Sample records for narrow-band lunar eclipse

  1. Eclipse cooling of selected lunar features

    NASA Technical Reports Server (NTRS)

    Shorthill, R. W.; Saari, J. M.; Baird, F. E.; Lecompte, J. R.

    1970-01-01

    Thermal measurements were made in the 10 to 12 micron band of the lunar surface during the total eclipse of December19, 1964. A normalized differential thermal contour map is included, showing the location of the thermal anomalies or hot spots on the disk and the eclipse cooling curves of 400 sites, of which more than 300 were hot spots. The eclipse cooling data is compared to a particulate thermophysical model of the soil.

  2. Lunar Eclipse

    NASA Image and Video Library

    2003-11-09

    In this lunar eclipse viewed from Merritt Island, Fla., the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through - when it does, it is called a lunar eclipse.

  3. Living matter: the "lunar eclipse" phenomena.

    PubMed

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  4. Polarized Transmission Spectrum of Earth as Observed during a Lunar Eclipse

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun; Itoh, Yoichi; Hosoya, Kensuke; Yanamandra-Fisher, Padma A.; Hattori, Takashi

    2017-12-01

    Polarization during a lunar eclipse is a forgotten mystery. Coyne & Pellicori reported the detection of significant polarization during the lunar eclipse on 1968 April 13. Multiple scattering during the first transmission through Earth’s atmosphere was suggested as a possible cause of the polarization, but no conclusive determination was made. No further investigations on polarization during a lunar eclipse are known. We revisit this mystery with an interest in possible application to extrasolar planets; if planetary transmitted light is indeed polarized, it may be possible to investigate an exoplanet atmosphere using “transit polarimetry.” Here we report results of the first spectropolarimetry for the Moon during a lunar eclipse on 2015 April 4. We observed polarization degrees of 2%-3% at wavelengths of 500-600 nm; in addition, an enhanced feature was detected at the O2 A band near 760 nm. The observed time variation and wavelength dependence are consistent with an explanation of polarization caused by double scattering during the first transmission through Earth’s atmosphere, accompanied by latitudinal atmospheric inhomogeneity. Transit polarimetry for exoplanets may be useful to detect O2 gas and to probe the latitudinal atmospheric inhomogeneity, and it is thus worthy of serious consideration.

  5. Lunar eclipses: Probing the atmosphere of an inhabited planet

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2013-04-01

    The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  6. Fifty Year Canon of Lunar Eclipses: 1986-2035

    NASA Technical Reports Server (NTRS)

    Espenak, Fred

    1989-01-01

    A complete catalog is presented, listing the general circumstances of every lunar eclipse from 1901 through 2100. To compliment this catalog, a set of figures illustrate the basic Moon-shadow geometry and global visibility for every lunar eclipse over the 200 year interval. Focusing in on the next fifty years, 114 detailed diagrams show the Moon's path through Earth's shadow during every eclipse, including contact times at each phase. The accompanying cylindrical projection maps of Earth show regions of hemispheric visibility for all phases. The appendices discuss eclipse geometry, eclipse frequency and recurrence, enlargement of Earth's shadow, crater timings, eclipse brightness and time determination. Finally, a simple FORTRAN program is provided which can be used to predict the occurrence and general characteristics of lunar eclipses. This work is a companion volume to NASA Reference Publication 1178: Fifty Year Canon of Solar Eclipses: 1986-2035.

  7. Super Blue Moon Lunar Eclipse

    NASA Image and Video Library

    2018-01-31

    NASA TV provided coverage of Super Blue Moon Lunar Eclipse on Jan. 31. The full moon was the third in a series of “supermoons,” when the Moon is closer to Earth in its orbit -- known as perigee -- and about 14 percent brighter than usual. It was also the second full moon of the month, commonly known as a “blue moon.” As the super blue moon passed through Earth’s shadow, viewers in some locations experienced a total lunar eclipse. While in Earth’s shadow, the moon also took on a reddish tint – which is sometimes referred to as a “blood moon.”

  8. Super Blood Moon Lunar Eclipse

    NASA Image and Video Library

    2017-12-08

    A preview animation of the Super Moon Lunar Eclipse On the evening of September 27, 2015 in the Americas (early morning on September 28 in Europe and most of Africa), the Moon enters the Earth’s shadow, creating a total lunar eclipse, the last of four visible in the Western Hemisphere in a span of 18 months. This animation shows the changing appearance of the Moon as it travels into and out of the Earth’s shadow. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Stonehenge: A Simple and Accurate Predictor of Lunar Eclipses

    NASA Astrophysics Data System (ADS)

    Challener, S.

    1999-12-01

    Over the last century, much has been written about the astronomical significance of Stonehenge. The rage peaked in the mid to late 1960s when new computer technology enabled astronomers to make the first complete search for celestial alignments. Because there are hundreds of rocks or holes at Stonehenge and dozens of bright objects in the sky, the quest was fraught with obvious statistical problems. A storm of controversy followed and the subject nearly vanished from print. Only a handful of these alignments remain compelling. Today, few astronomers and still fewer archaeologists would argue that Stonehenge served primarily as an observatory. Instead, Stonehenge probably served as a sacred meeting place, which was consecrated by certain celestial events. These would include the sun's risings and settings at the solstices and possibly some lunar risings as well. I suggest that Stonehenge was also used to predict lunar eclipses. While Hawkins and Hoyle also suggested that Stonehenge was used in this way, their methods are complex and they make use of only early, minor, or outlying areas of Stonehenge. In contrast, I suggest a way that makes use of the imposing, central region of Stonehenge; the area built during the final phase of activity. To predict every lunar eclipse without predicting eclipses that do not occur, I use the less familiar lunar cycle of 47 lunar months. By moving markers about the Sarsen Circle, the Bluestone Circle, and the Bluestone Horseshoe, all umbral lunar eclipses can be predicted accurately.

  10. Accuracy of lunar eclipse observations made by Jesuit astronomers in China.

    NASA Astrophysics Data System (ADS)

    Fatoohi, L. J.; Stephenson, F. R.

    1996-02-01

    The Jesuit astronomers observed numerous lunar eclipses at Beijing and summaries of their observations - made between 1644 and 1785 - are preserved. The various lunar eclipse measurements that the Jesuits made are compared with the results of present-day computation.

  11. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.

  12. Interpretation of Historically Significant Solar and Lunar Eclipses

    NASA Astrophysics Data System (ADS)

    Muradyan, Armine; Mickaelian, A. M.

    2016-12-01

    Most of the ancient civilizations reacted with great awe and fear to the phenomena occurring in the sky and their changes. Periodically recurring movements of the Sun and the Moon attracting the attention of the astronomers, have given possibility to ancient civilizations to develop various calendars, including quite complicated ones. Since ancient times, Lunar and Solar eclipses were also among the forecasted phenomena, which have played an important role in human history. In the modern era, due to the cooperation of astronomers and historians, precise historical years and dates have been identified and the most important scientific discoveries of mankind have been proved with the help of eclipses. Most important historical Solar and Lunar eclipses, their impact on people, societies, history and science are presented and the interpretation of available to us historical events is given in this article.

  13. Exploring the first scientific observations of lunar eclipses made in Siam

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Orchiston, Darunee Lingling; George, Martin; Soonthornthum, Boonrucksar

    2016-04-01

    The first great ruler to encourage the adoption of Western culture and technology throughout Siam (present-day Thailand) was King Narai, who also had a passion for astronomy. He showed this by encouraging French and other Jesuit missionaries, some with astronomical interests and training, to settle in Siam from the early 1660s. One of these was Father Antoine Thomas, and he was the first European known to have carried out scientific astronomical observations from Siam when he determined the latitude of Ayutthaya in 1681 and the following year observed the total lunar eclipse of 22 February. A later lunar eclipse also has an important place in the history of Thai astronomy. In 1685 a delegation of French missionary-astronomers settled in Ayutthaya, and on 10-11 December 1685 they joined King Narai and his court astrologers and observed a lunar eclipse from the King's 'country retreat' near Lop Buri. This event so impressed the King that he approved the erection of a large modern well-equipped astronomical observatory at Lop Buri. Construction of Wat San Paulo Observatory - as it was known - began in 1686 and was completed in 1687. In this paper we examine these two lunar eclipses and their association with the development of scientific astronomy in Siam.

  14. Five Millennium Catalog of Lunar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Meeus, Jean

    2009-01-01

    This catalog is a supplement to the "FiveMillenniumCanonofLunarEclipses." It includes additional information for each eclipse that could not be included in the original publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Solar Eclipse parameter, gamma, penumbral and umbral eclipse magnitudes, durations of penumbral, partial and total eclipse phases, and geographic coordinates of greatest eclipse (latitude and longitude). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).

  15. ScienceCast 163: A Colorful Lunar Eclipse

    NASA Image and Video Library

    2014-09-17

    Mark your calendar: On Oct. 8th, the Moon will pass through the shadow of Earth for a total lunar eclipse. Sky watchers in the USA will see the Moon turn a beautiful shade of celestial red and maybe turquoise, too.

  16. Lunar shadow eclipse prediction models for the Earth orbiting spacecraft: Comparison and application to LEO and GEO spacecrafts

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.

    2015-05-01

    A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.

  17. "Pink" Full Moon and Partial Lunar Eclipse on April 25, 2013

    NASA Image and Video Library

    2017-12-08

    Share YOUR pink moon and/or partial lunar eclipse images in our Flickr Group here: www.flickr.com/groups/pinkmoon/ TimeThursday, April 25, 2013, 21:00 UT Phase 100.0% Diameter - 1962.6 arcseconds Distance - 365185 km (28.66 Earth diameters There is a special lunar name for every full moon in a year. The April 25 full moon is known as the “Full Pink Moon” because of the grass pink – or wild ground phlox – flower, which is one of the earliest widespread flowers to bloom in the spring. This month’s full moon is also known as the Sprouting Grass moon and the Egg moon. The first lunar eclipse of 2013 occurs at the Moon's ascending node in southern Virgo about 12° east of Spica (mv = +1.05). It is visible primarily from the Eastern Hemisphere. This event will not be visible in North America, it will only be visible from Eastern Europea, Africa, Asia, and Western Australia. April’s full moon, which is set to rise tonight, is known as a pink moon. And this year it coincides with the partial lunar eclipse. This NASA animation shows elevation measurements by the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO). Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. On-line Eclipse Resources from the U.S. Naval Observatory: Planning Ahead for April 2024

    NASA Astrophysics Data System (ADS)

    Fredericks, Amy C.; Bartlett, J. L.; Bell, S.; Stapleton, J. C.

    2014-01-01

    On 8 April 2024, “…night from mid-day…” (Archilochus, 648 BCE) will appear to fortunate observers along a narrow band, approximately 115 mi (185 km) wide, that crosses fifteen states from Texas to Maine. In response to growing interest in the two total solar eclipses that will sweep the continental United States in the next 11 years, the U.S. Naval Observatory has developed an on-line resource center with direct links to 2024-specific services: the 2024 April 8 Total Solar Eclipse page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php). The Solar Eclipse Computer (http://aa.usno.navy.mil/data/docs/SolarEclipses.php) calculates tables of local circumstances for events visible throughout the world. A similar service is available for lunar eclipses, Lunar Eclipse Computer (http://aa.usno.navy.mil/data/docs/LunarEclipse.php). The USNO Eclipse Portal (http://astro.ukho.gov.uk/eclbin/query_usno.cgi) provides diagrams and animations showing the global circumstances for events visible throughout the world and local circumstances for events visible at selected locations. The Web site, which includes both solar and lunar eclipses, is a joint effort with Her Majesty’s Nautical Almanac Office. The Eclipses of the Sun and Moon page (http://aa.usno.navy.mil/data/docs/UpcomingEclipses.php) links to electronic copies of the visibility maps from The Astronomical Almanac. The Eclipse Reference List (http://aa.usno.navy.mil/faq/docs/eclipse_ref.php) is a representative survey of the available literature for those interested in delving into these phenomena, either technically or historically. As exciting as the 2024 total solar eclipse, another spectacular event will precede it; a total solar eclipse will cross a different swath of the continent on August 21, 2017. The U.S. Naval Observatory has a resource center for that event as well (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) . If your plans for 2024 are not yet made, visit the 2024 April 8 Total Solar Eclipse

  19. Super Blood Moon Lunar Eclipse

    NASA Image and Video Library

    2017-12-08

    CLOUDY with a chance of NOT SEEING the Super Blood Moon Lunar Eclipse? WATCH Live here: bit.ly/1LfspfW No worries, we've got you've covered. Click on over to the live stream starting at 8:00 p.m. until at least 11:30 p.m. EDT broadcast from NASA's Marshall Space Flight Center in Huntsville, Ala., with a live feed from the Griffith Observatory, Los Angeles, Calif. Mitzi Adams, a NASA solar physicist at Marshall will discuss the eclipse and answer questions on Twitter. To ask a question, use ‪#‎askNASA‬. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Constraining Lunar Cold Spot Properties Using Eclipse and Twilight Temperature Behavior

    NASA Astrophysics Data System (ADS)

    Powell, T. M.; Greenhagen, B. T.; Hayne, P. O.; Bandfield, J. L.

    2016-12-01

    Thermal mapping of the nighttime lunar surface by the Diviner instrument on the Lunar Reconnaissance Orbiter (LRO) has revealed anomalous "cold spot" regions surrounding young impact craters. These regions typically show 5-10K lower nighttime temperatures than background regolith. Previous modeling has shown that cold spot regions can be explained by a "fluffing-up" of the top centimeters of regolith, resulting in a layer of lower-density, highly-insulating material (Bandfield et al., 2014). The thickness of this layer is characterized by the H-parameter, which describes the rate of density increase with depth (Vasavada et al., 2012). Contrary to expectations, new Diviner and ground-based telescopic data have revealed that these cold spot regions remain warmer than typical lunar regolith during eclipses and for a short twilight period at the beginning of lunar night (Hayne et al., 2015). These events act on much shorter timescales than the full diurnal day-night cycle, and the surface temperature response is sensitive to the properties of the top few millimeters of regolith. Thermal modeling in this study shows that this behavior can be explained by a profile with higher surface density and higher H-parameter relative to typical regolith. This results in a relative increase in thermal inertia in the top few millimeters of regolith, but decreased thermal inertia at centimeter depth scales. Best-fit surface density and H-parameter values are consistent with the temperature behavior observed during diurnal night as well as early twilight and eclipse scenarios. We interpret this behavior to indicate the presence of small rocks at the surface deposited by granular flow mixing during cold spot formation. This study also shows that eclipse and twilight data can be used as an important constraint in determining the thermophysical properties of lunar regolith. References: Bandfield, et al. (2014), Icarus, 231, 221-231. Hayne, et al. (2015), In Lunar and Planetary Science

  1. Lunar Surface Properties from Diviner Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; Paige, David; Greenhagen, Benjamin; Bandfield, Joshua; Siegler, Matthew; Lucey, Paul

    2015-04-01

    The thermal behavior of planetary bodies can reveal information about fundamental processes shaping their surfaces and interiors. Diviner [1] has been mapping the Moon's diurnal temperatures since the Lunar Reconnaissance Orbiter (LRO) arrived in 2009, yielding new insights into regolith formation [2, 3], the distribution of volatiles [4, 5], lunar volcanism [6, 7, 8], and impact processes [9]. The Moon's cooling during eclipse provides complementary information on the physical properties of the uppermost surface layer, which can be used to further investigate these and other processes. We used data from Diviner's seven thermal infrared spectral channels to measure surface temperatures before, during and after the 8 Oct., 2014 eclipse. In its standard nadir-pushbroom mode, Diviner maps surface temperatures in a ~6-km swath with a spatial resolution of ~250 m. Using Diviner's independent scanning capability [11], we also targeted two regions of interest on sequential orbits to create a time series of thermal observations: 1) Kepler crater (-38°E, 8°N) and 2) an unnamed nighttime "cold spot" (-33.3°E, 3°N). Pre-eclipse surface temperatures in these regions were ~380 K. As a relatively young Copernican-aged impact crater, Kepler was selected to investigate the abundance and size distribution of rocks in the ejecta and interior. Lunar nighttime "cold spots" are anomalous features around very young impact craters, extending for up to hundreds of crater radii, notable for their low temperatures in the Diviner nighttime data [9]. Although their origins are not fully explained, they are likely the result of in-situ disruption and decompression of regolith during the impact process. The selected cold spot (one of hundreds or even thousands on the lunar surface) was located with good viewing ge- ometry from LRO, and had a diameter of ~10 km surrounding a crater < 1 km in diameter. At Kepler crater, we observed dramatic differences in the amount of cooling related to the

  2. Total Solar Eclipse of 2008 August 01

    NASA Technical Reports Server (NTRS)

    Espenak, F.; Anderson, J.

    2007-01-01

    On 2008 August 01, a total eclipse of the Sun is visible from within a narrow corridor that traverses half the Earth. The path of the Moon's umbral shadow begins in northern Canada and extends across Greenland, the Arctic, central Russia, Mongolia, and China. A partial eclipse is seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, most of Europe and Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 308 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.

  3. David Levy's Guide to Eclipses, Transits, and Occultations

    NASA Astrophysics Data System (ADS)

    Levy, David H.

    2010-08-01

    Introduction; Part I. The Magic and History of Eclipses: 1. Shakespeare, King Lear, and the Great Eclipse of 1605; 2. Three centuries later: Einstein, relativity, and the solar eclipse of 1919; 3. What causes solar and lunar eclipses; Part II. Observing Solar Eclipses: 4. Safety considerations; 5. What to expect during a partial eclipse; 6. Annular eclipses and what to see in them; 7. Total eclipse of the Sun: introduction to the magic; 8. The onset: temperature drop, Baily's Beads, Diamond Ring; 9. Totality: Corona, Prominences, Chromosphere, and surrounding area; 10. Photographing and imaging a solar eclipse; Part III. Observing Lunar Eclipses: 11. Don't forget the penumbral eclipses!; 12. Partial lunar eclipses; 13. Total lunar eclipses; 14. Photographing and imaging lunar eclipses; Part IV. Occultations: 15. When the Moon occults a star; Part V. Transits: 16. When planets cross the Sun; Part VI. My Favorite Eclipses: 17. A personal canon of eclipses, occultations, and transits I have seen; Appendices; Index.

  4. Total Solar Eclipse of 2006 March 29

    NASA Technical Reports Server (NTRS)

    Espenak, F.; Anderson, J.

    2004-01-01

    On 2006 March 29, a total eclipse of the Sun will be visible from within a narrow corridor which traverses half the Earth. The path of the Moon's umbral shadow begins in Brazil and extends across the Atlantic, northern Africa, and central Asia where it ends at sunset in western Mongolia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the northern two thirds of Africa, Europe, and central Asia.Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.

  5. Total Solar Eclipse of 2002 December 04

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    2001-01-01

    On 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.

  6. Super Blood Moon Lunar Eclipse

    NASA Image and Video Library

    2017-12-08

    Are you ready for tonight's ‪#‎SuperBloodMoon‬ Lunar Eclipse? Get your camera and find a great spot to snap a pic of the event, then share it with NASA in our Flickr group www.flickr.com/groups/superbloodmoon/ You can also share your photo with us starting at 10:00pm EDT tonight in the NASA photo contest here: go.nasa.gov/superbloodmoon-contest Learn more about this celestial event & when to look up to see it: bit.ly/1NVEwh5 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  8. Apollo 15 Lunar eclipse views

    NASA Image and Video Library

    1971-08-01

    S71-58222 (31 July-2 Aug. 1971) --- During the lunar eclipse that occurred during the Apollo 15 lunar landing mission, astronaut Alfred M. Worden, command module pilot, used a 35mm Nikon camera to obtain a series of 15 photographs while the moon was entering and exiting Earth's umbra. Although it might seem that there should be no light on the moon when it is in Earth's shadow, sunlight is scattered into this region by Earth's atmosphere. This task was an attempt to measure by photographic photometry the amount of scattered light reaching the moon. The four views from upper left to lower right were selected to show the moon as it entered Earth's umbra. The first is a four-second exposure which was taken at the moment when the moon had just entered umbra; the second is a 15-second exposure taken two minutes after entry; the third, a 30-second exposure three minutes after entry; and the fourth is a 60-second exposure four minutes after entry. In all cases the light reaching the moon was so bright on the very high speed film (Eastman Kodak type 2485 emulsion) that the halation obscures the lunar image, which should be about one-third as big as the circle of light. The background star field is clearly evident, and this is very important for these studies. The spacecraft was in full sunlight when these photographs were taken, and it was pointed almost directly away from the sun so that the windows and a close-in portion of the camera's line-of-sight were in shadow. The environment around the vehicle at this time appears to be very "clean" with no light scattering particles noticeable.

  9. Total Solar Eclipse of 2001 June 21

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1999-01-01

    On 2001 June 21, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and Madagascar, and ends at sunset in the Indian Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern South America and the southern two thirds of Africa. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.

  10. Total Solar Eclipse of 1999 August 11

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1997-01-01

    On 1999 August 11, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Eastern Hemisphere. The path of the Moon's umbral shadow begins in the Atlantic and crosses central Europe, the Middle East, and India, where it ends at sunset in the Bay of Bengal. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, all of Europe, northern Africa, and the western half of Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 1400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.

  11. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2017-02-01

    In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.

  12. Narrow-field imaging of the lunar sodium exosphere

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Flynn, Brian C.

    1995-01-01

    We present the first results of a new technique for imaging the lunar Na atmosphere. The technique employs high resolution, a narrow bandpass, and specific observing geometry to suppress scattered light and image lunar atmospheric Na I emission down to approximately 50 km altitude. Analysis of four latitudinally dispersed images shows that the lunar Na atmosphere exhibits intersting latitudinal and radial dependencies. Application of a simple Maxwellian collisionless exosphere model indicates that: (1) at least two thermal populations are required to adequately fit the soldium's radial intensity behavior, and (2) the fractional abundances and temperatures of the two components vary systematically with latitude. We conclude that both cold (barometric) and hot (suprathermal) Na may coexist in the lunar atmosphere, either as distinct components or as elements of a continuum of populations ranging in temperature from the local surface temperature up to or exceeding escape energies.

  13. Analytical and numerical study of the salinity intrusion in the Sebou river estuary (Morocco) - effect of the "Super Blood Moon" (total lunar eclipse) of 2015

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane; Igouzal, Mohammed; Maslouhi, Abdellatif

    2016-09-01

    The longitudinal variation of salinity and the maximum salinity intrusion length in an alluvial estuary are important environmental concerns for policy makers and managers since they influence water quality, water utilization and agricultural development in estuarine environments and the potential use of water resources in general. The supermoon total lunar eclipse is a rare event. According to NASA, they have only occurred 5 times in the 1900s - in 1910, 1928, 1946, 1964 and 1982. After the 28 September 2015 total lunar eclipse, a Super Blood Moon eclipse will not recur before 8 October 2033. In this paper, for the first time, the impact of the combination of a supermoon and a total lunar eclipse on the salinity intrusion along an estuary is studied. The 28 September 2015 supermoon total lunar eclipse is the focus of this study and the Sebou river estuary (Morocco) is used as an application area. The Sebou estuary is an area with high agricultural potential, is becoming one of the most important industrial zones in Morocco and it is experiencing a salt intrusion problem. Hydrodynamic equations for tidal wave propagation coupled with the Savenije theory and a numerical salinity transport model (HEC-RAS software "Hydrologic Engineering Center River Analysis System") are applied to study the impact of the supermoon total lunar eclipse on the salinity intrusion. Intensive salinity measurements during this extreme event were recorded along the Sebou estuary. Measurements showed a modification of the shape of axial salinity profiles and a notable water elevation rise, compared with normal situations. The two optimization parameters (Van der Burgh's and dispersion coefficients) of the analytical model are estimated based on the Levenberg-Marquardt's algorithm (i.e., solving nonlinear least-squares problems). The salinity transport model was calibrated and validated using field data. The results show that the two models described very well the salt intrusion during the

  14. Eclipses in Australian Aboriginal Astronomy

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2011-07-01

    We explore about fifty different Australian Aboriginal accounts of lunar and solar eclipses to determine how Aboriginal groups understood this phenomenon. We summarize the literature on Aboriginal references to eclipses. We show that many Aboriginal groups viewed eclipses negatively, frequently associating them with bad omens, evil magic, disease, blood and death. In many communities, elders or medicine men claimed to be able to control or avert eclipses by magical means, solidifying their roles as providers and protectors within their communities. We also show that some Aboriginal groups seem to have understood the motions of the Sun-Earth-Moon system, the connection between the lunar phases and tides, and acknowledged that solar eclipses were caused by the Moon blocking the Sun.

  15. Penumbral lunar eclipse of September 16, 2016: observing with sunglasses to make it popular

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2016-08-01

    The observation of a penumbral lunar eclipse is usually missed for a lack of interest. The real problem is the difficulty to observe it, because the strong luminosity of the full Moon and the eye response is easily saturated, being difficult the detection of the penumbral limit. The solution to use sunglasses, even two or three folded can make this observation very popular;

  16. z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, J. R.; Watson, C. A.; Pollacco, D.

    2012-08-01

    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurementmore » of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.« less

  17. Earth's transmission spectrum from lunar eclipse observations.

    PubMed

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  18. Data Mining the Ogle-II I-band Database for Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Ciocca, M.

    2013-08-01

    The OGLE I-band database is a searchable database of quality photometric data available to the public. During Phase 2 of the experiment, known as "OGLE-II", I-band observations were made over a period of approximately 1,000 days, resulting in over 1010 measurements of more than 40 million stars. This was accomplished by using a filter with a passband near the standard Cousins Ic. The database of these observations is fully searchable using the mysql database engine, and provides the magnitude measurements and their uncertainties. In this work, a program of data mining the OGLE I-band database was performed, resulting in the discovery of 42 previously unreported eclipsing binaries. Using the software package Peranso (Vanmuster 2011) to analyze the light curves obtained from OGLE-II, the eclipsing types, the epochs and the periods of these eclipsing variables were determined, to one part in 106. A preliminary attempt to model the physical parameters of these binaries was also performed, using the Binary Maker 3 software (Bradstreet and Steelman 2004).

  19. Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse.

    PubMed

    Mendillo, M; Baumgardner, J

    1995-10-05

    The properties of the Moon's rarefied atmosphere, which can be traced through observations of sodium and potassium, provide important insights into the formation and maintenance of atmospheres on other primitive Solar System bodies. The lunar atmosphere is believed to be composed of atoms from the surface rocks and soil, which might have been sputtered by micrometeorites, by ions in the solar wind, or by photons. It might also form by the evaporation of atoms from the hot, illuminated surface. Here we report the detection of sodium emission from the Moon's atmosphere during a total lunar eclipse (which occurs when the Moon is full). The sodium atmosphere is considerably more extended at full Moon than expected--it extends to at least nine lunar radii--and its brightness distribution is incompatible with sources involving either solar-wind or micrometeorite sputtering. This leaves photon sputtering or thermal desorption as the preferred explanations for the lunar atmosphere, and suggests that sunlight might also be responsible for the transient atmospheres of other primitive bodies (such as Mercury).

  20. GLANCING VIEWS OF THE EARTH: FROM A LUNAR ECLIPSE TO AN EXOPLANETARY TRANSIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Munoz, A.; Barrena, R.; Montanes-Rodriguez, P.

    2012-08-20

    It has been posited that lunar eclipse observations may help predict the in-transit signature of Earth-like extrasolar planets. However, a comparative analysis of the two phenomena addressing in detail the transport of stellar light through the planet's atmosphere has not yet been presented. Here, we proceed with the investigation of both phenomena by making use of a common formulation. Our starting point is a set of previously unpublished near-infrared spectra collected at various phases during the 2008 August lunar eclipse. We then take the formulation to the limit of an infinitely distant observer in order to investigate the in-transit signaturemore » of the Earth-Sun system as being observed from outside our solar system. The refraction bending of sunlight rays that pass through Earth's atmosphere is a critical factor in the illumination of the eclipsed Moon. Likewise, refraction will have an impact on the in-transit transmission spectrum for specific planet-star systems depending on the refractive properties of the planet's atmosphere, the stellar size, and the planet's orbital distance. For the Earth-Sun system, at mid-transit, refraction prevents the remote observer's access to the lower {approx}12-14 km of the atmosphere and, thus, also to the bulk of the spectroscopically active atmospheric gases. We demonstrate that the effective optical radius of the Earth in-transit is modulated by refraction and varies by {approx}12 km from mid-transit to internal contact. The refractive nature of atmospheres, a property which is rarely accounted for in published investigations, will pose additional challenges to the characterization of Earth-like extrasolar planets. Refraction may have a lesser impact for Earth-like extrasolar planets within the habitable zone of some M-type stars.« less

  1. An enhanced narrow-band imaging method for the microvessel detection

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  2. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  3. Improved Band-to-Band Registration Characterization for VIIRS Reflective Solar Bands Based on Lunar Observations

    NASA Technical Reports Server (NTRS)

    Wang, Zhipeng; Xiong, Xiaoxiong; Li, Yonghong

    2015-01-01

    Spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrumentaboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite are spatially co-registered.The accuracy of the band-to-band registration (BBR) is one of the key spatial parameters that must becharacterized. Unlike its predecessor, the Moderate Resolution Imaging Spectroradiometer (MODIS), VIIRS has no on-board calibrator specifically designed to perform on-orbit BBR characterization.To circumvent this problem, a BBR characterization method for VIIRS reflective solar bands (RSB) based on regularly-acquired lunar images has been developed. While its results can satisfactorily demonstrate that the long-term stability of the BBR is well within +/- 0.1 moderate resolution bandpixels, undesired seasonal oscillations have been observed in the trending. The oscillations are most obvious between the visiblenear-infrared bands and short-middle wave infrared bands. This paper investigates the oscillations and identifies their cause as the band spectral dependence of the centroid position and the seasonal rotation of the lunar images over calibration events. Accordingly, an improved algorithm is proposed to quantify the rotation and compensate for its impact. After the correction, the seasonal oscillation in the resulting BBR is reduced from up to 0.05 moderate resolution band pixels to around 0.01 moderate resolution band pixels. After removing this spurious seasonal oscillation, the BBR, as well as its long-term drift are well determined.

  4. NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A Ks-BAND DETECTION AND AN H-BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croll, Bryce; Jayawardhana, Ray; Fortney, Jonathan J.

    2010-08-01

    We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133{sup +0.018}{sub -0.016}% in the Ks band (8{sigma})-a result that is in sharp contrast to the eclipse depth reported by de Mooij and Snellen. We do not detect its thermal emission in the H band, but place a 3{sigma} limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistributionmore » of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3{sigma} upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets.« less

  5. Eclipses and the Olympics

    NASA Astrophysics Data System (ADS)

    Pang, K. D.; Yau, K. K.

    2000-12-01

    Like returns of Halley's comet the Olympic games occur periodically, though not as regularly in antiquity. Dates were also imprecise due to the chaotic calendars in use. Reported sightings of comets and eclipses can be used with game dates to help fix ancient events. However some reported darkening of the sun, e.g., after Julius Caesar's murder in 44 BC, was due to volcanic eruptions. A red comet, visible in daylight, first appeared during the games that year. It was also seen from China and Korea (Pang, Sciences 31, 30). Phlegon's ``Olympiads" (2nd century) says that Christ's crucifixion was in the 4th year of the 202nd Olympiad (AD 29-33), when a total solar eclipse occurred in the 6th hour. Only the Nov. 24, AD 29 eclipse over Asia Minor can match that, and Joel's prophecy (Acts 2, 14-21) that ``the sun will be turned to darkness and moon to blood." However it conflicts with ``the first day of Passover," as recorded by Mathew, Mark and Luke, i.e., full moon in early spring. Humphreys and Waddington (Nature 306, 743) have suggested meteorological darkening and the April 3, AD 33 lunar eclipse instead. Schaefer has questioned the eclipse's visibility from Jerusalem (31.46N, 35.14E). The six computations he cited gave dissimilar answers due to the imprecise rates of the secular lunar acceleration, and lengthening of the day used (Q.Jl.R.astr.Soc. 31, 53). Lunar laser ranging has since fixed the former at -26"/cen2. Analysis of ancient Chinese solar eclipse records, e.g., the April 21, 899 BC and April 4, AD 368 ``double dawns" over Zheng, has given us a delta T (in sec) = 30t2, where t is centuries before 1800 (Pang, Yau and Chou, in ``Dynamics of Ice Age Earth: A Modern Perspective," 1998). Our computations show that the moon rose over Jerusalem, with 1/3 still in the umbra and the rest in penumbra. Holdover meteorological darkening with long absorption air mass could have help reddened the moon also. Finally the first ``eclipse season" (the Aug. 21 lunar, and

  6. Galaxy properties from J-PAS narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez

    2017-11-01

    We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.

  7. Surveying the Lunar Surface for New Craters with Mini-RF/Goldstone X-Band Bistatic Observations

    NASA Astrophysics Data System (ADS)

    Cahill, J. T.; Patterson, G.; Turner, F. S.; Morgan, G.; Stickle, A. M.; Speyerer, E. J.; Espiritu, R. C.; Thomson, B. J.

    2017-12-01

    A multi-look temporal imaging survey by Speyerer et al. (2016) using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) has highlighted detectable and frequent impact bombardment processes actively modifying the lunar surface. Over 220 new resolvable impacts have been detected since NASA's Lunar Reconnaissance Orbiter (LRO) entered orbit around the Moon, at a flux that is substantially higher than anticipated from previous studies (Neukum et al., 2001). The Miniature Radio Frequency (Mini-RF) instrument aboard LRO is a hybrid dual-polarized synthetic aperture radar (SAR) that now operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34-meter antenna DSS-13 to collect S- and X-band (12.6 and 4.2 cm, respectively) bistatic radar data of the Moon, respectively. Here we targeted some of the larger (>30 m) craters identified by Speyerer et al. (2016) and executed bistatic X-band radar observations both to evaluate our ability to detect and resolve these impact features and further characterize the spatial extent and material size of their ejecta outside optical wavelengths. Data acquired during Mini-RF monostatic operations, when the transmitter was active, show no coverage of the regions in question before or after two of the new impacts occurred. This makes Mini-RF and Earth-based bistatic observations all the more valuable for examination of these fresh new geologic features. Preliminary analyses of Arecibo/Greenbank and Mini-RF/Goldstone observations are unable to resolve the new crater cavities (due to our current resolving capability of 100 m/px), but they further confirm lunar surface roughness changes occurred between 2008 and 2017. Mini-RF X-band observations show newly ejected material was dispersed on the order of 100-300 meters from the point of impact. Scattering observed in the X-band data suggests the presence of rocky ejecta 4 - 45 cm in diameter on the surface and buried to depths of

  8. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  9. Near-infrared Thermal Emission from TrES-3b: A Ks-band Detection and an H-band Upper Limit on the Depth of the Secondary Eclipse

    NASA Astrophysics Data System (ADS)

    Croll, Bryce; Jayawardhana, Ray; Fortney, Jonathan J.; Lafrenière, David; Albert, Loic

    2010-08-01

    We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133+0.018 -0.016% in the Ks band (8σ)—a result that is in sharp contrast to the eclipse depth reported by de Mooij & Snellen. We do not detect its thermal emission in the H band, but place a 3σ limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistribution of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3σ upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of

  10. Glorious Eclipses

    NASA Astrophysics Data System (ADS)

    Brunier, Serge; Luminet, Jean-Pierre

    2000-12-01

    Stargazers who may have missed the last total solar eclipse of the 20th century this past summer have just been given another chance to observe this "once in a lifetime" occurrence. Inside Glorious Eclipses they will find startling images and rich personal accounts that fully capture this event and other recent eclipses. The book will also insure that readers will not miss another eclipse in the next 60 years! Specially designed in a beautiful, large format, the volume portrays eclipses of all kinds--lunar, solar, and those occurring elsewhere in the Solar System and beyond. Brunier and Luminet have gathered together all aspects of eclipses, and carefully selected a host of lavish images. The authors detail the history of eclipses, the celestial mechanics involved, their observation, and scientific interest. Personal accounts of recent eclipses are also included as well as all relevant information about forthcoming eclipses up to 2060. Complete with NASA maps and data, Glorious Eclipses is the ultimate source for all those interested in these remarkable (and rare) celestial events. Serge Brunier is chief editor of the journal Ciel et Espace, a photo-journalist, and the author of many nonfiction books aimed at both specialists and the general public. Jean-Pierre Luminet is an astrophysicist at the Paris-Meudon Observatory and director of research at the Centre pour la Recherche Scientifique. He is the author of many popular astronomy books, including Black Holes (Cambridge University Press, 1992).

  11. Image shows January 31 Super Blue Blood Moon starting the lunar eclipse over NASA Armstrong Flight Research Center's mission support building located in California.

    NASA Image and Video Library

    2018-01-31

    California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).

  12. Perfect narrow band absorber for sensing applications.

    PubMed

    Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing

    2016-05-02

    We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

  13. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGES

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; ...

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  14. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  15. Five Millennium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Meeus, Jean

    2008-01-01

    This catalog is a supplement to the "Five Millennium Canon of Solar Eclipses." It includes additional information for each eclipse that could not be included in the original 648-page publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Lunar Eclipse parameter, gamma, eclipse magnitude, geographic coordinates of greatest eclipse (latitude and longitude), and the circumstances at greatest eclipse (i.e., Sun altitude and azimuth, path width, and central line duration). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).

  16. A narrow band pattern-matching model of vowel perception

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.; Houde, Robert A.

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  17. Observations of silicate reststrahlen bands in lunar infrared spectra

    NASA Technical Reports Server (NTRS)

    Potter, A. E., Jr.; Morgan, T. H.

    1982-01-01

    Thermal emission spectra of three lunar sites (Apollo 11, Descartes Formation, and Tycho central peak) are measured in the 8-14 micron spectral range. Transmission and instrument effects are accounted for by forming ratios of the Descartes and Tycho spectra to the Apollo 11 spectrum. The ratio spectra are compared with ratios of published laboratory spectra of returned lunar samples and also with ratio spectra calculated using the Aronson-Emslie (1975) model. The comparisons show pyroxene bands in the Descartes ratio spectrum and plagioclase bands in the Tycho ratio spectrum. The Tycho spectrum is found to be consistent with the existence of fine plagioclase dust (approximately 1 micron) at the rock surface and a higher-than-usual sodium content of the plagioclase.

  18. Annular and Total Solar Eclipses of 2010

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, J.

    2008-01-01

    While most NASA eclipse bulletins cover a single eclipse, this publication presents predictions for two solar eclipses during 2010. This has required a different organization of the material into the following sections. Section 1 -- Eclipse Predictions: The section consists of a general discussion about the eclipse path maps, Besselian elements, shadow contacts, eclipse path tables, local circumstances tables, and the lunar limb profile. Section 2 -- Annular Solar Eclipse of 2010 Ja n 15: The section covers predictions and weather prospects for the annular eclipse. Section 3 -- Total Solar Eclipse of 2010 Jul 11: The se ction covers predictions and weather prospects for the total eclipse. Section 4 -- Observing Eclipses: The section provides information on eye safety, solar filters, eclipse photography, and making contact timings from the path limits. Section 5 -- Eclipse Resources: The final section contains a number of resources including information on the IAU Working Group on Eclipses, the Solar Eclipse Mailing List, the NASA eclipse bulletins on the Internet, Web sites for the two 2010 eclipses, and a summary identifying the algorithms, ephemerides, and paramete rs used in the eclipse predictions.

  19. Five Millennium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)-Revised

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Meeus, Jean

    2009-01-01

    This catalog is a supplement to the "Five Millennium Canon of Lunar Eclipses. "It includes additional information for each eclipse that could not be included in the original publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Solar Eclipse parameter, gamma, penumbral and umbral eclipse magnitudes, durations of penumbral, partial and total eclipse phases, and geographic coordinates of greatest eclipse(latitude and longitude). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).

  20. Super Blood Moon Lunar Eclipse

    NASA Image and Video Library

    2017-12-08

    What time will you be able to view the Super Moon Eclipse? The images below show times to view it for Eastern Daylight Time (EDT), Central Daylight Time (CDT), Mountain Daylight Time (MDT) and Pacific Daylight Time (PDT). All of South America and most of North and Central America will see the entire eclipse, while those west of roughly 120°W will see it in progress at moonrise. You won’t need special equipment to see it. Just go outside and look up! NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. The mid 19th and early 20th Century Pull of a Nearby Eclipse Shadow Path

    NASA Astrophysics Data System (ADS)

    Bonifácio, Vitor

    2012-09-01

    The unique observing conditions allowed by total solar eclipses made them a highly desirable target of 19th and early 20th century astronomical expeditions, particularly after 1842. Due to the narrowness of the lunar shadow at the Earth's surface this usually implied traveling to faraway locations with all the subsequent inconveniences, in particular, high costs and complex logistics. A situation that improved as travel became faster, cheaper and more reliable. The possibility to observe an eclipse in one's own country implied no customs, no language barriers, usually shorter travelling distances and the likely support of local and central authorities. The eclipse proximity also provided a strong argument to pressure the government to support the eclipse observation. Sometimes the scientific elite would use such high profile events to rhetorically promote broader goals. In this paper we will analyse the motivation, goals, negotiating strategies and outcomes of the Portuguese eclipse expeditions made between 1860 and 1914. We will focus, in particular, on the observation of the solar eclipses of 22 December 1870 and 17 April 1912. The former allowed the start-up of astrophysical studies in the country while the movie obtained at the latter led Francisco da Costa Lobo to unexpectedly propose a polar flattening of the Moon.

