant accessory pigments were fucoxanthin, peridinin, diadinoxanthin and 19'-hexanoyloxyfucoxanthin. Pigment data information was analyzed using the CHEMTAX software to estimate the contribution of different taxonomic groups to total Chl a. North of the canyon head, an area with high concentration of peridinin-containing dinoflagellates was identified (with presence of chain-forming toxic dinoflagellates). The presence of these organisms was associated with mixed water columns and phosphate values lower than the ones south of the canyon head, where a dominance of diatoms was recorded. The rest of the study region showed a dominance of prymnesiophytes and a significant contribution of cyanobacteria at oceanic stations. This study demonstrates the usefulness of using pigment analysis to study spatial distribution of phytoplankton groups in relation to a complex physical environment.

  15. Internal geometry, seismic facies, and petroleum potential of canyons and inner fan channels of the Indus submarine fan

    SciTech Connect

    McHargue, T.R.; Webb, J.E.

    1986-02-01

    The Indus Fan, the second largest submarine fan in the world, covers 1,250,000 km/sup 2/ (500,000 mi/sup 2/) and contains sediment more than 7 km (23,000 ft) thick. Multichannel (24-fold) CDP seismic data provide the bases for evaluating the Indus Fan and consist of four seismic facies. Of these, only the high-amplitude, discontinuous (H-D) facies is thought to contain reservoir-quality sandstones. The H-D facies is confined to the axes of leveed channels. Canyon-channel systems that fed the fan in the past can be divided into three zones. The degradational zone is composed of an erosional canyon complex filled by prodelta mud. The transitional zone, located near the canyon mouth, consists of superimposed channels that initially were erosional but eventually aggraded and developed levees. The headward termination of the H-D facies occurs in this zone. The aggradational zone consists of superimposed leveed channels confined solely by their own levees. The proximal termination of the H-D facies near canyon mouths implies the presence of reservoir-quality sandstone surrounded by source/seal mudstone in the transitional zone. This stratigraphic trapping geometry and structural leads may represent a vast, untapped petroleum province.

  16. Water fluxes at an ocean margin in the presence of a submarine canyon

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Hecq, J. H.; Djenidi, S.

    2002-04-01

    A 3-D, unsteady, nonlinear, high-resolution model is used to estimate shelf/slope exchanges through Calvi Canyon (NW Corsica, Mediterranean Sea) in various regimes of stratification and wind patterns. To evaluate the alongshore and cross-shore fluxes within the canyon area as well as the water exchanges between the canyon and Calvi Bay, volume transports are computed at the sides of two closed, interconnected boxes encompassing the canyon on the shelf and slope domains. Model results show that water transports between Calvi Bay and the open sea are determined by flow modifications in the canyon area. The mean horizontal flow deviates southwestward upstream of the canyon, generating an onshore transport in the western part of Calvi Bay. Within the canyon, the circulation is cyclonic and is responsible for an offshore transport downstream of the canyon and in the eastern part of the bay. The effect of stratification is shown to limit the vertical extent of the influence of canyon topography so that the alongshore flow above the canyon is quasi-undisturbed in strong stratified conditions, resulting in weak cross-shore exchange. Wind events are shown to be responsible for a strong increase of cross-shore transports between the bay and the canyon area.

  17. Accumulation of dioxins in deep-sea crustaceans, fish and sediments from a submarine canyon (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Castro-Jiménez, Javier; Rotllant, Guiomar; Ábalos, Manuela; Parera, Jordi; Dachs, Jordi; Company, Joan B.; Calafat, Antoni; Abad, Esteban

    2013-11-01

    Submarine canyons are efficient pathways transporting sediments and associated pollutants to deep sea. The objective of this work was to provide with the first assessment of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) levels and accumulation in deep-sea megafauna (crustacean and fish) and sediments in the Blanes submarine canyon (North-Western Mediterranean Sea). The influence of the selected species habitats (pelagic, nektobenthic, and benthic) and the trophic chain level on the accumulation of dioxins was also investigated. Bottom sediment and biota samples were collected at different depths and locations inside the canyon and in the adjacent slope outside the canyon influence. ∑2,3,7,8-PCDD/F concentrations in sediments varied from 102 to 680 pg g-1 dry weight (d.w.) (1-6 WHO98-TEQ pg g-1 d.w.). Dioxins are enriched in bottom sediments at higher depths inside the canyon and in particular in the deepest parts of the canyon axis (1700 m depth), whereas no enrichment of dioxins was verified at the deepest sediments from the adjacent open slope outside the canyon influence. The proportion of ∑2,3,7,8-PCDF (furans) to ∑2,3,7,8-PCDD (dioxins) increased for sediments with higher soot carbon content consistent with the higher affinity of PCDF for sorption onto soot carbon. Higher ∑2,3,7,8-PCDD/F levels were found in crustaceans than in fish, ranging from 220 to 795 pg g-1 lipid weight (l.w.) (13-90 WHO98-TEQ pg g-1 l.w.) and 110 to 300 pg g-1 l.w. (22-33 WHO98-TEQ pg g-1 l.w.) in crustaceans and fish, respectively. Dioxin highest concentrations were found in nektobenthic organisms, i.e., benthic organism with swimming capabilities (both fish and crustaceans). These higher levels are consistent with the higher trophic level and predicted biomagnification factors (BMFs) of nektobenthic species. The reduced availability of sediment-bound PCDD/F for benthic species mainly due to soot and organic carbon sorption of these contaminants most probably influenced this result too. While biomagnification exerts a clear influence on the total dioxin concentrations in biota, life habits seem to exert an influence in the differential congener-specific accumulation of dioxins rather than in the total concentration. Thus, pelagic species reflected the estimated congener pattern from the surface water dissolved phase and phytoplankton, whereas the dioxin pattern in benthic and nektobenthic species was more similar to the estimated pattern in the deep-water dissolved phase and the sediment. The three crustacean species considered in this study bioaccumulated higher amounts of other dioxin congeners (non-2,3,7,8-PCDD/Fs) compared to fish. An interplay of several factors, such as biota habitats, differential uptake of water column dioxin (dissolved and particle-bound fractions), and different metabolization capabilities and rates (CYP-mediated metabolism) may explain the differences observed in dioxin patterns among crustacean species and between fish and crustaceans in the Blanes submarine canyon.

  18. Trawling-induced daily sediment resuspension in the flank of a Mediterranean submarine canyon

    NASA Astrophysics Data System (ADS)

    Martín, Jacobo; Puig, Pere; Palanques, Albert; Ribó, Marta

    2014-06-01

    Commercial bottom trawling is one of the anthropogenic activities causing the biggest impact on the seafloor due to its recurrence and global distribution. In particular, trawling has been proposed as a major driver of sediment dynamics at depths below the reach of storm waves, but the issue is at present poorly documented with direct observations. This paper analyses changes in water turbidity in a tributary valley of the La Fonera (=Palamós) submarine canyon, whose flanks are routinely exploited by a local trawling fleet down to depths of 800 m. A string of turbidimeters was deployed at 980 m water depth inside the tributary for two consecutive years, 2010-2011. The second year, an ADCP profiled the currents 80 m above the seafloor. The results illustrate that near-bottom water turbidity at the study site is heavily dominated, both in its magnitude and temporal patterns, by trawling-induced sediment resuspension at the fishing ground. Resuspended sediments are channelised along the tributary in the form of sediment gravity flows, being recorded only during working days and working hours of the trawling fleet. These sediment gravity flows generate turbid plumes that extend to at least 100 m above the bottom, reaching suspended sediment concentrations up to 236 mg l-1 close to the seafloor (5 m above bottom). A few hours after the end of daily trawling activities, water turbidity progressively decreases but resuspended particles remain in suspension for several hours, developing bottom and intermediate nepheloid layers that reach background levels ˜2 mg l-1 before trawling activities resume. The presence of these nepheloid layers was recorded in a CTD+turbidimeter transect conducted across the fishing ground a few hours after the end of a working day. These results highlight that deep bottom trawling can effectively replace natural processes as the main driving force of sediment resuspension on continental slope regions and generate increased near-bottom water turbidity that propagates from fishing grounds to wider and deeper areas via sediment gravity flows and nepheloid layer development.

  19. The Nankai OOST zone exposed along the Shionomisaki Submarine Canyon - Dive results of YK05-08 Leg 2

    NASA Astrophysics Data System (ADS)

    Anma, R.; Ogawa, Y.; Moore, G.; Kawamura, K.

    2005-12-01

    The Shionomisaki submarine canyon cuts EW-trending five major ridges developed in the Plio-Pleistocene Nankai accretionary prism. The fifth ridge (numbered from the accretion toe in the south) is an extension of the Omine ridge where the out-of-sequence thrust (Nankai OOST zone) were detected through CDEX seismic profiles. We observed structures developed around the Nankai OOST zone along the canyon slope using submersible Shinkai 6500 during JAMSTEC cruise YK05-08 Leg 2. Three dives in addition to two previous dives (one include transect along the third ridge) verified that Shionomisaki Canyon exposes typical accretionary prism features in sandstone dominant thick turbidite sequences, including regular repetition of offscraping and underplating structure. Only near the Nankai OOST zone, extensive activities of fluid seepages were observed demarcated by the presence of chemosynthetic biocommunities, such as Calyptogena and Vesicomyid clams and Vestimentiferan tube worm. Each dive was designed to start from the canyon bottom, climbing up the canyon slope and end in EW-trending gully developed in the fifth ridge, to obtain a 3D images of the Nankai OOST ridge. Distributions of the chemosynthetic biocommunities were observed in the north of the Nankai OOST ridge suggesting a development of antithetic fault system. The ridge itself was disrupted by numerous EW-trending gullies where Calyptogena colonies were widely distributed. These gullies must correspond to spray faults that were bifurcated form the main OOST fault. Detailed observations on collected specimens revealed developments of web and vein structures together with black seams. Needle test indicated that the rocks in the middle part of the OOST ridge is more consolidated compared to those of the north and south exposures.

  20. Formation of pockmarks and submarine canyons associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Nakajima, Takeshi; Kakuwa, Yoshitaka; Yasudomi, Yukihito; Itaki, Takuya; Motoyama, Isao; Tomiyama, Takayuki; Machiyama, Hideaki; Katayama, Hajime; Okitsu, Osamu; Morita, Sumito; Tanahashi, Manabu; Matsumoto, Ryo

    2014-08-01

    This study, based on 3.5 kHz SBP, 3D seismic data and long piston cores obtained during MD179 cruise, elucidated the timing and causes of pockmark and submarine canyon formation on the Joetsu Knoll in the eastern margin of the Sea of Japan. Gas hydrate mounds and pockmarks aligned parallel to the axis on the top of the Joetsu Knoll are associated with gas chimneys, pull-up structures, faults, and multiple bottom-simulating reflectors (BSRs), suggesting that thermogenic gas migrated upward through gas chimneys and faults from deep hydrocarbon sources and reservoirs. Seismic and core data suggest that submarine canyons on the western slope of the Joetsu Knoll were formed by turbidity currents generated by sand and mud ejection from pockmarks on the knoll. The pockmark and canyon formation probably commenced during the sea-level fall, lasting until transgression stages. Subsequently, hydropressure release during the sea level lowering might have instigated dissociation of the gas hydrate around the base of the gas hydrate, leading to generation and migration of large volumes of methane gas to the seafloor. Accumulation of hydrate caps below mounds eventually caused the collapse of the mounds and the formation of large depressions (pockmarks) along with ejection of sand and mud out of the pockmarks, thereby generating turbidity currents. Prolonged pockmark and submarine canyon activities might have persisted until the transgression stage because of time lags from gas hydrate dissociation around the base of the gas hydrate until upward migration to the seafloor. This study revealed the possibility that submarine canyons were formed by pockmark activities. If that process occurred, it would present important implications for reconstructing the long-term history of shallow gas hydrate activity based on submarine canyon development.

  1. Biological and physical processes in and around Astoria submarine Canyon, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Bosley, Keith L.; Lavelle, J. William; Brodeur, Richard D.; Wakefield, W. Waldo; Emmett, Robert L.; Baker, Edward T.; Rehmke, Kara M.

    2004-09-01

    Astoria Canyon represents the westernmost portion of the Columbia River drainage system, with the head of the canyon beginning just 16 km west of the mouth of the Columbia River along the northern Oregon and southern Washington coasts. During the summer of 2001, physical, chemical, and biological measurements in the canyon were taken to better understand the hydrodynamic setting of, and the feeding relationships among, the pelagic and benthic communities. Results show that currents were strongly tidal, and transport, where measured, was primarily up and into the canyon below shelf depth as previous studies in the canyon have shown. Temperature time series suggests that the largest diurnal oscillations occurred at, or were trapped near, the bottom of the canyon. Within the upper canyon, subtidal temperature was correlated with upper-level shelf-edge currents, linking subtidal upwelling events in the canyon with near-surface subtidal along-shore flow. Invertebrates, such as shrimp, euphausiids, and squid, as well as mesopelagic fishes, dominated the Isaacs-Kidd midwater trawl catches along the canyon walls. Large trawl catches were comprised mainly of hake and rockfishes (shallow trawls) and macrourids, scorpaenids, stomiids, and zoarcids (bottom trawls). Gut-content analysis of rockfishes and lanternfishes revealed substantial use of midwater prey such as euphausiids and mesopelagic fishes. The ?13C values of fishes and invertebrates reflected local primary production, as indicated by particulate organic matter (POM) ?13C values from samples collected at various depths along the axis of the canyon, as well as across the canyon at several sites. The ?15N values of fishes and invertebrates indicated lanternfishes, along with euphausiids, amphipods, shrimp and squid, may be important dietary components of higher-trophic-level fishes in both the benthic and benthopelagic food webs. The ?13C and ?15N values of Sebastes species showed significant enrichment in the adults of species that are largely piscivorous relative to the values of adults of more omnivorous species.

  2. Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): Variability in morphology, sedimentary processes and evolution on a tectonically active margin

    NASA Astrophysics Data System (ADS)

    Lo Iacono, Claudio; Sulli, Attilio; Agate, Mauro

    2014-06-01

    Swath-bathymetry, mono-channel and multi-channel seismic reflection records acquired during the last two decades on the northern Sicilian margin have unveiled a dense network of submarine canyons within the depth range of 80-2100 m. The canyons display a relevant variability in their geometry, morphology and sedimentary processes. The margin shows a young, tectonically active shelf to slope setting, linking the Sicilian-Maghrebian Thrust Belt to the Tyrrhenian oceanic realm, developed during the Neogene-Quaternary time span. The aim of this study is to highlight the main governing factors that contributed to the evolution and differentiation of the northern Sicilian canyons, mainly focusing on the Gulf of Palermo and on the Gulf of Castellammare. Tectonic control is more evident in the canyons of the Gulf of Palermo, with submarine landslides retrograding on a steep slope and mainly controlling their evolution. Otherwise, canyons, tributaries and gullies mapped in the Gulf of Castellammare developed on a less steep substrate and display sinuous to meandering paths, with a relevant role of coastal/shelf sedimentary inputs and downslope turbidity processes in their formation. Results suggest that, despite the geographically close proximity of the two study areas, the different structural settings of the Castellammare and Palermo Basins are mainly responsible for canyon variability. Data indicate likely on-going uplift and tilting movements along the Sicilian margin, influencing the development of the studied canyons, which have probably been more active during the Quaternary glacial maxima than they are in the present day.

  3. On vertical advection truncation errors in terrain-following numerical models: Comparison to a laboratory model for upwelling over submarine canyons

    NASA Astrophysics Data System (ADS)

    Allen, S. E.; Dinniman, M. S.; Klinck, J. M.; Gorby, D. D.; Hewett, A. J.; Hickey, B. M.

    2003-01-01

    Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three-dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2-4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S-Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain-following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.

  4. Effects of extreme meteorological conditions on coastal dynamics near a submarine canyon

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Lacroix, G.; Djenidi, S.

    2004-06-01

    A 3-D hydrodynamic model is applied to assess shelf/slope exchanges in the Calvi Canyon region (Corsica, NW Mediterranean) during the violent storm that affected the Western Europe in December 1999. Simulations are carried out using high-frequency sampling meteorological data to take into account the short-term variability of the atmospheric conditions. It is shown that the combined effects of canyon topography and of the wind forcing during the storm are responsible for a large increase of both cross-shore and vertical transports in the area. Strong downwelling motion is simulated all along the continental slope with vertical velocities up to 2 cm s -1 within the canyon. High turbulent diffusion levels are obtained leading to the complete mixing of the water column within the canyon. Results suggest that increased turbulent diffusion and downwelling circulation in the canyon during the storm should result in a large transport of coastal water towards the abyssal plain.

  5. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    NASA Astrophysics Data System (ADS)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic impacts show that seafloor disturbance by benthic fishing is mainly attributable to trawling in the Gulf of Lion and to long lines where rocky substrates are present. The bauxite residue (red mud) expelled in the Cassidaigne canyon was seen to prevent fauna from settling at the bottom of the canyon and it covered much of the flanks. Litter was present in all of the canyons and especially in considerable quantities in the Ligurian Sea, where the heads of the canyons are closer to the coast. Three Marine Protected Areas and one fishing area with restricted access have recently been established and should permit the preservation of these deep ecosystems.

  6. Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role of hydrodynamic processes

    NASA Astrophysics Data System (ADS)

    Tubau, Xavier; Canals, Miquel; Lastras, Galderic; Rayo, Xavier; Rivera, Jesus; Amblas, David

    2015-05-01

    Marine litter represents a widespread type of pollution in the World's Oceans. This study is based on direct observation of the seafloor by means of Remotely Operated Vehicle (ROV) dives and reports litter abundance, type and distribution in three large submarine canyons of the NW Mediterranean Sea, namely Cap de Creus, La Fonera and Blanes canyons. Our ultimate objective is establishing the links between active hydrodynamic processes and litter distribution, thus going beyond previous, essentially descriptive studies. Litter was monitored using the Liropus 2000 ROV. Litter items were identified in 24 of the 26 dives carried out in the study area, at depths ranging from 140 to 1731 m. Relative abundance of litter objects by type, size and apparent weight, and distribution of litter in relation to depth and canyon environments (i.e. floor and flanks) were analysed. Plastics are the dominant litter component (72%), followed by lost fishing gear, disregarding their composition (17%), and metal objects (8%). Most of the observed litter seems to be land-sourced. It reaches the ocean through wind transport, river discharge and after direct dumping along the coastline. While coastal towns and industrial areas represent a permanent source of litter, tourism and associated activities relevantly increase litter production during summer months ready to be transported to the deep sea by extreme events. After being lost, fishing gear such as nets and long-lines has the potential of being harmful for marine life (e.g. by ghost fishing), at least for some time, but also provides shelter and a substrate on which some species like cold-water corals are capable to settle and grow. La Fonera and Cap de Creus canyons show the highest mean concentrations of litter ever seen on the deep-sea floor, with 15,057 and 8090 items km-2, respectively, and for a single dive litter observed reached 167,540 items km-2. While most of the largest concentrations were found on the canyon floors at water depths exceeding 1000 m, relatively little litter was identified on the canyon walls. The finding of litter 'hotspots' (i.e., large accumulations of litter) formed by mixtures of land- and marine-sourced litter items and natural debris such as sea urchin carcasses evidences an efficient transport to the floor of mid and lower canyon reaches at least. High-energy, down canyon near-bottom flows are known to occur in the investigated canyons. These are associated to seasonal dense shelf water cascading and severe coastal storms, which are the most energetic hydrodynamic processes in the study area thus becoming the best candidates as main carriers of debris to the deep. The fact that the investigated canyons have their heads at short distance (<4 km) from the shoreline enhances their ability to trap littoral drift currents and also to convey the signal of the above-mentioned high-energy events to the deep, including their litter load. This study contributes to assess the origin and transport mechanisms of litter to the deep sea as well as its potential impact on deep-sea ecosystems.

  7. Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia

    PubMed Central

    Dittmann, Sabine; Sorokin, Shirley J.; Hendrycks, Ed

    2015-01-01

    Two South Australian canyons, one shelf-incising (du Couedic) and one slope-limited (Bonney) were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1) significantly differ by water mass, (H2) show significant regional differences and (H3) differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01) among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water) (H1). Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2), over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3). However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m), suggestive of heightened currents within the canyons that influence community composition there. At 1000–1500 m, the canyon interiors were depauperate, typical of V-shaped canyons elsewhere. The large number of species captured, given the relatively low sampling effort and focus on the larger macrofauna, support previous studies that identify the South Australian coast as a high biodiversity area. PMID:26618354

  8. Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia.

    PubMed

    Conlan, Kathleen E; Currie, David R; Dittmann, Sabine; Sorokin, Shirley J; Hendrycks, Ed

    2015-01-01

    Two South Australian canyons, one shelf-incising (du Couedic) and one slope-limited (Bonney) were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1) significantly differ by water mass, (H2) show significant regional differences and (H3) differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥ 1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to 1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01) among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water) (H1). Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2), over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3). However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m), suggestive of heightened currents within the canyons that influence community composition there. At 1000-1500 m, the canyon interiors were depauperate, typical of V-shaped canyons elsewhere. The large number of species captured, given the relatively low sampling effort and focus on the larger macrofauna, support previous studies that identify the South Australian coast as a high biodiversity area. PMID:26618354

  9. The Role of Internal Waves in the Generation of Intermediate and Bottom Nepheloid Layers Within and Around the Guadiaro Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Puig, P.; Palanques, A.; Guillen, J.; El Khatab, M.

    2002-12-01

    Nepheloid layers distribution within and around the Guadiaro submarine canyon (northwestern Alboran Sea) was identified using closely-spaced CTD/transmissometer profiles collected during two hydrographic surveys. A well defined pattern of particulate matter distribution consisting in surface, intermediate and near-bottom nepheloid layers was observed. Intermediate and bottom nepheloid layers were always observed within the canyon and in the adjacent continental slope, spanning mainly from 200 to 500 m depth. As part of this study, a currentmeter with a turbidimeter was deployed in the lower section of the Guadiaro Canyon at 600 m depth, 25 meters above the seafloor. Spectral analysis of time series indicated that the currents, temperature and turbidity within the canyon fluctuate principally at semi-diurnal tidal frequencies. Increases of water turbidity were associated with down-canyon current velocities and temperature increases. This behavior suggests the presence of semi-diurnal internal tides affecting the near-bottom suspended sediment concentration along the canyon axis. High-resolution bathymetry from the study area was used to evaluate the internal wave reflection conditions at semi-diurnal tidal frequency for the entire continental slope region. Critical slope conditions were reached at the upper continental slope and along the canyon axis, coinciding with the region were nepheloid layers were observed. This evidence indicates that the generation of intermediate and bottom nepheloid layers within and around the Guadiaro Canyon can result from the interaction of internal waves and the seafloor morphology.

  10. Gravity anomaly caused by the mud diapirs off southwest Taiwan and its implication to the development of the submarine canyons

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Hsu, Shu-Kun; Huang, Yuan-Ping; Chen, Song-Chuen

    2015-04-01

    Both the overpressure and buoyancy effects are generally used to account for the formation of submarine mud volcanoes (MVs) and mud diapirs (MDs). According to the distribution of the MDs and structural features, the compressive tectonic stress should play an important role on the formation of the MDs in the offshore area of southwest Taiwan. Onland Taiwan, the Tainan and Chungchou anticlinal structures (associated with MD) reveal positive gravity anomalies. The MDs in offshore southwest Taiwan are considered to be more active than onshore diapirs. However, the gravity nature of the submarine MDs is not clear. In 2012 and 2013, we have collected shipboard gravity data using R/V Ocean Researcher I in the offshore area of southwest Taiwan. By removing the gravimetric effect from the water-sediment interface and the regional gravity effect along the profiles, we find that the gravity contrasts of the MDs with respect to the surrounding strata are generally positive. The results seem conflict with the buoyant force that triggers the upward motion of the MDs. The positive density contrasts of the MDs can further indicate the relatively rigid rocks which influence the development of the Kaoping and the Fangliao Canyon.

  11. Muscular and hepatic pollution biomarkers in the fishes Phycis blennoides and Micromesistius poutassou and the crustacean Aristeus antennatus in the Blanes Submarine Canyon (NW Mediterranean).

    PubMed

    Solé, Montserrat; Hambach, Bastian; Cortijo, Verónica; Huertas, David; Fernández, Pilar; Company, Joan B

    2009-07-01

    Submarine canyons are regarded as a sink for pollutants. In order to determine if this theory applied to deep-sea species from an important fishing ground (the Blanes submarine canyon) located in the NW Mediterranean, we sampled the commercial fish Phycis blennoides and Micromesistius poutassou and the crustacean Aristeus antennatus. Specimens were sampled inside and outside (in the open continental slope) the submarine canyon; both are regarded as potentially affected by exposure to different anthropogenic chemicals. Several pollution biomarkers in muscle (activity of cholinesterases) and liver/hepatopancreas (catalase, glutathione S-transferases, carboxylesterases, ethoxyresorufin O-deethylase in fish or mixed function oxygenase (MFO)-related reductases in crustacean, and lipid peroxidation levels) were measured. Chemical analysis of the persistent organic pollutants, namely polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) was also performed on the fish and crustacean muscle. Biomarker activities and levels were discussed in relation to pollutant exposure, habitat, and parameters including sex, size, and species. Biochemical responses and chemical analysis of PCBs evidenced interspecies differences as well as sex and size-related ones, mainly in A. antennatus. An indication of higher exposure to pollutants inside the canyon was observed, which was more clearly reflected in the fish than in the crustacean. However, further research is required to confirm this observation. PMID:18941829

  12. Subaqueous grain flows at the head of Carmel Submarine Canyon, California

    USGS Publications Warehouse

    Dingler, J.R.; Anima, R.J.

    1989-01-01

    Very coarse sand is the predominate material on the beach, adjacent shelf, and upper canyon-head slopes, while silt and clay cover the surface below a water depth at about 35 m. On angle-of-repose slopes in the upper canyon head, downslope-coarsening deposits are similar to a type of sediment gravity flow deposit formed by grain flows (sand avalanches). Using three sand fractions that were dyed different fluorescent colors, scuba divers generated sand avalanches that produced deposits similar to the natural deposits. -from Authors

  13. Characterization of submarine canyon bathymetries in northern Ionian Sea, Italy, using sediment geochemical variation induced by transportation distance and basin depth

    NASA Astrophysics Data System (ADS)

    Francesco, Perri; Tohru, Ohta; Salvatore, Critelli

    2015-07-01

    Geochemical data of marine mud sediments collected from the Esaro, Neto and Corigliano canyons in the northern Ionian Sea (southern Italy) were investigated in order to characterize canyon bathymetry types. Mud sample compositions analyzed by the principal component analysis (PCA) provided useful information for the morphology of the depositional area of the northern Ionian Sea. The use of sediment geochemical data as well as transportation distance and depth as input variables for PCA enabled the extraction of following latent variables: basin depth (PC1), sedimentation rate (PC2) and transportation distance (PC3). Based on these results, we further developed geochemical indices that can estimate basin depth (F1), sedimentation rate (F2) and transportation distance (F3); these functions can be solely calculated from the elemental concentration data of the mud samples. Since these F1, F2 and F3 functions are mathematically independent variables, they facilitate more precise characterization of individual canyon types. That is, the Esaro Canyon is regarded as a sediment-starved deep canyon characterized by a single source area; the Neto Canyon can be seen as a deeply sloped submarine apron system and sediments are mainly supplied by the sediment gravity flows; the Corigliano Canyon is characterized by multiple sources and moderately sloped system, whose sediments disperse mainly by traction currents. These interpretations are concordant with the basin bathymetry of the studied area. Therefore, F1, F2 and F3 functions might be applicable to any oceanic basins.

  14. Sedimentary processes at submarine canyons in the Palomares Margin: Approach from swath bathymetry and high resolution side-scan sonar images.

    NASA Astrophysics Data System (ADS)

    Perez-Hernandez, Silvia; Comas, Menchu; Escutia, Carlota

    2010-05-01

    The continental slope of the Palomares Margin (South Iberian Margin, Western Mediterranean) is dissected by submarine canyons. Previous works on the Palomares Margin have been focused mainly on structural studies related to the Gibraltar Arc geodynamics, but the understanding of sedimentary and erosive processes shaping the margin and their control factors have received few attention till now. We present here morphologic features of the two mayor canyons in the Palomares Margin: the Gata and the Alías-Almanzora canyons, and interpret these characteristics in terms of sedimentary processes. Our study is built on swath bathymetry (Simrad EM-120), and deep-towed side-scan sonar (MAK-1M) data. Both canyons incise from the continental shelf of the Palomares Margin conducting sediment transfer by down-canyon gravity flows to the continental rise. The Gata Canyon is 64 km long, and headed by three tributary canyons. The Alías-Almanzora Canyon, which locates about 50 km to the north of the Gata Canyon, is 73 km long and headed by four tributary canyons facing rivers. The side-scan sonar images reveal erosion, transport and sedimentation processes along both canyon-valleys. Erosive bedforms are reliable evidence for the persistence of bottom currents (speed > 1 m s-1) along the thalwegs. The V-shaped of the Gata Canyon, confined by basement seamounts, suggests that turbidity currents have been the most important erosive mechanism and mass-wasting could be the dominant process to favour retrogressive sediment failures. Gullies with a herringbone pattern have been observed at the Alías-Almanzora valley; these forms are interpreted as derived from river-flooding events and/or from water-currents development at the continental shelf. Sediment waves observed at the Alías-Almanzora canyon-mouth can be related to events of contour bottom currents at the base of slope. Relative sea-level variations induced either by tectonic processes (Palomares margin uplift) or Mediterranean eustatic sea-level changes, or both, are considered significant control factors on the evolution of these canyons. Considering the tectonic setting of the studied region, we favour that the Pliocene-to-Present tectonic uplift recognized in the Palomares Margin is the major cause driving the development of these canyons. Acknowledgments: This study was supported by projects CTM2009-07715, TOPOMED-CGL2008-03474-E/BTE and CONSOLIDER-INGENIO2010-CSD2006-00041Projects (MICINN and FEDER funding, Spain) and RNM3713, RNM215 (PAI, Junta de Andalucía funding, Spain.

  15. Geological exploration in an East Coast submarine canyon from a research submersible

    USGS Publications Warehouse

    Trumbull, J.V.A.; McCamis, M.J.

    1967-01-01

    Large talus blocks litter the flat floor of Oceanographer Canyon at a depth of 1460 meters; they indicate down-axis mass transport of floor sediment at an unknown time and rate. From 1460 to 1310 meters the sidewall is covered by unconsolidated sediment lying at 35?? to 40?? from the horizontal. An outcrop of Pleistocene or younger sediment at 1460 meters is probably a remnant of a former fill.

  16. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

    PubMed

    Huvenne, Veerle A I; Tyler, Paul A; Masson, Doug G; Fisher, Elizabeth H; Hauton, Chris; Hühnerbach, Veit; Le Bas, Timothy P; Wolff, George A

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin. PMID:22194903

  17. A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge in Submarine Canyon

    PubMed Central

    Huvenne, Veerle A. I.; Tyler, Paul A.; Masson, Doug G.; Fisher, Elizabeth H.; Hauton, Chris; Hühnerbach, Veit; Le Bas, Timothy P.; Wolff, George A.

    2011-01-01

    Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked – quite literally – and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin. PMID:22194903

  18. Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon

    PubMed Central

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298

  19. Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.

    PubMed

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298

  20. Defining biological assemblages (biotopes) of conservation interest in the submarine canyons of the South West Approaches (offshore United Kingdom) for use in marine habitat mapping

    NASA Astrophysics Data System (ADS)

    Davies, Jaime S.; Howell, Kerry L.; Stewart, Heather A.; Guinan, Janine; Golding, Neil

    2014-06-01

    In 2007, the upper part of a submarine canyon system located in water depths between 138 and 1165 m in the South West (SW) Approaches (North East Atlantic Ocean) was surveyed over a 2 week period. High-resolution multibeam echosounder data covering 1106 km2, and 44 ground-truthing video and image transects were acquired to characterise the biological assemblages of the canyons. The SW Approaches is an area of complex terrain, and intensive ground-truthing revealed the canyons to be dominated by soft sediment assemblages. A combination of multivariate analysis of seabed photographs (184-1059 m) and visual assessment of video ground-truthing identified 12 megabenthic assemblages (biotopes) at an appropriate scale to act as mapping units. Of these biotopes, 5 adhered to current definitions of habitats of conservation concern, 4 of which were classed as Vulnerable Marine Ecosystems. Some of the biotopes correspond to descriptions of communities from other megahabitat features (for example the continental shelf and seamounts), although it appears that the canyons host modified versions, possibly due to the inferred high rates of sedimentation in the canyons. Other biotopes described appear to be unique to canyon features, particularly the sea pen biotope consisting of Kophobelemnon stelliferum and cerianthids.

  1. Relationship between environment and the occurrence of the deep-water rose shrimp Aristeus antennatus (Risso, 1816) in the Blanes submarine canyon (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Sardà, F.; Company, J. B.; Bahamón, N.; Rotllant, G.; Flexas, M. M.; Sánchez, J. D.; Zúñiga, D.; Coenjaerts, J.; Orellana, D.; Jordà, G.; Puigdefábregas, J.; Sánchez-Vidal, A.; Calafat, A.; Martín, D.; Espino, M.

    2009-09-01

    We performed a multidisciplinary study characterizing the relationships between hydrodynamic conditions (currents and water masses) and the presence and abundance of the deep-water rose shrimp Aristeus antennatus in a submarine canyon (Blanes canyon in the NW Mediterranean Sea). This species is heavily commercially exploited and is the main target species of a bottom trawl fishery. Seasonal fluctuations in landings are attributed to spatio-temporal movements by this species associated with submarine canyons in the study area. Despite the economic importance of this species and the decreases in catches in the area in recent years, few studies have provided significant insight into the environmental conditions driving shrimp distribution. We therefore measured daily A. antennatus catches over the course of an entire year and analyzed this time series in terms of daily average temperature, salinity, mean kinetic energy (MKE), and eddy kinetic energy (EKE) values using generalized additive models and decision trees. A. antennatus was captured between 600 and 900 m in the Blanes canyon, depths that include Levantine Intermediate Water (LIW) and the underlying Western Mediterranean Deep Water (WMDW). The greatest catches were associated with relatively salty waters (38.5-38.6), low MKE values (6 and 9 cm 2 s -2) and moderate EKE values (10 and 20 cm 2 s -2). Deep-water rose shrimp occurrence appears to be driven in a non-linear manner by environmental conditions including local temperature. A. antennatus appears to prefer relatively salty (LIW) waters and low currents (MKE) with moderate variability (EKE).

  2. From Kings Peak to the Delgado submarine canyon: Tracking littoral inputs to the deep sea at the Mendocino Triple Junction, California

    NASA Astrophysics Data System (ADS)

    Davidson, C. J.; Di Fiori, R. V.; Smith, M. E.; Mueller, E. R.

    2011-12-01

    Gravel coarse enough to overcome viscous damping and impact bedrock underwater is thought prerequisite for incision of submarine canyons, yet with few exceptions, canyons off the California coast have headwalls >2 km offshore at the shelf edge and below storm wave base. This suggests effective disconnection from modern coarse littoral sediment fluxes, and implies they are relict Pleistocene features only actively incised during glacial periods. North of the Transverse Ranges only five submarine canyons approach shore closer than 500 m, and are coincident areas of rapid uplift. Although canyons occur adjacent to major upland-draining streams that transport coarse sediment, submarine canyon headwalls are often laterally offset from stream mouths by ~1-2 km. Coarse stream sediment thus requires littoral transport to enter canyon heads and induce incision. To better understand the evolution of coarse sediment through the littoral system, we measured the texture and composition of coarse sediment in streams and beaches directly onshore of the Delgado submarine canyon, which lies offshore of the fastest uplifting segment of the King Range and onshore the Mendocino Triple Junction. Adjacent to the Delgado Canyon inlet, coarse (d50 > 360 mm) sediment enters the littoral zone from three streams, and is transported alongshore in a predominantly southeast direction. Stream-derived alluvium is comprised of a poorly to moderately sorted mixture of angular to subrounded clasts of well-cemented sandstone (d50 = 256-725 mm) and fissile siliciclastic mudstone (d50 = 90-256 mm). Well sorted and rounded beach gravels adjacent to stream mouths are similarly coarse, and clasts larger than 1 m diameter extend 200-400 meters eastward from stream mouths. In contrast, sediment entering the littoral zone from hillslope erosion between streams is finer (d50 ~16 mm) and is exclusively comprised of pervasively-folded siliciclastic mudstone. Immediately adjacent the Delgado canyon headwall, beach sediments are nearly two orders of magnitude finer than sediment at stream mouths (d50 = 16 mm). However, sandstone clasts are coarser (d50 = 32 mm), comprise ~30% of the total mass, and approximately 10% of these clasts exceed 128 mm in diameter. The mudstone fraction in contrast is much finer (d50 = 4 mm). Particles finer than 0.25 mm represent less than 10% of beach sediment, consistent with effective removal of fines from the littoral environment. Lithologic contrast between sandstone and mudstone rock types is the basis for a multi-lithologic downstream fining model that routes sediment through the littoral system. Inputs of sediment are calculated according to upstream catchment area for 200 m segments of coastline and scaled according to lithologically based erosion rates, with differential diminuation as it is routed through the littoral zone. Initial model results indicate that differential abrasion of mudstone clasts relative to sandstone clasts is important to achieving grain size and lithologic distributions observed at the canyon head, and the presence of clasts >100 mm diameter ~1 km from their input via stream to the littoral zone provides tools needed for incision submarine bedrock.

  3. Megalodicopia hians in the Monterey submarine canyon: Distribution, larval development, and culture

    NASA Astrophysics Data System (ADS)

    Havenhand, Jon. N.; Matsumoto, George I.; Seidel, Ed

    2006-02-01

    The exclusively deep-sea ascidian family Octacnemidae comprises several genera in which the oral siphon has hypertrophied to form two large lips which create an "oral hood" capable of capturing motile prey. Megalodicopia hians is typical of this carnivorous family and has been reported to prey upon small epibenthic crustaceans. Distribution of M. hians in the Monterey Canyon system (36°45'N, 122°00'W) (California) was determined with remotely operated vehicles. M. hians was found sparsely to depths of at least 3800 m throughout the canyon; however, abundance was greatest within the oxygen-minimum zone (400-800 m). Eggs, sperm, and recently fertilized embryos were obtained repeatedly from adults returned to the laboratory in vivo, indicating that this species free-spawns routinely. Overall egg diameter (ovum plus chorion, plus follicle cells) was 175-190 μm—considerably smaller than previously reported for this species. Embryonic development at temperature and oxygen concentrations equivalent to the oxygen-minimum zone was 2-4 d and, embryos gave rise to typical phlebobranch "simple" tadpole larvae. Larval period was extremely variable, and settlement/metamorphosis occurred up to 3 months post-hatching. These results are discussed within the context of settlement-site selection and fertilization ecology of the species.

  4. Deposition rates, mixing intensity and organic content in two contrasting submarine canyons

    NASA Astrophysics Data System (ADS)

    García, R.; van Oevelen, D.; Soetaert, K.; Thomsen, L.; De Stigter, H. C.; Epping, E.

    2008-02-01

    The hydrographically different conditions characterising the Western Iberian Margin (NE Atlantic) and the Gulf of Lions (Mediterranean) may play an important role in determining the biogeochemical characteristics of the sediments. To investigate this, we compared the Nazaré and Cap de Creus canyons, and their respective adjacent open slopes in terms of the organic carbon (C org) contents, chlorophyll- a (chl- a) concentrations, C:N and chl- a:phaeopigment ratios, and also in terms of modelled mixing intensities, chl- a and 210Pb deposition and background concentrations in sediments. Chlorophyll- a and 210Pb profiles were fitted simultaneously with a reactive transport model to estimate mixing intensity, deposition and background concentrations. Further, to account for the possibility that the decay of chl- a may be lower in the deep sea than in shallow areas, we estimated the model parameters with two models. In one approach (model 1), the temperature dependent decay rate of chl- a as given by Sun et al. [Sun, M.Y., Lee, C., Aller, R.C. (1993) Laboratory Studies of Oxic and Anoxic Degradation of chlorophyll- a in Long-Island sound sediments. Geochimica et Cosmochimica Acta, 57, 147-157] for estuaries was used. In the other approach (model 2), an extra parameter was estimated to derive the chlorophyll- a degradation rate. An F-test, taking into account the different number of parameters in the models, was used to single out the model that significantly fitted the data best. In most cases, the model parameters were best-explained with model 1, indicating the empirical relationship by Sun et al. (1993) is a valid means to estimate the chlorophyll- a degradation rate in deep sea sediments. To assess the robustness with which the model parameters were estimated we provide a first application of Bayesian analysis in the modelling of tracers in sediments. Bayesian analysis allows calculating the mean and standard deviation for each model parameter and correlations among parameters. The model parameters for stations for which 210Pb and chlorophyll- a profiles were available were robustly fitted as evidenced by an average coefficient of variation of 0.22. C org contents, chl- a concentrations, chl- a:phaeo ratios, mixing intensities, depositions and background concentrations of chl- a and 210Pb indicated that the Cap de Creus canyon and adjacent slope were less active in terms of organic matter accumulation and burial than the Nazaré canyon and respective open slope.

  5. 78 FR 67086 - Safety Zone, Submarine Cable Replacement Operations, Kent Island Narrows; Queen Anne's County, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). 4. Public Meeting We... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone, Submarine Cable Replacement...

  6. Swept away by a turbidity current in Mendocino submarine canyon, California

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Paull, C. K.

    2014-11-01

    We present unique observations and measurements of a dilute turbidity current made with a remotely operated vehicle in 400 m water depth near the head of Mendocino Canyon, California. The flow had a two-layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89 m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event.

  7. Sediment transport off Bangladesh: the power of tropical cyclones recorded in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Meyer, I.; Kudrass, H.; Palamenghi, L.