  2. Narrow-Band Applications of Communications Satellites.

    ERIC Educational Resources Information Center

    Cowlan, Bert; Horowitz, Andrew

    This paper attempts to describe the advantages of "narrow-band" applications of communications satellites for education. It begins by discussing the general controversy surrounding the use of satellites in education, by placing the concern within the larger context of the general debate over the uses of new technologies in education, and by…

  3. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Monday, Aug. 21, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)

  4. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-22

    NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Tuesday, Aug. 22, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)

  5. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    Robert Lightfoot, acting NASA administrator and Thomas Zurbuchen NASA AA for the science mission directorate view a partial eclipse solar eclipse Monday, August 21, 2017, from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 35,000 feet above the Oregon Coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)

  6. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    This composite image of nine pictures shows the progression of a partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  7. Astronomy Teaching and Teachers Continuing Education: the Interdisciplinarity during a Total Lunar Eclipse. (Spanish Title: Enseñanza de la Astronomía y la Formación Continua de Profesores: la Interdisciplinariedad Durante un Eclipse Total de Luna.) Educação EM Astronomia E Formação Continuada de Professores: a Interdisciplinaridade Durante um Eclipse Lunar TOTAL

    NASA Astrophysics Data System (ADS)

    Langhi, Rodolfo

    2009-07-01

    This paper describes how 67 teachers from 23 cities, could awaken, in students, the scientific interest, using a natural astronomical phenomenon: a total lunar eclipse. Before and after of eclipse, meetings for continuing education were characterized by interdisciplinarity of astronomy and the importance of these observations. Working groups were formed by teachers and students, who organized the survey data, mobilizing the people in their cities. The results point ways about how to provide the scientific culture and the motivation to learn science in students, using approaches between the following communities: scientific, amateur and school. En este artículo se describe cómo 67 profesores de 23 ciudades, despertó el interés científico en los estudiantes mediante un fenómeno astronómico: un eclipse total de Luna. Antes y después del eclipse, reuniones para la formación continua se centraron en la interdisciplinariedad de la astronomía, y la importancia de las observaciones de este tipo de fenómeno. Profesores y estudiantes formaron grupos de trabajo para investigar datos durante el eclipse, con el participación de la comunidad en sus ciudades. Los resultados apuntan a las opciones que conducen a la cultura científica y la motivación para aprender la ciencia, utilizando las relaciones de los siguientes grupos: científicos, aficionados y la escuela. Este texto relata como 67 professores, provenientes de 23 cidades, puderam despertar, nos alunos, o interesse científico utilizando um fenômeno natural astronômico: um eclipse lunar total. O evento foi precedido e procedido por encontros de formação continuada, onde se caracterizou a interdisciplinaridade da astronomia e a importância das observações de fenômenos como estes. Grupos de trabalho foram formados por professores e alunos, que se organizaram para o levantamento conjunto de dados durante o fenômeno, além do envolvimento da comunidade em suas respectivas cidades. Os resultados apontam

  8. Eclipse - Apollo 12

    NASA Image and Video Library

    1980-08-05

    S80-37406 (14-24 Nov. 1969) --- This photograph of the eclipse of the sun was taken with a 16mm motion picture camera from the Apollo 12 spacecraft during its trans-Earth journey home from the moon. The fascinating view was created when the Earth moved directly between the sun and the Apollo 12 spacecraft. Aboard Apollo 12 were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot. While astronauts Conrad and Bean descended in the Lunar Module (LM) "Intrepid" to explore the Ocean of Storms region of the moon, astronaut Gordon remained with the Command and Service Modules (CSM) "Yankee Clipper" in lunar orbit.

  9. Reliability of the totality of the eclipse in AD 628 in Nihongi

    NASA Astrophysics Data System (ADS)

    Tanikawa, Kiyotaka; Soma, Mitsuru

    It is generally accepted that the solar eclipse on April 10, 628 (the second day, the third month, the thirty-sixth year of Empress Suiko) recorded in Nihongi is not total but partial though it is written as a total eclipse. We argue for the record appealing to the contemporary total or near total eclipses in Chinese history books and Japanese occultation observation. If the value of the tidal term in the lunar longitude (the coefficient of T2 term) is different from the present value by about -2"/cy-2, then there disappears an apparent contradiction of ΔT around AD 600 derived from lunar and solar eclipses. Grazing occultation data are found to be useful.

  10. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen passing in front of the Sun during a solar eclipse from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  11. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Sun is seen as it rises behind Jack Mountain head of the solar eclipse, Monday, Aug. 21, 2017, Ross Lake, Northern Cascades National Park, Washington. A total solar eclipse will sweep across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  12. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    This composite image shows the progression of a partial solar eclipse over Ross Lake, in Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  13. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    PubMed

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  14. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  15. Detection of the secondary eclipse of Qatar-1b in the Ks band

    NASA Astrophysics Data System (ADS)

    Cruz, Patricia; Barrado, David; Lillo-Box, Jorge; Diaz, Marcos; Birkby, Jayne; López-Morales, Mercedes; Fortney, Jonathan J.

    2016-10-01

    Aims: Qatar-1b is a close-orbiting hot Jupiter (Rp ≃ 1.18 RJ, Mp ≃ 1.33 MJ) around a metal-rich K-dwarf, with orbital separation and period of 0.023 AU and 1.42 days. We have observed the secondary eclipse of this exoplanet in the Ks band with the objective of deriving a brightness temperature for the planet and providing further constraints to the orbital configuration of the system. Methods: We obtained near-infrared photometric data from the ground by using the OMEGA2000 instrument at the 3.5 m telescope at Calar Alto (Spain) in staring mode, with the telescope defocused. We have used principal component analysis (PCA) to identify correlated systematic trends in the data. A Markov chain Monte Carlo analysis was performed to model the correlated systematics and fit for the secondary eclipse of Qatar-1b using a previously developed occultation model. We adopted the prayer bead method to assess the effect of red noise on the derived parameters. Results: We measured a secondary eclipse depth of 0.196%+ 0.071%-0.051%, which indicates a brightness temperature in the Ks band for the planet of 1885+ 212-168 K. We also measured a small deviation in the central phase of the secondary eclipse of -0.0079+ 0.0162-0.0043, which leads to a value for ecosω of -0.0123+ 0.0252-0.0067. However, this last result needs to be confirmed with more data. Based on observations collected at the Calar Alto Observatory, Almería, Spain.Lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A61

  16. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen passing in front of the Sun at the point of the maximum of the partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  17. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen as it starts passing in front of the Sun during a solar eclipse from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  18. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen passing in front of the Sun during a total solar eclipse on Monday, August 21, 2017 from onboard a NASA Gulfstream III aircraft flying 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Carla Thomas)

  19. Solar Eclipse from NASA Goddard

    NASA Image and Video Library

    2017-08-21

    View of the partial solar eclipse from NASA's Goddard Space Flight Center in Greenbelt, Md on Monday, August 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Credit: NASA/Goddard/Rebecca Roth

  20. Eclipse of epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2009-07-01

    The bright, long-period, eclipsing binary star epsilon Aurigae is predicted to begin its next eclipse late July or early August of 2009. Epsilon Aurigae is now past solar conjunction and has reappeared as a morning object. All observers -- both visual and instrumental -- are encouraged to contribute observations of the eclipse during the next two years, beginning immediately for morning observers. Observations are urgently requested right now because it is less likely to be observed in the morning, and the eclipse will begin within the next month. The AAVSO is participating in a global campaign to record this eclipse as part of the International Year of Astronomy 2009 celebrations, organized by the Citizen Sky project (http://www.citizensky.org). For experienced visual observers, please observe this star on a weekly basis, using charts available via VSP from the AAVSO website. For novice visual observers, we recommend participating in this observing program by following the Citizen Sky 10-Star tutorial program, which provides a simple training experience in variable star observing. Photoelectric observers belonging to the AAVSO PEP-V program may submit data as usual via the WebObs feature of the AAVSO website Blue&Gold section. Photoelectric observers may also contribute reduced observations in all filters (including infrared J- and H-bands) directly to the AAVSO via WebObs. Observers using wide-field CCD and DSLR systems are also encouraged to participate; avoid saturating the star. For those with narrower-field systems (D < 2 degrees), we recommend taking a large number (10-100) of very short exposures and then stacking the resulting images. Observations should be submitted to the AAVSO International Database. Aaron Price is coordinating Citizen Sky for the AAVSO, and Dr. Robert Stencel and Jeffrey Hopkins are co-leading the precision photometry efforts.

  1. Large Format Narrow-Band, Multi-Band, and Broad-Band LWIR QWIP Focal Planes for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2004-01-01

    A 640x512 pixel, long-wavelength cutoff, narrow-band (delta(lambda)/approx. 10%) quantum well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-16 m spectral region, and a broad-band (delta(lambda)/approx. 42%) QWIP FPA having 15.4 m cutoff have been demonstrated.

  2. Application of narrow-band television to industrial and commercial communications

    NASA Technical Reports Server (NTRS)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  3. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    A total solar eclipse is seen on Monday, August 21, 2017 from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)

  4. Celebrating the Eighth Annual International Observe the Moon Night and Supporting the 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Jones, Andrea; Bleacher, Lora; Shaner, Andy; Wenger, Matthew; Bakerman, Maya; Joseph, Emily; Day, Brian; White, Vivian; InOMN Coordinating Committee

    2017-01-01

    2017 marks the eighth International Observe the Moon Night (InOMN), which will be held on July 15, 2017. We will present findings from the first seven years, including the most recent figures from the October 2016 event, and provide an overview of the 2017 events which will support the Great American Eclipse which occurs about five weeks later, on August 21, 2017.InOMN is an annual worldwide public event that encourages observation, appreciation, and understanding of our Moon and its connection to NASA planetary science and exploration. This year InOMN’s event will support broad efforts to promote the eclipse by providing resources to help InOMN hosts highlight lunar science that will influence the eclipse, such as the topography of the Moon, which affects the edges of the eclipse path and the location and duration of Baily’s beads. The InOMN team will host webinars to discuss the Moon, lunar science, and lunar and solar eclipses.Each year, thousands of visitors take part in hundreds of events across the world. In the first seven years (2010 to 2016) over 3,700 events were registered worldwide and hosted by a variety of institutions including astronomy clubs, observatories, schools, and universities and held at a variety of public and private institutions all over the world including museums, planetaria, schools, universities, observatories, parks, and private businesses and homes. Evaluation of InOMN reveals that events are raising visitors’ awareness of lunar science and exploration, providing audiences with information about lunar science and exploration, and inspiring visitors to want to learn more about the Moon and providing connections to opportunities to do so.InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter, NASA's Solar System Exploration Research Virtual Institute (SSERVI), and the Lunar and Planetary Institute. Learn more and register to host an event at http://observethemoonnight.org/.

  5. Narrow-band filters for the lightning imager

    NASA Astrophysics Data System (ADS)

    Piegari, Angela; Di Sarcina, Ilaria; Grilli, Maria Luisa; Menchini, Francesca; Scaglione, Salvatore; Sytchkova, Anna; Zola, Danilo; Cuevas, Leticia P.

    2017-11-01

    The study of lightning phenomena will be carried out by a dedicated instrument, the lightning imager, that will make use of narrow-band transmission filters for separating the Oxygen emission lines in the clouds, from the background signal. The design, manufacturing and testing of these optical filters will be described here.

  6. Detection of secondary eclipses of WASP-10b and Qatar-1b in the Ks band and the correlation between Ks-band temperature and stellar activity.

    NASA Astrophysics Data System (ADS)

    Cruz, Patricia; Barrado, David; Lillo-Box, Jorge; Diaz, Marcos; López-Morales, Mercedes; Birkby, Jayne; Fortney, Jonathan J.; Hodgkin, Simon

    2017-10-01

    The Calar Alto Secondary Eclipse study was a program dedicated to observe secondary eclipses in the near-IR of two known close-orbiting exoplanets around K-dwarfs: WASP-10b and Qatar-1b. Such observations reveal hints on the orbital configuration of the system and on the thermal emission of the exoplanet, which allows the study of the brightness temperature of its atmosphere. The observations were performed at the Calar Alto Observatory (Spain). We used the OMEGA2000 instrument (Ks band) at the 3.5m telescope. The data was acquired with the telescope strongly defocused. The differential light curve was corrected from systematic effects using the Principal Component Analysis (PCA) technique. The final light curve was fitted using an occultation model to find the eclipse depth and a possible phase shift by performing a MCMC analysis. The observations have revealed a secondary eclipse of WASP-10b with depth of 0.137%, and a depth of 0.196% for Qatar-1b. The observed phase offset from expected mid-eclipse was of -0.0028 for WASP-10b, and of -0.0079 for Qatar-1b. These measured offsets led to a value for |ecosω| of 0.0044 for the WASP-10b system, leading to a derived eccentricity which was too small to be of any significance. For Qatar-1b, we have derived a |ecosω| of 0.0123, however, this last result needs to be confirmed with more data. The estimated Ks-band brightness temperatures are of 1647 K and 1885 K for WASP-10b and Qatar-1b, respectively. We also found an empirical correlation between the (R'HK) activity index of planet hosts and the Ks-band brightness temperature of exoplanets, considering a small number of systems.

  7. Narrow band imaging combined with water immersion technique in the diagnosis of celiac disease.

    PubMed

    Valitutti, Francesco; Oliva, Salvatore; Iorfida, Donatella; Aloi, Marina; Gatti, Silvia; Trovato, Chiara Maria; Montuori, Monica; Tiberti, Antonio; Cucchiara, Salvatore; Di Nardo, Giovanni

    2014-12-01

    The "multiple-biopsy" approach both in duodenum and bulb is the best strategy to confirm the diagnosis of celiac disease; however, this increases the invasiveness of the procedure itself and is time-consuming. To evaluate the diagnostic yield of a single biopsy guided by narrow-band imaging combined with water immersion technique in paediatric patients. Prospective assessment of the diagnostic accuracy of narrow-band imaging/water immersion technique-driven biopsy approach versus standard protocol in suspected celiac disease. The experimental approach correctly diagnosed 35/40 children with celiac disease, with an overall diagnostic sensitivity of 87.5% (95% CI: 77.3-97.7). An altered pattern of narrow-band imaging/water immersion technique endoscopic visualization was significantly associated with villous atrophy at guided biopsy (Spearman Rho 0.637, p<0.001). Concordance of narrow-band imaging/water immersion technique endoscopic assessments was high between two operators (K: 0.884). The experimental protocol was highly timesaving compared to the standard protocol. An altered narrow-band imaging/water immersion technique pattern coupled with high anti-transglutaminase antibodies could allow a single guided biopsy to diagnose celiac disease. When no altered mucosal pattern is visible even by narrow-band imaging/water immersion technique, multiple bulbar and duodenal biopsies should be obtained. Copyright © 2014. Published by Elsevier Ltd.

  8. Pre-Venus-Transit Dark Lunar Eclipse Reveals a Very Large Volcanic Eruption in 1761

    NASA Astrophysics Data System (ADS)

    Pang, Kevin

    2009-01-01

    Kepler's third law states Sun-planet distances in AU. International observations of the solar parallax during the 1761/1769 Venus transits gave us the first AU in miles. Benjamin Franklin promoted American participation in the project. While serving as Ambassador to France he observed that a "dry fog” from the 1783 Laki eruption in Iceland had obscured the Sun, and led to a cold summer and winter. Using Benjamin Franklin's method I analyzed photometric observations of the dark lunar eclipse made just before the 1761 Venus transit, ice core, tree ring, and Chinese weather data, and conclude that a very large previously unknown volcanic eruption in early 1761 had cooled the world climate. Observers worldwide found the 18 May 1761 totally eclipsed Moon very dark or invisible, e.g., Wargentin could not see the Moon for 38 minutes even with a 2-ft telescope (Phil. Trans. 52, 208, 1761-1762). Since the totally eclipsed Moon is illuminated only by sunlight refracted by the Earth's atmosphere, the obscuration must have been very severe. Ice cores from Greenland and Antarctica have large sulfuric acid contents in 1761-1762, precipitated from the global volcanic acid cloud (Zeilinski, J. Geophys. Res. 102, 26625, 1997). Frost-damaged rings in American bristlecone pines confirm that 1761 was very cold (LaMarche, Nature 307, 121, 1984). Contemporary Chinese chronicles report that heavy sustained snow fell from the Tropic of Cancer to the Yellow River. Wells and rivers froze, e.g., Taihu "Great Lake” and nearby Yangtze tributaries were not navigable. Innumerable trees, birds and livestock perished, etc. All observations are consistent with the above conclusion. Finally Benjamin Franklin's criteria for a climate-altering volcanic eruption are still universally used. Moreover his legacy continues to inspire climate researchers. See Pang, Eos 74, no. 43, 106, 1993; and as cited in "Earth in Balance,” Al Gore, p. 379, 1993.

  9. Enhanced tunable narrow-band THz emission from laser-modulated electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, D.; Stupakov, G.; /SLAC

    2009-06-19

    We propose and analyze a scheme to generate enhanced narrow-band terahertz (THz) radiation through down-conversion of the frequency of optical lasers using laser-modulated electron beams. In the scheme the electron beam is first energy modulated by two lasers with wave numbers k{sub 1} and k2, respectively. After passing through a dispersion section, the energy modulation is converted to density modulation. Due to the nonlinear conversion process, the beam will have density modulation at wave number k = nk{sub 1} + mk{sub 2}, where n and m are positive or negative integers. By properly choosing the parameters for the lasers andmore » dispersion section, one can generate density modulation at THz frequency in the beam using optical lasers. This density-modulated beam can be used to generate powerful narrow-band THz radiation. Since the THz radiation is in tight synchronization with the lasers, it should provide a high temporal resolution for the optical-pump THz-probe experiments. The central frequency of the THz radiation can be easily tuned by varying the wavelength of the two lasers and the energy chirp of the electron beam. The proposed scheme is in principle able to generate intense narrow-band THz radiation covering the whole THz range and offers a promising way towards the tunable intense narrow-band THz sources.« less

  10. Total solar eclipse of 3 November 1994

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1993-01-01

    A total eclipse of the Sun will be visible from the southern half of the Western Hemisphere on 3 November 1994. The path of the Moon's shadow passes through Peru, Chile, Bolivia, Paraguay, and Brazil. Detailed predictions for this event are presented and include tables of geographic coordinates of the path of totality, local circumstances for hundreds of cities, maps of the path of total and partial eclipse, weather prospects, and the lunar limb profile.

  11. HF Band Observations and Modeling of the 2017 Eclipse

    NASA Astrophysics Data System (ADS)

    Earle, G. D.; Kordella, L.; Han, X.; Moses, M. L.; Sweeney, D.; McGwier, R. W.; Lloyd, W.; Ruohoniemi, J. M.

    2017-12-01

    A nationwide network of observatories has been created to study the effects of the 2017 eclipse on the F-region of the ionosphere. These include the SuperDARN HF radars in Oregon and Kansas, software defined radios in Oregon, Kansas, and South Carolina, and scintillation receivers placed northward of the central eclipse line across the continent. In this talk we will present data obtained by these systems during the eclipse, and interpret these data using a ray-tracing numerical code in conjunction with the SAMI-3 first principles model. Comparisons to results from the CORS network of GPS-TEC receivers will be made, and the F-region density and altitude perturbations observed during the eclipse will be contrasted with ionosonde data from an eclipse that occurred over the United Kingdom in 1999.

  12. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... View Larger Image Within that narrow window during a solar eclipse where an observer on Earth can watch the Moon's shadow obscure ... of the imagery acquired during Terra orbit 20920. The panels cover an area of about 380 kilometers x 2909 kilometers and use data ...

  13. Total Eclipse of the Ballpark: Connecting Space and Sports

    NASA Astrophysics Data System (ADS)

    Wasser, Molly; Petro, Noah; Jones, Andrea; Bleacher, Lora; Keller, John; Wes Patterson, G.

    2018-01-01

    The anticipation and excitement surrounding the total solar eclipse of 2017 provided astronomy educators with an incredible platform to share space science with huge audiences. The Public Engagement Team for NASA’s Lunar Reconnaissance Orbiter (LRO) took advantage of this opportunity to share lunar science with the public by highlighting the often-overlooked central player in the eclipse – the Moon. As the sole planetary science representatives on NASA’s Science Mission Directorate eclipse leadership team, the LRO team had limited resources to conduct national public outreach. In order to increase our reach, we found success in partnerships.In early 2017, we began working with Minor League Baseball (MiLB) teams across the path of totality on August eclipse events. These partnerships proved fruitful for both parties. While MiLB is a national organization, each team is deeply rooted in its community. This proved essential as each of our four main MiLB partners handled event logistics, provided facilities, connected NASA Subject Matter Experts (SMEs) with local media, and drew in captive crowds. With this tactic, a handful of NASA representatives were able to reach nearly 30,000 people. In turn, LRO provided engaging educational content relevant to the context, SMEs to guide the eclipse viewing experience, eclipse glasses, and safety information. Our participation drew in an audience who would not typically attend baseball games while we were able to reach individuals who would not normally attend a science event. In addition, the eclipse inspired one team, the Salem-Keizer Volcanoes from Salem, OR, to make baseball history by holding the first ever eclipse delay in professional sports.In this talk, we will present on the benefits of the partnership, offer lessons learned, and suggest ways to get involved for the 2024 eclipse – and all the baseball seasons in between.

  14. High power narrow-band fiber-based ASE source.

    PubMed

    Schmidt, O; Rekas, M; Wirth, C; Rothhardt, J; Rhein, S; Kliner, A; Strecker, M; Schreiber, T; Limpert, J; Eberhardt, R; Tünnermann, A

    2011-02-28

    In this paper we describe a high power narrow-band amplified spontaneous emission (ASE) light source at 1030 nm center wavelength generated in an Yb-doped fiber-based experimental setup. By cutting a small region out of a broadband ASE spectrum using two fiber Bragg gratings a strongly constrained bandwidth of 12±2 pm (3.5±0.6 GHz) is formed. A two-stage high power fiber amplifier system is used to boost the output power up to 697 W with a measured beam quality of M2≤1.34. In an additional experiment we demonstrate a stimulated Brillouin scattering (SBS) suppression of at least 17 dB (theoretically predicted ~20 dB), which is only limited by the dynamic range of the measurement and not by the onset of SBS when using the described light source. The presented narrow-band ASE source could be of great interest for brightness scaling applications by beam combination, where SBS is known as a limiting factor.

  15. Narrow-band radio flares from red dwarf stars

    NASA Technical Reports Server (NTRS)

    White, Stephen M.; Kundu, Mukul R.; Jackson, Peter D.

    1986-01-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles.

  16. Hyper-spectral imager of the visible band for lunar observations

    NASA Astrophysics Data System (ADS)

    Lim, Y.-M.; Choi, Y.-J.; Jo, Y.-S.; Lim, T.-H.; Ham, J.; Min, K. W.; Choi, Y.-W.

    2013-06-01

    A prototype hyper-spectral imager in the visible spectral band was developed for the planned Korean lunar missions in the 2020s. The instrument is based on simple refractive optics that adopted a linear variable filter and an interline charge-coupled device. This prototype imager is capable of mapping the lunar surface at wavelengths ranging from 450 to 900 nm with a spectral resolution of ˜8 nm and selectable channels ranging from 5 to 252. The anticipated spatial resolution is 17.2 m from an altitude of 100 km with a swath width of 21 km

  17. Diluted magnetic semiconductors with narrow band gaps

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Maekawa, Sadamichi

    2016-10-01

    We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.

  18. Effect of narrow band nonuniformity on unsteady heat up of water vapor under radiation-conduction combined heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Tatsuyuki; Tanaka, Tomohiro; Morimune, Atsushi

    Effect of narrow band nonuniformity on unsteady heat up process of water vapor under radiation-conduction combined heat transfer is examined by comparing the result of numerical simulations with and without incorporation of narrow band nonuniformity. The authors propose a rational and comprehensive computational approach for incorporating the narrow band nonuniformity into numerical simulations of radiative heat transfer when the considered field is nonisothermal. Results of examination exhibited that the contribution of radiative heat transfer to the heat up rate of water vapor may be almost twice overestimated, if the narrow band nonuniformity effect is neglected. Separate analyses of radiative energymore » attributed to wall emission and gas emission clarified that the absorption of wall emission is overestimated and, on the contrary, the absorption of radiation energy emitted by water vapor itself is underestimated if the narrow band nonuniformity is neglected. The reason why such over- or under-estimation is induced is understood by examining the influence of line overlap parameter on the transmittance averaged within a narrow band. Smaller value of line overlap parameter {gamma}/d means more violent narrow band nonuniformity. The broken lines show the narrow band transmittance for flat incident power spectrum, and the solid lines show that for the radiative emission from the absorbing gas itself. It is also clarified that the disregard of the narrow band nonuniformity give rise to serious error in the estimation of absorption rate of wall and gas emission even in the case where the disregard of narrow band nonuniformity bring little change to the temperature distribution. The results illustrated in this paper suggest that the narrow band nonuniformity should not be neglected.« less

  19. Validation and Refinement of a Lunar Irradiance Model for Suomi NPP VIIRS Day-Night Band Quantitative Nighttime Applications

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Combs, C.; Wagner, S.; Viticchiè, B.; Walther, A.; Solbrig, J.

    2014-12-01

    The VIIRS Day-Night Band provides the first calibrated observations of nocturnal low-light visible/near-infrared (~500-900 nm response, 710 nm central wavelength) radiances, including reflected moonlight down to values of 3 × 10-5 W·m-2·sr-1. These novel measurements afford the first opportunity to attempt nighttime retrievals of optical depth for optically thick clouds when moonlight is available, thereby advancing our ability to observe the diurnal cycle of such structures as marine stratocumuli which are thought to play an important role in determining climate and climate feedbacks. In order to leverage the Day-Night Band measurements in this capacity, we must first convert the upwelling top-of-atmosphere radiances to equivalent values of reflectance. Doing so requires a detailed knowledge of the down-welling top-of-atmosphere lunar spectral irradiance which, unlike sunlight, varies significantly over the course of the ~29.5 day lunar cycle. This research summarizes the ongoing development, validation, and refinement of a lunar irradiance model designed to convert Day-Night Band radiances to equivalent lunar reflectance. Comparisons between daytime and nighttime Day-Night Band reflectance for vicarious calibration targets offering radiometric stability (e.g., White Sands, Salar de Uyuni, Dome-C, and snow fields) confirms the model's performance to within an expected ~10% uncertainty. An observed lunar-phase-dependent trend associated with the model's assumption of a disk-averaged albedo was addressed via analysis of a version of the model adapted for comparison against Meteosat Second Generation SEVIRI lunar measurements. The analysis resulted in a phase-dependent 6th order polynomial correction to the model and expected model uncertainty improvements to within ~5%. Examples of lunar reflectance imagery for operational applications and the provisional quantitative application of Day-Night Band lunar reflectance to nighttime cloud optical property retrievals

  20. Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films

    NASA Astrophysics Data System (ADS)

    Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi

    2017-07-01

    We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.

  1. Full Phase Multi-Band Study of Eclipsing Binaries 1SWASP J061850.43+220511.9 and 2MASSJ07095549+3643564

    NASA Astrophysics Data System (ADS)

    Terheide, Rachel; Zhang, Liyun; Han, Xianming; Lu, Hongpeng

    2018-01-01

    We present full-phase VRI-band light curves for eclipsing binary 1SWASP J061850.43+220511.9, and full-phase BVRI-band light curves for eclipsing binary 2MASS J07095549+3643564. The observations were conducted using the 0.94-m Holcomb Observatory telescope located on Butler University Campus in Indianapolis, Indiana, and the 0.6-m SARA telescope located at the Cerro Tololo Inter-American Observatory in Chile. We obtained key system parameters for both eclipsing binaries. For 1SWASP J061850.43+220511.9, the period is 0.21482 ±0.00053 days compared to 0.21439 days from an older study (Lohr et. al), the system mass ratio is found as 2.50 and the system is classified as EW type. Similarly, for 2MASS J07095549+3643564, we obtained a linear ephemeris and a physical model for the first time. We found its period to be 0.22297 ±0.00032 days, as compared to 0.446092 days and 0.11152 days from previous research (Drake et. al 2014, Hartman et. al 2011). 2MASS J07095549+3643564 is classified as a W Uma type eclipsing binary.

  2. Narrow band imaging versus autofluorescence imaging for head and neck squamous cell carcinoma detection: a prospective study.

    PubMed

    Ni, X-G; Zhang, Q-Q; Wang, G-Q

    2016-11-01

    This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.

  3. Annular Solar Eclipse of 10 May 1994

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1993-01-01

    An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.

  4. Narrow-band filters for ocean colour imager

    NASA Astrophysics Data System (ADS)

    Krol, Hélène; Chazallet, Frédéric; Archer, Julien; Kirchgessner, Laurent; Torricini, Didier; Grèzes-Besset, Catherine

    2017-11-01

    During the last few years, the evolution of deposition technologies of optical thin films coatings and associated in-situ monitoring methods enables us today to successfully answer the increasingly request of space systems for Earth observation. Geostationary satellite COMS-1 (Communication, Ocean, Meteorological Satellite-1) of Astrium has the role of ensuring meteorological observation as well as monitoring of the oceans. It is equipped with a colour imager to observe the marine ecosystem through 8 bands in the visible spectrum with a ground resolution of 500m. For that, this very high technology instrument is constituted with a filters wheel in front of the oceanic colour imager with 8 narrow band filters carried out and qualified by Cilas.

  5. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    This composite image of seven pictures shows the progression of a partial solar eclipse near from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. The second to the last frame shows the International Space Station, with a crew of six onboard, in silhouette as it transits the Sun at roughly five miles per second. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  6. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  7. Total Solar Eclipse of 1997 March 9

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1995-01-01

    A total eclipse of the Sun will be visible from Asia and the Pacific Ocean on 1997 March 9. The path of the Moon's umbral shadow begins in eastern Kazakhstan and travels through Mongolia and eastern Siberia, where it swings northward to end at sunset in the Arctic Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern Asia, the northern Pacific, and the northwest corner of North America. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 280 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.

  8. Solar Diameter Measurements from Eclipses as a Solar Variability Proxy

    NASA Astrophysics Data System (ADS)

    Waring Dunham, David; Sofia, Sabatino; Guhl, Konrad; Herald, David Russell

    2015-08-01

    Since thermal relaxation times for the Sun are thousands of years, small variations of the Solar intensity are proportional to small variations of the Solar diameter on decadal time scales. In a combination between observations and theory, reliable values of the relation constant W are known, that allow transformation of historical variations of radius into variations of the solar luminosity. During the past 45 years, members of the International Occultation Timing Association (IOTA) have observed 20 annular and total solar eclipses from locations near the path edges. Baily’s beads, whose occurrence and duration are considerably prolonged as seen from path edge locations, were first timed visually, mostly using projection techniques, but since about 1980, they have been timed mainly from analysis of video recordings. The edge locations have the advantage that most of the beads are defined by the same features in the lunar polar regions that cause the phenomena at each eclipse. Some of the best-observed modern eclipses can be used to assess the accuracy of the results, which are limited mainly by the intensity drop at the Sun’s edge, and the consequent uncertainty in defining the edge. In addition, direct visual contact timings made near the path edges during earlier eclipses, back to 1715, have been found in the literature, and analyzed. Although the observations seem to show small variations, they are only a little larger than the assessed accuracies. The results can be improved with a consistent re-analysis of the observations using the much more accurate lunar profile data that is now available from the Japanese Kaguya and NASA’s LRO lunar orbiter observations. Also, IOTA has plans to observe future eclipses with a variety of techniques that were used in the past, to better assess the accuracies of the different observational methods that have been used, and determine any systematic differences between them.

  9. Eclipse prediction on the ancient Greek astronomical calculating machine known as the Antikythera Mechanism.

    PubMed

    Freeth, Tony

    2014-01-01

    The ancient Greek astronomical calculating machine, known as the Antikythera Mechanism, predicted eclipses, based on the 223-lunar month Saros cycle. Eclipses are indicated on a four-turn spiral Saros Dial by glyphs, which describe type and time of eclipse and include alphabetical index letters, referring to solar eclipse inscriptions. These include Index Letter Groups, describing shared eclipse characteristics. The grouping and ordering of the index letters, the organization of the inscriptions and the eclipse times have previously been unsolved. A new reading and interpretation of data from the back plate of the Antikythera Mechanism, including the glyphs, the index letters and the eclipse inscriptions, has resulted in substantial changes to previously published work. Based on these new readings, two arithmetical models are presented here that explain the complete eclipse prediction scheme. The first model solves the glyph distribution, the grouping and anomalous ordering of the index letters and the structure of the inscriptions. It also implies the existence of lost lunar eclipse inscriptions. The second model closely matches the glyph times and explains the four-turn spiral of the Saros Dial. Together, these models imply a surprisingly early epoch for the Antikythera Mechanism. The ancient Greeks built a machine that can predict, for many years ahead, not only eclipses but also a remarkable array of their characteristics, such as directions of obscuration, magnitude, colour, angular diameter of the Moon, relationship with the Moon's node and eclipse time. It was not entirely accurate, but it was an astonishing achievement for its era.

  10. Eclipse Prediction on the Ancient Greek Astronomical Calculating Machine Known as the Antikythera Mechanism

    PubMed Central

    Freeth, Tony

    2014-01-01

    The ancient Greek astronomical calculating machine, known as the Antikythera Mechanism, predicted eclipses, based on the 223-lunar month Saros cycle. Eclipses are indicated on a four-turn spiral Saros Dial by glyphs, which describe type and time of eclipse and include alphabetical index letters, referring to solar eclipse inscriptions. These include Index Letter Groups, describing shared eclipse characteristics. The grouping and ordering of the index letters, the organization of the inscriptions and the eclipse times have previously been unsolved. A new reading and interpretation of data from the back plate of the Antikythera Mechanism, including the glyphs, the index letters and the eclipse inscriptions, has resulted in substantial changes to previously published work. Based on these new readings, two arithmetical models are presented here that explain the complete eclipse prediction scheme. The first model solves the glyph distribution, the grouping and anomalous ordering of the index letters and the structure of the inscriptions. It also implies the existence of lost lunar eclipse inscriptions. The second model closely matches the glyph times and explains the four-turn spiral of the Saros Dial. Together, these models imply a surprisingly early epoch for the Antikythera Mechanism. The ancient Greeks built a machine that can predict, for many years ahead, not only eclipses but also a remarkable array of their characteristics, such as directions of obscuration, magnitude, colour, angular diameter of the Moon, relationship with the Moon’s node and eclipse time. It was not entirely accurate, but it was an astonishing achievement for its era. PMID:25075747

  11. Acoustic Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Lin, C. Y. T.; Deng, Y.

    2017-12-01

    During the 2017 solar eclipse, as the sudden cavity of solar radiation created by the lunar shadow moves across the United States on August 21, 2017, decreases in local IT temperature and density are expected. The average velocity of the total solar eclipse across the United States is 700 m/s. The forefront and wake of the lunar shadow are expected to induce acoustic gravity waves according to previous studies of atmosphere waves induced by traveling wave packets moving at different velocities. Meanwhile, moving toward the cross-track direction of the obscuration footprint, weaker transitions will likely create mesoscale to large-scale traveling disturbances. We will use the Global Ionosphere Thermosphere Model, a global circulation model solving for non-hydrostatic equations, with high-resolution settings to investigate the IT responses related to the acoustic-gravity wave perturbations during the 2017 solar eclipse. The simulation will be performed with a sub-degree resolution in longitude and latitude for 3 hours when the atmosphere of the North America sector is mostly obscured. The observable differences between the eclipsed and non-eclipsed scenarios will be examined in detail and be interpreted as consequences from the solar eclipse. We will investigate the evolution of waves during the event and establish a theoretical baseline for further comparisons with observations.

  12. Epsilon Aurigae Eclipse 2009 - Ingress

    NASA Astrophysics Data System (ADS)

    Hopkins, Jeffrey L.; Stencel, Robert E.; Leadbeater, Robin; Beckmann, Paul J.; Buil, Christian; Collins, Donald; Colombo, Tiziano; Garrel, Thierry; Gorodenski, Stanley; Gudmundsson, Snaevarr; Karlsson, Mukund Kurtadikar; Lindberg, Hans-Goran; Loughney, Des; Mauclaire, Benji; McCandless, Brian E.; Melillo, Frank J.; Miles, Richard; Pearson, Robert T.; Samolyk, Gerard; Schanne, Lothar; Strikis, Iakovos Marios; Teyssier, François; Thizy, Olivier

    The mysterious star system epsilon Aurigae undergoes an eclipse every 27.1 years that lasts nearly two years. The most recent eclipse started during the late summer of 2009. An international campaign for observing this eclipse was created in 2006, with a web site for information and, to-date, 17 periodic newsletters for details, as well as a Yahoo forum List for immediate announcements and comments. Photometric data in the UBVRIJH bands have been submitted. Ingress occurred with first contact in the V band estimated at the second week of 2009 August and second contact estimated at 2010 mid-January. Spectroscopic data were also obtained during ingress. Spectroscopic data have been provided in the potassium I region, hydrogen alpha and beta regions and sodium D line region of the star system's spectrum. In this paper we describe details of observations and preliminary analysis during ingress and second contact. We introduce the observers and discuss plans for observing throughout totality and the end of the eclipse in 2011.

  13. Past as Prediction: Newcomb, Huxley, The Eclipse of Thales, and The Power of Science

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2009-12-01

    The ancient eclipse of Thales was an important, if peculiar, focus of scientific attention in the 19th century. Victorian-era astronomers first used it as data with which to calibrate their lunar theories, but its status became strangely malleable as the century progressed. The American astronomer Simon Newcomb re-examined the eclipse and rejected it as the basis for lunar theory. But strangely, it was the unprecedented accuracy of Newcomb's calculations that led the British biologist T.H. Huxley to declare the eclipse to be the quintessential example of the power of science. Huxley argued that astronomy's ability to create "retrospective prophecy” showed how scientific reasoning was superior to religion (and incidentally, helped support Darwin's theories). Both Newcomb and Huxley declared that prediction (of past and future) was what gave science its persuasive power. The eclipse of Thales's strange journey through Victorian astronomy reveals how these two influential scientists made the case for the social and cultural authority of science.

  14. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    PubMed

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  15. Total solar eclipse of 1995 October 24

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1994-01-01

    A total eclipse of the sun will be visible from Asia and the Pacific Ocean on 24 Oct. 1995. The path of the moon's shadow begins in the Middle East and sweeps across India, Southeast Asia, and the waters of the Indonesian archipelago before ending at sunset in the Pacific. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality.

  16. Remote Observations of the Lunar Sodium Exosphere

    NASA Astrophysics Data System (ADS)

    Morgan, T. H.; Killen, R. M.; Potter, A. E.

    2015-12-01

    We have designed, built and installed a small robotic coronagraph at the Winer Observatory in Sonoita, Arizona, in order to observe the sodium exosphere out to one-half degree around the Moon. We have observed every available clear night from our home base at Goddard Space Flight Center for several lunations in 2015, and thus have a long baseline of sodium exospheric calibrated images. We employ an Andover temperature-controlled 1.5 Å wide narrow-band filter centered on the sodium D2 line, and a similar 1.5 Å filter centered blueward of the D2 line by 5 Å. This filter would yield a sodium signal at least 24% of the scattered lunar light at first quarter. Exposures of 10 minutes are required to image the sodium corona at good signal to noise. Following each exposure pair, taking a 0.1 sec exposure with the open filter collects on- and off-band images of the lunar surface. An example of our resulting image of the sodium corona is shown in Figure 1, with the image of the moon's disk (taken subsequently to the occulted coronal image) superimposed on the occulting disk, thus showing the position and phase of the moon under the disk. We will compare our lunar model derived from these observations with the data from the UV spectrograph onboard the LADEE spacecraft. Figure 1. An image of the lunar sodium corona obtained on March 26, 2015 is shown with the lunar surface superimposed on the coronagraphic image. Using various sized occulting disks, depending on lunar phase, we observe the corona very close to the lunar surface with no scattered light.

  17. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites

    PubMed Central

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang

    2016-01-01

    The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014

  18. Spitzer secondary eclipses of Qatar-1b

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.

    2018-02-01

    Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55

  19. The Moon's Moment in the Sun - Extending Public Engagement after the Total Solar Eclipse with International Observe the Moon Night

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.

    2017-12-01

    2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on

  20. A New Scientific use of Total Eclipses of the Moon: Studies of the Generation and Loss of Atmospheres of Primitives Bodies

    NASA Technical Reports Server (NTRS)

    Mendillo, Michael

    1999-01-01

    This grant supported observational campaigns to record the size and brightness of the lunar atmosphere as seen in sodium gas (Na) emissions during the totality phase of lunar eclipses. Three eclipse events were attempted, two from the Mc Donald Observatory in Fort Davis Texas, and one from the site of Italy's Galileo National Telescope (GNT) in La Palma, in the Canary Islands. In all three cases, clear skies prevailed and excellent datasets were obtained. Following the observational component of the grant, a period of detailed processing and analysis began. Eclipse events were chosen for study because when the moon is in full phase it has been within the terrestrial magnetosphere for a few days, thereby shielded from solar wind impact upon its surface. Since sputtering of Na from the lunar regolith by solar wind particles had been proposed as a source of the Moon's atmosphere, this was a test of the mechanism. If the lunar Na appeared to be diminished in comparison to abundances seen at other phases (e.g., at quarter phase when the moon is directly in the solar wind), the solar wind sputtering would indeed be a major source of lunar Na. These experiments could not be conducted during any full moon night because scattering of bright moonlight is so strong that low-light-level imaging of the lunar atmosphere could not be achieved. Hence, the use of eclipses. The final result of these experiments was, for once, clear and unambiguous. The robust size and Na brightness levels measured during all of the eclipses showed that solar wind sputtering could not be a major source of the lunar atmosphere. A major paper on this conclusion was published in ICARUS, and an oral presentation of partial results given at the The Three Galileos conference in Padova (Italy) in January 1997 and at the DPS meeting in Cambridge, MA, in July 1997.