    2011-12-01

    Marine sediments offshore Bangladesh are mainly supplied by the Ganges-Brahmaputra river system and are accumulated on the shelf of Bangladesh. The average sediment discharge of the world's biggest river system is estimated to be 0.8-1 billion tons per year. The shallow shelf is cut by a steep and up to 1000 m deep anaerobic canyon, called the "Swatch of No Ground", which acts as a sediment trap. An extremely high annual sedimentation flux of 20-45 cm was determined for the last 50 years by 137Cs and 210Pb measurements. In order to investigate the sediment transport in the Bay of Bengal a marine sediment core was taken from the mid-part of the Swatch of No Ground (21°18N/89°34E) and analyzed for element composition and grain-size distributions. Results show a sequence of graded fine-sand-silt-clay layers. These sequences can be directly related to the historical record of tropical storms, which move across the northern Bay of Bengal during pre- and post-monsoon flood peak and mobilize huge amounts of the shallow marine and coastal sediments into turbid hyperpycnal water masses. Due to the anti-clockwise rotation of the cyclones and their northward path the main transport direction is westward. The coarse grained sediment, remobilized by storm waves, is supported by cyclone-induced currents toward the canyon while the fine grained fraction follows afterward supported by the storm swell plus the semi-diurnal tidal component. Despite the high riverine input the amount of sediment mobilized during normal weather conditions is minimal compared to the sediment mobilized by the cyclonic high-energy input. Similar cyclone-induced sediment transport probably also governs erosion and deposition in most tropical shelf areas affected by the monsoon regime.

  8. Spatial and temporal infaunal dynamics of the Blanes submarine canyon-slope system (NW Mediterranean); changes in nematode standing stocks, feeding types and gender-life stage ratios

    NASA Astrophysics Data System (ADS)

    Ingels, Jeroen; Vanreusel, Ann; Romano, Chiara; Coenjaerts, Johan; Mar Flexas, M.; Zúñiga, Diana; Martin, Daniel

    2013-11-01

    Despite recent advances in the knowledge of submarine canyons ecosystems, our understanding of the faunal patterns and processes in these environments is still marginal. In this study, meiobenthic nematode communities (from 300 m to 1600 m depth) obtained in November 2003 and May 2004 at eight stations inside and outside Blanes submarine canyon were analysed for nematode standing stocks (SSs), feeding types and gender-life stage distributions. Environmental data were obtained by sediment traps and current meters, attached to moorings (April 2003-May 2004), and sediments samples analysed for biogeochemistry and grain size (May 2004). In November 2003, nematode SSs decreased with increasing depth (367.2 individuals and 7.31 ?g C per 10 cm2 at 388 m water depth to 7.7 individuals and 0.18 ?g C per 10 cm2 at 1677 m water depth), showing a significant negative relation (abundance: R2 = 0.620, p = 0.020; biomass: R2 = 0.512, p = 0.046). This was not the case in May 2004 (283.5 individuals and 3.53 ?g C per 10 cm2 at 388 m water depth to 490.8 individuals and 4.93 ?g C per 10 cm2 at 1677 m water depth; abundance: R2 = 0.003, p = 0.902; biomass: R2 = 0.052, p = 0.587), suggesting a temporal effect that overrides the traditional decrease of SSs with increasing water depth. Both water depth and sampling time played a significant role in explaining nematode SSs, but with differences between stations. No overall differences were observed between canyon and open slope stations. Nematode standing stock (SS) patterns can be explained by taking into account the interplay of phytodetrital input and disturbance events, with station differences such as topography playing an important role. Individual nematode size decreased from November 2003 to May 2004 and was explained by a food-induced genera shift and/or a food-induced transition from a ‘latent’ to a ‘reproductive’ nematode community. Our results suggest that size patterns in nematode communities are not solely governed by trophic conditions over longer periods of time in relatively food-rich environments such as canyons. We hypothesize that food pulses in a dynamic and topographical heterogeneous environment such as canyons regulate nematode size distributions, rather than long-term food availability. Feeding type distributions in the Blanes Canyon did not clearly resemble those from other canyon systems, apart from the spring assemblage at one station in the head of the canyon.

  9. Delivery of Terrigenous Material to Submarine Fans: Biological Evidence of Local, Staged, and Possibly Full Canyon Sediment Transport Down the Ascension-Monterey Canyon System Off Central California, USA

    NASA Astrophysics Data System (ADS)

    McGann, M.

    2014-12-01

    Submarine canyons are instrumental in transporting sediment from coastal regions to deep-sea fans. Mean grain size, distribution, and sorting have been used to characterize these deposits, but they provide little information on where sediment transport was initiated or the delivery processes involved. Fortunately, the entrained biological constituents have unique environmental signatures that are more precise proxies for source areas than are mineral grains alone. They may identify a single biofacies deposit (SBD) resulting from local sediment transport such as storm waves, peak river discharge, breaking of internal waves, canyon wall sloughing, or hemipelagic deposition, or a displaced, multiple biofacies deposit (MBD) containing several biofacies where sediment is transported from one biofacies to another, is caught behind a slump that acts as a dam, remains there long enough for the local fauna to become established, and then this combined assemblage is transported further downslope when the dam breaks. Multiple episodes of this "staged" storage-and-release process occur sequentially so as to move the sediment progressively down the canyon. Rarely, exceptionally large triggers such as earthquakes, intense storm disturbances, and catastrophic failure of canyon walls result in full canyon flushing events, entraining numerous biofacies during a single rapid descent. These events can be differentiated in recent deposits by the presence of living specimens representing distinct biofacies or in historic records by dating individual biofacies within a turbidite. A 19,000 year record from the Ascension-Monterey Canyon system (core S3-15G, 36°23.53'N, 123°20.52'W; 3491 m) captured hemipelagic mud interspersed with turbiditic sand and silt transported to lower bathyal depths. The relative abundance of displaced benthic foraminifera was found to correlate positively with grain size (75% in cross-bedded turbiditic sands, 39% in laminated turbiditic sands, and 15% in turbiditic muds) and the 65 MBDs recovered originated from the estuarine/inner shelf to the upper middle slope. Sediment bypassing was evident and possibly full canyon flushing as well. Identifying allochthonous biological sediment constituents is a powerful tool in the investigation of sediment transport in submarine canyons.

  10. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA

    USGS Publications Warehouse

    Nosal, D.C.; Cartamil, D.C.; Long, J.W.; Luhrmann, M.; Wegner, N.C.; Graham, J.B.

    2013-01-01

    The demography, spatial distribution, and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon in La Jolla, California, USA, were investigated to resolve the causal explanations for this and similar shark aggregations. All sharks sampled from the aggregation site (n=140) were sexually mature and 97.1 % were female. Aerial photographs taken during tethered balloon surveys revealed high densities of milling sharks of up to 5470 sharks ha-1. Eight sharks were each tagged with a continuous acoustic transmitter and manually tracked without interruption for up to 48 h. Sharks exhibited strong site-fidelity and were generally confined to a divergence (shadow) zone of low wave energy, which results from wave refraction over the steep bathymetric contours of the submarine canyon. Within this divergence zone, the movements of sharks were strongly localized over the seismically active Rose Canyon Fault. Tracked sharks spent most of their time in shallow water (≤2 m for 71.0 % and ≤10 m for 95.9 % of time), with some dispersing to deeper (max: 53.9 m) and cooler (min: 12.7 °C) water after sunset, subsequently returning by sunrise. These findings suggest multiple functions of this aggregation and that the mechanism controlling its formation, maintenance, and dissolution is complex and rooted in the sharks' variable response to numerous confounding environmental factors.

  11. Large-scale stratigraphic architecture and sequence analysis of an early Pleistocene submarine canyon fill, Monte Ascensione succession (Peri-Adriatic basin, eastern central Italy)

    NASA Astrophysics Data System (ADS)

    Di Celma, Claudio; Teloni, Riccardo; Rustichelli, Andrea

    2014-04-01

    The Monte Ascensione succession (c. 2.65-2.1 Ma) is a well-exposed example of an exhumed submarine canyon fill embedded within slope hemipelagic mudstones. This gorge represented a long-lasting pathway for sediment transport and deposition and during the Gelasian delivered Apennine-derived clastic sediment to the adjacent Peri-Adriatic basin. A total of six principal lithofacies types, representing both canyon-confining hemipelagic deposits and canyon-filling turbidity current and mass-transport deposits, can be delineated in the studied sedimentary succession. The canyon-fill deposits display a marked cyclic character and the component lithofacies succeed one another to form at least fifteen fining-upward stratal units, which are interpreted to represent high-frequency, unconformity-bounded depositional sequences. Variability in the vertical repetition of constituent lithofacies allows the identification of three basic styles of sequence architecture that can be interpreted in terms of differing positions along a conceptual down-canyon depositional profile. An integrated chronology, based on biostratigraphic data and on palaeomagnetic polarity measurements, strongly supports a one-to-one correlation between the sequence-bounding surfaces and oxygen isotope stages G2-78, suggesting that the most feasible sequence-engendering mechanism is that of orbitally dictated glacio-eustatic changes in sea level, which regulated timing of sediment storage on the shelf and its redistribution beyond the shelf edge. One of the most significant aspects of this study is the demonstration that processes occurring within upper slope canyons can be expected to be strongly influenced by variations in sea level; that is, the erosional and depositional features evident in these deposits can be strongly controlled by allocyclic processes rather than autocyclic or random processes.

  12. Hazard assessment for a submarine landslide generated local-source tsunami from Kaikoura Canyon

    NASA Astrophysics Data System (ADS)

    DuBois, J.

    2012-04-01

    The Kaikoura Canyon, sediment sink for the Canterbury rivers north of Christchurch, comes to within 500 meters of shore at Goose Bay and accumulates approximately 1.5x106 m3 of sediment each year (Lewis and Barnes, 1999). This sediment, which has accumulated to about seventy meters in thickness (Walters et al., 2006), exhibits tensional fractures, is located in a tectonically active area and could result in catastrophic failure and potentially a local-source tsunami (Lewis and Banes, 1999; Lewis, 1998; Walters et al, 2006). Evidence suggests that this may have happened in the last two hundred years (Lewis, 1998; Lewis and Barnes 1999) and with a return period on the nearby Alpine and Hope faults also in the range of a one to two hundred years (Walters et al, 2006) could happen again relatively soon. A review of the historical record and oral traditions for Kaikoura shows that historically Kaikoura has been affected by 11 events of which 10 are from distant sources and one, though debatable, is possibly from a local source. There are some preserved traditions for the Kaikoura area. These taniwha stories from near Oaro and from the Lyell Creek have been repeated and changed though time though the general essence remains the same. These taniwha legends, though not conclusive, indicate a dangerous shoreline where people have been killed in the past, possibly by flooding or tsunami. Archaeological investigations at Kaikoura found evidence of a Maori occupational layers interrupted by water-worn stones, a "lens of clean gravel between occupation layers" and in other areas of the excavation, the gravels separate discontinuous periods of occupation (Fomison 1963; Foster, 2006). Additionally "pea-gravel" sized greywacke pebbles were found dispersed throughout sections of the South Bay shore platforms, though they were attributesd to slopewash (Duckmanton, 1974) this is less likely since the nearby hills are limestone. A geological investigation along the Kaikoura Coast, at five sites from South Bay to Oara, corroborates this. At four of the sites a similar greywacke pebble bearing layer was found which was not present at test sites to the North and South of the peninsula (Kiwa Rd Campsites and Claverly respectively). These deposits contain diatoms indicating marine provenance. Surveys of Kaikoura peninsula households and businesses showed low levels of preparedness for a local source event. In regards to local-source tsunamis the district council has indicated that they "are unpredictable [and] it is impractical to include rules to mitigate their effects. Instead, the Council is committed to a Civil Defence network which provides an educative role and which sets in place a process for dealing with the results of any tsunami" (Kaikoura District Plan, 2010). Plans and an education strategy need to be formulated and implemented. They need to address considerations such as the fact that about 60% of those surveyed expect some sort of siren warning and the limitations inherent in such a warning system along with signage and public tsunami hazard maps and evacuation zones.

  13. Sedimentology, architecture, and depositional evolution of a coarse-grained submarine canyon fill from the Gelasian (early Pleistocene) of the Peri-Adriatic basin, Offida, central Italy

    NASA Astrophysics Data System (ADS)

    Di Celma, Claudio

    2011-07-01

    The early Pleistocene stratigraphic succession of the Peri-Adriatic basin, eastern central Italy, records the filling of an elongate, N-S oriented piggy-back basin located east of the growing Apennine fold-thrust belt. During the Gelasian (2.588-1.806 Ma), large volumes of gravel, sand and mud derived from the emergent Apennines were redistributed into the basin through a number of slope erosional fairways. These sediment conduits are preserved in the rock record as a series of coarse-grained canyon-fill successions that provide an opportunity for assessing, from an outcrop perspective, how this type of deep-water depositional systems evolves and fills. The present study uses measured stratigraphic sections, photopanels, paleocurrent data, careful lithological mapping, and well-log data from a nearby exploration well to constrain the internal organization of one of these canyon fills, referred to herein as the Offida Canyon. A detailed facies analysis suggests that a variety of gravity-driven subaqueous flows were involved in sediment transport and deposition within the submarine canyon, including slumps, cohesive debris flows, and high- and low-density turbidity currents. Five main lithofacies reflecting both canyon-bounding slope deposits and canyon-filling turbidite and debrite depositional elements have been identified within the exposed succession: (i) clast-supported conglomerates (gravel-rich channel complexes); (ii) medium- to thick-bedded sandstones (overbank lobe); (iii) medium- to very thin-bedded sandstones and mudstones (levee-overbank); (iv) pebbly mudstones and chaotic beds (mudstone-rich mass-transport deposits); and (v) massive mudstones (hemipelagic background deposits). These lithofacies are organized in recurring successions and define fining-upward packages that are regarded as the deep-water expression of high-frequency depositional sequences. Each sequence comprises the sedimentary record of major phases of canyon activity and comprises the following surfaces and systems tracts, in ascending stratigraphic order: (i) a pronounced surface of erosion (sequence boundary) generated by efficient turbidity currents during a period of erosion and complete bypass of sediment to more basinward settings; (ii) a lowstand systems tract composed of a diverse assemblage of genetically related lithofacies (channel-complex conglomerates, levee sandy heterolithics, and overbank lobe sheet-like sandstones) laid down by turbidity currents largely bypassing the area; and (iii) a transgressive to forced regressive systems tract comprising mass-transport deposits produced by instability of shelf-edge staging areas and/or failure of canyon walls when coastal sediment sources were far from the shelf edge. Correlation between sequences and oxygen isotope curve suggests that the recurring fluctuations in sedimentary activity of the submarine canyon are related to the switching on and off of coarse clastic sediments to the slope in response to obliquity-driven (41 ky duration) glacio-eustatic sea-level oscillations, which modulated timing of sediment storage on the shelf and its redistribution beyond the shelf edge.

  14. Source Area of Earthquake- and Storm-Induced Turbidite Events in Submarine Canyons Along the Central California Coast Identified by Entrained Microfauna

    NASA Astrophysics Data System (ADS)

    McGann, M.

    2008-12-01

    Earthquakes, storm wave disturbances, and internal waves may cause localized sediment displacement and if intense enough, these disturbance events may result in full submarine canyon and fan channel flushing events. In submarine canyons along the central California coast, it is often assumed that these turbidity currents originate in the upper canyons below about 110 m water depth. However, the source area of these flows may actually range from the inner shelf to the slope, as identified by benthic foraminiferal assemblages entrained within the displaced sediments. Off central California, benthic foraminiferal faunas are assignable to six biofacies that can be used to identify the source area of displaced sediments: inner shelf (0-50 m), outer shelf (50-150 m), upper bathyal (150-500 m), upper middle bathyal (500-1,500 m), lower middle bathyal (1,500-2,000 m), and lower bathyal (>2,000 m). Sediment cores may yield information on turbidite deposition over millennial or longer time scales. Core S3- 15G from the western levee of Monterey fan valley (3,491 m depth) contains a 19,000-year record of hemipelagic and submarine fan overbank deposits. The sediments were deposited in 45 turbiditic sequences of sand and silt separated by hemipelagic mud. A minimum of 19 displaced species from a total count of 140 species identified were recovered from 65 turbiditic samples investigated. The relative abundance of allochthonous foraminifers was found to correlate positively with grain size. Sands of one of the two cross- bedded turbiditic (Tc) units recovered originated on the inner shelf and included faunal elements from all of the shelf and slope biofacies; the source of the other was the upper slope and included only the bathyal foraminifers. In both of these sands, 75% of the fauna was displaced. Of the 29 laminated turbiditic sand (Td) units, ten had faunal elements from all six biofacies, seven had only those from the slope, and the remaining had faunal elements from non-adjacent biofacies. On average, 9% of the fauna was displaced. Most of the 35 turbiditic mud (Tet) units included constituents of only three biofacies with 15% displaced specimens, whereas the 18 hemipelagic muds (Tep) had only rare (3%) allochthonous foraminifers.

  15. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    PubMed

    Miller, Robert J; Hocevar, John; Stone, Robert P; Fedorov, Dmitry V

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide. PMID:22470486

  16. Structure-Forming Corals and Sponges and Their Use as Fish Habitat in Bering Sea Submarine Canyons

    PubMed Central

    Miller, Robert J.; Hocevar, John; Stone, Robert P.; Fedorov, Dmitry V.

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide. PMID:22470486

  17. Shelf-slope exchanges associated with a steep submarine canyon off Calvi (Corsica, NW Mediterranean Sea): A modeling approach

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Goffart, A.; Hecq, J. H.; Djenidi, S.

    2001-09-01

    A three-dimensional, unsteady, nonlinear, high-resolution model is used to investigate the impact of the Calvi Canyon (NW Corsica) steep topography on the shelf-slope exchanges as well as on the circulation in the Calvi Bay in homogeneous winter and early spring conditions. A double ? coordinate system is considered in order to represent adequately the high depth gradients within the canyon. The studied region is under the influence of the West Corsica Current flowing northeastward along the NW Corsican coast (right-bounded flow). Model results show that the circulation in the Calvi Bay is determined by flow modifications in the canyon area. The mean horizontal flow is deviated southwestward upstream of the canyon to form an anticyclonic gyre in the western part of the Calvi Bay. Within the canyon the circulation is cyclonic leading to an offshore flow downstream of the canyon. Around the canyon rim, the cross-shelf currents become important, indicating that this region acts as a transition zone of high exchange between nearshore and offshore areas. Furthermore, the canyon topography generates high downwelling (upwelling) and downsloping (upsloping) velocities responsible for an intense vertical transport of material in the area. Numerical runs are performed for typical prevailing wind conditions. The wind is responsible for a drastic increase of cross-shore transports between the bay and the canyon area (3-4 times larger than in the no-wind case). SW winds induce a further enhancement of cross-shelf exchanges, whereas the effect of N-NE winds is to reduce exchange at the shelf break apart from the canyon head where an intense offshore flow occurs. Within the canyon, high vertical velocities are shown to be associated with high cyclonic vorticity which is enhanced (reduced) by the N-NE (SW) wind event. A comparison between model results and measured distributions of nitrate and chlorophyll a concentrations in the area shows the role played by this specific hydrodynamics as a strong constraint on the coastal pelagic ecosystem.

  18. Biophysical Factors Affecting the Distribution of Demersal Fish around the Head of a Submarine Canyon Off the Bonney Coast, South Australia

    PubMed Central

    Currie, David R.; McClatchie, Sam; Middleton, John F.; Nayar, Sasi

    2012-01-01

    We sampled the demersal fish community of the Bonney Canyon, South Australia at depths (100–1,500 m) and locations that are poorly known. Seventy-eight species of demersal fish were obtained from 12 depth-stratified trawls along, and to either side, of the central canyon axis. Distributional patterns in species richness and biomass were highly correlated. Three fish assemblage groupings, characterised by small suites of species with narrow depth distributions, were identified on the shelf, upper slope and mid slope. The assemblage groupings were largely explained by depth (ρw = 0.78). Compared to the depth gradient, canyon-related effects are weak or occur at spatial or temporal scales not sampled in this study. A conceptual physical model displayed features consistent with the depth zonational patterns in fish, and also indicated that canyon upwelling can occur. The depth zonation of the fish assemblage was associated with the depth distribution of water masses in the area. Notably, the mid-slope community (1,000 m) coincided with a layer of Antarctic Intermediate Water, the upper slope community (500 m) resided within the core of the Flinders Current, and the shelf community was located in a well-mixed layer of surface water (<450 m depth). PMID:22253907

  19. Architecture and development of a multi-stage Baiyun submarine slide complex in the Pearl River Canyon, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wu, Shi-Guo; Li, Qing-Ping; Wang, Da-Wei; Fu, Shao-Ying

    2014-08-01

    The Baiyun submarine slide complex (BSSC) along the Pearl River Canyon of the northern South China Sea has been imaged by multibeam bathymetry and 2D/3D seismic data. By means of maximum likelihood classification with slope aspect and gradient as inputs, the BSSC is subdivided into four domains, denoted as slide area I, II, III and IV. Slide area I is surrounded by cliffs on three sides and has been intensely reshaped by turbidity currents generated by other kinds of mass movement outside the area; slide area II incorporates a shield volcano with a diameter of approximately 10 km and unconfined slides possibly resulting from the toe collapse of inter-canyon ridges; slide area III is dominated by repeated slides that mainly originated from cliffs constituting the eastern boundary of the BSSC; slide area IV is distinguished by a conical seamount with a diameter of 6.5 km and a height of 375 m, and two slides probably having a common source that are separated from each other by a suite of residual strata. The BSSC is interpreted to be composed of numerous slide events, which occurred in the period from 10.5 to 5.5 Ma BP. Six specific factors may have contributed to the development of the BSSC, i.e., gas hydrate dissociation, gas-bearing sediments, submarine volcanic activity, seismicity, sedimentation rate and seafloor geomorphology. A 2D conceptual geological model combining these factors is proposed as a plausible mechanism explaining the formation of the BSSC. However, the BSSC may also have been affected by the Dongsha event (10 Ma BP) as an overriding factor.

  20. Estimation of wind forcing and analysis of near-inertial motions generated by a storm in a submarine canyon with an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Jordi, Antoni; Wang, Dong-Ping

    2015-02-01

    The impact of high-frequency winds on the generation and propagation of inertial currents in the Palamós submarine canyon (northwestern Mediterranean) during a severe storm on 9-16 November 2001 is evaluated in an ocean circulation model. Moored current meter time series collected in and around the canyon during the storm are assimilated with an ensemble adjustment Kalman filter (EAKF) to adjust wind forcing through a simultaneous state and parameter estimation approach. Winds are included as time-dependent parameters, which are updated in each assimilation step as part of the model state. A simulation forced by the estimated wind significantly improves simulation with winds from the atmospheric reanalysis (the RMS error reduction is about 50%). This is due to the higher energy for the estimated wind at inertial period in the clockwise rotating component, which enhances generation of near-inertial motions. The surface inertial energy however does not decay as rapidly compared to a simulation with data assimilation. It is suggested that the submesoscales, which are present in the data assimilated simulation, are effective in channeling a spatially heterogeneous vertical propagation of near-inertial motions.

  1. Mechanisms of vegetation-induced channel narrowing of an unregulated canyon river: Results from a natural field-scale experiment

    NASA Astrophysics Data System (ADS)

    Manners, Rebecca B.; Schmidt, John C.; Scott, Michael L.

    2014-04-01

    The lower Yampa River in Yampa Canyon, western Colorado serves as a natural, field-scale experiment, initiated when the invasive riparian plant, tamarisk (Tamarix spp.), colonized an unregulated river. In response to tamarisk's rapid invasion, the channel narrowed by 6% in the widest reaches since 1961. Taking advantage of this unique setting, we reconstructed the geomorphic and vegetation history in order to identify the key mechanisms for which, in the absence of other environmental perturbations, vegetation alters fluvial processes that result in a narrower channel. From our reconstruction, we identified a distinct similarity in the timing and magnitude of tamarisk encroachment and channel change, albeit with a lag in the channel response, thus suggesting tamarisk as the driving force. Within a decade of establishment, tamarisk effectively trapped sediment and, as a result, increased floodplain construction rates. Increasing tamarisk coverage over time also reduced the occurrence of floodplain stripping. Tamarisk recruitment was driven by both hydrologic and hydraulic variables, and the majority of tamarisk plants (84%) established below the stage of the 2-year flood. Thus, upon establishment nearly all plants regularly interact with the flow and sediment transport field. Our analyses were predicated on the hypothesis that the flow regime of the Yampa River was stationary, and that only the riparian vegetation community had changed. While not heavily impacted by water development, we determined that some aspects of the flow regime have shifted. However, this shift, which involved the clustering in time of extremely wet and dry years, did not influence fluvial processes directly. Instead these changes directly impacted riparian vegetation and changes in vegetation cover, in turn, altered fluvial processes. Today, the rate of channel change and new tamarisk recruitment is small. We believe that the rapid expansion of tamarisk and related floodplain construction that led to a narrower channel pushed the Yampa River into a new stable state, characterized by a relatively static channel.

  2. Are deep-sea organisms dwelling within a submarine canyon more at risk from anthropogenic contamination than those from the adjacent open slope? A case study of Blanes canyon (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Koenig, Samuel; Fernández, Pilar; Company, Joan B.; Huertas, David; Solé, Montserrat

    2013-11-01

    Due to their geomorphological structure and proximity to the coastline, submarine canyons may act as natural conduit routes for anthropogenic contaminants that are transported from surface waters to the deep-sea. Organisms dwelling in these canyon environments might thus be at risk of experiencing adverse health effects due to higher pollution exposure. To address this question, chemical and biochemical analyses were conducted on two of the most abundant deep-sea fish species in the study area, namely Alepocephalus rostratus and Lepidion lepidion, and the most abundant deep-sea commercial decapod crustacean Aristeus antennatus sampled inside Blanes canyon (BC) and on the adjacent open slope (OS). Persistent organic pollutants (POPs) levels, including polychlorinated biphenyl (PCB), dichlorodiphenyltrichloroethane (DDT) and derivatives, hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were determined in muscle tissue of selected samples from 900 m and 1500 m depth. Potential effects resulting from contaminant exposure were determined using hepatic biomarkers such as ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-deethylase (PROD), catalase (CAT), carboxylesterase (CbE), glutathione-S-transferase (GST), total glutathione peroxidase (GPX), glutathione reductase (GR) and superoxide-dismutase (SOD) enzyme activities and lipid peroxidation levels (LP). L. lepidion and A. antennatus tissues exhibited higher POP levels inside BC compared to the OS at 900 m depth. These findings were consistent with biomarker data (i.e. enzymatic response to presence of contaminant agents). Elevated xenobiotic-metabolizing (EROD and PROD) and antioxidant enzymes (CAT and GPX) indicated higher contaminant exposure in both species caught within BC. No difference in POP accumulation between sites was observed in L. lepidion at 1500 m depth, nor in biomarker data, suggesting that the pollution gradient was less pronounced at greater depths. This trend was further corroborated by the results obtained for A. rostratus at 1500 m depth. Hence, the present findings suggest the, at least temporary, existence of a pollution gradient between Blanes canyon and the open slope at shallower depths and this resulted in alterations of the physiology of deep-sea organisms dwelling within this area.

  3. Marine litter in the upper São Vicente submarine canyon (SW Portugal): Abundance, distribution, composition and fauna interactions.

    PubMed

    Oliveira, Frederico; Monteiro, Pedro; Bentes, Luis; Henriques, Nuno Sales; Aguilar, Ricardo; Gonçalves, Jorge M S

    2015-08-15

    Marine litter has become a worldwide environmental problem, tainting all ocean habitats. The abundance, distribution and composition of litter and its interactions with fauna were evaluated in the upper S. Vicente canyon using video images from 3 remote operated vehicle exploratory dives. Litter was present in all dives and the abundance was as high as 3.31 items100m(-1). Mean abundance of litter over rock bottom was higher than on soft substrate. Mean litter abundance was slightly higher than reported for other canyons on the Portuguese margin, but lower in comparison to more urbanized coastal areas of the world. Lost fishing gear was the prevalent type of litter, indicating that the majority of litter originates from maritime sources, mainly fishing activity. Physical contact with sessile fauna and entanglement of specimens were the major impacts of lost fishing gear. Based on the importance of this region for the local fishermen, litter abundance is expected to increase. PMID:26051154

  4. The community of deep-sea decapod crustaceans between 175 and 2600 m in submarine canyons of a volcanic oceanic island (central-eastern Atlantic)

    NASA Astrophysics Data System (ADS)

    Pajuelo, José G.; Triay-Portella, Raül; Santana, José I.; González, José A.

    2015-11-01

    The community structure and faunal composition of deep-sea decapod crustaceans in submarine canyons on the slope off Gran Canaria Island (Canary Islands, central-eastern Atlantic) were investigated. Samples were collected during five research cruises (115 stations) at depths between 175 and 2554 m. A total of 26387 decapod specimens, belonging to 24 families and 38 species, were collected with traps. A cluster analysis of the stations showed four distinct assemblages: (i) in the transition area between shelf and slope (175-302 m); (ii) on the upper slope (361-789 m); (iii) on the middle slope (803-1973 m); and iv) on the lower slope (2011-2554 m). The deep-sea decapod fauna of the Canary Islands is dominated by shrimp of the family Pandalidae, which make up more than 23% of the species. Within the Pandalidae, species of the genus Plesionika stand out as those of greatest abundance on the island slope. The greatest diversity of species was located on the upper slope. The standardized mean abundance and mean biomass for the transition zone between the shelf and slope and for the upper slope were nearly 5 times greater in abundance and 4 times greater in biomass than those estimated for the middle slope, and nearly 53 and 29 times greater for the lower slope, indicating a lower abundance and biomass at the shallower part of the insular slope. The mean weight per individual showed an increasing pattern with depth and an inverse pattern with the bottom temperature and salinity. The existence of depth boundaries around the Canary Islands is known to be closely linked to oceanographic conditions, determined by the water masses present in this archipelago explaining the discontinuities observed at depths of 800 and 2000 m. The boundary observed inside the bathymetric region of the Eastern North Atlantic Central Water can be related with the transition zone between the shelf and the slope of the island.

  5. High resolution morphobathymetric analysis and short-term evolution of the upper part of the Capbreton submarine canyon (south-east Bay of Biscay - French Atlantic coast)

    NASA Astrophysics Data System (ADS)

    Gillet, Hervé; Mazières, Alaïs; Mulder, Thierry; Cremer, Michel

    2013-04-01

    The Capbreton Canyon stands out by its deep incision through continental shelf and slope and its present turbidite activity. The head of the canyon is anthropically disconnected from the Adour River since 1310 AD, but is located close enough to the coast to allow a direct supply by longshore drift. Sedimentary processes in upper part of the Capbreton Canyon are poorly documented. Several evidences, including sandy slide scars in the head, suggest that this area plays a major role in triggering downstream gravity currents). However, no modern sedimentary activity in the upper canyon had so far been evidenced. Our study is based on the analysis and comparison of several sets of multibeam bathymetric data acquired in 1998, 2010 and 2012 (up to 1.5 m resolution). The morphobathymetric analysis brought the following key observations: - The upper part of the canyon is characterised by a meandering talweg underlined by two kinds of terraces: (1) small elongated terraces standing only 10 to 15 m above the talweg axis and (2) large terraces standing 45 to 100 m above the talweg axis. - The regular 1° longitudinal slope of the talweg is interrupted by several 10 m high knickpoints. - The floor of the talweg shows some rough areas scattered with transversal bedforms similar to the sediment waves described in the Monterey Canyon upper part (Smith et al, 2005). The morphological evolutions in the upper part of the canyon over the last 14 years especially affect the floor of the talweg: - Between 1998 and 2010, we observe a downstream succession of accretion areas (up to 11m thick) and erosion areas (reaching -25 m). The largest and highest terraces remain stable over this period, whereas the smallest and lowest elongated terraces show active sedimentation (+5 to +8 m). - Difference between 2010 and 2012 DEMs reveals three localized erosion spots corresponding to 200 m backward stepping of the knickpoints. Such observation confirms the active headward erosion in this part of the canyon. - Conversely, the flanks of this part of the canyon do not show significant evolution. We did not observe any large lateral slide such as the canyon flank collapse recently recognised in the upper part of the Monterey or Cap Lopez canyons. (1)Since the lateral sediment supply in the canyon seems to be limited (no significant evolution of the canyon wall), we consider that most of the sediments deposited in this area is supplied from the canyon head. (2)We propose that the lowest elongated terraces are the remnant of sandy slides confined in the upper talweg and later overdeepened by the regressive erosion. This process contrasts with the downstream part of the canyon, where the terraces are constructed by the spilling of turbidity current. (3)These results are consistent with the process evidenced in the head of the canyon and support the assumption that the turbidite processes in modern canyons are related to sandy mass sliding from the head of the canyon.

  6. Unusual occurrence and stratigraphic significance of the Glossifungites ichnofacies in a submarine paleo-canyon — Example from a Pliocene shelf-edge delta, Southeast Trinidad

    NASA Astrophysics Data System (ADS)

    Dasgupta, Sudipta; Buatois, Luis A.

    2012-08-01

    Sedimentary rocks belonging to the upper-slope shelf-margin delta of the Paleo-Orinoco River are present at the southeast coastline of Trinidad in the Columbus Basin. The Pliocene Mayaro Formation, exposed as foreshore cliffs, represents the wave-influenced delta front and mouth bar of this system. These deposits consist of thick to very thick hummocky cross-stratified sandstone beds and thin-bedded to laminated heterolithic sediments. They also contain abundant soft-sediment deformation structures and sparse well-preserved softground burrows (e.g. Ophiomorpha nodosa). Towards the north-central part of the outcrop, the delta front deposits are cut across by a paleo-canyon filled with younger mud-dominated prodeltaic sediments. The rare exposure of the canyon-wall exhibits an unusual occurrence of Glossifungites ichnofacies. Contrastingly distinct from archetypal examples, this monospecific suite contains a low abundance of firmground Thalassinoides filled with mud rather than sand. The tracemakers burrowed into a firm medium-grained sandy substrate of the delta front, and the burrows were subsequently passively filled by the mud from the overlying prodeltaic sediments filling the canyon. The deep-tier firmground Thalassinoides suite crosscuts the pre-existing softground trace fossils. Integration of ichnologic, sedimentologic and sequence-stratigraphic datasets indicates that the older delta front sediments are separated from the prodeltaic deposits by distinct episodes of fluctuating relative sea-level controlled by the basin-bounding growth-fault activities and the development of the canyon. Whereas the entire shelf-margin megasequence might have been deposited through a regional scale sea-level lowstand, the local fluctuations in accommodation space resulting from the growth-fault movements and the incision of the canyon were responsible for the shifting positions of the depositional architectural elements of the shelf-edge delta.

  7. Canyon dynamics and related sedimentary impacts off western Portugal

    NASA Astrophysics Data System (ADS)

    Vitorino, J.; Oliveira, A.; Silva, R.; Quaresma, L.; Marreiros, R.

    2003-04-01

    Submarine canyons are areas of increased exchanges between the continental shelf and the deep ocean. We present preliminary results from a multidisciplinary research focussing the dynamics of several canyon systems that occur along the Portuguese continental margin. The research is being conducted in the framework of EU project Eurostrataform and aims to understand the dominant aspects of the interaction between shelf/slope flows and canyons and to relate those aspects with the exportation of sediments from the shelf. The present work is intended to complement results from previous projects that were focussed on the quasi-inertial dynamics of the Portuguese canyon systems. Three contrasting systems are studied: (1) the Nazaré Canyon, a narrow and deep canyon which completely cuts the shelf, with no local riverine sources; (2) the Setubal-Lisbon canyon system, located in an area of complex topography and coastline configuration, with local riverine sources (Tagus and Sado rivers) and (3) the Oporto canyon, which is restricted to the outer shelf and affected by a major riverine source (Douro river). The ongoing program of observations includes multidisciplinary surveys (CTD, ADCP, suspended particle matter measurements, shallow seismic) and both long-term and short-term currentmeter moorings. The observations will cover both the summer upwelling regime as well as the highly energetic winter conditions. Process studies will combine observations and numerical modeling tools through the use of MOCASSIM system, which is presently being developed at Instituto Hidrografico. The system integrates several numerical models and is intended to characterise the wave and current conditions over the study areas.

  8. Attack submarines

    SciTech Connect

    Not Available

    1991-01-01

    This issue discusses missions for submarines, technology proliferation; implications for U.S. security; U.S. SSN-21 Seawolf versus other submarines; stability and arms control; nuclear propulsion and nuclear proliferation; air independent propulsion.

  9. The trophic biology of the holothurian Molpadia musculus: implications for organic matter cycling and ecosystem functioning in a deep submarine canyon

    NASA Astrophysics Data System (ADS)

    Amaro, T.; Bianchelli, S.; Billett, D. S. M.; Cunha, M. R.; Pusceddu, A.; Danovaro, R.

    2010-08-01

    Megafaunal organisms play a key role in ecosystem functioning in the deep-sea through bioturbation, bioirrigation and organic matter cycling. At 3500 m water depth in the Nazaré Canyon, NE Atlantic, very high abundances of the infaunal holothurian Molpadia musculus were observed. To quantify the role of M. musculus in sediment cycling, sediment samples and holothurians were collected using an ROV and in situ experiments were conducted with incubation chambers. The biochemical composition of the sediment (in terms of proteins, carbohydrates and lipids), the holothurians' gut contents and holothurians' faecal material were analysed. In the sediments, proteins were the dominant organic compound, followed by carbohydrates and lipids. In the holothurian's gut contents, protein concentrations were higher than the other compounds, decreasing significantly as the material passed through the digestive tract. Approximately 33±1% of the proteins were digested by the time sediment reached the mid gut, with a total digestion rate equal to 67±1%. Carbohydrates and lipids were ingested in smaller amounts and digested with lower efficiencies (23±11% and 50±11%, respectively). As a result, the biopolymeric C digestion rate was on average 62±3%. We estimated that the population of M. musculus could remove approximately 0.49±0.13 g biopolymeric C and 0.13±0.03 g N m-2 d-1 from the sediments. These results suggest that M. musculus plays a key role in the benthic tropho-dynamics and biogeochemical processes in the Nazaré Canyon.

  10. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  11. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Su, Ming; Xie, Xinong; Xie, Yuhong; Wang, Zhenfeng; Zhang, Cheng; Jiang, Tao; He, Yunlong

    2014-01-01

    The submarine canyons as the important element of the source to sink have attracted the widespread interests in studying their morphologic features, stratigraphic frames, depositional architectures, as well as the related depositional model, hydrodynamic simulation, and hydrocarbon exploration. The Central Canyon System, a large axial submarine canyon, in the Qiongdongnan Basin is developed in Neogene passive continental margin of northern South China Sea, which is paralleled to the shelf break with an "S-shaped" geometry and an NE-NEE orientation. Based on the integrated analysis of high-resolution 2D/3D seismic data and well log data, the whole canyon could be divided into three segments from west to east through its distinct morphological and depositional architecture characteristics, the head area, the western segment and the eastern segment. The canyon shows the classical U-shaped morphology in seismic profiles, and the infillings are composed of a suit of turbidite channel complex in the head area. In the western segment, the canyon demonstrates the sinuous geometry and multiple-shaped morphology in seismic profiles. Four complexes of turbidite channel and mass transport complex (MTC) are observed, which could constitute into two stratigraphic cycles. The canyon in the eastern segment shows V-shaped morphology with steep flanks and a narrow and straight course, which is composed of collapse deposits in the flanks and the sheet sand-MTC complex. The sediment supply, northern continental slope system, paleo-geomorphic characteristics and tectonic setting in the Qiongdongnan Basin are considered as the controlling factors on the development and evolution of the Central Canyon System, each of them have different influences in the three segments. The turbidite channel in the head area was triggered by the abundant sediment supply from western source together with the fault activity at 5.7 Ma of the Red River Fault. The evolution of the canyon in the western segment should be the combined effects of the turbidite channel from western source, the mass transport complex from the northern continental slope, and the paleo-seafloor geomorphology. In the eastern segment, the canyon should be constrained by the semi-closed subbasin in eastern Qiongdongnan Basin corresponding to the tectonic transformation at about 11.6 Ma. This unique submarine canyon in the Qiongdongnan Basin is suggested to be characterized by axial gravity flow, ascribing to different gravity deposits originated from different sediment supplies and the tectonic activities.

  12. Crustal deformation and submarine canyon incision in a Meso-Cenozoic first-order transfer zone (SW Iberia, North Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Pereira, Ricardo; Alves, Tiago M.

    2013-08-01

    Using a dense grid of high-quality 2D seismic profiles, dredge and outcrop data, the offshore prolongation of a first-order transfer zone, the Messejana-Plasencia Fault Zone (MPFZ), is explained within the context of oblique rifting between Southwest Iberia, Newfoundland, and West Tethys. The offshore MPFZ is shown to comprise a 5-10 km wide region of deformation, oblique to the continental margin, reactivated in the Mesozoic as part of a wider transcurrent domain, the São Vicente sub-basin. Here, the geometry of faults and strata denotes the generation of a pull-apart basin during the Jurassic-Early Cretaceous. In contrast, its Late Cretaceous to Cenozoic evolution favours left-lateral transpression during the counter-clockwise rotation and eastward migration of Iberia towards its present position. Erosion was subsequently enhanced in the São Vicente sub-basin due to the reactivation of syn-rift structures. By documenting the evolution of the São Vicente sub-basin, and adjacent MPFZ, this work demonstrates: 1) the temporal and spatial scales in which first-order transfer zones accommodate crustal movements during continental rifting and subsequent inversion episodes; 2) the generation of an extensive region of strain accommodation in the vicinity of the MPFZ, an observation with profound implications to future palaeogeographic reconstructions of the North Atlantic Ocean; and 3) that the São Vicente Canyon, the physiographic expression of the MPFZ, incised the margin as early as the latest Cretaceous-Paleocene, synchronously with the onset of tectonic uplift in Southwest Iberia. In such a setting, the São Vicente sub-basin and MPFZ formed important by-pass corridors for sediment sourced from proximal areas of the margin. At present, the MPFZ comprises a complex releasing-restraining bend accommodating important vertical and horizontal movements in Southwest Iberia. Based on earthquake data from similar transfer zones, the MPFZ should be able to generate large-magnitude earthquakes and potentially destructive tsunamis.

  13. Submarine landslide hazard off Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, S. K.; Tsai, C. H.; Doo, W. B.; Lin, S. S.

    2014-12-01

    In the northern margin of the western end of the Okinawa Trough, three major submarine channels running across the continental margin are distinctive. From east to west, they are the North Mein-Hua Submarine Canyon, Mein-Hua Submarine Canyon and the Keelung Valley. To the east of the Mein-Hua Submarine Canyon, the slope of the continental margin is quite gentle, implying that the risk of slope instability is low. However, between the Keelung Valley and the Mei-Hua Submarine Canyon, the slope is rather steep. We have conducted multi-channel reflection seismics, sub-bottom profilers and multi-beam bathymetry in this area. The results show two general trends of fracture or faulting. The NE-SW trending faults generally follow the major orientation of the Taiwan mountain belt. Thus, these faults could be reverse faults from the former collisional thrust faults to currently post-collisional normal faults. Another almost E-W trending faults are consistent with the N-S extending of the Southern Okinawa Trough. Because the most significant faulting in the northwest end of the study is probably associated with the offshore extension of the Kenchiao Fault or the Sanchiao Fault, we consider either of these two faults as the northeast boundary (headwall) of the potential submarine landslide. Taking the stability slope angle of 0.5 degree as the stable landslide slope as shown in the area to the northeast of the study area, we estimate the total volume of the potential submarine landslide could be 300 cubic kilometers. Such a landslide volume may generate a local tsunami and affect especially the northeast coast of Taiwan.

  14. Grand Canyon

    Atmospheric Science Data Center

    2014-05-15

    article title:  The Grand Canyon     View Larger Image Northern Arizona and the Grand Canyon are captured in this pair of Multi-angle Imaging SpectroRadiometer ... formats available at JPL December 31, 2000 - Grand Canyon and Lake Powell. project:  MISR ...

  15. White submarine

    NASA Astrophysics Data System (ADS)

    While not everyone gets to live in a yellow submarine, the scientific community may get to have a decommissioned U.S. Navy nuclear submarine dedicated to it. The Sturgeon class of submarines, which scientists say are the ideal choice for the project, will be coming up for decommissioning in this next decade. So the time is ripe, scientists say. Two weeks ago, oceanographers, submarine specialists, marine biologists, and geophysicists, among others met at AGU headquarters in Washington to discuss how to get the project in the water. If all goes well, the project would be the "biggest thing that ever happened in ocean and Earth science," according to Lloyd Keigwin of the Woods Hole Oceanographic Institution, who convened the meeting. For example, the submarine could make many types of "compelling" research possible that can not be done now by other means, such as studies in the Arctic that may have significant bearing on global change research, Keigwin says. However, the imposing hurdles that the project must overcome are as big as the opportunities it offers. Foremost, there is a question as to who will pick up the tab for such an endeavor.

  16. Submarine atmospheres.

    PubMed

    Knight, D R; Tappan, D V; Bowman, J S; O'Neill, H J; Gordon, S M

    1989-12-01

    Nuclear submariners live and work in an atmosphere composed of approximately 80% naturally occurring nitrogen, 19% oxygen (manufactured aboard ship), and a complex mixture of inorganic and organic contaminants. The concentrations of contaminants exist as a balance between the rates of production from human and operational activities and the rate of removal by engineering systems. The biological effects of inorganic gases, particularly carbon dioxide, have been extensively studied. Investigators are now attempting to define the composition and concentration of volatile organic compounds that accumulate during 90-day submergences. Medical studies have not conclusively shown that crewmembers incur adverse health effects from continuous exposures to the sealed atmospheres of nuclear submarines. PMID:2574918

  17. Submarine atmospheres

    SciTech Connect

    Knight, D.R.; Tappan, D.V.; Bowman, J.S.; O'Neill, H.J.; Gordon, S.M.

    1990-07-01

    Nuclear submariners live and work in an atmosphere composed of approximately 80% naturally occurring nitrogen, 19% oxygen (manufactured aboard ship), and a complex mixture of inorganic and organic contaminants. The concentrations of contaminants exist as a balance between the rates of production from human and operational activities and the rate of removal by engineering systems. The biological effects of inorganic gases, particularly carbon dioxide, have been extensively studied. Investigators are now attempting to define the composition and concentration of volatile organic compounds that accumulate during 9O-day submergences. Medical studies have not conclusively shown that crewmembers incur adverse health effects from continuous exposures to the sealed atmospheres of nuclear submarines.

  18. Development of the Astoria Canyon-Fan physiography and comparison with similar systems

    USGS Publications Warehouse

    Nelson, C.H.; Carlson, P.R.; Byrne, J.V.; Alpha, T.R.

    1970-01-01

    A detailed bathymetric study of Astoria Canyon and Astoria Fan provides a model for typical submarine canyon-fan systems. The present canyon head is 9 miles (17 km) west of the Columbia River mouth but buried Pleistocene channels appear to have connected the two features in the past. The canyon, which is distinguished by its relief, V-shaped profiles, and numerous tributaries, winds sinuously and is coincident with apparent structural trends across the continental shelf and slope. At the fan apex, the canyon mouth merges smoothly into Astoria Channel, which is characterized by its U-shaped profiles, lower walls of even height, and levee development. Astoria Channel and the fan valley at the base of the continental slope are the most recently active of a series of main fan valleys that appear to have: (1) progressively "hooked left"; (2) migrated from north to south across the fan during its formation; and (3) been partly responsible for the asymmetrical shape of the fan. The deep, narrow upper fan valleys that characterize the steep (> 1:100, or 0??35???) and rough (10-30 fathoms, or 18-55 m) upper fan surface break into distributaries on the middle fan, where there is the sharpest change in gradient. The main valleys become broader and shallower down the fan, while the generally concave fan surface grades to nearly a flat seafloor (to gradients < 1:1000, or 0??0.5???), (< 10 fathoms, or 18 m relief). Similarity of Astoria Canyon-Fan system with other deep-sea fan and alluvial fan systems, suggests the hypothesis that size of drainage basin, sediment size, and sediment load control the size, gradient, and valley development of any fan system. Data from bathymetry, seismic refraction stations, and sediment load of the Columbia River indicate that the cutting of Astoria Canyon and the deposition of the unconsolidated sediment layer forming Astoria Fan could have been accomplished during the Pleistocene. A similar history can be suggested for other major submarine canyon-fan systems. ?? 1970.

  19. Exploration models for submarine slope sandstones

    SciTech Connect

    Slatt, R.M.

    1986-09-01

    Recent published studies have demonstrated a far greater potential than previously recognized for submarine slope sandstones to contain significant oil and gas reserves in the Gulf Coast and elsewhere. Comparison of modern slopes with outcrop and subsurface analogs from several areas provided the framework for developing the following submarine slope sandstone exploration models: submarine canyon fill, slope gully/channel fill, slope spillover sand sheets, and intraslope basin fill. Submarine canyon fill is mainly shale, but sandstone beds that form stratigraphic traps may be present. Canyon shale fill juxtaposed against older sandstones can also form stratigraphic traps. Gully/channel fills are sandstones deposited on shallow-gradient slopes or ramps. The proximity of these sandstones to slope shales provides opportunities for stratigraphic traps to develop. Spillover sand sheets are resedimented from a shelf to a shallow-gradient slope and are associated with gully/channel fills. Intraslope basin fill is mainly shale, but elongate, sheetlike, or fan-shaped turbidite sandstones can provide stratigraphic traps. In all of these deposits, slope shales may be sufficiently enriched in organic carbon to be potential hydrocarbon source rocks; the potential for organic-rich shales to accumulate is highest in intraslope basin fill.

  20. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah

    USGS Publications Warehouse

    Miglia, K.J.; McArthur, E.D.; Redman, R.S.; Rodriguez, R.J.; Zak, J.C.; Freeman, D.C.

    2007-01-01

    When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F1 hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F1 hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F1 hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

  1. Canyon-related undulation structures in the Shenhu area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Qiao, Shaohua; Su, Ming; Kuang, Zenggui; Yang, Rui; Liang, Jinqiang; Wu, Nengyou

    2015-09-01

    The characteristics and origin of seafloor and subsurface undulations were studied in the Shenhu area, northern South China Sea using high-precision multibeam bathymetric map and high-resolution 2D seismic data. Two undulation structure fields associated with submarine canyons have been identified. One structure field is developed in canyon head areas and shows waveform morphology on the bathymetric map. The waves display wavelengths and wave heights of 1-2 km and 20-50 m, respectively, generally occur on slopes from 1° to 5°, and extend for about 15 km approximately parallel to the canyon's orientation. The other structure field is developed in the lower segment or mouth area of submarine canyons. In general, the waves display wavelengths and wave heights of 1.3-3.6 km and 50-80 m, respectively, occur on slopes of approximately 2°, and extend for more than 20 km. Sediment cores from crests between submarine canyons in the lower segment include predominantly silts and clayey silts. Since undulations in the two fields show differences in morphology and internal architectures, two different formation mechanisms are suggested. Seafloor undulations in the head area of submarine canyons are interpreted as creep folds induced by soft sediment deformation. Undulation structures in the lower segment or the mouth area of submarine canyons are sediment waves constructed by turbidity currents overflows along the submarine canyons.

  2. Morphology, structures and seismic characters of the Chimei Canyon-Fan system offshore eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, Y. H.; Liu, C. S.

    2014-12-01

    The Chimei submarine canyon located offshore east Taiwan shows a very distinct morphology, it has a wide (9 km in average) and very smooth bottom, a submarine fan was formed at its foot but the northern part of the submarine fan has been washed away. This canyon starts from the Hsiukuluan River estuary, runs eastward across the eastern flank of the Luzon arc, and merges into the Hualien Canyon near the western end of the Ryukyu Trench off NE Taiwan. The Chimei canyon can be divided into two parts: the upper section is a U-shaped canyon with broad and flat bottom and high walls; the lower section meanders across a deep sea fan in the Huatung basin. In this study, we use multichannel seismic reflection profile data together with high resolution bathymetry data to study the topography, basement structures and seismic sequences along the canyon path and in the distal fan. The U-shaped upper Chimei canyon seems to be carved not only by submarine erosion but also by structural uplift of both side-walls. The canyon walls are up to 950 m above the canyon floor, strata truncations along both sides of the canyon walls and many slumps are observed. The upper Chimei canyon was developed along basement lows of the highly deformed Luzon arc, and runs across a series of N-S trending thrusts. Acoustic basement and lower strata are deformed and folded, and young sediments cover the canyon floor smoothly. We find many thrusts run across the upper Chimei canyon, but now the canyon bottom is smooth. The concave thalweg profile seems to reach the equilibrium between erosion and deposition. An east-vergent thrust fault lies at the foot of the eastern flank of the Luzon arc which separates the upper section from the lower section of the Chimei Canyon. The lower section of the Chimei canyon flows over a submarine fan where eight seismic sequences are recognized. The two lower sequences show continuous, parallel to sub-parallel sheet-drape seismic facies which fill the basement low. They are interpreted to be old deep sea sediment. The six upper sequences show chaotic and mounded seismic facies, and also transparent and continuous parallel seismic strata. We interpret those are characters of submarine fan. Some large slumps occurred at northern half of the submarine fan. The northern half of the submarine fan has been eroded away already by canyon and slumps.

  3. Canyon-confined pockmarks on the western Niger Delta slope

    NASA Astrophysics Data System (ADS)

    Benjamin, Uzochukwu; Huuse, Mads; Hodgetts, David

    2015-07-01

    Fluid flow phenomena in the deepwater Niger Delta are important for the safe and efficient exploration, development and production of hydrocarbons in the area. Utilizing 3D seismic data from the western Niger Delta slope, we have identified pockmarks that are confined within a NE-SW oriented submarine canyon system that has been active since the early Quaternary. The pockmarks, subdivided into 'canyon-margin' pockmarks and 'intra-canyon' pockmarks, on the basis of their plan-form distribution patterns, are found to be spatially and stratigraphically related to stratigraphic discontinuities created by erosion cuts associated with the submarine canyon system. We infer that stratigraphic discontinuities provided pathways for fluid migration within the buried canyon system, allowing fluids from deeper parts of the basin to reach the seafloor as indicated by abundant pockmarks above the partly buried canyon. The transportation of fluids from deeper parts of the basin into the buried segment of the canyon system was facilitated by carrier beds expressed as high amplitude reflection packages and by extensional normal faults. The prevalence of the 'canyon margin' pockmarks over the 'intra-canyon' pockmarks is attributed to the direct connection of the buried canyon margins with truncated reservoir facies in hydraulic connection with deeper reservoir facies. The formation of the 'intra-canyon' pockmarks is interpreted to have been limited by fluid flow disconnection often caused by stratigraphic alternation of sand-rich and shale-rich channel deposits that constitute the canyon fill. Muddy canyon fill units act as baffles to fluid flow, while connected sandy infill units constitute pathways for fluid migration. Occurrence of pockmarks throughout the length of the submarine canyon system is an indication of shallow fluid flow within buried reservoir facies. Systematic alignment of seafloor pockmarks are clues to buried reservoirs and provide insights into reservoir architecture which could be crucial in frontier exploration of buried deepwater canyons reservoirs and for risk assessment of development activities on top of submarine canyons. A single mega pockmark linked by a gas chimney to a deeper anticlinal structure was discovered to the north of the canyon system. This structure may be indicative of subsurface geo-pressures close to the fracture gradient, highlighting a significant drilling hazard in this part of the study area.

  4. Pleistocene entrenched valley/canyon systems, Gulf of Mexico

    SciTech Connect

    Steffens, G.S.

    1986-09-01

    The Mississippi Submarine Canyon is the seaward extension of the late Wisconsin entrenched alluvial valley. Geophysical and geologic data provide evidence for the continuity of the Mississippi entrenched valley, the Timbalier channel, and the submarine canyon. The Mississippi entrenched valley/canyon system is one of several systems recognized in the Pleistocene section of offshore Louisiana. Most of these systems were produced by the ancestral Mississippi River. They typically exhibit a three-gradient profile with their maximum erosional relief at the preexisting shelf margin. The canyons extend onto the pre-existing shelf for 20 to 50 mi, with erosion commonly exceeding 1000 ft. All of these systems delivered large quantities of sediment to the Pleistocene slope and abyssal plain. The fan deposits are the products of sediment passing through and being removed from the entrenched valley/canyon systems.

  5. North Atlantic slope and canyon study. Volume 1. Executive summary

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. The long-term current observations made in Lydonia and Oceanographer Canyons show that the current regime in these topographic features differs from the adjacent slope, and between canyons. Sediments near the head (depths shallower than about 600 m) in both Lydonia and Oceanographer are frequently resuspended. This frequent resuspension may allow the sediments to strip pollutants from the water column. Currents in Oceanographer Canyon are stronger and the sediments coarser than in Lydonia at comparable depths.

  6. Characteristics of the potential submarine landslide in the Keelung Shelf, off northern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Lo; Hsu, Shu-Kun; Tsai, Ching-Hui; Doo, Wen-Bin; Lin, Hsiao-Shan

    2015-04-01

    In the northern margin of the westernmost Okinawa Trough, three obviously submarine canyons exist. From east to west, they are the North Mein-Hua Submarine Canyon, Mein-Hua Submarine Canyon and the Keelung Valley. Their orientations are NW-SE across the continental margin. The Okinawa Trough is a backarc basin and is under backarc extension. To better understand the extensional tectonics, we have conducted multi-channel reflection seismics, sub-bottom profilers and multi-beam bathymetry in the westernmost area. In the east, the slope of the continental margin between the Mein-Hua Submarine Canyon and the North Mei-Hua Submarine Canyon is very gentle, implying that the current risk of major slope failure is low. However, between the Keelung Valley and the Mei-Hua Submarine Canyon, the slope is rather steep and the submarine landslide hazard may exist. Our results show two general trends of fracture or faulting. The NE-SW trending faults generally follow the major orientation of the Taiwan mountain belt. Thus, these faults could be reverse faults from the former collisional thrust faults to currently post-collisional normal faults. Secondly, the E-W trending faults are consistent with the N-S extending of the Southern Okinawa Trough. It is probably associated with the offshore extension of the Kenchiao Fault or the Sanchiao Fault. These two faults could be regarded as the headwalls of the potential large submarine landslides. However, our reflection seismic profiles do not show a clear failure surface or a decollement. It could imply that the movement type of the potential submarine landslides could be of spreads.

  7. Potential for SGD induced submarine geohazard off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Su, C.; Lin, C.; Cheng, Y.; Chiu, H.

    2013-12-01

    The submarine groundwater discharge (SGD) is not only play important roles on material exchange between land and sea, it may also trigger liquefaction process and induce further submarine geohazards in coastal zone. Since 2006, Southern Taiwan was experienced a series of natural hazards including earthquakes and typhoon that induced severe landslides and flooding and caused huge human lives and economics losses. These natural hazards also touched off submarine cable-break incidents off southwestern Taiwan from Gaoping Slope to the northern terminus of the Manila Trench. After the 2006 Pingtung Earthquake, the local fishermen reported disturbed waters at the Fangliao submarine canyon head. Although many researches conjectured the disturbed waters may caused by the eruption of submarine volcanoes which has been widely discovered off the southwestern Taiwan. The subbottom profiles reveal a series of faults and liquefaction strata exist near the head of Fanliao submarine canyon and acoustically transparent sediments with doming structures also observed at the adjacent area. Moreover, we also found pockmarks with acoustic blanking under it on the Gaoping Shelf and a series of gaseous pluming gushed from the seafloor was also observed in the shallow waters. Integrate all these data, we may reasonably infer the disturbed waters which reported by the fishermen may caused by the liquefaction process on the seafloor. In addition to geophysical observations, natural geochemical tracers (radon and radium) in conjunction with side-scan sonar were used to evaluate the distribution of SGD system in the study area. All the evidences indicate that the large earthquake in conjunction with high pore fluid pressures in the surface sediment might have easily triggered liquefaction process and generated large debris flow and swept the submarine cables away from the Fangliao submarine canyon head to the abyss.

  8. Obstacle avoidance sonar for submarines

    NASA Astrophysics Data System (ADS)

    Dugas, Albert C.; Webman, Kenneth M.

    2002-05-01

    The Advanced Mine Detection Sonar (AMDS) system was designed to operate in poor environments with high biological and/or shallow-water boundary conditions. It provides increased capability for active detection of volume, close-tethered, and bottom mines, as well as submarine and surface target active/passive detection for ASW and collision avoidance. It also provides bottom topography mapping capability for precise submarine navigation in uncharted littoral waters. It accomplishes this by using advanced processing techniques with extremely narrow beamwidths. The receive array consists of 36 modules arranged in a 15-ft-diameter semicircle at the bottom of the submarine sonar dome to form a chin-mounted array. Each module consists of 40 piezoelectric rubber elements. The modules provide the necessary signal conditioning to the element data prior to signal transmission (uplink) through the hull. The elements are amplified, filtered, converted to digital signals by an A/D converter, and multiplexed prior to uplink to the inboard receiver. Each module also has a downlink over which it receives synchronization and mode/gain control. Uplink and downlink transmission is done using fiberoptic telemetry. AMDS was installed on the USS Asheville. The high-frequency chin array for Virginia class submarines is based on the Asheville design.

  9. Hot Canyon

    ScienceCinema

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  10. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  11. The Initiation of Submarine Debris Flow after 2006 Pingtung Earthquake Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Liu, J. T.; Chiu, H. T.; Li, S. J.

    2014-12-01

    On 26?27 December 2006, a series of submarine cables were damaged offshore southwestern Taiwan from Gaoping Slope to the northern terminus of the Manila Trench. The cable breakages were caused by gravity flows which triggered by the Pingtung earthquake doublet occurred on 26 December 2006 at 20:26 (21.9°N, 120.6°E; ML 7.0) and 20:34 (21.97°N, 120.42°E; ML 7.0) offshore of Fangliao Twonship and meanwhile the local fishermen reported disturbed waters at the head of Fangliao submarine canyon. Although many researchers conjectured the disturbed waters may cause by the eruption of submarine volcanoes which has been widely discovered off the southwestern Taiwan, the actual mechanism is still unclear. In previous studies, a series of faults, liquefaction strata, pockmarks and acoustically transparent sediments with doming structures were observed at the head of Fanliao submarine canyon and may highly related to the submarine groundwater discharge off southwestern Taiwan. Recently, further multi-beam surveys were conducted at the east of Fangliao submarine canyon head and the result shows large area of seafloor subsidence after Pingtung Earthquake. The area of subsidence is over 60 km2 with maximum depth around 5 meters. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable was failed (CH-US CN-W2-1: 22°13.287'N, 120°33.722'E) after Pingtung Earthquake. All the evidences point out the large earthquake might triggered liquefaction process and generated large debris flow and swept the submarine cables away from the Fangliao submarine canyon head to the abyss.

  12. Tectonic control of Cretaceous gravity deposits and submarine Valleys in the subalpine basin, French western Alps

    SciTech Connect

    Philippe, J.; Beaudoin, B.; Fries, G.; Parize, O.

    1988-08-01

    The Late Jurassic-Early Cretaceous series of the French subalpine basin is characterized by alternating limestones and marls with numerous, thick gravity-flow deposits (carbonate debris flows and slumps, siliciclastic grain flows, turbidites). These gravity deposits originate from platforms and slopes and come through the basin via several parallel canyons and submarine valleys. Some carbonate (Berriasian) and siliciclastic (Aptian) deep-sea fans are built at the canyon mouth during intense activity of the canyons and reworking of the sediments. The tectonic control of the gravity deposits is demonstrated by the position and filling of the submarine valleys all along the Cretaceous. The submarine valleys correspond systematically to the lower part of extensional tilted blocks; the gravity deposits come along the main syn-sedimentary normal faults delimiting these tilted blocks. The gravity deposits go from one tilted block to another through some synsedimentary passes which are induced by slight folding, perhaps related to an early diapirism at some nodes of extensional faults. The canyon-like valleys are due to very strong erosion when a submarine valley cuts of the higher part of a tilted block. The gravity deposits are stacked atop each other and progressively fill the valleys. Thus the cutting and filling of the submarine valleys and canyons on occasions during the Early Cretaceous are explained by a permanent synsedimentary activity. These Jurassic and Cretaceous extensional structures are later reactivated by inversion during Tertiary compressional movements.

  13. North Atlantic slope and canyon study. Volume 2. Final report

    SciTech Connect

    Butman, B.

    1986-12-01

    A field program to investigate the currents and sediment transport along the outershelf and upper slope along the southern flank of Georges Bank was conducted between 1980 and 1984. A major part of the field experiment was conducted in Lydonia Canyon, a large submarine canyon which cuts northward about 20 km into the continental shelf from the shelfbreak. A smaller experiment was conducted in Oceanographer Canyon to compare the currents in these two major canyons. Long-term current observations were made at 20 locations in or adjacent to Lydonia Canyon, and at 9 stations on the continental slope. Detailed semi-synoptic hydrographic observations were made on 9 cruises. The currents associated with Gulf Stream warm core rings (WCR's) strongly affect the flow along the outer shelf and upper slope; eastward currents in excess of 75cm/s were associated with WCR's.

  14. Paint-Stirrer Submarine

    ERIC Educational Resources Information Center

    Young, Jocelyn; Hardy, Kevin

    2007-01-01

    In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical…

  15. Paint-Stirrer Submarine

    ERIC Educational Resources Information Center

    Young, Jocelyn; Hardy, Kevin

    2007-01-01

    In this article, the authors discuss a unique and challenging laboratory exercise called, the paint-stir-stick submarine, that keeps the students enthralled. The paint-stir-stick submarine fits beautifully with the National Science Education Standards Physical Science Content Standard B, and with the California state science standards for physical…

  16. Submarine cable route survey

    SciTech Connect

    Herrouin, G.; Scuiller, T.

    1995-12-31

    The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

  17. Submarine fans in a sequence stratigraphic framework

    SciTech Connect

    Posamentier, H.W.; Erskine, R.D.; Mitchum, R.M.; Vail, P.R.

    1987-05-01

    Submarine fans are fan- or cone-shaped turbiditic deposits formed in upper bathyal or deeper water depths. Within a sequence stratigraphic framework, these basin-floor turbidites can occur during lowstand-fan or lowstand-wedge systems tract time. During lowstand fan time, streams are rejuvenated and depocenters shift from the coastal plain to the upper slope, causing retrogradational slope failure and canyon formation. The sediment delivered here bypasses the canyon and continues down the slope as a succession of gravity flows and is deposited as fan-shaped turbiditic deposits at the base of the slope. Seismic and outcrop evidence suggest that these sand-prone deposits are abruptly introduced into the basin and are generally characterized by subtle external mounding and internal bidirectionally down lapping seismic reflections where seismically resolvable. Deep-water sediment deposited during this interval has no coeval shelf equivalent. During lowstand wedge time, streams cease down cutting and valleys which have been freshly incised begin to fill. Because coarse sediment will preferentially be deposited within these incised valleys, the sand-to-mud ratio delivered to the upper slope will be decreased and, consequently, there is an inherent difference between submarine fans deposited at this time and those deposited during lowstand fan time. Deposition during lowstand wedge time is characterized seismically by slope front fill or wedge-shaped geometries down lapping the earlier submarine fan (i.e., deposited during lowstand fan time). These shale-prone deposits are largely comprised of thinner-bedded turbidites as well as the occasional leveed channel.

  18. Distinct Benthic Community Trends Driven by Particle Transport and Deposition in Mid-Atlantic Bight Canyons, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Demopoulos, A. W.; Robertson, C. M.; Bourque, J. R.; Mienis, F.; Duineveld, G.; Ross, S.; Brooke, S.; Davies, A. J.

    2014-12-01

    The Mid-Atlantic Bight (MAB) is a well-studied region of the U.S. East coast continental margin, rich in submarine canyons. Baltimore and Norfolk canyons were studied during the multidisciplinary Atlantic Deepwater Canyons project through funding from BOEM, NOAA, and USGS. Sediment and water column properties were assessed in the context of canyon physical dynamics and ecosystem ecology. Sediment samples were collected by NIOZ box corer in 2012 and 2013 along canyon axes and comparative adjacent slopes at standardized depths. Sediments were analyzed for grain size, organic content, stable carbon and nitrogen isotopes, chlorophyll a, and benthic infauna. Water column properties were sampled using CTD transects, and benthic landers and moorings positioned along canyon axes. Significant differences in sediment transport regimes were found for each canyon where observed nepheloid layers corresponded to shifts in infaunal community structure. Significant community shifts were observed in stations at depths > 900m in Baltimore Canyon, coinciding with higher organic matter concentrations at depths below the nepheloid layer. In contrast, adjacent slope communities exhibited a more uniform infaunal assemblage where distinct zonation patterns by depth were observed. Preliminary data for Norfolk Canyon suggest very different sediment deposition rates in the canyon and also show clear differences between canyon and slope benthic communities. Geological processes and canyon topography coupled with organic inputs and disturbance events are clear factors in determining benthic infaunal diversity and standing stock dynamics in and around these canyons.

  19. Morphology and forcing agents of the Monterey Canyon System: a quantitative geomorphic analysis

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Aiello, I. W.; Melelli, L.; Seeber, L.; Sorichetta, A.

    2007-12-01

    Landforms are shaped by tectonics and climate, which control deformation, deposition, and erosion at the fluid/solid interface. The recent re-emergence of geomorphology was spurred by the realization that the shape of the land is not only the result of many processes, but it also affects them. Tectonics builds mountains and geomorphic agents and climate conditions modify them. Thus geomorphologic processes and tectonics are major agents of change and landform is the variable that links them, the expression of a steady-state equilibrium controlled by multiple feed-backs. Measuring and parameterizing the shape of the landscape is the first step in understanding many natural processes critical to environment, such as terrain instability and fluid circulation. Furthermore, a multidimensional parameterization of the land surface (e.g., geomorphic indices) is useful in comparing different landforms and in isolating the effect of specific factors, such as the level of tectonic activity. So far geomorphology has dealt primarily with land areas, but an expansion to the sub-aqueous environment is already in the making due to high-resolution bathymetry increase. This research compares submarine and land morphology as they manifest tectonics in a rapidly transform continental margin. To this end the research has analyzed high-resolution multibeam bathymetry to interpret modern submarine processes from a study of geomorphic change. This research is applied on the Monterey Bay (California) due to the complex geomorphology of both the Coast Ranges and the seafloor. Tectonic has controlled the evolution and the present geometry of the branches and meanders of the Monterey Canyon system, one of the largest submarine canyon systems in the world. In particular the Monterey Canyon is an erosional, presently active feature, which has resulted from both canyon cutting and mass wasting. The deeper parts of the canyon have been progressively offset from the headward part by strike-slip faulting, and are now located in northern Monterey Bay. In this context a clear understanding of the physical processes that trigger submarine slumps has been the basis of the research. The high-resolution multibeam record of the seafloor of the MBR collected by MBARI will be analyzed to measure the parameters describing the geometry of the submarine canyons of the Monterey Canyon System. Our quantitative geomorphologic analysis will include slope angle, sinuosity, and width of the canyon axis and of the thalweg. The interpretation of these geomorphologic parameters will help to define active processes along the submarine canyons of the MBR and to unveil the relationships between continental deformation and canyon formation in a transform continental margin. Moreover, to broaden constraints on geophysical properties and evolution of the area, we had used landform surface high resolution DEM.

  20. Topography within the axial channels of Monterey and Soquel Canyons

    NASA Astrophysics Data System (ADS)

    Lundsten, E.; Paull, C. K.; Caress, D. W.; Ussler, W.; Thomas, H.

    2009-12-01

    Ultrahigh resolution surveys have been conducted that outline the topography and near seafloor structure within the axial channels of Monterey and Soquel Canyons. Multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m at 50 m survey altitude) were collected using an autonomous underwater vehicle (AUV). An inertial navigation system combined with a doppler velocity sonar allows the AUV to fly through the sinuous canyons at 3 knots on a pre-programmed route while maintaining an altitude of 50 m above the bottom. The AUV has flown down through the sinuous canyons, passed where they join, to 1,900 m water depths, and obtained three or more overlapping swaths covering the axial channel floor and some of its adjacent flanks. One feature revealed in the multibeam bathymetry data are wave-like bedforms with wavelengths of 20 to 100 m and amplitudes up to 2.5 m oriented roughly perpendicular to the channel axis. These bedforms occur throughout the channel of Monterey Canyon. They are asymmetric with a steep face on the down-canyon side while the other face is nearly horizontal or dips up-canyon, and form crescent-shaped ridges oriented down-canyon. Combined with previous mapping of the upper end of Monterey Canyon by CSUMB, we now know that these features extend between 11 m and >1900 m water depths in Monterey Canyon. Repeat mapping shows that these bedforms change position between surveys. Sediment coring and experiments to track seafloor motion show that these changes occur during discrete mass transport events. In contrast the seafloor within the axis of Soquel Canyon is smooth. Chirp profiler data collected simultaneously with the multibeam data failed to resolve sub-bottom structures within the floor of Monterey Canyon, but show that the floor of Soquel Canyon contains up to15 m of horizontally layered fill. These differences are attributed to the processes within an active (e.g., Monterey) versus inactive (e.g., Soquel) submarine canyon and are hypothesized to be associated with the nature of the fill (cohesion-less sand and gravel versus cohesive fine sediments) within these canyons.

  1. Inter-bed fluid triggered slope failures of the Kaoping Canyon upstream area: Results from memorial R/V Ocean Researcher 5

    NASA Astrophysics Data System (ADS)

    Yeh, Yi-Ching; Shen, Tsung-Fu; Liu, Shao-Yung; Yu, Pai-Sen

    2015-04-01

    As a major pathway of the sediment transportation, the submarine canyons sculpture the seafloor then deposit sediments at the deep ocean. The submarine canyons could be classified to two categories: erosive or deposition based on geological environment or fluid flow down to the canyon. The erosive canyons often 'attack' the levee which may result in submarine landslides or mass transportations due to slope failure. Once slope failure occurs at geological weakness area such as gas hydrate dissociation zone, giant mass slumping will be triggered. These kinds of mass transportations will further develop turbidity current or hyperpycnal flow, which could damage the submarine cables or pipes. The giant mass transportation even triggers devastated tsunami. In this study, a latest swath bathymetric map was compiled by comprising seven cruises between December, 2012 and March 2013. The result shows that regressive erosion may take a place north of 500 meters contour (gas hydrate dissociation region), southwest off Taiwan. Moreover, high resolution seismic image (acquired by Edgetech SB-424 sub-bottom profiler) show that gas rich sediments co-exist with submarine landslide deposits in the edge of the upstream of Kaoping submarine canyon. It implies that slope failures in the study area might be caused by weaken sediment collapse.

  2. 4. DARK CANYON SIPHON VIEW ACROSS DARK CANYON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DARK CANYON SIPHON - VIEW ACROSS DARK CANYON AT LOCATION OF SIPHON. VIEW TO NORTHWEST - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  3. The marine soundscape of the Perth Canyon

    NASA Astrophysics Data System (ADS)

    Erbe, Christine; Verma, Arti; McCauley, Robert; Gavrilov, Alexander; Parnum, Iain

    2015-09-01

    The Perth Canyon is a submarine canyon off Rottnest Island in Western Australia. It is rich in biodiversity in general, and important as a feeding and resting ground for great whales on migration. Australia's Integrated Marine Observing System (IMOS) has moorings in the Perth Canyon monitoring its acoustical, physical and biological oceanography. Data from these moorings, as well as weather data from a near-by Bureau of Meteorology weather station on Rottnest Island and ship traffic data from the Australian Maritime Safety Authority were correlated to characterise and quantify the marine soundscape between 5 and 3000 Hz, consisting of its geophony, biophony and anthrophony. Overall, biological sources are a strong contributor to the soundscape at the IMOS site, with whales dominating seasonally at low (15-100 Hz) and mid frequencies (200-400 Hz), and fish or invertebrate choruses dominating at high frequencies (1800-2500 Hz) at night time throughout the year. Ships contribute significantly to the 8-100 Hz band at all times of the day, all year round, albeit for a few hours at a time only. Wind-dependent noise is significant at 200-3000 Hz; winter rains are audible underwater at 2000-3000 Hz. We discuss how passive acoustic data can be used as a proxy for ocean weather. Passive acoustics is an efficient way of monitoring animal visitation times and relative densities, and potential anthropogenic influences.

  4. Making a Submarine.

    ERIC Educational Resources Information Center

    Cornacchia, Deborah J.

    2002-01-01

    Describes Archimedes principle and why a ship sinks when it gets a hole in it. Suggests an activity for teaching the concept of density and water displacement through the construction of a simple submarine. Includes materials and procedures for this activity. (KHR)

  5. Bryce Canyon Natural Bridge

    USGS Multimedia Gallery

    The Bryce Canyon Natural Bridge. Technically, this is not a natural bridge, which forms when running water erodes a tunnel into a rock formation. Instead, this is a natural arch, similar to the ones in nearby Arches National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is...

  6. Bryce Canyon Natural Bridge

    USGS Multimedia Gallery

    Bryce Canyon's Natural Bridge is technically a natural arch, similar to those in the nearby Arches National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates...

  7. Bryce Canyon Sandstone

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  8. Bryce Canyon Hoodoos

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  9. Bryce Canyon Amphitheater

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  10. Bryce Canyon Amphitheater Panorama

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  11. Bryce Canyon Amphitheater Hoodoos

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  12. Bryce Canyon Hoodoo

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  13. Bryce Canyon Cedars

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  14. Bryce Canyon Amphitheater

    USGS Multimedia Gallery

    Views along the Queen's Garden Trail in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sands...

  15. Hoodoos of Bryce Canyon

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  16. Bryce Canyon Benchmark

    USGS Multimedia Gallery

    A USGS elevation benchmark in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that ...

  17. Bryce Canyon Vistas

    USGS Multimedia Gallery

    Views along the Queen's Garden Trail in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sands...

  18. Bryce Canyon's Cedar Valley

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  19. Bryce Canyon Hoodoos

    USGS Multimedia Gallery

    Sandstone hoodoos in Bryce Canyon National Park. In the background, Grand Staircase-Escalante National Monument can be seen. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different er...

  20. Bryce Canyon Hoodoos

    USGS Multimedia Gallery

    Views along the Queen's Garden Trail in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sands...

  1. Hoodoos of Bryce Canyon

    USGS Multimedia Gallery

    Views along the Queen's Garden Trail in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sands...

  2. Bryce Canyon Hoodoo

    USGS Multimedia Gallery

    Views along the Queen's Garden Trail in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sands...

  3. Bryce Canyon Rim

    USGS Multimedia Gallery

    The rim of Bryce Canyon, viewed from Rainbow Point. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms ...

  4. Glen Canyon Dam

    USGS Multimedia Gallery

    The USGS Glen Canyon Adaptive Management Working Group took a trip in August from Glen Canyon Dam to Lees Ferry on Friday, August 31, 2012. This spot at Four Mile (four miles downstream from the dam) is where a lot of people fish: There were fishermen that day that claimed to have c...

  5. Shear-wave velocity of slope sediments near Hudson Canyon from analysis of ambient noise

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Ten Brink, U. S.; Collins, J. A.; McGuire, J. J.; Flores, C. H.

    2014-12-01

    We present new ambient noise data that help constrain the shear strength of marine sediments on the continental slope north of Hudson Canyon on the U.S. Atlantic margin. Sediment shear strength is a key parameter in models of potentially tsunamigenic, submarine slope failures, but shear strength is difficult to measure in situ and is expected to evolve in time with changes in pore pressure. The ambient noise data were recorded by 11 short-period, ocean-bottom seismometers and hydrophones deployed in a ~1 by 1.5 km array for ~6 months on the continental slope. These high frequency (~0.1 - 50 Hz), narrow-aperture data are expected to record noise propagating as interface waves and/or resonating in the upper ~500 m of sediment. Propagation of interface waves is controlled by the shear-wave velocity of the sediment, which we measure by calculating lag-times in cross-correlations of waveforms recorded by pairs of receivers. These measurements of shear-wave velocity will be used to constrain shear strength. The data also appear to record wind-generated noise resonating in layered sediment. We expect this resonance to also be sensitive to shear-wave velocity, and spectral analysis and modeling of harmonics may provide a second constraint on sediment shear strength. Both the correlogram- and spectral-based measurements can be made using hour- to day-long segments of data, enabling us to constrain temporal evolution of shear-wave velocity and potential forcing mechanisms (e.g., tidal and storm loading and submarine groundwater discharge) through the ~6 month deployment.

  6. Coastal and submarine instabilities distribution in the tectonically active SW margin of the Corinth Rift (Psathopyrgos, Achaia, Greece)

    NASA Astrophysics Data System (ADS)

    Simou, Eirini; Papanikolaou, Dimitrios; Lykousis, Vasilios; Nomikou, Paraskevi; Vassilakis, Emmanuel

    2014-05-01

    The Corinth Rift, one of the most active rifts in the world as local extension trending NE-SW reaches the amount of 14±2 mm/yr, corresponds to one of the largest zones of seismically active normal faulting. The formation, growth and migration southwards of the prevailing fault systems, which evolve simultaneously with the intense morphogenetic processes, are overprinted in the age, facies and thickness of the Plio-Pleistocene sequences constructing the south margin of the western Gulf of Corinth. The dominant fault blocks, defined by east-west trending, north dipping normal faults, are accompanied by several morphological features and anomalies, noticed in both the terrestrial and the marine environment. Our main aim has been to examine how the tectonic evolution, in combination with the attendant fierce erosional and sedimentary processes, has affected the morphology through geodynamic processes expressed as failures in the wider coastal area. High resolution multibeam bathymetry in combination with the available land surface data have contributed to submarine and subaerial morphological mapping. These have been used as a basis for the detection of all those geomorphic features that indicate instabilities probably triggered, directly or indirectly, by the ongoing active tectonic deformation. The interpretation of the combined datasets shows that the southwestern margin of the Corinth Rift towards Psathopyrgos fault zone is characterized by intense coastal relief and a narrow, almost absent, continental shelf, which passes abruptly to steep submarine slopes. These steep slope values denote the effects of the most recent brittle deformation and are related to coastal and submarine instabilities and failures. High uplift rates and rapid sedimentation, indicative of the regional high-energy terrestrial and submarine environment, are subsequently balanced by the transportation of the seafloor currents, especially where slope gradients decrease, disintegrating the probable slide deposits. Conversely, the nearby active -but older- tectonic structure of the Heliki fault, is related to less steep slopes. Canyons are extensive and sediment mass failures appear as retrogressive landslide scars identified near the headwalls. The mass movements evolving near the coastal and shallow marine areas may have a high tsunamigenic potential, which depends on the volumes of the mobilized materials. As a special interest has been arisen nowadays concerning risk assessment and management, the results of our study can be further evaluated from a geohazard perspective.

  7. Active submarine volcano sampled

    USGS Publications Warehouse

    Taylor, B.

    1983-01-01

    On June 4, 1982, two full dredge hauls of fresh lava were recovered from the upper flanks of Kavachi submarine volcano, Solomon Islands, in the western Pacific Ocean, from the water depths of 1,200 and 2,700 feet. the shallower dredge site was within 0.5 mile of the active submarine vent shown at the surface by an area of slick water, probably caused by gas emissions. Kavachi is a composite stratovolcano that has been observed to erupt every year or two for at least the last 30 years (see photographs). An island formed in 1952, 1961, 1965, and 1978; but, in each case, it rapidly eroded below sea level. The latest eruption was observed by Solair pilots during the several weeks up to and including May 18, 1982. 