  1. The diagnostic value of narrow-band imaging for early and invasive lung cancer: a meta-analysis.

    PubMed

    Zhu, Juanjuan; Li, Wei; Zhou, Jihong; Chen, Yuqing; Zhao, Chenling; Zhang, Ting; Peng, Wenjia; Wang, Xiaojing

    2017-07-01

    This study aimed to compare the ability of narrow-band imaging to detect early and invasive lung cancer with that of conventional pathological analysis and white-light bronchoscopy. We searched the PubMed, EMBASE, Sinomed, and China National Knowledge Infrastructure databases for relevant studies. Meta-disc software was used to perform data analysis, meta-regression analysis, sensitivity analysis, and heterogeneity testing, and STATA software was used to determine if publication bias was present, as well as to calculate the relative risks for the sensitivity and specificity of narrow-band imaging vs those of white-light bronchoscopy for the detection of early and invasive lung cancer. A random-effects model was used to assess the diagnostic efficacy of the above modalities in cases in which a high degree of between-study heterogeneity was noted with respect to their diagnostic efficacies. The database search identified six studies including 578 patients. The pooled sensitivity and specificity of narrow-band imaging were 86% (95% confidence interval: 83-88%) and 81% (95% confidence interval: 77-84%), respectively, and the pooled sensitivity and specificity of white-light bronchoscopy were 70% (95% confidence interval: 66-74%) and 66% (95% confidence interval: 62-70%), respectively. The pooled relative risks for the sensitivity and specificity of narrow-band imaging vs the sensitivity and specificity of white-light bronchoscopy for the detection of early and invasive lung cancer were 1.33 (95% confidence interval: 1.07-1.67) and 1.09 (95% confidence interval: 0.84-1.42), respectively, and sensitivity analysis showed that narrow-band imaging exhibited good diagnostic efficacy with respect to detecting early and invasive lung cancer and that the results of the study were stable. Narrow-band imaging was superior to white light bronchoscopy with respect to detecting early and invasive lung cancer; however, the specificities of the two modalities did not differ

  2. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination. © 2012 American Academy of Forensic Sciences.

  3. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  4. Adaptive sparsest narrow-band decomposition method and its applications to rolling element bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Junsheng; Peng, Yanfeng; Yang, Yu; Wu, Zhantao

    2017-02-01

    Enlightened by ASTFA method, adaptive sparsest narrow-band decomposition (ASNBD) method is proposed in this paper. In ASNBD method, an optimized filter must be established at first. The parameters of the filter are determined by solving a nonlinear optimization problem. A regulated differential operator is used as the objective function so that each component is constrained to be a local narrow-band signal. Afterwards, the signal is filtered by the optimized filter to generate an intrinsic narrow-band component (INBC). ASNBD is proposed aiming at solving the problems existed in ASTFA. Gauss-Newton type method, which is applied to solve the optimization problem in ASTFA, is irreplaceable and very sensitive to initial values. However, more appropriate optimization method such as genetic algorithm (GA) can be utilized to solve the optimization problem in ASNBD. Meanwhile, compared with ASTFA, the decomposition results generated by ASNBD have better physical meaning by constraining the components to be local narrow-band signals. Comparisons are made between ASNBD, ASTFA and EMD by analyzing simulation and experimental signals. The results indicate that ASNBD method is superior to the other two methods in generating more accurate components from noise signal, restraining the boundary effect, possessing better orthogonality and diagnosing rolling element bearing fault.

  5. Numerical simulation of evaluation of surface breaking cracks by array-lasers generated narrow-band SAW

    NASA Astrophysics Data System (ADS)

    Dong, Li-Ming; Ni, Chen-Yin; Shen, Zhong-Hua; Ni, Xiao-Wu

    2011-09-01

    Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.

  6. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; hide

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  7. The role of intraoperative narrow-band imaging in transoral laser microsurgery for early and moderately advanced glottic cancer.

    PubMed

    Klimza, Hanna; Jackowska, Joanna; Piazza, Cesare; Banaszewski, Jacek; Wierzbicka, Malgorzata

    2018-03-01

    Trans-oral laser microsurgery is an established technique for the treatment of early and moderately advanced laryngeal cancer. The authors intend to test the usefulness of narrow-band imaging in the intraoperative assessment of the larynx mucosa in terms of specifying surgical margins. Forty-four consecutive T1-T2 glottic cancers treated with trans-oral laser microsurgery Type I-VI cordectomy were presented. Suspected areas (90 samples/44 patients) were biopsied under the guidance of narrow-band imaging and white light and sent for frozen section. Our study revealed that 75 of 90 (83.3%) white light and narrow-band imaging-guided samples were histopathologically positive: 30 (40%) were confirmed as carcinoma in situ or invasive carcinoma and 45 (60%) as moderate to severe dysplasia. In 6 patients mucosa was suspected only in narrow-band imaging, with no suspicion under white light. Thus, in these 6 patients 18/90 (20%) samples were taken. In 5/6 patients 16/18 (88.8%) samples were positive in frozen section: in 6/18 (33.3%) carcinoma (2 patients), 10/18 (66.6%) severe dysplasia was confirmed (3 patients). In 1 patient 2/18 (11.1%) samples were negative in frozen section. Presented analysis showed, that sensitivity, specificity and accuracy of white light was 79.5%, 20% and 71.1% respectively, while narrow-band imaging was 100%, 0.0% and 85.7%, respectively. The intraoperative use of narrow-band imaging proved to be valuable in the visualization of suspect areas of the mucosa. Narrow-band imaging confirms the suspicions undertaken in white light and importantly, it showed microlesions beyond the scope of white light. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  8. The Gaugamela Battle Eclipse: An Archaeoastronomical Analysis

    NASA Astrophysics Data System (ADS)

    Polcaro, V. F.; Valsecchi, G. B.; Verderame, L.

    A total lunar eclipse occurred during the night preceding the decisive Battle of Gaugamela (20th September 331 BCE), when the Macedonian army, led by Alexander the Great, finally defeated the Persian king Darius and his army. This astronomical event, well known to historians, had a relevant role on the battle outcome. The eclipse was described in detail by Babylonian astronomers, though, unfortunately, the text of their report has only partially been preserved. We have reconstructed the evolution of the phenomenon as it appeared to the observer in Babylonia, by using the positional astronomy code "Planetario V2.0". On the base of this reconstruction we suggest a number of integrations to the lost part of the text, allowing a finer astrological interpretation of the eclipse and of its influence on the mood of the armies that set against each other on the following morning.

  9. 2017 Total Solar Eclipse - ISS Transit

    NASA Image and Video Library

    2017-08-21

    The International Space Station, with a crew of six onboard, is seen in silhouette as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  10. Distance Estimation for Eclipsing X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Paul, B.; Raichur, H.

    2006-06-01

    Recent interest in eclipsing binaries as distance indicators leads naturally into direct distance estimation for X-ray pulsars by combination of pulse arrival times, radial velocities, X-ray eclipse duration, and spectra. Optical light curves may help in some cases by measuring tides and irradiation, although dynamical tides in eccentric systems limit light curve usefulness. Pulse arrivals give an absolute scale and also orbit shape and orientation, which may be poorly known from radial velocities. For example, orbital eccentricity of 0.09 is known from Vela X1 pulse arrivals, although optical velocities are too noisy to measure eccentricity accurately. Combined pulse and optical velocity data give mass information. A lower limit to sin i from eclipse duration sets a lower limit to R2, and for the general eccentric case. A mass ratio sets lobe size and thus an upper limit to R2, so boxing R2 within a narrow range may be possible. T2 can be assessed from spectra so EB distance estimation can work if magnitude is known in one or more standard bands such as B or V. Realistic distance uncertainties are explored. In regard to new observations, Vela X-1 was observed by RXTE over about nine days in January 2005, including an eclipse of about 3.5 days. We extracted the light curves with time resolution 0.125 s. Spin period measurements by the Chi square criterion show Doppler variation with orbital phase and mean spin period 283.5 s. Pulse profiles of that period were averaged in sets of 10 at 138 phases. Cross correlation for the first 40 pulses show the expected Doppler arrival time variation. As the Vela X-1 pulse period is large compared to light travel time across the orbit, the pulses are already phase connected. Support is by U.S. National Science Foundation grant 0307561.

  11. Infrasonic Effect of Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Pushin, V. F.; Chernogor, L. F.

    2013-06-01

    The relevance of this study is due to the need to understand, physical effects associated with rare phenomenon, solar eclipse. Until recently, the features of internal gravity wave generation, have been studied in the 10 -100 min period range, while in this, study an attempt is made to confirm the fact of generation, and estimate the general parameters of infrasound oscillations, associated with solar eclipses in the 1-10 min period range. The observations were made with the HF Doppler radar at vertical, incidence. The data were subjected to spectral analysis and, band-pass filtering. The solar eclipses that had occurred over, Kharkiv city (Ukraine) within 1999-2011 are determined to be, associated with Doppler shift of frequency oscillations in the, infrasound frequency band ( 5-8 min period range) and with, amplitude of 20 -100 mHz. The corresponding amplitude, of electron density oscillations was approximately equal to, 0.1- 0.5 %.

  12. Lunar Ice Cube: Searching for Lunar Volatiles with a lunar cubesat orbiter

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Malphrus, Ben; Brown, Kevin; Hurford, Terry; Brambora, Cliff; MacDowall, Robert; Folta, David; Tsay, Michael; Brandon, Carl; Lunar Ice Cube Team

    2016-10-01

    Lunar Ice Cube, a NASA HEOMD NextSTEP science requirements-driven deep space exploration 6U cubesat, will be deployed, with 12 others, by NASA's EM1 mission. The mission's high priority science application is understanding volatile origin, distribution, and ongoing processes in the inner solar system. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, also lunar orbiters to be deployed by EM1, will provide complementary observations. Lunar Ice Cube utilizes a versatile GSFC-developed payload: BIRCHES, Broadband InfraRed Compact, High-resolution Exploration Spectrometer, a miniaturized version of OVIRS on OSIRIS-REx. BIRCHES is a compact (1.5U, 2 kg, 20 W including cryocooler) point spectrometer with a compact cryocooled HgCdTe focal plane array for broadband (1 to 4 micron) measurements and Linear Variable Filter enabling 10 nm spectral resolution. The instrument will achieve sufficient SNR to identify water in various forms, mineral bands, and potentially other volatiles seen by LCROSS (e.g., CH4) as well. GSFC is developing compact instrument electronics easily configurable for H1RG family of focal plane arrays. The Lunar Ice Cube team is led by Morehead State University, who will provide build, integrate and test the spacecraft and provide mission operations. Onboard communication will be provided by the X-band JPL Iris Radio and dual X-band patch antennas. Ground communication will be provided by the DSN X-band network, particularly the Morehead State University 21-meter substation. Flight Dynamics support is provided by GSFC. The Busek micropropulsion system in a low energy trajectory will allow the spacecraft to achieve the science orbit less than a year. The high inclination, equatorial periapsis orbit will allow coverage of overlapping swaths once every lunar cycle at up to six different times of day (from dawn to dusk) as the mission progresses during its nominal six month science mapping period. Led by the JPL Science PI, the Lunar Ice Cube

  13. Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission

    NASA Astrophysics Data System (ADS)

    Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.

    2017-08-01

    Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.

  14. Solar eclipses.

    NASA Astrophysics Data System (ADS)

    Livingston, W.

    The occasion of a total eclipse impacts the human observer with a bewildering rapid sequence of phenomena: mid-day cooling, failing light without accustomed color change, shadow-bands transiting the ground, cessation of bird sounds, possible frantic beating of jungle drums, Baily's beads, appearance of flame-like prominences, and most fantastic of all the solar corona. The author considers that although the corona is known to be 2 - 20(106)K, there is a lack of consensus on the heating mechanism, except the energy must be non-thermal and derived from surface and sub-surface convective motions. Theoreticians invoke the Joule dissipation of magnetic fields by Alfvén waves, electric currents in loop structures, or MHD turbulence. Although eclipse experiments to discriminate between these ideas generally fail, the sighting of 'plasmoids' was reported from the CFHT on Mauna Kea at the 1991 eclipse. Future experiments include: IR mapping of the coronal spectrum, spectroscopic velocity measurements, and the continued search for waves, nanoflares, and plasmoids.

  15. Wide applicability of high-Tc pairing originating from coexisting wide and incipient narrow bands in quasi-one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko

    2018-01-01

    We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.

  16. Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only

  17. Narrow-band erbium-doped fibre linear–ring laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolegov, A A; Sofienko, G S; Minashina, L A

    2014-01-31

    We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)

  18. Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Lang, K. R.; Willson, R. F.

    1986-01-01

    Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.

  19. Monte Carlo modeling of light-tissue interactions in narrow band imaging.

    PubMed

    Le, Du V N; Wang, Quanzeng; Ramella-Roman, Jessica C; Pfefer, T Joshua

    2013-01-01

    Light-tissue interactions that influence vascular contrast enhancement in narrow band imaging (NBI) have not been the subject of extensive theoretical study. In order to elucidate relevant mechanisms in a systematic and quantitative manner we have developed and validated a Monte Carlo model of NBI and used it to study the effect of device and tissue parameters, specifically, imaging wavelength (415 versus 540 nm) and vessel diameter and depth. Simulations provided quantitative predictions of contrast-including up to 125% improvement in small, superficial vessel contrast for 415 over 540 nm. Our findings indicated that absorption rather than scattering-the mechanism often cited in prior studies-was the dominant factor behind spectral variations in vessel depth-selectivity. Narrow-band images of a tissue-simulating phantom showed good agreement in terms of trends and quantitative values. Numerical modeling represents a powerful tool for elucidating the factors that affect the performance of spectral imaging approaches such as NBI.

  20. 2017 Total Solar Eclipse - ISS Transit

    NASA Image and Video Library

    2017-08-21

    This composite image, made from seven frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  1. 2017 Total Solar Eclipse - ISS Transit

    NASA Image and Video Library

    2017-08-21

    The International Space Station, with a crew of six onboard, is seen in silhouette as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 from Ross Lake, Northern Cascades National Park, Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  2. 2017 Total Solar Eclipse - ISS Transit

    NASA Image and Video Library

    2017-08-21

    This composite image, made from 4 frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 from , Northern Cascades National Park in Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  3. Spirit Movie of Phobos Eclipse, Sol 675

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Spirit Phobos Eclipse Animation

    NASA's Mars Exploration Rover Spirit observed the Martian moon Phobos entering the shadow of Mars during the night of the rover's 675th sol (Nov. 27, 2005). The panoramic camera captured 16 images, spaced 10 seconds apart, covering the period from when Phobos was in full sunlight to when it was entirely in shadow. As with our own Moon during lunar eclipses on Earth, even when in the planet's shadow, Phobos was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region.

    This clip is a sequence of the 16 images showing the eclipse at about 10 times normal speed. It shows the movement of Phobos from left to right as the moon enters the shadow. Scientists are using information about the precise timing of Martian moon eclipses gained from observations such as these to refine calculations about the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface.

  4. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  5. Analysis of the Electronic Crosstalk Effect in Terra MODIS Long-Wave Infrared Photovoltaic Bands Using Lunar Images

    NASA Technical Reports Server (NTRS)

    Wilson, Truman; Wu, Aisheng; Wang, Zhipeng; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among the suite of remote sensing instruments on board the Earth Observing System Terra and Aqua spacecrafts. For each MODIS spectral band, the sensor degradation has been measured using a set of on-board calibrators. MODIS also uses lunar observations from nearly monthly spacecraft maneuvers, which bring the Moon into view through the space-view port, helping to characterize the scan mirror degradation at a different angles of incidence. Throughout the Terra mission, contamination of the long-wave infrared photovoltaic band (LWIR PV, bands 27-30) signals has been observed in the form of electronic crosstalk, where signal from each of the detectors among the LWIR PV bands can leak to the other detectors, producing a false signal contribution. This contamination has had a noticeable effect on the MODIS science products since 2010 for band 27, and since 2012 for bands 28 and 29. Images of the Moon have been used effectively for determining the contaminating bands, and have also been used to derive correction coefficients for the crosstalk contamination. In this paper, we introduce an updated technique for characterizing the crosstalk contamination among the LWIR PV bands using data from lunar calibration events. This approach takes into account both the in-band and out-of-band contribution to the signal contamination for each detector in bands 27-30, which is not considered in previous works. The crosstalk coefficients can be derived for each lunar calibration event, providing the time dependence of the crosstalk contamination. Application of these coefficients to Earth-view image data results in a significant reduction in image contamination and a correction of the scene radiance for bands 27- 30. Also, this correction shows a significant improvement to certain threshold tests in the MODIS Level-2 Cloud Mask. In this paper, we will detail the methodology used to identify and correct

  6. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  7. An adaptive narrow band frequency modulation voice communication system

    NASA Technical Reports Server (NTRS)

    Wishna, S.

    1972-01-01

    A narrow band frequency modulation communication system is described which provides for the reception of good quality voice at low carrier-to-noise ratios. The high level of performance is obtained by designing a limiter and phase lock loop combination as a demodulator, so that the bandwidth of the phase lock loop decreases as the carrier level decreases. The system was built for the position location and aircraft communication equipment experiment of the ATS 6 program.

  8. Photometric Type Ia supernova surveys in narrow-band filters

    NASA Astrophysics Data System (ADS)

    Xavier, Henrique S.; Abramo, L. Raul; Sako, Masao; Benítez, Narciso; Calvão, Maurício O.; Ederoclite, Alessandro; Marín-Franch, Antonio; Molino, Alberto; Reis, Ribamar R. R.; Siffert, Beatriz B.; Sodré, Laerte.

    2014-11-01

    We study the characteristics of a narrow-band Type Ia supernova (SN) survey through simulations based on the upcoming Javalambre Physics of the accelerating Universe Astrophysical Survey. This unique survey has the capabilities of obtaining distances, redshifts and the SN type from a single experiment thereby circumventing the challenges faced by the resource-intensive spectroscopic follow-up observations. We analyse the flux measurements signal-to-noise ratio and bias, the SN typing performance, the ability to recover light-curve parameters given by the SALT2 model, the photometric redshift precision from Type Ia SN light curves and the effects of systematic errors on the data. We show that such a survey is not only feasible but may yield large Type Ia SN samples (up to 250 SNe at z < 0.5 per month of search) with low core-collapse contamination (˜1.5 per cent), good precision on the SALT2 parameters (average σ _{m_B}=0.063, σ _{x_1}=0.47 and σc = 0.040) and on the distance modulus (average σμ = 0.16, assuming an intrinsic scatter σint = 0.14), with identified systematic uncertainties σsys ≲ 0.10σstat. Moreover, the filters are narrow enough to detect most spectral features and obtain excellent photometric redshift precision of σz = 0.005, apart from ˜2 per cent of outliers. We also present a few strategies for optimizing the survey's outcome. Together with the detailed host galaxy information, narrow-band surveys can be very valuable for the study of SN rates, spectral feature relations, intrinsic colour variations and correlations between SN and host galaxy properties, all of which are important information for SN cosmological applications.

  9. Image is NASA Armstrong Flight Research Center’s mission support building with a composite of 16 images of the eclipsed moons overhead during Jan. 31 Super Blue Blood Moon.

    NASA Image and Video Library

    2018-01-31

    California’s NASA Armstrong Flight Research Center photographer Ken Ulbrich takes photos of Super Blue Blood Moon eclipse making a time-lapse composition of the event on January 31. The total lunar eclipse provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).

  10. Determination of variations of the solar radius from solar eclipse observations

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Dunham, D. W.; Fiala, A. D.

    1980-01-01

    This paper describes the method to determine the solar radius and its variations from observations made during total solar eclipses. In particular, the procedure to correct the spherical moon predictions for the effects of lunar mountains and valleys on the width and location of the path of totality is addressed in detail. The errors affecting this technique are addressed, a summary of the results of its application to three solar eclipses are presented, and the implications of the results on the constancy of the solar constant are described.

  11. Duodenal villous morphology assessed using magnification narrow band imaging correlates well with histology in patients with suspected malabsorption syndrome.

    PubMed

    Dutta, Amit Kumar; Sajith, Kattiparambil Gangadharan; Shah, Gautam; Pulimood, Anna Benjamin; Simon, Ebby George; Joseph, Anjilivelil Joseph; Chacko, Ashok

    2014-11-01

    Narrow band imaging with magnification enables detailed assessment of duodenal villi and may be useful in predicting the presence of villous atrophy or normal villi. We aimed to assess the morphology of duodenal villi using magnification narrow band imaging and correlate it with histology findings in patients with clinically suspected malabsorption syndrome. Patients with clinical suspicion of malabsorption presenting at a tertiary care center were prospectively recruited in this diagnostic intervention study. Patients underwent upper gastrointestinal endoscopy using magnification narrow band imaging. The villous morphology in the second part of the duodenum was assessed independently by two endoscopists and the presence of normal or atrophic villi was recorded. Biopsy specimen was obtained from the same area and was examined by two pathologists together. The sensitivity and specificity of magnification narrow band imaging in detecting the presence of duodenal villous atrophy was calculated and compared to the histology. One hundred patients with clinically suspected malabsorption were included in this study. Sixteen patients had histologically confirmed villous atrophy. The sensitivity and specificity of narrow band imaging in predicting villous atrophy was 87.5% and 95.2%, respectively, for one endoscopist. The corresponding figures for the second endoscopist were 81.3% and 92.9%, respectively. The interobserver agreement was very good with a kappa value of 0.87. Magnification narrow band imaging performed very well in predicting duodenal villous morphology. This may help in carrying out targeted biopsies and avoiding unnecessary biopsies in patients with suspected malabsorption. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.

  12. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  13. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  14. SDO Sees Spring Eclipse April, 3

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 3, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  15. SDO Sees Spring Eclipse, April 2

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 2, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  16. SDO Sees Spring Eclipse, April 1

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 1, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  17. New Zealand Astronomy and the 9 September 1885 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Rowe, Glen

    The second half of the nineteenth century saw a blossoming of interest in solar eclipses as astronomers tried to establish whether the corona was a solar, lunar or terrestrial phenomenon, and as they investigated the nature of the corona, the chromosphere and prominences. Critical in these investigations were astronomy's newest allies: photography and spectroscopy. Photography was used with great effectiveness throughout the half century, but spectroscopy was first applied during the `Indian eclipse' of 1868. Thereafter, almost every total solar eclipse was subjected to scrutiny, the intensity of which depended upon the duration of the eclipse and the location of its path of totality. The first total solar eclipse visible from New Zealand following European settlement occurred on 9 September 1885, and attracted the attention of professional scientists and amateur astronomers. The centre of the path of totality extended from West Wanganui Inlet on the far northern reaches of the west coast of the South Island to Castle Point on the Wairarapa Coast, and a total eclipse was visible from population centres like Collingwood, Nelson, Picton, Wellington, Otaki, Palmerston North, Wanganui and throughout the Wairarapa. In this chapter we examine this eclipse, in the context of New Zealand astronomy and the international development of solar physics.

  18. Therapeutic efficacy of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome.

    PubMed

    Kajiwara, Mitsuru; Inoue, Shougo; Kobayashi, Kanao; Ohara, Shinya; Teishima, Jun; Matsubara, Akio

    2014-04-01

    Narrow band imaging cystoscopy can increase the visualization and detection of Hunner's lesions. A single-center, prospective clinical trial was carried out aiming to show the effectiveness of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. A total of 23 patients (19 women and 4 men) diagnosed as having ulcer-type interstitial cystitis/painful bladder syndrome were included. All typical Hunner's lesions and suspected areas identified by narrow band imaging were electrocoagulated endoscopically after the biopsy of those lesions. Therapeutic efficacy was assessed prospectively by using visual analog scale score of pain, O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score. The mean follow-up period was 22 months. All patients (100%) experienced a substantial improvement in pain. The average visual analog scale pain scores significantly decreased from 7.3 preoperatively to 1.2 1 month postoperatively. A total of 21 patients (91.3%) who reported improvement had at least a 50% reduction in bladder pain, and five reported complete resolution. Daytime frequency was significantly decreased postoperatively. O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score were significantly decreased postoperatively. However, during the follow-up period, a total of six patients had recurrence, and repeat narrow band imaging-assisted transurethral electrocoagulation of the recurrent lesions was carried out for five of the six patients, with good response in relieving bladder pain. Our results showed that narrow band imaging-assisted transurethral electrocoagulation could be a valuable therapeutic alternative in patients with ulcer-type interstitial cystitis/painful bladder syndrome, with good efficacy and reduction of recurrence rate. © 2014 The Japanese Urological Association.

  19. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.

  20. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-06-01

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.

  1. 2017 Total Solar Eclipse - ISS Transit - (NHQ201708210203)

    NASA Image and Video Library

    2017-08-21

    2017 Total Solar Eclipse - ISS Transit - (NHQ201708210203) In this video captured at 1,500 frames per second with a high-speed camera, the International Space Station, with a crew of six onboard, is seen in silhouette as it transits the sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  2. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters

    NASA Astrophysics Data System (ADS)

    Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-01

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  3. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters.

    PubMed

    Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim

    2006-05-29

    The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.

  4. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  5. CONSTRUCTION OF A SMALL AUTOMATED CORONAGRAPH FOR OBSERVATIONS OF THE LUNAR Na EXOSPHERE

    NASA Astrophysics Data System (ADS)

    Tucker, Roy; Morgan, T. H.; Killen, R. M.

    2013-10-01

    We report on the final optical and mechanical design and the construction and initial testing of a small coronagraph at the Winer Observatory, near Sonoita, Arizona. The coronagraph includes a narrow band filter and low-light level camera to observe lunar exospheric sodium in the resonance lines of that element near 590 nm. Without the use of a coronagraph, the signal from sodium would be lost against light scattered by the Earth’s atmosphere and scattered light in the telescope. The design uses Commercial Off the Shelf Technology (COTS), and our goal is to obtain observations while the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is still in orbit.

  6. Engage All Americans with Eclipse 2017 Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Ng, C.; Young, C. A.; Mayo, L.; Cline, T. D.; Stephenson, B. E.; Debebe, A.; Lewis, E. M.; Odenwald, S. F.; Hill, S. W.

    2016-12-01

    Join NASA and millions in the U.S. and around the world in observing the August 21, 2017 solar eclipse. This presentation will discuss NASA's education and communication plans for the 2017 eclipse, highlighting some programs, resources, and citizen science activities that will engage and educate many across the country and beyond. NASA will offer unique observations of this celestial event from the ground to space. Additionally, there are do-it-yourself (DIY) science, lunar and math challenges, art contests, Makerspace ideas, and various activities for learners of all ages. Education resources and tool kits may be of particular interest to formal and informal educators. Find out what events are happening in your neighborhood, and plan your own eclipse parties with resources and activities. Last but not the least, experience the eclipse on August 21 and learn more through NASA broadcast programming that will include telescopic views from multiple locations, simple measurements, and live and taped interviews.

  7. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam

    NASA Astrophysics Data System (ADS)

    Mayo, L.

    2017-12-01

    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  8. Response to narrow-band UVB--vitiligo-melasma versus vitiligo: a comparative study.

    PubMed

    Sharma, Parikshit; Pai, Harsha S; Pai, Ganesh S; Kuruvila, Maria; Kolar, Reshma

    2011-04-01

    Vitiligo is the most common depigmentary disorder of the skin and hair, resulting from selective destruction of melanocytes. Melasma, a hyperpigmentary disorder, presents as irregular, brown, macular hypermelanosis. A small subset of vitiligo patients paradoxically also have melasma. To evaluate and compare the response to narrow-band UVB in a group of patients with vitiligo, and another group of patients with vitiligo and coexisting melasma (vitiligo-melasma). Patients in both groups were treated with narrow-band UVB and a comparison of the zonal repigmentation was made at 4, 8, and 12 weeks after the initiation of therapy. At the end of 12 weeks, 86% of patients in the vitiligo-melasma group attained ≥75% pigmentation on the face, whereas this was achieved in only 12.5% of patients in the vitiligo group. Over the limbs, 73% of patients in the vitiligo-melasma group attained 75% or more pigmentation at the end of 12 weeks compared with only 9% in the vitiligo group. On the trunk, only 20% of vitiligo-melasma patients showed ≥75% pigmentation at 12 weeks compared with 63% of patients in the vitiligo group. Patients having both vitiligo and melasma have a significantly better prognosis for repigmentation on the face and limbs with narrow-band UVB compared with patients with vitiligo alone; the vitiligo-melasma patients achieve repigmentation much earlier and also attain a greater level of repigmentation. Unexpectedly, for truncal lesions, patients with vitiligo alone responded better than those with both conditions. Although the vitiligo-melasma group with truncal lesions started repigmenting earlier, the final pigmentation was more extensive in the vitiligo group.

  9. Data Collection During the Great American Eclipse

    NASA Astrophysics Data System (ADS)

    Vernier, Dave

    2017-12-01

    I am lucky enough (and old enough) to have seen three total eclipses. About a year ago, I became aware of the total eclipse that was coming to the United States on August 21, 2017. Because I knew how exciting a total eclipse can be, I spent a lot of time encouraging people to travel to the zone of totality if they possibly could. I also encouraged teachers to turn this event into a STEM lesson by taking data. We asked teachers to join us in collecting data during the eclipse and to share it. The people collecting these data were either teachers or former teachers (like me). Many times, the sensors were mounted with duct tape and rubber bands, but we got some great data!

  10. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    NASA Astrophysics Data System (ADS)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  11. Advanced definition study for the determination of atmospheric ozone using the satellite eclipse technique

    NASA Technical Reports Server (NTRS)

    Emmons, R.; Preski, R. J.; Kierstead, F. H., Jr.; Doll, F. C.; Wight, D. T.; Romick, D. C.

    1973-01-01

    A study was made to evaluate the potential for remote ground-based measurement of upper atmospheric ozone by determining the absorption ratio of selected narrow bands of sunlight as reflected by satellites while passing into eclipse, using the NASA Mobile Satellite Photometric Observatory (MOSPO). Equipment modifications to provide optimum performance were analyzed and recommendations were made for improvements to the system to accomplish this. These included new sensor tubes, pulse counting detection circuitry, filters, beam splitters and associated optical revision, along with an automatic tracking capability plus corresponding operational techniques which should extend the overall measurement capability to include use of satellites down to 5th magnitude.

  12. Intensity Variations of Narrow Bands of Solar UV Radiation during Descending Phases of SACs 21-23

    NASA Astrophysics Data System (ADS)

    Gigolashvili, M.; Kapanadze, N.

    2014-12-01

    The study of variations of four narrow bands of solar spectral irradiance (SSI) in the ultraviolet (UV) range for period 1981-2008 is presented. Observational data obtained by space-flight missions SORCE, UARS, SME and daily meanings of international sunspot number (ISN) have been used. The investigated data cover the decreasing phases of the solar activity cycles (SACs) 21, 22 and 23. We have revealed a peculiar behavior of intensity variability of some solar ultraviolet spectral lines originated in the solar chromospheres for period corresponding to the declining phase of the solar cycle 23. It is found that variability of emission of different solar spectral narrow bands (289.5 nm, 300.5 nm) does not agree equally well with ISN variability during decreasing phase of the solar activity cycle 23. The negative correlations between total solar irradiance and the solar spectral narrow bands of UV emission (298.5 nm, 300.5 nm) had been revealed. The existence of the negative correlation can be explained by the sensitivity of SSI of some emission lines to the solar global magnetic field.

  13. [Study on the Spectral Characteristics of the Narrow-Band Filter in SHS].

    PubMed

    Luo, Hai-yan; Shi, Hai-liang; Li, Zhi-wei; Li, Shuang; Xiong, Wei; Hong, Jin

    2015-04-01

    The spectral response of spatial heterodyne spectroscopy (SHS) is determined by the spectrum property of narrow-band filter. As discussed in previous studies, the symmetric heterodyned interferogram of high frequency waves modulated by SHS and lack of sample lead to spectral confusion, which is associated with the true and ghost spectra. Because of the deviation from theoretical index of narrow-band filter in the process of coating, the boarded spectral response and middle wave shift are presented, and conditions in the theoretical Littrow wavelength made the effective wavelength range of SHS reduced. According to the measured curve of filter, a new wavenumber of zero spatial frequency can be reset by tunable laser, and it is easy for SHS to improve the spectral aliasing distortion. The results show that it is utilized to the maximum extent of the effective bandwidth by adjusting the grating angle of rotation to change the Littrow wavelength of the basic frequency, and the spectral region increased to 14.9 nm from original 12.9 nm.

  14. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU

    NASA Astrophysics Data System (ADS)

    Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.

    2018-01-01

    There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.

  15. G-III Aircraft from NASA Armstrong Provides Live TV Coverage of Solar Eclipse Across America

    NASA Image and Video Library

    2017-08-13

    For the first time in 99 years, a total solar eclipse will cross the entire nation Monday, Aug. 21. A total solar eclipse occurs when the sun is completely obscured by the moon. The lunar shadow enters the United States near Lincoln City, Oregon, at 9:05 a.m. PDT. Totality, where the moon completely covers the sun, begins in Lincoln City around 10:16 a.m. PDT. During totality, there will be up to two and a half minutes of darkness. The G-III aircraft was modified with upgraded windows and communications equipment to enable high-definition video to be streamed to NASA TV during the eclipse enabling citizen science. The aircraft will be flying at 25,000 feet over the coast of Oregon, near Lincoln City during the eclipse on August 21, 2017.

  16. Bernese advances towards a global analysis of Lunar geodesy

    NASA Astrophysics Data System (ADS)

    Bertone, S.; Girardin, V.; Bourgoin, A.; Arnold, D.; Jaeggi, A.

    2017-12-01

    In this presentation we discuss our latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the planetary extension of the Bernese GNSS Software (BSW) developed at the Astronomical Institute of the University of Bern (AIUB).Based on one-way X band and two-way S-band Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using a least-squares adjustment. Significative improvements to our solutions come from the recent implementation of an accurate modeling of non-gravitational forces, including accelerations due to solar and planetary (albedo and IR) radiation pressure, based on the 28-plate macromodel to represent the GRAIL satellites. Also, as suggested in previous works, we deal with imperfections in the modeling of solar eclipses by both an accurate data screening at mid-latitudes and by taking into account solar panel voltage data in our processing. Empirical and pseudo-stochastic parameters are estimated on top of our dynamical modeling to absorb its deficiencies. We analyze the impact of different parametrizations using either pulses (i.e., instantaneous velocity changes) and piecewise constant accelerations (PCA) on our orbits.Based on these improved orbits, one- and two-way Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit and gravity field determination process.We present our latest solutions of the lunar gravity field, based on the recent GRAIL GRGM900C gravity field (as validation of our modeling and parametrization) and on iterations from the SELENE SGM150J gravity field (to check the independence of our solution). We detail our procedure to gradually enlarge the parameter space while adding new data to our gravity field solution. In addition, we present our latest solution for the Moon tidal Love number k_2.Moreover, some important lunar geophysical parameters are best obtained

  17. Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis.

    PubMed

    Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan; Henson, Zachary B; Nguyen, Thuc-Quyen; Heeger, Alan J; Bazan, Guillermo C

    2013-12-02

    PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Determination of the Io heat flow. 1: Eclipse observations

    NASA Technical Reports Server (NTRS)

    Sinton, W. M.; Kaminski, C.

    1983-01-01

    The thermal emission from Io during eclipse by Jupiter yields data from which the total thermal flux from the volcanoes on the satellite surface can be estimated. Thermal infrared observations in spectral bands between 3.5 and 30 microns of five Io eclipse reappearances and one eclipse disappearance are reported and discussed. The thermal emission of the volcanoes which occurs almost all of the time was determined from the Io heat flux data. The thermal observations of Io are discussed with respect to previous thermophysical theories.

  19. Rocket observations of solar UV radiation during the eclipse of 7 March 1970.

    NASA Technical Reports Server (NTRS)

    Smith, L. G.

    1972-01-01

    Results of observations of the solar eclipse of Mar. 7, 1970, with photometers sensitive to narrow bands of radiation at Lyman-alpha (1216 A) and at 2600 A included in the payloads of four Nike Apache rockets flown before and during the eclipse. At the center of totality, the flux of Lyman-alpha from the solar corona is 0.15% of the flux from the unobscured sun. The flux at second contact is 0.64%; at third contact, two observations give 0.52 and 0.59%. The brightness of the chromosphere in Lyman-alpha decreases exponentially over the range from 5 to 30 arc-sec from the limb with a scale height of 3835 plus or minus 70 km. In addition to the coronal and chromospheric Lyman-alpha a diffuse source is found. This is restricted to within 20 deg of the earth's horizon and is nearly uniform in azimuth at 170 km, the flux is about 3% of that from the unobscured sun. The flux of Lyman-alpha during the eclipse is considered in relation to the observed variation in electron density. It is concluded that, in totality, the ionosphere near 80 km is not in equilibrium with the ionizing radiation and that the production rate for electrons is not negligible if the loss process is recombination; it is negligible if the loss process is attachment-like.

  20. Polyp detection rates using magnification with narrow band imaging and white light.

    PubMed

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-05-16

    To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other's findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ(2) test and means were compared using the Student's t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for adenomas). Miss rate of

  1. March 7, 1970 solar eclipse investigation

    NASA Technical Reports Server (NTRS)

    Accardo, C. A.

    1972-01-01

    Studies from rockets directed toward establishing the solar X-ray fluxes during the 7 March 1970 total eclipse over the North American continent are reported. A map of the eclipse path is presented. The measured absorption profiles for the residual X-rays are useful in establishing their contribution to the D and E region ionization during the eclipse. The studies were performed with two Nike-Apache payloads launched over Wallops Island, Virginia. In addition to three X-ray detectors in the 1 to 8A, 8 to 20A and 44 to 60A bands, there was included in the payloads two additional experiments. These were an electric field experiment and an epithermal photoelectron experiment. The X-ray instrumentation, payload description, flight circumstances and finally, the X-ray results obtained are described. The various computer codes employed for the purpose of reducing the telemetered data as well as the eclipse codes are included.

  2. The assessment of mucosal surgical margins in head and neck cancer surgery with narrow band imaging.

    PubMed

    Šifrer, Robert; Urbančič, Jure; Strojan, Primož; Aničin, Aleksandar; Žargi, Miha

    2017-07-01

    The diagnostic gain of narrow band imaging in the definition of surgical margins in the treatment of head and neck cancer was evaluated. A prospective study, blinded to the pathologist, with historical comparison. The study group included 45 patients subjected to the intraoperative definition of margins by narrow band imaging. The control group included 55 patients who had undergone standard definition of margins. All patients underwent resection of the tumor and frozen section analysis of superficial margins. The rate of initial R 0 resection and the ratio of histologically negative margins for both groups were statistically compared. The rate of initial R 0 resection in the study group and in the control group was 88.9% and 70.9% (P = .047), and the ratio of histologically negative margins was 95.9% and 88.4% (P = .017), respectively. Narrow band imaging reveals a microscopic extension of the tumor that could be effectively used to better define superficial margins and to achieve a higher rate of initial R 0 resections. 4 Laryngoscope, 127:1577-1582, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  3. LUGOL'S IODINE CHROMOENDOSCOPY VERSUS NARROW BAND IMAGE ENHANCED ENDOSCOPY FOR THE DETECTION OF ESOPHAGEAL CANCER IN PATIENTS WITH STENOSIS SECONDARY TO CAUSTIC/CORROSIVE AGENT INGESTION.

    PubMed

    Pennachi, Caterina Maria Pia Simoni; Moura, Diogo Turiani Hourneaux de; Amorim, Renato Bastos Pimenta; Guedes, Hugo Gonçalo; Kumbhari, Vivek; Moura, Eduardo Guimarães Hourneaux de

    2017-01-01

    The diagnosis of corrosion cancer should be suspected in patients with corrosive ingestion if after a latent period of negligible symptoms there is development of dysphagia, or poor response to dilatation, or if respiratory symptoms develop in an otherwise stable patient of esophageal stenosis. Narrow Band Imaging detects superficial squamous cell carcinoma more frequently than white-light imaging, and has significantly higher sensitivity and accuracy compared with white-light. To determinate the clinical applicability of Narrow Band Imaging versus Lugol´s solution chromendoscopy for detection of early esophageal cancer in patients with caustic/corrosive agent stenosis. Thirty-eight patients, aged between 28-84 were enrolled and examined by both Narrow Band Imaging and Lugol´s solution chromendoscopy. A 4.9mm diameter endoscope was used facilitating examination of a stenotic area without dilation. Narrow Band Imaging was performed and any lesion detected was marked for later biopsy. Then, Lugol´s solution chromoendoscopy was performed and biopsies were taken at suspicious areas. Patients who had abnormal findings at the routine, Narrow Band Imaging or Lugol´s solution chromoscopy exam had their stenotic ring biopsied. We detected nine suspicious lesions with Narrow Band Imaging and 14 with Lugol´s solution chromendoscopy. The sensitivity and specificity of the Narrow Band Imaging was 100% and 80.6%, and with Lugol´s chromoscopy 100% and 66.67%, respectively. Five (13%) suspicious lesions were detected both with Narrow Band Imaging and Lugol's chromoscopy, two (40%) of these lesions were confirmed carcinoma on histopathological examination. Narrow Band Imaging is an applicable option to detect and evaluate cancer in patients with caustic /corrosive stenosis compared to the Lugol´s solution chromoscopy.