  8. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are the consequence. Its geometrical configuration and timing is different from submarine slides on other glaciated continental margins. Thus, it raises the question whether slope stability within the Arctic Ocean is governed by processes specific to this environment. The extraordinary thick slabs (up to 1600 m) that were moved translationally during sliding rise the question on the nature of the weak layers associated with this process. Especially theories involving higher pore pressure are being challenged by this observation, because either extreme pore pressures or alternative explanations (e.g. mineralogical and/or textural) can be considered. To assess the actual submarine slope stability and failure potential in the Arctic Ocean, we propose to drill and recover weak layer material of the HYM from the adjacent intact strata by deep drilling under the framework of Integrated Ocean Drilling Program. This is the only method to recover weak layer material from the HYM, because the strata are too thick. We further propose to drill into the adjacent deforming slope to identify material properties of the layers acting as detachment and monitor the deformation.

  9. Submarine-fan facies associations of the Eocene Butano Sandstone, Santa Cruz mountains, California

    USGS Publications Warehouse

    Nilsen, T.H.

    1984-01-01

    The Eocene Butano Sandstone was deposited as a submarine fan in a relatively small, partly restricted basin in a borderland setting. It is possibly as thick as 3000 m and was derived from erosion of nearly Mesozoic granitic and older metamorphic rocks located to the south. Deposition was at lower bathyal to abyssal water depths. The original fan may have been 120-to 160-km long and 80-km wide. Outcrops of submarine-canyon, innerfan, middle-fan, and outer-fan facies associations indicate that the depositional model of Mutti and Ricci Lucchi can be used to describe the Butano Sandstone. ?? 1984 Springer-Verlag New York Inc.

  10. Unmanned submarine vehicle

    SciTech Connect

    Hervieu

    1984-05-15

    An unmanned self-propelled submarine vehicle is provided with a material exchanger-container having a vertical axis of symmetry aligned with both the vehicle's center of gravity and its center of volume. The exchanger-container has a moveable diaphragm which divides the interior into two compartments, a lower ballast compartment equipped with an unloading apparatus and an upper compartment adapted to receive collected material. Ballast is unloaded during material loading to maintain the weight of the vehicle constant during loading.

  11. Constraining the timing of turbidity current driven sediment transport down Monterey Canyon, offshore California

    NASA Astrophysics Data System (ADS)

    McGann, M.; Stevens, T.; Paull, C. K.; Ussler, W.; Buylaert, J.

    2013-12-01

    Turbidity currents are responsible for transport of sand down the Monterey Submarine Canyon, offshore California, from the shoreline to Monterey Fan. However the timing of sediment transport events and their frequencies are not fully understood despite recent monitoring of canyon events and AMS 14C dating of foraminifera from hemipelagic sediments bracketing sand deposited during turbidity flows. Quartz optically stimulated luminescence (OSL) dating in sand sequences provides a complementary means of dating sand transport. OSL dates reflect the time interval since the sand grains were last exposed to sunlight. However, the technique has never been applied extensively to canyon sediments before. Here we report both quartz OSL ages of sand deposits and benthic foraminifera ages sampled from the axial channel within Monterey Submarine Canyon and Fan via ROV-collected vibracores. This allows a rare opportunity to directly test the frequency and timing of turbidity current events at different points in the canyon. We use both single-grain and small (~2 mm area) single aliquot regeneration OSL approaches on vibracore samples from various water depths to determine sand transport frequency. Within the upper canyon (<2,000 m water depths) the OSL data require sub-decadal to decadal transit times. Sand bearing fining upward sequences yielding middle Holocene to last few hundred year ages indicate turbidity currents occur at 150 to 250 year event frequencies within the fan channel out to 3,600 m water depth. We suggest that turbidity currents have been active during the current sea-level high stand and that the submarine fan has recorded turbidity currents over the entire Holocene. The increased age spread in single grain OSL dates with water depth provides evidence of sediment mixing and reworking during turbidity flows. Apparently, sand is stored within the canyon for various amounts of time while it is in route to its current location on the fan.

  12. Is Perceptual Narrowing Too Narrow?

    ERIC Educational Resources Information Center

    Cashon, Cara H.; Denicola, Christopher A.

    2011-01-01

    There is a growing list of examples illustrating that infants are transitioning from having earlier abilities that appear more "universal," "broadly tuned," or "unconstrained" to having later abilities that appear more "specialized," "narrowly tuned," or "constrained." Perceptual narrowing, a well-known phenomenon related to face, speech, and…

  13. Fourmile Canyon Fire

    USGS Multimedia Gallery

    The beginning of the Fourmile Canyon fire, which burned about 6,000 acres in Boulder County, Colorado, in September 2010. Storms after wildfire led to downstream water-quality impairment. Photo taken from Bear Peak, near Boulder, CO....

  14. Distribution and transport of suspended particulate matter in Monterey Canyon, California

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.; Eittreim, S.L.; Rosenfeld, L.K.; Schwing, F.B.; Pilskaln, C.H.

    2002-01-01

    From August 1993 to August 1994, six moorings that measure current, temperature, salinity, and water clarity were deployed along the axis of Monterey Canyon to study the circulation and transport of water and suspended particulate matter through the canyon system. The moorings occupied three sites that are morphologically different: a narrow transverse section (axis width 900 m) at 1450 m water depth, a wide transverse section at 2837 m, and a third site in the fan valley axis farther offshore at 3223 m that recorded for 3 yr. In addition, CTD/transmissometer casts were conducted within and near the Monterey Canyon during four cruises. Our data show a mainly biogenic, surface turbid layer, a limited intermediate nepheloid layer, and a bottom nepheloid layer. There is a consistent presence of a turbid layer within the canyon at a water depth of about 1500 m. Tidal flow dominates at all sites, but currents above the canyon rim and within the canyon appear to belong to two distinct dynamic systems. Bottom intensification of currents plays an important role in raising the near-bottom shear stress high enough that bottom sediments are often, if not always, resuspended. Mean flow pattern suggests a convergence zone between the narrow and wide site: the near-bed (100 m above bottom where the lowest current meter was located) mean transport is down-canyon at the 1450-m site, while the near-bottom transport at the 2837-m site is up-canyon, at a smaller magnitude. Transport at the 3223-m site is dominantly NNW, cross-canyon, with periods of up-canyon flow over 3 yr. A very high-turbidity event was recorded 100 m above the canyon bottom at the narrow site. The event started very abruptly and lasted more than a week. This event was not detected at either of the deeper sites. A canyon head flushing event is likely the cause. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Climate control on submarine landslides: How certain can we be?

    NASA Astrophysics Data System (ADS)

    Urlaub, M.; Talling, P. J.; Masson, D. G.

    2012-04-01

    Submarine landslides are the main contributor to the oceans' sediment budgets, can cause damaging tsunamis and pose a major threat to any kind of offshore construction. They can occur on very shallow slope angles (< 2°), which are almost always stable on land. We are yet to monitor one of these low gradient slope failures, and mechanisms that can initiate submarine landslides remain highly speculative. Changes in environmental conditions such as transitions between ice- and greenhouse worlds as well as corresponding sea level changes are believed to affect slope stability. Based on geotechnical models and field data we discuss how climate and sea level changes may and may not affect submarine slope stability. Understanding any correlation of the timing of submarine landslides and climate changes would help to narrow down the large number of hypotheses that are suggested to explain submarine slope failure, as well as aiding in the evaluation of future hazard. In order to relate the temporal distribution of submarine slides to global climate robust dating is essential. Climate archives document past temperatures with almost annual resolution and jumps of up to 3°C within 100 years are recorded. But how precise are the ages that are obtained for submarine landslides? Taking the Storegga slide as an example, the number of age measurements necessary to obtain a reliable age is assessed. We then critically review the quality and reliability of the available ages for a number of other open continental slope slides. Our results indicate that caution must be taken in correlating landslide occurrence with global temperatures.

  16. Flow in bedrock canyons.

    PubMed

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics. PMID:25254474

  17. Sedimentology and regional correlation of a basinally restricted deepwater siliciclastic wedge: Brushy Canyon Formation-Cherry Canyon Tongue (Lower Guadalupian), Delaware basin

    SciTech Connect

    Rossen, C.; Sarg, J.F.

    1987-05-01

    Sedimentologic data and a new regional correlation based on seismic and field data constrain depositional models for basinally restricted siliciclastics of the Brushy Canyon Formation and sandstones of the immediately overlying Cherry Canyon Tongue. In the Guadalupe Mountains, the Brushy Canyon thins at the basin margin, from 300 m to pinch-out, by onlap onto a basinward-sloping submarine unconformity. The onlapping wedge contains numerous basinward-trending channels (up to 50 m deep and 1 km wide). Laminated siltstones comprise interchannel areas and occur in channels as draping units of constant thickness. Sandstones (rippled, parallel laminated, and massive beds) are restricted to channels and onlap channel walls. Density-driven currents flowing into a density-stratified basin as interflows and underflows best explain these geometries. Concentration of sandstones in vertically stacked, 20 to 50-m deep channels suggests sands were point-sourced into the basin. Increasing proportions of high-energy deposits in successive sandstone channel fills indicate progradation of the Brushy Canyon wedge. Correlation of the Brushy Canyon unconformity shelfward to an interpreted disconformity within the San Andres Formation suggests that the shelf was subaerially exposed. Allochthonous fossils in Brushy Canyon sandstones indicate existing submerged shallow, upper slope areas were normal marine. Updip portions of the lower Cherry Canyon Sandstone Tongue are confined within paleocanyons and are deltaic in origin, suggesting fluvial delivery of sand across the shelf. These regional constraints suggest that density-driven currents were turbidity currents rather than saline density currents sourced by hypersaline shelf waters.

  18. Submarine Landslides: A Multidisciplinary Crossroad

    NASA Astrophysics Data System (ADS)

    Moscardelli, L. G.

    2014-12-01

    The study of submarine landslides has advanced considerably in the last decade. A multitude of geoscience disciplines, including marine, petroleum and planetary geology, as well as geohazard assessments, are concerned with the study of these units. Oftentimes, researchers working in these fields disseminate their findings within their own communities and a multidisciplinary approach seems to lack. This presentation showcases several case studies in which a broader approach has increased our understanding of submarine landslides in a variety of geologic settings. Three-dimensional seismic data from several continental margins (Trinidad, Brazil, Morocco, Canada, GOM), as well as data from outcrop localities are shown to explore geomorphological complexities associated with submarine landslides. Discussion associated with the characterization and classification of submarine landslides is also part of this work. Topics that will be cover include: 1) how data from conventional oil and gas exploration activities can be used to increase our understanding of the dynamic behavior of submarine landslides, 2) analogies between terrestrial submarine landslides and potential Martian counterparts, 3) impact of submarine landslides in margin construction, as well as their economic significance and 4) the importance of quantifying the morphology of submarine landslides in a systematic fashion.

  19. Braiding of submarine channels controlled by aspect ratio similar to rivers

    NASA Astrophysics Data System (ADS)

    Foreman, Brady Z.; Lai, Steven Y. J.; Komatsu, Yuhei; Paola, Chris

    2015-09-01

    The great majority of submarine channels formed by turbidity and density currents are meandering in planform; they consist of a single, sinuous channel that transports a turbid, dense flow of sediment from submarine canyons to ocean floor environments. Braided turbidite systems consisting of multiple, interconnected channel threads are conspicuously rare. Furthermore, such systems may not represent the spontaneous planform instability of true braiding, but instead result from erosive processes or bathymetric variability. In marked contrast to submarine environments, both meandering and braided planforms are common in fluvial systems. Here we present experiments of subaqueous channel formation conducted at two laboratory facilities. We find that density currents readily produce a braided planform for flow aspect ratios of depth to width that are similar to those that produce river braiding. Moreover, we find that stability model theory for river planform morphology successfully describes submarine channels in both experiments and the field. On the basis of these observations, we propose that the rarity of braided submarine channels is explained by the generally greater flow depths in submarine systems, which necessitate commensurately greater widths to achieve the required aspect ratio, along with feedbacks among flow thickness, suspended sediment concentration and channel relief that induce greater levee deposition rates and limit channel widening.

  20. Current submarine atmosphere control technology.

    PubMed

    Mazurek, W

    1998-01-01

    Air purification in submarines was introduced towards the end of World War II and was limited to the use of soda lime for the removal of carbon dioxide and oxygen candles for the regeneration of oxygen. The next major advances came with the advent of nuclear-powered submarines. These included the development of regenerative and, sometimes, energy-intensive processes for comprehensive atmosphere revitalization. With the present development of conventional submarines using air-independent propulsion there is a requirement for air purification similar to that of the nuclear-powered submarines but it is constrained by limited power and space. Some progress has been made in the development of new technology and the adoption of air purification equipment used in the nuclear-powered submarines for this application. PMID:11876194

  1. The turbidity currents records of Kaoping Canyon during past 32000 yrs

    NASA Astrophysics Data System (ADS)

    Yu, S.; Lin, A. T.; Tsai, L.

    2013-12-01

    Taiwan is both located in East Asia Monsoon area and plate collision boundary; as the result, frequently episodic rainfall and fractal geologic setting will cause Taiwan become a high potential area that gravity flows happen. When the high density terristrial flows were exported to the sea, it will become the hyperpycnal flow and perhaps can cause submarine geo-hazard happen (i.e. In 2010 Typhoon Morakot, there are numerous terrestrial sediments be delivered to the southwestern offshore Taiwan along the Kaoping Canyon and causing submarine cable be broken). Additionally, turbidite will also be triggered by earthquakes and it will also have the chance to cause submarine geo-hazard. For an example, Pintung earthquake happened in Hengchun, Taiwan in 1996; this earthquake triggered very huge magnitude submarine landslide happened and damaged several hundred kilometers submarine cable along the Kaoping Canyon. Taiwan is a island surrounded by ocean, and there are lots of submarine cables across these seas, especially along the Kaoping Canyon in southwestern offshore Taiwan. In order to avoid too much economic and safety waste, the risk estimation of geo-hazard is very important, and the frequency of turbidity currents happened is a very visible index. Hence, we collected a core located at the downstream of Kaoping Canyon in 2800 meters water depth. Its length is about 39 meters and we can divide this core into two different lithofacies roughly by core description. The upper part is dominated by mud and silt inter-bedded, and the lower part is dominated by massive mud. By the 14C dating, the age of lithofacies change is about 11000 yrs BP. According to the previous studies, We supposed due to Kaoping Canyon is connected with Kaoping river directly and the terrestrial materials of Pintong plain can be delivered from the land to deep ocean directly via the high energy flooding events. In other words, the lithoface change is related to the high energy events happened in land; hence, we propose that from 32000 yrs BP to 11000 yrs BP, the weather in southwestern Taiwan was dryer, and after 11000 yrs BP, it became wetter and frequently turbidity currents happened in Kaoping canyon system.

  2. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-08-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street compared to that with free horizon. This allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in a street depends strongly on the relative width of the street and its orientation towards the sun. Averaged over atmospheric conditions and street orientation, the NO2 photolysis frequency is reduced in comparison with the values for free horizon: to less than 20% for narrow skyscraper streets, to about 40% for typical urban streets, and only to about 80% for garden streets. A parameterization with the global solar irradiance is given for the averaged RJ values.

  3. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-05-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street against those with free horizon, which allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in the street, averaged over atmospheric conditions and street orientation, is reduced to less than 20% for narrow streets, to about 40% for typical urban streets, and only to about 80% for garden streets, each with about ±5% uncertainty. A parameterization of RJ with the global solar irradiance is given for values that are averaged over the meteorological conditions and the street orientation.

  4. Canyon and channel networks of Peru-Chile fore arc at Arica Bight

    SciTech Connect

    Coulbourn, W.T. )

    1990-05-01

    Canyons and channels of the Peru-Chile fore arc between 17{degree}30'S to 19{degree}30'S form a complex, integrated network revealed in SeaMARC II side-scan mosaics. The largest canyon, incised 200-600 m, is bordered by a series of sidewall slumps, producing a sinuosity that mimics subaerial meanders. The canyon courses across the Arequipa fore-arc basin floor, across a structural high and onto the middle trench slope to about 4,000 m where it disappears into a background of complex small-scale structures, From 500-2,500 m depth the canyon strikes north-south oblique to the regional slope. At 2,500 m, it abruptly turns to the southwest toward the trench axis. At this elbow, a second canyon heads on the midslope and also trends north-south until 3,500 m, where it too abruptly changes to a southwest course. A history of stream piracy analogous to subaerial systems is implied in this geometry. Tributaries join this main canyon from the landward side, forming a dendritic pattern. These channels have levees which are linked by submarine crevasse splays to sediment waves on the Arequipa basin floor. The orientation of the waves is reminiscent of bow waves from a passing ship, oblique to channel and pointing downslope, and may provide an indication of the vertical extent of passing turbidity currents. Sediments are dominantly olive gray, hemipelagic silts with sands present only immediately adjacent to the canyons. Boulders of mudstone line portions of the canyon floor. Sands are absent from the lowermost slope and trench axis, as are any indications of submarine fans. Sands may be rare in this system, with those that are present kneaded into the active margin system along the lower trench slope.

  5. Submarine fan lobes

    SciTech Connect

    Shanmugam, G.

    1989-03-01

    Submarine fan lobes constitute major hydrocarbon reservoirs throughout the world. Therefore, a clear understanding of their geometry and facies relationships is critical for exploring and exploiting these sandstone bodies effectively. However, a multitude of submarine fan lobe terminologies (e.g., depositional lobe, suprafan lobe, fan lobe, erosional lobe, channelized lobe, ponded lobe, leveed-valley lobe, type I lobe, and type II lobe) advocating widely different meanings, has flourished in the sedimentologic literature. A critical evaluation of this problem has resulted in the following suggestions: (1) lobes are considered to be turbidite sand bodies that develop at the mouths of channels in deep-sea fan environments; (2) the term depositional lobe should be restricted to lower-fan deposits of fans that exhibit facies C and thickening-upward cycles; (3) the term suprafan lobe refers to middle-fan deposits of certain small, sand-rich, modern fans that exhibit a convex-upward depositional bulge in seismic reflection profiles; (4) the terms fan lobe, erosional lobe, channelized lobe, ponded lobe, and leveed-valley lobe do not represent true channel-mouth deposits and therefore are potentially confusing; (5) lower-fan sheet sands of large modern fans may not be equivalent to depositional lobes of ancient fans; and (6) popular fan models with lobes are not always applicable because they disregard large modern fans without lobes (e.g., Mississippi fan).

  6. 18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS WERE PROCESSING ROOMS USED TO HOUSE PLUTONIUM HANDLING OPERATIONS THAT WERE NOT CONTAINED WITHIN GLOVE BOXES. CANYONS WERE DESIGNED TO BECOME CONTAMINATED. (5/10/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  7. The narrow, shallow, low-accommodation shelf of central Brazil: Sedimentology, evolution, and human uses

    NASA Astrophysics Data System (ADS)

    Dominguez, José Maria Landim; da Silva, Rian Pereira; Nunes, Alina Sá; Freire, Antonio Fernando Menezes

    2013-12-01

    The continental shelf off the coast of central Brazil, extending from 10 to 16°S, is unusually narrow (~ 20 km) and rests on the São Francisco craton. The shelf break is located between the 45 and 50 m isobaths and coincides with major hinge-lines of the marginal basins. The shelf was exposed for most of the Quaternary period, particularly during the last 1 my, when the average sea level was - 62 m. Submarine geomorphology is strongly influenced by this extended sub-aerial exposure and reduced subsidence, resulting in widespread incisions on the shelf. During the limited episodes of shelf inundation, as is the case today, a few meters of non-framework grain assemblages dominated by coralline algae accumulated on the outer shelf, while quartz sands were restricted to water depths of less than 10-15 m. Mud accumulation on this unusually shallow shelf is aided by additional accommodation space provided by incisions and canyon heads indenting the shelf. Artisanal fisheries, targeting high-value commercial species associated with hard bottoms located on the outer shelf and shelf break, are the most important human use of this shelf. Data used in this study have been compiled from theses and previously conducted surveys and consist of four piston cores, 509 km of chirp subbottom profiles and side scan recordings, and 711 bottom grab samples that have been analyzed for various textural and compositional aspects.

  8. Paleogene canyons of Tethyan margin and their hydrocarbon potential, Czechoslovakia

    SciTech Connect

    Picha, F.J. )

    1991-03-01

    Two Paleogene canyons buried below the Neogene foredeep and the Carpathian thrust belt in Southern Moravia have been outlined by drilling and seismic profiling. The features, as much as 12 km wide and over 1000 m deep, have been traced for 40 km. They are cut into Mesozoic and Paleozoic carbonate and clastic deposits and underlying Precambrian crystalline rocks. The sedimentary fill is made of late Eocene and early oligocene marine deposits, predominantly silty mudstones and siltstones. Sandstones and conglomerates are distributed mainly in the lower axial part of the valleys. Proximal and distal turbidites, grain-flow and debris-flow deposits have been identified in the fill. The common occurrence of slump folds, pebbly mudstones, and chaotic slump deposits indicate that mass movement played a significant role in sediment transport inside the canyons. The canyons are interpreted as being cut by rivers, then submerged and further developed by submarine processes. The organic rich mudstones of the canyon fill are significant source rocks (1-10% TOC). They reached the generative stage only after being tectonically buried below the Carpathian thrust belt in middle Miocene time. Channelized sandstones and proximal turbidities provide reservoirs of limited extent, although more substantial accumulations of sands are possible further downslope at the mouth of these canyons. Several oil fields have been discovered both within the canyon fill and the surrounding rocks. Similar Paleogene valleys may be present elsewhere along the ancient Tethyan margins buried below the Neogene foredeeps and frontal zones of the Alps and Carpathians. Their recognition could prove fruitful in the search for hydrocarbons.

  9. Anomalous topography on the continental shelf around Hudson Canyon

    USGS Publications Warehouse

    Knebel, H. J.

    1979-01-01

    Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.

  10. Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition.

    PubMed

    Garcia, M; Parker, G

    1989-07-28

    The point at which a submarine canyon debouches on its associated abyssal fan is generally characterized by a drop in channel slope. Turbidity currents of the kind responsible for the genesis of the canyon and fan should display an internal hydraulic jump near the slope transition. No direct field observations of any such jump appear, however, to have been made. Experiments on the nature of the jump and the resulting sedimentary deposits indicate that the thickness of the deposits just downstream of the jump tends to increase as the ratio of bed shear velocity immediately behind the jump to particle fall velocity decreases. PMID:17744147

  11. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gori, A.; Orejas, C.; Madurell, T.; Bramanti, L.; Martins, M.; Quintanilla, E.; Marti-Puig, P.; Lo Iacono, C.; Puig, P.; Requena, S.; Greenacre, M.; Gili, J. M.

    2013-03-01

    Submarine canyons are known as one of the seafloor morphological features where living cold-water coral (CWC) communities develop in the Mediterranean Sea. We investigated the CWC community of the two westernmost submarine canyons of the Gulf of Lions canyon system: the Cap de Creus Canyon (CCC) and Lacaze-Duthiers Canyon (LDC). Coral associations have been studied through video material recorded by means of a manned submersible and a remotely operated vehicle. Video transects have been conducted and analyzed in order to obtain information on (1) coral bathymetric distribution and density patterns, (2) size structure of coral populations, and (3) coral colony position with respect to the substrate. Madrepora oculata was the most abundant CWC in both canyons, while Lophelia pertusa and Dendrophyllia cornigera mostly occurred as isolated colonies or in small patches. An important exception was detected in a vertical cliff in LDC where a large L. pertusa framework was documented. This is the first record of such an extended L. pertusa framework in the Mediterranean Sea. In both canyons coral populations were dominated by medium and large colonies, but the frequent presence of small-sized colonies also indicate active recruitment. The predominant coral orientation (90° and 135°) is probably driven by the current regime as well as by the sediment load transported by the current flows. In general, no clear differences were observed in the abundance and in the size structure of the CWC populations between CCC and LDC, despite large differences in particulate matter between canyons.

  12. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gori, A.; Orejas, C.; Madurell, T.; Bramanti, L.; Martins, M.; Quintanilla, E.; Marti-Puig, P.; Lo Iacono, C.; Puig, P.; Requena, S.; Greenacre, M.; Gili, J.

    2012-12-01

    Submarine canyons are known as one of the seafloor morphological features where living cold-water coral (CWC) communities develop in the Mediterranean Sea. We investigated the CWC community of the two westernmost submarine canyons of the Gulf of Lions canyon system: the Cap de Creus Canyon (CCC) and Lacaze Duthiers Canyon (LDC). Coral associations have been studied through video material recorded by means of a manned submersible and a remotely operated vehicle. Video transects have been conducted and analyzed in order to obtain information on (1) coral bathymetric distribution and density patterns, (2) size structure of coral populations, and (3) coral colony orientation with respect to the substrate. Madrepora oculata was the most abundant CWC in both canyons, while Lophelia pertusa and Dendrophyllia cornigera mostly occurred as isolated colonies or in small patches. An important exception was detected in a vertical cliff in LDC where a large Lophelia pertusa framework was documented. This is the first record of such an extended L. pertusa framework in the Mediterranean Sea. In both canyons coral populations were dominated by medium and large colonies, but the frequent presence of small-sized colonies also indicate active recruitment. The predominant coral orientation with respect to the substrate (90° and 135°) is probably driven by the current regime as well as by the sediment load transported by the current flows. In general no clear differences were observed between the CWC populations from CCC and LDC, despite large differences in particulate matter between canyons.

  13. Geomorphologic Features and Age Estimation of Submarine Landslides in the Southwestern Colombian Caribbean

    NASA Astrophysics Data System (ADS)

    Idarraga Garcia, J.; Vargas-Jimenez, C. A.

    2013-05-01

    We analyzed ~17000 km2 of high-resolution-bathymetric data in the southwestern Caribbean Sea of Colombia between the La Aguja Submarine Canyon (LASC) and the Gulf of Urabá. The data allowed us to identify and describe submarine landslides and to calculate their ages based on scarp dating by using numerical solutions of the diffusion equation. The ages are presented in terms of the constant k of diffusivity due to the absence of well constrained values for submarine environments. In the northeastern sector of the study area we differentiated 31 submarine failures associated with the LASC flanks, between 1200 and 3285 m depth, with escarpments slopes ranging between 6.1° and 36.8°; estimated ages suggest ranges between ~407 and ~103.5 k (m2). Triggering mechanisms of these landslides are close related to the occurrence of earthquakes originated in the convergence zone of the Santa Marta and Oca fault systems, and to the flanks instabilities product of the mud diapirism phenomena that is present in the area. In the central sector of the study zone, the continental margin is dominated by the presence of the Magdalena Submarine Fan (MSF). Here, most of the submarine failures are disintegrative (i.e. with no obvious deposit near or at the base of the scar) and all are related to a system of canyons belonging to the Magdalena turbidite system and to an abrupt slope break at the border of the continental shelf. Scarp dating suggests a wide range of ages fluctuating between ~207.1 and ~146427.8 k (m2). Landslides at southernmost sector of the study zone are mainly associated to anticline-related ridges of the Sinú Accretionary Prism. These ridges are structural highs cut by channels and canyons, and are associated with slopes of 10°-25°. In many cases, the failures are disintegrative and it is probable that the associated landslide deposits are buried by subsequent sediments related to broad fans forming in the mouth of channels and canyons. Additionally, some cohesive landslides identified exhibit blocky deposits with rubbles up to 50 m high and runout distances between 3.6 and 11 km. Ages of these failures range between ~182.9 and ~15476.3 k (m2)

  14. Submarine slumps, slides, and flows dominate sculpting of Beringian Margin, Alaska

    SciTech Connect

    Carlson, P.R.; Karl, H.A.; Edwards, B.D.; Gardner, J.V.; Hall, R. )

    1990-06-01

    The 1,400 km long Beringian margin is characterized by several very large submarine canyons and by a large oceanic plateau at the southern end. GLORIA sidescan-sonar imagery provides a perspective of this margin that is unattainable with conventional acoustic profiles. The broad coverage of GLORIA images emphasizes that, of all the sedimentary processes affecting this vast margin, mass movement is clearly the dominant shaping process. Styles of failure include mud and debris flows, slumps, and massive block slides, some covering areas greater than 1,500 km{sup 2}. GLORIA imagery and seismic-reflection profiles show evidence for a wide variety of slides and slumps in the canyons of the northern margin, Navarin and Pervenets. The 100 km long shelf edge between these two canyons is characterized by a series of scalloped slide scars and incipient scars associated with blocks of sedimentary material, 1 to 2 km across. One of the largest single slide masses is a huge block tens of kilometers wide that occurs on the rise in the central part of the margin beyond the mouth of Zhemchug Canyon. Sliding of this block may have initiated the incision of the world's largest submarine canyon. The removal of this block accelerated headward erosion by retrograde failure until Zhemchug Canyon was cut back to a fault parallel to the shelf edge. Mass movement along the southern margin is widespread at the edges of Umnak Plateau. One mass failure, well-defined by GLORIA, is about 30 km wide and 55 km long. This and other slides along the plateau are associated with diapiric-like structures, suggesting relatively recent tectonism.

  15. High-Resolution Acoustic Imaging in the Agadir-Canyon Region, NW-Africa: Morphology, Processes and Geohazards

    NASA Astrophysics Data System (ADS)

    Krastel, S.; Wynn, R. B.; Feldens, P.; Unverricht, D.; Huehnerbach, V.; Stevenson, C.; Glogowski, S.; Schuerer, A.

    2014-12-01

    Agadir Canyon is one of the largest submarine canyons in the World, supplying giant submarine sediment gravity flows to the Agadir Basin and the wider Moroccan Turbidite System. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during Cruise MSM32. We collected ~ 1500 km of high-resolution seismic 2D-lines in combination with a dense net of hydroacoustic data. About 1000 km2 of sea floor were imaged during three deployments of TOBI (deep-towed sidescan sonar operated by the National Oceanography Centre Southampton). A total of 186 m of gravity cores and several giant box cores were recovered at more than 50 stations. The new data show that Agadir canyon is the source area of the world's largest submarine sediment flow, which occurred about 60,000 years ago. Up to 160 km3 of sediment was transported to the deep ocean in a single catastrophic event. For the first time, sediment flows of this scale have been tracked along their entire flow pathway. A major landslide area was identified south of Agadir Canyon. Landslide material enters Agadir canyon in about 2500 m water depth; the material is transported as debrite for at least another 200 km down the canyon. Initial data suggest that the last major slide from this source entered Agadir canyon at least 130,000 years ago. A large field of living deep-water corals was imaged north of Agadir canyon. To our knowledge, these are the first living cold water corals recovered off the coast of Morocco (except for the Gulf of Cadiz). They represent an important link between the known cold-water coral provinces off Mauritania and in the Gulf of Cádiz.

  16. Sandbar in Grand Canyon

    USGS Multimedia Gallery

    Picture showing the size of the sandbar before the November 2012 controlled flood from the Glen Canyon Dam. This location is 65 miles downstream from Lees Ferry and the view is looking downstream. These and additional photographs depicting the results of the recent controlled floods can be viewed on...

  17. Glen Canyon Dam

    USGS Multimedia Gallery

    The Glen Canyon Dam on the Colorado River in Arizona. At noon Monday, Nov. 19, U.S. Interior Secretary Ken Salazar will open the dam’s river outlet tubes, releasing controlled flows larger than the usual 8,000-25,000 cubic feet per second that flows through the turbines of the Glen...

  18. Variability in turbidity current frequency within a central Portuguese margin canyon

    NASA Astrophysics Data System (ADS)

    Allin, Joshua R.; Talling, Peter J.; Hunt, James E.; Clare, Michael E.; Pope, Ed

    2015-04-01

    Submarine canyons constitute one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has significance for oil and gas reservoir characterisation, carbon budgets and geohazard assessment. Canyon sedimentation in the form of turbidity-currents is known to operate on a variety of scales and result from a number of different processes, including landslides, river-derived hyperpycnal flows and tidal or storm resuspension. Despite the expanding knowledge of turbidity current triggers, the spatial variability in turbidity current frequency within most canyon systems is not well defined. Here, new chronologies from cores in the lower reaches of Nazaré Canyon illustrate changes in turbidity current frequency and their relationship to sea level. These flows were relatively frequent during the last glacial maximum and the last deglaciation, with an average recurrence interval of ~70 years. Mid to early Holocene slowdown in activity (avg. recurrence of 1625 years) appears to occur later than other systems along the Iberian margin. Cores from the Iberian Abyssal Plain also provide the first recurrence interval estimates for large run-out turbidity currents from the central Portuguese margin. These large turbidity currents have an average recurrence interval of 2750 years, broadly comparable to modern turbidity flow events in the lower Nazaré Canyon. This indicates that Nazaré Canyon acted as a depocentre, capturing large volumes of sediment during glacial periods prior to large scale canyon flushing events. However, this sediment capture has largely been restricted to the middle and upper canyon since stabilisation of Holocene sea level. Recurrence intervals suggest that large turbidity flows which flush the canyon operate on a timescale independent of the sea level forcing evident in the lower canyon. While instability-triggered landsliding and tidal/storm resuspension are likely responsible for canyon restricted turbidity flows, a different trigger may exist for long run-out turbidity flows capable of travelling several hundred kilometres. Canyon flushing events in other systems have been suggested as resulting from landslides triggered by regional earthquakes. However, turbidites from the Iberian Abyssal Plain do not correlate well with previously suggested earthquake-triggered landslides in the Tagus Abyssal Plain to the south. The inconclusiveness of a test for synchronous deposition in distinct basins makes identifying a seismic trigger problematic. The Nazaré fault, which intersects the canyon head, may have a distinct return time for large earthquakes that is different from seismically active areas to the south. This further suggests the need for caution in the use of turbidites as a palaeo-seismological indicator along the Iberian margin.

  19. Mapping the True 3D Morphology of Deep-Sea Canyons

    NASA Astrophysics Data System (ADS)

    Huvenne, V. A.; Masson, D.; Tyler, P. A.; Huehnerbach, V.

    2010-12-01

    The importance of submarine canyons as ecosystem hotspots and sediment transport pathways has been recognised for decades (e.g. Heezen et al., 1955; Vetter & Dayton, 1998). However, studying canyon systems in detail is a challenge, because of the complexity and steepness of the terrain. Acoustic surveys are hampered by side-echoes, while the high slope angles cause most types of sampling equipment, deployed from surface vessels, to fail. Ship-borne bathymetric surveys tend to represent the canyon topography in an overly smoothed way as a result of their limited resolution in deep water compared to the scale of the terrain variability. Moreover, it is clear that overhanging cliffs cannot be mapped correctly with traditional, downward looking multibeam echosounders. The increasing availability of underwater vehicles, however, opens new opportunities. During summer 2009, we mapped several submarine canyon habitats in detail, using the UK deep-water Remotely Operated Vehicle (ROV) ISIS. In particular, we developed a new methodology to map vertical cliffs and overhangs by placing the high-resolution Simrad SM2000 multibeam system of the ROV in a forward-looking position rather than in the traditional downward-looking configuration. The cliff morphology was then mapped by moving the ROV laterally in parallel passes at different depths. Repeating this approach at different distances from the cliff face, we obtained maps of varying resolution and extent. The low resolution maps provide an overview of the general geological framework, while individual strata and faunal colonies can be recognised on the highest resolution maps. Using point-cloud models, we combined the ship-borne bathymetry with the ROV-based data, in order to obtain a true 3D seabed morphology of the canyon study site, which can be used for fly-throughs, geomorphological analysis or habitat mapping. With this approach, we could visualise the spatial structure and density distribution of a unique and previously unknown cold-water coral reef, formed as a hanging garden under a 1600 m long and 120 m high overhanging wall, at 1350 m water depth in the Whittard Canyon, NE Atlantic margin. Heezen, B.C., Ewing, M. and Menzies, R. (1955). The influence of submarine turbidity currents on abyssal productivity. Oikos, 6, 170-182. Vetter, E.W. & Dayton, P.K. (1998). Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Research II, 45, 25-54.

  20. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin

    USGS Publications Warehouse

    Lee, H.J.

    2009-01-01

    Submarine landslides are distributed unevenly both in space and time. Spatially, they occur most commonly in fjords, active river deltas, submarine canyon-fan systems, the open continental slope and on the flanks of oceanic volcanic islands. Temporally, they are influenced by the size, location, and sedimentology of migrating depocenters, changes in seafloor pressures and temperatures, variations in seismicity and volcanic activity, and changes in groundwater flow conditions. The dominant factor influencing the timing of submarine landslide occurrence is glaciation. A review of known ages of submarine landslides along the margins of the Atlantic Ocean, augmented by a few ages from other submarine locations shows a relatively even distribution of large landslides with time from the last glacial maximum until about five thousand years after the end of glaciation. During the past 5000??yr, the frequency of occurrence is less by a factor of 1.7 to 3.5 than during or shortly after the last glacial/deglaciation period. Such an association likely exists because of the formation of thick deposits of sediment on the upper continental slope during glacial periods and increased seismicity caused by isostatic readjustment during and following deglaciation. Hydrate dissociation may play a role, as suggested previously in the literature, but the connection is unclear.

  1. Submarine ramp facies model for delta-fed, sand-rich turbidite systems

    SciTech Connect

    Heller, P.L.; Dickinson, W.R.

    1985-06-01

    Some sandy turbidite successions contain facies that differ in significant ways from those predicted by the canyonfed submarine fan depositional model. The key differences are the absence of a master slope channel or canyon through which sediment is transported to the basin, and the lack of facies segregation into distinct channel and overbank or interchannel facies associations within the turbidite sequence. These types of sequences can be better described using a delta-fed submarine ramp depositional model. The primary components of this model are: a sandy deltaic system that has prograded to the shelf-slope break; an abbreviated section of mud-rich slope deposits traversed by multiple shallow channels that transport sand from the delta front to the deeper basin; very sandy proximal ramp deposits composed dominantly of laterally continuous sheets of Facies B turbidites; and less sandy distal ramp deposits characterized by an increase in the abundance of Facies C and D turbidites. Ramp turbidites characteristically display statistically random patterns of bed thickness. Submarine ramp development requires rapid sediment accumulation (>800 ft or 250 m/m.y.) in turbidite basins of shallow to moderate depth where deltaic progradation is rapid enough to mask the structural relief along basin margins. The delta-fed submarine ramp facies model may be useful in describing short-lived sandy depositonal episodes in some rapidly aggrading and prograding basinal sequences. As such, they represent one member in a spectrum of submarine fan depositional styles.

  2. Sedimentary processes in the middle Nazaré Canyon

    NASA Astrophysics Data System (ADS)

    Masson, D. G.; Huvenne, V. A. I.; de Stigter, H. C.; Arzola, R. G.; LeBas, T. P.

    2011-12-01

    Nazaré Canyon extends from a water depth of 50 m near the Portuguese coast to 5000 m at the edge of the Iberian Abyssal Plain. The system is not connected to a modern river and instead obtains its present day sediment input by capture of along-shelf sediment transport. Much of this sediment is deposited in the middle canyon between about 2700 and 3800 m. However, the middle canyon is a highly heterogeneous environment, with areas of both high and low sedimentation rates, exposed rock outcrop, erosion and stable and unstable slopes in close juxtaposition. This paper explores how the various sedimentary processes interact to create the observed heterogeneous canyon environment, which will influence benthic biodiversity in the canyon. Seafloor heterogeneity is investigated using a nested approach to data interpretation, using local high-resolution data to calibrate regional lower resolution data. Six different data types, ship and ROV-mounted swath bathymetry, 30 kHz sidescan sonar images, sediment cores, seafloor video/photographs and current metre/acoustic backscatter data, were incorporated into the analysis. The main morphological characteristic of the middle canyon is a narrow, steep-sided, axial channel flanked by gently sloping terraces. Small-scale landsliding, active at the present day, is the main process that exposes a variety of substrates, ranging from semi-consolidated Holocene sediments to rock of probable Mesozoic age, on the steep axial channel walls. The axial channel floor is characterised in part by large-scale sediment bedforms and in part by landslide debris, suggesting some reworking of landslide debris by currents within the channel. The terraces are interpreted as inner levees with high sedimentation rates. Cores show a dominantly muddy sequence interrupted by thin turbidite sands emplaced on decadal to centennial timescales. The fine-grained sedimentation is the product of continuous settling from fine-grained flows that range from gravity currents to lateral advection of nepheloid layers. The close proximity of areas of high sedimentation and erosion creates a highly heterogeneous seafloor, with the highest heterogeneity on the steepest slopes.

  3. Seismic depth conversion problems associated with the Mississippi Canyon in the vicinity of Ewing Bank Block 305 field, offshore Louisiana

    SciTech Connect

    Leveille, G.P. ); Sahai, K.S.; McDaniel, P.G.

    1990-05-01

    Ewing Bank Block 305 field is located on the outermost edge of the continental shelf, approximately 145 km south of New Orleans, Louisiana. The geology of the field is fairly typical of other fields found offshore of Louisiana, except there is a huge, partly filled, Pleistocene submarine canyon that overlies the field. This canyon, which is commonly referred to as the Mississippi Canyon, causes a large seismic depth conversion problem that makes it virtually impossible to correctly map the structure of the field using normally processed marine seismic data The Mississippi Canyon is a large erosional feature that was formed at the mouth of the ancestral Mississippi River during the last glacial sea level lowstand. In the vicinity of the field, the canyon is about 10 km wide and 1 km deep, which is approximately two-thirds the size of the Grand Canyon of the Colorado River, and is filled mostly with Holocene sediments. Because the sediments that fill the canyon are very young, their interval velocities are much lower than the interval velocities of the sediments that form the canyon walls. This creates abrupt near surface lateral velocity variations that distort the geometry of seismic reflectors such that the time geometries seen on seismic lines are not at all indicative of the structure of the subsurface. Using a model-based processing technique and available well control, the authors have been able to solve this difficult depth conversion problem and have gained a better understanding of the geology of this field.

  4. A Subbottom Profiler Survey of the Upper Monterey Canyon Using the MBARI Mapping AUV

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; Sibenac, M.; McEwen, R.; Shane, F.; Henthorn, R.; McGill, P.; Hamilton, A.; Thompson, D.; Salamy, K.

    2004-12-01

    During the Spring and Summer of 2004, MBARI conducted subbottom profile surveys across the main, active channel of the upper Monterey Canyon and two northward trending sub-canyons that appear in swath bathymetry mapping to be mostly filled by recent sediments. Monterey Canyon is the dominant submarine physiographic feature of the Monterey Bay region, and serves as the primary conduit for sediment transport from the coast and shelf to the deep ocean seafloor. These surveys were conducted during the initial sea tests of the new MBARI Mapping Autonomous Underwater Vehicle (AUV). The data were collected using an Edgetech FS-AU 2-16 kHz sweep Chirp subbottom profiler operated on the AUV at vehicle depths up to 250 m. Navigation and attitude data derived from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). Good subbottom data, with typical penetrations of 0.05 seconds, were collected along 140 km of profiles covering an area roughly 3.6 km east-west by 8 km north-south. The profiles clearly show that a single, stratigraphically uninterrupted deposit of sediments has in fact filled the northward sub-canyons. Profiles crossing the main channel also reveal remnants of previous sediment infill along the canyon walls, suggesting that the entire upper Monterey Canyon may have once been filled by sediments as much as 100 m thick.

  5. Margin Shape Response to Changes in Submarine Turbiditic Systems Along the NE Iberian Margin, NW Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Amblas, D.; Gerber, T.; Canals, M.; Urgeles, R.; Lastras, G.

    2006-12-01

    Submarine canyons can efficiently drain continental margins just as river systems drain subaerial catchments. Highly detailed seafloor topography acquired by state-of-the-art multibeam echosounders provides the opportunity to compare submarine and subaerial morphologies at a similar resolution. New bathymetric data show geomorphic similarities between fluvial and turbiditic systems, including: a) long-profile channel concavity, b) tributary branching, c) tributary confluences at converging elevations, and d) knickpoints. Recent models explaining these features are formulated using morphodynamic and hydrologic relations developed to study subaerial systems. Here we apply these models using multibeam, seismic reflection, sidescan sonar and core data from the NE Iberian margin (Catalano-Balearic Sea, NW Mediterranean). The margin is drained by the Valencia deep-sea channel, which collects sediment from canyon-channel systems and unconfined mass-wasting events along most of its length before debouching onto the Valencia Fan. The Valencia Channel has been active since the late Miocene, evolving in response to Plio-Quaternary episodes of erosion and deposition. Seismic records from beneath the modern Valencia Channel show that mass-failure deposits have periodically filled the channel through this period. Observations from the modern seafloor suggest that the most recent major failure, dated at 11,500 yr B.P., perturbed the Valencia Channel long profile and may have caused readjustment of the entire submarine drainage network. The modern Valencia Channel shows no major discontinuities at junctions with canyon-channel tributaries, indicating that all the channels have been active with similar time-averaged erosion rates at these locations (analogous to Playfair's Law for fluvial systems). However, several tributaries contain knickpoints and evidence for retrogradation of canyon heads. These tributaries join the Valencia Channel downstream from a major change in its long-profile concavity that coincides with the terminus of the 11,500 yr B.P. event deposit. Fragmentation of the canyon-channel network by the failure with a consequent reduction in drainage area may have triggered re-excavation of the Valencia Channel, incision of canyon heads, and upstream migration of knickpoints. Alternatively, the features may be relict, reflecting adjustment to earlier failures observed in seismic data. Detailed morphometric data allows us to assess the efficiency of long-profile adjustment from erosion by turbidity currents and the degree to which the modern submarine drainage network has been modified by the recent failure. The analysis is a first step towards quantifying long-term erosion rates in a submarine channel system that acts as the primary sediment pathway on the `sink' side of the NE Iberian margin.

  6. Eustatic and structural control of submarine-fan sedimentation, Conception fan, Santa Barbara basin, California

    SciTech Connect

    Thor, D.R.

    1984-04-01

    Eustatic sea level lows provide an opportunity for submarine-fan development; topography and structure, however, can control depositional-sequence geometry. Analysis of high-resolution seismic data provides a basis to evaluate to the evolution and geometry of the Pleistocene-Holocene Conception fan. The fan formed in the restricted, tectonically active Santo Barbara basin. It consists of 4 vertically stacked depositional sequences, each bounded by nondepositional unconformities. The unconformities are defined by seismic-sequence boundaries and were formed during sea-level falls that are related to Pleistocene glacioeustatic changes. Each depositional sequence consists of lowstand, sandrich facies (fan channel, levee, and lobe) topped by highstand, mud-rich facies. The geometry of the depositional sequences tends to be rectilinear, not arcuate, because lateral progradation is restricted by topographically high structures. The modern fan surface and the Holocene depositional sequence provide a good analog for the older, underlying depositional sequences. The fan surface is characterized by 4 main channels, 2 of which head into submarine canyons incised into the shelf. Submarine canyons that fed the other 2 channels are now filled and have no topographic expression. In addition, numerous partially buried channel segments occur in the interchannel areas. The Holocene depositional sequence consists of lenticular and sheet-drape deposits interpreted to be channel, levee, and lobe facies. The facies geometry suggests that Mutti's topographic compensation, channel migration, and avulsion were typical processes on Conception fan.

  7. Photomosaics and logs of trenches on the San Andreas Fault at Mill Canyon near Watsonville, California

    USGS Publications Warehouse

    Fumal, Thomas E.; Dawson, Timothy E.; Flowers, Rebecca; Hamilton, John C.; Heingartner, Gordon F.; Kessler, James; Samrad, Laura

    2004-01-01

    We present photomosaics and logs of the walls of trenches excavated for a paleoseismic study at Mill Canyon, one of two sites along the San Andreas fault in the Santa Cruz Mtns. on the Kelley-Thompson Ranch. This site was a part of Rancho Salsipuedes begining in 1834. It was purchased by the present owner’s family in 1851. Remnants of a cabin/mill operations still exist up the canyon dating from 1908 when the area was logged. At this location, faulting has moved a shutter ridge across the mouth of Mill Canyon ponding Holocene sediment. Recent faulting is confined to a narrow zone near the break in slope.

  8. The bathypelagic community of Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Robison, Bruce H.; Sherlock, Rob E.; Reisenbichler, Kim R.

    2010-08-01

    We used a quiet, deep-diving remotely operated vehicle (ROV) to conduct oblique, quantitative video transects of the bathypelagic fauna at depths between 1000 and 3500 m at a site over the Monterey Submarine Canyon, in the eastern North Pacific off central California. Fifteen such dives were made over a two-year period. Analyses of the video data revealed a rich and diverse fauna dominated by gelatinous animals. In particular, the holopelagic polychaete Poeobius meseres was an important detritivore in the upper half of this depth range. As Poeobius abundance eventually declined with increasing depth, larvacean abundance increased. In contrast, the relative numbers of crustacean grazers, principally copepods and mysids, remained relatively constant with depth. Medusae were most abundant and most diverse among the gelatinous predators, which also included ctenophores, and siphonophores. Chaetognaths occurred chiefly in the upper half of the depth range. While there is considerable overlap, the bathypelagic fauna can be separated into upper (1000 to 2300 m) and lower (2400 to 3300 m) zones, as well as a distinct and populous benthic boundary layer. Within the overall bathypelagic community is a complex web of trophic links involving gelatinous predators that feed on both gelatinous and hard-bodied particle feeders, as well as on each other. The amount of organic carbon contained in this jelly web is substantial but its ecological fate is uncertain. The assessment of bathypelagic communities will be important for establishing baselines to conserve deep pelagic biodiversity within high-seas protected areas.

  9. Chollas in Pine Creek Canyon

    USGS Multimedia Gallery

    The Mojave Desert, home to drought-tolerant plants like Cholla cacti, gradually mixes with loblolly pine ecosystems in Pine Creek Canyon. Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Roc...

  10. Yuccas in Pine Creek Canyon

    USGS Multimedia Gallery

    The Mojave Desert, home to drought-tolerant plants like yuccas, gradually mixes with loblolly pine ecosystems in Pine Creek Canyon. Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Cany...

  11. Cedar Tree in Bryce Canyon

    USGS Multimedia Gallery

    A cedar tree in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their ba...

  12. Bryce Canyon's Navajo Loop Trail

    USGS Multimedia Gallery

    Views along the Navajo Loop Trail in Bryce Canyon National Park. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandston...

  13. Cedar Forests of Bryce Canyon

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  14. Snow-covered Bryce Canyon

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  15. Cedar Valley in Bryce Canyon

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  16. Rainbow Point of Bryce Canyon

    USGS Multimedia Gallery

    View of Bryce Canyon National Park from Rainbow Point. In the foreground are sandstone hoodoos and in the background is the Grand Staircase-Escalante National Monument, which is managed by the Bureau of Land Management. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a ...

  17. Sunset over Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  18. Sunset over Red Rock Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  19. Sunset in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  20. Manzanita in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  1. Yucca in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  2. Rainbow Point of Bryce Canyon

    USGS Multimedia Gallery

    View of Bryce Canyon National Park from Rainbow Point. In the foreground are sandstone hoodoos. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite ...

  3. Cedar Forest in Bryce Canyon

    USGS Multimedia Gallery

    A cedar forest in Bryce Canyon National Park, viewed from Rainbow Point. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the ...

  4. Bryce Canyon's Wall of Windows

    USGS Multimedia Gallery

    Bryce Canyon's Wall of Windows, a series of sandstone arches and hoodoos in the Bryce Amphitheater. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolom...

  5. Bryce Canyon Wall of Windows

    USGS Multimedia Gallery

    Bryce Canyon's Wall of Windows, a series of sandstone arches and hoodoos in the Bryce Amphitheater. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolom...

  6. Anatomy of La Jolla Canyon

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Ussler, W.; Lundsten, E.; McGann, M. L.; Conrad, J. E.; Edwards, B. D.; Covault, J. A.

    2010-12-01

    High-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) and chirp sub-bottom profiler data collected with an autonomous underwater vehicle (AUV) reveal the fine-scale morphology of La Jolla Canyon, offshore southern California. The AUV was pre-programmed to fly three missions within the canyon while maintaining an altitude of 50 m above bottom in water depths between 365 and 980 m. Sparker seismic reflection profiles define the overall geometry of the canyon and its host sediments. A remotely operated vehicle (ROV) was used to ground truth the AUV surveys by collecting video observations, 25 vibracores ?1.5 m long and 38 horizontal push cores from outcrops on the canyon walls. These tools outline the shape and near sub-bottom character of the canyon and thus provide insight into the processes that generated the present canyon geomorphology. La Jolla Canyon is ~1.5 km across and contains a smaller-scale sinuous axial channel that varies in width from <50 m to >300 m. The total relief on the canyon walls is ~90 m and most of the elevation changes occur along a few steep faces that separate intervening terraces. Fine scale features include <1 m high steps on the surface of the major terraces and the existence of crescent shaped bedforms within the axial channel. Also notable are the numerous slide scars on the canyon flanks and within its axial channel. The sharpness of the textures seen in the multibeam images and ROV observations suggest the canyon is active and sediment failures play an important role in generating the canyon’s present morphology. Vibracores show that the floor of the axial channel is typically covered with >1 m of medium- to fine-grained sand. While collecting vibracores within the axial channel, the sand within a radius of ~2 m were observed to flow down slope, apparently after becoming fluidized. The ease with which failure can be induced on the relatively gentle slopes (~1.4°) within the canyons axial channel suggests that the poorly consolidated sediments are perched near the limit of their stability. A bed of cobbles was exposed along the side of the axial channel, revealing that the canyon floor fill also contains material that is much coarser grained than what was sampled in the vibracores. While the reflectors in the AUV chirp profiles show no internal layering within the axial channel, the profiles indicate at least 5 to 10 m of horizontally layered sediments cover the terraces. Vibracores from the terraces contain multiple 1-10 cm thick turbidites, indicating turbidity currents regularly spill out of the central channel over these terraces. Sparker seismic reflection profiles show that the outcropping strata exposed on the canyon walls are part of a laterally continuous sequence that appear to pre-date the formation of the present canyon. Foraminifera in samples obtained from the canyon walls only contain specimens with early to middle Pleistocene (N22, CM2; ~1.232 my) to recent ages, thus helping to constrain the age of the canyon’s development. This study exemplifies how state of the art technologies can advance the understanding of the conduits that carry sediment across continental margins from source to sink.

  7. 30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONNECTICUT. 2 JUNE 1930. SUBMARINE TRAINING TANK - STEELWORK 98% COMPLETE; BRICKWORK 95% COMPLETE, PIPING 10% IN PLACE. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  8. Submarine Silicic Explosive Eruptions: what can submarine pyroclasts tell us?

    NASA Astrophysics Data System (ADS)

    Carey, R.; Allen, S.; McPhie, J.; Fiske, R. S.; Tani, K.

    2014-12-01

    Our understanding of submarine volcanism is in its infancy with respect to subaerial eruption processes. Two fundamental differences between eruptions in seawater compared to those on land are that (1) eruptions occur at higher confining pressures, and (2) in a seawater medium, which has a higher heat capacity, density and viscosity than air. Together with JAMSTEC collaborators we have a sample suite of submarine pumice deposits from modern volcanoes of known eruption depths. This sample suite spans a spectrum of eruption intensities, from 1) powerful explosive caldera-forming (Myojin Knoll caldera); to 2) weakly explosive cone building (pre-caldera Myojin Knoll pumice and Kurose-Nishi pumice); to 3) volatile-driven effusive dome spalling (Sumisu knoll A); to 4) passive dome effusion (Sumisu knoll B and C). This sample suite has exceptional potential, not simply because the samples have been taken from well-constrained, sources but because they have similar high silica contents, are unaltered and their phenocrysts contain melt inclusions. Microtextural quantitative analysis has revealed that (i) clast vesicularities remain high (69-90 vol.%) regardless of confining pressure, mass eruption rate or eruption style , (ii) vesicle number densities scale with inferred eruption rate, and (iii) darcian and inertial permeabilities of submarine effusive and explosive pyroclasts overlap with explosively-erupted subaerial pyroclasts.

  9. New York Canyon Stimulation

    SciTech Connect

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "œNo Go" decision and initiate project termination in April 2012.

  10. Propagation and dissipation of the internal tide in upper Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Wain, D. J.; Gregg, M. C.; Alford, M. H.; Lien, R.-C.; Hall, R. A.; Carter, G. S.

    2013-10-01

    Submarine canyons are sites of intense turbulence and mixing. Monterey Canyon cuts into the continental shelf off California, and is defined by its sinuous nature. Temperature, salinity, and current velocity measurements were made over 21 days in April 2009 with a depth-cycling towed body to understand internal tide propagation and dissipation through the canyon bends. Cross-canyon transects reveal complex flow patterns that follow large-scale bathymetry on scales greater than 5 km. Changes in thalweg direction deflect baroclinic energy flux, but the bends in the measurement region are too sharp for the flux to follow the thalweg. Ridges that form the bends in the canyon act as obstacles to the flow, and turbulent dissipation rates greater than 1 × 10-5 m2 s-3 were observed on their flanks, especially at the largest meander (the Gooseneck). The canyon-integrated baroclinic energy flux increased from 2.7 MW at the most western section to 3.7 MW at the Gooseneck Ridge, which has a nearly critical bottom slope with respect to the semidiurnal baroclinic tide on the western side; baroclinic energy flux was 50% less on the eastern side of the ridge. While measured dissipation near the Gooseneck Meander was sufficient to explain the flux divergence, turbulence near the Gooseneck may have been undersampled. Between the Gooseneck Ridge and the most eastern cross-canyon transect, dissipation may account for the decrease in the energy flux; though a local energy balance does not hold, the energy budget is balanced over the larger scale of the measurement region east of the Gooseneck Ridge.

  11. Russian nuclear-powered submarine decommissioning

    SciTech Connect

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  12. Saga is largest commercial submarine ever

    SciTech Connect

    Not Available

    1985-05-01

    The long-range autonomous submarine, Saga, went nuclear last year with an agreement between the French and two Canadian companies. The agreement to convert the prototype from Swedish Stirling closed-cycle combustion engines to a nuclear power supply will make Saga the first non-defense nuclear submarine. With an external hull displacement of 500 tons, Saga will be the largest commercial submarine ever built.

  13. Canyon waste dump case study

    SciTech Connect

    Land, M.D.; Brothers, R.R. ); McGinn, C.W. )

    1991-01-01

    This data packet contains the Canyonville Canyon Waste Dump results of the various physical environmental sampling. Core samples were taken from the on site waste material. Vertical grab samples were made from these borings. The waste samples were screened fro volatile organic compounds (VOC) and logged for lithology. Soil samples were also tested for VOC. Composite sediment samples were taken using a coring device known as a clam gun. No surface water was available for testing from the intermittent Canyon Wash. The hydrogeology of the Canyon Waste Dump was inferred from lithologic logs and hydraulic data from the five monitoring wells located along the canyon floor. Groundwater was monitored through five wells. The soil vapor and air screening techniques used were adaptations of the EPA ERT and NIOSH methodologies. 4 figs., 9 tabs.

  14. 34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW OF SUBMARINE ESCAPE TRAINING TANK PRIOR TO ADDITION OF BLISTERS IN 1959, LOOKING SOUTHEAST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  15. Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea)

    NASA Astrophysics Data System (ADS)

    Sánchez, Francisco; González-Pola, Cesar; Druet, María; García-Alegre, Ana; Acosta, Juan; Cristobo, Javier; Parra, Santiago; Ríos, Pilar; Altuna, Álvaro; Gómez-Ballesteros, María; Muñoz-Recio, Araceli; Rivera, Jesus; del Río, Guillermo Díaz

    2014-08-01

    Surveys conducted at the complex Avilés Canyon System (southern Bay of Biscay) in order to identify vulnerable habitats and biological communities revealed the presence of noteworthy deep-water coral reefs in one of the tributaries of the system (La Gaviera Canyon). The aim of the present study is to determine why this deep-sea canyon provides suitable environmental conditions for corals to grow. This hanging canyon is characterized by an irregular U-shaped floor with two narrow differentiated flanks. Sand ripples and rocky outcrops structured in diverse W-E directed steps are observed on the canyon floor, suggesting intense hydrodynamic activity. Accordingly, high-frequency near-bottom current and thermal structure profiles showed that there occur strong shifts in currents/hydrography behaving as front-like features at each tidal cycle. These involve the sudden increase of along-axis velocities to over 50 cm/s and vertical velocities of over 5 cm/s in each tidal cycle associated with the passage of sharp thermal fronts and thermal inversions suggesting overturning. A year-long near-bottom current record showed events with near-bottom velocities well over 1 m/s lasting for several days. Three cold-water coral settings were distinguished: a dense coral reef located on stepped rocky bottoms of the eastern and western flanks, carbonate mounds (20-30 m high) located on the canyon floor, and a cluster of shallower water dead coral framework at the head sector of the canyon. Video and still images from a towed sled and ROV verified the presence of dropstones and rippled sand sheets surrounding the mounds and revealed changes in the coral population (alive or dead; total or patchy coverage) in coral reef and carbonate mound areas. The dominant species of the reef are Lophelia pertusa and Madrepora oculata, which considerably increase the habitat?s complexity and biodiversity in relation to other facies described in the canyon. The presence of living cold-water reefs is directly related to a high-energy environment at depths between 700 and 1200 m in the levels between the lower bound of Eastern North Atlantic Central Water (ENACW) and the core of Mediterranean Water (MW). Such level matches the water density range ??=27.35-27.65 kg m-3 which has been identified as limits for cold-water coral distribution in the North Atlantic.

  16. Plio-Quaternary canyons evolution on South Colombian convergent margin : Tectonic causes and implications

    NASA Astrophysics Data System (ADS)

    Ratzov, Gueorgui; Sosson, Marc; Collot, Jean-Yves; Migeon, Sebastien

    2010-05-01

    Investigations of seafloor morphology and sediment deposits associated with the incision of the South Colombia active margin by a major submarine canyon system are used to reveal out-of-sequence fault activity at least since the Middle Pleistocene. The South Colombian convergent margin is located along Northwestern South America, where the Nazca plate underthrusts eastward the South America plate with a 58 mm.yr-1 convergence rate. The morphology and deep multichannel seismic reflection lines obtained across the margin reflect a frontal accretionnary wedge, as well as antiform and faulted internal structural highs that locally extend up to near the continental shelf, suggesting wide-spread Plio-Quaternary tectonic activity. The Amadeus cruise conduced in 2005 brought new seismic and sedimentary data together with 150m and 60m-resolution EM12D multibeam bathymetry. The newly mapped Mira and Patia canyons system incises the South Colombian margin slope over a distance of ~90 and ~150 km respectively, forming an unequivocal Z-shape in map view, breaching the deformation front and feeding a 30-km wide trench fan system. The morphology of the canyon exhibits meanders, steep over-incised walls (~25-30 degrees), alternation between concave-up and convex-up downstream profiles, slope failures scars, and buried channels. These features reflect interactions between tectonics, sedimentation and the canyon evolution. A synthesis of all the data reveals that: A) Uplifting structural highs control canyons path and incision stages. B) Canyons developed asynchronously across the upper, mid and lower margin slopes according to three main stages: a) upper slope incision by downward cutting during Pleistocene, and possibly by retrogressive headward erosion, b) infill of a mid-slope basin bounded by uplifting structural highs, and c) overspill of the slope basin, and breaching its seaward bounding ridge, and the accretionary prism ~150 kyr ago. These processes led to the construction of sedimentary lobes in the trench, and then to a well-developed channel-levees system. C) Occurrences of antecedence, canyon walls over steepening, and convex-up bathymetric profiles of the canyons imply uplift of the fault-controlled structural highs at least during the last ~150 kyr supporting active out-of-sequence tectonic shortening. The long-term causes of the out-of-sequence tectonic could be linked to interplate coupling and basal friction variations. This study strongly reflects the interplay between tectonic deformation and canyon evolution thus providing a good example of the use of canyon morphology and associated deposits as markers of active tectonic deformation

  17. Attributes and origins of ancient submarine slides and filled embayments: Examples from the Gulf Coast basin

    SciTech Connect

    Morton, R.A. )

    1993-06-01

    Large submarine slides and associated shelf margin embayments represent an intermediate member in the continuum of unstable shelf margin features. On seismic profiles, they may resemble submarine canyons, but are different in their size, morphology, origin, and hydrocarbon exploration potential. Two large Neogene submarine slides, located in the northwestern Gulf Coast Basin, formed on the upper slope and flanks of prominent shelf-margin deltas. The basal detachment surface of each slide is a structural discontinuity that may be misinterpreted as an erosional unconformity and misidentified as a stratigraphic boundary separating depositional sequences. Regional stratigraphic correlations indicate that both slides were initiated after the continental platform was flooded. The condensed sections deposited during the rise in relative sea level contain the basal detachment surfaces. The relationships between the slides and sea level fluctuations are uncertain. The shelf-margin embayments created by the slides apparently were partly excavated during periods of lowered relative sea level and were filled during sea level rise and highstand. Eventually the preslide morphology of the shelf margin was restored by coalsced prograding deltas. Submarine slides exhibit landward dipping, wavy, mounded, and chaotic seismic reflection that are manifestations of slump blocks and other mass transport material. Composition of these internally derived slide deposits depends on th composition of the pre-existing shelf margin. Embayment fill above the slide consists mostly of externally derived mudstones and sandstones deposited by various disorganized slope processes, as well as more organized submarine channel-level systems. Thickest slope sandstones, which are potential hydrocarbon reservoirs, commonly occur above the basal slide mudstones where seismic reflections change from chaotic patterns to overlying wavy or subhorizontal reflections. 46 refs., 10 figs., 1 tab.

  18. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another important concern is a suite of products from chemical reactions among oxidizing compounds with biological chemicals such as amines, thiols and carbonyls. SAMAP Meeting We (Armin and Joachim) attended the 2011 SAMAP conference in Taranto, Italy (10-14 October), which occurred just a few weeks after the IABR meeting in Parma, Italy (11-15 September 2011). It was held at the Officers' Club of the Taranto Naval Base under the patronage of the Italian navy; the local host was Lucio Ricciardi of the University of Insubria, Varese, Italy. At the 2011 SAMAP meeting, the theme was air-independent propulsion (AIP), meaning the capability of recharging the main batteries of the submarine without the need to surface. Only a few navies (e.g. US, UK, France, Russia, China) have historically had this capability using nuclear-powered submarines that can function underwater for extended periods of time (months). Most navies operate submarines with conventional diesel-electric propulsion, wherein diesel-powered generators charge battery banks which then drive an electric motor connected to the propeller. The batteries are charged while the boat is on the surface or during snorkelling, when the boat is submerged a few meters below the surface and a snorkel tube is extended to the surface. The period between battery charges can vary from several hours to one or two days depending on the power requirements and the nature of the mission. The process is necessary for breathing air revitalization (flushing out accumulated contaminants) and for the operation of the diesel engines. However, during this period the submarine is vulnerable to detection. Since the 1940s there have been various attempts to develop a power generation system that is independent of external air (AIP). To this end hydrogen peroxide was initially used and later liquid oxygen (LOX). Currently, most AIP submarines use fuel cell technology (LOX and hydrogen) to supplement the conventional diesel-electric system in order to extend the underwater endurance to 2-3 weeks. These propulsion engineering changes also reduce periodic ventilation of the submarine's interior and thus put a greater burden on the various maintenance systems. We note that the spaceflight community has similar issues; their energy production mechanisms are essentially air independent in that they rely almost entirely on photovoltaic arrays for electricity generation, with only emergency back-up power from alcohol fuel cells. In response to prolonged underwater submarine AIP operations, months-long spaceflight operations onboard the ISS and planning for future years-long missions to Mars, there has been an increasing awareness that bio-monitoring is an important factor for assessing the health and awareness states of the crewmembers. SAMAP researchers have been proposing various air and bio-monitoring instruments and methods in response to these needs. One of the most promising new methodologies is the non-invasive monitoring of exhaled breath. So, what do the IABR and SAMAP communities have in common? Inhalation toxicology. We are both concerned with contamination from the environment, either as a direct health threat or as a confounder for diagnostic assessments. For example, the exhaled breath from subjects in a contaminated and enclosed artificial environment (submarine or spacecraft) can serve as a model system and a source of contamination for their peers in a cleaner environment. In a similar way, exhaled anaesthetics can serve as a source of contamination in hospital/clinical settings, or exhalation of occupational exposures to tetrachloroethylene can impact family members at home. Instrumentation development. Both communities have similar needs for better, more specific and more sensitive instruments. Certainly, the analytical instruments to be used onboard submarines and spacecraft have severe restrictions on energy use, physical size and ease of operation. The medical and clinical communities have similar long-term plans for their analytical tools, in this case to take breath analysis away from the large complex instruments in the laboratory to the outpatient clinic and eventually to the home care market. Similarly, for environmental and public health research, it is always desirable to have easily operated and deployable instruments that can be taken to the field, rather than bringing numerous subjects to a central laboratory. Bio-monitoring. Although the SAMAP community is much more focused on air rather than breath measurement, this is changing because of the realization that longer deployment times (on submarines and spacecraft) will affect more than just acute health. To monitor longer-term health outcomes, there is a great deal of commonality between our respective research communities. Any instrument that monitors for contaminants in environmental air could certainly be adapted to breath analysis for assessing exposures and health state. Instruments that simultaneously provide rapid response and high specificity to a broad range of analytes, such as those based on optical spectroscopy and mass spectrometry, are particularly valued. The path forward We found the SAMAP meeting to be a worthwhile experience, largely from the discovery that another high-tech community exists with similar needs as the IABR community. Some collaboration could be fruitful for us; we suggest that the IABR community stay in contact with SAMAP in the future and attempt to attend each other's meetings if possible. SAMAP meetings tend to run on a two year cycle and so the next one has not yet been announced. We will let the IABR community know when the next meeting is scheduled, and will certainly make the SAMAP people aware of IABR meetings and the Journal of Breath Research. This article has been subjected to EPA Agency review and approved for publication. Statements do not necessarily reflect official Agency policy. PMID:22366644

  19. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  20. Canyon Effects on Nearshore Infragravity Waves During NCEX

    NASA Astrophysics Data System (ADS)

    Reniers, A.; Macmahan, J.; Thornton, E.; Stanton, T.

    2004-12-01

    Infragravity waves become increasingly important as the water depth gets shallower and wind generated waves become saturated due to wave breaking. Infragravity wave energy is composed of wave-group forced long waves and reflected leaky waves and trapped edge waves. Typically conditions on a approximately alongshore uniform beach are consisdered (e.g. Herbers et al., 1994, van Dongeren et al., 2003). Here we examine the alongshore variability in the infragravity conditions induced by nearby canyons utilizing a 2D-surfbeat model (Reniers et al., 2004). The model simulates the propagation of both leaky and trapped infragravity waves that are generated by directionally spread wave groups. Model computations are used to examine the potential reflection (Inman et al., 1976, Huntley et al., 1981) of shore-trapped edge waves from the canyon walls by considering various model-scenarios with and without the canyons. Computational results will be compared with observations of infragravity conditons obtained from an alongshore array of pressure and velocity meters situated just north of the canyon (MacMahan et al., 2004, this conference). References Herbers, T.H.C., Steve Elgar and R.T. Guza, 1994: Infragravity-frequency (0.005 0.05 Hz) motions on the shelf. Part 1: Forced waves. J. Phys. Oc., 25, 1063-1079. Huntley, D. A., R. T. Guza and E. B. Thornton, 1981, "Field Observations of Surf Beat: Part I, Progressive Edge Waves", J. Geophys. Res., 86, 6451-6466. Inman, D.L., C.E. Nordstrom and R.E. Flick, 1976: Currents in sub-marine canyons: An air-sea-land interaction, Ann. Rev. Fluid Mech., 8, 275-310. MacMahan, J., E.B. Thornton, A. Reniers and T.P. Stanton, 2004, The Torrey Pines Rip-currents, this conference. Reniers, A.J.H.M., E.B. Thornton and J.A. Roelvink, 2004: Morphodynamic modeling of an embayed beach under wave-group forcing, J. Geophys. Res., 109, C01030, doi:10.1029/2002JC001586. Van Dongeren, A.R., A.J.H.M. Reniers, J.A. Battjes and I.A. Svendsen, 2003, "Numerical modeling of infragravity wave response during Delilah." J. Geoph. Res, 108 (C9), 4-1-19

  1. Implications for the Removal of Invasive Species in Canyon de Chelly National Monument

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a study to investigate the causes of channel narrowing and incision in Canyon de Chelly National Monument, the effects of Tamarisk and Russian-olive on streambank stability were evaluated. Root tensile strengths and distributions in streambanks were measured and used in combination in a r...

  2. The Dangeard and Explorer canyons, South Western Approaches UK: Geology, sedimentology and newly discovered cold-water coral mini-mounds

    NASA Astrophysics Data System (ADS)

    Stewart, Heather A.; Davies, Jaime S.; Guinan, Janine; Howell, Kerry L.

    2014-06-01

    The Celtic Margin is a complex area in terms of sedimentary dynamics and evolution, with a number of submarine canyons dissecting the continental slope and outer continental shelf. The complex terrain and diverse range of sea-bed sediments play a part in submarine canyons being described as areas of high habitat heterogeneity. This study has concentrated on the heads of two canyons: Dangeard (also known as Dangaard) and Explorer (first named here) located in UK territorial waters, in water depths between 138 and 1165 m. Multibeam echosounder, 2D reflection seismic and photographic ground-truthing data have been combined to map the sea-bed geomorphology, sedimentary features and canyon megafauna of these canyons. In addition, two previously unknown provinces of cold-water coral (CWC) mini-mounds were discovered on the interfluves of the Dangeard and Explorer canyons. The study area comprises a dendritic network of gullies feeding into the canyon thalwegs. Amphitheatre rims, where slope angles are commonly in excess of 20°, occur along the margins and heads of both canyons and are interpreted as drainage basins indicative of retrogressive mass-wasting in a shelfward direction. The CWC mini-mounds occur in water depths between 250 m and 410 m, with more than 400 mounds identified. They are up to 3 m in height and 50-150 m in diameter with no sub-surface expression, suggesting these mounds are, in geological terms, relatively young and possibly Holocene in age. Biological analyses revealed that the mounds form a habitat for ophiuroids and Munida associated with Lophelia pertusa coral rubble, suggesting these mini-mounds are not present-day living features.

  3. Possible Connections Between the Coronado Bank Fault Zone and the Newport-Inglewood, Rose Canyon, and Palos Verdes Fault Zones Offshore San Diego County, California.

    NASA Astrophysics Data System (ADS)

    Sliter, R. W.; Ryan, H. F.

    2003-12-01

    High-resolution multichannel seismic-reflection and deep-tow Huntec data collected by the USGS were interpreted to map the Coronado Bank fault zone (CBFZ) offshore San Diego County, California. The CBFZ is comprised of several major strands (eastern, central, western) that change in both orientation and degree of deformation along strike. Between Coronado Bank and San Diego, the CBFZ trends N25W and occupies a narrow 7 km zone. Immediately north of La Jolla submarine canyon (LJSC), the easternmost strand changes orientation to almost due north and appears to be offset in a right-lateral sense across the canyon axis. The strand merges with a prominent fault that follows the base of the continental slope in about 600 m water depth. The central portion of the CBFZ is mapped as a negative flower structure and deforms seafloor sediment as far north as 15 km north of LJSC. Farther north, this structure is buried by more than 400 m of basin sediment. Along the eastern edge of the Coronado Bank, the western portion of the CBFZ is characterized by high angle normal faults that dip to the east. North of the Coronado Bank, the western segment follows the western edge of a basement high; it cuts through horizontal basin reflectors and in places deforms the seafloor. We mapped an additional splay of the CBFZ that trends N40W; it is only observed north and west of LJSC. Although the predominant trend of the CBFZ is about N40W, along strike deviations from this orientation of some of the strands indicate that these strands connect with other offshore fault zones in the area. Based on the limited data available, the trend of the CBFZ south of Coronado Bank suggests that it might connect with the Rose Canyon fault zone (RCFZ) that has been mapped in San Diego Bay. North of Coronado Bank, the CBFZ is a much broader fault zone (about 25 km wide) composed of diverging fault strands. The westernmost strand may merge with the western strand of the Palos Verdes fault zone (PVFZ) south of Lasuen Knoll. The eastern strand trends toward the Newport-Inglewood fault zone (NIFZ) as imaged offshore near Dana Point. These connections suggest that the CBFZ is linked at depth with other prominent fault zones to the north (PVFZ and NIFZ) as well as to the south (RCFZ).

  4. Reference PMHS Sled Tests to Assess Submarining.

    PubMed

    Uriot, Jérôme; Potier, Pascal; Baudrit, Pascal; Trosseille, Xavier; Petit, Philippe; Richard, Olivier; Compigne, Sabine; Masuda, Mitsutoshi; Douard, Richard

    2015-11-01

    Sled tests focused on pelvis behavior and submarining can be found in the literature. However, they were performed either with rigid seats or with commercial seats. The objective of this study was to get reference tests to assess the submarining ability of dummies in more realistic conditions than on rigid seat, but still in a repeatable and reproducible setup. For this purpose, a semi-rigid seat was developed, which mimics the behavior of real seats, although it is made of rigid plates and springs that are easy to reproduce and simulate with an FE model. In total, eight PMHS sled tests were performed on this semirigid seat to get data in two different configurations: first in a front seat configuration that was designed to prevent submarining, then in a rear seat configuration with adjusted spring stiffness to generate submarining. All subjects sustained extensive rib fractures from the shoulder belt loading. No pelvis fractures and no submarining were observed in the front seat configuration, but two subjects sustained lumbar vertebrae fractures. In the rear seat configuration, all subjects sustained pelvic fractures and demonstrated submarining. Corridors were constructed for the external forces and the PMHS kinematics. They are provided in this paper as new reference tests to assess the biofidelity of human surrogates in different configurations that either result in submarining or do not. In future, it is intended to analyze further seat and restraint system configurations to be able to define a submarining predictor. PMID:26660745

  5. Quantitative differential geomorphology of the Monterey Canyon from time-separated multibeam surveys

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Zucca, F.; Innocenti, C.; Sorichetta, A.; Seeber, L.

    2008-12-01

    Changes of bathymetry derived from multibeam sonars are useful for quantifying the effects of many sedimentary and tectonic processes. The assessment of resolution limits is an essential component of the analysis This research compares submarine morphology as they manifest tectonics in a rapidly transform continental margin (Monterey Bay - California). We study modern submarine processes from a geomorphic change using high-resolution multibeam bathymetry. We first used different techniques that quantify uncertainties and reveals the spatial variations of errors. An sub-area of immobile seafloor in the study area, mapped by the high-resolution multibeam record of the seafloor of the MBR collected by MBARI in each survey in a four years period (spring 2003 to winter 2006), provides a common 'benchmark'. Each survey dataset over the benchmark is filtered with a simple moving-averaging window and depth differences between the two surveys are collated to derive a difference histogram. The procedure is repeated using different length-scales of filtering. By plotting the variability of the differences versus the length-scale of the filter, the different effects of spatially uncorrelated and correlated noise can be deduced. Beside that, a variography analysis is conducted on the dataset build by differencing the benchmark surveys to highlight spatial structures and anisotropies of the measure errors. Data analysis of the Monterey Bay area indicates that the canyon floor contains an axial channel laterally bounded by elevated complex terrace surfaces. Asymmetrical megaripples dominate the active part of the canyon floor, indicating sediment transport. Terraces represent the evidence of recent degradation of the canyon floor. Slump scars and gullies, having a variety of size, shape the canyon walls. Significant changes over the analyzed period include: (a) complete reorganization of the megaripples on the channel floor, (b) local slump scar on the head of the canyon and on the channel flanks, (c) local channel widening that laterally eroded older channel, (d) extension of gully head on canyon walls, (e) erosion and sedimentation cycles all over the canyon. The analyses carried out shows how the results are based on a map of uncertainties, which can be used to remove insignificant data from the bathymetric change map.

  6. The design and installation of a subsurface trimoor over Scripps and Lajolla canyons

    SciTech Connect

    McAllister, T.P.; Wilson, J.V.

    1983-01-01

    As subsea suspended cable structure technology develops, suspended cable structures are becoming a practical means of supporting oceanographic instrumentation systems. A cable structure is presented that suspends a data collection system into a 2,500-ft (760 m) wide submarine canyon. Extensive computer simulations were used to estimate mooring line tensions, anchor loads, and the ability of the structure to hold the payload in the required location. The effects of mooring angle, line size, oceanic environment, and vessel attachment to the structure are discussed. The installation and the capability to fine-tune the final configuration are also discussed.

  7. Submarine mass wasting features at the southern central Chilean continental margin - a new database

    NASA Astrophysics Data System (ADS)

    Voelker, David; Geersen, Jacob; Weinrebe, Willi R.; Behrmann, Jan H.

    2010-05-01

    Based on an extensive set of swath bathymetry data that was obtained on 12 cruises and cover about 72% of the Chilean continental margin between 33°S and 43°S, up to now more than 60 submarine mass wasting features were detected, mapped and described. They form a wide spectrum in size, apparent slide mechanism and volume. Most of them are small if compared to mass wasting features on passive continental margins. We analyze the database with the aim to determine the main tectonic preconditioning factors for mass wasting along this densely populated partof the Chilean coastline. Major factorsare (1) slope undercutting by the incision of erosive submarine canyons, (2) slope oversteepening by active folding and faulting,and (3) accretionary wedge collapse due to localized sediment underplating and/or frontal accretion. A major stratigraphic control on mass wasting may be in the form of offshore deposition of thick volcanic ash fallout of the Southern Volcanic Zone of Chile. Also fluid seepage from overpressured faults tapping dewatering subducted sediments at depth may contribute to destabilization of sediments on the continental slope. Obvious triggers are the large thrust earthquakes that shake the region with a historical recurrence time of ~ 150 y. About half of the features are directly related to the active submarine canyons on the forearc. The collapse of canyon walls partly impinges on the open slope where thin translational slides detach from discrete horizons . Apart from the slides directly related to canyons, we identified medium-sized (5-25 km3) blocky slides that affect the lowermost continental slope, and small spoon-shaped headscarps of slides, which deliver their material into slope basins. A particular feature is given by Valdes Slide which developed on an upper slope thrust ramp , with mass wasting directed landward. There is no straight-forward relationship between simple geomorphic parameters such als slope gradient or curvature, and the spatial distribution of slump features, as was previously observed e.g. offshore the Pacific coast of Nicaragua. The database will serve as comparison to other regional datasets of convergent margins such as for Central America, but also to the COSTA database of mass wasting features on the North Atlantic passive margin.

  8. The spatial cross-correlation structure induced by wave refraction near Scripps Canyon.

    NASA Astrophysics Data System (ADS)

    Smit, P. B.; Janssen, T. T.; Herbers, T. H. C.

    2014-12-01

    The interaction between ocean waves and nearshore topography, such as submarine canyons that extend close to shore, can - through wave interference - introduce fast (intra-wave scale) spatial variability in the mean wave statistics (e.g., the significant wave height). These variations are associated with refraction-induced cross-correlations in the wave field and cannot be resolved with conventional statistical wave models. To capture these effects, the evolution of the complete second-order statistics is required, as shown by Smit & Janssen (2013, J Phys Oceanogr, 43, 1741-1758) who consider an integro-differential equation to transport the complete correlation matrix. Their model captures spatial cross-correlations, thus identifying standing wave patterns affecting wave-induced momentum fluxes (radiation stresses) and circulation, and thus providing an additional level of information that was not available before in statistical wave models. In this work we apply the new quasi-coherent model to study the influence of Scripps Canyon (near San Diego) on nearshore wave statistics for different offshore wave conditions. Thereto we compare model results to observations near Scripps Canyon collected during the ONR Nearshore Canyon Experiment (NCEX), in the fall of 2003 (Magne et al., J Geophys Res, 2007). The focus of this paper is on the inhomogeneous wave effects near the Canyon, which we analyze by considering the spatial cross-correlation functions as predicted by the model and observed by arrays of sensors. The cross-correlations demonstrate that during swell conditions, partially standing wave patterns emerge in the vicinity of the canyons, which has important implications for nearshore modeling of circulation and transport processes.

  9. Sediment transport processes at the head of Halibut Canyon, Eastern Canada margin: An interplay between internal tides and dense shelf water cascading.

    NASA Astrophysics Data System (ADS)

    Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.