  4. Outreach activities in anticipation of the 2016 solar eclipse in Sorong

    NASA Astrophysics Data System (ADS)

    Putra Raharja, Endra; Pramudya, Yudhiakto

    2016-11-01

    Sorong is located outside the narrow path of total solar eclipse on March 9th, 2016. The predicted obscuration of the sun was 94.2%. The public outreach to anticipate the solar eclipse was intended to educate students in junior and senior high school in Sorong Regency. Some of them are located in the remote area where the educational materials are difficult to find. The public outreach is unique, since it was run by the local person who is student of physics education. The student has both the ability to explain the solar eclipse phenomenon and able to adapt to knowledge level of students. The materials that were given to the schools are brochure and the eclipse glasses. Beside solar eclipse lectures in class, the pinhole workshop and observation practice were held. The limited materials and resources were faced during the public outreach. However, the enthusiasm was shown by the students and teachers. At least one of the schools held the solar eclipse observation on the day of the eclipse.

  5. On the Totality of the Eclipse in AD 628 in the Nihongi

    NASA Astrophysics Data System (ADS)

    Tanikawa, Kiyotaka; Sôma, Mitsuru

    2004-02-01

    It is widely accepted that the solar eclipse on AD 628 April 10 (the reign of Empress Suiko, 36th year, 3rd month, 2nd day) recorded in the Nihongi (****) was not total, but partial at the site of observation, though it is written as an exhausted eclipse. A contemporary Japanese occultation observation on AD 681 November 3 is also suspected as being a missing of Mars in the glaring light of the Moon. We suggest in this paper that both records in the Nihongi may be true. Several reasonings are put forward. We then point out the possibility that the value of ΔT at around AD 600 is about 2000s which is far less than 4500s, the value adopted by Stephenson (1997, Historical Eclipses and Earth's Rotation). Lunar grazing occultation data are found to be very useful.

  6. The total solar eclipse of 2010 July 11

    NASA Astrophysics Data System (ADS)

    McGee, H.; James, N.; Mason, J.

    2010-08-01

    The solar eclipse of 2010 July 11 always promised to be a logistical nightmare to observe. The Moon's shadow first touched the Earth in the southern Pacific, encountering land at Mangaia in the Cook Islands only after 1450km of open ocean. The narrow track of totality then swung northeast, passing tantalisingly close to the islands of Tahiti and Moorea, which experienced a 98% partial eclipse. Beyond Tahiti the track crossed the Tuamotu archipelago of French Polynesia - thousands of tiny coral atolls, of which very few are inhabited, and even fewer have airstrips that make them accessible to visitors.

  7. The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Wu, Mei-Ling; Chen, Lien-Wen

    2009-01-01

    In this paper, we study the defect bands of a 1D phononic crystal consisting of aluminum (Al) and polymethyl methacrylate (PMMA) layers with a dielectric elastomer (DE) defect layer. The plane wave expansion (PWE) method and supercell calculation are used to calculate the band structure and the defect bands. The transmission spectra are obtained using the finite element method (FEM). Since the thickness of the dielectric elastomer defect layer is controlled by applying an electric voltage, the frequencies of the defect bands can be tuned. A narrow pass band filter can be developed and designed by using the dielectric elastomer.

  8. Narrow-band microwave radiation from a biased single-Cooper-pair transistor.

    PubMed

    Naaman, O; Aumentado, J

    2007-06-01

    We show that a single-Cooper-pair transistor (SCPT) electrometer emits narrow-band microwave radiation when biased in its subgap region. Photoexcitation of quasiparticle tunneling in a nearby SCPT is used to spectroscopically detect this radiation in a configuration that closely mimics a qubit-electrometer integrated circuit. We identify emission lines due to Josephson radiation and radiative transport processes in the electrometer and argue that a dissipative superconducting electrometer can severely disrupt the system it attempts to measure.

  9. Moon based global field airglow: For Artemis or any common Lunar Lander

    NASA Astrophysics Data System (ADS)

    Kozlowski, R. W. H.; Sprague, A. L.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.

    1994-06-01

    An inexpensive, small mass, airglow experiment consisting of a suite of airglow detectors is planned for one or more lunar landers. Solid state detectors measuring light through narrow band filters or concave gratings can integrate emissions from lunar atmospheric constituents and store the information for relay to earth when convenient. The proposed instrument is a simplified version of the Shuttle-borne Arizona Imager-Spectrograph. These zenith and near horizon viewing detectors may allow us to monitor fluctuations in atomic species of oxygen, calcium, sodium, potassium, argon, and neon and OH, if present. This choice of observations would monitor outgassing from the interior (Ar), meteoritic dust flux (Na, K) solar wind sputtering (O, Ca), and outgassing from the surface (implanted Ne, Na, K). A global network could be inexpensively deployed aboard landers carrying a variety of other selenographic instrumentation. Powered by solar cells such a field network will return data applicable to a wide variety of interplanetary medium and solar-lunar interaction problems.

  10. Danish Passage Graves, "Spring/Summer/Fall full Moons" and Lunar Standstills

    NASA Astrophysics Data System (ADS)

    Clausen, Claus Jørgen

    2015-05-01

    The author proposes and discusses a model for azimuth distribution which involves the criterion of a 'spring full moon' (or a 'fall full moon') proposed by Marciano Da Silva (Da Silva 2004). The model is based on elements of the rising pattern of the summer full moon combined with directions pointing towards full moonrises which occur immediately prior to lunar standstill eclipses and directions aimed at the points at which these eclipses begin. An observed sample of 153 directions has been compared with the proposed model, which has been named the lunar 'season pointer'. Statistical tests show that the model fits well with the observed sample within the azimuth interval of 54.5° to 156.5°. The conclusion made is that at least the 'season pointer' section of the model used could very well explain the observed distribution.

  11. Polyp detection rates using magnification with narrow band imaging and white light

    PubMed Central

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-01-01

    AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for

  12. A Photometric Study of the Eclipsing Binary Star PY Boötis

    NASA Astrophysics Data System (ADS)

    Michaels, E. J.

    2016-12-01

    Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.

  13. Ep7_Total Eclipse over America

    NASA Image and Video Library

    2017-08-18

    another kind of eclipse called a lunar eclipse, and the lunar eclipse is when the earth gets between the moon and the sun. >> Right. >> And so as the moon moves into the shadow, it starts to turn dark, and sometimes has an interesting red color. >> Yeah. >> It turns out there are actually fewer of those than solar eclipses. >> Really? >> But because a whole hemisphere can see it, they re much-- you can see them much more often than solar eclipses. >> Oh, that-- okay. >> Because you re looking up in the sky and seeing the moon eclipse, so anybody on that side of the earth can see it-- weather permitting, of course. >> Wow. Why is it that color, though? >> Well, that s an interesting phenomenon. As you know, the sky is blue from the scattering of particles in the atmosphere-- it scatters the blue light. But the red is transmitted just like we see in a red sunset. Well, the earth s atmosphere actually refracts the red light, and so if you were standing on the moon during a lunar eclipse, the earth, of course, would block the sun, but you would see this red ring around the earth, which is the atmosphere refracting the light of the sun. >> So that s the red ring of the earth refracting off the surface of the moon? >> No, no, it s-- the light is coming through the atmosphere and refracting slightly to your position on the moon. >> Oh. >> So you would see this narrow, narrow red glowing ring around the earth. >> Oh, wow. >> So it s-- but of course, no one s ever seen that. >> Yeah. >> Maybe someday when we have a base on the moon. >> Oh, and so wait-- okay, so this is assuming that-- yeah, you re assuming that you are an observer on the moon. >> You re an astronaut standing on the moon, right. >> I see, and there s a red ring. So what about the lunar eclipse-- the perception from the earth? Doesn t a lunar eclipse-- the moon looks a little orange? >> Yeah, it s orange-ish, sometimes. It actually depends on-- it depends on what s happening in the atmosphere. >> Oh, okay. >> For

  14. Spirit View of Phobos Eclipse, Sol 675

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Spirit View of Phobos Eclipse, Sol 675

    NASA's Mars Exploration Rover Spirit observed the Martian moon Phobos entering the shadow of Mars during the night of the rover's 675th sol (Nov. 27, 2005). The panoramic camera captured 16 images, spaced 10 seconds apart, covering the period from when Phobos was in full sunlight to when it was entirely in shadow. As with our own Moon during lunar eclipses on Earth, even when in the planet's shadow, Phobos was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region.

    This view is a time-lapse composite of images taken 20 seconds apart, showing the movement of Phobos from left to right. (At 10 seconds apart, the images of the moon overlap each other.) Scientists are using information about the precise timing of Martian moon eclipses gained from observations such as these to refine calculations about the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface.

  15. Inca Moon: Some Evidence of Lunar Observations in Tahuantinsuyu

    NASA Astrophysics Data System (ADS)

    Ziółkowski, Mariusz; Kościuk, Jacek; Astete, Fernando

    So far, scientists have not investigated thoroughly if and for what purpose the Incas observed the Moon. As far as the orientation of architectural structures is concerned, the researchers focus their attention almost entirely on the position of the Sun. However, a more accurate analysis of two well-known sites - the caves of Intimachay and Cusilluchayoc - may provide evidence of their function as observatories of the lunar 18.6-year cycle. Those results may confirm the hypothesis, presented some years ago, that the Incas had elaborated a rudimentary method of predicting lunar eclipses.

  16. Estimating the Value of the Inclination Angle of the Lunar Plane to the Ecliptic Plane

    ERIC Educational Resources Information Center

    Isildak, R. Suat; Isik, Hakan; Küçüközer, H. Asuman

    2018-01-01

    Sky appears to our students as a vast volume surrounding the Earth. The most striking astronomical events that they can witness in the sky are lunar phases and eclipses. However, eclipses do not occur as often as full and new phases of the Moon. This difference is due to the fact that the orbital planes of the Moon and the Earth do not overlap.…

  17. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    USGS Publications Warehouse

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  18. Ultrabright narrow-band telecom two-photon source for long-distance quantum communication

    NASA Astrophysics Data System (ADS)

    Niizeki, Kazuya; Ikeda, Kohei; Zheng, Mingyang; Xie, Xiuping; Okamura, Kotaro; Takei, Nobuyuki; Namekata, Naoto; Inoue, Shuichiro; Kosaka, Hideo; Horikiri, Tomoyuki

    2018-04-01

    We demonstrate an ultrabright narrow-band two-photon source at the 1.5 µm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 104. Our measurement of the second-order correlation function G (2)(τ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 µm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 105 pairs/(s·MHz·mW) is also the highest reported over all wavelengths.

  19. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nong, Hanond, E-mail: Nong.Hanond@rub.de; Markmann, Sergej; Hekmat, Negar

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunesmore » the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.« less

  20. Efficacy of narrow-band imaging for detecting intestinal metaplasia in adult patients with symptoms of dyspepsia.

    PubMed

    Sobrino-Cossío, S; Abdo Francis, J M; Emura, F; Galvis-García, E S; Márquez Rocha, M L; Mateos-Pérez, G; González-Sánchez, C B; Uedo, N

    2018-02-12

    Atrophy and intestinal metaplasia are early phenotypic markers in gastric carcinogenesis. White light endoscopy does not allow direct biopsy of intestinal metaplasia due to a lack of contrast of the mucosa. Narrow-band imaging is known to enhance the visibility of intestinal metaplasia, to reduce sampling error, and to increase the diagnostic yield of endoscopy for intestinal metaplasia in Asian patients. The aim of our study was to validate the diagnostic performance of narrow-band imaging using 1.5× electronic zoom endoscopy (with no high magnification) to diagnose intestinal metaplasia in Mexican patients. A retrospective cohort study was conducted on consecutive patients with dyspeptic symptoms at a private endoscopy center within the time frame of January 2015 to December 2016. A total of 338 patients (63±8.4 years of age, 40% women) were enrolled. The prevalence of H. pylori infection was 10.9% and the incidence of intestinal metaplasia in the gastric antrum and corpus was 23.9 and 5.9%, respectively. Among the patients with intestinal metaplasia, 65.3% had the incomplete type, 42.7% had multifocal disease, and one third had extension to the gastric corpus. Two patients had low-grade dysplasia. The sensitivity of white light endoscopy was 71.2%, with a false negative rate of 9.9%. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of narrow-band imaging (with a positive light blue crest) were 85, 98, 86.8, 97.7, and 87.2%, respectively. The prevalence of H. pylori infection and intestinal metaplasia in dyspeptic Mexican patients was not high. Through the assessment of the microsurface structure and light blue crest sign, non-optical zoom narrow-band imaging had high predictive values for detecting intestinal metaplasia in patients from a general Western setting. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  1. Using Lunar Observations for Calibration Stability and Data Continuity for SNPP VIIRS and MODIS Reflected Solar Bands

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Stone, T. C.

    2017-12-01

    To meet objectives for assembling continuous Earth environmental data records from multiple satellite instruments, a key consideration is to assure consistent and stable sensor calibration across platforms and spanning mission lifetimes. Maintaining and verifying calibration stability in orbit is particularly challenging for reflected solar band (RSB) radiometer instruments, as options for stable references are limited. The Moon is used regularly as a calibration target, which has capabilities for long-term sensor performance monitoring and for use as a common reference for RSB sensor inter-calibration. Suomi NPP VIIRS has viewed the Moon nearly every month since launch, utilizing spacecraft roll maneuvers to acquire lunar observations within a small range of phase angles. The VIIRS Characterization Support Team (VCST) at NASA GSFC has processed the Moon images acquired by SNPP VIIRS into irradiance measurements for calibration purposes; however, the variations in the Moon's brightness still require normalizing the VIIRS lunar measurements using radiometric reference values generated by the USGS lunar calibration system, i.e. the ROLO model. Comparison of the lunar irradiance time series to the calibration f-factors derived from the VIIRS on-board solar diffuser system shows similar overall trends in sensor response, but also reveals residual geometric anomalies in the lunar model results. The excellent lunar radiometry achieved by SNPP VIIRS is actively being used to advance lunar model development at USGS. Both MODIS instruments also have viewed the Moon regularly since launch, providing a practical application of sensor inter-calibration using the Moon as a common reference. This paper discusses ongoing efforts aimed toward demonstrating and utilizing the full potential of lunar observations to support long-term calibration stability and consistency for SNPP VIIRS and MODIS, thus contributing to level-1B data quality assurance for continuity and monitoring

  2. Coronagraphic Observations of the Lunar Sodium Exosphere

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Johnson, J. D.; Morgan, T. H.; Potter, A. E.

    2017-12-01

    We have designed, built and installed a small robotic coronagraph at the Winer Observatory in Sonoita, Arizona, in order to observe the sodium exosphere out to one-half degree around the Moon. Observations are obtained remotely every available clear night from our home base at Goddard Space Flight Center. Our data encompass lunations in 2015, 2016, and 2017, thus we have a long baseline of sodium exospheric calibrated images. We employ an Andover temperature-controlled 1.5 Å wide narrow-band filter centered on the sodium D2 line, and a similar 1.5 Å filter centered blueward of the D2 line by 5 Å. Exposures of 10 minutes are required to image the sodium corona at good signal to noise. Autoguiding is performed locking onto a small bright crater each night. Following each onband-offband exposure pair, on- and off-band images of the lunar surface are collected by taking a 0.1- 0.5 second exposures with the open filter. The sodium is calibrated using the counts in the open Moon images and the Hapke function. We use both dark and bright Hapke parameters for comparison check using Mare and highlands, respectively. In order to obtain the sodium profile around the entire limb, the images are transformed using a polar transform and the profiles are extracted automatically. We have derived zenith column abundances and surface abundances around the lunar limb for each observation and we fit these observations with a 3-dimensional model. We compare our lunar model derived from these observations with the data from the spectrograph onboard the LADEE spacecraft.

  3. An ultraviolet investigation of the unusual eclipsing binary system FF AQR

    NASA Technical Reports Server (NTRS)

    Dorren, J. D.; Guinan, E. F.; Sion, E. M.

    1982-01-01

    A series of seven low dispersion IUE exposures in ultraviolet and wavelength regions obtained on December 6, 1981 during the eclipse of the subdwarf, during egress, and out of eclipse is analyzed. These observations and the binary phase at which they were made are shown on a schematic representation of the V-band light curve obtained in 1975. The depth in V is 0.15 mag. The circles are IUE V magnitudes from FES measures obtained during the observing run. They indicate an eclipse depth some 0.05 mag lower than expected, possibly due to difficulties with the color term in the FES calibration. The eclipse depths of Dworetsky in U, B and V were assumed in the calculations.

  4. Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.

    2018-04-01

    A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.

  5. Narrow-Band Organic Photodiodes for High-Resolution Imaging.

    PubMed

    Han, Moon Gyu; Park, Kyung-Bae; Bulliard, Xavier; Lee, Gae Hwang; Yun, Sungyoung; Leem, Dong-Seok; Heo, Chul-Joon; Yagi, Tadao; Sakurai, Rie; Ro, Takkyun; Lim, Seon-Jeong; Sul, Sangchul; Na, Kyoungwon; Ahn, Jungchak; Jin, Yong Wan; Lee, Sangyoon

    2016-10-05

    There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

  6. A Synthesis of VIIRS Solar and Lunar Calibrations

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E.; Turpie, Kevin R.; Meister, Gerhard; Patt, Frederick S.; Fireman, Gwyn F.; Franz, Bryan A.; McClain, Charles R.

    2013-01-01

    The NASA VIIRS Ocean Science Team (VOST) has developed two independent calibrations of the SNPP VIIRS moderate resolution reflective solar bands using solar diffuser and lunar observations through June 2013. Fits to the solar calibration time series show mean residuals per band of 0.078-0.10%. There are apparent residual lunar libration correlations in the lunar calibration time series that are not accounted for by the ROLO photometric model of the Moon. Fits to the lunar time series that account for residual librations show mean residuals per band of 0.071-0.17%. Comparison of the solar and lunar time series shows that the relative differences in the two calibrations are 0.12-0.31%. Relative uncertainties in the VIIRS solar and lunar calibration time series are comparable to those achieved for SeaWiFS, Aqua MODIS, and Terra MODIS. Intercomparison of the VIIRS lunar time series with those from SeaWiFS, Aqua MODIS, and Terra MODIS shows that the scatter in the VIIRS lunar observations is consistent with that observed for the heritage instruments. Based on these analyses, the VOST has derived a calibration lookup table for VIIRS ocean color data based on fits to the solar calibration time series.

  7. Locata Performance Evaluation in the Presence of Wide- and Narrow-Band Interference

    NASA Astrophysics Data System (ADS)

    Khan, Faisal A.; Rizos, Chris; Dempster, Andrew G.

    Classically difficult positioning environments often call for augmentation technology to assist the GPS, or more generally the Global Navigation Satellite System (GNSS) technology. The ground-based ranging technology offers augmentation, and even replacement, to GPS in such environments. However, like any other system relying on wireless technology, a Locata positioning network also faces issues in the presence of RF interference (RFI). This problem is magnified due to the fact that Locata operates in the licence-free 2·4 GHz Industrial, Scientific and Medical (ISM) band. The licence-free nature of this band attracts a much larger number of devices using a wider range of signal types than for licensed bands, resulting in elevation of the noise floor. Also, harmonics from out-of-band signals can act as potential interferers. WiFi devices operating in this band have been identified as the most likely potential interferer, due partially to their use of the whole ISM band, but also because Locata applications often also may use a wireless network. This paper evaluates the performance of Locata in the presence of both narrow- and wide-band interfering signals. Effects of received interference on both raw measurements and final solutions are reported and analysed. Test results show that Locata performance degrades in the presence of received interference. It is also identified that high levels of received interference can affect Locata carriers even if the interference is not in co-frequency situation with the affected carrier. Finally, Locata characteristics have been identified which can be exploited to mitigate RFI issues.

  8. Sky-radiance gradient measurements at narrow bands in the visible.

    PubMed

    Winter, E M; Metcalf, T W; Stotts, L B

    1995-07-01

    Accurate calibrated measurements of the radiance of the daytime sky were made in narrow bands in the visible portion of the spectrum. These measurements were made over several months and were tabulated in a sun-referenced coordinate system. The radiance as a function of wavelength at angles ranging from 5 to 90 deg was plotted. A best-fit inverse power-law fit shows inversely linear behavior of the radiance versus wavelength near the Sun (5 deg) and a slope approaching inverse fourth power far from the Sun (60 deg). This behavior fits a Mie-scattering interpretation near the Sun and a Rayleigh-scattering interpretation away from the Sun. The results are also compared with LOWTRAN models.

  9. Asiago eclipsing binaries program IV. SZ Camelopardalis, a β Cephei pulsator in a quadruple, eclipsing system

    NASA Astrophysics Data System (ADS)

    Tamajo, E.; Munari, U.; Siviero, A.; Tomasella, L.; Dallaporta, S.

    2012-03-01

    We present a spectroscopic and photometric analysis of the multiple system and early-type eclipsing binary SZ Cam (O9 IV + B0.5 V), which consists of an eclipsing SB2 pair of orbital period P = 2.7 days in a long orbit (~55 yrs) around a non-eclipsing SB1 pair of orbital period P = 2.8 days. We have reconstructed the spectra of the individual components of SZ Cam from the observed composite spectra using the technique of spectral disentangling. We used them together with extensive and accurate BVIC CCD photometry to obtain an orbital solution. Our photometry revealed the presence of a β Cep variable in the SZ Cam hierarchical system, probably located within the non-eclipsing SB1 pair. The pulsation period is (0.33265 ± 0.00005) days and the observed total amplitude in the B band is (0.0105 ± 0.0005) mag. NLTE analysis of the disentangled spectra provided atmospheric parameters for all three components, consistent with those derived from orbital solution. Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A139

  10. ASSESSMENT OF LOW-FREQUENCY HEARING WITH NARROW-BAND CHIRP EVOKED 40-HZ SINUSOIDAL AUDITORY STEADY STATE RESPONSE

    PubMed Central

    Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  11. A simplified scheme for generating narrow-band mid-ultraviolet laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almog, G.; Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München; Scholz, M., E-mail: Matthias.Scholz@toptica.com

    2015-03-15

    We report on the development and characterization of continuous, narrow-band, and tunable laser systems that use direct second-harmonic generation from blue and green diode lasers with an output power level of up to 11.1 mW in the mid-ultraviolet. One of our laser systems was tuned to the mercury 6{sup 1}S{sub 0} → 6{sup 3}P{sub 1} intercombination line at 253.7 nm. We could perform Doppler-free saturation spectroscopy on this line and were able to lock our laser to the transition frequency on long time scales.

  12. High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts

    NASA Astrophysics Data System (ADS)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2016-02-01

    Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high

  13. MISR Watches Motion of the Moon's Shadow During Total Solar Eclipse

    NASA Image and Video Library

    2017-09-19

    into a movie showing the motion of the Moon's shadow during this seven-minute period. In the first image, captured by the camera pointing farthest ahead of the satellite, totality has not quite begun in the area seen by MISR. From the second camera onward, totality sweeps across the image area from west to east, beginning just west of the town of Jay Em, Wyoming, and proceeding about halfway across the MISR swath to the town of Alliance, Nebraska. The motion of the lunar shadow in different pairs of images leads to estimates of the local ground speed ranging between 1,480 and 1,820 miles per hour (2,382 and 2,929 kilometers per hour). The spread in values is a measure of the uncertainty of the estimate. At this location, the predicted speed of the eclipse calculated from lunar orbital motion is about 1,658 miles per hour (2,668 kilometers per hour), which falls in the middle of the range estimated from the MISR images. Tosca's observation that the temperature dropped during the eclipse is a well-known phenomenon. The GLOBE Observer, a phone application dedicated to citizen science and sponsored by NASA, encouraged eclipse-goers to record the local air temperature at regular intervals. Data collected by nearby observers in the path of totality show that, on average, temperatures dropped by 9.3 degrees Fahrenheit (5.2 degrees Celsius) during the eclipse. This compares to an average of 5.4 degrees Fahrenheit drop measured at several Nebraska Mesonet weather stations within the path of totality. The decrease in the amount of sunlight reaching Earth affected more than temperatures. Areas that get a large portion of their power from solar energy were naturally concerned about shortages during the eclipse -- the state of California, though not in the path of totality, estimated that 6,000 megawatts of solar power would be lost during the eclipse. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21957

  14. Hydrogen-Saturated Saline Protects Intensive Narrow Band Noise-Induced Hearing Loss in Guinea Pigs through an Antioxidant Effect

    PubMed Central

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316

  15. Lunar lander conceptual design: Lunar base systems study task 2.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study is a first look at the problem of building a lunar lander to support a small lunar surface base. One lander, which can land 25 metric tons, one way, or take a 6 metric ton crew capsule up and down is desired. A series of trade studies are used to narrow the choices and provide some general guidelines. Given a rough baseline, the systems are then reviewed. A conceptual design is then produced. The process was only carried through one iteration. Many more iterations are needed. Assumptions and groundrules are considered.

  16. Campaign Photometry During The 2010 Eclipse Of Epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Hopkins, Jeff; Stencel, R. E.

    2011-01-01

    Epsilon Aurigae is a long period (27.1 years) eclipsing binary star system with an eclipse that lasts nearly 2 years, but with severe ambiguities about component masses and shape. The current eclipse began on schedule in August of 2009. During the previous, 1982-1984 eclipse, an International Campaign was formed to coordinate a detailed study of the system. While that Campaign was deemed successful, the evolutionary status of the star system remained unclear. Epsilon Aurigae has been observed nearly continuously since the 1982 eclipse. The current Campaign was officially started in 2006. In addition to a Yahoo forum we have a dedicated web site and more than 18 online newsletters reporting photometry, spectroscopy, interferometry and polarimetry data. High quality UBVRIJH band photometric data since before the start of the current eclipse has been submitted. We explore the color differences among the light curves in terms of eclipse phases and archival data. At least one new model of the star system has been proposed since the current Campaign began: a low mass but very high luminosity F star plus a B star surrounded by a debris disk. The current eclipse and in particular the interferometry and spectroscopic data have caused new thoughts on defining eclipsing variable star contact points and phases of an eclipse. Second contact may not be the same point as start of totality and third contact may not be the same point as the start of egress and end of totality. In addition, the much awaited mid-eclipse brightening may or may not have appeared. This paper identifies the current Campaign contributors and the photometric data. This work was supported in part by the bequest of William Herschel Womble in support of astronomy at the University of Denver, by NSF grant 1016678 to the University of Denver.

  17. NASA photographer captures Super Blue Blood Moon beginning its eclipse January 31 from NASA's Armstrong Flight Research Center on the West Coast.

    NASA Image and Video Library

    2018-01-31

    California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon will pass through Earth's shadow and take on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).

  18. NASA Armstrong Flight Research Center's communications facility with radar dish and the eclipsed moon overhead during Jan. 31 Super Blue Blood Moon.

    NASA Image and Video Library

    2018-01-31

    California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).

  19. Lunar Outpost Life Support Trade Studies

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Anderson, Molly S.; Ewert, Michael K.; Barta, Daniel J.

    2008-01-01

    Engineering trade-off studies of life support system architecture and technology options were conducted for potential lunar surface mission scenarios within NASA's Constellation Program. The scenarios investigated are based largely on results of the NASA Lunar Architecture Team (LAT) Phase II study. In particular, the possibility of Hosted Sortie missions, the high cost of power during eclipse periods, and the potential to reduce life support consumables through scavenging, in-situ resources, and alternative EVA technologies were all examined. These trade studies were performed within the Systems Integration, Modeling and Analysis (SIMA) element of NASA's Exploration Life Support (ELS) technology development project. The tools and methodology used in the study are described briefly, followed by a discussion of mission scenarios, life support technology options and results presented in terms of equivalent system mass for various regenerative life support technologies and architectures. Three classes of repeated or extended lunar surface missions were investigated in this study along with several life support resource scenarios for each mission class. Individual mission durations of 14 days, 90 days and 180 days were considered with 10 missions assumed for each at a rate of 2 missions per year. The 14-day missions represent a class of Hosted Sortie missions where a pre-deployed and potentially mobile habitat provides life support for multiple crews at one or more locations. The 90-day and 180-day missions represent lunar outpost expeditions with a larger fixed habitat. The 180-day missions assume continuous human presence and must provide life support through eclipse periods of up to 122 hours while the 90-day missions are planned for best-case periods of nearly continuous sunlight. This paper investigates system optimization within the assumptions of each scenario and addresses how the scenario selected drives the life support system to different designs

  20. Crystal Growth and Characterization of the Narrow-Band-Gap Semiconductors OsPn 2 (Pn = P, As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugaris, Daniel E.; Malliakas, Christos D.; Shoemaker, Daniel P.

    2014-09-15

    Using metal fluxes, crystals of the binary osmium dipnictides OsPn(2) (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn(6) octahedra, as well as [Pn(2)(-4)] anions. Raman spectroscopy shows the presence of PP single bonds, consistent with the presence of [Pn(2)(-4)] anions and formally Os4+ cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2more » and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn(2) dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a PnPn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment.« less

  1. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    NASA Astrophysics Data System (ADS)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  2. Narrow band imaging in the diagnosis of intra-epithelial and invasive laryngeal squamous cell carcinoma: a preliminary report of two cases.

    PubMed

    Masaki, Takashi; Katada, Chikatoshi; Nakayama, Meijin; Takeda, Masahiko; Miyamoto, Shunsuke; Seino, Yutomo; Koizumi, Wasaburo; Tanabe, Satoshi; Horiguchi, Satoshi; Okamoto, Makito

    2009-12-01

    Narrow band imaging (NBI) is a novel optical technique that enhances the diagnostic capability of the gastrointestinal endoscope (GIE) by illuminating the intraepithelial papillary capillary loop (IPCL) using narrow bandwidth filters in a red-green-blue sequential illumination system (CV-260SL processor and CLV-260SL light source, Olympus Optical Co. Ltd, Tokyo, Japan). The NBI filter sets (415 nm and 540 nm) are selected to obtain fine images of the microvascular structure. Because 415 nm is the hemoglobin absorption band, capillaries on the mucosal surface can be seen most clearly at this wavelength. NBI is able to represent more clearly both capillary patterns and the boundary between different types of tissue, which are necessary for diagnosing a tumor in its early stage (Gono K, Yamazaki K, Doguchi N, Nonami T, Obi T, Yamaguchi M, et al. Endoscopic observation of tissue by narrow band illumination. Opt Rev 2003;10:211-215, Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue feature in narrow-band endoscopic imaging. J Biomed Opt 2004;9:568-577). We present two patients with laryngeal squamous cell carcinoma in whom the spread and the depth of invasion was evaluated with transnasal GIE equipped with NBI. Based on our results, the vascular neoplastic changes of carcinoma in situ of the larynx could be similar to carcinoma in situ of the esophagus.

  3. A search for narrow band signals with SERENDIP II: a progress report

    NASA Technical Reports Server (NTRS)

    Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  4. A search for narrow band signals with SERENDIP II: a progress report.

    PubMed

    Werthimer, D; Brady, R; Berezin, A; Bowyer, S

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  5. Implications of the Secondary Eclipse of Exoplanet HAT-P-11b

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We observed exoplanet HAT-P-11b and have successfully detected its secondary eclipse. We conducted observations using the Spitzer Space Telescope in the post-cryo mission at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b is one of only two known exo-Neptunes and has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. We discuss implications of these observations.

  6. Observation and Analysis of Secondary Eclipses of WASP-32b

    NASA Astrophysics Data System (ADS)

    Garland, Justin; Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Foster, Andrew S.; Bowman, Oliver; Maxted, Pierre F. L.

    2015-11-01

    We report two Spitzer secondary eclipses of the exoplanet WASP-32b. Discovered in 2010 by Maxted et al, this hot-Jupiter planet has a mass of 3.6 ± 0.07 Mj, a radius of 1.18 ± 0.07 Rj, an equilibrium temperature of 1560 ± 50 K, and an orbital period of 2.71865 ± 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 µm and 4.5 µm channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse depth estimates of 0.0013 ± 0.00023 in the 4.5 µm band and inconclusive results in the 3.6 µm band. We also report an infrared brightness temperature of 1538 ± 110 in the 4.5 µm channel and refinements of orbital parameters for WASP-32b from our eclipse measurement as well as amatuer and professional data that closely match previous results. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  7. Secondary Eclipse Observations and Orbital Analysis of WASP-32b

    NASA Astrophysics Data System (ADS)

    Garland, Justin; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Foster, Andrew S.; Bowman, Oliver; Maxted, Pierre F. L.

    2016-01-01

    We report two Spitzer secondary eclipses of the exoplanet WASP-32b. Discovered by Maxted et al. (2010), this hot-Jupiter planet has a mass of 3.6 ± 0.07 MJ a radius of 1.18 ± 0.07 RJ and an orbital period of 2.71865 ± 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 μm and 4.5 μm channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse depth estimates of 0.0013 ± 0.00023 in the 4.5 μm band and inconclusive results in the 3.6 μm band. We also report an infrared brightness temperature of 1538 ± 110 in the 4.5 μm channel and refinements of orbital parameters for WASP-32b from our eclipse measurement as well as amatuer and professional data that closely match previous results. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  8. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  9. Lunar architecture and urbanism

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1992-09-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  10. Lunar architecture and urbanism

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  11. A test of ν stability using a 200 GeV narrow-band neutrino beam at BEBC

    NASA Astrophysics Data System (ADS)

    Deden, H.; Grässler, H.; Kirch, D.; Schultze, K.; Böckmann, K.; Glimpf, W.; Kokott, T. P.; Nellen, B.; Saarikko, H.; Wünsch, B.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Peyrou, Ch.; Skjeggestad, O.; Wachsmuth, H.; Mermikides, M.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Petrides, A.; Powell, K. J.; Albajar, C.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Poppe, M.; Radojicic, D.; Renton, P.; Saitta, B.; Wells, J.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration

    1981-01-01

    νe induced events obtained in a 200 GeV narrow-band beam have been studied and compared to the number expected from K e3+ decay. Agreement is found between the expected and observed numbers allowing limits to be set on νe → νx mixing.

  12. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    PubMed

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  13. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  14. Lunar Flashlight

    NASA Technical Reports Server (NTRS)

    Baker, John; Cohen, Barbara; Walden, Amy

    2015-01-01

    The Lunar Flashlight is a Jet Propulsion Laboratory project, with NASA Marshall Space Flight Center (MSFC) serving as the principal investigator and providing the solar sail propulsion system. The goal of Lunar Flashlight is to determine the presence and abundance of exposed lunar water ice within permanently shadowed regions (PSRs) at the lunar south pole, and to map its concentration at the 1-2 kilometer scale to support future exploration and use. After being ejected in cis-lunar space by the launch vehicle, Lunar Flashlight deploys solar panels and an 85-square-meter solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit, spiraling down over a period of 18 months to a perilune of 30-10 kilometers above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight onto the lunar surface, measuring surface reflectance with a four-filter point spectrometer. The spectrometer measures water ice absorption features (1.5, 1.95 microns) and the continuum between them (1.1, 1.9 microns). The ratios of water ice bands to the continuum will provide a measure of the abundance of surface frost and its variability across PSRs. Water ice abundance will be correlated with other data from previous missions, such as the Lunar Reconnaissance Orbiter and Lunar Crater Observation and Sensing Satellite, to provide future human and robotic explorers with a map of potential resources. The mission is enabled by the use of an 85-square-meter solar sail being developed by MSFC.

  15. Educating the Public about the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2017-01-01

    On behalf of the International Astronomical Union's Working Group on Solar Eclipses, I have long worked to bring knowledge about eclipses and how to observe the safely to the people of the various countries from which partial, annular, or total solar eclipses are visible. In 2017, we have first a chance to educate the people of South America on the occasion of the February 26 annular eclipse through southern Chile and Argentina that is partial throughout almost the entire continent (and an eclipse workshop will be held February 22-24 in Esquel, Argentina: http://sion.frm.utn.edu.ar/WDEAII) and then a chance to educate the 300 million people of the United States and others in adjacent countries as far south as northern South America about the glories of totality and how to observe partial phases. Our website, a compendium of links to information about maps, safe observing, science, and more is at http://eclipses.info. We link to important mapping sites at EclipseWise.com, GreatAmericanEclipse.com, and http://xjubier.free.fr/en/site_pages/solar_eclipses/xSE_GoogleMap3.php?Ecl=+20170821&Acc=2&Umb=1&Lmt=1&Mag=1&Max=1, and information about cloudiness statistics at http://eclipsophile.com, as well as simulation sites at https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4314 and http://eyes.jpl.nasa.gov. The American Astronomical Society's task force on the 2017 eclipse has a website at http://eclipse.aas.org. We are working to disseminate accurate information about how and why to observe the total solar eclipse, trying among other things to head off common misinformation about the hazards of looking at the sun at eclipses or otherwise. About 12 million Americans live within the 70-mile-wide band of totality, and we encourage others to travel into it, trying to make clear the difference between even a 99% partial eclipse and a total eclipse, with its glorious Baily's beads, diamond rings, and totality that on this occasion lasts between 2 minutes and 2 minutes 40 seconds

  16. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background

    PubMed Central

    Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan

    2015-01-01

    Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387

  17. MODIS and SeaWIFS on-orbit lunar calibration

    USGS Publications Warehouse

    Sun, Jielun; Eplee, R.E.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.

    2008-01-01

    The Moon plays an important role in the radiometric stability monitoring of the NASA Earth Observing System's (EOS) remote sensors. The MODIS and SeaWIFS are two of the key instruments for NASA's EOS missions. The MODIS Protoflight Model (PFM) on-board the Terra spacecraft and the MODIS Flight Model 1 (FM1) on-board the Aqua spacecraft were launched on December 18, 1999 and May 4, 2002, respectively. They view the Moon through the Space View (SV) port approximately once a month to monitor the long-term radiometric stability of their Reflective Solar Bands (RSB). SeaWIFS was launched on-board the OrbView-2 spacecraft on August 1, 1997. The SeaWiFS lunar calibrations are obtained once a month at a nominal phase angle of 7??. The lunar irradiance observed by these instruments depends on the viewing geometry. The USGS photometric model of the Moon (the ROLO model) has been developed to provide the geometric corrections for the lunar observations. For MODIS, the lunar view responses with corrections for the viewing geometry are used to track the gain change for its reflective solar bands (RSB). They trend the system response degradation at the Angle Of Incidence (AOI) of sensor's SV port. With both the lunar observation and the on-board Solar Diffuser (SD) calibration, it is shown that the MODIS system response degradation is wavelength, mirror side, and AOI dependent. Time-dependent Response Versus Scan angle (RVS) Look-Up Tables (LUT) are applied in MODIS RSB calibration and lunar observations play a key role in RVS derivation. The corrections provided by the RVS in the Terra and Aqua MODIS data from the 412 nm band are as large as 16% and 13%, respectively. For SeaWIFS lunar calibrations, the spacecraft is pitched across the Moon so that the instrument views the Moon near nadir through the same optical path as it views the Earth. The SeaWiFS system gain changes for its eight bands are calibrated using the geometrically-corrected lunar observations. The radiometric

  18. Narrow-band evoked oto-acoustic emission from ears with normal and pathologic conditions.

    PubMed

    Takeda, Taizo; Kakigi, Akinobu; Takebayashi, Shinji; Ohono, Satoshi; Nishioka, Rie; Nakatani, Hiroaki

    2010-01-01

    Evoked oto-acoustic emission (EOAE), in particular the slow component, is fragile with the inner ear lesions and is apt to disappear in impaired ears. This presence is thought to mean that inner ear is not badly damaged, and that the presence of EOAEs in early stage sudden deafness carries a good prognosis. Narrow-band EOAE analysis would open a potentially promising way to manage sensorineural deafness. The aim of present study was to evaluate the characteristics of EOAEs from pathologic ears by a narrow-band EOAE analysis, which allowed us to investigate amplitude, frequency content and latency of EOAEs simultaneously and also to easily detect weak echoes in cases with inner ear lesions. EOAEs were analyzed by investigating narrow-band frequency contents of EOAEs, filtered by a 100-Hz step of pass bandwidth in frequency regions from 1.0 to 2.0 kHz, and by 500 Hz of pass bandwidth in the frequency ranges of 0.5-1.0 and 2.0-5.0 kHz. EOAE testing was performed in 40 normal ears and 111 ears with pathologic disorders, including sudden deafness, Ménière's disease and surgically proven acoustic neurinomas. Spontaneous oto-acoustic emission was investigated in some cases. In acoustic neurinoma, especially computed tomography scan and magnetic resonance imaging tests were performed to assess the tumor size. (1) Narrow-band EOAE analysis revealed that EOAEs from normal ears were composed of two main echo trains and several sub-echoes. The main echo trains were divided into a fast component with a short latency of <10 ms and a slow component with a long latency of >10 ms. (2) EOAEs could often be detected from ears with moderate to severe hearing loss >45 dB HL in early stage sudden deafness. The prognosis of sudden deafness was good in cases where both a fast component and slow component were detected in the acute stage within 2 weeks after the deafness onset, and was pessimistic, when either or both of them failed to recover. (3) In Ménière's disease, EOAE was found

  19. Using the Moon to Track MODIS Reflective Solar Bands Calibration Stability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Geng, Xu; Angal, Amit; Sun, Junqiang; Barnes, William

    2011-01-01

    MODIS has 20 reflective solar bands (RSB) in the visible (VIS), near infrared (NIR), and short-wave infrared (SWIR) spectral regions. In addition to instrument on-board calibrators (OBC), lunar observations have been used by both Terra and Aqua MODIS to track their reflective solar bands (RSB) on-orbit calibration stability. On a near monthly basis, lunar observations are scheduled and implemented for each instrument at nearly the same lunar phase angles. A time series of normalized detector responses to the Moon is used to monitor its on-orbit calibration stability. The normalization is applied to correct the differences of lunar viewing geometries and the Sun-Moon-Sensor distances among different lunar observations. Initially, the lunar calibration stability monitoring was only applied to MODIS bands (1-4 and 8-12) that do not saturate while viewing the Moon. As the mission continued, we extended the lunar calibration stability monitoring to other RSB bands (bands 13-16) that contain saturated pixels. For these bands, the calibration stability is monitored by referencing their non-saturated pixels to the matched pixels in a non-saturation band. In this paper, we describe this relative approach and apply it to MODIS regularly scheduled lunar observations. We present lunar trending results for both Terra and Aqua MODIS over their entire missions. Also discussed in the paper are the advantages and limitations of this approach and its potential applications to other earth-observing sensors. Keywords: Terra, Aqua, MODIS, sensor, Moon, calibration, stability

  20. H-tailored surface conductivity in narrow band gap In(AsN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O.

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  1. Solar Coronal Jets Extending to High Altitudes Observed during the 2017 August 21 Total Eclipse

    NASA Astrophysics Data System (ADS)

    Hanaoka, Yoichiro; Hasuo, Ryuichi; Hirose, Tsukasa; Ikeda, Akiko C.; Ishibashi, Tsutomu; Manago, Norihiro; Masuda, Yukio; Morita, Sakuhiro; Nakazawa, Jun; Ohgoe, Osamu; Sakai, Yoshiaki; Sasaki, Kazuhiro; Takahashi, Koichi; Toi, Toshiyuki

    2018-06-01

    Coronal jets, which extend from the solar surface to beyond 2 R ⊙, were observed in the polar coronal hole regions during the total solar eclipse on 2017 August 21. In a time-series of white-light images of the corona spanning 70 minutes taken with our multi-site observations of this eclipse, six jets were found as narrow structures upwardly ejected with an apparent speed of about 450 km s‑1 in polar plumes. On the other hand, extreme-ultraviolet (EUV) images taken with the Atmospheric Image Assembly of the Solar Dynamics Observatory show that all of the eclipse jets were preceded by EUV jets. Conversely, all the EUV jets whose brightnesses are comparable to ordinary soft X-ray jets and that occurred in the polar regions near the eclipse period, were observed as eclipse jets. These results suggest that ordinary polar jets generally reach high altitudes and escape from the Sun as part of the solar wind.