    2013-04-01

    To investigate the processes by which sediment is transported through a submarine canyon incised in a glaciated margin, the bottom boundary layer quadrapod RALPH was deployed at 276-m depth in the West Halibut Canyon (off Newfoundland) during winter 2008-2009. Two main sediment transport processes were identified throughout the deployment. Firstly, periodic increases of near-bottom suspended-sediment concentrations (SSC) were recorded associated with the up-canyon propagation of the semidiurnal internal tidal bore along the canyon axis, carrying fine sediment particles resuspended from deeper canyon regions. The recorded SSC peaks, lasting less than one hour, were observed sporadically and were linked to bottom intensified up-canyon flows concomitant with sharp drops in temperature. Secondly, sediment transport was also observed during events of intensified down-canyon current velocities that occurred during periods of sustained heat loss from surface waters, but were not associated with large storms. High-resolution velocity profiles throughout the water column during these events revealed that the highest current speeds (~1 m s-1) were centered several meters above the sea floor and corresponded to the region of maximum velocities of a gravity flow. Such flows had associated low SSC and cold water temperatures and have been interpreted as dense shelf water cascading events channelized along the canyon axis. Sediment transport during these events was largely restricted to bedload and saltation, producing winnowing of sands and fine sediments around larger gravel particles. Analysis of historical hydrographic data suggests that the origin of such gravity flows is not related to the formation of coastal dense waters advected towards the canyon head. Rather, the dense shelf waters appear to be generated around the outer shelf, where convection during winter is able to reach the sea floor and generate a pool of near-bottom dense water that cascades into the canyon during one or two tidal cycles. A similar transport mechanism can occur in other submarine canyons along the eastern Canadian margin, as well in other canyoned regions elsewhere, where winter convection generally reaches the shelf-edge.

  10. Prediction of the Dynamic Behaviour and Migration Rates of Sand Waves in the Monterey Canyon System of California

    NASA Astrophysics Data System (ADS)

    Innocenti, C.; Taramelli, A.; Besio, G.; Pascoletti, F. C.; Disperati, L.; Aiello, I. W.

    2009-12-01

    This research focus on the sand wave field along the canyon axis in the upper 4 km of the Monterey Submarine Canyon revealed by high-resolution multibeam bathymetry collected by MBARI/Mapping Lab of the California State University (http://seafloor.csumb.edu/), spanning six years period (spring 2003 to fall 2008). The goal of the research is to understand how erosion, gravitative processes, sediment liquefaction by storm events, sediment transport by tidal currents, and deposition of the reworked sediment are connected in distal basins with quasi-horizontal floors. Morphometric analysis has been conducted on the sand wave on the canyon head and main axes comparing the waves shape of nearest surveys by means of smoothing filtering and geostatistical techniques. The analysis has allowed to classify the canyon floor in upstream migration zones, downstream migration zones, and completely reworked zones. In the first two zones a sand migration velocity has been inferred, and in the last ones, where the wave field is completely reworked between each surveys, a minimum admissible migration velocity has been deducted. A simple mathematical model has then permitted to reproduce the main features of sand wave inception and growth. In particular the model focus on the prediction of the migration rates that sand waves undergo because of tidal currents. The model output has been compared versus the morphometric analysis results and match and mismatch are discussed. Results of the research show that the sand waves migrate in a predominantly up-canyon direction with tidal and internal tidal currents, despite different behaviour along the canyon. However the research shows that these are not the dominating flows within the canyon. Seismic profiles interpretation, other morphometric analysis results like local channel widening causing lateral erosion of older channel and extension of gully head on canyon walls and rim, point out high velocity transport processes in the canyon main axes. This mechanism can be related to storm events and gravitative processes, possibly triggered by seismic events, as suggested by the slope stability analysis. Moreover, the liquefaction potential analysis of the poorly consolidated sediments characterising the canyon’s head suggests that pore fluid overpressures may develop during earthquake shaking (i.e. earthquakes with peak ground acceleration (PGA) > 0.18 - about 50% of the PGA related to the 1989 M 7.1 Loma Prieta earthquake), further contributing to the destabilization of the canyon slope.

  11. The role of upper-regime flow bedforms in the morphodynamics of submarine channels

    NASA Astrophysics Data System (ADS)

    Covault, Jacob A.; Kostic, Svetlana; Fildani, Andrea

    2014-05-01

    Advances in acoustic imaging of submarine canyons and channels have provided accurate renderings of seafloor geomorphology. Still, a fundamental understanding of channel inception, evolution, sediment transport, and the nature of the currents traversing these channels remains elusive. Here, we review a mosaic of geomorphology, shallow stratigraphy, and morphodynamics of channelized deep-water depositional systems of tectonically active slopes offshore of California, USA. These systems are imaged in high-resolution multi-beam sonar bathymetry (dominant frequency ~200 kHz) and seismic-reflection (2-16 kHz) data. From north to south, the Monterey East, Lucia Chica, and San Mateo channelized deep-water depositional systems show a breadth of geomorphology and stratigraphic architecture, including channel reaches of varying sinuosity, levees, terraces within channels, and crescent-shaped bedforms, especially in the thalwegs of incipient channel elements. Morphodynamic numerical modeling is combined with interpretations of seafloor and shallow subsurface stratigraphic imagery to demonstrate that the crescent-shaped bedforms common to channel thalwegs are likely to be cyclic steps. We propose that net-erosional and net-depositional cyclic steps play a fundamental role in the formation, filling, and maintenance phases of submarine channels in continental margins with high gradient, locally rugose bathymetry. These margins include passive-margin slopes subjected to gravity-driven tectonic deformation. In such settings, high gradients support the development of densimetric Froude-supercritical turbidity currents, and abrupt slope breaks can promote hydraulic jumps and the spontaneous evolution of an erodible seabed into cyclic steps. This morphodynamic investigation of turbidity currents and the seafloor has the potential to enhance prediction of the locations, stratigraphic evolution, and architecture of submarine canyon-channel systems.

  12. Carbonate apron models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration

    USGS Publications Warehouse

    Mullins, H.T.; Cook, H.E.

    1986-01-01

    Sediment gravity flow deposition along the deep-water flanks of carbonate platforms typically does not produce submarine fans. Rather, wedge-shaped carbonate aprons develop parallel to the adjacent shelf/slope break. The major difference between submarine fans and carbonate aprons is a point source with channelized sedimentation on fans, versus a line source with sheet-flow sedimentation on aprons. Two types of carbonate aprons may develop. Along relatively gentle (< 4??) platform-margin slopes, aprons form immediately adjacent to the shallow-water platform and are referred to as carbonate slope aprons. Along relatively steep (4-15??) platform margin slopes, redeposited limestones accumulate in a base-of-slope setting, by-passing an upper slope via a multitude of small submarine canyons, and are referred to as carbonate base-of-slope aprons. Both apron types are further subdivided into inner and outer facies belts. Inner apron sediments consist of thick, mud-supported conglomerates and megabreccias (Facies F) as well as thick, coarse-grained turbidites (Facies A) interbedded with subordinate amounts of fine-grained, peri-platform ooze (Facies G). Outer apron sediments consist of thinner, grain-supported conglomerates and turbidites (Facies A) as well as classical turbidites (Facies C) with recognizable Bouma divisions, interbedded with approximately equal proportions of peri-platform ooze (Facies G). Seaward, aprons grade laterally into basinal facies of thin, base-cut-out carbonate turbidites (Facies D) that are subordinate to peri-platform oozes (Facies G). Carbonate base-of-slope aprons grade shelfward into an upper slope facies of fine-grained peri-platform ooze (Facies G) cut by numerous small canyons that are filled with coarse debris, as well as intraformational truncation surfaces which result from submarine sliding. In contrast, slope aprons grade shelfward immediately into shoal-water, platform-margin facies without an intervening by-pass slope. The two carbonate apron models presented here offer alternatives to the submarine-fan model for paleoenvironmental analysis and hydrocarbon exploration for mass-transported carbonate facies. ?? 1986.

  13. Revisiting submarine mass movements along the U.S. Atlantic Continental Margin: implications for tsunami hazards

    USGS Publications Warehouse

    Chaytor, J.D.; Twichell, D.C.; ten Brink, U.S.; Buczkowski, B.J.; Andrews, B.D.

    2007-01-01

    Interest in the generation of tsunamis by submarine mass movements has warranted a reassessment of their distribution and the nature of submarine landslides offshore of the eastern U.S. The recent acquisition and analysis of multibeam bathymetric data over most of this continental slope and rise provides clearer view into the extent and style of mass movements on this margin. Debris flows appear to be the dominant type of mass movement, although some translational slides have also been identified. Areas affected by mass movements range in size from less than 9 km2 to greater than 15,200 km2 and reach measured thicknesses of up to 70 m. Failures are seen to originate on either the open-slope or in submarine canyons. Slope-sourced failures are larger than canyonsourced failures, suggesting they have a higher potential for tsunami generation although the volume of material displaced during individual failure events still needs to be refined. The slope-sourced failures are most common offshore of the northern, glaciated part of the coast, but others are found downslope of shelf-edge deltas and near salt diapirs, suggesting that several geological conditions control their distribution.

  14. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  15. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  16. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  17. 29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION AT POINT JUST ABOVE THE SUBMARINE SECTION AT THE 110-FOOT LEVEL 1929-1930 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  18. 32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW OF PHOTO CAPTIONED 'SUBMARINE BASE, NEW LONDON, CONN. OCTOBER 3, 1932. COMPLETION OF ERECTION OF STEELWORK FOR ELEVATOR. LOOKING NORTH. CONTRACT NO. Y-1539-ELEVATOR, SUBMARINE ESCAPE TANK.' - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  19. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  20. 32 CFR 700.1058 - Command of a submarine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Command of a submarine. 700.1058 Section 700... Command Detail to Duty § 700.1058 Command of a submarine. The officer detailed to command a submarine... submarines....

  1. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  2. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  3. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  4. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic...

  5. Seven years of geomorphic change in the head of Monterey Canyon, CA: Steady state equilibrium or monotonic change?

    NASA Astrophysics Data System (ADS)

    Smith, D. P.; Kvitek, R. G.; Ross, E.; Iampietro, P.; Paull, C. K.; Sandersfeld, M.

    2010-12-01

    The head of Monterey submarine canyon has been surveyed with high-precision multibeam sonar at least once each year since September 2002. This poster provides a summary of changes between September 2002 and September 2008. Data were collected with a variety of Reson mulitbeam sonar heads, and logged with an ISIS data acquisition system. Vessel attitude was corrected using an Applanix POS MV equipped with an auxillary C-Nav 2050 GPS receiver. Data were processed and filtered and cleaned in Caris HIPS. Depth changes for various time spans were determined through raster subtraction of pairs of 3-m resolution bathymetric grids in ArcMap. The depth change analyses focused on the canyon floor, except where a landslide occurred on a wall, and where obvious gullying near the headwall had occurred during the time of our study. Canyon walls were generally excluded from analysis. The analysis area was 1,414,240 sq meters. The gross changes between 2002 and 2008 include net erosion of 2,300,000 m^3 +/- 800,000 m^3 of material from the canyon. The annualized rate of net sediment loss from this time frame agrees within an order of magnitude with our previously published estimates from earlier (shorter) time frames, so the erosion events seem to be moderate magnitude and frequent, rather than infrequent and catastrophic. The greatest sediment loss appears to be from lateral erosion of channel-bounding terraces rather than deepening or scouring of the existing channel axis. A single landslide event that occurred in summer 2003 had an initial slide scar (void) volume of 71,000 m^3. The scar was observed to increase annually, and had grown to approximately 96,000 m^3 by 2008. The initial slide was too small to be tsunamigenic. In contrast to the monotonic canyon axis widening, the shoreward terminus of the canyon (canyon lip) appears to be in steady state equilibrium with sediment supply entering the canyon from the littoral zone. The lip position, indicated by the clearly defined shelf/slope break, typically oscillates offshore and onshore about 20 m to 30 m annually, but a 50 m change was measured. This oscillation likely represents cycles of sediment wedge progradation followed by slope failure and shoreward lip retreat. At this time, it appears that buildings along Moss Landing strand are not at risk from net shoreward canyon growth. The canyon appears to be excavating material that was previously stored in the canyon during an era when sediment supply outcompeted submarine transport processes. Published ages and pollen analyses from the canyon walls indicate that an enormous volume of sediment entered the canyon in post-European settlement time, with up to 1.6 m of sediment drape occurring after 1945 (presence of trace DDT). Likewise, 1930’s-era bathymetric charts indicate that major depositional features now located in the canyon were not present in the 1930’s, again suggesting a very young age for the deposits now being excavated from the canyon. One possible source of the young deposits is the construction of nearby Moss Landing Harbor in 1946, which has led to very high erosion rates in adjacent Elkhorn Slough.

  6. Why SRS Matters - H Canyon

    SciTech Connect

    Hunt, Paul; Lewczyk, Mike; Swain, Mike

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features H Canyon's mission and operations.

  7. Thomas Moran: "The Grand Canyon."

    ERIC Educational Resources Information Center

    Brubaker, Ann

    1986-01-01

    Presents a lesson plan for introducing students in grades four through six to Thomas Moran's painting, "The Grand Canyon." The goal of the lesson is to illustrate the importance of the American West as a subject for artists in the nineteenth century. (JDH)

  8. Tubes at Glen Canyon Dam

    USGS Multimedia Gallery

    The river outlet tubes at Glen Canyon Dam on the Colorado River in Arizona. At noon Monday, Nov. 19, U.S. Interior Secretary Ken Salazar will open the dam's river outlet tubes, releasing controlled flows larger than the usual 8,000-25,000 cubic feet per second that flows through the turbines of...

  9. Amplification of bedrock canyon incision by wind

    NASA Astrophysics Data System (ADS)

    Perkins, Jonathan P.; Finnegan, Noah J.; de Silva, Shanaka L.

    2015-04-01

    Bedrock canyons are ubiquitous on Earth and Mars, and river canyon morphology is commonly used to interpret the climatic and tectonic histories of landscapes. On both planets, however, many bedrock canyons exist in dry, wind-dominated environments. Although wind abrasion can significantly influence the evolution of arid landscapes, the role of wind in shaping arid bedrock canyon systems is poorly understood and thus typically neglected. Here we exploit a natural experiment on the western slope of the central Andes that allows direct comparison of wind-affected and wind-protected canyons. Through a combined analysis of the morphology of 36 canyons and topographic wind simulations, we show that wind abrasion can amplify bedrock canyon incision rates by an order of magnitude above fluvial rates. Our results imply that wind can extend bedrock canyons--landforms traditionally thought to evolve only from flowing water. Furthermore, our analyses reveal a direct relationship between aerodynamics and landscape evolution on varying scales. Topographic shielding of high winds by mountains modulates the pace of canyon retreat, while individual canyon profiles become aerodynamically streamlined. We conclude that wind abrasion can significantly modify the morphology of bedrock canyons and suggest that wind may have similarly reshaped fluvial landscapes on the martian surface.

  10. Nicolas and Eel submarine fans, California continental borderland

    SciTech Connect

    Reynolds, S.; Gorsline, D.S.

    1987-04-01

    Nicolas and Eel Submarine Fans occur in the San Nicolas basin - an outer basin of the California continental borderland that has a low sedimentation rate. Nicolas Fan lies southeast of San Nicolas Island and the broad San Nicolas Bank. The upper fan is characterized by numerous channels. The midfan region may be divided into three distinct areas: a central midfan and two subfans. The central midfan deposition system is typical of Normark's suprafan. The subfans are essentially flat, sandy lobes. Eel Fan lies west of San Clemente Island and is fed by an erosional valley. Its midfan region may also be characterized as a flat, sandy lobe. Box-core data show that holocene turbidity currents have occurred on the central Nicolas Fan, whereas the subfans and Eel Fan are nearly inactive. The local tectonic regime influences these fans by determining slope trends, creating bathymetric obstacles, controlling canyon location, and triggering mass movements. Sea level changes affect sedimentation patterns of the fans by increasing the mean grain size and the amount of sediment delivered to the fan during lowstands. These changes may, in turn, affect the morphology of the fan. The characteristics of these fans represent variations of the generalized fan models described in the literature. 12 figures, 1 table.

  11. Interrelationships of organic carbon and submarine sediment geotechnical properties

    SciTech Connect

    Bennett, R.H.; Lehman, L.; Hulbert, M.H.; Harvey, G.R.; Bush, S.A.; Forde, E.B.; Crews, P.; Sawyer, W.B.

    1985-01-01

    Total organic carbon content (TOC) and selected geotechnical properties we measured in submarine sediments of the US central east coast and the Mississippi Delta. TOC values in the near-surface Delta sediments were approximately 1% (dry weight). TOC in surficial sediments from the US east coast outer continental shelf, upper slope, and upper rise was generally less than 1%, but between the upper slope and the upper rise, values ranged from 1 to 3% and exceeded 3% in patches associated with Norfolk and Washington Canyons. TOC displayed positive linear correlations with water content, liquid limit, plastic limit, plasticity index, and the amount (percent) of fine-grained material. Nevertheless, there appeared to be no strong dependence of geotechnical properties on TOC in these sediments. This was in accord with previously reported studies on terrestrial soils with TOC values of less than 5%. Carbohydrate content was strongly correlated with water content and plasticity index, suggesting that measurement of individual components of the organic material may provide more sensitive indications of the effects of organics on geotechnical properties than measurement of bulk TOC. Selected geotechnical properties and TOC content of US continental margin surficial sediments displayed regional trends related to water depth and morphological setting. These trends are probably related to recent biological, sedimentological, and oceanographic processes active on the outer shelf, slope, and rise.

  12. CHALLENGES POSED BY RETIRED RUSSIAN NUCLEAR SUBMARINES

    SciTech Connect

    Rudolph, Dieter; Kroken, Ingjerd; Latyshev, Eduard; Griffith, Andrew

    2003-02-27

    The purpose of this paper is to provide an overview of the challenges posed by retired Russian nuclear submarines, review current U.S. and International efforts and provide an assessment of the success of these efforts.

  13. Active tectonic morphology and submarine deformation of the northern Gulf of Eilat/Aqaba from analyses of multibeam data

    NASA Astrophysics Data System (ADS)

    Tibor, Gideon; Niemi, Tina M.; Ben-Avraham, Zvi; Al-Zoubi, Abdallah; Sade, Ronnie A.; Hall, John K.; Hartman, Gal; Akawi, Emad; Abueladas, Abdelrahmem; Al-Ruzouq, Rami

    2010-12-01

    A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north-northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf-slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70-80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf-slope break. One fossil reef is exposed on the shelf across the Ayla high at about 60-63 m water depth but is either covered or eroded in the adjacent subbasins. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.

  14. Active tectonic morphology and submarine deformation of the northern Gulf of Eilat/Aqaba from analyses of multibeam data

    NASA Astrophysics Data System (ADS)

    Tibor, Gideon; Niemi, Tina; Ben-Avraham, Zvi; Al-Zoubi, Abdallah; Sade, Ronnie; Hall, John; Hartman, Gal; Akawi, Emad; Abueladas, Abed; Al-Ruzouq, Rami

    2010-05-01

    A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat (gulf head). The gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi 'Arabah) and Yutim River to the north-northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault Zone to the west and the Ayla Fault Zone to the east. The shelf-slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70-80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf-slope break. One fossil reef is exposed on the shelf across the Ayla high in about 60-63 m water depth but is either covered or eroded in the adjacent subbasins. This fossil reef is offset along the offshore Evrona Fault. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.

  15. Personality characteristics of successful Navy submarine personnel.

    PubMed

    Moes, G S; Lall, R; Johnson, W B

    1996-04-01

    This study evaluated the personality characteristics of senior enlisted and occupationally successful Navy submarine personnel. One hundred subjects completed the Schedule for Nonadaptive and Adaptive Personality (SNAP). Results indicated that the traits of detachment, propriety, and workaholism were most descriptive of the sample. Thirty-seven percent met SNAP criteria for a personality disorder, typically antisocial, obsessive-compulsive, or avoidant. The results are discussed in terms of adaptation to environmental demands aboard submarines. Suggestions for further research are offered. PMID:8935516

  16. [Tuberculosis in the crew of a submarine].

    PubMed

    Suzuki, S; Nakabayashi, K; Ohkouchi, H; Hatada, J; Kawaguchi, S; Sakai, M; Sasaki, N; Ito, A

    1997-01-01

    We report the apparent spread of mycobacterial tuberculosis among a submarine crew from a crew member with a low grade of infectivity. The air-conditioning system of submarines requires completely closed recirculation of ambient air. If a person with pulmonary tuberculosis were in a submarine, one would expect to find a high incidence of tuberculosis among others on the ship. The index patient was a 35-year-old member of a submarine crew. An abnormal shadow was found on a chest roentgenogram during an annual medical checkup, and he was hospitalized for examination. Acid-fast bacilli were found in his gastric secretions, but he did not complain of coughing and no tuberculosis bacilli were found in his sputum. All members of the submarine crew were examined, and some who were on board with the index patient reacted strongly. Because those who were also suspected to be infected were usually not close to the index patient's living quarters and had little contact with the patient in the submarine, we strongly suspect that the closed ventilation system contributed to the spread of the infection. Control of tuberculosis in a sealed environment requires detailed investigation of the environment and completion of chemoprophylaxis. Adequate ventilation and ultraviolet radiation are more effective than decontamination with disinfectants for the control of infectious droplet nuclei. Ships should be equipped with those systems. PMID:9071158

  17. Submarine landslides: processes, triggers and hazard prediction.

    PubMed

    Masson, D G; Harbitz, C B; Wynn, R B; Pedersen, G; Løvholt, F

    2006-08-15

    Huge landslides, mobilizing hundreds to thousands of km(3) of sediment and rock are ubiquitous in submarine settings ranging from the steepest volcanic island slopes to the gentlest muddy slopes of submarine deltas. Here, we summarize current knowledge of such landslides and the problems of assessing their hazard potential. The major hazards related to submarine landslides include destruction of seabed infrastructure, collapse of coastal areas into the sea and landslide-generated tsunamis. Most submarine slopes are inherently stable. Elevated pore pressures (leading to decreased frictional resistance to sliding) and specific weak layers within stratified sequences appear to be the key factors influencing landslide occurrence. Elevated pore pressures can result from normal depositional processes or from transient processes such as earthquake shaking; historical evidence suggests that the majority of large submarine landslides are triggered by earthquakes. Because of their tsunamigenic potential, ocean-island flank collapses and rockslides in fjords have been identified as the most dangerous of all landslide related hazards. Published models of ocean-island landslides mainly examine 'worst-case scenarios' that have a low probability of occurrence. Areas prone to submarine landsliding are relatively easy to identify, but we are still some way from being able to forecast individual events with precision. Monitoring of critical areas where landslides might be imminent and modelling landslide consequences so that appropriate mitigation strategies can be developed would appear to be areas where advances on current practice are possible. PMID:16844646

  18. Sediment flushing observations, earthquake slumping, and benthic community changes in Monterey Canyon head

    NASA Astrophysics Data System (ADS)

    Okey, Thomas A.

    1997-07-01

    A large area of axis sediment (>500 m 2) may be annually removed from the head of Monterey Submarine Canyon with the first onshore storm of the fall/winter storm season. In this scenario, flushing events are followed by accumulation of sediment and organic debris—especially macro-algae—in the shallow axis. Net accumulation of this fill material increases during the calmer spring and summer until the next fall-flushing. The benthic community at a canyon axis station was characterized by highly fluctuating populations of opportunistic polychaete worms and gammarid amphipods, primarily Capitella spp., Armandia brevis, and Orchomene pacifica. The canyon axis community was very different from communities living at two other stations where sudden flushing does not occur—an adjacent sloping-wall station and a sandflat station. Sloping-wall and sandflat stations harbored more and longer-lived species, larger individuals, and a less-variable population structure during a year of sampling. The Loma Prieta earthquake in the fall of 1989 triggered small sediment slumps on the canyon walls, but it did not trigger axis-flushing. The usual seasonal flushing of the axis occurred 2 weeks after the earthquake with the arrival of the first storm. Benthic communities were reduced in abundance inside earthquake-induced slumps; however, the slumped areas were rapidly colonized by Prionospio pygmaea, a polychaete opportunist common to the sandflat. Surprisingly, the physical and biological impacts of the earthquake were much less severe than the seasonal axis-flushing associated with storms. Observations of sediment-flushing combined with measurements of benthic community changes in Monterey Canyon head represent a step towards an ecological model of mass wasting with implications for the continental shelf and slope and possibly the deep sea. 1997 Elsevier Science Ltd

  19. Mineral resources of the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas, Grand county, Utah

    SciTech Connect

    Dickerson, R.P.; Gaccetta, J.D.; Kulik, D.M.; Kreidler, T.J.

    1990-01-01

    This paper reports on the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas in the Book and Roan Cliffs in Grand Country, Utah, approximately 12 miles west of the Colorado state line. The wilderness study areas consist of a series of deep, stair-step-sided canyons and high ridges eroded into the flatlying sedimentary rocks of the Book Cliffs. Demonstrated coal reserves totaling 22,060,800 short tons and demonstrated subeconomic coal resources totaling 39,180,000 short tons are in the Coal Canyon Wilderness Study Area. Also, inferred subeconomic coal resources totaling 143,954,000 short tons are within the Coal Canyon Wilderness Study Area. No known deposits of industrial minerals are in any of the study area. All three of the wilderness study areas have a high resource potential for undiscovered deposits of coal and for undiscovered oil and gas.

  20. Human-Powered Submarine Competition: World Submarine International 1996 [and] Design Technology Exhibit: A School Model.

    ERIC Educational Resources Information Center

    Hibberd, John C.; Edwards, Don

    1996-01-01

    Hibbard describes the process used by students at Millersville University to build a human-powered submarine for entry in an international submarine competition. Edwards discusses the Design Technology Exhibit held at Lu Sutton Elementary School, the purpose of which was to challenge students to design a useful structure and provide them with the…

  1. The submarine river of Port Miou (France), A karstic system inherited from the Messinian deep stage

    NASA Astrophysics Data System (ADS)

    Cavalera, T.; Gilli, E.

    2009-04-01

    The Port Miou system (Cassis, France) is a two kilometers long submarine gallery that extends in the limestone series of Calanques (Marseille, France). The average discharge is between 2 to 5 m3/s but the water is brackish and cannot be used for water supply. In the 1970s, a dam was built to prevent saltwater intrusion in the cave but these experimental attempts did not succeed in getting rid of the residual salinity which remained near 3 g l-1 upstream the dam. The use of helium and later rebreathers by cave divers made possible the exploration of a vertical pit down to 179 m below the sea level. At that depth, the water is still brackish. The cave extends further and deeper but the exploration is limited by the present diving technology. The canyon of Cassidaigne is located a few kilometers south from Port Miou. It cuts the continental shelf where bathymetric studies have shown the presence of dolines. Caves and speleothems have been observed during submarine explorations on the walls of the canyon. This canyon is not connected to a continental valley and it is assumed that it is a pocket valley. Its presence is related to the several lowering stages of the Mediterranean Sea during the Messinian Salinity Crisis. We suggest that during the important drop of sea level of the Mediterranean, the underground river of Port-Miou, flowed several hundreds meters below its current position, and excavated the canyon. At the end of the Messinian crisis, the system was flooded by seawater. The karst water now flows through an upper gallery but the presence of a paleo-drain filled by seawater makes possible a deep marine intrusion into the karst system. Several geomorphologic clues (bathymetry, submarine valley network…) reinforce the fact that the continental shelf near Marseilles is an important karstic network drowned below the sea level. This model is supported by the observation in Port Miou of an important quantity of titanium at the upper surface of the cave sediment, upstream of the dam and at the end of the cave. The presence of heavy metals in the sediments of the Port Miou gallery is explained as resulting from the suction of residues of bauxite treatments, rejected in the nearby Cassidaigne deep-sea canyon at a depth of 300 m bsl. This residual product locally called "red mud" is very rich in titanium. The saline contamination of Port Miou could be carried out by a seawater inflow through a deep karstic conduit connected to the canyon of Cassidaigne. A long term monitoring of the springs, indicates that the system is contaminated by a permanent sweater inflow close to 500 l.s-1. A laboratory model has been realized that simulates perfectly the functioning.

  2. Hydraulic Jumps, Cyclic Steps and Scour Formation in an Active Submarine Channel

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Peakall, J.; Parsons, D. R.; Darby, S. E.; Dorrell, R. M.; Wynn, R.

    2011-12-01

    Field scale submarine channel gravity currents are notoriously difficult to measure and thus directly investigate due to their inaccessible location and infrequent nature, which is compounded by present sea-level high-stand. An exception to this is the almost continuous density-driven current that results from the inflow of saline Mediterranean water, via the Bosporus strait, into the Black Sea. This flow has carved a sinuous channel system in water depths of 70 to 120 m containing a series of prominent scours at the upstream end. Despite being driven by the salinity contrast, the flow is sufficiently energetic to transport and rework coarse sand within the channel network. The relatively shallow depths of the channel and the continuous nature of this current provide a unique opportunity to study three-dimensional flow dynamics and the interaction of the flow with a seafloor channel network. Thus, it provides a rare analogue for channelized dilute sediment-laden turbidity currents. There has been speculation for nearly half a century that hydraulic jumps are an important process in submarine density currents. Hydraulic jumps have been implicated in causing the development of submarine fans, large scale (km-scale) scouring, the formation of cyclic steps and channel genesis. However, until now this has been inferred from a combination of small scale laboratory experiments and making inferences about flow processes from the geological record and modern bathymetry. Here we provide the first direct field evidence of hydraulic jumps and cyclic step formation in a density-driven current. The decrease in density due to entrainment of fluid across the jump is negligible compared to entrainment into the supercritical flow prior to the jump. The largest hydraulic jump imaged corresponds to a 100 m scour in the seafloor, with which it is in-phase. The decrease in velocity and thus bed shear stress across the jump is not as extreme as present models predict, and this suggests that hydraulic jumps need not lead to instantaneous deposition of submarine fans as density currents exit canyons as presently envisaged. Instead there is likely to be an area of erosion at the base of the canyon followed by fan deposition more distally.

  3. Bell Canyon test and results

    SciTech Connect

    Christensen, C.L.; Hunter, T.O.

    1980-01-01

    The purposes of the Borehold Plugging Program are: to identify issues associated with sealing boreholes and shafts; to establish a data base from which to assess the importance of these issues; and to develop sealing criteria, materials, and demonstrative test for the Waste Isolation Pilot Plant (WIPP). The Bell Canyon Test described in this report is one part of that program. Its purpose was to evaluate, in situ, the state of the art in borehole plugs and to identify and resolve problems encountered in evaluating a typical plug installation in anhydrite. The test results are summarized from the work of Peterson and Christensen and divided into two portions: system integrity and wellbore characterization tests prior to plug installation, and a series of tests to evaluate isolation characteristics of the 1.8-m-long plug. Conclusions of the Bell Canyon Test are: brine and fresh-water grouts, with acceptable physical properties in the fluid and hardened states, have been developed; the field data, taken together with laboratory data, suggest that the predominant flow into the test region occurs through the cement plug/borehold interface region, with lesser contributions occurring through the wellbore damage zone, the plug core, and the surrounding undisturbed anhydrite bed; and the 1.8-m-long by 20-cm-diameter grout plug, installed in anhydrite at a depth of 1370 m in the AEC-7 borehole, limits flow from the high pressure Bell Canyon aquifer to 0.6 liters/day.

  4. Turkish Straits System and Southern Black Sea: Exchange. Mixing and Shelf / Canyon Interactions

    NASA Astrophysics Data System (ADS)

    Özsoy, Emin; Gürses, Özgür; Tutsak, Ersin

    2015-04-01

    Based largely on an experiment employing high-resolution measurements carried out in June-July 2013 and re-interpretation of past experiments, the oceanographic variability of the exchange through the Turkish Straits System (TSS) and the interactions with the southern Black Sea are revealed through CTD, ADCP, oxygen and light transmission measurements. The exchange flow is primarily governed by the complex topography spanning two narrow straits, wide continental shelf regions, steep slopes and numerous canyons connecting deep basins. Water properties and currents in the high energy environment depends on the mosaic of fine-scale processes and pathways. The TSS, often approximated as a two-layer system has a hydraulically controlled, upper ocean and straits intensified regime, leading to surface jets and bottom plumes participating in mixing and renewal processes. The exit of the 'Mediterranean effluent' onto the Black Sea past a sill overflow from the Bosphorus passes through two subsequent hydraulic jumps and proceeds along a narrow canyon that veers to the west clear of the greater Bosphorus Canyon finally cascading down the few small canyons. A diffusive spread from the bottom vein of salty water reforms to the east and spills down the Bosphorus Canyon. The suspended particulate signature of the cascade, as well as its influence in hydrography is traced over the shelf and slope waters and through the numerous canyons into deep water where the reformed flow is found to sustain signatures of the past evolution of intrusive waters. An evaluation of the processes is given with reference to model development carried out in parallel to the analyses of the measurements.

  5. Modes of development of slope canyons and their relation to channel and levee features on the Ebro sediment apron, off-shore northeastern Spain

    USGS Publications Warehouse

    O'Connell, S.; Ryan, William B. F.; Normark, W.R.

    1987-01-01

    Six submarine slope canyons in an area of the northwestern Mediterranean, offshore from the Ebro River and Delta, were surveyed with bathymetric swathmapping (SeaBeam) and mid-range side-looking sonar (SeaMARC I). All of the canyons have slightly winding paths with concave-upwards gradients that are relatively steep shallower than 1,200 m. Two major types of canyons are identified on the basis of their morphologic character at the base of the slope; Type-I canyons lead to an unchannelled base-of-slope deposit and Type-II canyons are continuous with channel-levee systems that cross the rise. Four Type-I canyons were surveyed in the area. Two of these are broad, U-shaped, steep (average gradients of 1:14), do not indent the shelf, and terminate downslope at debris-flow deposits. These two canyons, the most northern in the area, have rounded heads with extensive gullies separated by knife-edge ridges. Relief of the canyon walls is about equal on both sides of the canyons, although the right-hand walls (looking downslope) are generally steeper. The other two Type-I canyons in the area are similar in that they do not indent the shelf, but they are much smaller and shallower and coalesce before terminating in the base-of-slope region. The two Type-II canyons that feed leveed-channels are U-shaped with flatter floors, longer profiles and gentler gradients than Type-I canyons. They are closer to the Valencia Valley and have relatively small cross-sectional areas. We propose a four-stage evolutionary sequence to explain the development of the canyons observed in this section on the prograding Ebro margin. During the initial stage, slumping and erosion on the slope creates a network of small gullies. During the next stage, headward growth of one (or more) gully leads to a major indentation of the shelf. This is the critical factor for developing a channel that will incise the slope and provide a major conduit for moving sediment to the basin. Stage 3 is characterized by the development of a continuous channel accompanied by levee growth across the lobe. In the final stage, the channel-levee system becomes inactive either through destruction by mass wasting, infilling of the channel, or loss of the major sediment source. ?? 1987.

  6. The role of erosion by fish in shaping topography around Hudson submarine canyon.

    USGS Publications Warehouse

    Twichell, D.C.; Grimes, Craig B.; Jones, R. S.; Able, K.W.

    1985-01-01

    The close match of areas of rough topography and high tilefish populations, the active burrowing of the sea floor, and the clustered distribution of the burrows suggest that the hummocky topography in this area may be the result of continuous erosion by tilefish and associated crustaceans during the Holocene. -from Authors

  7. 2. VIEW OF HIGH FLUME, LOOKING DOWN WARM SPRINGS CANYON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF HIGH FLUME, LOOKING DOWN WARM SPRINGS CANYON TO SANTA ANA RIVER CANYON. VIEW TO WEST-NORTHWEST. - Santa Ana River Hydroelectric System, Warm Springs Canyon-SAR-3 Flumes, Redlands, San Bernardino County, CA

  8. California State Waters Map Series--Hueneme Canyon and vicinity, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.

    2012-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts of three smaller, unnamed headless canyons incised into the shelf southeast of Hueneme Canyon. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial deposits that formed as sea level fluctuated in the last several hundred thousand years. Hueneme Canyon extends about 15 km offshore from its canyon head near the dredged navigation channel of the Port of Hueneme. The canyon is relatively deep (about 150 m at the California's State Waters limit) and steep (canyon flanks as steep as 25° to 30°). Historically, Hueneme Canyon functioned as the eastern termination of the Santa Barbara littoral cell by trapping all eastward littoral drift, not only feeding the large Hueneme submarine fan but acting as the major conduit of sediment to the deep Santa Monica Basin; however, recent dredging programs needed to maintain Channel Islands Harbor and the Port of Hueneme have moved the nearshore sediment trapped by jetties and breakwaters to an area southeast of the Hueneme Canyon head. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Hueneme Canyon and vicinity map area are related directly to the geomorphology and sedimentary processes that are the result of its Quaternary geologic history. The two basic megahabitats in the map area are Shelf (continental shelf) and Flank (continental slope). The flat seafloor of the continental shelf in the Hueneme Canyon and vicinity map area is dynamic, as indicated by mobile sand sheets and coarser grained scour depressions. The active Hueneme Canyon provides considerable relief to the continental shelf in the map area, and its irregular morphology of eroded walls, landslide scarps, and deposits and gullies provide promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. Most invertebrates observed in the map area during camera ground-truth field operations are found on the edge of Hueneme Canyon, which may be an important area of recruitment and retention to other invertebrates and fishes. The smaller, more subtle, nonactive headless canyons located primarily on the continental slope also offer relief that provides habitat for groundfish and other organisms.

  9. Chirp seismic-reflection data from the Baltimore, Washington, and Norfolk Canyons, U.S. mid-Atlantic margin

    USGS Publications Warehouse

    Obelcz, Jeffrey B.; Brothers, Daniel S.; ten Brink, Uri S.; Chaytor, Jason D.; Worley, Charles R.; Moore, Eric M.

    2014-01-01

    A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV near three United States mid-Atlantic margin submarine canyons. These data can be used to further our understanding of passive continental margin processes during the Holocene, as well as providing valuable information regarding potential submarine geohazards.

  10. De-Stabilization of Streambanks by Removal of Invasive Species in Canyon de Chelly National Monument, Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a study to investigate the causes of channel narrowing and incision in Canyon de Chelly National Monument, the effects of Tamarisk and Russian-olive on streambank stability were evaluated. The National Park Service (NPS) is currently engaged in an experimental program to remove the invasi...

  11. Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia.

    PubMed

    Stieglitz, Thomas

    2005-01-01

    Along the tropical coastline of the Great Barrier Reef (GBR) region, little is known to date about submarine groundwater discharge (SGD) into the near-shore ocean. In an oceanographic sense, SGD consists of freshwater flow from land as well as seawater circulated through sediments. Recent radiochemical and geophysical studies, using the tracer (222)Rn and apparent ground conductivity respectively, provide evidence for SGD to occur in a variety of hydrogeological settings. In this paper, a non-quantitative overview of different settings of SGD in the region is presented: (1) recirculation of seawater through animal burrows in mangrove forests, (2) freshwater SGD from unconfined aquifers as a narrow coastal fringe of freshwater along Wet Tropics beaches, (3) SGD from coastal dune systems in form of localised freshwater springs in the intertidal zone, (4) inner-shelf SGD from confined submarine aquifer systems comprised of riverine paleochannels incised into the shelf. PMID:15757707

  12. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    USGS Publications Warehouse

    Xu, Jingping; Octavio E. Sequeiros; Noble, Marlene A.

    2014-01-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  13. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    NASA Astrophysics Data System (ADS)

    Xu, J. P.; Sequeiros, Octavio E.; Noble, Marlene A.

    2014-07-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  14. Hudson Canyon benthic habitats characterization and mapping by integrated analysis of multidisciplinary data

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2013-04-01

    Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats. Previously described hummocky terrain associated with extensive, long-term burrowing activity by golden tilefish (Lopholatilus chamaeleonticeps) was clearly delineated along the canyon rims. Bedform fields and potential current deposits observed along the upper portion of canyon walls suggest the presence of intense bottom currents flowing parallel to canyon axis. A benthic habitat map of Hudson Canyon head was produced by integration of the different datasets. The distribution of habitats was primarily inferred from geophysical data characteristics. Furthermore habitat characteristics can be related to sedimentary and oceanographic processes acting on the seafloor. Comparison and refinement of bathymetric and backscatter imagery with ground truth data enabled validation of acoustic classification of the seafloor, allowing the definition of morpho-acoustic classes corresponding to as many habitats, and to extend the predictive results over larger areas.

  15. Research Furthers Conservation of Grand Canyon Sandbars

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Rubin, David M.; Wright, Scott A.

    2007-01-01

    Grand Canyon National Park lies approximately 25 km (15 mi) down-river from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border in Glen Canyon National Recreation Area. Before the dam began to regulate the Colorado River in 1963, the river carried such large quantities of red sediment, for which the Southwest is famous, that the Spanish named the river the Rio Colorado, or 'red river'. Today, the Colorado River usually runs clear below Glen Canyon Dam because the dam nearly eliminates the main-channel sand supply. The daily and seasonal flows of the river were also altered by the dam. These changes have disrupted the sedimentary processes that create and maintain Grand Canyon sandbars. Throughout Grand Canyon, sandbars create habitat for native plants and animals, supply camping beaches for river runners and hikers, and provide sediment needed to protect archaeological resources from weathering and erosion. Maintenance of sandbars in the Colorado River ecosystem, the river corridor that stretches from the dam to the western boundary of Grand Canyon National Park, is a goal of the Glen Canyon Dam Adaptive Management Program. The program is a federally authorized initiative to ensure that the mandates of the Grand Canyon Protection Act of 1992 are met through advances in information and resource management. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center has responsibility for scientific monitoring and research efforts for the program. Extensive research and monitoring during the past decade have resulted in the identification of possible alternatives for operating Glen Canyon Dam that hold new potential for the conservation of sand resources.

  16. Reducing Unsteady Loads on a Piggyback Miniature Submarine

    NASA Technical Reports Server (NTRS)

    Lin, John

    2009-01-01

    A small, simple fixture has been found to be highly effective in reducing destructive unsteady hydrodynamic loads on a miniature submarine that is attached in piggyback fashion to the top of a larger, nuclear-powered, host submarine. The fixture, denoted compact ramp, can be installed with minimal structural modification, and the use of it does not entail any change in submarine operations.