  2. Detection of the Secondary Eclipse of Exoplanet HAT P-11b

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.

    2010-01-01

    We have successfully conducted secondary eclipse observations of exoplanet HAT-P-11b using the Spitzer Space Telescope. HAT-P-11b was, until very recently, the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.

  3. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  4. Photometric Study of the Pulsating, Eclipsing Binary OO Dra

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Yan, Z. Z.; Luo, Z. Q.; Luo, C. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  5. Anomalous resistivity and superconductivity in the two-band Hubbard model with one narrow band (Review)

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.; Valkov, V. V.

    2011-01-01

    We search for marginal Fermi-liquid behavior in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron-polaron effects and other mechanisms for mass-enhancement (related to the momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find a tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case with a large mismatch between the densities of heavy and light bands in the strong coupling limit. We also find that for low temperatures and equal densities, the resistivity in a homogeneous state R(T )∝T2 behaves as a Fermi-liquid in both 3D and 2D. For temperatures greater than the effective bandwidth for heavy electrons T >Wh*, the coherence of the heavy component breaks down completely. The heavy particles move diffusively in the surrounding light particles. At the same time, light particles scatter on heavy particles as if on immobile (static) impurities. Under these conditions, the heavy component is marginal, while the light component is not. The resistivity approaches saturation for T >Wh* in the 3D case. In 2D the resistivity has a maximum and a localization tail owing to weak-localization corrections of the Altshuler-Aronov type. This behavior of resistivity in 3D could be relevant for some uranium-based heavy-fermion compounds such as UNi2Al3 and in 2D, for some other mixed-valence compounds, possibly including layered manganites. We also consider briefly the superconductive (SC) instability in this model. The leading instability tends to p-wave pairing and is governed by an enhanced Kohn-Luttinger mechanism for SC at low electron densities. The critical temperature corresponds to the pairing of heavy electrons via polarization of

  6. Nature of the narrow optical band in H*-aggregates: Dozy-chaos–exciton coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, Vladimir V., E-mail: egorov@photonics.ru

    2014-07-15

    Dozy chaos emerges as a combined effect of the collective chaotic motion of electrons and nuclei, and their chaotic electromagnetic interactions in the transient state of molecules experiencing quantum transitions. Following earlier discussions of the well-known Brönsted relations for proton-transfer reactions; the temperature-dependent electron transfer in Langmuir–Blodgett films; the shape of the optical bands of polymethine dye monomers, their dimers, and J-aggregates, this paper reports one more application of the dozy-chaos theory of molecular quantum transitions. The qualitative and quantitative explanations for shape of a narrow and blue-shifted optical absorption band in H{sup *}-aggregates is given on the basis ofmore » the dozy-chaos theory by taking into account the dozy-chaos–exciton coupling effect. It is emphasized that in the H{sup *}-aggregate chromophore (dimer of cyclic bis-thiacarbocyanines) there is a competition between two Frenkel exciton transitions through the chaotic reorganization motion of nuclear environment. As a result, the highly organized quantum transition to the upper exciton state becomes an exciton-induced source of dozy chaos for the low organized transition to the lower exciton state. This manifests itself in appearing the narrow peak and broad wing in the optical spectrum pattern of H{sup *}-aggregates. A similar enhancement in the H{sup *}-effect caused by the strengthening of the exciton coupling in H{sup *}-dimers, which could be achieved by synthesizing tertiary and quarternary thiacarbocyanine monomers, is predicted.« less

  7. Nature of men and higher animals' response to the lunar phases.

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Vladimir, Vorobeichikov; Viktor, Stepanov; Eduard, Gorshkov

    The Moon impact on the abnormal behavior of men and higher animals was marked during the entire mankind history, but the nature of this effect remained unclear. The popular hypothesis of the tidal influence of the Moon on the living organisms turned out to be incompatible with the contemporary biophysics concepts. In addition, the estimates of the lunar gravity influence on the men organism showed the negligible value of the possible effect. Vorobeichikov et al. [2006] were the first who suggested that the organisms' response to the lunar phases can be linked with the bacillus E.coli inhabiting in the bowels of the living organisms. E.coli belongs to family of enterobacteria, which are the important component of the human body microflora. Bacteria E.coli being sowed in the nutritious medium go in their development through four stages: adjusting, explosive reproducing, stationary, and dieing. The adjusting stage (or lagphase) is the most interesting for researchers, since duration of this phase L (the interval between the sowing time and the onset of the quick, exponential reproduction) is strongly influenced by the external conditions and can vary from standard 3 - 3.5 hours to some minutes. In our experiments the lag-phase L was determined for days of new moon and full moon, and for such exclusive events as the solar and lunar eclipses. The standard quantity of E.coli was sowed in the standard volume of the artificial nutritive. Lag-phase was detected every 1 minute near the key moment and every 15 minutes at other hours. It turned out that lag-phase is reduced to 1.5 hour for new moon, 1 hour for full moon, 0.5 hour for the lunar eclipse and falls to zero for the solar eclipse. In the latter case it took about 10 hours for the lag phase reduction before the eclipse and the lag-phase recovery after the eclipse. In case of a new moon the lag phase reduction lasted about half of hour. Thus, the close was the Moon to the line Sun-Earth, the shorter was lag phase and

  8. Optical Design with Narrow-Band Imaging for a Capsule Endoscope.

    PubMed

    Yen, Chih-Ta; Lai, Zong-Wei; Lin, Yu-Ting; Cheng, Hsu-Chih

    2018-01-01

    The study proposes narrow-band imaging (NBI) lens design of 415 nm and 540 nm of a capsule endoscope (CE). The researches show that in terms of the rate of accuracy in detecting and screening neoplastic and nonneoplastic intestinal lesions, the NBI system outperformed that of traditional endoscopes and rivaled that of chromoendoscopes. In the proposed NBI CE optical system, the simulation result shows the field of view (FOV) was 109.8°; the modulation transfer function (MTF) could achieve 12.5% at 285 lp/mm and 34.1% at 144 lp/mm. The relative illumination reaches more than 60%, and the system total length was less than 4 mm. Finally, this design provides high-quality images for a 300-megapixel 1/4 ″ CMOS image sensor with a pixel size of 1.75  μ m.

  9. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  10. Teaching Using Immersion - Explaining Magnetism and Eclipses in a Planetarium Dome

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.

    2017-12-01

    Previously we have shown that three-dimensional concepts are more readily learned in a three-dimensional context. Although VR headsets are growing in popularity, they only provide a quite limited field of view, and each person in a group may be viewing a different direction or a different time in the visualization. By using instead a fullsphere movie (VR360) in a planetarium dome instead of a headset, you can share the VR and specify which half of the sphere your audience is looking at. You can pause the movie, ask questions using a clicker system, display the results, and move on if the subject is mastered or explain if items are not understood. In this paper we have used a planetarium dome in its more traditional "hemisphere" mode to teach about magnetism (using our new show "Magnetism - Defending Our Planet, Defining the Cosmos" ) and pre/post testing to show how many concepts can be understood in a relatively short experience. We have identified 35 concepts that most high school students do NOT know about magnetism, and have done pre/post testing on students and teachers. Most students more than doubled the number of concepts that they were able to explain after watching the show just one time. We have also created a series of eclipse animations to teach about solar and lunar eclipses. These animations have been used in more than 500 planetarium theaters and used as part of several TV specials on the August 2017 eclipse. By teaching eclipses in a dome, the students correctly understand the three-dimensional geometry of the Earth and Moon orbits and the causes of eclipses.

  11. The Hazard of Exposure to 2.075 kHz Center Frequency Narrow Band Impulses

    DTIC Science & Technology

    1991-09-01

    i By r James H. Patterson, Jr. Kevin Bordwell Sensory Research Division and Roger P. Hamernik William A. Ahroon George Turrentine C. E. Hargett, Jr...The hazard of exposure to 2.075 kHz center frequency narrow band impulses 12. PERSONAL AUTHOR(S) James H. Patterson, Jr., Kevin Bordwell , Roger P...Patterson, J. H., Jr., Carrier, M., Jr., Bordwell , K., Lomba Gautier, I. M., Hamernik, R. P., Ahroon, W. A., Turrentine, G. A., and Hargett, C. E., Jr

  12. Polarimetric Observations of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Kim, S.

    2017-12-01

    Polarimetric images contain valuable information on the lunar surface such as grain size and porosity of the regolith, from which one can estimate the space weathering environment on the lunar surface. Surprisingly, polarimetric observation has never been conducted from the lunar orbit before. A Wide-Angle Polarimetric Camera (PolCam) has been recently selected as one of three Korean science instruments onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is aimed to be launched in 2019/2020 as the first Korean lunar mission. PolCam will obtain 80 m-resolution polarimetric images of the whole lunar surface between -70º and +70º latitudes at 320, 430 and 750 nm bands for phase angles up to 115º. I will also discuss previous polarimetric studies on the lunar surface based on our ground-based observations.

  13. Comparison between ABR with click and narrow band chirp stimuli in children.

    PubMed

    Zirn, Stefan; Louza, Julia; Reiman, Viktor; Wittlinger, Natalie; Hempel, John-Martin; Schuster, Maria

    2014-08-01

    Click and chirp-evoked auditory brainstem responses (ABR) are applied for the estimation of hearing thresholds in children. The present study analyzes ABR thresholds across a large sample of children's ears obtained with both methods. The aim was to demonstrate the correlation between both methods using narrow band chirp and click stimuli. Click and chirp evoked ABRs were measured in 253 children aged from 0 to 18 years to determine their individual auditory threshold. The delay-compensated stimuli were narrow band CE chirps with either 2000 Hz or 4000 Hz center frequencies. Measurements were performed consecutively during natural sleep, and under sedation or general anesthesia. Threshold estimation was performed for each measurement by two experienced audiologists. Pearson-correlation analysis revealed highly significant correlations (r=0.94) between click and chirp derived thresholds for both 2 kHz and 4 kHz chirps. No considerable differences were observed either between different age ranges or gender. Comparing the thresholds estimated using ABR with click stimuli and chirp stimuli, only 0.8-2% for the 2000 Hz NB-chirp and 0.4-1.2% of the 4000 Hz NB-chirp measurements differed more than 15 dB for different degrees of hearing loss or normal hearing. The results suggest that either NB-chirp or click ABR is sufficient for threshold estimation. This holds for the chirp frequencies of 2000 Hz and 4000 Hz. The use of either click- or chirp-evoked ABR allows a reduction of recording time in young infants. Nevertheless, to cross-check the results of one of the methods, we recommend measurements with the other method as well. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Lunar Reconnaissance Orbiter K-Band (26 GHz) Signal Analysis: Initial Study Results

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Heckman, D.

    2017-11-01

    Lower frequency telemetry bands are becoming more limited in bandwidth due to increased competition between flight projects and other entities. Higher frequency bands offer significantly more bandwidth and hence the prospect of much higher data rates. Future or prospective flight projects considering higher frequency bands such as Ka-band (32 GHz) for deep-space and K-band (26 GHz) for near-Earth telemetry links are interested in past flight experience with available received data at these frequencies. Given that there is increased degradation due to the atmosphere at these higher frequencies, there is an effort to retrieve flight data of received signal strength to analyze performance under a variety of factors. Such factors include elevation angle, season, and atmospheric conditions. This article reports on the analysis findings of over 10 million observations of received signal strength of the Lunar Reconnaissance Orbiter (LRO) spacecraft collected between 2014 and 2017. We analyzed these data to characterize link performance over a wide range of weather conditions, season, and as a function of elevation angle. Based on this analysis, we have confirmed the safety of using a 3-dB margin for preflight planning purposes. These results suggest that a 3-dB margin with respect to adverse conditions will ensure a 98 to 99 percent data return under 95 percent weather conditions at 26 GHz (K-band), thus confirming expectations from link budget predictions. The results suggest that this margin should be applicable for all elevation angles above 10 deg. Thus, missions that have sufficient power for their desired data rates may opt to use 10 deg as their minimum elevation angle. Limitations of this study include climate variability and the fact that the observations require removal of hotbody noise in order to perform an adequate cumulative distribution function (CDF) analysis, which is planned for a future comprehensive study. Flight projects may use other link margins

  15. Dissepiments, density bands and signatures of thermal stress in Porites skeletons

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Cohen, Anne L.

    2017-09-01

    The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the

  16. Re-Os Isotope Systematics in Lunar Soils and Breccias

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A; Wasserburg, G. J.

    2002-01-01

    Lunar soil and breccia samples show a narrow range in 187Os/188Os, in the range for H-chondrites and unfractionated irons. All samples show enrichments in 187Re/188Os, possibly reflecting loss of Os, associated with the terminal lunar cataclysm. Additional information is contained in the original extended abstract.

  17. Investigation of narrow-band thermal emission from intersubband transitions in quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Zoysa, M.; Hakubi Center, Kyoto University, Yoshida, Kyoto 606-8501; Asano, T.

    2015-09-14

    We investigate thermal emission from n-doped GaAs/AlGaAs quantum wells (QWs). Emission peaks with Lorentzian shapes (linewidth 11∼19 meV) that reflect transitions between the first and second conduction subbands are observed in the mid-infrared range. It is demonstrated that the emission characteristics can be tuned by modifying the QW parameters. The peak emissivity is increased from 0.3 to 0.9 by modifying the doping density, and the peak wavelength is tuned from 6 to 10 μm by changing the well width. The obtained results are useful for the design of narrow-band thermal emitters.

  18. Optical polarization observations of epsilon Aurigae during the 2009-2011 eclipse

    NASA Astrophysics Data System (ADS)

    Henson, Gary D.; Burdette, John; Gray, Sharon

    2012-05-01

    Polarization observations of the unique eclipsing binary, Epsilon Aurigae, are being carried out using a new dual beam imaging polarimeter on the 0.36m telescope of the Harry D. Powell Observatory. This bright binary system has a 27.1 year period with an eclipse duration of nearly two years. The primary is known to be a pulsating F0 supergiant with the secondary a large and essentially opaque disk. We report here on the characteristics of the polarimeter and on the status of V-band observations that are being obtained to better understand the system's geometry and the nature of its two components. In particular, the characteristics of the secondary disk remain a puzzle. Results are compared to polarization observations from the 1982-1984 eclipse.

  19. St. Benedict Sees the Light: Asam's Solar Eclipses as Metaphor

    NASA Astrophysics Data System (ADS)

    Olson, Roberta J. M.; Pasachoff, Jay M.

    During the Baroque period, artists worked in a style - encouraged by the Roman Catholic Church and the Council of Trent - that revealed the divine in natural forms and made religious experiences more accessible. Cosmas Damian Asam, painter and architect, and his brother Egid (Aegid) Quirin Asam, sculptor and stuccatore, were the principal exponents of eighteenth-century, southern-German religious decoration and architecture in the grand manner, the Gesamtkunstwerk. Cosmas Damian's visionary and ecstatic art utilized light, both physical and illusionistic, together with images of meteorological and astronomical phenomena, such as solar and lunar eclipses. This paper focuses on his representations of eclipses and demonstrates how Asam was galvanized by their visual, as well as metaphorical power and that he studied a number of them. He subsequently applied his observations in a series of paintings for the Benedictine order that become increasingly astronomically accurate and spiritually profound. From the evidence presented, especially in three depictions of St. Benedict's vision, the artist harnessed his observations to visualize the literary description of the miraculous event in the Dialogues of St. Gregory the Great, traditionally a difficult scene to illustrate, even for Albrecht Dürer. Asam painted the trio at Einsiedeln, Switzerland (1724-27); Kladruby, the Czech Republic (1725-27), where he captured the solar corona and the "diamond-ring effect"; and Weltenburg, Germany (1735), where he also depicted the diamond-ring effect at a total solar eclipse. We conclude that his visualizations were informed by his personal observations of the solar eclipses on 12 May 1706, 22 May 1724, and 13 May 1733. Asam may have also known the eclipse maps of Edmond Halley and William Whiston that were issued in advance. Astronomers did not start studying eclipses scientifically until the nineteenth century, making Asam's depictions all the more fascinating. So powerful was the

  20. Photometric study of the pulsating, eclipsing binary OO DRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component.more » A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.« less

  1. NASA Armstrong Flight Research Center’s communications facility with radar dish and antennas is shown having the eclipsed moon overhead during Jan. 31 Super Blue Blood Moon.

    NASA Image and Video Library

    2018-01-31

    California’s NASA Armstrong Flight Research Center’s photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).

  2. Five years of Project META - An all-sky narrow-band radio search for extraterrestrial signals

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul; Sagan, Carl

    1993-01-01

    We have conducted a five-year search of the northern sky (delta between 30 and 60 deg) for narrow-band radio signals near the 1420 MHz line of neutral hydrogen, and its second harmonic, using an 8.4 x 10 exp 6 channel Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earth's rotation, which provides a characteristic changing Doppler signature for narrow-band signals of extraterrestrial origin. Among the 6 x 10 exp 13 spectral channels searched, we have found 37 candidate events exceeding the average detection threshold of 1.7 x 10 exp -23 W/sq m, none of which was detected upon reobservation. The strongest of these appear to be dominated by rare processor errors. However, the strongest signals that survive culling for terrestrial interference lie in or near the Galactic plane. We describe the search and candidate events, and set limits on the prevalence of supercivilizations transmitting Doppler-precompensated beacons at H I or its second harmonic. We conclude with recommendations for future searches, based upon these findings, and a description of our next-generation search system.

  3. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications

    PubMed Central

    Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing

    2016-01-01

    Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540

  4. The 2017 solar eclipse and Majorana & Allais gravity anomalies

    NASA Astrophysics Data System (ADS)

    Munera, Hector A.

    2017-01-01

    Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce

  5. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  6. Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Wagner, R. V.; Robinson, M. S.; Licht, A.; Thomas, P. C.; Becker, K.; Anderson, J.; Brylow, S. M.; Humm, D. C.; Tschimmel, M.

    2016-04-01

    The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90∘ field of view in monochrome mode and 60∘ field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.

  7. Image is NASA Armstrong Flight Research Center's aircraft hangar that houses the jets and other aircraft with the eclipsed moon overhead during Jan. 31 Super Blue Blood Moon.

    NASA Image and Video Library

    2018-01-31

    California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).

  8. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wu, Chen; Huang, Xueqin; Zhao, Zhengyu; Zhong, Dingkun; Qi, Hao; Huang, Liang; Qiao, Lei; Wang, Jin

    2015-04-01

    The solar eclipse effects on the ionosphere are very complex. Except for the ionization decay due to the decrease of the photochemical process, the couplings of matter and energy between the ionosphere and the regions above and below will introduce much more disturbances. Five ionosondes in the Northeast Asia were used to record the midlatitude ionospheric responses to the solar eclipse of 20 May 2012. The latitude dependence of the eclipse lag was studied first. The foF2 response to the eclipse became slower with increased latitude. The response of the ionosphere at the different latitudes with the same eclipse obscuration differed from each other greatly. The plasma flux from the protonsphere was possibly produced by the rapid temperature drop in the lunar shadow to make up the ionization loss. The greater downward plasma flux was generated at higher latitude with larger dip angle and delayed the ionospheric response later. The waves in the foEs and the plasma frequency at the fixed height in the F layer are studied by the time period analytic method. The gravity waves of 43-51 min center period during and after the solar eclipse were found over Jeju and I-Cheon. The northward group velocity component of the gravity waves was estimated as ~108.7 m/s. The vertical group velocities between 100 and 150 km height over the two stations were calculated as ~5 and ~4.3 m/s upward respectively, indicating that the eclipse-induced gravity waves propagated from below the ionosphere.

  9. A daytime measurement of the lunar contribution to the night sky brightness in LSST's ugrizy bands-initial results

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Stubbs, Christopher; Claver, Chuck

    2016-06-01

    We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope's u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3-0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.

  10. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in seasonal affective disorder.

    PubMed

    Meesters, Ybe; Duijzer, Wianne B; Hommes, Vanja

    2018-05-01

    Ever since a new photoreceptor was discovered with a highest sensitivity to 470-490 nm blue light, it has been speculated that blue light has some advantages in the treatment of Seasonal Affective Disorder (SAD) over more traditional treatments. In this study we compared the effects of exposure to narrow-band blue light (BLUE) to those of broad-wavelength white light (BLT) in the treatment of SAD. In a 15-day design, 45 patients suffering from SAD completed 30-min sessions of light treatment on 5 consecutive days. 21 subjects received white-light treatment (BLT, broad-wavelength without UV, 10 000 lx, irradiance 31.7 W/m 2 ), 24 subjects received narrow-band blue light (BLUE, 100 lx, irradiance 1.0 W/m 2 ). All participants completed weekly questionnaires concerning mood and energy levels, and were also assessed by means of the SIGH-SAD, which is the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 73.2%, effect size 3.37; BLUE 67%, effect size 2.63), which outcomes were not statistically significant different between both conditions. Small sample size. Light treatment is an effective treatment for SAD. The use of narrow-band blue light is equally effective as a treatment using bright white-light. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  12. Novel schemes for the optimization of the SPARC narrow band THz source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, B., E-mail: barbara.marchetti@desy.de; Zagorodnov, I.; Bacci, A.

    2015-07-15

    A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-bandmore » and acting as a longitudinal phase space linearizer.« less

  13. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  14. High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH 3 -(CH 2 ) 4 -NH 3 ]CuCl 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Li, Shourui; Wang, Kai

    Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH 3-(CH 2) 4-NH 3]CuCl 4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl 4 2–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the springmore » cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl 4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.« less

  15. A 1.1-1.9 GHz SETI Survey of the Kepler Field. I. A Search for Narrow-band Emission from Select Targets

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew P. V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Howard, Andrew W.; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill

    2013-04-01

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T eq > 230 K, stars with five or more detected candidates or stars with a super-Earth (R p < 3 R ⊕) in a >50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 × 1021 erg s-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be {<}10^{-6}\\ M^{-1}_\\odot. Here we describe our observations, data reduction procedures and results.

  16. What If It Rains on Your Eclipse? Planning Ahead for August 2017

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Keohane, J.

    2010-01-01

    It was a dark and rainy morning, not far out of Shanghai, when we saw the 2009 July 22 total solar eclipse. Many of the Americans puttering around their equipment that morning, in hopes that the sky would clear enough to catch some of event they had traveled around the world to view, were already planning ahead for 2017 August 21, when a narrow strip of the United States will experience up to 2 minutes and 45 seconds of totality. For most people, a total solar eclipse is once in a lifetime event steeped in legend. If you are situated along this privileged corridor, you will have a wonderful opportunity for public outreach. But what if it rains? Historically, August is mostly sunny at the location of greatest eclipse, near Makanda, Illinois. Even with such favorable circumstances, having a rain plan will ensure you make the most of the occasion. First, the flexibility to relocate your program to take advantage of the most favorable weather would be ideal. If that is not a realistic option, include some protective gear with your equipment so that you can set up despite misty or drizzling conditions. Second, monitoring changing light levels and temperatures should be possible even under cloudy skies. Third, for some sites, changes in wildlife behavior may also be noticeable. If the weather is clear, such projects could enhance your program during the partial phases of the eclipse and provide enrichment materials for those unable to attend. While 2017 may still seem in the distant future to all but eclipse fanatics, some creativity and advance brainstorming will ensure that your outreach program shines during the event, even if the Sun does not cooperate. S. Bell (2009, pc.), HMNAO, provided the eclipse predictions. Additional information is available via USNO Eclipse Portal (http://www.eclipse.org.uk/eclbin/query_usno.cgi).

  17. Narrow-band EUV Multilayer Coating for the MOSES Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Owens, Scott M.; Gum, Jeffery S.; Tarrio, Charles; Dvorak, Joseph; Kjornrattanawanich, Benjawan; Keski-Kuha, Ritva; Thomas, Roger J.; Kankelborg, Charles C.

    2005-01-01

    The Multi-order Solar EUV Spectrograph (MOSES) is a slitless spectrograph designed to study solar He II emission at 303.8 Angstroms, to be launched on a sounding rocket payload. One difference between MOSES and other slitless spectrographs is that the images are recorded simultaneously at three spectral orders, m = -1,0, +l. Another is the addition of a narrow-band multilayer coating on both the grating and the fold flat, which will reject out-of-band lines that normally contaminate the image of a slitless instrument. The primary metrics f a the mating were high peak reflectivity and suppression of Fe XV and XVI emission lines at 284 Angstroms and 335 Angstroms, respectively. We chose B4C/Mg2Si for our material combination since it provides better values for all three metrics together than the other leading candidates Si/Ir, Si/B4C or Si/SiC. Measurements of witness flats at NIST indicate the peak reflectivity at 303.6 is 38.5% for a 15 bilayer stack, while the suppression at 284 Angstroms, is 4.5x and at 335 Angstroms is 18.3x for each of two reflections in the instrument. We present the results of coating the MOSES flight gratings and fold flat, including the spectral response of the fold flat and grating as measured at NIST's SURF III and Brookhaven's X24C beamline.

  18. Measuring Solar Coronal Magnetism during the Total Solar Eclipse of 2017

    NASA Astrophysics Data System (ADS)

    Gibson, K. L.; Tomczyk, S.

    2017-12-01

    The total solar eclipse on August 21, 2017 provided a notable opportunity to measure the solar corona at specific emission wavelengths to gain information about coronal magnetic fields. Solar magnetic fields are intimately related to the generation of space weather and its effects on the earth, and the infrared imaging and polarization information collected on coronal emission lines here will enhance the scientific value of several other ongoing experiments, as well as benefit the astrophysics and upper atmosphere communities. Coronal measurements were collected during the 2 minute and 24 second totality period from Casper Mountain, WY. Computer-controlled telescopes automatically inserted four different narrow band pass filters to capture images in the visible range on a 4D PolCam, and in the infrared range on the FLIR 8501c camera. Each band pass filter selects a specific wavelength range that corresponds to a known coronal emission line possessing magnetic sensitivity. The 4D PolCam incorporated a novel grid of linear polarizers precisely aligned with the micron scale pixels. This allowed for direct measurement of the degree of linear polarization in a very small instrument with no external moving parts as is typically required. The FLIR offers short exposure times to freeze motion and output accurate thermal measurements. This allowed a new observation of the sun's corona using thermo infrared technology.

  19. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2010-09-10

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)

  20. The Earth Based Ground Stations Element of the Lunar Program

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles

    2007-01-01

    The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.

  1. Recovering physical properties from narrow-band photometry

    NASA Astrophysics Data System (ADS)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  2. Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.

    PubMed

    Kartashova, Elena

    2012-10-01

    A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.

  3. Lunar apennine-hadley region: geological inplications of Earth-based radar and infrared measurements.

    PubMed

    Zisk, S H; Carr, M H; Masursky, H; Shorthill, R W; Thompson, T W

    1971-08-27

    Recently completed high-resolution radar maps of the moon contain information on the decimeter-scale structure of the surface. When this information is combined with eclipse thermal-enhancement data and with high-resolution Lunar Orbiter photography, the surface morphology is revealed in some detail. A geological history for certain features and subareas can be developed, which provides one possible framework for the interpretation of the findings from the Apollo 15 landing. Frequency of decimeter-and meter-size blocks in and around lunar craters, given by the remote-sensed data, supports a multilayer structure in the Palus Putredinis mare region, as well as a great age for the bordering Apennine Mountains scarp.

  4. Lunar Apennine-Hadley region: Geological implications of earth-based radar and infrared measurements

    USGS Publications Warehouse

    Zisk, S.H.; Carr, M.H.; Masursky, H.; Shorthill, R.W.; Thompson, T.W.

    1971-01-01

    Recently completed high-resolution radar maps of the moon contain information on the decimeter-scale structure of the surface. When this information is combined with eclipse thermal-enhancement data and with high-resolution Lunar Orbiter photography, the surface morphology is revealed in some detail. A geological history for certain features and subareas can be developed, which provides one possible framework for the interpretation of the findings from the Apollo 15 landing. Frequency of decimeter- and meter-size blocks in and around lunar craters, given by the remote-sensed data, supports a multilayer structure in the Palus Putredinis mare region, as well as a great age for the bordering Apennins Mountains scarp.

  5. Update on narrow band imaging in disorders of the upper gastrointestinal tract.

    PubMed

    Singh, Rajvinder; Lee, Shok Y; Vijay, Nimal; Sharma, Prateek; Uedo, Noriya

    2014-03-01

    With the ever-increasing concern regarding morbidity and mortality associated with diseases of the gastrointestinal tract, the importance of an effective and efficient diagnostic tool cannot be overstated. The standard of care currently is an examination using conventional white light endoscopy. This approach may occasionally overlook areas exhibiting a premalignant change. Numerous image-enhanced modalities have been recently introduced. Narrow band imaging (NBI) appears to be the most prominent of these and perhaps the most commonly used. Thepresent review will focus on some of the newer studies on NBI and its utility in the diagnosis of malignant, pre-malignant and chronic inflammatory conditions of the upper gastrointestinal tract. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  6. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the

  7. Extracting Quantitative Data from Lunar Soil Spectra

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.; Hiroi, T.

    2005-01-01

    Using the modified Gaussian model (MGM) developed by Sunshine et al. [1] we compared the spectral properties of the Lunar Soil Characterization Consortium (LSCC) suite of lunar soils [2,3] with their petrologic and chemical compositions to obtain quantitative data. Our initial work on Apollo 17 soils [4] suggested that useful compositional data could be elicited from high quality soil spectra. We are now able to expand upon those results with the full suite of LSCC soils that allows us to explore a much wider range of compositions and maturity states. The model is shown to be sensitive to pyroxene abundance and can evaluate the relative portion of high-Ca and low-Ca pyroxenes in the soils. In addition, the dataset has provided unexpected insights into the nature and causes of absorption bands in lunar soils. For example, it was found that two distinct absorption bands are required in the 1.2 m region of the spectrum. Neither of these bands can be attributed to plagioclase or agglutinates, but both appear to be largely due to pyroxene.

  8. Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems

    NASA Astrophysics Data System (ADS)

    Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek

    2016-07-01

    We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.

  9. RAPID: Collaborative Commanding and Monitoring of Lunar Assets

    NASA Technical Reports Server (NTRS)

    Torres, Recaredo J.; Mittman, David S.; Powell, Mark W.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Abramyan, Lucy; Shams, Khawaja S.; Wallick, Michael; Allan, Mark; hide

    2011-01-01

    RAPID (Robot Application Programming Interface Delegate) software utilizes highly robust technology to facilitate commanding and monitoring of lunar assets. RAPID provides the ability for intercenter communication, since these assets are developed in multiple NASA centers. RAPID is targeted at the task of lunar operations; specifically, operations that deal with robotic assets, cranes, and astronaut spacesuits, often developed at different NASA centers. RAPID allows for a uniform way to command and monitor these assets. Commands can be issued to take images, and monitoring is done via telemetry data from the asset. There are two unique features to RAPID: First, it allows any operator from any NASA center to control any NASA lunar asset, regardless of location. Second, by abstracting the native language for specific assets to a common set of messages, an operator may control and monitor any NASA lunar asset by being trained only on the use of RAPID, rather than the specific asset. RAPID is easier to use and more powerful than its predecessor, the Astronaut Interface Device (AID). Utilizing the new robust middleware, DDS (Data Distribution System), developing in RAPID has increased significantly over the old middleware. The API is built upon the Java Eclipse Platform, which combined with DDS, provides platform-independent software architecture, simplifying development of RAPID components. As RAPID continues to evolve and new messages are being designed and implemented, operators for future lunar missions will have a rich environment for commanding and monitoring assets.

  10. COMPASS Final Report: Lunar Relay Satellite (LRS)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2012-01-01

    The Lunar Relay Satellite (LRS) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session was tasked to design a satellite to orbit in an elliptical lunar polar orbit to provide relay communications between lunar South Pole assets and the Earth. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The LRS is a half-TDRSS sized box spacecraft, which provides communications and navigation relay between lunar outposts (via Lunar Communications Terminals (LCT)) or Sortie parties (with user radios) and large ground antennas on Earth. The LRS consists of a spacecraft containing all the communications and avionics equipment designed by NASA Jet Propulsion Laboratory s (JPL) Team X to perform the relay between lunar-based assets and the Earth. The satellite design is a standard box truss spacecraft design with a thermal control system, 1.7 m solar arrays for 1 kWe power, a 1 m diameter Ka/S band dish which provides relay communications with the LCT, and a Q-band dish for communications to/from the Earth based assets. While JPL's Team X and Goddard Space Flight Center s (GSFC) I M Design Center (IMDC) have completed two other LRS designs, this NASA Glenn Research Center (GRC) COMPASS LRS design sits between them in terms of physical size and capabilities.

  11. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    NASA Astrophysics Data System (ADS)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  12. First Results of Exoplanet Observations with the Gran Telescopio Canarias: Narrow-Band Transit Photometry Capable of Detecting Super-Earth-size Planets

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.

    2010-01-01

    We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  13. Narrow Band Filter at 1550 nm Based on Quasi-One-Dimensional Photonic Crystal with a Mirror-Symmetric Heterostructure.

    PubMed

    Wang, Fang; Cheng, Yong Zhi; Wang, Xian; Zhang, Yi Nan; Nie, Yan; Gong, Rong Zhou

    2018-06-27

    In this paper, we present a high-efficiency narrow band filter (NBF) based on quasi-one-dimensional photonic crystal (PC) with a mirror symmetric heterostructure. Similarly to the Fabry-Perot-like resonance cavity, the alternately-arranged dielectric layers on both sides act as the high reflectance and the junction layers used as the defect mode of the quasi-one-dimensional PC, which can be designed as a NBF. The critical conditions for the narrow pass band with high transmittance are demonstrated and analyzed by simulation and experiment. The simulation results indicate that the transmission peak of the quasi-one-dimensional PC-based NBF is up to 95.99% at the telecommunication wavelength of 1550 nm, which agrees well with the experiment. Furthermore, the influences of the periodicity and thickness of dielectric layers on the transmission properties of the PC-based NBF also have been studied numerically. Due to its favorable properties of PC-based NBF, it is can be found to have many potential applications, such as detection, sensing, and communication.

  14. Eclipsing damped Ly α systems in the Sloan Digital Sky Survey Data Release 12

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Petitjean, P.; Jamialahmadi, N.; Khosroshahi, H. G.; Rahmani, H.; Finley, H.; Noterdaeme, P.; Pâris, I.; Srianand, R.

    2018-07-01

    We present the results of our automatic search for proximate damped Ly α absorption (PDLA) systems in the quasar spectra from the Sloan Digital Sky Survey Data Release 12. We constrain our search to those PDLAs lying within 1500 km s-1 from the quasar to make sure that the broad DLA absorption trough masks most of the strong Ly α emission from the broad-line region (BLR) of the quasar. When the Ly α emission from the BLR is blocked by these so-called eclipsing DLAs, narrow Ly α emission from the host galaxy could be revealed as a narrow emission line (NEL) in the DLA trough. We define a statistical sample of 399 eclipsing DLAs with log N(H I) ≥ 21.10. We divide our statistical sample into three subsamples based on the strength of the NEL detected in the DLA trough. By studying the stacked spectra of these subsamples, we found that absorptions from high ionization species are stronger in DLAs with stronger NEL in their absorption core. Moreover, absorption from the excited states of species like SIII are also stronger in DLAs with stronger NEL. We also found no correlation between the luminosity of the Ly α NEL and the quasar luminosity. These observations are consistent with a scenario in which the DLAs with stronger NEL are denser and physically closer to the quasar. We propose that these eclipsing DLAs could be the product of the interaction between infalling and outflowing gas. High-resolution spectroscopic observation would be needed to shed some light on the nature of these eclipsing DLAs.

  15. Solar Eclipse Video Captured by STEREO-B

    NASA Technical Reports Server (NTRS)

    2007-01-01

    No human has ever witnessed a solar eclipse quite like the one captured on this video. The NASA STEREO-B spacecraft, managed by the Goddard Space Center, was about a million miles from Earth , February 25, 2007, when it photographed the Moon passing in front of the sun. The resulting movie looks like it came from an alien solar system. The fantastically-colored star is our own sun as STEREO sees it in four wavelengths of extreme ultraviolet light. The black disk is the Moon. When we observe a lunar transit from Earth, the Moon appears to be the same size as the sun, a coincidence that produces intoxicatingly beautiful solar eclipses. The silhouette STEREO-B saw, on the other hand, was only a fraction of the Sun. The Moon seems small because of the STEREO-B location. The spacecraft circles the sun in an Earth-like orbit, but it lags behind Earth by one million miles. This means STEREO-B is 4.4 times further from the Moon than we are, and so the Moon looks 4.4 times smaller. This version of the STEREO-B eclipse movie is a composite of data from the coronagraph and extreme ultraviolet imager of the spacecraft. STEREO-B has a sister ship named STEREO-A. Both are on a mission to study the sun. While STEREO-B lags behind Earth, STEREO-A orbits one million miles ahead ('B' for behind, 'A' for ahead). The gap is deliberate as it allows the two spacecraft to capture offset views of the sun. Researchers can then combine the images to produce 3D stereo movies of solar storms. The two spacecraft were launched in Oct. 2006 and reached their stations on either side of Earth in January 2007.

  16. A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen

    2018-01-01

    Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.

  17. Getting a Feel for Eclipses: A Tactile Discovery of an Awe-inspiring Celestial Event

    NASA Astrophysics Data System (ADS)

    Runyon, C. R.; Hall, C.; Hurd, D.; Minafra, J.; Williams, M. N.; Quinn, K.

    2017-12-01

    Solar eclipses provide a unique viewing opportunity for people across the world. August 21, 2017 was no exception. From Oregon to South Carolina, viewers were able to witness this remarkable phenomenon as the Moon comes between the Sun and Earth, casting a shadow on Earth. From a personal social / emotional standpoint seeing a total solar eclipse is indescribable and unforgettable. For the sighted, such an event is experienced through a combination of multiple senses, not just sight. For those people who are Blind / visually impaired (B/VI), the experience is different. While they may sense changes in the intensity of the sunlight, temperature, and animal noises, they are unable to "see" what is happening. How might this remarkable experience be brought to life for the B/VI? The NASA Solar System Exploration Research Virtual Institute Center for Lunar and Asteroid Surface Science (SSERVI CLASS) education/public engagement team developed a tactile book to do just this. The tactile book, Getting a Feel for Eclipses, provides users who are B/VI a means to see and experience the total solar eclipse through their fingertips. The unique, hand-made, tactile graphics are created from various textured materials such that each feature is readily identified. A QR code associated with the book provides access to digital content describing each tactile. Through this delivery mechanism, users who are B/VI, or even sighted may access the content with any smart device. Distributed to Schools for the Blind, national organizations for the Blind, Libraries, Museums and Science Centers across the country, the book helped bring a rare event to life for thousands of people who may not have otherwise been able to experience the eclipse. We look forward to 2024 when the U.S. will once again host the "path of totality." Until then, Getting a Feel for Eclipses will continue to serve as a guide to those interested, and an updated eclipse path map will continue to make the book pertinent.