  17. 35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. INTERIOR VIEW OF EQUIPMENT HOUSE, SUBMARINE ESCAPE TRAINING TANK, PRIOR TO ENLARGEMENT OF ROOM AND INSTALLATION OF TRIPLE-LOCK RECOMPRESSION CHAMBER IN 1957 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  18. 31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF SUBMARINE ESCAPE TRAINING TANK DURING CONSTRUCTION OF THE ELEVATOR AND PASSAGEWAYS TO THE 18- AND 50-FOOT LOCKS AND CUPOLA 1932 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  19. 36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW OF CUPOLA, SUBMARINE ESCAPE TRAINING TANK, SHOWING ROVING RESCUE BELL SUSPENDED ABOVE TANK, WITH TWO-LOCK RECOMPRESSION CHAMBER AT REAR, LOOKING WEST. Photo taken after installation of recompression chamber in 1956. - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  20. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea cable and other material used in the construction of such plant. Subsidiary record categories,...

  1. Multidisciplinary Investigations of Submarine Flow to Biscayne Bay, Florida

    NASA Astrophysics Data System (ADS)

    Halley, R. B.; Reich, C. D.; Swarzenski, P. W.; Langevin, C. D.

    2005-05-01

    Biscayne Bay and Biscayne National Park (BNP) are located next to the Miami-Dade urban complex and are adjacent to the Dade County South Dade Landfill Facility and the Miami-Dade Water and Sewer South District Plant. The base of the landfill is lined to separate it from the underlying Miami Limestone, the host rock for the surficial Biscayne Aquifer. The sewage-treatment facility injects treated sewage into the lower Florida Aquifer (750 m) that is overlain by an aquitard termed the Middle Confining Unit (450 m). The Biscayne Aquifer (up to 50 m thick) borders the western margin of BNP, and the Floridan Aquifer underlies the entire park. There is concern about leakage of contaminated aquifer water into BNP and its potential effects on water quality. Groundwater flux to Biscayne Bay is being studied using pressure measurements and geochemical analyses from submarine wells, electromagnetic seepage meters, streaming resistivity profiling, and local and regional model simulations. Both seepage meters and water analyses provide point information that can be placed into the regional context provided by flow models and geochemical and geophysical profiling, which, in turn, constrain the groundwater contribution. Water samples were collected approximately quarterly from August 2002 until March 2004 from submarine wells along a transect through Biscayne Bay and across the reef to the shelf edge. Samples were analyzed for conductivity (salinity), dissolved oxygen, temperature, redox potential, nutrients, metals, strontium isotopes, radon, sulfate, and wastewater compounds. Low-salinity water was identified from nearshore wells and indicates seepage from the Biscayne Aquifer and/or surface-water intrusion into the rocks along western Biscayne Bay. Analyses of water samples (n = 109) collected from wells across the Florida shelf show no consistent evidence of wastewater contaminants occurring in groundwater beneath BNP. No significant leakage from the Floridan Aquifer (characterized by low strontium-isotope ratios) was detected in the wells. The groundwater beneath the shelf can be characterized as reduced seawater, modified by microbial respiration to remove oxygen, and interacting with sediments and minerals in the host limestone. The data from submarine well samples are consistent with groundwater model results that indicate a narrow zone of discharge along the western margin of Biscayne Bay. This zone varies in width from 100 to 1000 m along the coast. A seepage meter placed in this zone during March 2004 recorded an average flow of 23 cm/day. Submarine discharge is estimated to be about 6% of the surface-water flow to Biscayne Bay, and almost all of this is in the northern half of the bay, where shoreline and water-table elevations are greatest. Saltwater intrusion extends farther inland in the southern portion of the bay, where water-table and coastal elevations are low. Shoreline-parallel radon-222 profiles also indicate more seepage in the north than south, but suggest low-salinity water extends between 1 and 2 km offshore. Resistivity profiling provided a fourth technique (along with wells, models, and radon) that documents low-salinity water along the coast, particularly toward the northern bay. Resistivity is the only methodology that indicates presence of brackish water 5 km offshore, an observation that requires verification. Interdisciplinary approaches that estimate submarine flow to this tropical estuary are helping reinforce observations made by complimentary methods, while clearly identifying other observations as worthy of further investigation and verification.

  2. Subsurface architecture of the Currituck submarine landslide complex: New insights from high-resolution MCS data

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Craig, B.; Chaytor, J. D.; Flores, C. H.

    2014-12-01

    The Currituck submarine landslide complex located offshore North Carolina is one of the most pronounced geomorphic features of the US Mid-Atlantic Margin, evacuating and redepositing sediment over an area greater than 6500 km2 along continental slope and upper rise. Despite its geomorphic significance, the factors that preconditioned the Currituck slope for failure remain poorly understood. We present an integrated analysis of new high-resolution multichannel seismic (MCS) reflection profiles acquired by the USGS, multibeam bathymetry data, and 1980s vintage industry MCS profiles. The Currituck slope appears to be made up of multiple failure events. Bathymetry data show evidence for multiple surface scarps, while the MCS data suggest there are additional buried scarps within the Pleistocene section. A ~500-m-thick section of relatively intact strata is observed across a 10 x 18 km swath of the lower slope and adjacent to the primary slide evacuation zone. Within this section, chaotic mass transport deposits are sandwiched between parallel reflectors, suggesting older landslides occurred along the upper slope prior to the most recent episode of slope failure. Plio-Pleistocene strata imaged below the main Currituck slide surface display seaward divergence and little to no evidence for buried submarine canyons, suggesting that the Currituck slope was progradational prior to failure. In contrast, the slope to the north and south of Currituck is heavily canyonized and Plio-Pleistocene depocenters are concentrated on the upper rise, suggesting these regions were dominated by sediment bypass and erosion. 3-D mapping of allostratigraphic surfaces imaged in industry MCS profiles reveal significant spatial variation in the antecedent margin morphology that may have set the stage for the accumulation of unstable Plio-Pleistocene depocenters. Upper Miocene strata to the north and south of Currituck show an angular shelf-edge and steep upper slope, whereas the Currituck region displays a rounded and gentle shelf-edge/upper slope. The gentler slope profile may have allowed for preferential sediment accumulation.

  3. Submarine Landslide Morphology of Box Slides Present on the Continental Slope Offshore Fraser Island, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Fletcher, M. J. A.; Hubble, T.; Clarke, S. L.; Airey, D.; Yu, P. W. C.

    2014-12-01

    The Fraser Island slide complex is located on eastern Australia's continental slope. Two potentially tsunamigenic submarine landslides identified here as the 'North Fraser Island Upper Slope Slide' (25km2 in area, 100m thick) and the 'Middle Fraser Island Middle Slope Slide' (12km2 in area, 50m thick) are described. Morphologic, sedimentologic and geomechanical properties for these slides are compared to data reported for existing submarine landslides located to the south in New South Wales (NSW). The two Fraser Island slides are translational, box-shaped, slab slides. We suspect that the slabs remained intact during downslope transport. The upper slope slide is situated at a water depth of approximately 750m at the northern end of the Fraser Canyon complex. The head of this slide has apparently detached from a structural surface comprised of a Miocene reef complex located beneath the continental shelf edge. The middle slope slide is situated on a large plateau to the south of the Fraser Canyon complex in 1500m of water. Cores taken in the continental slope within both slides are long and present hemipelagic muds. Cores taken adjacent to both slides are short and terminate in stiff muds of suspected Miocene or Pliocene age. Additionally, the core adjacent to the upper slope slide presents a near surface layer of upper-fining of coarse to fine shelly sand which we interpret to be a turbidite deposit. This layer was deposited above hemipelagic muds which are ubiquitously present on the upper eastern Australian continental slope in NSW and Southern Queensland.

  4. Transporting submarine engines to power the PRT

    NASA Technical Reports Server (NTRS)

    1926-01-01

    The city of Hampton was unable to supply adequate electric power to operate the PRT. Navy Captain Walter S. Diehl, Bureau of Aeronautics, acquired two 1000 hp submarine engines which were to be disposed of. BuAer 'loaned' the engines to the NACA, one of which is shown here. Next to the engine is Donald H. Wood, a mechanical engineer from Rensselaer Polytechnic Institute and Fred Weick's assistant. Propeller Research Tunnel (PRT) engineer Donald H. Wood ponders the unlikely transfer of a submarine engine from rail car to NACA truck, May 1926. Two such diesel engines powered the PRT.

  5. Utilization of reactor bays of decommissioned submarines

    SciTech Connect

    Lugavtsov, O.V.; Malakhov, A.G.; Popkov, K.K.

    1994-11-01

    Radiation concerns regarding dismantling and storage of decommissioned reactors and reactor bays from nuclear submarines are briefly summarized. Calculation results are presented for gamma dose rates, contamination density, and the expected location of maximum exposure dose rate on the submarine hull. However, it is noted that radiation measurements must be obtained for each ship due to differences in operating conditions. Long-term storage options for containerized reactors and reactor bays are very briefly outlined; these include placing them in concrete-lined trenches shielded from the atmosphere or in underground tunnels shielded from water. 5 refs., 1 fig., 1 tab.

  6. A model for the submarine depthkeeping team

    NASA Technical Reports Server (NTRS)

    Ware, J. R.; Best, J. F.; Bozzi, P. J.; Kleinman, D. W.

    1981-01-01

    The most difficult task the depthkeeping team must face occurs during periscope-depth operations during which they may be required to maintain a submarine several hundred feet long within a foot of ordered depth and within one-half degree of ordered pitch. The difficulty is compounded by the facts that wave generated forces are extremely high, depth and pitch signals are very noisy and submarine speed is such that overall dynamics are slow. A mathematical simulation of the depthkeeping team based on the optimal control models is described. A solution of the optimal team control problem with an output control restriction (limited display to each controller) is presented.

  7. Marine neotectonic investigation of the San Gregorio Fault Zone on the northern flank of Monterey Canyon, offshore central California

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Paull, C. K.; Brothers, D. S.; McGann, M.; Caress, D. W.; Lundsten, E. M.; Anderson, K.; Gwiazda, R.

    2014-12-01

    The San Gregorio Fault Zone (SGFZ) is part of the North American-Pacific plate boundary and is thought to accommodate right-lateral offset up to 10 mm/yr. Because much of the SGFZ in Monterey Bay, central California, lies offshore in steep submarine canyon bathymetry, little is known of its recent activity. We provide initial direct evidence for faulting where the SGFZ has been interpreted based on canyon morphology to cross the northern flank of Monterey Canyon. High-resolution multibeam bathymetry and chirp subbottom profiles were acquired during 13 dives with the Monterey Bay Aquarium Research Institute's (MBARI) Autonomous Underwater Vehicle (AUV) from 2009-2014 on the northern flank of Monterey Canyon, extending from the shelf edge ~15 km offshore Santa Cruz to ~1850 m water depth. Chirp profiles resolve layered sediments up to ~40 m subsurface in this region, and no fault scarps or seafloor lineaments are visible in the 1-m resolution multibeam bathymetry. At least one subsurface fault is identified within the SGFZ by offset reflections across a discrete, nearly vertical fault. However, this fault is only imaged where mass wasting has exhumed older strata to within ~25 m of the seafloor. Numerous slumps scars on the seafloor and packages of chaotic internal reflectivity in chirp profiles suggest that submarine landslide processes dominate the study area. To constrain the age of reflections offset by the fault, MBARI's Remotely Operated Vehicle (ROV) Doc Ricketts, sampled faces of slump scars where the offset reflections crop out using vibracores and horizontal push cores. Radiocarbon dating of foraminifera within these core samples is being used to constrain the last recorded movement on the fault. Application of AUV and ROV methods allows detailed neotectonic investigation of significant offshore structures, like the SGFZ, that contribute to hazard assessment.

  8. 76 FR 8359 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... kilowattmonth (kWmonth), and the proposed composite rate is 22.16 mills/kWh. \\1\\ 75 FR 57912. \\2\\ 133 FERC ] 62... Area Power Administration Boulder Canyon Project AGENCY: Western Area Power Administration, DOE...) is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and...

  9. Snow-covered Sandstone at Bryce Canyon

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  10. Panorama of Bryce Canyon National Park

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  11. Bryce Canyon and Grand Staircase-Escalante

    USGS Multimedia Gallery

    Views along the Queen's Garden Trail in Bryce Canyon National Park; Grand Staircase-Escalante National Monument can be seen in the background. Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed d...

  12. Bryce Canyon and Grand Staircase-Escalante

    USGS Multimedia Gallery

    Bryce Canyon is a unique sandstone formation in southern Utah. It is home to a large number of hoodoos, which are oddly shaped pillars of rock that formed due to different erosion rates for the dolomite that caps them and the sandstone that forms their base. Bryce Canyon is also home to large numbe...

  13. Sunset Panorama in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  14. Grand Canyon as seen from STS-58

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A broad view westward along the Colorado River from just below Glen Canyon Dam (out of picture), through the entire Grand Canyon to Lake Mead and Las Vegas and westward to include southern Nevada and much of California. The Salton Sea, Los Angeles Basin, and Great Valley rim the Pacific Coast in the distance.

  15. Barrel Cactus in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  16. Loblolly Pines in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  17. ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION

    SciTech Connect

    KEHLER KL

    2011-01-13

    At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

  18. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  19. H-Canyon Recovery Crawler

    SciTech Connect

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.; Phillips, M. H.

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and would require significant maintenance to become inspection ready. The RC traveled approximately 660 feet in the tunnel and viewed the tunnel and ceiling wall surfaces that were not blocked by existing ducts. This deployment also documented the tunnel obstacles for future inspections. Overall, the RC deployment was a success.

  20. Physical volcanology of the submarine Mariana and Volcano Arcs

    NASA Astrophysics Data System (ADS)

    Bloomer, Sherman H.; Stern, Robert J.; Smoot, N. Christian

    1989-05-01

    Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50 70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50 70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10 20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50 70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.

  1. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO2, but higher levels of O3, compared with the box model run under identical chemical and emissions conditions. When considering the level of chemical detail implemented, segregation effects were found to reduce the error introduced by simplifying the reaction mechanism. Chemical processing of emissions within the canyon leads to a significant increase in the Ox flux from the canyon into the overlying boundary layer, relative to primary emissions, for the idealised case considered here. These results demonstrate that within-canyon atmospheric chemical processing can substantially alter the concentrations of pollutants injected into the urban canopy layer, compared with the raw emission rates within the street canyon. The extent to which these effects occur is likely to be dependent upon the nature of the domain (canyon aspect ratio), prevailing meteorology and emission/pollution scenario considered.

  2. Favorable Street Canyon Aspect Ratios for Pollutant Removal- a Large-Eddy Simulation Approach

    NASA Astrophysics Data System (ADS)

    Chung, T. N.; Liu, C.

    2010-12-01

    Given the limited land resource, urbanization is one of the solutions to the current rapid economic development and population growth. Narrow streets flanked by high-rise buildings, also known as street canyons, are commonly found in metropolises nowadays. In recent years, this issue has been aroused the public awareness that the air pollutants from domestic sources and vehicular emissions are unable to be removed but trapped inside the street canopy level threatening human health and our living environment. A thorough understanding of the pollutant removal mechanism is the key step to rectify the current poor urban air quality. This study is therefore conceived to examine how the pollutant removal is related to the street width and building height. Large-eddy simulation (LES) with the one-equation subgrid-scale (SGS) turbulence model is employed to investigate the characteristic ventilation and pollutant transport in idealized two-dimensional (2D) street canyons of different building-height-to-street-width (aspect) ratios (ARs) h/b. Model validation is performed by comparing the LES results with those of k-? turbulence model and laboratory experiments. A consistent trend of the pollutant exchange rate (PCH) among the LES, k-? turbulence model, and experimental results is obtained. While its drag is largest, the street canyon of AR = 0.5 is found to be most favorable in the pollutant removal perspective. This finding seems contradict with the presumption that the smaller the AR (wider the street), the more efficient the pollutants removal. In the isolated roughness regime the flows in (wider) street canyons, the entrainment from the prevailing flow aloft down into the ground level purging pollutant away. On the contrary in the skimming flow regime, in (narrower) street canyons, the recirculating flows inside the street canyon are isolated from the prevailing flow in which the (vertical) pollutant removal is governed by roof-level intermittency. Unexpectedly, in the wake interference regime, lying between isolated roughness and skimming flow regimes, the PCH is found to be the least among the three flow regimes. This is likely caused by the shallow purging air stream together with the pollutant re-entrainment from the roof level back into the street canyon. These LES results suggest that the pollutant removal is not simply proportional to the street width. Indeed, the turbulent transport processes should not be overlooked that plays a crucial role in the pollutant removal mechanisms. Hence more ARs should be considered generating a comprehensive picture for the favorable street canyon aspect ratios for better air quality.

  3. PEFCs for naval ships and submarines: many tasks, one solution

    NASA Astrophysics Data System (ADS)

    Sattler, Gunter

    Polymer electrolyte fuel cells (PEFCs) for air-independent propulsion systems have been developed and tested under submarine conditions and are thus ready for submarine application. A demand analysis and the presentation of the requirements for naval surface ships and submarines will be followed by the description of the realisation concepts for PEFC propulsion plants. Based on the results of FC operation on board of a submarine and the system design for the new German submarine Class 212, synergy effects will be derived from that for surface ships. Finally, future aspects will be pointed out including PEFC propulsion for merchant ships.

  4. Prehistoric deforestation at Chaco Canyon?

    PubMed Central

    Wills, W. H.; Drake, Brandon L.; Dorshow, Wetherbee B.

    2014-01-01

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical “collapse” associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860–1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  5. Prehistoric deforestation at Chaco Canyon?

    PubMed

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  6. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons

    PubMed Central

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100–2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on these bottoms of ecological and economic importance. PMID:26436773

  7. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    PubMed

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized ?- and ?-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of ?-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on these bottoms of ecological and economic importance. PMID:26436773

  8. A 250-Year Sediment Record of Anthropogenic Contaminants in the Lisbon Canyon, Portuguese Margin

    NASA Astrophysics Data System (ADS)

    de Stigter, H. C.; Richter, T. O.; Booij, K.; Boer, W.; Jesus, C. C.; van Weering, T. C.

    2008-12-01

    The Lisbon Canyon on the continental margin of Portugal is located in the immediate vicinity of a densely populated and industrialized metropolitan area, and receives terrigenous sediments from the Tagus River draining a large part of the Iberian Peninsula. Radionuclide records (210Pb, 137Cs) for piston cores retrieved from the canyon indicate rapid and almost continuous accumulation over the last 250 years, with sedimentation rates of up to 1 cm per year. The devastating 1755AD Lisbon Earthquake is represented in some cores by a sandy turbidite layer with erosive base, but subsequently disturbance of the sedimentary record by mass sedimentation events has been very limited. In one core at 1710 m water depth, Pb concentrations increased gradually over the last 250 years, and more abruptly after ~1960AD. Subsequently, anthropogenic lead contributed more than half of total lead deposition. Stable Pb isotope ratios indicate concurrent shifts in sources of Pb and increasing influence of anthropogenic pollutants. A slight reversal in both long-term trends after ~1990AD presumably reflects the phase-out of leaded gasoline. Organic contaminant analyses of a core collected from 1112 m water depth demonstrate enrichment of the canyon sediments with a variety of polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs) over the last century. PCBs increased abruptly during the second half of the 20th century but show a slight decrease over the most recent decade. PAHs appear to have had their maximum in the late 19th century, possibly reflecting fallout of coal dust from one of the busiest shipping routes of the eastern Atlantic. The present study illustrates the potential of submarine canyon sediments as high-resolution archives of human impacts on the continental margin.

  9. Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures

    NASA Astrophysics Data System (ADS)

    Rotella, Melissa D.; Wilson, Colin J. N.; Barker, Simon J.; Ian Schipper, C.; Wright, Ian C.; Wysoczanski, Richard J.

    2015-08-01

    Despite increasing recognition of silicic pumice-bearing deposits in the deep marine environment, the processes involved in explosive silicic submarine eruptions remain in question. Here we present data on bubble sizes and number densities (number of bubbles per unit of melt matrix) for deep submarine-erupted pumices from three volcanoes (Healy, Raoul SW and Havre) along the Kermadec arc (SW Pacific) to investigate the effects of a significant (>~1 km) overlying water column and the associated increased hydrostatic pressure on magma vesiculation and fragmentation. We compare these textural data with those from chemically similar, subaerially-erupted pyroclasts from nearby Raoul volcano as well as submarine-erupted 'Tangaroan' fragments derived by non-explosive, buoyant detachment of foaming magma from Macauley volcano, also along the Kermadec arc. Deep submarine-erupted pumices are macroscopically similar (colour, density, texture) to subaerial or shallow submarine-erupted pumices, but show contrasting microscopic bubble textures. Deep submarine-erupted pyroclasts have fewer small (< 10 μm diameter) bubbles and narrower bubble size distributions (BSDs) when compared to subaerially erupted pyroclasts from Raoul (35-55 μm vs. 20-70 μm range in volume based median bubble size, respectively). Bubble number density (BND) values are consistently lower than subaerial-erupted pyroclasts and do not display the same trends of decreasing BND with increasing vesicularity. We interpret these textural differences to result from deep submarine eruptions entering the water column at higher pressures than subaerial eruptions entering the atmosphere (~ 10 MPa vs. 0.1 MPa for a vent at 1000 mbsl). The presence of an overlying water column acts to suppress rapid acceleration of magma, as occurs in the upper conduit of subaerial eruptions, therefore suppressing coalescence, permeability development and gas loss, amounting to closed-system degassing conditions. The higher confining pressure environment of deep submarine settings hinders extensive post-fragmentation clast expansion, coalescence of bubbles, and thinning of bubble walls, causing clasts to have similar BND values regardless of their vesicularity. Although deep submarine-erupted pyroclasts are closely similar to their subaerial counterparts on the basis of bulk vesicularities and macroscopic appearance, they differ markedly in their microscopic textures, allowing them to be fingerprinted in modern and ancient pumiceous marine sediments.

  10. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the multi-platform drilling of the Nankai seismogenic zone. Scientific initiatives are flourishing to drive IODP towards the study of submarine geohazards. In the last three years international workshops, were held to address the topic: ESF-ECORD sponsored a Magellan Workshop focussed on submarine landslides (Barcelona, Spain, 2006); IODP sponsored a world-wide Geohazard Workshop (Portland, Oregon, 2007); ESF-ECORD sponsored another Magellan Workshop focussed on Mediterranean submarine geohazards (Luleå, Sweden, 2008). In addition, following the ECORD-Net Conference on the Deep Sea Frontier (Naples, Italy, 2006), the history, monitoring and prediction of geohazards was identified as one of the 6 major areas for a European science plan to integrate Ocean Drilling, Ocean Margin, and Seabed research. More than 200 scientists and private companies representatives have been mobilized world-wide to attend these meetings, from where it emerged that Ocean Drilling will play a key role in the future to answer the following basic open questions on submarine geohazards: - What is the frequency, magnitude, and distribution of geohazard events? - Do precursory phenomena exist and can they be recognized? - What are the physical and mechanical properties of materials prone to failure? - What are the roles of preconditioning vs. triggering in rapid seafloor deformation? - Can the tsunamigenic potential of past and future events be assessed? Within the global-ocean geohazards, worth of note is the attention given in this preparatory phase to submarine geohazards in the Mediterranean basin, a miniature ocean often called a "natural laboratory" because of the diversity of geological environments it contains. The coastline is very densely-populated, totalling 160 million inhabitants sharing 46,000 km of coastline. The Mediterranean is the World's leading holiday destination, receiving an average of 135 million visitors annually. Submarine landslides, volcanic flank collapses, volcanic island eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.

  11. Physical and chemical properties of submarine basaltic rocks from the submarine flanks of the Hawaiian Islands

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.; Kanamatsu, T.

    2005-01-01

    To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.

  12. Seatbelt submarining injury and its prevention countermeasures: How a cantilever seat pan structure exacerbate submarining

    PubMed Central

    Thorbole, Chandrashekhar K.

    2015-01-01

    The purpose of this study and a case report was to demonstrate seat belt webbing induced injury due to seatbelt submarining during the frontal motor vehicle crash. Submarining is an undesired phenomenon during a frontal crash scenario and is dependent on design features of the seat pan and seatbelt system. The lack of adequate anti-submarining features at any seating position with three-point restraint can cause abdominal solid and hollow organ injuries. This paper reports a case of submarining and factors that exacerbated this phenomenon leading to critical occupant abdominal injury. This case report and the following injury causation analysis demonstrate the shortcomings of a cantilever seat pan design in context to the occupant safety. The inadequate seat pan anti-submarining feature in association with lack of seatbelt load-limiter and Pretensioner reduces the level of occupant protection offered by the seat belt system in the rear seat. This case report shows the dangers of cantilever seat pan design and its association with increased risk of submarining causing severe abdominal injuries. PMID:26985421

  13. Channel complex architecture of fine-grained submarine fans at the base-of-slope

    SciTech Connect

    Bouma, A.H.; Gwang, H.; Van Antwerepen, O.

    1995-10-01

    The fan-valley or upper fan channel connects the submarine canyon on the outer shelf-upper slope to the basin proper. It is an erosionally-formed channel that is a conduit for sediment transported to the basin. The valley may widen where it enters the base-of-slope area. Most of the density flows are much smaller than the initial flow and therefore will not occupy the entire width of the upper fan channel. Smaller individual channels will be constructed resulting in a massive fill comprised of amalgamated sandstones. Sand-rich levees and overbank deposits flank each channel. Channel switching may take place toward locations with a slightly steeper gradient. These switches most likely result from irregular flow successions and different flow sizes. Erosion between successive channels is common, removing part of the channel fill and levee-overbank deposits. This results in a disorderly distribution of low-permeability barriers creating local obstruction to connectivity. A study of the sedimentological architecture of the updip mid-fan channel complex was conducted on cliff sections of the Permian Tanqua Karoo subbasin in South Africa, and in Big Rock Quarry in North Little Rock, Arkansas. Seismic records of the base-of-slope of the Mississippi Fan show a widening pattern, and of the Bryant Canyon Fan Complex south of the Sigsbee Escarpment the channel complexity. Integration of seismic data in outcrop observations improves our understanding of the complexity of many good reservoir sands, typically overlain by slope shales.

  14. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  15. Phase 1 Final Report: Titan Submarine

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of liquid methane into the currently predicted predominantly ethane Kraken Mare. During an extended ninety-day mission, it would transit the throat of Kraken (now Seldon Fretum) and perform similar explorations in other areas of Kraken Mare. Once this half year of exploration is completed the submarine could be tasked to revisit points of interest and perhaps do a complete sonar mapping of the seas. All in all, the submarine could explore over 3,000 km (1,864 mi) in its primary mission at an average speed of 0.3 meters per second.

  16. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...The Glen Canyon Dam Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning Glen Canyon Dam operations and other management actions to protect resources downstream of Glen Canyon Dam, consistent with the Grand Canyon Protection Act. The AMWG meets two to three times a...

  17. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...The Glen Canyon Dam Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning Glen Canyon Dam operations and other management actions to protect resources downstream of Glen Canyon Dam, consistent with the Grand Canyon Protection Act. The AMWG meets two to three times a...

  18. Baltimore Canyon Trough, a clastic-carbonate system

    SciTech Connect

    Edson, G.M. )

    1990-05-01

    Baltimore Canyon Trough is similar in age, architecture, and sedimentary framework to neighboring marginal basins offshore from eastern North America. The other basins are the Scotian and Georges Bank basins and the Carolina Trough. All contain a Jurassic-earliest Cretaceous clastic-carbonate sedimentary section composed of terrigenous basin fill and a shallow-water limestone platform. In Baltimore Canyon Trough, the platform is believed to be over 10 km thick. Upward through the Jurassic System, the platform progrades seaward and narrows. The platform top is earliest Cretaceous (Berriasian) and only about 5-15 km wide. Width of the base is indeterminate but apparently much wider. At the seaward edge of the platform is a limestone buildup and reef complex that consists of bioclastic wackestones, packstones, grainstones, and sponge-stromatoporoid-algal bindstones. Foreslope deposits are thrombolitic stromatactis-pelletal carbonate mudstones. Landward of the buildup, the platform contains numerous siliciclastic interbeds, consisting of mostly calcareous shale and siltstone with inertinite. The calciclastic lime mudstone beds of the platform contain terrigenous siliciclasts and kerogens. All units are oxidized and show considerable sedimentary reworking. Through the Jurassic System and into the Cretaceous, terrigenous clastic sediments became increasingly dominant in the basin and erosional-depositional cycles continually reworked carbonate, as well as siliciclastic, units.

  19. Predictability of Turbulent Flow in Street Canyons

    NASA Astrophysics Data System (ADS)

    Lo, K. W.; Ngan, K.

    2015-08-01

    Although predictability is a subject of great importance in atmospheric modelling, there has been little research on urban boundary-layer flows. Here the predictability of street-canyon flow is examined numerically via large-eddy simulation of a unit-aspect-ratio canyon and neutrally stratified atmosphere. In spectral space there is indication of cascade-like behaviour away from the canyon at early times, but the error growth is essentially independent of scale inside the canyon; in physical space the error field is rather inhomogeneous and shows clear differences among the canyon, shear layer and inertial sublayer. The error growth is largely driven by the shear layer: errors generated above roof level are advected into the canyon while contributions from intermittent bursting and in situ development within the canyon play a relatively minor role. This work highlights differences between the predictability of urban flows and canonical turbulent flows and should be useful in developing modelling strategies for more realistic time-dependent urban flows.

  20. Benthic foraminifera from Capbreton Canyon revisited; faunal evolution after repetitive sediment disturbance

    NASA Astrophysics Data System (ADS)

    Bolliet, T.; Jorissen, F. J.; Schmidt, S.; Howa, H.

    2014-06-01

    At a 650 m deep site in the axis of Capbreton Canyon an 18-cm-thick turbidite was deposited in December 1999. During subsequent campaigns, an almost monospecific fauna of the benthic foraminifer Technitella melo, considered as a pioneer species, was found in May 2000. In 2001 this fauna had disappeared and was replaced by an exceptionally rich fauna strongly dominated by the opportunistic species Bolivina subaenariensis. We present sedimentological, radionuclide and foraminiferal data of new cores, sampled in 2005 and 2011, taken with the aim to study the further evolution of the benthic ecosystem. Cores sampled in 2005 show that in the canyon axis a new, ca. 5 cm thick, turbidite has been deposited. The live benthic foraminiferal faunas were much poorer than in 2001, but still had a high dominance and low diversity, although less extreme than in 2001. We conclude that in the canyon axis, benthic foraminiferal faunas remain in an early stage of ecosystem colonization. It appears that the very thick 1999 turbidite marks an exceptional event. The uncommonly rich faunas observed in 2001 could be a response to the concentration of organic-rich material in the fine-grained top of this deposit. In 2011, cores were sampled at a slightly different site, on the lower canyon flank. The sedimentary sequence here is marked by the absence of coarse turbidite layers, although some levels show slightly increased grain size, and lower 210Pbxs activities, indicative of an admixture with advected older sediments. Live foraminiferal faunas are much more equilibrated, as shown by their higher diversity, lower dominance, and deeper penetration into the sediment. All these characteristics are indicative of a much more stable ecosystem. Dead faunas are present throughout the core, indicating that the levels with slightly elevated grain size are not typical turbidites resulting from hyperpycnal currents (which are characterized by levels barren of foraminifera) but denote other, more long-term sedimentary processes leading to the advection of older material, such as bottom nepheloid layers, or repetitive fine-grained turbidite deposits due to small-scale slumping. The comparison of live and dead fauna shows that at both sites, the foraminiferal turnover rates are fairly low. At the lower canyon flank site sampled in 2011, the foraminiferal faunas are renewed every 1.5-2 years. Such a fairly long foraminiferal lifespan corresponds to earlier estimates, but is surprisingly high for the opportunistic taxa that dominate the faunal assemblages in these unstable and food-enriched submarine canyon settings.

  1. Dense-water cascading and the resulting sedimentation patterns in Lacaze-Duthiers and Cap Creus Canyons, Gulf of Lions

    NASA Astrophysics Data System (ADS)

    Drexler, T. M.; Nittrouer, C. A.; Ogston, A. S.; Mullenbach, B. L.; Degeest, A. L.; Puig, P.

    2008-12-01

    Modern sediment dispersal in the Gulf of Lions is controlled by the interaction of strong marine storms and dense-water formation on the shelf. Regional cyclonic circulation and the narrowing of the southwest shelf lead to off-shelf sediment export via Lacaze-Duthiers and Cap Creus Canyons. Canyon heads are areas of sediment bypassing due to intense current interaction and the frequent occurrence of dense-water cascading. In winter 2004-2005, off-shelf export was dominated by dense-water cascading with additional contributions from internal-wave resuspension, hemipelagic settling and sediment gravity flows. Sedimentation in the canyon heads is asymmetrical with erosion (and coarse sediment) dominating the western flank and main entrant, and pockets of fine-grained sediment on the eastern flank where the Northern Current drapes over the canyon edge. Sedimentation in the lower canyon depths (>400 m) shows evidence of both hemipelagic settling and intermittent sediment gravity flows. Modern fine-grained sediment accumulation in the southwest canyons accounts for <10% of the annual sediment discharge from the Rhône River. This is likely a conservative estimate as the area used to calculate the budget was based on channel-floor areas only. Areas of increased sediment focus may occur within deeper portions of canyons, which were not resolved in this study. Lacaze-Duthiers and Cap Creus Canyon are modern conduits for sediment transport from the shelf to the deep sea with increased deposition likely occurring in years when dense-water cascading occurs in conjunction with winter-storm resuspension events.

  2. Narrow QRS complex tachycardias.

    PubMed

    Jacobson, Carol

    2007-01-01

    Narrow QRS complex tachycardias are either atrioventricular (AV) nodal passive or AV nodal active. AV nodal passive tachycardias do not require the participation of the AV node in maintenance of the tachycardia. Examples are atrial tachycardia, atrial flutter, and atrial fibrillation. Treatment is directed at ventricular rate control with calcium channel blockers or beta-blockers. AV nodal active tachycardias require active participation of the AV node in maintaining the tachycardia. Examples include AV nodal reentry tachycardia and circus movement tachycardia using an accessory pathway. Treatment with a vagal maneuver or adenosine usually terminates the tachycardia. Recognition of these tachycardias is reviewed. PMID:18019517

  3. Water/Magma Interaction: Physical considerations for the deep submarine environment

    NASA Astrophysics Data System (ADS)

    Wohletz, Kenneth H.

    One might conclude that in deep submarine environments, where hydrostatic pressure is in excess of water's critical pressure, water/magma interaction does not produce expanding vapor and explosive behavior cannot occur. This conclusion is supported by the apparent paucity of hydroclastic material in samples recovered from deep submarine environments. Analog molten fuel-coolant interaction (MFCI) experiments, however, demonstrate explosive dynamics for conditions where water is pressurized above its critical pressure before interaction; MFCI theory further indicates this explosive potential. Thermodynamic predictions show that the conversion of thermal to mechanical energy is only high enough to support explosive behavior for a narrow range of water/magma mass ratios. In submarine environments, apparent mass ratios are too high for explosive behavior, but effective mass ratios (those determined from the water and magma directly involved during interaction) depend upon characteristic times, determined by the sound speed of the water and interface geometry. At high pressure, a supercritical fluid film grows at the water/magma contact surface and can become unstable. With instability the film oscillates, rapidly expanding and collapsing, with a periodicity of milliseconds or less. Each film collapse imparts kinetic energy into the magma, causing magma fragmentation, especially where quench contraction has weakened the magma. With fragmentation more magma surface area is exposed to water, and the film growth/collapse process escalates. When perturbed by some external pressure wave, the unstable film is prone to a detonation-like phenomenon that causes rapid, localized vapor expansion even at high ambient pressure.

  4. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the upper parts of all canyons, numerous headwall scarps are consistent with retrogressive activity of the canyons. 3) possible gravity sliding -elongate seabed features oriented subparallel to contours are observed, associated with diapiric structures suggest that the elongate seabed features may record a form of downslope sediment sliding above salt. The aim of this work is to reconstruct the dynamics of different type of submarine mass movements on the tectonically active Ionian Calabrian margin (ICM), calculate the volume of sediment mobilized and assess the potential tsunamigenic hazard associated to different type of mass movements. Assessments of tsunami arrival time in adjacent coastal areas, period and wavelength of the tsunami and implication for coastal geohazards have been formulated for the Calabrian margin (small scale) and extrapolated to adjacent margins of the Mediterranean basin (large scale).

  5. Mars Science Laboratory at Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    NASA's Mars Science Laboratory travels near a canyon on Mars in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  6. Diablo Canyon refueling outage program

    SciTech Connect

    McLane, W.B.; Irving, T.L. )

    1991-01-01

    Management of outages has become one of the most talked about subjects in the nuclear power industry in the past several years. Many utilities do not perform refueling outages very well or in the past have had some outages that they would not like to repeat and in some cases do not even like to think about. With the growing cost of energy and the demands placed on utilities to improve capacity factors, it is very easy for management to focus on shortening refueling outage durations as a prime objective in improving overall corporate performance. So it is with Pacific Gas and Electric Company and the Diablo Canyon power plant. A review of their refueling outage performance reflects a utility that is responding to the nuclear industry's call for improved outage performance.

  7. A Diablo Canyon double feature

    SciTech Connect

    Miller, C.

    1996-03-01

    The current controversy and uncertainty surrounding the disposal of low-level radioactive waste makes it ever more prudent to develop methods to minimize its generation in the first place. As the industry is challenged with active opposition, missed deadlines, and political challenges, Pacific Gas and Electric`s Diablo Canyon nuclear station has implemented a plan to reduce waste generation from plant systems, from the modification and removal of plant equipment, and from the use of protective clothing and consumable contamination-control items. Our program has been extremely effective and may serve as a model for other nuclear power plants at a time of increasing processing and disposal costs. In 1994, for example, we were able to cut our radwaste generation in half-twice.

  8. High-Resolution Multibeam, Sidescan, and Subbottom Surveys in and Around Monterey Canyon Using the MBARI Mapping AUV

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Thomas, H.; McEwen, R.; Henthorn, R.; Kirkwood, W. J.; Thompson, D.; Paull, C. K.; McGill, P.

    2005-12-01

    During 2004 and 2005, MBARI has conducted several high-resolution bathymetry, sidescan, and subbottom profiler surveys in and around Monterey Canyon, Monterey Bay, California. These surveys were conducted using the new MBARI Mapping Autonomous Underwater Vehicle (AUV). This torpedo-shaped, 6000 m deep rated vehicle is equipped with a 200 kHz multibeam sonar, 110 kHz and 410 kHz chirp sidescan sonar, and a 2-16 kHz sweep subbottom profiler. The sonar package can also be mounted on ROV Ventana, allowing near-bottom bathymetric surveys of sites where extreme topography (e.g. the Monterey Canyon axis) preclude safe autonomous operation. The Mapping AUV is being used to monitor sediment transport through Monterey Canyon by conducting repeated high-resolution bathymetric surveys in the upper canyon. Upper Monterey Canyon is known to have frequent sediment transport events. Four sites have been selected with canyon axis depths of 300 m, 520 m, 1000 m, and 1400 m, respectively. Each survey nominally covers a 600 m by 600 m area with a 35 m line spacing and a 20 m altitude. We are achieving sub-meter lateral resolution and a vertical precision of 0.3 m. The combined bathymetry and backscatter successfully image fine scale channel features, including bedforms, small scarps and plunge pools, and undercutting of the inner canyon walls. All four sites have been surveyed at least once, and we will revisit these sites three times annually for the foreseeable future. We have also collected in excess of 170 km of subbottom profiles around and across the upper canyon. The subbottom profiler successfully images sediment structure to subsurface depths of as much as 50 m. These profiles demonstrate that the upper canyon walls are draped with sediment rather than exposing an erosional surface. Another Mapping AUV survey target is Smooth Ridge, located immediately north of Monterey Canyon and west of Soquel canyon. The upper reaches of Smooth Ridge are connected to the shelf across a narrow ridge, or neck, known from ROV dives to have scattered carbonate outcrops and numerous 1-2 m high scarps. We are scheduled to autonomously survey the upper neck of Smooth Ridge during October 2005, and will present initial results from these data.

  9. 27 CFR 9.230 - Ballard Canyon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... is located in Santa Barbara County, California. The boundary of the Ballard Canyon viticultural area... mile to the southern-most terminus of a marked, unnamed stream known locally as Ballard Creek,...

  10. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the recommended height for pollutant measurements to represent pedestrian exposure. The vertical structure of aerosols within a street canyon is a topic of constant debate, due to the inability of measurement campaigns to have sufficient spatial resolution to adequately represent the entire vertical structure. Several vertical profiles have been proposed: one where the concentration is the highest at the bottom, decreasing exponentially with increasing height; a homogenous profile across the canyon depth or one with a maximum observed near the road surface. Consistent with previous measurement results, modelling studies found that at the leeward side of the canyon, there was an increase in aerosol concentration up to approximately 2 m in height, followed by a decrease along the height of the canyon. It was also found that the vertical structure of the aerosols would be influenced by the relative contributions of convection and turbulent diffusivities and therefore vary at different locations of the canyon. Using a first-order eddy viscosity turbulence closure, knowledge of the vertical structure of the aerosol concentration would provide insights into the emission velocity structure within the canyon and account for its observed heterogeneity. Investigation of the different factors which influence the ventilation characteristics of the canyon are presented and we show how these facilitate parameterizations into other modelling platforms. Both vertical turbulent flux and flux due to mean flow contribute to the overall ventilation characteristics of a street canyon and these are described. The influence of micro-meteorological factors on the vertical flux of aerosols at the roof level of the street canyon and the relative contributions of flux due to mean flow and turbulent flux at different flow conditions are also investigated. Turbulent flux was found to be of an order of magnitude higher than mean flow flux in isothermal conditions. Therefore, whilst the net effect of turbulent flux is the loss of aerosols to the urban canopy and the net effect of mean flow flux is to re

  11. Wintertime meteorology of the Grand Canyon region

    SciTech Connect

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  12. [Functional status of submariners after short-time submarine raid in the sea].