  18. Development and validation of a learning progression for change of seasons, solar and lunar eclipses, and moon phases

    NASA Astrophysics Data System (ADS)

    Testa, Italo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella

    2015-12-01

    In this paper, we report about the development and validation of a learning progression about the Celestial Motion big idea. Existing curricula, research studies on alternative conceptions about these phenomena, and students' answers to an open questionnaire were the starting point to develop initial learning progressions about change of seasons, solar and lunar eclipses, and Moon phases; then, a two-tier multiple choice questionnaire was designed to validate and improve them. The questionnaire was submitted to about 300 secondary students of different school levels (14 to 18 years old). Item response analysis and curve integral method were used to revise the hypothesized learning progressions. Findings support that spatial reasoning is a key cognitive factor for building an explanatory framework for the Celestial Motion big idea, but also suggest that causal reasoning based on physics mechanisms underlying the phenomena, as light flux laws or energy transfers, may significantly impact a students' understanding. As an implication of the study, we propose that the teaching of the three discussed astronomy phenomena should follow a single teaching-learning path along the following sequence: (i) emphasize from the beginning the geometrical aspects of the Sun-Moon-Earth system motion; (ii) clarify consequences of the motion of the Sun-Moon-Earth system, as the changing solar radiation flow on the surface of Earth during the revolution around the Sun; (iii) help students moving between different reference systems (Earth and space observer's perspective) to understand how Earth's rotation and revolution can change the appearance of the Sun and Moon. Instructional and methodological implications are also briefly discussed.

  19. Effects of the 2017 Solar Eclipse on HF Radio Propagation and the D-Region Ionosphere: Citizen Science Investigation

    NASA Technical Reports Server (NTRS)

    Fry, C. D.; Rawlins, L.; Krause, L. H.; Suggs, R. M.; McTernan, J. K.; Adams, M. L.; Gallagher, D. L.; Anderson, Scott; Allsbrooks, Robert IV

    2017-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.

  20. Remote Observations of the Lunar Sodium Corona

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary M.; Morgan, Thomas H.; Potter, Andrew; SSERVI DREAM2

    2017-10-01

    We have designed, built and installed a small robotic coronagraph at the Winer Observatory in Sonoita, Arizona, in order to observe the sodium exosphere out to one-half degree around the Moon. Observations are obtained remotely every available clear night from our home base at Goddard Space Flight Center. Our data encompass lunations in 2015, 2016, and 2017, thus we have a long baseline of sodium exospheric calibrated images. We employ an Andover temperature-controlled 1.5 Å wide narrow-band filter centered on the sodium D2 line, and a similar 1.5 Å filter centered blueward of the D2 line by 5 Å. Exposures of 10 minutes are required to image the sodium corona at good signal to noise. Autoguiding is performed locking onto a small bright crater each night. Following each onband-offband exposure pair, on- and off-band images of the lunar surface are collected by taking a 0.1- 0.5 second exposures with the open filter. The sodium is calibrated using the counts in the open Moon images and the Hapke function. We use both dark and bright Hapke parameters for comparison check using Mare and highlands, respectively. In order to obtain the sodium profile around the entire limb, the images are transformed using a polar transform and the profiles are extracted automatically. Example of our resulting images of the sodium corona will be shown, with the image of the moon's disk (taken subsequently to the occulted coronal image) superimposed on the occulting disk, thus showing the position and phase of the moon under the disk. We compare our lunar model derived from these observations with the data from the UV spectrograph onboard the LADEE spacecraft.

  1. GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Coster, Anthea J.; Goncharenko, Larisa; Zhang, Shun-Rong; Erickson, Philip J.; Rideout, William; Vierinen, Juha

    2017-12-01

    On 21 August 2017, during daytime hours, a total solar eclipse with a narrow ˜160 km wide umbral shadow occurred across the continental United States. Totality was observed from the Oregon coast at ˜9:15 local standard time (LST) (17:20 UT) to the South Carolina coast at ˜13:27 LST (18:47 UT). A dense network of Global Navigation Satellite Systems (GNSS) receivers was utilized to produce total electron content (TEC) and differential TEC. These data were analyzed for the latitudinal and longitudinal response of the TEC and for the presence of traveling ionospheric disturbances (TIDs) during eclipse passage. A significant TEC depletion, in some cases greater than 60%, was observed associated with the eclipse shadow, exceeding initial model predictions of 35%. Evidence of enhanced large-scale TID activity was detected over the United States prior to and following the large TEC depletion observed near the time of totality. Signatures of enhanced TEC structures were observed over the Rocky Mountain chain during the main period of TEC depletion.

  2. Narrow band noise response of a Belleville spring resonator.

    PubMed

    Lyon, Richard H

    2013-09-01

    This study of nonlinear dynamics includes (i) an identification of quasi-steady states of response using equivalent linearization, (ii) the temporal simulation of the system using Heun's time step procedure on time domain analytic signals, and (iii) a laboratory experiment. An attempt has been made to select material and measurement parameters so that nearly the same systems are used and analyzed for all three parts of the study. This study illustrates important features of nonlinear response to narrow band excitation: (a) states of response that the system can acquire with transitions of the system between those states, (b) the interaction between the noise source and the vibrating load in which the source transmits energy to or draws energy from the load as transitions occur; (c) the lag or lead of the system response relative to the source as transitions occur that causes the average frequencies of source and response to differ; and (d) the determination of the state of response (mass or stiffness controlled) by observation of the instantaneous phase of the influence function. These analyses take advantage of the use of time domain analytic signals that have a complementary role to functions that are analytic in the frequency domain.

  3. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields

    PubMed Central

    Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P. J.; Mouritsen, Henrik

    2016-01-01

    Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth’s magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356

  4. Eclipsing damped Lyα systems in the Sloan Digital Sky Survey Data Release 12★

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Petitjean, P.; Jamialahmadi, N.; Khosroshahi, H. G.; Rahmani, H.; Finley, H.; Noterdaeme, P.; Pâris, I.; Srianand, R.

    2018-04-01

    We present the results of our automatic search for proximate damped Lyα absorption (PDLA) systems in the quasar spectra from the Sloan Digital Sky Survey Data Release 12. We constrain our search to those PDLAs lying within 1500 km s-1 from the quasar to make sure that the broad DLA absorption trough masks most of the strong Lyα emission from the broad line region (BLR) of the quasar. When the Lyα emission from the BLR is blocked by these so-called eclipsing DLAs, narrow Lyα emission from the host galaxy could be revealed as a narrow emission line (NEL) in the DLA trough. We define a statistical sample of 399 eclipsing DLAs with log N(H I) ≥ 21.10. We divide our statistical sample into three subsamples based on the strength of the NEL detected in the DLA trough. By studying the stacked spectra of these subsamples, we found that absorption from high ionization species are stronger in DLAs with stronger NEL in their absorption core. Moreover, absorption from the excited states of species like Si II are also stronger in DLAs with stronger NEL. We also found no correlation between the luminosity of the Lyα NEL and the quasar luminosity. These observations are consistent with a scenario in which the DLAs with stronger NEL are denser and physically closer to the quasar. We propose that these eclipsing DLAs could be the product of the interaction between infalling and outflowing gas. High resolution spectroscopic observation would be needed to shed some light on the nature of these eclipsing DLAs.

  5. VizieR Online Data Catalog: Light curves for the eclipsing binary V1094 Tau (Maxted+, 2015)

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Hutcheon, R. J.; Torres, G.; Lacy, C. H. S.; Southworth, J.; Smalley, B.; Pavlovski, K.; Marschall, L. A.; Clausen, J. V.

    2015-04-01

    Photometric light curves of the detached eclipsing binary V1094 Tau in the Stroemgren u-,v-,b- and y-bands, and in the Johnson V-band. The curves in the Stroemgren bands were obtained with the Stroemgren Automatic Telescope (SAT) at ESO, La Silla. The curves in the V-band were obtained with the NFO telescope in New Mexico and with the URSA telescope at the University of Arkansas. (6 data files).

  6. Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE

    NASA Astrophysics Data System (ADS)

    Haruyama, Junichi; Matsunaga, Tsuneo; Ohtake, Makiko; Morota, Tomokatsu; Honda, Chikatoshi; Yokota, Yasuhiro; Torii, Masaya; Ogawa, Yoshiko

    2008-04-01

    The Moon is the nearest celestial body to the Earth. Understanding the Moon is the most important issue confronting geosciences and planetary sciences. Japan will launch the lunar polar orbiter SELENE (Kaguya) (Kato et al., 2007) in 2007 as the first mission of the Japanese long-term lunar exploration program and acquire data for scientific knowledge and possible utilization of the Moon. An optical sensing instrument called the Lunar Imager/Spectrometer (LISM) is loaded on SELENE. The LISM requirements for the SELENE project are intended to provide high-resolution digital imagery and spectroscopic data for the entire lunar surface, acquiring these data for scientific knowledge and possible utilization of the Moon. Actually, LISM was designed to include three specialized sub-instruments: a terrain camera (TC), a multi-band imager (MI), and a spectral profiler (SP). The TC is a high-resolution stereo camera with 10-m spatial resolution from a SELENE nominal altitude of 100 km and a stereo angle of 30° to provide stereo pairs from which digital terrain models (DTMs) with a height resolution of 20 m or better will be produced. The MI is a multi-spectral imager with four and five color bands with 20 m and 60 m spatial resolution in visible and near-infrared ranges, which will provide data to be used to distinguish the geological units in detail. The SP is a line spectral profiler with a 400-m-wide footprint and 300 spectral bands with 6-8 nm spectral resolution in the visible to near-infrared ranges. The SP data will be sufficiently powerful to identify the lunar surface's mineral composition. Moreover, LISM will provide data with a spatial resolution, signal-to-noise ratio, and covered spectral range superior to that of past Earth-based and spacecraft-based observations. In addition to the hardware instrumentation, we have studied operation plans for global data acquisition within the limited total data volume allotment per day. Results show that the TC and MI can

  7. Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si

    NASA Astrophysics Data System (ADS)

    Persson, C.; Lindefelt, U.; Sernelius, B. E.

    1999-10-01

    Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.

  8. Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awari, N.; University of Groningen, 9747 AG Groningen; Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie

    2016-07-18

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  9. The Lower Ionospheric VLF/LF Response to the 2017 Great American Solar Eclipse Observed Across the Continent

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Gross, N. C.; Higginson-Rollins, M. A.; Marshall, R. A.; Gołkowski, M.; Liles, W.; Rodriguez, D.; Rockway, J.

    2018-04-01

    We present observations from 11 very low frequency (VLF)/low-frequency (LF) receivers across the continental United States during the 21 August 2017 "Great American Solar Eclipse." All receivers detected transmissions from VLF/LF beacons below 50 kHz, while seven also recorded LF beacons above 50 kHz, yielding dozens of individual transmitter-receiver radio links. Our observations show two separable superimposed signatures: (1) a gradual rise and fall in signal levels visible on almost all paths as the eclipse advances and then declines, as VLF attenuation is reduced by the changing ionosphere under an eclipsed Sun, and (2) direct reflective scattering off the narrow 100-km-wide totality spot, observed more uniquely when the transmitter or receiver, if not both, are relatively close to the totality spot.

  10. Mobility performance of the lunar roving vehicle: Terrestrial studies: Apollo 15 results

    NASA Technical Reports Server (NTRS)

    Costes, N. C.; Farmer, J. E.; George, E. B.

    1972-01-01

    The constriants of the Apollo 15 mission dictated that the average and limiting performance capabilities of the first manned lunar roving vehicle be known or estimated within narrow margins. Extensive studies were conducted and are compared with the actual performance of the lunar roving vehicle during the Apollo 15 mission. From this comparison, conclusions are drawn relating to the capabilities and limitation of current terrestrial methodology in predicting the mobility performance of lunar roving vehicles under in-situ environmental conditions, and recommendations are offered concerning the performance of surface vehicles on future missions related to lunar or planetary exploration.

  11. Non regular variations in the LOD from European medieval eclipses

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Marco, F. J.

    2012-12-01

    The study of ancient eclipses has demonstrated its utility to approximate some astronomical constants, in particular in the field of the Earth's rotation. It is a well known fact that the rate of rotation of the Earth is slowly decreasing in time. There are many possible reasons for this fact, including internal and external mechanisms. The most important external causes are lunar and solar tides. While internal causes can be very diverse: examples of short term effects are changing wind patterns, electromagnetic coupling between the fluid core of the Earth and the lower mantle, while sea-level fluctuations associated with climatic variations are examples of long time effects. In any case, the most important cause is the tidal friction.

  12. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Serafinelli, R.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  13. Narrow-Band Search of Continuous Gravitational-Wave Signals from Crab and Vela Pulsars in Virgo VSR4 Data

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; hide

    2015-01-01

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  14. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    PubMed

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  15. NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croll, Bryce; Jayawardhana, Ray; Albert, Loic

    2010-07-10

    We present near-infrared Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-2b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect its thermal emission with an eclipse depth of 0.062{sup +0.013}{sub -0.011}% (5{sigma}). Our best-fit secondary eclipse is consistent with a circular orbit (a 3{sigma} upper limit on the eccentricity, e, and argument or periastron, {omega}, of |e cos {omega}| < 0.0090), in agreement with mid-infrared detections of the secondary eclipse of this planet. A secondary eclipse of this depth corresponds to a dayside Ks-band brightness temperature of T{sub B} = 1636{sup +79}{sub -88} K. Ourmore » thermal emission measurement, when combined with the thermal emission measurements using Spitzer/IRAC from O'Donovan and collaborators, suggests that this planet exhibits relatively efficient dayside to nightside redistribution of heat and a near isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. It is unclear if the atmosphere of TrES-2b requires a temperature inversion; if it does it is likely due to chemical species other than TiO/VO as the atmosphere of TrES-2b is too cool to allow TiO/VO to remain in gaseous form. Our secondary eclipse has the smallest depth of any detected from the ground, at around 2 {mu}m, to date.« less

  16. Anomalous resistivity and the origin of heavy mass in the two-band Hubbard model with one narrow band

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.; Val'kov, V. V.

    2011-07-01

    We search for marginal Fermi-liquid behavior [1] in the two-band Hubbard model with one narrow band. We consider the limit of low electron densities in the bands and strong intraband and interband Hubbard interactions. We analyze the influence of electron polaron effect [2] and other mechanisms of mass enhancement (related to momentum dependence of the self-energies) on the effective mass and scattering times of light and heavy components in the clean case (electron-electron scattering and no impurities). We find the tendency towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case for a large mismatch between the densities of heavy and light bands in the strong-coupling limit. We also observe that for low temperatures and equal densities, the homogeneous state resistivity R( T) ˜ T 2 behaves in a Fermi-liquid fashion in both 3D and 2D cases. For temperatures higher than the effective bandwidth for heavy electrons T > W {*/ h }, the coherent behavior of the heavy component is totally destroyed. The heavy particles move diffusively in the surrounding of light particles. At the same time, the light particles scatter on the heavy ones as if on immobile (static) impurities. In this regime, the heavy component is marginal, while the light one is not. The resistivity saturates for T > W {*/ h } in the 3D case. In 2D, the resistivity has a maximum and a localization tail due to weak-localization corrections of the Altshuler-Aronov type [3]. Such behavior of resistivity could be relevant for some uranium-based heavy-fermion compounds like UNi2Al3 in 3D and for some other mixed-valence compounds possibly including layered manganites in 2D. We also briefly consider the superconductive (SC) instability in the model. The leading instability is towards the p-wave pairing and is governed by the enhanced Kohn-Luttinger [4] mechanism of SC at low electron density. The critical temperature corresponds to the pairing of heavy electrons

  17. Radiometric calibration of spacecraft using small lunar images

    USGS Publications Warehouse

    Kieffer, Hugh H.; Anderson, James M.; Becker, Kris J.

    1999-01-01

    In this study, the data reduction steps that can be used to extract the lunar irradiance from low resolution images of the Moon are examined and the attendant uncertainties are quantitatively assessed. The response integrated over an image is compared to a lunar irradiance model being developed from terrestrial multi-band photometric observations over the 350-2500 nm range.

  18. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-03

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  19. Deep UV Narrow-Band Photodetector Based on Ion Beam Synthesized Indium Oxide Quantum Dots in Al2O3 Matrix.

    PubMed

    Rajamani, Saravanan; Arora, Kanika; Konakov, Anton; Belov, Alexey; Korolev, Dmitry; Nikolskaya, Alyona; Mikhaylov, Alexey N; Surodin, Sergey; Kryukov, Ruslan; Nikolichev, Dmitri; Sushkov, Artem; Pavlov, Dmitry; Tetelbaum, David; Kumar, Mukesh; Kumar, Mahesh

    2018-04-20

    Semiconductor quantum dots (QDs) have attracted tremendous attention owing to their novel electrical and optical properties due to the size dependent quantum confinement effects. This provides an advantage of tunable wavelength detection, which is essential to realize spectrally selective photodetectors. We report the fabrication and characterization of high performance narrow band ultraviolet photodetector (UV-B) based on In2O3 nanocrystals embedded in Al2O3 matrices. The In2O3 nanocrystals are synthesized in Al2O3 matrix by sequential implantation of In+ and N2+ ions and post-implantation annealing. The photodetector exhibits excellent optoelectronic performances with high spectral responsivity and external quantum efficiency. The spectral response showed a band-selective nature with a full width half maximum of ∼ 60 nm, and the responsivity reaches up to 70 A/W under 290 nm at 5 V bias. The corresponding rejection ratio to visible region was as high as 8400. The high performance of this photodetector makes it highly suitable for practical applications such as narrow-band spectrum-selective photodetectors. The device design based on ion-synthesized nanocrystals would provide a new approach for realizing a visible-blind photodetector. © 2018 IOP Publishing Ltd.

  20. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  1. 2014 Summer Series - Brian Lewis - Skimming the Lunar Surface for Science: The LADEE Mission

    NASA Image and Video Library

    2014-07-15

    On Sept. 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into space. LADEE arrived at the Moon on October 6, 2013, during the government shutdown. With commissioning completed, LADEE lowered periapsis over the sunrise terminator on Nov. 10, and on Nov. 20 lowered apoapsis as well. On April 11, after its primary mission was complete, LADEE performed it's final maneuver, placing it in a very low-altitude orbit that would yield a short period of highly valuable science while guaranteeing impact on the far side of the moon. On April 15, LADEE flew through a four hour lunar eclipse, demonstrating an ability to survive low temperatures and a deep drain on battery systems. LADEE ultimately impacted on the lunar surface between 9:30 pm and 10:22 pm PDT on April 17, 2014.

  2. Eclipse Soundscapes Project: Making the August 21, 2017 Total Solar Eclipse Accessible to Everyone

    NASA Astrophysics Data System (ADS)

    Winter, H. D., III

    2017-12-01

    The Eclipse Soundscapes Project delivered a multisensory experience that allowed the blind and visually impaired to engage with the August 21, 2017 total solar eclipse along with their sighted peers in a way that would not have been possible otherwise. The project, from the Smithsonian Astrophysical Observatory and NASA's Heliophysics Education Consortium, includes illustrative audio descriptions of the eclipse in real time, recordings of the changing environmental sounds during the eclipse, and an interactive "rumble map" app that allows users to experience the eclipse through touch and sound. The Eclipse Soundscapes Project is working with organizations such as the National Parks Service (NPS), Science Friday, and Brigham Young University and by WGBH's National Center for Accessible Media (NCAM) to bring the awe and wonder of the total solar eclipse and other astronomical phenomena to a segment of the population that has been excluded from and astronomy and astrophysics for far too long, while engaging all learners in new and exciting ways.

  3. Narrow band vacuum ultraviolet radiation, produced by fast conical discharge

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.; Koshelev, K. N.

    2018-04-01

    The article presents the experimental study of discharges in a conical cavity, filled with Ar at pressure 80 Pa. The electrical current driver (inductive storage with plasma erosion opening switch) supplies to the load electrical current pulse with growth rate about 1012 A s‑1 and maximal value 30–40 kA. The convergent conical shock wave starts from the inner surface of the discharge cavity and collapses in ‘zippering’ mode. The pin hole camera imaging with MCP detector (time resolution 5 ns) have demonstrated the appearance of effectively fast moving compact plasma with visible velocity v  =  (1.5  ±  0.14)  ×  107 cm s‑1. Plasma emits narrow band radiation in the spectral range of Rydberg series transitions of Ar VII, Ar VIII with quantum number up to n  =  9 (wavelength about 11 nm). The intensity of radiation is comparable with the total plasma emission in the range 10–50 nm. Charge exchange between multiply charged Ar ions and cold Ar atoms of working gas is proposed as the possible mechanism of the origin of the radiation.

  4. Research and design of an optical system of biochemical analyzer based on the narrow-band pass filter

    NASA Astrophysics Data System (ADS)

    Xiao, Ze-xin; Chen, Kuan

    2008-03-01

    Biochemical analyzer is one of the important instruments in the clinical diagnosis, and its optical system is the important component. The operation of this optical system can be regard as three parts. The first is transforms the duplicate colored light as the monochromatic light. The second is transforms the light signal of the monochromatic, which have the information of the measured sample, as the electric signal by use the photoelectric detector. And the last is to send the signal to data processing system by use the control system. Generally, there are three types monochromators: prism, optical grating and narrow-band pass filter. Thereinto, the narrow-band pass filter were widely used in the semi-auto biochemical analyzer. Through analysed the principle of biochemical analyzer base on the narrow-band pass filter, we known that the optical has three features. The first is the optical path of the optical system is a non- imaging system. The second, this system is wide spectrum region that contain visible light and ultraviolet spectrum. The third, this is a little aperture and little field monochromatic light system. Therefore, design idea of this optical system is: (1) luminous energy in the system less transmission loss; (2) detector coupled to the luminous energy efficient; mainly correct spherical aberration. Practice showed the point of Image quality evaluation: (1) dispersion circle diameter equal the receiving device pixel effective width of 125%, and the energy distribution should point target of 80% of energy into the receiving device pixel width of the effective diameter in this dispersion circle; (2) With MTF evaluation, the requirements in 20lp/ mm spatial frequency, the MTF values should not be lower than 0.6. The optical system should be fit in with ultraviolet and visible light width spectrum, and the detector image plane can but suited the majority visible light spectrum when by defocus optimization, and the image plane of violet and ultraviolet

  5. A 1.1-1.9 GHz SETI SURVEY OF THE KEPLER FIELD. I. A SEARCH FOR NARROW-BAND EMISSION FROM SELECT TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemion, Andrew P. V.; Korpela, Eric; Werthimer, Dan

    2013-04-10

    We present a targeted search for narrow-band (<5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T{sub eq} > 230 K, stars with five or more detected candidates or stars with a super-Earth (R{sub p} < 3 R{sub Circled-Plus }) in a >50 day orbit. Baseband voltage data across the entire bandmore » between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between 2011 February and April and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than {approx}1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1 and 2 GHz at an equivalent isotropically radiated power (EIRP) of {approx}1.5 Multiplication-Sign 10{sup 21} erg s{sup -1}, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be <10{sup -6} M{sub Sun }{sup -1}. Here we describe our observations, data reduction procedures and results.« less

  6. Eclipses of the inner satellites of Jupiter observed in 2015

    NASA Astrophysics Data System (ADS)

    Saquet, E.; Emelyanov, N.; Colas, F.; Arlot, J.-E.; Robert, V.; Christophe, B.; Dechambre, O.

    2016-06-01

    Aims: During the 2014-2015 campaign of mutual events, we recorded ground-based photometric observations of eclipses of Amalthea (JV) and, for the first time, Thebe (JXIV) by the Galilean moons. We focused on estimating whether the positioning accuracy of the inner satellites determined with photometry is sufficient for dynamical studies. Methods: We observed two eclipses of Amalthea and one of Thebe with the 1 m telescope at Pic du Midi Observatory using an IR filter and a mask placed over the planetary image to avoid blooming features. A third observation of Amalthea was taken at Saint-Sulpice Observatory with a 60 cm telescope using a methane filter (890 nm) and a deep absorption band to decrease the contrast between the planet and the satellites. After background removal, we computed a differential aperture photometry to obtain the light flux, and followed with an astrometric reduction. Results: We provide astrometric results with an external precision of 53 mas for the eclipse of Thebe, and 20 mas for that of Amalthea. These observation accuracies largely override standard astrometric measurements. The (O - C)s for the eclipse of Thebe are 75 mas on the X-axis and 120 mas on the Y-axis. The (O - C)s for the total eclipses of Amalthea are 95 mas and 22 mas, along the orbit, for two of the three events. Taking into account the ratio of (O - C) to precision of the astrometric results, we show a significant discrepancy with the theory established by Avdyushev and Ban'shikova in 2008, and the JPL JUP 310 ephemeris. Three of the four eclipse observations where recorded at the 1 m telescope of Pic du Midi Observatory (S2P), the other at Saint-Sulpice Observatory.

  7. [Value of narrow band imaging endoscopy in detection of early laryngeal squamous cell carcinoma].

    PubMed

    Staníková, L; Kučová, H; Walderová, R; Zeleník, K; Šatanková, J; Komínek, P

    2015-01-01

    Narrow band imaging (NBI) is an endoscopic method using filtered wavelengths in detection of microvascular abnormalities associated with preneoplastic and neoplastic changes of the mucosa. The aim of the study is to evaluate the value of NBI endoscopy in the dia-gnosis of laryngeal precancerous and early stages of cancerous lesions and to investigate impact of NBI method in prehistological diagnostics in vivo. One hundred patients were enrolled in the study and their larynx was investigated using white light HD endoscopy and narrow band imaging between 6/ 2013- 10/ 2014. Indication criteria included chronic laryngitis, hoarseness for more than three weeks or macroscopic laryngeal lesion. Features of mucosal lesions were evaluated by white light endoscopy and afterwards were compared with intra-epithelial papillary capillary loop changes, viewed using NBI endoscopy. Suspicious lesions (leukoplakia, exophytic tumors, recurrent respiratory papillomatosis and/ or malignant type of vascular network by NBI endoscopy) were evaluated by histological analysis, results were compared with prehistological NBI dia-gnosis. Using NBI endoscopy, larger demarcation of pathological mucosal features than in white light visualization were recorded in 32/ 100 (32.0%) lesions, in 4/ 100 (4.0%) cases even new lesions were detected only by NBI endoscopy. 63/ 100 (63.0%) suspected lesions were evaluated histologically -  malign changes (carcinoma in situ or invasive carcinoma) were observed in 25/ 63 (39.7%). Prehistological diagnostics of malignant lesions using NBI endoscopy were in agreement with results of histological examination in 23/ 25 (92.0%) cases. The sensitivity of NBI in detecting malignant lesions was 89.3%, specificity of this method was 94.9%. NBI endoscopy is a promising optical technique enabling in vivo differentiation of superficial neoplastic lesions. These results suggest endoscopic NBI may be useful in the early detection of laryngeal cancer and precancerous

  8. Addressing Students' Misconceptions about Eclipses

    ERIC Educational Resources Information Center

    Slater, Timothy F.; Gelderman, Richard

    2017-01-01

    The upcoming Aug. 21, 2017, total solar eclipse, with its 70-mile wide path of totality stretching across much of North America, provides us with a unique opportunity to teach students about eclipses. One might naturally assume that students have little difficulty understanding the nature of eclipses. After all, the notion that eclipses occur when…

  9. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    PubMed

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  10. Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques

    NASA Technical Reports Server (NTRS)

    Gridley, D.

    1982-01-01

    A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.

  11. VizieR Online Data Catalog: NGC 4038/4039 broad and /narrow band photometry (Mengel+, 2005)

    NASA Astrophysics Data System (ADS)

    Mengel, S.; Lehnert, M. D.; Thatte, N.; Genzel, R.

    2005-06-01

    The Ks-band image which was used for the 3{sigma}-detection was obtained with ISAAC on VLT-ANTU as part of programme 65.N-0577, and has a FWHM of ~0.38". 1072 point-like objects were detected. For the multi-band photometry, we also used the HST archival images obtained by Whitmore et al. (see Whitmore et al., 1999AJ....118.1551W), which we rebinned to the same pixel size as the ISAAC image (0.1484"/pix). The CO narrow band image was also obtained with ISAAC, while the Br{gamma} image was obtained with SOFI at the NTT (programme number 63.N-0528). The Br{gamma} image had a lower image quality than the other two images (FWHM=0.7"). The photometry data were used to simultaneously fit age and extinction for each individual cluster in comparison to an evolutionary synthesis model. Where possible, the visual extinction was determined from an average of the extinction from the broadband fit and from the Hydrogen recombination line ratios (in comparison to the expected Case B line ratio). The age estimate from the fit was, where possible, averaged with the aged determined from equivalent widths and CO index. (1 data file).

  12. Effects of Regolith Properties on UV/VIS Spectra and Implications for Lunar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Coman, Ecaterina Oana

    Lunar regolith chemistry, mineralogy, various maturation factors, and grain size dominate the reflectance of the lunar surface at ultraviolet (UV) to visible (VIS) wavelengths. These regolith properties leave unique fingerprints on reflectance spectra in the form of varied spectral shapes, reflectance intensity values, and absorption bands. With the addition of returned lunar soils from the Apollo and Luna missions as ground truth, these spectral fingerprints can be used to derive maps of global lunar chemistry or mineralogy to analyze the range of basalt types on the Moon, their spatial distribution, and source regions for clues to lunar formation history and evolution. The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) is the first lunar imager to detect bands at UV wavelengths (321 and 360 nm) in addition to visible bands (415, 566, 604, 643, and 689 nm). This dissertation uses a combination of laboratory and remote sensing studies to examine the relation between TiO2 concentration and WAC UV/VIS spectral ratios and to test the effects of variations in lunar chemistry, mineralogy, and soil maturity on ultraviolet and visible wavelength reflectance. Chapter 1 presents an introduction to the dissertation that includes some background in lunar mineralogy and remote sensing. Chapter 2 covers coordinated analyses of returned lunar soils using UV-VIS spectroscopy, X-ray diffraction, and micro X-ray fluorescence. Chapter 3 contains comparisons of local and global remote sensing observations of the Moon using LROC WAC and Clementine UVVIS TiO2 detection algorithms and Lunar Prospector (LP) Gamma Ray Spectrometer (GRS)-derived FeO and TiO2 concentrations. While the data shows effects from maturity and FeO on the UV/VIS detection algorithm, a UV/VIS relationship remains a simple yet accurate method for TiO2 detection on the Moon.

  13. Use of narrow-band imaging bronchoscopy in detection of lung cancer.

    PubMed

    Zaric, Bojan; Perin, Branislav

    2010-05-01

    Narrow-band imaging (NBI) is a new endoscopic technique designed for detection of pathologically altered submucosal and mucosal microvascular patterns. The combination of magnification videobronchoscopy and NBI showed great potential in the detection of precancerous and cancerous lesions of the bronchial mucosa. The preliminary studies confirmed supremacy of NBI over white-light videobronchoscopy in the detection of premalignant and malignant lesions. Pathological patterns of capillaries in bronchial mucosa are known as Shibuya's descriptors (dotted, tortuous and abrupt-ending blood vessels). Where respiratory endoscopy is concerned, the NBI is still a 'technology in search of proper indication'. More randomized trials are necessary to confirm the place of NBI in the diagnostic algorithm, and more trials are needed to evaluate the relation of NBI to autofluorescence videobronchoscopy and to white-light magnification videobronchoscopy. Considering the fact that NBI examination of the tracheo-bronchial tree is easy, reproducible and clear to interpret, it is certain that NBI videobronchoscopy will play a significant role in the future of lung cancer detection and staging.

  14. Io in Eclipse, Movie

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Glowing spots of hot lava and ethereal auroral emissions are highlighted against blackness in this sequence of 48 frames from NASA's Cassini spacecraft, which show Jupiter's moon Io in the darkness of the giant planet's shadow.

    The sequence was recorded over a two-hour interval that spanned nearly an entire eclipse on Jan. 1, 2001. Although no sunlight shines on the moon during an eclipse, two types of glows can be seen. The bright points of light are the glows of hot lava from active volcanoes. The brightest is the volcano Pele, which appears to be erupting steadily despite its great intensity. To the right of Pele and slightly above it is a pair of bright spots associated with the volcano Pillan, the source of a major eruption in 1997. NASA's Galileo spacecraft and Hubble Space Telescope saw that 1997 eruption of Pillan dwarf the energy output from neighboring Pele, but Pillan's eruption has waned over the past 30 months to the pair of small hot spots seen here. Another volcano, seen below and to the right of Pele, varies on a time scale of days. This sequence of images illustrates the great variations in intensity and longevity of Io's volcanic eruptions.

    The second type of glow seen on Io during eclipse is a set of faint, diffuse emissions due to atmospheric auroras. Similar to the aurora borealis and aurora australis on Earth, Io's auroras are caused by the collisions of charged particles with gases in Io's tenuous atmosphere. A faint ring encircles the moon, while brighter glows are concentrated near the moon's equator. These equatorial glows are seen here gradually shifting clockwise in location as the eclipse progresses, due to the changing orientation of Jupiter's magnetic field. This is a new result which confirms that these visible auroras, like their counterparts seen at ultraviolet wavelengths, are caused by electrical currents that flow between Io and Jupiter.

    The original images were taken through a clear filter of Cassini's narrow

  15. Narrow Band Gap Conjugated Polyelectrolytes.

    PubMed

    Cui, Qiuhong; Bazan, Guillermo C

    2018-01-16

    Two essential structural elements define a class of materials called conjugated polyelectrolytes (CPEs). The first is a polymer framework with an electronically delocalized, π-conjugated structure. This component allows one to adjust desirable optical and electronic properties, for example the range of wavelengths absorbed, emission quantum yields, electron affinity, and ionization potential. The second defining feature is the presence of ionic functionalities, which are usually linked via tethers that can modulate the distance of the charged groups relative to the backbone. These ionic groups render CPEs distinct relative to their neutral conjugated polymer counterparts. Solubility in polar solvents, including aqueous media, is an immediately obvious difference. This feature has enabled the development of optically amplified biosensor protocols and the fabrication of multilayer organic semiconductor devices through deposition techniques using solvents with orthogonal properties. Important but less obvious potential advantages must also be considered. For example, CPE layers have been used to introduce interfacial dipoles and thus modify the effective work function of adjacent electrodes. One can thereby modulate the barriers for charge injection into semiconductor layers and improve the device efficiencies of organic light-emitting diodes and solar cells. With a hydrophobic backbone and hydrophilic ionic sites, CPEs can also be used as dispersants for insoluble materials. Narrow band gap CPEs (NBGCPEs) have been studied only recently. They contain backbones that comprise electron-rich and electron-poor fragments, a combination that leads to intramolecular charge transfer excited states and enables facile oxidation and reduction. One particularly interesting combination is NBGCPEs with anionic sulfonate side groups, for which spontaneous self-doping in aqueous media is observed. That no such doping is observed with cationic NBGCPEs indicates that the interplay

  16. Flight Calibration of the LROC Narrow Angle Camera

    NASA Astrophysics Data System (ADS)

    Humm, D. C.; Tschimmel, M.; Brylow, S. M.; Mahanti, P.; Tran, T. N.; Braden, S. E.; Wiseman, S.; Danton, J.; Eliason, E. M.; Robinson, M. S.

    2016-04-01

    Characterization and calibration are vital for instrument commanding and image interpretation in remote sensing. The Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) takes 500 Mpixel greyscale images of lunar scenes at 0.5 meters/pixel. It uses two nominally identical line scan cameras for a larger crosstrack field of view. Stray light, spatial crosstalk, and nonlinearity were characterized using flight images of the Earth and the lunar limb. These are important for imaging shadowed craters, studying ˜1 meter size objects, and photometry respectively. Background, nonlinearity, and flatfield corrections have been implemented in the calibration pipeline. An eight-column pattern in the background is corrected. The detector is linear for DN = 600--2000 but a signal-dependent additive correction is required and applied for DN<600. A predictive model of detector temperature and dark level was developed to command dark level offset. This avoids images with a cutoff at DN=0 and minimizes quantization error in companding. Absolute radiometric calibration is derived from comparison of NAC images with ground-based images taken with the Robotic Lunar Observatory (ROLO) at much lower spatial resolution but with the same photometric angles.

  17. ΔT and tidal acceleration values from three european medieval eclipses

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Marco, F. J.

    2011-10-01

    There are many possible reasons for the fact that the rate of rotation of the Earth is slowly decreasing in time, being the most important the tidal friction. Since Universal Time (UT) is a time scale based on the rotation of the Earth and ΔT defined as the difference between the uniform time-scale (Dynamical Time), and the Universal Time, clearly that ΔT will vary with time. The problem is that this variation is not uniform, existing irregular fluctuations. In addition, it is not possible to predict exact values for ΔT, being the only possibility its deduction a posteriori from observations. ΔT is strongly related with occultations and eclipses, because it is used for the calculation of exact times of the event, and for determining the position of the central line or the zone of visibility. In this sense, a value ΔT =3600s is roughly equivalent to a shift of 15. in longitude. Past values of ΔT can be deduced from historical astronomical observations such as ancient eclipses which have been widely studied by F.R. Stephenson [3] and [4] who has even obtained an approximation fitted with cubic splines for ΔT from -500 to +1950. This approximation is nowadays widely used in astronomical calculations. The derived relative error from ΔT obtained from ancient eclipsed is quite large, mainly because of the large width of the totality zone and the inaccuracy in the definition of the observational place. A possibility to partially solve these former problems is the analysis of total eclipse records from multiple sites, which could provide a narrow parameter range. In addition, The conjunct analysis of these astronomical phenomena is useful for determining a range of ΔT in function of the tidal acceleration of the Moon. Further discussion about these eclipses in under review.

  18. Band-limited Bouguer gravity identifies new basins on the Moon

    NASA Astrophysics Data System (ADS)

    Featherstone, W. E.; Hirt, C.; Kuhn, M.

    2013-06-01

    Spectral domain forward modeling is used to generate topography-implied gravity for the Moon using data from the Lunar Orbiter Laser Altimeter instrument operated on board the Lunar Reconnaissance Orbiter mission. This is subtracted from Selenological and Engineering Explorer (SELENE)-derived gravity to generate band-limited Bouguer gravity maps of the Moon so as to enhance the gravitational signatures of anomalous mass densities nearer the surface. This procedure adds evidence that two previously postulated basins on the lunar farside, Fitzgerald-Jackson (25°N, 191°E) and to the east of Debye (50°N, 180°E), are indeed real. When applied over the entire lunar surface, band-limited Bouguer gravity reveals the locations of 280 candidate basins that have not been identified when using full-spectrum gravity or topography alone, showing the approach to be of utility. Of the 280 basins, 66 are classified as distinct from their band-limited Bouguer gravity and topographic signatures, making them worthy of further investigation.

  19. Solar Eclipses Observed from Antarctica

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2013-01-01

    Aspects of the solar corona are still best observed during totality of solar eclipses, and other high-resolution observations of coronal active regions can be observed with radio telescopes by differentiation of occultation observations, as we did with the Jansky Very Large Array for the annular solar eclipse of 2012 May 20 in the US. Totality crossing Antarctica included the eclipse of 2003 November 23, and will next occur on 2021 December 4; annularity crossing Antarctica included the eclipse of 2008 February 7, and will next occur on 2014 April 29. Partial phases as high as 87% coverage were visible and were imaged in Antarctica on 2011 November 25, and in addition to partial phases of the total and annular eclipses listed above, partial phases were visible in Antarctica on 2001 July 2011, 2002 December 4, 2004 April 19, 2006 September 22, 2007 September 11, and 2009 January 26, and will be visible on 2015 September 13, 2016 September 1, 2017 February 26, 2018 February 15, and 2020 December 14. On behalf of the Working Group on Solar Eclipses of the IAU, the poster showed the solar eclipses visible from Antarctica and this article shows a subset (see www.eclipses.info for the full set). A variety of investigations of the Sun and of the response of the terrestrial atmosphere and ionosphere to the abrupt solar cutoff can be carried out at the future eclipses, making the Antarctic observations scientifically useful.

  20. Very narrow band model calculations of atmospheric fluxes and cooling rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L.S.; Berk, A.; Acharya, P.K.

    1996-10-15

    A new very narrow band model (VNBM) approach has been developed and incorporated into the MODTRAN atmospheric transmittance-radiance code. The VNBM includes a computational spectral resolution of 1 cm{sup {minus}1}, a single-line Voigt equivalent width formalism that is based on the Rodgers-Williams approximation and accounts for the finite spectral width of the interval, explicit consideration of line tails, a statistical line overlap correction, a new sublayer integration approach that treats the effect of the sublayer temperature gradient on the path radiance, and the Curtis-Godson (CG) approximation for inhomogeneous paths. A modified procedure for determining the line density parameter 1/d ismore » introduced, which reduces its magnitude. This results in a partial correction of the VNBM tendency to overestimate the interval equivalent widths. The standard two parameter CG approximation is used for H{sub 2}O and CO{sub 2}, while the Goody three parameter CG approximation is used for O{sub 3}. Atmospheric flux and cooling rate predictions using a research version of MODTRAN, MODR, are presented for H{sub 2}O (with and without the continuum), CO{sub 2}, and O{sub 3} for several model atmospheres. The effect of doubling the CO{sub 2} concentration is also considered. These calculations are compared to line-by-line (LBL) model calculations using the AER, GLA, GFDL, and GISS codes. The MODR predictions fall within the spread of the LBL results. The effects of decreasing the band model spectral resolution are illustrated using CO{sub 2} cooling rate and flux calculations. 36 refs., 18 figs., 1 tab.« less

  1. Time-of-day–dependent global distribution of lunar surficial water/hydroxyl

    PubMed Central

    Wöhler, Christian; Grumpe, Arne; Berezhnoy, Alexey A.; Shevchenko, Vladislav V.

    2017-01-01

    A new set of time-of-day–dependent global maps of the lunar near-infrared water/hydroxyl (H2O/OH) absorption band strength near 2.8 to 3.0 μm constructed on the basis of Moon Mineralogy Mapper (M3) data is presented. The analyzed absorption band near 2.8 to 3.0 μm indicates the presence of surficial H2O/OH. To remove the thermal emission component from the M3 reflectance spectra, a reliable and physically realistic mapping method has been developed. Our maps show that lunar highlands at high latitudes show a stronger H2O/OH absorption band in the lunar morning and evening than at midday. The amplitude of these time-of-day–dependent variations decreases with decreasing latitude of the highland regions, where below about 30°, absorption strength becomes nearly constant during the lunar day at a similar level as in the high-latitude highlands at midday. The lunar maria exhibit weaker H2O/OH absorption than the highlands at all, but showing a smaller difference from highlands absorption levels in the morning and evening than at midday. The level around midday is generally higher for low-Ti than for high-Ti mare surfaces, where it reaches near-zero values. Our observations contrast with previous studies that indicate a significant concentration of surficial H2O/OH at high latitudes only. Furthermore, although our results generally support the commonly accepted mechanism of H2O/OH formation by adsorption of solar wind protons, they suggest the presence of a more strongly bounded surficial H2O/OH component in the lunar highlands and parts of the mare regions, which is not removed by processes such as diffusion/thermal evaporation and photolysis in the course of the lunar day. PMID:28913430

  2. Time-of-day-dependent global distribution of lunar surficial water/hydroxyl.

    PubMed

    Wöhler, Christian; Grumpe, Arne; Berezhnoy, Alexey A; Shevchenko, Vladislav V

    2017-09-01

    A new set of time-of-day-dependent global maps of the lunar near-infrared water/hydroxyl (H 2 O/OH) absorption band strength near 2.8 to 3.0 μm constructed on the basis of Moon Mineralogy Mapper (M 3 ) data is presented. The analyzed absorption band near 2.8 to 3.0 μm indicates the presence of surficial H 2 O/OH. To remove the thermal emission component from the M 3 reflectance spectra, a reliable and physically realistic mapping method has been developed. Our maps show that lunar highlands at high latitudes show a stronger H 2 O/OH absorption band in the lunar morning and evening than at midday. The amplitude of these time-of-day-dependent variations decreases with decreasing latitude of the highland regions, where below about 30°, absorption strength becomes nearly constant during the lunar day at a similar level as in the high-latitude highlands at midday. The lunar maria exhibit weaker H 2 O/OH absorption than the highlands at all, but showing a smaller difference from highlands absorption levels in the morning and evening than at midday. The level around midday is generally higher for low-Ti than for high-Ti mare surfaces, where it reaches near-zero values. Our observations contrast with previous studies that indicate a significant concentration of surficial H 2 O/OH at high latitudes only. Furthermore, although our results generally support the commonly accepted mechanism of H 2 O/OH formation by adsorption of solar wind protons, they suggest the presence of a more strongly bounded surficial H 2 O/OH component in the lunar highlands and parts of the mare regions, which is not removed by processes such as diffusion/thermal evaporation and photolysis in the course of the lunar day.

  3. Design of an S band narrow-band bandpass BAW filter

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhao, Kun-li; Han, Chao

    2017-11-01

    An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.

  4. Mini-RF Bistatic Observations of Lunar Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G. W.; Cahill, J. T.

    2017-12-01

    The Mini-RF radar onboard the Lunar Reconnaissance Orbiter (LRO) is currently operating in a bistatic configuration using the Goldstone DSS-13 and Arecibo Observatory as transmitters in X-band (4.2-cm) and S-band (12.6 cm), respectively. The Circular Polarization Ratio (CPR) is a typical product derived from backscattered microwave radiation that examines the scattering properties of the lunar surface, particularly the roughness of the surface on the order of the radar wavelength. Throughout the LRO extended mission, Mini-RF has targeted young craters on the lunar surface to examine the scattering properties of their ejecta blankets in both S- and X-band. Several observed craters and their ejecta blankets exhibit a clear coherent backscatter opposition effect at low bistatic (phase) angles. This opposition effect is consistent with optical studies of lunar soils done in the laboratory, but these observations are the first time this effect has been measured on the Moon at radar wavelengths. The style of the observed opposition effect differs between craters, which may indicate differences in ejecta fragment formation or emplacement. Differences in the CPR behavior as a function of bistatic angle may also provide opportunities for relative age dating between Copernican craters. Here, we examine the ejecta of nine Copernican and Eratosthenian aged craters in both S-band and X-band and document CPR characteristics as a function bistatic angle in order to test that hypothesis. The youngest craters observed by Mini-RF (e.g., Byrgius A (48 My), Kepler (635-1250 My)) exhibit a clear opposition effect, while older craters such as Hercules have a fairly flat response in CPR as a function of phase angle. Craters with ages between these two ends, e.g., Aristarchus, exhibit a weaker opposition response. Observing the scattering behavior of continuous ejecta blankets in multiple wavelengths may provide further information about the rate of breakdown of rocks of varying size to

  5. First independent lunar gravity field solution in the framework of project GRAZIL

    NASA Astrophysics Data System (ADS)

    Wirnsberger, Harald; Krauss, Sandro; Klinger, Beate; Mayer-Gürr, Torsten

    2017-04-01

    The twin satellite mission Gravity Recovery and Interior Laboratory (GRAIL) aims to recovering the lunar gravity field by means of intersatellite Ka-band ranging (KBR) observations. In order to exploit the potential of KBR data, absolute position information of the two probes is required. Hitherto, the Graz lunar gravity field models (GrazLGM) relies on the official orbit products provided by NASA. In this contribution, we present for the first time a completely independent Graz lunar gravity field model to spherical harmonic degree and order 420. The reduced dynamic orbits of the two probes are determined using variational equations following a batch least squares differential adjustment process. These orbits are based on S-band radiometric tracking data collected by the Deep Space Network and are used for the independent GRAIL gravity field recovery. To reveal a highly accurate lunar gravity field, an integral equation approach using short orbital arcs is adopted to process the KBR data. A comparison to state-of-the-art lunar gravity models computed at NASA-GSFC, NASA-JPL and AIUB demonstrate the progress of Graz lunar gravity field models derived within the project GRAZIL.

  6. Cassini/VIMS observation of an Io post-eclipse brightening event

    USGS Publications Warehouse

    Bellucci, G.; D'Aversa, E.; Formisano, V.; Cruikshank, D.; Nelson, R.M.; Clark, R.N.; Baines, K.H.; Matson, D.; Brown, R.H.; McCord, T.B.; Buratti, B.J.; Nicholson, P.D.

    2004-01-01

    During the Cassini-Jupiter flyby, VIMS observed Io at different phase angles, both in full sunlight and in eclipse. By using the sunlight measurements, we were able to produce phase curves in the visual through all the near infrared wavelengths covered by the VIMS instrument (0.85-5.1 ??m). The phase angle spanned from ???2?? to ???120??. The measurements, done just after Io emerged from Jupiter's shadow, show an increase of about 15% in Io's reflectance with respect to what would be predicted by the phase curve. This behavior is observed at wavelengths >1.2 ??m. Moreover, just after emergence from eclipse an increase of about 25% is observed in the depth of SO2 frost bands at 4.07 and 4.35 ??m. At 0.879eclipse. ?? 2004 Elsevier Inc. All rights reserved.

  7. The Least Mean Squares Adaptive FIR Filter for Narrow-Band RFI Suppression in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Głas, Dariusz

    2017-06-01

    Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.

  8. Lunar BRDF Correction of Suomi-NPP VIIRS Day/Night Band Time Series Product

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Kalb, V.; Stokes, E.; Miller, S. D.

    2015-12-01

    Since the first-light images from the Suomi-NPP VIIRS low-light visible Day/Night Band (DNB) sensor were received in November 2011, the NASA Suomi-NPP Land Science Investigator Processing System (SIPS) has focused on evaluating this new capability for quantitative science applications, as well as developing and testing refined algorithms to meet operational and Land science research needs. While many promising DNB applications have been developed since the Suomi-NPP launch, most studies to-date have been limited by the traditional qualitative image display and spatial-temporal aggregated statistical analysis methods inherent in current heritage algorithms. This has resulted in strong interest for a new generation of science-quality products that can be used to monitor both the magnitude and signature of nighttime phenomena and anthropogenic sources of light emissions. In one particular case study, Román and Stokes (2015) demonstrated that tracking daily dynamic DNB radiances can provide valuable information about the character of the human activities and behaviors that influence energy, consumption, and vulnerability. Here we develop and evaluate a new suite of DNB science-quality algorithms that can exclude a primary source of background noise: i.e., the Lunar BRDF (Bidirectional Reflectance Distribution Function) effect. Every day, the operational NASA Land SIPS DNB algorithm makes use of 16 days worth of DNB-derived surface reflectances (SR) (based on the heritage MODIS SR algorithm) and a semiempirical kernel-driven bidirectional reflectance model to determine a global set of parameters describing the BRDF of the land surface. The nighttime period of interest is heavily weighted as a function of observation coverage. These gridded parameters, combined with Miller and Turner's [2009] top-of-atmosphere spectral irradiance model, are then used to determine the DNB's lunar radiance contribution at any point in time and under specific illumination conditions.

  9. Fall 2011 Eclipse Season Begins

    NASA Image and Video Library

    2017-12-08

    The Fall 2011 eclipse season started on September 11. Here is an AIA 171 image from 0657 UT with the first eclipse! SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  11. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett's esophagus: a prospective randomized crossover study.

    PubMed

    Kara, M A; Peters, F P; Rosmolen, W D; Krishnadath, K K; ten Kate, F J; Fockens, P; Bergman, J J G H

    2005-10-01

    High-resolution endoscopy (HRE) may improve the detection of early neoplasia in Barrett's esophagus. Indigo carmine chromoendoscopy (ICC) and narrow-band imaging (NBI) may be useful techniques to complement HRE. The aim of this study was to compare HRE-ICC with HRE-NBI for the detection of high-grade dysplasia or early cancer (HGD/EC) in patients with Barrett's esophagus. Twenty-eight patients with Barrett's esophagus underwent HRE-ICC and HRE-NBI (separated by 6 - 8 weeks) in a randomized sequence. The two procedures were performed by two different endoscopists, who were blinded to the findings of the other examination. Targeted biopsies were taken from all detected lesions, followed by four-quadrant biopsies at 2-cm intervals. Biopsy evaluation was supervised by a single expert pathologist, who was blinded to the imaging technique used. Fourteen patients were diagnosed with HGD/EC. The sensitivity for HGD/EC was 93 % and 86 % for HRE-ICC and HRE-NBI, respectively. Targeted biopsies had a sensitivity of 79 % with HRE alone. HGD was diagnosed from random biopsies alone in only one patient. ICC and NBI detected a limited number of additional lesions occult to HRE, but these lesions did not alter the sensitivity for identifying patients with HGD/EC. In most patients with high-grade dysplasia or early cancer in Barrett's esophagus, subtle lesions can be identified with high-resolution endoscopy. Indigo carmine chromoendoscopy and narrow-band imaging are comparable as adjuncts to high-resolution endoscopy.

  12. A comparison of infrared, radar, and geologic mapping of lunar craters

    USGS Publications Warehouse

    Thompson, T.W.; Masursky, H.; Shorthill, R.W.; Tyler, G.L.; Zisk, S.H.

    1974-01-01

    Between 1000 and 2000 infrared (eclipse) and radar anomalies have been mapped on the nearside hemisphere of the Moon. A study of 52 of these anomalies indicates that most are related to impact craters and that the nature of the infrared and radar responses is compatible with a previously developed geologic model of crater aging processes. The youngest craters are pronounced thermal and radar anomalies; that is, they have enhanced eclipse temperatures and are strong radar scatterers. With increasing crater age, the associated thermal and radar responses become progressively less noticeable until they assume values for the average lunar surface. The last type of anomaly to disappear is radar enhancement at longer wavelengths. A few craters, however, have infrared and radar behaviors not predicted by the aging model. One previously unknown feature - a field strewn with centimeter-sized rock fragments - has been identified by this technique of comparing maps at the infrared, radar, and visual wavelengths. ?? 1974 D. Reidel Publishing Company, Dordrecht-Holland.

  13. Massive eclipsing binary candidates

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Schild, R. E.; Hiltner, W. A.

    1983-01-01

    New UBV data are provided for 63 southern OB stars which are either identified in the survey by Garrison, Hiltner, and Schild as having double lines or are known from Wood et al. to be eclipsing binaries. Twenty of the stars are known eclipsing variables. Four stars, not previously known as eclipsing, have both spectroscopic evidence of duplicity and significant photometric variations. Several additional stars have a marginally significant spread in V magnitude.

  14. Nationwide Eclipse Ballooning Project

    NASA Astrophysics Data System (ADS)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  15. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in sub-syndromal seasonal affective disorder.

    PubMed

    Meesters, Ybe; Winthorst, Wim H; Duijzer, Wianne B; Hommes, Vanja

    2016-02-18

    The discovery of a novel photoreceptor in the retinal ganglion cells with a highest sensitivity of 470-490 nm blue light has led to research on the effects of short-wavelength light in humans. Several studies have explored the efficacy of monochromatic blue or blue-enriched light in the treatment of SAD. In this study, a comparison has been made between the effects of broad-wavelength light without ultraviolet (UV) wavelengths compared to narrow-band blue light in the treatment of sub-syndromal seasonal affective disorder (Sub-SAD). In a 15-day design, 48 participants suffering from Sub-SAD completed 20-minute sessions of light treatment on five consecutive days. 22 participants were given bright white-light treatment (BLT, broad-wavelength light without UV 10 000 lux, irradiance 31.7 Watt/m(2)) and 26 participants received narrow-band blue light (BLUE, 100 lux, irradiance 1.0 Watt/m(2)). All participants completed daily and weekly questionnaires concerning mood, activation, sleep quality, sleepiness and energy. Also, mood and energy levels were assessed by means of the SIGH-SAD, the primary outcome measure. On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 54.8 %, effect size 1.7 and BLUE 50.7 %, effect size 1.9). No statistically significant differences were found on the main outcome measures. Light treatment is an effective treatment for Sub-SAD. The use of narrow-band blue-light treatment is equally effective as bright white-light treatment. This study was registered in the Dutch Trial Register (Nederlands Trial Register TC =  4342 ) (20-12-2013).

  16. Acquisition and visualization techniques for narrow spectral color imaging.

    PubMed

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  17. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  18. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Sun, Y. -E; Maxwell, T. J.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  19. High Earth orbit design for lunar assisted small Explorer class missions

    NASA Technical Reports Server (NTRS)

    Mathews, M.; Hametz, M.; Cooley, J.; Skillman, D.

    1994-01-01

    Small Expendable launch vehicles are capable of injecting modest payloads into high Earth orbits having apogee near the lunar distance. However, lunar and solar perturbations can quickly lower perigee and cause premature reentry. Costly perigee raising maneuvers by the spacecraft are required to maintain the orbit. In addition, the range of inclinations achievable is limited to those of launch sites unless costly spacecraft maneuvers are performed. This study investigates the use of a lunar swingby in a near-Hohmann transfer trajectory to raise perigee into the 8 to 25 solar radius range and reach a wide variety of inclinations without spacecraft maneuvers. It is found that extremely stable orbits can be obtained if the postencounter spacecraft orbital period is one-half of a lunar sidereal revolution and the Earth-vehicle-Moon geometry is within a specified range. Criteria for achieving stable orbits with various perigee heights and ecliptic inclinations are developed, and the sensitivity of the resulting mission orbits to transfer trajectory injection (TTI) errors is examined. It is shown that carefully designed orbits yield lifetimes of several years, with excellent ground station coverage characteristics and minimal eclipses. A phasing loop error correction strategy is considered with the spacecraft propulsion system delta V demand for TTI error correction and a postlunar encounter apogee trim maneuver typically in the 30 to 120 meters per second range.

  20. Simulator spectral characterization using balloon calibrated solar cells with narrow band pass filters

    NASA Technical Reports Server (NTRS)

    Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.

    1981-01-01

    The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.

  1. Eclipse Megamovie: Solar Discoveries, Education, and Outreach through Crowdsourcing 2017 Eclipse Images

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Johnson, C.; Zevin, D.; Krista, L. D.; Bender, M.; Mcintosh, S. W.; Konerding, D.; Koh, J.; Pasachoff, J.; Lorimore, B.; Jiang, G.; Storksdieck, M.; Yan, D.; Shore, L.; Fraknoi, A.; Filippenko, A.

    2016-12-01

    Since 2011, a team of solar scientists, eclipse chasers, education and outreach professionals, and film makers have been working to explore the possibility of gathering images from the public during the 2017 eclipse across the United States, to be used for scientific research, education, and enhancing the public's experience of the eclipse. After years of testing the initial ideas, engaging new organizations, and exploring new technologies, our team has developed a blueprint for this project. There are three main goals for this effort: 1. to learn more about the dynamic non-equilibrium processes in the corona and lower atmosphere of the Sun, 2. to educate the public about space physics, 3. provide different levels of engagement opportunities for an interested public, and 4. to understand how these various levels of engagement with a major scientific phenomena allow people to develop deeper personal connections to Science, Technology, Engineering, and Mathematics (STEM). We will meet these goals by training 1000 volunteers to take scientifically valid images and donate the images to this project, while also allowing the general public to share their images as well. During the Aug 21, 2017 eclipse, we will analyze these images in real-time to produce public-generated movies showing the corona of the Sun during totality from thousands of people. These movies will be disseminated in near real-time (on the order of 10s of minutes) to other eclipse programs, news organizations, and to the general public. Meanwhile, images collected during and after the eclipse will be available to scientists and the public for research purposes. To further engage the public, video clips, film, and a documentary will be produced prior and after the event. A science education research team will work alongside the team to understand how the project supports deeper connections to the eclipse experience.

  2. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period

    PubMed Central

    2012-01-01

    Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. PMID

  3. Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.

    PubMed

    Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M

    2012-08-24

    The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.

  4. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  5. Symbolism and discovery: eclipses in art.

    PubMed

    Blatchford, Ian

    2016-09-28

    There is a fascinating tradition of depicting solar eclipses in Western art, although these representations have changed over time. Eclipses have often been an important feature of Christian iconography, but valued as much for their biblical significance as for the splendour of the physical event. However, as Western culture passed through the Renaissance and Enlightenment the depictions of eclipses came to reflect new astronomical knowledge and a thirst for rational learning well beyond the confines of the church and other elites. Artists also played a surprisingly important role in helping scientists in the nineteenth century understand and record the full phenomena of an eclipse, even as the advent of photography also came to solve a number of scientific puzzles. In the most recent century, artists have responded to eclipses with symbolism, abstraction and playfulness.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).

  6. High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks.

    PubMed

    Lee, Ji Hyung; Park, Chang Geun; Kim, Aesun; Kim, Hyung Jong; Kim, Youngseo; Park, Sungnam; Cho, Min Ju; Choi, Dong Hoon

    2018-06-06

    We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm 2 , demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.

  7. Heliophysics at total solar eclipses

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2017-08-01

    Observations during total solar eclipses have revealed many secrets about the solar corona, from its discovery in the 17th century to the measurement of its million-kelvin temperature in the 19th and 20th centuries, to details about its dynamics and its role in the solar-activity cycle in the 21st century. Today's heliophysicists benefit from continued instrumental and theoretical advances, but a solar eclipse still provides a unique occasion to study coronal science. In fact, the region of the corona best observed from the ground at total solar eclipses is not available for view from any space coronagraphs. In addition, eclipse views boast of much higher quality than those obtained with ground-based coronagraphs. On 21 August 2017, the first total solar eclipse visible solely from what is now United States territory since long before George Washington's presidency will occur. This event, which will cross coast-to-coast for the first time in 99 years, will provide an opportunity not only for massive expeditions with state-of-the-art ground-based equipment, but also for observations from aloft in aeroplanes and balloons. This set of eclipse observations will again complement space observations, this time near the minimum of the solar activity cycle. This review explores the past decade of solar eclipse studies, including advances in our understanding of the corona and its coronal mass ejections as well as terrestrial effects. We also discuss some additional bonus effects of eclipse observations, such as recreating the original verification of the general theory of relativity.

  8. Mapping the 2017 Eclipse: Education, Navigation, Inspiration

    NASA Astrophysics Data System (ADS)

    Zeiler, M.

    2015-12-01

    Eclipse maps are a unique vessel of knowledge. At a glance, they communicate the essential knowledge of where and when to successfully view a total eclipse of the sun. An eclipse map also provides detailed knowledge of eclipse circumstances superimposed on the highway system for optimal navigation, especially in the event that weather forces relocation. Eclipse maps are also a vital planning tool for solar physicists and astrophotographers capturing high-resolution imagery of the solar corona. Michael Zeiler will speak to the role of eclipse maps in educating the American public and inspiring people to make the effort to reach the path of totality for the sight of a lifetime. Michael will review the role of eclipse maps in astronomical research and discuss a project under development, the 2017 Eclipse Atlas for smartphones, tablets, and desktop computers.

  9. ASCA measurements of the grain-scattered X-ray halos of eclipsing massive X-ray binaries: Vela X-1 and Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Woo, Jonathan W.; Clark, George W.; Day, Charles S. R.; Nagase, Fumiaki; Takeshima, Toshiaki

    1994-01-01

    We have measured the decaying dust-scattered X-ray halo of Cen X-3 during its binary eclipse with the ASCA solid-state imaging spectrometer (SIS). The surface brightness profile (SBP) of the image in the low-energy band (0.5-3 keV) lies substantially above the point-spread function (PSF) of the X-ray telescope, while the SBP in the high-energy band (5-10 keV) exhibits no significant deviation. By contrast, the SBPs of Vela X-1 during its eclipse are consistent with the PSF in both the low- and high-energy bands -- strong evidence that a dust halo is indeed present in Cen X-3. Accordingly, we modeled the SBP of Cen X-3 taken from six consecutive time segments under the principal assumptions that the dust is distributed uniformly along a segment of the line of sight, the grains have a power-law size distribution, and the low-energy source flux was the same function of orbital phase before as during our observation. The best-fit set of parameters included a grain density value of 1.3 g/cu cm, substanially less than the density of 'astronomical silicate.' This result supports the idea that interstellar grains are 'fluffy' aggregates of smaller solid particles. We attribute the failure to detect a halo of Vela X-1 during its eclipse phase to extended strong circumsource absorption that probably occurred before the eclipse and allowed the halo to decay away before the observation began.

  10. Eclipsing the Light...Fantastic! Teaching Science.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1995-01-01

    Features the concepts of optics and geometry of eclipses. Presents the "eclipse rule," suggesting classroom activities in which students derive this rule. Includes some triangles activities for outdoors that illustrate eclipsing and sighting phenomena. (ET)

  11. Spectral Eclipse Timing

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian; Agol, Eric; Deming, Drake

    2015-12-01

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.

  12. Practicing for 2023 and 2024: What the AAS Solar Eclipse Task Force Learned from the "Great American Eclipse" of 2017

    NASA Astrophysics Data System (ADS)

    Fienberg, R. T.; Speck, A. K.; Habbal, S. R.

    2017-12-01

    More than three years ahead of the "Great American Eclipse" of August 2017, the American Astronomical Society formed the AAS Solar Eclipse Task Force to function as a think tank, coordinating body, and communication gateway to the vast resources available about the 2017 eclipse and solar eclipses more generally. The task force included professional and amateur astronomers, formal and informal educators, and science journalists; many had experienced total solar eclipses before, and others would experience their first totality in August 2017. The AAS task force secured funding from the AAS Council, the National Science Foundation, and NASA. These resources were used mainly for three purposes: (1) to build a website that contains basic information about solar eclipses, safe viewing practices, and eclipse imaging and video, along with resources for educators and the media and a searchable map of eclipse-related events and activities, with links to other authoritative websites with more detailed information; (2) to solicit, receive, evaluate, and fund proposals for mini-grants to support eclipse-related education and public outreach to underrepresented groups both inside and outside the path of totality; and (3) to organize a series of multidisciplinary workshops across the country to prepare communities for the eclipse and to facilitate collaborations between astronomers, meteorologists, school administrators, and transporation and emergency-management professionals. Most importantly, the AAS Solar Eclipse Task Force focused on developing and disseminating appropriate eclipse safety information. The AAS and NASA jointly developed safety messaging that won the endorsement of the American Academies of Opthalmology and Optometry. In the weeks immediately preceding the eclipse, it became clear that the marketplace was being flooded by counterfeit eclipse glasses and solar viewers, leading to a last minute change in our communication strategy. In this talk, we'll review the

  13. Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu

    2015-04-01

    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.

  14. Fall 2011 Eclipse Season Begins

    NASA Image and Video Library

    2011-09-13

    The Fall 2011 eclipse season started on September 11, 2011. Here is an AIA 304 image from 0658 UT. SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej

    2014-02-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less

  16. The Development of Wheels for the Lunar Roving Vehicle

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake; Delap, Damon; Creager, Colin

    2009-01-01

    The Lunar Roving Vehicle (LRV) was developed for NASA s Apollo program so astronauts could cover a greater range on the lunar surface, carry more science instruments, and return more soil and rock samples than by foot. Because of the unique lunar environment, the creation of flexible wheels was the most challenging and time consuming aspect of the LRV development. Wheels developed for previous lunar systems were not sufficient for use with this manned vehicle; therefore, several new designs were created and tested. Based on criteria set by NASA, the choices were narrowed down to two: the wire mesh wheel developed by General Motors (GM), and the hoop spring wheel developed by the Bendix Corporation. Each of these underwent intensive mechanical, material, and terramechanical analyses, and in the end, the wire mesh wheel was chosen for the LRV. Though the wire mesh wheel was determined to be the best choice for its particular application, it may be insufficient towards achieving the objectives of future lunar missions that could require higher tractive capability, increased weight capacity, or extended life. Therefore lessons learned from the original LRV wheel development and suggestions for future Moon wheel projects are offered.

  17. Observation of variable pre-eclipse dips and disk winds in the eclipsing LMXB XTE J1710-281

    NASA Astrophysics Data System (ADS)

    Raman, Gayathri; Maitra, Chandreyee; Paul, Biswajit

    2018-04-01

    We report the first detection of highly ionized Fe species in the X-ray spectrum of the eclipsing and dipping Low Mass X-ray Binary XTE J1710-281. Using archival Chandra and Suzaku observations, we have carried out a spectro-timing analysis of the source during three different epochs. We compare the average orbital profile and obtain differences in pre-eclipse dip morphologies between different observation epochs. We observe an orbit to orbit evolution of the dips for the first time in this source in both the Chandra observations, reflecting changes in the structure of the accretion disc in timescales of hours. We further perform intensity resolved spectroscopy for both the Chandra and the Suzaku data to characterize the changes in the spectral parameters from the persistent to the dipping intervals. We find that the absorbers responsible for the dips, can be best described using a partially ionized partial covering absorber, with an ionization parameter, log(ξ) of ˜2. The photon index of the source remained at ˜2 during both the Chandra and the Suzaku observations. In the 0.6-9 keV Suzaku spectra, we detect a broad 0.72 keV Fe L-alpha emission line complex and two narrow absorption lines at ˜6.60 keV and ˜7.01 keV. The highly ionized Fe line signatures, being an indicator of accretion disc-winds, has been observed for the first time in XTE J1710-281.

  18. Student artistry sparks eclipse excitement on Maui: NSO/DKIST EPO for the 2016 Partial Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Schad, Thomas A.; Penn, Matthew J.; Armstrong, James

    2016-05-01

    Local creativity and artistry is a powerful resource that enhances education programs and helps us generate excitement for science within our communities. In celebration of the 2016 Solar Eclipse, the National Solar Observatory (NSO) and its Daniel K Inouye Solar Telescope (DKIST) project were pleased to engage with students across Maui County, Hawai`i, via the 2016 Maui Eclipse Art Contest. With the help of the Maui Economic Development Board and the University of Hawai'is Institute for Astronomy, we solicited art entries from all K-12 schools in Maui County approximately 6 months prior to the eclipse. Along with divisional prizes, a grand prize was selected by a panel of local judges, which was subsequently printed on 25,000 solar eclipse viewing glasses and distributed to all Maui students. We found that the impact of a locally-sourced glasses design cannot be understated. Overall, the success of this program relied upon reaching out to individual teachers, supplying educational flyers to all schools, and visiting classrooms. On the day of the eclipse, all of the art entries were prominently displayed during a community eclipse viewing event at Kalama Beach Park in Kihei, HI, that was co-hosted by NSO and the Maui Science Center. This eclipse art contest was integral to making local connections to help promote science education on Maui, and we suggest that it could be adapted to the solar community's EPO activities for the upcoming 2017 Great American Solar Eclipse.

  19. Band-gap narrowing and magnetic behavior of Ni-doped Ba(Ti0.875Ce0.125)O3 thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Wenliang; Deng, Hongmei; Yu, Lu; Yang, Pingxiong; Chu, Junhao

    2015-11-01

    Band-gap narrowing and magnetic effects have been observed in a Ni-doped Ba(Ti0.875Ce0.125)O3 (BTC) thin film. Structural characterizations and microstructural analysis show that the as-prepared Ba(Ti0.75Ce0.125Ni0.125)O3-δ (BTCN) thin film exhibits a cubic perovskite structure with an average grain size of 25 nm. The Ce doping at the Ti-site results in an increasing perovskite volume to favour an O-vacancy-stabilized Ni2+ substitution. Raman spectroscopy, however, shows the cubic symmetry of crystalline structures is locally lowered by the presence of dopants, significantly deviating from the ideal Pm3m space group. Moreover, BTCN presents a narrowed band-gap, much smaller than that of BaTiO3 and BTC, due to new states of both the highest occupied molecular orbital and the lowest unoccupied molecular orbital in an electronic structure with the presence of Ni. Also, magnetic enhancement driven by co-doping has been confirmed in the films, which mainly stems from the exchange interaction of Ni2+ ions via an electron trapped in a bridging oxygen vacancy. These findings may open an avenue to discover and design optimal perovskite compounds for solar-energy devices and information storage.

  20. UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band

    NASA Astrophysics Data System (ADS)

    Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei

    2017-12-01

    A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.

  1. On-sky characterisation of the VISTA NB118 narrow-band filters at 1.19 μm

    NASA Astrophysics Data System (ADS)

    Milvang-Jensen, Bo; Freudling, Wolfram; Zabl, Johannes; Fynbo, Johan P. U.; Møller, Palle; Nilsson, Kim K.; McCracken, Henry Joy; Hjorth, Jens; Le Fèvre, Olivier; Tasca, Lidia; Dunlop, James S.; Sobral, David

    2013-12-01

    Observations of the high redshift Universe through narrow-band filters have proven very successful in the last decade. The 4-m VISTA telescope, equipped with the wide-field camera VIRCAM, offers a major step forward in wide-field near-infrared imaging, and in order to utilise VISTA's large field-of-view and sensitivity, the Dark Cosmology Centre provided a set of 16 narrow-band filters for VIRCAM. These NB118 filters are centered at a wavelength near 1.19 μm in a region with few airglow emission lines. The filters allow the detection of Hα emitters at z = 0.8, Hβ and [O iii] emitters at z ≈ 1.4, [O ii] emitters at z = 2.2, and Lyα emitters at z = 8.8. Based on guaranteed time observations of the COSMOS field we here present a detailed description and characterization of the filters and their performance. In particular we provide sky-brightness levels and depths for each of the 16 detector/filter sets and find that some of the filters show signs of some red-leak. We identify a sample of 2 × 103 candidate emission-line objects in the data. Cross-correlating this sample with a large set of galaxies with known spectroscopic redshifts we determine the "in situ" passbands of the filters and find that they are shifted by about 3.5 - 4 nm (corresponding to 30% of the filter width) to the red compared to the expectation based on the laboratory measurements. Finally, we present an algorithm to mask out persistence in VIRCAM data. Scientific results extracted from the data will be presented separately. Based on observations collected at the European Southern Observatory, Chile, as part of programme 284.A-5026 (VISTA NB118 GTO, PI Fynbo) and 179.A-2005 (UltraVISTA, PIs Dunlop, Franx, Fynbo, & Le Fèvre).

  2. Record-Breaking Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind

  3. Chang'e 3 lunar mission and upper limit on stochastic background of gravitational wave around the 0.01 Hz band

    NASA Astrophysics Data System (ADS)

    Tang, Wenlin; Xu, Peng; Hu, Songjie; Cao, Jianfeng; Dong, Peng; Bu, Yanlong; Chen, Lue; Han, Songtao; Gong, Xuefei; Li, Wenxiao; Ping, Jinsong; Lau, Yun-Kau; Tang, Geshi

    2017-09-01

    The Doppler tracking data of the Chang'e 3 lunar mission is used to constrain the stochastic background of gravitational wave in cosmology within the 1 mHz to 0.05 Hz frequency band. Our result improves on the upper bound on the energy density of the stochastic background of gravitational wave in the 0.02-0.05 Hz band obtained by the Apollo missions, with the improvement reaching almost one order of magnitude at around 0.05 Hz. Detailed noise analysis of the Doppler tracking data is also presented, with the prospect that these noise sources will be mitigated in future Chinese deep space missions. A feasibility study is also undertaken to understand the scientific capability of the Chang'e 4 mission, due to be launched in 2018, in relation to the stochastic gravitational wave background around 0.01 Hz. The study indicates that the upper bound on the energy density may be further improved by another order of magnitude from the Chang'e 3 mission, which will fill the gap in the frequency band from 0.02 Hz to 0.1 Hz in the foreseeable future.

  4. CE-4 Mission and Future Journey to Lunar

    NASA Astrophysics Data System (ADS)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  5. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.

  6. Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulas, Dana B.; London, Alexander E.; Huang, Lifeng

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less

  7. Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors

    DOE PAGES

    Sulas, Dana B.; London, Alexander E.; Huang, Lifeng; ...

    2018-02-13

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less

  8. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, D. R.; Matson, R. A.; Guo, Z.

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less

  9. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    NASA Astrophysics Data System (ADS)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  10. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Barnes, W.L.; Butler, J.J.

    2004-01-01

    A system to provide radiometric calibration of remote sensing imaging instruments on-orbit using the Moon has been developed by the US Geological Survey RObotic Lunar Observatory (ROLO) project. ROLO has developed a model for lunar irradiance which treats the primary geometric variables of phase and libration explicitly. The model fits hundreds of data points in each of 23 VNIR and 9 SWIR bands; input data are derived from lunar radiance images acquired by the project's on-site telescopes, calibrated to exoatmospheric radiance and converted to disk-equivalent reflectance. Experimental uncertainties are tracked through all stages of the data processing and modeling. Model fit residuals are ???1% in each band over the full range of observed phase and libration angles. Application of ROLO lunar calibration to SeaWiFS has demonstrated the capability for long-term instrument response trending with precision approaching 0.1% per year. Current work involves assessing the error in absolute responsivity and relative spectral response of the ROLO imaging systems, and propagation of error through the data reduction and modeling software systems with the goal of reducing the uncertainty in the absolute scale, now estimated at 5-10%. This level is similar to the scatter seen in ROLO lunar irradiance comparisons of multiple spacecraft instruments that have viewed the Moon. A field calibration campaign involving NASA and NIST has been initiated that ties the ROLO lunar measurements to the NIST (SI) radiometric scale.

  11. The Effect of High N-DOPED Anatase TiO2 on the Band Gap Narrowing and Redshift by First-Principles

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Jin, Yongjun; Ying, Chun; Zhao, Erjun; Zhang, Yue; Dong, Hongying

    2012-10-01

    Anatase TiO2 supercells were studied by first-principles, in which one was undoped and another three were high N-doping. Partial densities of states, band structure, population and absorption spectrum were calculated. The calculated results indicated that in the condition of TiO2-xNx (x = 0.0625, 0.125, 0.25), the higher the doping concentration is, the shorter will be the lattice parameters parallel to the direction of c-axis. The strength of covalent bond significantly varied. The formation energy increases at first, and then decreases. The doping models become less stable as N-doping concentration increases. Meanwhile, the narrower the band gap is, the more significant will be the redshift, which is in agreement with the experimental results.

  12. American Solar Eclipses 2017 & 2024

    NASA Astrophysics Data System (ADS)

    DiCanzio, Albert

    2016-06-01

    This research focuses on harnessing the statistical capacity of many available concurrent observers to advance scientific knowledge. By analogy to some Galilean measurement-experiments in which he used minimal instrumentation, this researcher will address the question: How might an individual observer, with a suitably chosen common metric and with widely available, reasonably affordable equipment, contribute to new knowledge from observing the solar eclipse of 2017? Each observer would report data to an institutional sponsor who would analyze these data statistically toward new knowledge about some question currently unsettled in astronomy or in the target field connected with the question which the chosen metric is targeted to address. A subordinate question will be discussed: As a tradeoff between “best question to answer” and “easiest question for observers’ data to answer”, is there an event property and related target question that, with high potential utility and low cost, would be measurable by an observer positioned in the path of totality with minimal or inexpensive equipment and training? (And that, as a statistical sample point, might contribute to new knowledge?) In dialog with the audience, the presenter will suggest some measurables; e.g., solar flares, ground shadow bands, atmospheric metrics, coronal structure, etc., correlated or not with certain other dependent variables. The independent variable would be time in the intervention interval from eclipse contacts 1 -- 4. By the aforementioned analogy, the presenter will review as examples some measurement-experiments conducted or suggested by Galileo; e.g., pendulum laws, Jovian satellite eclipse times, geokinesis as later seen in Bessel's parallactic measurement, and Michelson's measurement of light speed. Because criteria of metrics-determination would naturally include existence of a data-collection-analysis method, this presentation requires dialogue with a critical mass of audience

  13. K-Band Traveling-Wave Tube Amplifier

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.

    2010-01-01

    A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.

  14. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Former Spacelab 1 Mission scientist Rick Chappell views the August 21, 2017 solar eclipse with his wife. Chappell, a former associate director for science at Marshall and now a physics professor at Vanderbilt University in Nashville, joined a throng of Marshall personnel to marvel at the eclipse.

  15. Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, J.; Crawford, D.; Edstrom Jr, D.

    We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the detailsmore » of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.« less

  16. Fifty year canon of solar eclipses: 1986 - 2035

    NASA Technical Reports Server (NTRS)

    Espenak, Fred

    1987-01-01

    A complete catalog is presented, listing the general characteristics of every solar eclipse from 1901 through 2100. To complement this catalog, a detailed set of cylindrical projection world maps shows the umbral paths of every solar eclipse over the 200 year interval. Focusing in on the next 50 years, accurate geodetic path coordinates and local circumstances for the 71 central eclipses from 1987 through 2035 are tabulated. Finally, the geodetic paths of the umbral and penumbral shadows of all 109 solar eclipses in this period are plotted on orthographic projection maps of the Earth. Appendices are included which discuss eclipse geometry, eclipse frequency and occurrence, modern eclipse prediction and time determination. Finally, code for a simple Fortran program is given to predict the occurrence and characteristics of solar eclipses.

  17. 1H 1752 + 081: An eclipsing cataclysmic variable with a small accretion disk

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.

    1994-01-01

    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average m(sub v) of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M(sub 1) = 0.80 +/- 0.06 solar masses and M(sub 2) = 0.32 +/- 0.06 solar masses. The disk is faint and small (R(sub D) = 0.25 +/- 0.05 r(sub L1), where r(sub L1) is the distance from the primary to the L(sub 1) point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m(sub 1) = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  18. Hα Emitting Galaxies at z ∼ 0.6 in the Deep And Wide Narrow-band Survey

    NASA Astrophysics Data System (ADS)

    Coughlin, Alicia; Rhoads, James E.; Malhotra, Sangeeta; Probst, Ronald; Swaters, Rob; Tilvi, Vithal S.; Zheng, Zhen-Ya; Finkelstein, Steven; Hibon, Pascale; Mobasher, Bahram; Jiang, Tianxing; Joshi, Bhavin; Pharo, John; Veilleux, Sylvain; Wang, Junxian; Yang, Huan; Zabl, Johannes

    2018-05-01

    We present new measurements of the Hα luminosity function (LF) and star formation rate (SFR) volume density for galaxies at z ∼ 0.62 in the COSMOS field. Our results are part of the Deep And Wide Narrow-band Survey (DAWN), a unique infrared imaging program with large areal coverage (∼1.1 deg2 over five fields) and sensitivity (9.9× {10}-18 {erg} {cm}}-2 {{{s}}}-1 at 5σ). The present sample, based on a single DAWN field, contains 116 Hα emission-line candidates at z ∼ 0.62, 25% of which have spectroscopic confirmations. These candidates have been selected through the comparison of narrow and broad-band images in the infrared and through matching with existing catalogs in the COSMOS field. The dust-corrected LF is well described by a Schechter function with {L}* ={10}42.64+/- 0.92 erg s‑1, {{{Φ }}}* ={10}-3.32+/- 0.93 Mpc‑3, {L}* {{{Φ }}}* ={10}39.40+/- 0.15 erg s‑1 Mpc‑3, and α = ‑1.75 ± 0.09. From this LF, we calculate a SFR density of ρ SFR = 10‑1.37 ± 0.08 M ⊙ yr‑1 Mpc‑3. We expect an additional cosmic variance uncertainty of ∼20%. Both the faint end slope and luminosity density that we derive are consistent with prior results at similar redshifts, with reduced uncertainties. We also present an analysis of these Hα emitters’ sizes, which shows a direct correlation between the galaxies’ sizes and their Hα emission.