    PubMed

    Kalmanov, A S; Pisarev, A A; Khankevich, Yu R; Bloshchinskii, I A; Valskii, A V

    2015-10-01

    Short-time sea submarine raids (from a few days to a few weeks), performed during one working cycle, negatively influence on the functional state of the submariners organism. Upon returning to the point of basing the crew involved in the maintenance of the material and performs preparations for further access to the sea. Due to the high workload and lack of time personnel are not held in any correctional and rehabilitation activities, and therefore the time for the next release in the sea functional condition and functional reserves of the body does not have time to fully recover. The transfer of the submarine crew and referral to medical and psychological rehabilitation assumed only after the end of the operating cycle after the crew the task of further voyage. Based on the assessment of the functional systems of the submarine after a short voyage concluded on the need to develop a set of remedial measures for the recovery of submarine crews during inter-cruise period. PMID:26827506

  13. Geology of an Ordovician stratiform base-metal deposit in the Long Canyon Area, Blaine County, Idaho

    USGS Publications Warehouse

    Otto, B.R.; Zieg, G.A.

    2003-01-01

    In the Long Canyon area, Blaine County, Idaho, a strati-form base-metal-bearing gossan is exposed within a complexly folded and faulted sequence of Ordovician strata. The gossan horizon in graptolitic mudrock suggests preservation of bedded sulfides that were deposited by an Ordovician subaqueous hydrothermal system. Abrupt thickness changes and geochemi-cal zoning in the metal-bearing strata suggest that the gossan is near the source of the hydrothermal system. Ordovician sedimentary rocks at Long Canyon represent a coarsening-upward section that was deposited below wave base in a submarine depositional environment. The lowest exposed rocks represent deposition in a starved, euxinic basin and over-lying strata represent a prograding clastic wedge of terrigenous and calcareous detritus. The metalliferous strata are between these two types of strata. Strata at Long Canyon have been deformed by two periods of thrust faulting, at least three periods of normal faulting, and two periods of folding. Tertiary extensional faulting formed five subhorizontal structural plates. These low-angle fault-bounded plates truncate Sevier-age and possibly Antler-age thrust faults. The presence of gossan-bearing strata in the four upper plates suggests that there was only minor, although locally complex, stratigraphic displacement and rotation. The lack of correlative strata in the lowest plate suggests the displacement was greater than 2000 ft. The metalliferous strata were exposed to surface weathering, oxidation, and erosion prior to and during deposition of the Eocene Challis Volcanic Group. The orientations of erosional canyons formed during this early period of exposure were related to the orientations of Sevier-age thrust faults, and stream-channel gravel was deposited in the canyons. During this and subsequent intervals of exposure, sulfidic strata were oxi-dized to a minimum depth of 700 ft.

  14. Different Views of the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Elders, Wilfred A.

    Each year the spectacular scenery of the Grand Canyon of Arizona awes its more than 4,000,000 visitors. Just as its enormous scale dwarfs our human sense of space, its geology also dwarfs our human sense of time. Perhaps here, more than anywhere else on the planet, we can experience a sense of ``Deep Time.'' The colorful rocks exposed in the vertical walls of the canyon display a span of 1.8 billion years of Earth's history [Beus and Morales, 2003]. But wait! There is a different view! According to Vail [2003], this time span is only 6,000 years and the Grand Canyon and its rocks are a record of the Biblical 6 days of creation and Noah's flood. During a visit to Grand Canyon, in August 2003, I learned that Vail's book, Grand Canyon: A Different View, is being sold within the National Park. The author and compiler of Grand Canyon: A Different View is a Colorado River guide who is well acquainted with the Grand Canyon at river level. He has produced a book with an attractive layout and beautiful photographs. The book is remarkable because it has 23 co-authors, all male, who comprise a veritable ``Who's Who'' in creationism. For example, Henry Morris and John Whitcomb, the authors of the seminal young Earth creationist text, The Genesis Flood [Whitcomb and Morris, 1961], each contribute a brief introduction. Each chapter of Grand Canyon: A Different View begins with an overview by Vail, followed by brief comments by several contributors that ``have been peer reviewed to ensure a consistent and Biblical perspective.'' This perspective is strict Biblical literalism.

  15. Narrow Angle movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief three-frame movie of the Moon was made from three Cassini narrow-angle images as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The purpose of this particular set of images was to calibrate the spectral response of the narrow-angle camera and to test its 'on-chip summing mode' data compression technique in flight. From left to right, they show the Moon in the green, blue and ultraviolet regions of the spectrum in 40, 60 and 80 millisecond exposures, respectively. All three images have been scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is the same in each image. The spatial scale in the blue and ultraviolet images is 1.4 miles per pixel (2.3 kilometers). The original scale in the green image (which was captured in the usual manner and then reduced in size by 2x2 pixel summing within the camera system) was 2.8 miles per pixel (4.6 kilometers). It has been enlarged for display to the same scale as the other two. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  16. Submarine paleoseismology based on turbidite records.

    PubMed

    Goldfinger, Chris

    2011-01-01

    Many of the largest earthquakes are generated at subduction zones or other plate boundary fault systems near enough to the coast that marine environments may record evidence of them. During and shortly after large earthquakes in the coastal and marine environments, a spectrum of evidence may be left behind, mirroring onshore paleoseismic evidence. Shaking or displacement of the seafloor can trigger processes such as turbidity currents, submarine landslides, tsunami (which may be recorded both onshore and offshore), and soft-sediment deformation. Marine sites may also share evidence of fault scarps, colluvial wedges, offset features, and liquefaction or fluid expulsion with their onshore counterparts. This article reviews the use of submarine turbidite deposits for paleoseismology, focuses on the dating and correlation techniques used to establish stratigraphic continuity of marine deposits, and outlines criteria for distinguishing earthquake deposits and the strategies used to acquire suitable samples and data for marine paleoseismology. PMID:21329198

  17. Voluminous submarine lava flows from Hawaiian volcanoes

    SciTech Connect

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  18. Channel network scaling laws in submarine basins

    NASA Astrophysics Data System (ADS)

    Straub, Kyle M.; Jerolmack, Douglas J.; Mohrig, David; Rothman, Daniel H.

    2007-06-01

    Fluvial drainage basin area is often related to channel length and local slope through power law relationships and the relatively small range of exponents observed in these relationships is thought to result from physical mechanisms. Proposed mechanisms assume that the observed correlation between drainage area and fluid discharge is caused by precipitation. Using high resolution DEMs of channelized continental slope settings offshore Monterey, CA and Brunei Darussalam we extracted submarine channel profiles and drainage area statistics from five basins. In-situ and remote observations suggest discharge in these oceanic settings is determined by boundary conditions at the shelf-edge. In spite of substantial differences in environment and physical process, the data yield submarine scaling exponents within the range of terrestrial (fluvial) observations. The convergence in scaling relationships from two very different settings supports theoretical arguments that channel network structure results from the aggregation of random walks.

  19. Prevalence of Helicobacter pylori in United States Navy submarine crews.

    PubMed

    Jackman, R P; Schlichting, C; Carr, W; Dubois, A

    2006-06-01

    Helicobacter pylori prevalence is elevated in German submarine crews and in United States Navy (USN) surface fleet personnel, but H. pylori prevalence in USN submariners was unknown. The goal of the study was to determine the prevalence of H. pylori in the crews of USN nuclear submarines compared to other military personnel and to the general US population. The presence of H. pylori IgG antibodies was determined in serum samples using a commercial ELISA. Only 47 out of 451 submariners (9.4%) were H. pylori positive, which is similar to that of the US general population with a similar level of education. In contrast, H. pylori prevalence is significantly higher in US Army recruits (26%), USN surface fleet personnel (25%), and German diesel submariners (38%). These data demonstrate that submarine service (and by inference activity requiring isolation and close contact, per se) is not a risk factor for H. pylori infection. PMID:16194289

  20. Hydrothermal mineralization along submarine rift zones, Hawaii

    USGS Publications Warehouse

    Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.

    1996-01-01

    Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.

  1. The submarine service of the future?

    PubMed

    Bland, S A

    2000-01-01

    Space missions, although now routine, are unique in terms of their environment and logistical requirements. The number of missions (man-hours) remains relatively small and planning still relies on comparisons with analogous missions, including submarine operations. Antarctic missions, which tend not to be classified, have provided more information about isolated communities because of the number of personnel per base. Space medicine has traditionally been an extension of aviation medicine with high g-forces involved in the transition from Earth to orbit and astronauts such as Neil Armstrong recruited from the test pilot fraternity. As the length of a mission increases and the space habitation relies more on regenerative systems, the environment becomes more analogous with today's nuclear submarines. As well as the air purification implications, radiation still is a significant hazard with even greater impact on future Mars missions requiring the provision of health physics monitoring, advice and countermeasures well established in the submarine flotilla. Nevertheless, the specialty space medicine will progress as a specialty in its own right, pooling expertise from other specialties such as aviation, radiation, emergency and occupational medicine taking human exploration beyond the confines of land and sea. PMID:11346925

  2. 50. PIPING FOR SUBMARINE SECTION, Y&D No. 107728 Scale 3/8' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. PIPING FOR SUBMARINE SECTION, Y&D No. 107728 Scale 3/8' = 1'; August 26, 1929 - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  3. 16. INTERIOR VIEW OF SUBMARINE SECTION AT 110FOOT LEVEL, ESCAPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR VIEW OF SUBMARINE SECTION AT 110-FOOT LEVEL, ESCAPE TRAINING TANK, SHOWING LADDER TO ESCAPE TANK, LOOKING SOUTH - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  4. Hudson Canyon Offshore New York and New Jersey: Active Circular Depressions, Fans, Ravines, Methane Discharge and Water Masses

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Guida, V.; Scranton, M. I.; Gong, D.; Haag, S.; Macelloni, L.; Simonetti, A.; James, J.; Diercks, A.; Asper, V. L.

    2009-12-01

    We investigated Hudson Canyon from where it begins at the seaward edge of the continental shelf (water depth 100 m) to ~30 km seaward (100-700 m) using high-resolution bathymetry (AUV Eagle Ray; ISE Explorer; EM2000 sonar) and standard oceanographic methods. We find features and processes that create varied distinctive habitats in submarine canyons on passive continental margins, as follows: 1)Sediment conduit: The initial 10 km- long section of the canyon head connects with cross-shelf sediment transport and is smoothed by sediment accumulation indicating that it is presently inactive as a sediment conduit, in contrast to its active role during prior intervals of lowered sea level. 2)Circular depressions: A population of circular depressions with diameters from 50 to 400 m, rim-to-floor relief up to 20 m increasing directly with diameter, flat rough floors and steep walls (15-25 degrees) occur in sediment near the base of both walls of the canyon. The number of circular depressions increases with water depth with one at 325 m in the initial 10 km-long NW-SE section of the canyon, two at 350 m in the next 10 km N-S section, and nineteen at 300 to 500 m at the SW wall of the next 10 km NW-SE section. The sharp shape of the depressions suggests that they are actively forming. Larger circular depressions (diameter <800 m) exhibit different characteristics. 3)Methane chemistry: A methane anomaly (50 nmol) ten times background was measured in August 2008 in the near-bottom water column adjacent to one of the two circular depressions in the middle canyon section. In August 2009 water samples were recovered at other circular depressions and are being analyzed to test for methane discharge. We suggest that the circular depressions are gas release-collapse features possibly produced by dissociation of underlying gas hydrates. 4)Fans and ravines: Sediment fans with intervening ravines about 1 km apart extend orthogonal to the canyon axis down the two walls of the canyon in the second and third sections. 5)Hydrography: A dynamic system of multiple layers of inter-leaved shelf (cold, fresh) and slope (warm, salty) water masses was observed in the canyon head in summers 2007, 2008 and 2009 and found to produce shifting fronts and strong currents. Dynamic interactions between the hydrography and different terrains create a wide range of habitat conditions in the canyon critical for biodiversity. Enhanced shelf-slope exchange of water masses facilitated by the complex canyon topography may influence adjacent shelf circulation, and impact ecosystems including commercial fish stocks well beyond the canyon. We thank NOAA National Marine Fisheries Service(NMFS), National Institute of Science and Technology (NIUST), and National Undersea Research Program (NURP) for support.

  5. A Submarine Perspective on Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2011-12-01

    Postwar improvements in navigation, sonar-based mapping, and submarine photography enabled the development of bathymetric maps, which revealed submarine morphologic features that could be dredged or explored and sampled with a new generation of manned and unmanned submersibles. The maps revealed debris fields from giant landslides, the great extent of rift zones radiating from volcanic centers, and two previously unknown submarine volcanoes named Mahukona and Loihi, the youngest Hawaiian volcano. About 70 major landslides cover half the flanks of the Hawaiian Ridge out to Midway Island. Some of the landslides attain lengths of 200 km and have volumes exceeding 5,000 km3. More recent higher resolution bathymetry and sidescan data reveal that many submarine eruptions construct circular, flat-topped, monogenetic cones; that large fields of young strongly alkalic lava flows, such as the North Arch and South Arch lava fields, erupt on the seafloor within several hundred km of the islands; and that alkalic lavas erupt during the shield stage on Kilauea and Mauna Loa. The North Arch flow field covers about 24,000 km2, has an estimated volume between about 1000 and 1250 km3, has flows as long as 108 km, and erupted from over 100 vents. The source and melting mechanisms for their production is still debated. The maps also displayed stair-step terraces, mostly constructed of drowned coral reefs, which form during early rapid subsidence of the volcanoes during periods of oscillating sea level. The combination of scuba and underwater photography facilitated the first motion pictures of the mechanism of formation of pillow lava in shallow water offshore Kilauea. The age progression known from the main islands was extended westward along the Hawaiian Ridge past Midway Island, around a bend in the chain and northward along the Emperor Seamounts. Radiometric dating of dredged samples from these submarine volcanoes show that the magma source that built the chain has been active for over 80 Ma and established the remarkable linearity of the age-progression along the chain. Glass rinds on submarine lava quenched at depth contain initial magmatic volatiles and yield data on the juvenile water, sulfur, CO2, and rare gas contents of basaltic magmas, and continue to reveal nuances of the volatile contents of lava. Rock sampling at Loihi Seamount led to the discovery of the pre-shield alkalic phase of Hawaiian volcanism, which mirrors the well-known post-shield alkalic phase. Lava compositions from the Hawaiian Ridge and Emperor Seamounts have clear affinities to present-day Hawaiian lavas, but subtle source differences as well. The progression from small to large and back to small degrees of melting at individual volcanoes and the compositional changes along the chain constrain the melting processes and source compositions of Hawaiian volcanism. Coupling the age of lavas with that of submerged coral reefs has provided data on the growth and subsidence of volcanic centers. This information has meshed nicely with the age, composition, and morphology of lavas from the 3.2-km-deep Hawaiian Scientific Drill Hole. Submarine studies have taught us much about the workings of Hawaiian Volcanoes, and in the process have stimulated new work and concepts on marine volcanism worldwide.

  6. NFC - Narrow Field Camera

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.

    2015-01-01

    We have been introducing a low-cost CCTV video system for faint meteor monitoring and here we describe the first results from 5 months of two-station operations. Our system called NFC (Narrow Field Camera) with a meteor limiting magnitude around +6.5mag allows research on trajectories of less massive meteoroids within individual parent meteor showers and the sporadic background. At present 4 stations (2 pairs with coordinated fields of view) of NFC system are operated in the frame of CEMeNt (Central European Meteor Network). The heart of each NFC station is a sensitive CCTV camera Watec 902 H2 and a fast cinematographic lens Meopta Meostigmat 1/50 - 52.5 mm (50 mm focal length and fixed aperture f/1.0). In this paper we present the first results based on 1595 individual meteors, 368 of which were recorded from two stations simultaneously. This data set allows the first empirical verification of theoretical assumptions for NFC system capabilities (stellar and meteor magnitude limit, meteor apparent brightness distribution and accuracy of single station measurements) and the first low mass meteoroid trajectory calculations. Our experimental data clearly showed the capabilities of the proposed system for low mass meteor registration and for calculations based on NFC data to lead to a significant refinement in the orbital elements for low mass meteoroids.

  7. Layers Exposed at Polar Canyon

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This false-color subframe of an image from the High Resolution Imaging Science Experiment camera on NASA's Mars Reconnaissance Orbiter shows the north polar layered deposits at top and darker materials at bottom, exposed in a scarp at the head of Chasma Boreale, a large canyon eroded into the layered deposits.

    The polar layered deposits appear red because of dust mixed within them, but are ice-rich as indicated by previous observations. Water ice in the layered deposits is probably responsible for the pattern of fractures seen near the top of the scarp. The darker material below the layered deposits may have been deposited as sand dunes, as indicated by the crossbedding (truncation of curved lines) seen near the middle of the scarp. It appears that brighter, ice-rich layers were deposited between the dark dunes in places. Exposures such as these are useful in understanding recent climate variations that are likely recorded in the polar layered deposits.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  8. Secondary Circulation in Sinuous Submarine Channels: First Results from the Black Sea

    NASA Astrophysics Data System (ADS)

    Peakall, J.; Parsons, D. R.; Hiscott, R. N.; Aksu, A. E.; Flood, R. D.; Mouland, D.

    2009-05-01

    Sinuous submarine channels are important features on ocean floors, and are key conduits for sediment, carbon and other nutrients into the deep-sea. Their gross planform similarity to river channels has long led to comparison with their subaerial meandering river counterparts. However, they are formed by the action of gravity flows and therefore might be expected to exhibit different processes from the open-channel, single phase flows of river channels. Changes in their morphology and deposits have been observed, however, little is known about the flow processes that occur in these channels. The best available data from modern systems have been limited to single at a point downstream velocity profiles; the best of these being from submarine canyons rather than channels. In order to understand flow dynamics and how they relate to channel processes, sedimentary dynamics and channel evolution, more detailed 2D and 3D flow data is required. Here we report the first such data from a sinuous channel on the Black Sea shelf, and examine the nature of secondary circulation in submarine channels. River channels have long been known to exhibit a three-dimensional helical flow comprising both a dominant downstream component, and a secondary (cross-stream) flow. Such secondary flows are the result of centrifugal acceleration induced by bend curvature, and an inwardly directed radial pressure gradient, which results from a super-elevation of the water surface at the outside of the bend. In river bend apices these secondary flows are directed towards the inner bend at the base of the flow, and towards the outer bank at the top of the flow. Until very recently, it was assumed that submarine channels showed a similar distribution. However, theoretical analysis of the governing equations for river channels, with the incorporation of an appropriate downstream velocity distribution for gravity currents, indicated that submarine channels could display reversed secondary circulation orientation with respect to meandering rivers (Corney et al. 2006, 2008). This theory was backed up by an extensive physical modeling program that also showed reversed secondary circulation in all cases (Keevil et al., 2006, 2007). Other experiments though have shown examples of secondary circulation similar to river channels, and there has been intense debate on the validity of different approaches and datasets. Immediately north of the exit of the Bosphorus Strait, north of Istanbul there is a spectacular sinuous channel network on the Black Sea shelf. This channel network is created by the higher density of seawater of Mediterranean origin as it flows into the much lower salinity Black Sea. The near-constant gravity currents that run through these channels provide the perfect laboratory for studying the detailed fluid dynamics of submarine channel flows. Here we report results from the apex of a major sinuous channel bend that is 20-30 m deep. An acoustic Doppler current profiler (ADCP) towed across the bend recorded a maximum velocity of ~1 m/s. There, the saline underflow is density-stratified, exhibits marked outer-bank super-elevation, and the sense of secondary flow is opposite to that in rivers. Future 3D flow monitoring will use the British autonomous vehicle AutoSub3.

  9. Storm-triggered mass failure and sediment liquefaction in the Swatch of No Ground canyon, offshore Bangladesh

    NASA Astrophysics Data System (ADS)

    Goodbred, S. L.; Rogers, K. G.; Khan, S. R.; Ullah, M. S.; Mondal, D. R.

    2008-12-01

    In November 2007 the eye of a major tropical storm, Cyclone Sidr, tracked over the offshore canyon associated with the Ganges-Brahmaputra river delta. Known as the Swatch of No Ground (SoNG), this large canyon incises within 30 km of the deltaic coast and is accreting rapidly (10 to >50 cm/yr) with fluvially derived sediments. Historically numerous tropical storms have affected the northern Bay of Bengal each year, but more recently cyclogenesis has been weak and Sidr is the first major cyclone to impact the Bengal shelf since 1991. As part of an ongoing study, our research team had just completed a high-resolution sub- bottom sonar (chirp) survey of the SoNG canyon head six months prior to Cyclone Sidr. Following the storm, we organized a second sub-bottom survey to assess the storm's impact on canyon morphology and sedimentation patterns. A comparison of our pre- and post-storm surveys reveal dramatic mass failures around the canyon wall, but also vast areas that were largely unaffected. Among the failures, many had dimensions 10s of meters thick and >1 km wide. These large-scale failures appear to have been preferentially located where there is pre-storm evidence for fluid escape, perhaps via submarine groundwater discharge through onshore sandy delta complex. Fluid chimneys, apparently gas charged, are also associated with many of the large failures. However, many locations with prominent shallow gas show no disruption after the storm, suggesting that zones prone to major failure are associated fluid flow. Other areas of the canyon show storm-induced liquefaction of surface sediments (<5 m below seabed) and resulting mudflows. Runout distances are only a few hundred meters, though, suggesting rapid consolidation of the flows even on sloping surfaces (1-3°). As interesting as these storm-related failures are the actively accreting, steep-walled (>5°) gullies that show no apparent effect of the storm. Overall it appears that areas of the canyon most susceptible to failure are not necessarily the steepest or most rapidly accreting, but rather those associated with subsurface fluid flow and planes of weakness along escape structures.

  10. Effects of Wall Heating on Flow Characteristics in a Street Canyon

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Ming

    2012-03-01

    We develop a large-eddy simulation (LES) model based on a meteorological numerical model for a real scale street-canyon flow with rough building facets heated by a given temperature. The model is applied to a canyon with the aspect ratio of unity for two idealized heating scenarios: (1) the roof and the entire upstream wall are heated, named as `assisting cases', and (2) the roof and the entire downstream wall are heated, named as `opposing cases'. These facets were heated up to 15 K above the air temperature. A wall function for temperature is proposed for a rough facet with an assumption that the thermal roughness length, z 0T, is much smaller than the aerodynamic roughness length, z 0. It is demonstrated that the sensible heat flux and canyon-air temperature are significantly influenced by the near-facet process that is parametrized by z 0T as the primary factor; other processes such as in-canyon mixing and roof-level exchange are secondary. This new finding strongly suggests that it is vital to choose an appropriate value of z 0T in a numerical simulation of street-canyon flows with the facet-air exchange processes of heat or any scalar. The finding also raises an awareness of the demand for carefully designed laboratory or field experiments of quantifying z 0T values for various urban surfaces. For the opposing cases, an unsteady penetrating narrow updraft zone appears occasionally along the heated wall and this feature is consistent field observations. The unique result indicates the superior capability of LES. The results of this study can be used to guide the parametrization of turbulent processes inside the urban canopy layer.

  11. Grand Canyon Humpback Chub Population Improving

    USGS Publications Warehouse

    Andersen, Matthew E.

    2007-01-01

    The humpback chub (Gila cypha) is a long-lived, freshwater fish found only in the Colorado River Basin. Physical adaptations-large adult body size, large predorsal hump, and small eyes-appear to have helped humpback chub evolve in the historically turbulent Colorado River. A variety of factors, including habitat alterations and the introduction of nonnative fishes, likely prompted the decline of native Colorado River fishes. Declining numbers propelled the humpback chub onto the Federal list of endangered species in 1967, and the species is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Ariz., and one in Grand Canyon, Ariz. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center oversees monitoring and research activities for the Grand Canyon population under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP). Analysis of data collected through 2006 suggests that the number of adult (age 4+ years) humpback chub in Grand Canyon increased to approximately 6,000 fish in 2006, following an approximate 40-50 percent decline between 1989 and 2001. Increasing numbers of adult fish appear to be the result of steadily increasing numbers of juvenile fish reaching adulthood beginning in the mid- to late-1990s and continuing through at least 2002.

  12. 43. and Design, Grand Canyon National Park, dated August 23, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. and Design, Grand Canyon National Park, dated August 23, 1934, and September 17, 1934 (original located at Federal Records Center, Denver, Colorado, #113/3084-set of 2) SEWAGE PLANT ADDITION. - Water Reclamation Plant, Grand Canyon, Coconino County, AZ

  13. Overview of the Colorado River Canyon from the helicopter pad. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Colorado River Canyon from the helicopter pad. View of the Nevada side where new bridge will cross canyon, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  14. Identification of a ship or submarine from its magnetic signature

    NASA Technical Reports Server (NTRS)

    Ioannidis, G.

    1977-01-01

    The relationship between the measured time fluctuations of the ambient magnetic field due to the passage of a ship or submarine and the characteristic magnetization properties of this vessel are derived. This relationship would be useful in identifying or classifying ships and submarines according to their magnetization properties.

  15. Detail of conning tower atop the submarine. Note the wire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of conning tower atop the submarine. Note the wire rope wrapped around the base of the tower, which may have been used in an attempt to pull the submarine offshore. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  16. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  17. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  18. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  19. 32 CFR 707.7 - Submarine identification light.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Submarine identification light. 707.7 Section... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.7 Submarine identification light... off-period. The light will be located where it can best be seen, as near as practicable, all...

  20. Morpho-sedimentary evidence for a canyon-channel-trench interconnection along the Taiwan-Luzon plate margin, South China Sea

    NASA Astrophysics Data System (ADS)

    Hsiung, Kan-Hsi; Yu, Ho-Shing

    2011-08-01

    Examining bathymetric and seismic reflection data collected from the deep-sea region between Taiwan and Luzon in 2006 and 2008, we identified a connection between a submarine canyon, a deep-sea channel, and an oceanic trench in the northern South China Sea. The seafloor of the South China Sea north of 21°N is characterized by two broad slopes: the South China Sea Slope to the west, and the Kaoping Slope to the east, intersected by the prominent Penghu Canyon. This negative relief axis parallels the strike of the Taiwan orogen, extends downslope in an approx. N-S direction, and eventually merges with the northern Manila Trench via a hitherto unidentified channel. The discovery of this channel is pivotal, because it allows connecting the Penghu Canyon to the Manila Trench. This channel is 80 km long and 20-30 km wide, with water depths of 3,500-4,000 m. The progressive morphological changes recorded in the aligned canyon, channel, and trench suggest that they represent three distinct segments of the same longitudinal sediment conduit from southern Taiwan to the northern Manila Trench. Major sediment input would be via the Kaoping Canyon and Kaoping Slope, with a smaller contribution from the South China Sea Slope. We determined the northern end of the Manila Trench to be located at about 20°15'N, 120°15'E, where sediment accumulation has produced a bathymetry shallower than 4,000 m, thereby abruptly terminating the trench morphology. Comparison with existing data reveals a similarity with, for example, the Papua New Guinea-Solomon Sea Plate convergent zone, another modern analog of a mountain source to oceanic sink longitudinal sediment transport system comprising canyon-channel-trench interconnections.

  1. Hydrogen isotope systematics of submarine basalts

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.

    1984-01-01

    The D/H ratios and water contents in fresh submarine basalts from the Mid-Atlantic Ridge, the East Pacific Rise, and Hawaii indicate that the primary D/H ratios of many submarine lavas have been altered by processes including (1) outgassing, (2) addition of seawater at magmatic temperature, and (3) low-temperature hydration of glass. Decreases in ??D and H2O+ from exteriors to interiors of pillows are explained by outgassing of water whereas inverse relations between ??D and H2O+ in basalts from the Galapagos Rise and the FAMOUS Area are attributed to outgassing of CH4 and H2. A good correlation between ??D values and H2O is observed in a suite of submarine tholeiites dredged from the Kilauea East Rift Zone where seawater (added directly to the magma), affected only the isotopic compositions of hydrogen and argon. Analyses of some glassy rims indicate that the outer millimeter of the glass can undergo lowtemperature hydration by hydroxyl groups having ??D values as low as -100. ??D values vary with H2O contents of subaerial transitional basalts from Molokai, Hawaii, and subaerial alkali basalts from the Society Islands, indicating that the primary ??D values were similar to those of submarine lavas. Extrapolations to possible unaltered ??D values and H2O contents indicate that the primary ??D values of most thoteiite and alkali basalts are near -80 ?? 5: the weight percentages of water are variable, 0.15-0.35 for MOR tholeiites, about 0.25 for Hawaiian tholeiites, and up to 1.1 for alkali basalts. The primary ??D values of -80 for most basalts are comparable to those measured for deep-seated phlogopites. These results indicate that hydrogen, in marked contrast to other elements such as Sr, Nd, Pb, and O, has a uniform isotopic composition in the mantle. This uniformity is best explained by the presence of a homogeneous reservoir of hydrogen that has existed in the mantle since the very early history of the Earth. ?? 1984.

  2. Miniature Robotic Submarine for Exploring Harsh Environments

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Bruhn, Fredrik; Carsey, Frank

    2004-01-01

    The miniature autonomous submersible explorer (MASE) has been proposed as a means of scientific exploration -- especially, looking for signs of life -- in harsh, relatively inaccessible underwater environments. Basically, the MASE would be a small instrumented robotic submarine (see figure) that could launch itself or could be launched from another vehicle. Examples of environments that might be explored by use of the MASE include subglacial lakes, deep-ocean hydrothermal vents, acidic or alkaline lakes, brine lenses in permafrost, and ocean regions under Antarctic ice shelves.

  3. Metazoan meiofauna in deep-sea canyons and adjacent open slopes: A large-scale comparison with focus on the rare taxa

    NASA Astrophysics Data System (ADS)

    Bianchelli, S.; Gambi, C.; Zeppilli, D.; Danovaro, R.

    2010-03-01

    Metazoan meiofaunal abundance, total biomass, nematode size and the richness of taxa were investigated along bathymetric gradients (from the shelf break down to ca. 5000-m depth) in six submarine canyons and on five adjacent open slopes of three deep-sea regions. The investigated areas were distributed along >2500 km, on the Portuguese to the Catalan and South Adriatic margins. The Portuguese and Catalan margins displayed the highest abundances, biomass and richness of taxa, while the lowest values were observed in the Central Mediterranean Sea. The comparison between canyons and the nearby open slopes showed the lack of significant differences in terms of meiofaunal abundance and biomass at any sampling depth. In most canyons and on most slopes, meiofaunal variables did not display consistent bathymetric patterns. Conversely, we found that the different topographic features were apparently responsible for significant differences in the abundance and distribution of the rare meiofaunal taxa (i.e. taxa accounting for <1% of total meiofaunal abundance). Several taxa belonging to the temporary meiofauna, such as larvae/juveniles of Priapulida, Holothuroidea, Ascidiacea and Cnidaria, were encountered exclusively on open slopes, while others (including the Tanaidacea and Echinodea larvae) were found exclusively in canyons sediments. Results reported here indicate that, at large spatial scales, differences in deep-sea meiofaunal abundance and biomass are not only controlled by the available food sources, but also by the region or habitat specific topographic features, which apparently play a key role in the distribution of rare benthic taxa.

  4. Sedimentary architecture of a canyon-style fairway feeding a deep-water clastic system, the Miocene Cingöz Formation, southern Turkey: significance for reservoir characterisation and modelling

    NASA Astrophysics Data System (ADS)

    Satur, N.; Kelling, G.; Cronin, B. T.; Hurst, A.; Gürbüz, K.

    2005-01-01

    The sedimentary architecture of a submarine canyon-fill supplying sediment to a deep-water fan system in the Adana Basin, southern Turkey is described and quantified. The canyon is at least 9-km long, 3-4-km wide, asymmetric in cross-section and has an exposed fill, 360-m thick consisting of sands and gravels deposited in sheets across the entire width of the canyon. Normal graded and nongraded pebbly sandstones reflecting deposition from both waning and waxing high-density turbidity currents dominate these deposits. Facies are identified and correlated between closely spaced sedimentary logs. A hierarchy of bedding scales is recognised, ranging from individual beds and their sedimentary structures through 3-21-m-thick packages of beds to 100+m thick major units. This hierarchy provides the framework for computer-generated 3D models where sandstone bodies and facies are stochastically modelled to provide a better understanding of the internal sedimentary architecture within similar types of canyons in subsurface or in areas of poor exposure.

  5. Depositional environments of late glacial to Holocene sediments on the deep water levees of Setúbal and Nazaré Canyons, offshore Portugal: preliminary results

    NASA Astrophysics Data System (ADS)

    Pascoletti, F. C.; Masson, D.; Innocenti, C.

    2010-12-01

    The west Iberian margin is indented by a network of submarine canyons that create rugged seafloor morphology and act as major pathways for the transport of sediment from land to the abyssal plains. The Setúbal and Nazaré Canyons are part of this complex environment and strongly influence sediment distribution, capturing sediments from the Tagus River and the littoral cell transport respectively. Deep submarine sedimentary sequences thus reflect changes in sediment input and depositional environments. The high-resolution sedimentological study here presented was applied in four cores of the deep water levees of Nazaré and Setúbal Canyons in order to explore how sediment input to the canyons changed during the last glacial - interglacial transition, and how this reflects changing environmental conditions on land. By means of non-destructive corelogger measurements and analyses of spectral signatures, geochemical compositions and colour variations, it was possible to identify ice-rafted debris (IRD) deposits, to characterize hemipelagic and turbidite layers and to investigate terrestrial-derived sediments input variation during the last 26 ka. Preliminary results from the sedimentological and turbidite frequency analyses show that highest turbidite occurrence is recorded during the glacial stage, confirming that the generation of turbidity flows in submarine canyons is tightly related to low sea-level stands. We found that major peaks in frequency and thickness of turbidite deposits in the deep Portuguese margin are mainly coeval with abrupt climatic (H2 and 1) and sea-level changes (~ 19 and ~ 23 ka BP), as a consequence of which a major amount of continentally-derived material was transported into the deep sea. During the Holocene, the inception of sea-level rises, independent of their magnitude, has been found to be sufficient to generate turbidity currents, particularly in the Nazaré system. Moreover, a multiple regression analysis was attempted in order to estimate the sediment carbonate content from VIS reflectance spectrophotometry data acquired with a Konica Minolta spectrophotometer (39 bands, wavelength range from 360 nm to 740 nm). The equation obtained for recent mostly hemipelagic sediments, has an adjusted coefficient of determination of 0.97 and a root main squared error (RMSE) of ± 4.02 %, indicating a very good correspondence between analytically determined percent calcium carbonate and reflectance-based calcium carbonate estimates. However the spectral technique failed on deeper and older core sections, characterized by a general higher variability in sediment components, including a major terrestrial input and carbonate from a variety of biogenic and nonbiogenic sources.

  6. New constraints on oceanographic vs. seismic control on submarine landslide initiation: a geotechnical approach off Uruguay and northern Argentina

    NASA Astrophysics Data System (ADS)

    Ai, Fei; Strasser, Michael; Preu, Benedict; Hanebuth, Till J. J.; Krastel, Sebastian; Kopf, Achim

    2014-10-01

    Submarine landslides are common along the Uruguayan and Argentinean continental margin, but size, type and frequency of events differ significantly between distinct settings. Previous studies have proposed sedimentary and oceanographic processes as factors controlling slope instability, but also episodic earthquakes have been postulated as possible triggers. However, quantitative geotechnical slope stability evaluations for this region and, for that matter, elsewhere in the South Atlantic realm are lacking. This study quantitatively assesses continental slope stability for various scenarios including overpressure and earthquake activity, based on sedimentological and geotechnical analyses on three up to 36 m long cores collected on the Uruguayan slope, characterized by muddy contourite deposits and a locus of landslides (up to 2 km3), and in a canyon-dominated area on the northern Argentinean slope characterized by sandy contourite deposits. The results of shear and consolidation tests reveal that these distinct lithologies govern different stability conditions and failure modes. The slope sectors are stable under present-day conditions (factor of safety >5), implying that additional triggers would be required to initiate failure. In the canyon area, current-induced oversteepening of weaker sandy contourite deposits would account for frequent, small-scale slope instabilities. By contrast, static vs. seismic slope stability calculations reveal that a peak ground acceleration of at least 2 m/s2 would be required to cause failure of mechanically stronger muddy contourite deposits. This implies that, also along the western South Atlantic passive margin, submarine landslides on open gentle slopes require episodic large earthquakes as ultimate trigger, as previously postulated for other, northern hemisphere passive margins.

  7. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The... with respect to the operation of Glen Canyon Dam and the exercise of other authorities pursuant...

  8. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  9. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  10. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  11. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  12. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Malibu-Newton Canyon. 9... Malibu-Newton Canyon. (a) Name. The name of the viticultural area described in this petition is “Malibu-Newton Canyon.” (b) Approved maps. The appropriate map for determining the boundary of the...

  13. 5. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DARK CANYON SIPHON - Photographic copy of historic photo, November 11, 1906 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'LOWER END OF DARK CANYON SIPHON CONSTRUCTION' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  14. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the Grand... consultation requirements of the Grand Canyon Protection Act (Pub. L. 102-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  15. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the Grand... Environmental Impact Statement to comply with consultation requirements of the Grand Canyon Protection Act (Pub... (TWG), a Grand Canyon Monitoring and Research Center, and independent review panels. The TWG is...

  16. 77 FR 43117 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the Grand... consultation requirements of the Grand Canyon Protection Act (Pub. L. 102-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and...

  17. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ..., consistent with the Grand Canyon Protection Act. The AMWG meets two to three times a year. DATES: The May 10... comply with consultation requirements of the Grand Canyon Protection Act (Pub. L. 102-575) of 1992. The AMP includes a Federal advisory committee, the AMWG, a technical work group, a Grand Canyon...

  18. 7. DARK CANYON SIPHON Photographic copy of construction drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DARK CANYON SIPHON - Photographic copy of construction drawing c1907 (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver) DARK CANYON SIPHON PLAN, ELEVATION, AND SECTIONS - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  19. 6. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DARK CANYON SIPHON - Photographic copy of historic photo, January 29, 1907 (original print filed in Record Group 115, National Archives, Washington, D.C.) W.J.Lubken, photographer 'RIPRAP AT THE ENTRANCE END OF DARK CANYON PRESSURE PIPE' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  20. Surface Composition Differences in Martian Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    (Released 29 May 2002) Color differences in this daytime infrared image taken by the camera on NASA's Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface. The image shows a portion of a canyon named Candor Chasma within the great Valles Marineris system of canyons, at approximately 5 degrees south latitude, 285 degrees east (75 degrees west) longitude. The area shown is approximately 30 by 175 kilometers (19 by 110 miles). The image combines exposures taken by Odyssey's thermal emission imaging system at three different wavelengths of infrared light: 6.3 microns, 7.4 microns and 8.7 microns.

  1. HELLS CANYON STUDY AREA, OREGON AND IDAHO.

    USGS Publications Warehouse

    Simmons, George C.; Close, Terry J.

    1984-01-01

    The Hells Canyon study area occupies nearly 950 sq mi along and near Hells Canyon of the Snake River in northeast Oregon and west-central Idaho. Geologic, geochemical, aeromagnetic, and mine and prospect investigations to determine the mineral-resource potential of the area were carried out. As a result, 42 sq mi or about 4 percent of the lands, in 21 separate areas, were classified as having probable or substantiated resource potential for base and precious metals, molybdenum, and tungsten. No energy resource potential was identified in this study.

  2. Deep-Sea Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The deep-sea submarine 'Ben Franklin' is being docked in the harbor. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life. It also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  3. Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is an aerial view of the deep-sea research submarine 'Ben Franklin' at dock. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  4. Argon geochronology of Kilauea's early submarine history

    USGS Publications Warehouse

    Calvert, A.T.; Lanphere, M.A.

    2006-01-01

    Submarine alkalic and transitional basalts collected by submersible along Kilauea volcano's south flank represent early eruptive products from Earth's most active volcano. Strongly alkalic basalt fragments sampled from volcaniclastic deposits below the mid-slope Hilina Bench yield 40Ar/39Ar ages from 212 ?? 38 to 280 ?? 20 ka. These ages are similar to high-precision 234 ?? 9 and 239 ?? 10 ka phlogopite ages from nephelinite clasts in the same deposits. Above the mid-slope bench, two intact alkalic to transitional pillow lava sequences protrude through the younger sediment apron. Samples collected from a weakly alkalic basalt section yield 138 ?? 30 to 166 ?? 26 ka ages and others from a transitional basalt section yield 138 ?? 115 and 228 ?? 114 ka ages. The ages are incompatible with previous unspiked K-Ar studies from samples in deep drill holes along the east rift of Kilauea. The submarine birth of Kilauea volcano is estimated at <300 ka. If the weakly alkalic sequence we dated is representative of the volcano as a whole, the transition from alkalic to tholeiitic basalt compositions is dated at ??? 150 ka. ?? 2005 Elsevier B.V. All rights reserved.

  5. Attack submarines: The case for negotiated reductions

    SciTech Connect

    Lacy, J.L.

    1990-12-01

    In East-West naval arms control, the realistic and genuinely useful options are fairly limited. The United States is likely to resist constraints on the numbers and operations of naval assets that serve national interests beyond East-West security. It is not altogether clear, in a post-Cold War environment, that such constraints on U.S. forces would be in the Soviet interest either. The attack submarine, however, is different - an artifact of the Cold War, with very limited utility in non-Cold War contingencies. Controlling its operations and movements has always been difficult, and is bound to remain so. But operations can be controlled indirectly, and costs can be reduced, by cutting inventories. To bring a substantial benefit, such cuts would need to be large, mutual, and to a more-or-less common ceiling. If something along the lines suggested above were agreed upon and implemented, the United States and the Soviet Union would eliminate from the world's oceans between 200 and 300 attack submarines. That would seem to be quite a respectable start toward building confidence, security, and stability at sea, and toward a more sensible force structure for both navies. 1 tab.