  19. Preparing for the Eclipse

    ERIC Educational Resources Information Center

    Hurst, Anna; Plummer, Julia; Gurton, Suzanne; Schatz, Dennis

    2017-01-01

    On August 21, 2017, sky gazers all across North America will experience a total solar eclipse, arguably the most breathtaking of all astronomical phenomena. The August eclipse is an ideal astronomical event to observe with young children because it allows them to observe a powerful and easily accessible astronomical phenomenon. Observing…

  20. Hubble Space Telescope observations of Europa in and out of eclipse

    USGS Publications Warehouse

    Sparks, W.B.; McGrath, M.; Hand, K.; Ford, H.C.; Geissler, P.; Hough, J.H.; Turner, E.L.; Chyba, C.F.; Carlson, R.; Turnbull, M.

    2010-01-01

    Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. ?? 2010 Cambridge University Press.

  1. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Former Spacelab 1 mission scientist Rick Chappell addresses Marshall team members during the Aug. 21 eclipse-watching event in Activities Building 4316. Chappell, a former associate director for science at Marshall and now a physics professor at Vanderbilt University in Nashville, joined a throng of Marshall personnel to marvel at the eclipse.

  2. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510

    2011-06-27

    We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  3. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    PubMed

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  4. Cognitive aspects of ancient Maya eclipse theory.

    NASA Astrophysics Data System (ADS)

    Closs, M. P.

    This paper is concerned with determining the nature of eclipse phenomena as it was perceived by the ancient Maya. It approaches the problem by considering the linguistic information pertaining to eclipses and by exploring the traditional beliefs associated with the occurrence of eclipses among the postconquest Maya. These data yield a model of a native eclipse theory which is compatible with hieroglyphic and iconographic materials pertaining to the ancient Maya.

  5. COMPASS Final Report: Lunar Communications Terminal (LCT)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2010-01-01

    The Lunar Communications Terminal (LCT) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session designed a terminal to provide communications between lunar South Pole assets, communications relay to/from these assets through an orbiting Lunar Relay Satellite (LRS) and navigation support. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The Terminal consists of a pallet containing the communications and avionics equipment, surrounded by the thermal control system (radiator), an attached, deployable 10-m tower, upon which were mounted locally broadcasting and receiving modems and a deployable 1 m diameter Ka/S band dish which provides relay communications with the lunar relay satellites and, as a backup, Earth when it is in view. All power was assumed to come from the lunar outpost Habitat. Three LCT design options were explored: a stand-alone LCT servicing the manned outpost, an integrated LCT (into the Habitat or Lunar Lander), and a mini-LCT which provides a reduced level of communication for primarily robotic areas dealing as in situ resource utilization (ISRU) and remote science. Where possible all the designs assumed single fault tolerance. Significant mass savings were found when integrating the LCT into the Habitat or Lander but increases in costs occurred depending upon the level of man rating required for such designs.

  6. Ultrafast Narrow Band Modulation of VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.

  7. Narrow Angle Diversity using ACTS Ka-band Signal with Two USAT Ground Stations

    NASA Technical Reports Server (NTRS)

    Kalu, A.; Emrich, C.; Ventre, J.; Wilson, W.; Acosta, R.

    1998-01-01

    Two ultra small aperture terminal (USAT) ground stations, separated by 1.2 km in a narrow angle diversity configuration, received a continuous Ka-band tone sent from Cleveland Link Evaluation Terminal (LET). The signal was transmitted to the USAT ground stations via NASA's Advanced Communications Technology Satellite (ACTS) steerable beam. Received signal power at the two sites was measured and analyzed. A dedicated datalogger at each site recorded time-of-tip data from tipping bucket rain gauges, providing rain amount and instantaneous rain rate. WSR-88D data was also obtained for the collection period. Eleven events with ground-to-satellite slant-path precipitation and resultant signal attenuation were observed during the data collection period. Fade magnitude and duration were compared at the two sites and diversity gain was calculated. These results exceeded standard diversity gain model predictions by several decibels. Rain statistics from tipping bucket data and from radar data were also compared to signal attenuation. The nature of Florida's subtropical rainfall, specifically its impact on signal attenuation at the sites, was addressed.

  8. Raspberry Pi Eclipse Experiments

    NASA Astrophysics Data System (ADS)

    Chizek Frouard, Malynda

    2018-01-01

    The 21 August 2017 solar eclipse was an excellent opportunity for electronics and science enthusiasts to collect data during a fascinating phenomenon. With my recent personal interest in Raspberry Pis, I thought measuring how much the temperature and illuminance changes during a total solar eclipse would be fun and informational.Previous observations of total solar eclipses have remarked on the temperature drop during totality. Illuminance (ambient light) varies over 7 orders of magnitude from day to night and is highly dependent on relative positions of Sun, Earth, and Moon. I wondered whether totality was really as dark as night.Using a Raspberry Pi Zero W, a Pimoroni Enviro pHAT, and a portable USB charger, I collected environmental temperature; CPU temperature (because the environmental temperature sensor sat very near the CPU on the Raspberry Pi); barometric pressure; ambient light; R, G, and B colors; and x, y, and z acceleration (for marking times when I moved the sensor) data at a ~15 second cadence starting at about 5 am until 1:30 pm from my eclipse observation site in Glendo, WY. Totality occurred from 11:45 to 11:47 am, lasting about 2 minutes and 30 seconds.The Raspberry Pi recorded a >20 degree F drop in temperature during the eclipse, and the illuminance during totality was equivalent to twilight measurements earlier in the day. A limitation in the ambient light sensor prevented accurate measurements of broad daylight and most of the partial phase of the eclipse, but an alternate ambient light sensor combined with the Raspberry Pi setup would make this a cost-efficient set-up for illuminance studies.I will present data from the ambient light sensor, temperature sensor, and color sensor, noting caveats from my experiments, lessons learned for next time, and suggestions for anyone who wants to perform similar experiments for themselves or with a classroom.

  9. An Outreach Project to Provide 2.1 Million Eclipse Glasses and Eclipse Information through 7,100 Libraries Nationwide

    NASA Astrophysics Data System (ADS)

    Fraknoi, Andrew; Schatz, Dennis; Dusenbery, Paul; Duncan, Douglas; Holland, Anne; Laconte, Keliann

    2018-01-01

    With support from the Moore Foundation, Google, the Research Corporation, and NASA, we were able to distribute about 2.1 million eclipse glasses and an extensive booklet of eclipse information and outreach suggestions to 7,100 public libraries throughout the nation. It appears that this project was the single largest program to provide glasses and eclipse information to the public in the U.S. The project using (and significantly enlarged) the existing STARNet network of libraries set up and maintained by the Space Science Institute. We were able to get glasses to a diverse set of institutions, including urban, rural, Native American, small town and large city libraries. In this poster, we will summarize the history of the project, the various components and how they worked together, and the results of a post survey of the librarians, which provided numbers, photographs, and impressions from the many libraries and their patrons. A map of the libraries involved is at www.starnetlibraries.org/2017eclipse/. The booklet of information that was sent to help train librarians in eclipse science and eclipse outreach can still be downloaded free at: http://www.starnetlibraries.org/EclipseGuide/.”

  10. Observing Solar Eclipses in the Developing World

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.

    2006-08-01

    The paths of totality of total solar eclipses cross the world, with each spot receiving such a view about every 300 years. The areas of the world from which partial eclipses are visible are much wider. For the few days prior to a total eclipse, the attention of a given country is often drawn toward the eclipse, providing a teachable moment that we can use to bring astronomy to the public's attention. Also, it is important to describe how to observe the partial phases of the eclipse safely. Further, it is important to describe to those people in the zone of totality that it is not only safe but also interesting to view totality. Those who are misled by false warnings that overstate the hazards of viewing the eclipse, or that fail to distinguish between safe and unsafe times for naked-eye viewing, may well be skeptical when other health warnings--perhaps about AIDS or malaria prevention or polio inoculations--come from the authorities, meaning that the penalties for misunderstanding the astronomical event can be severe. Through the International Astronomical Union's Working Group on Solar Eclipses and through the I.A.U.'s Program Group on Public Education at the Times of Eclipses, part of the Commission on Education and Development, we make available information to national authorities, to colleagues in the relevant countries, and to others, through our Websites at http://www.eclipses.info and http://www.totalsolareclipse.net and through personal communication. Among our successes at the 29 March 2006 total solar eclipse was the distribution through a colleague in Nigeria of 400,000 eye-protection filters.

  11. Solar Eclipse Effect on Shelter Air Temperature

    NASA Technical Reports Server (NTRS)

    Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.

    1996-01-01

    Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.

  12. SDO Observed its First Lunar Transit

    NASA Image and Video Library

    2017-12-08

    NASA image captured October 7, 2010 View a video of this event here: www.flickr.com/photos/gsfc/5099028189 This was a first for SDO and it was visually engaging too. On October 7, 2010, SDO observed its first lunar transit when the new Moon passed directly between the spacecraft (in its geosynchronous orbit) and the Sun. With SDO watching the Sun in a wavelength of extreme ultraviolet light, the dark Moon created a partial eclipse of the Sun. These images, while unusual and cool to see, have practical value to the SDO science team. Karel Schrijver of Lockheed-Martin's Solar and Astrophysics Lab explains: "The very sharp edge of the lunar limb allows us to measure the in-orbit characteristics of the telescope e.g., light diffraction on optics and filter support grids. Once these are characterized, we can use that information to correct our data for instrumental effects and sharpen up the images to even more detail." To learn more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  13. The Lunar Reconnaissance Orbiter Mission: Seven Years at the Moon - Accomplishments, Data, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Petro, Noah; Keller, John

    2016-07-01

    The LRO Spacecraft has been orbiting the Moon for over 7 years (~91 lunations), and in that time data from the seven instruments has contributed to a revolution in our understanding of the Moon. Since launch the mission goals and instruments science questions have evolved, from the initial characterization of the lunar surface and its environment to studying the variability of surface hydration and measuring the flux of new craters that have formed during LRO's time in lunar orbit. The growing LRO dataset in the PDS presents a unique archive that allows for an unprecedented opportunity to study how an airless body changes over time. The LRO instrument suite [1] is performing nominally, with no significant performance issues since the mission entered the current extended mission. The Mini-RF instrument team is investigating new methods for collecting bistatic data using an Earth-based X-band transmitter [2] during a possible upcoming extended mission starting in September 2016, pending NASA approval. The LRO spacecraft has been in an elliptical, polar orbit with a low perilune over the South Pole since December 2011. This orbit minimizes annual fuel consumption, enabling LRO to use fuel to maximize opportunities for obtaining unique science (e.g., lunar eclipse measurements from Diviner, measuring spacecraft impacts by GRAIL and LADEE). The LRO instrument teams deliver data to the PDS every three months, data that includes raw, calibrated, and gridded/map products [3]. As of January, over 681TB has been archived. These higher-level data products include a number of resources that are useful for mission planners, in addition to planetary scientists. A focus of the mission has been on the South Pole, therefore a number of special products (e.g., illumination maps, high resolution topography, hydration maps) are available. Beyond the poles, high-resolution (~1-2 m spatial resolution) topographic products are available for select areas, as well as maps of rock abundance

  14. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  15. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Marshall Space Flight Center employees view the August 21, 2017 solar eclipse at the center’s activities building. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  16. Parallel Eclipse Project Checkout

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Powell, Mark W.; Bachmann, Andrew G.

    2011-01-01

    Parallel Eclipse Project Checkout (PEPC) is a program written to leverage parallelism and to automate the checkout process of plug-ins created in Eclipse RCP (Rich Client Platform). Eclipse plug-ins can be aggregated in a feature project. This innovation digests a feature description (xml file) and automatically checks out all of the plug-ins listed in the feature. This resolves the issue of manually checking out each plug-in required to work on the project. To minimize the amount of time necessary to checkout the plug-ins, this program makes the plug-in checkouts parallel. After parsing the feature, a request to checkout for each plug-in in the feature has been inserted. These requests are handled by a thread pool with a configurable number of threads. By checking out the plug-ins in parallel, the checkout process is streamlined before getting started on the project. For instance, projects that took 30 minutes to checkout now take less than 5 minutes. The effect is especially clear on a Mac, which has a network monitor displaying the bandwidth use. When running the client from a developer s home, the checkout process now saturates the bandwidth in order to get all the plug-ins checked out as fast as possible. For comparison, a checkout process that ranged from 8-200 Kbps from a developer s home is now able to saturate a pipe of 1.3 Mbps, resulting in significantly faster checkouts. Eclipse IDE (integrated development environment) tries to build a project as soon as it is downloaded. As part of another optimization, this innovation programmatically tells Eclipse to stop building while checkouts are happening, which dramatically reduces lock contention and enables plug-ins to continue downloading until all of them finish. Furthermore, the software re-enables automatic building, and forces Eclipse to do a clean build once it finishes checking out all of the plug-ins. This software is fully generic and does not contain any NASA-specific code. It can be applied to any

  17. CONCEPTUAL DESIGN OF A LUNAR REGOLITH CLUSTERED-REACTOR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Darrell Bess

    2009-06-01

    It is proposed that a fast-fission, heatpipe-cooled, lunar-surface power reactor system be divided into subcritical units that could be launched safely without the incorporation of additional spectral shift absorbers or other complex means of control. The reactor subunits are to be emplaced directly into the lunar regolith utilizing the regolith not just for shielding but as the reflector material to increase the neutron economy of the system. While a single subunit cannot achieve criticality by itself, coordinated placement of additional subunits will provide a critical reactor system for lunar surface power generation. A lunar regolith clustered-reactor system promotes reliability, safety,more » and ease of manufacture and testing at the cost of a slight increase in launch mass per rated power level and an overall reduction in neutron economy when compared to a single-reactor system. Additional subunits may be launched with future missions to increase the cluster size and power according to desired lunar base power demand and lifetime. The results address the potential uncertainties associated with the lunar regolith material and emplacement of the subunit systems. Physical distance between subunits within the clustered emplacement exhibits the most significant feedback regarding changes in overall system reactivity. Narrow, deep holes will be the most effective in reducing axial neutron leakage from the core. The variation in iron concentration in the lunar regolith can directly influence the overall system reactivity although its effects are less than the more dominant factors of subunit emplacement.« less

  18. Solar Eclipse 2017

    NASA Image and Video Library

    2017-08-21

    From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.

  19. Thermophysical behavior of the uppermost lunar surface from Diviner high time-resolution, post-sunset observations

    NASA Astrophysics Data System (ADS)

    Russell, P.; Greenhagen, B. T.; Paige, D. A.; Hayne, P. O.; Williams, J. P.

    2016-12-01

    Lunar "Cold Spots" are areas around small fresh craters that are colder than their surroundings in nighttime regolith temperature (e.g., Bandfield et al., 2014, Williams et al., 2016), implying that the thermophysical properties of the surface here, exterior to the visible ejecta, have somehow been altered by the impact process. Intriguingly, this cold anomaly does not appear in Diviner observations during eclipses, when the sun has been blocked for only a short period of time (Hayne et al., 2011). Here, we extend the investigation of the immediate reaction of Cold Spots and other areas of interest to the cessation of solar heating by specifically targeting and analyzing observations in the post-sunset, or twilight, period (i.e., 16:00-17:00 local time). Analysis of this time period focuses specifically on variability in the thermophysical structure of the upper 1 cm of lunar surface, whereas previous analyses of nighttime temperatures typically speak to the upper 10s of cm. Initial results suggest that twilight temperatures mimic the behavior of eclipse temperatures, in that the Cold Spot does not become colder until 30-45 min. after sunset. In fact, it is warmer than surroundings in the first 30 min. This suggests that the thermal inertia of the upper 1 cm is higher than surroundings, while the thermal inertia of the upper 10s of cm may be lower. A current impediment to such a study is that, the finer the Diviner data is resolved temporally, the fewer areas exist that have data at all time resolutions. As part of a goal of the LRO extended mission to better constrain the thermophysical properties of the upper regolith, we plan to take advantage of the 5 twilight crossings between 10/2016 - 10/2018 to make targeted observations of a variety of types of geological features up to 5 times, spaced 4 lunar min. apart, during the post-sunset hour. A trial campaign 4-5/2015 observed 22 targets a total of 94 times. At one of the 2 targeted large Cold Spots, 4 co

  20. Envelopes in eclipsing binary stars

    NASA Technical Reports Server (NTRS)

    Huang, S.

    1972-01-01

    Theoretical research on eclipsing binaries is presented. The specific areas of investigation are the following: (1) the relevance of envelopes to the study of the light curves of eclipsing binaries, (2) the disk envelope, and (3) the spherical envelope.

  1. Candidates of eclipsing multiples based on extraneous eclipses on binary light curves: KIC 7622486, KIC 7668648, KIC 7670485 and KIC 8938628

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Qian, Sheng-Bang; He, Jian-Duo

    2017-02-01

    Four candidates of eclipsing multiples, based on new extraneous eclipses found on Kepler binary light curves, are presented and studied. KIC 7622486 is a double eclipsing binary candidate with orbital periods of 2.2799960 d and 40.246503 d. The two binary systems do not eclipse each other in the line of sight, but there is mutual gravitational influence between them which leads to the small but definite eccentricity of 0.0035(0.0022) associated with the short 2.2799960 d period orbit. KIC 7668648 is a hierarchical quadruple system candidate, with two sets of solid 203 ± 5 d period extraneous eclipses and another independent set of extraneous eclipses. A clear and credible extraneous eclipse is found on the binary light curve of KIC 7670485 which makes it a triple system candidate. Two sets of extraneous eclipses with periods of about 390 d and 220 d are found on KIC 8938628 binary curves, which not only confirm the previous conclusion of the 388.5 ± 0.3 triple system, but also indicate new additional objects that make KIC 8938628 a hierarchical quadruple system candidate. The results from these four candidates will contribute to the field of eclipsing multiples.

  2. Solar Eclipse Computer API: Planning Ahead for August 2017

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve

    2016-01-01

    With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a

  3. Lifetime of the Lunar Dynamo Constrained by the Young Apollo Regolith Breccia 15015

    NASA Astrophysics Data System (ADS)

    Wang, H.; Weiss, B. P.

    2016-12-01

    Paleomagnetic studies have shown that a dynamo magnetic field of tens of µT likely existed on the surface of the Moon from at least 4.5 to 3.6 Ga and declined to several µT by 3.3 Ga [Weiss and Tikoo, 2014]. Furthermore, a recent analysis of lunar regolith breccia 15498 found that the lunar surface field was still 5 µT at 1-2.5 Ga [Tikoo et al., 2015]. However, a key unknown is when the dynamo finally ceased. To address this, we studied the melt glass matrix of Apollo lunar regolith breccia 15015. 40Ar/39Ar measurements suggest that the glass formed at 1.0 ± 0.2 Ga [Eglinton et al., 1974], consistent with its trapped 40Ar/36Ar model age of 0.5 ± 0.4 Ga [Fagan et al. 2014]. Hysteresis data indicate a predominately pseudo-single domain grain size, making 15015 an exceptional paleomagnetic recorder among lunar rocks. Alternating field (AF) demagnetization and anhysteretic remanence (ARM) paleointensity experiments found that 15015 subsamples with faces exposed to band-saw cutting at Johnson Space Center contain highly stable natural remanence (NRM) (>420 mT) and yield paleointensities up to 60 µT, but have NRM directions that are highly non-unidirectional across the parent sample. Subsamples taken away from the saw-cut faces (>5 mm depth) contain no stable NRM and formed in a paleofield <0.1 µT (Fig. 1). Thermal demagnetization of band-sawed samples found that their AF-stable NRM demagnetizes by 150ºC, indicating that their stable NRMs are in fact partial thermoremanence (TRM) overprints from the band-saw cutting process, rather than true lunar total TRM. Thus, the lunar surface paleomagnetic field recorded by 15015 was apparently extremely weak (<0.1 µT) at 1.0 Ga. For typically assumed lunar interior parameters, essentially all published models of the lunar dynamo predict surface fields >0.1 µT for > 90% of the time period while the dynamo is active. Such a minimum field is comparable to estimates of the strongest lunar crustal surface fields and below

  4. Solar Eclipses and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2009-05-01

    Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.

  5. Eclipses and Eye Safety

    ERIC Educational Resources Information Center

    Fulco, Charles

    2017-01-01

    The 2017 Total Solar Eclipse (TSE2017) will occur on August 21 in the continental United States, bringing totality to this area for the first time since 1979. The Moon's umbra will traverse from Oregon to South Carolina in about 90 minutes, bringing an eerie darkness to 14 states coast-to-coast and a partial eclipse to every part of the country…

  6. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Marshall Space Flight Center employee, Phillip Domen, safely views the August 21, 2017 solar eclipse with his homemade viewing box. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  7. Scientific Research in the Lunar Orbiting Mission

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Iijima, Y.; Tanaka, K.; Kato, M.; Hashimoto, M.; Mizutani, H.; Takizawa, Y.

    2002-01-01

    and technology development. The launch was rescheduled last summer in the rearrangement of HII-A launch schedule. The main objective of the mission is to study the origin and evolution of the Moon. The spacecraft consists of a main orbiter at about 100 km altitude in the polar circular orbit and two subsatellites in the elliptical orbits with the apolune at 2400 km and 800 km. The main orbiter will carry instruments for scientific investigation including mapping of lunar topography and surface composition, measurement of the magnetic fields, and observation of lunar and solar terrestrial plasma environment. The mission period will be one year. If extra fuel is available, the mission will be extended. The elemental abundances are measured by the x-ray and gamma-ray spectrometers. Alpha particles from the radon gas and polonium are detected by an alpha particle spectrometer. The mineralogical characterization is performed by a multi-band imager. The mineralogical composition is identified by a spectral profiler, a continuous spectral analyzer. The surface topographic data are obtained by a high resolution terrain camera and a laser altimeter. The inside structure up to 5 km below the lunar surface is observed by the radar sounder experiment using a 5 MHz radio wave. The magnetometer provides data on the lunar surface magnetic field which will be used to understand the origin of lunar paleomagnetism and paleomagnetism. Doppler tracking of the orbiter via the relay satellite when the orbiter is in the far side is used to determine the gravity field of the far side. Radio sources on the two subsatellites are used to conduct the differential VLBI observation from ground stations. The lunar environment of high energy particles, electromagnetic fields, and plasma, is also measured by the main orbiter. The radio science using coherent x and s band carriers from the orbiter will be conducted to detect the tenuous lunar ionosphere. For the solar-terrestrial plasma observation

  8. Report of the IAU Working Group on Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2015-08-01

    The Working Group on Solar Eclipses coordinates scientists and information in the study of the Sun and the heliosphere at solar eclipses. Our Website at http://eclipses.info has a wide variety of information, including links to maps and other websites dealing with solar eclipses, as well as information on how to observe the partial-phases of solar eclipses safely and why it is interesting for not only scientists but also for the public to observe eclipses and to see how we work to uncover the mysteries of the sun's upper atmosphere. In the last triennium, there were total eclipses in Australia and the Pacific in 2012; in an arc across Africa from Gabon to Uganda and Kenya in 2013; and in the Arctic, including Svalbard and the Faeroes plus many airplanes aloft, in 2015. In the coming triennium, there will be total solar eclipses in Indonesia and the Pacific in 2016 and then, on 21 August 2017, a total solar eclipse that will sweep across the Continental United States from northwest to southeast. Mapping websites, all linked to http://eclipses.info, include Fred Espenak's http://EclipseWise.com; Michael Zeiler's http://GreatAmericanEclipse.com and http://eclipse-maps.com; Xavier Jubier's http://xjubier.free.fr; and (with weather and cloudiness analysis) Jay Anderson's http://eclipser.ca. Members of the Working Group, chaired by Jay Pasachoff (U.S.), include Iraida Kim (Russia), Kiroki Kurokawa (Japan), Jagdev Singh (India), Vojtech Rusin (Slovakia), Zhongquan Qu (China), Fred Espenak (U.S.), Jay Anderson (Canada), Glenn Schneider (U.S.), Michael Gill (U.K.), Xavier Jubier (France), Michael Zeiler (U.S.), and Bill Kramer (U.S.).

  9. Radio science electron density profiles of lunar ionosphere based on the service module of circumlunar return and reentry spacecraft

    NASA Astrophysics Data System (ADS)

    Wang, M.; Han, S.; Ping, J.; Tang, G.; Zhang, Q.

    2017-09-01

    The existence of lunar ionosphere has been under debate for a long time. Radio occultation experiments had been performed by both Luna 19/22 and SELENE missions and electron column density of lunar ionosphere was provided. The Apollo 14 mission also acquired the electron density with in situ measurements. But the results of these missions don't well-matched. In order to explore the lunar ionosphere, radio occultation with the service module of Chinese circumlunar return and reentry spacecraft has been performing. One coherent S-band and X-band radio signals were recorded by China deep space stations, and local correlation was adopted to compute carrier phases of both signals. Based on the above work, the electron density profiles of lunar ionosphere was obtained and analyzed.

  10. Eclipse 2017: Through the eyes of NASA

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; NASA/GSFC Heliophysics Education Consortium

    2016-10-01

    The August 21, 2017 eclipse will be the first time a total solar eclipse has traversed the Continental US since June 8th, 1918. Anticipation y for energy for this eclipse is off the charts. Over 500 million in North America alone will catch the eclipse in either partial or total phase. Parts of South America, Africa, and Europe will see a partial eclipse as well. NASA is planning to take full advantage of this unique celestial event as an education and public engagement opportunity by leveraging its extensive networks of partners, numerous social media platforms, broadcast media, and its significant unique space assets and people to bring the eclipse to America and the world as only NASA can. This talk will outline NASA's education plans in some detail replicating our many Big Events successes including the 2012 Transit of Venus and the MSL/Curiosity landing and show how scientists and the public can get involved.

  11. Monitoring HD 148703 during upcoming eclipses

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-06-01

    Dr. Milena Ratajczak (University of Wrocław) has requested AAVSO observers' assistance in monitoring the very bright (V = 4.23) and very unusual eclipsing binary HD 148703 (HR 6143, N Sco) during its infrequent primary and secondary eclipses scheduled for 2017 June 11 and June 14, respectively. Dr. Ratajczak writes: "[HD 148703] N Sco is a B-type detached eclipsing binary, which turned out to be an exceptionally interesting object to study when we realised its orbital period is 223 days and time between eclipses is only 3.5 days. Such configuration makes it an extremely eccentric system, probably the most eccentric from any objects of that class ever studied...Since the object is very bright, it's difficult to use professional photometric telescopes due to saturation issues. That is why we kindly invite amateur astronomers to join the campaign. Data taken during times of eclipses (photometry) and time between eclipses (radial velocities from spectroscopy) which occur next week are crucial to cover in order to determine orbital and stellar parameters of system's components. Data taken over that time will be of very high value for us." The next primary eclipse time of minimum is on 2017 June 11 (UT 00:41:45), and the secondary on June 14 (UT 09:17:34). Each eclipse lasts about 20 hours. The amplitude of the primary eclipse is 0.15 magnitude, and the secondary 0.35 mag. PEP V and DSLR V photometry is requested. (CCD V is welcome if saturation can be avoided.) Beginning immediately, one to a few snapshots each night are requested to establish an out-of-eclipse baseline for each observer; they should continue for a few nights after the secondary eclipse has occurred.Time series photometry is requested beginning 12 hours before each time of minimum and continuing until 12 hours after. Precision to 0.01 mag or better per single observation is needed. Exposures should be as long as possible without saturating; don't make very short exposures simply for the purpose of

  12. Preparing for and Observing the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, J.

    2015-11-01

    I discuss ongoing plans and discussions for EPO and scientific observing of the 21 August 2017 total solar eclipse. I discuss aspects of EPO based on my experiences at the 60 solar eclipses I have seen. I share cloud statistics along the eclipse path compiled by Jay Anderson, the foremost eclipse meteorologist. I show some sample observations of composite imagery, of spectra, and of terrestrial temperature changes based on observations of recent eclipses, including 2012 from Australia and 2013 from Gabon. Links to various mapping sites of totality, partial phases, and other eclipse-related information, including that provided by Michael Zeiler, Fred Espenak (retired from NASA) and Xavier Jubier can be found on the website I run for the International Astronomical Union's Working Group on Eclipses at http://www.eclipses.info.

  13. Report about the Solar Eclipse on August 11, 1999

    NASA Astrophysics Data System (ADS)

    1999-08-01

    sec) and took images in a complete automated way, allowing us to observe the eclipse by naked eye or with binoculars. To get as many images as possible during totality, we use binning 2x2 to reduce the readout time to 19 sec. Afterward, one of the best image was flat-fielded and processed with a special algorithm that modelled a fit the continuous component of the corona and then subtracted from the original image. The remaining details were enhanced by unsharp masking and added to the original image. Finally, gaussian histogram equalization was applied". Eclipse Photo by Eddy Pomaroli Second "Diamond Ring" [JPEG: 400 x 438 pix - 129k] [JPEG: 731 x 800 pix - 277k] [JPEG: 1940 x 2123 pix - 2.3M] Diamond Ring at ESO HQ (Eddy Pomaroli) "Despite the clouds, we saw the second "diamond ring" from the ESO HQ. In a sense, we were quite lucky, since the clouds were very heavy during the total phase and we might easily have missed it all!". "I used an old Minolta SRT-101 camera and a teleobjective (450 mm; f/8). The exposure was 1/125 sec on Kodak Elite 100 (pushed to 200 ASA). I had the feeling that the Sun would become visible and had the camera pointed, by good luck in the correct direction, as soon as the cloud moved away". Eclipse Photo by Roland Reiss First Partial Phase [JPEG: 400 x 330 pix - 94k] [JPEG: 800 x 660 pix - 492k] [JPEG: 3000 x 2475 pix - 4.5M] End of First Partial Phase (Roland Reiss) "I observed the eclipse from my home in Garching. The clouds kept moving and this was the last photo I was able to obtain during the first partial phase, before they blocked everything". "The photo is interesting, because it shows two more images of the eclipsed Sun, below the overexposed central part. In one of them, the remaining, narrow crescent is particularly well visible. They are caused by reflections in the camera. I used a Minolta camera and a Fuji colour slide film". Eclipse Spectra Some ESO people went a step further and obtained spectra of the Sun at the time of the

  14. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  15. Boise State's Idaho Eclipse Outreach Program

    NASA Astrophysics Data System (ADS)

    Davis, Karan; Jackson, Brian

    2017-10-01

    The 2017 total solar eclipse is an unprecedented opportunity for astronomical education throughout the continental United States. With the path of totality passing through 14 states, from Oregon to South Carolina, the United States is expecting visitors from all around the world. Due to the likelihood of clear skies, Idaho was a popular destination for eclipse-chasers. In spite of considerable enthusiasm and interest by the general population, the resources for STEM outreach in the rural Pacific Northwest are very limited. In order to help prepare Idaho for the eclipse, we put together a crowdfunding campaign through the university and raised over $10,000. Donors received eclipse shades as well as information about the eclipse specific to Idaho. Idaho expects 500,000 visitors, which could present a problem for the many small, rural towns scattered across the path of totality. In order to help prepare and equip the public for the solar eclipse, we conducted a series of site visits to towns in and near the path of totality throughout Idaho. To maximize the impact of this effort, the program included several partnerships with local educational and community organizations and a focus on the sizable refugee and low-income populations in Idaho, with considerable attendance at most events.

  16. Anomalous Eclipses of the Young Star RW Aur A

    NASA Astrophysics Data System (ADS)

    Lamzin, S.; Cheryasov, D.; Chuntonov, G.; Dodin, A.; Grankin, K.; Malanchev, K.; Nadzhip, A.; Safonov, B.; Shakhovskoy, D.; Shenavrin, V.; Tatarnikov, A.; Vozyakova, O.

    2017-06-01

    Results of UBVRIJHKLM photometry, VRI polarimetry and optical spectroscopy of a young star RW Aur A obtained during 2010-11 and 2014-16 dimming events are presented. During the second dimming the star decreased its brightness to ΔV >4.5 mag, polarization of its light in I-band was up to 30 %, and color-magnitude diagramm was similar to that of UX Ori type stars. We conclude that the reason of both dimmings is an eclipses of the star by dust screen, but the size of the screen is much larger than in the case of UXORs.

  17. Lunar Radio_phase Ranging in Chinese Lunar Lander Mission for Astrometry

    NASA Astrophysics Data System (ADS)

    Ping, Jinsong; Meng, Qiao; Li, Wenxiao; Wang, Mingyuan; Wang, Zhen; Zhang, Tianyi; Han, Songtao

    2015-08-01

    The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. In the Chinese lunar missions, we developed the lunar and planetary radio science receiver to measure the distance variation between the tracking station-lander by means of open loop radio phase tracking. Using this method in Chang’E-3 landing mission, a lunar radio_phase ranging (LRR) technique was realized at Chinese deep space tracking stations and astronomical VLBI stations with H-maser clocks installed. Radio transponder and transmitter had been installed on the Chang’E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. In the preliminary LRR experiments of Chang'E-3, the obtained 1sps phase ranging observables have a resolution of 0.2 millimeter or better, with a fitting RMS about 2~3 millimeter, after the atmospheric and ionospheric errors removed. This method can be a new astrometric technique to measure the Earth tide and rotation, lunar orbit, tides and liberation, by means of solo observation or of working together with Lunar Laser Ranging. After differencing the ranging, we even obtained 1sps doppler series of 2-way observables with resolution of 0.07mm/second, which can

  18. Ground-based K-band detection of thermal emission from the exoplanet TrES-3b

    NASA Astrophysics Data System (ADS)

    de Mooij, E. J. W.; Snellen, I. A. G.

    2009-01-01

    Context: Secondary eclipse measurements of transiting extrasolar planets with the Spitzer Space Telescope have yielded several direct detections of thermal exoplanet light. Since Spitzer operates at wavelengths longward of 3.6 μm, arguably one of the most interesting parts of the planet spectrum (from 1 to 3 μm) is inaccessible with this satellite. This region is at the peak of the planet's spectral energy distribution and is also the regime where molecular absorption bands can significantly influence the measured emission. Aims: So far, 2.2 μm K-band secondary eclipse measurements, which are possible from the ground, have not yet lead to secure detections. The aim of this paper is to measure the secondary eclipse of the very hot Jupiter TrES-3b in K-band, and in addition to observe its transit, to obtain an accurate planet radius in the near infrared. Methods: We have used the william herschell telescope (WHT) to observe the secondary eclipse, and the united kingdom infrared telescope (UKIRT) to observe the transit of TrES-3b. Both observations involved significant defocusing of the telescope, aimed to produce high-cadence time series of several thousand frames at high efficiency, with the starlight spread out over many pixels. Results: We detect the secondary eclipse of TrES-3b with a depth of -0.241 ± 0.043% (~6σ). This corresponds to a day-side brightness temperature of TB(2.2 μm) = 2040 ± 185 K, which is consistent with current models of the physical properties of this planet's upper atmosphere. The centre of the eclipse seems slightly offset from phase φ=0.5 by Δφ = -0.0042 ± 0.0027, which could indicate that the orbit of TrES-3b is non-circular. Analysis of the transit data shows that TrES-3b has a near-infrared radius of 1.338 ± 0.016 R_Jup, showing no significant deviation from optical measurements.

  19. Gravity waves produced by the total solar eclipse of 1 August 2008

    NASA Astrophysics Data System (ADS)

    Marty, Julien; Francis, Dalaudier; Damien, Ponceau; Elisabeth, Blanc; Ulziibat, Munkhuu

    2010-05-01

    eclipses, which are known to produce large-scale bow waves on the Earth's surface. The asymptotic response to a Gaussian thermal forcing travelling at constant velocity as well as the transient response to the 4 December 2002 eclipse are presented. They show good agreement with previous numerical simulations. The model is then applied to the case of the 1 August 2008 solar eclipse. Ground pressure variations produced by the response to the solar intensity reduction in both stratosphere and troposphere are calculated. These synthetic signals are then compared to pressure variations recorded by IMS (International Monitoring System) infrasound stations and a temporary network specifically set up in Western Mongolia for this occasion. The pressure fluctuations produced by the 1 August 2008 solar eclipse are in a frequency band highly disturbed by atmospheric tides. Pressure variations produced by atmospheric tides and synoptic disturbances are thus characterized and removed from the signal. A low frequency wave starting just after the passage of the eclipse is finally brought to light on all stations. Its frequency and amplitude are close to the one calculated with our model, which strongly suggest that this signal was produced by the total solar eclipse.

  20. Evaluating the Eclipse: How good was it?

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; InsightSTEM Evaluation Team

    2018-01-01

    We present findings from the evaluation program carried out of education, public outreach, and communication activities around the "Great American Eclipse" of August 21, 2017. We include findings drawn from the experiences of 30 participants in planning activities prior to the eclipse and 31 recipients of mini-grants for eclipse activities supported by the American Astronomical Society through a grant from the National Science Foundation. We synthesize evaluations gathered by these and other volunteering organizations to provide a multi-site picture of experiences and learning outcomes at eclipse-related events - both in the path of totality and in partial eclipse settings. We make use of qualitative and quantitative responses representing over 30,000 individuals who observed (or tried to observe) the eclipse. We will share findings from across the range of programs included in our evaluation network along with specific highlights. We emphasize a reflection on the motivation and activity behind the 2017 eclipse, and how to leverage the lessons learned for future events on this scale (such as the eclipse of April 8, 2024) along with messages relevant to other events connected with astronomical phenomena, or in multi-site settings.This work was supported in part by the National Science Foundation under Grant No. 1564535 awarded to the American Astronomical Society. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or the American Astronomical Society.

  1. Is an eclipse described in the Odyssey?

    PubMed

    Baikouzis, Constantino; Magnasco, Marcelo O

    2008-07-01

    Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey ("Theoclymenus's prophecy") to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192-1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250-1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse.

  2. Is an eclipse described in the Odyssey?

    PubMed Central

    Baikouzis, Constantino; Magnasco, Marcelo O.

    2008-01-01

    Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey (“Theoclymenus's prophecy”) to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192–1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250–1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse. PMID:18577587

  3. Morphology and Composition of Localized Lunar Dark Mantle Deposits With LROC Data

    NASA Astrophysics Data System (ADS)

    Gustafson, O.; Bell, J. F.; Gaddis, L. R.; Hawke, B. R.; Robinson, M. S.; LROC Science Team

    2010-12-01

    Clementine color (ultraviolet, visible or UVVIS) and Lunar Reconnaissance Orbiter (LRO) Wide Angle (WAC) and Narrow Angle (NAC) camera data provide the means to investigate localized lunar dark-mantle deposits (DMDs) of potential pyroclastic origin. Our goals are to (1) examine the morphology and physical characteristics of these deposits with LROC WAC and NAC data; (2) extend methods used in earlier studies of lunar DMDs with Clementine spectral reflectance (CSR) data; (3) use LRO WAC multispectral data to complement and extend the CSR data for compositional analyses; and (4) apply these results to identify the likely mode of emplacement and study the diversity of compositions among these deposits. Pyroclastic deposits have been recognized all across the Moon, identified by their low albedo, smooth texture, and mantling relationship to underlying features. Gaddis et al. (2003) presented a compositional analysis of 75 potential lunar pyroclastic deposits (LPDs) based on CSR measurements. New LRO camera (LROC) data permit more extensive analyses of such deposits than previously possible. Our study began with six sites on the southeastern limb of the Moon that contain nine of the cataloged 75 potential pyroclastic deposits: Humboldt (4 deposits), Petavius, Barnard, Abel B, Abel C, and Titius. Our analysis found that some of the DMDs exhibit qualities characteristic of fluid emplacement, such as flat surfaces, sharp margins, embaying relationships, and flow textures. We conclude that the localized DMDs are a complex class of features, many of which may have formed by a combination of effusive and pyroclastic emplacement mechanisms. We have extended this analysis to include additional localized DMDs from the catalog of 75 potential pyroclastic deposits. We have examined high resolution (up to 0.5 m/p) NAC images as they become available to assess the mode of emplacement of the deposits, locate potential volcanic vents, and assess physical characteristics of the DMDs

  4. Solar Eclipse 2017

    NASA Image and Video Library

    2017-08-21

    From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Speaking at the event was astronaut John-David Bartoe. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.

  5. Solar Eclipse 2017

    NASA Image and Video Library

    2017-08-21

    From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Guest speakers were, astronaut John-David Bartoe, left, and communicator Jeff Lucas. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.

  6. The Great American Eclipse: Lessons Learned from Public Education

    NASA Astrophysics Data System (ADS)

    Edson, Shauna Elizabeth; Phoebe Waterman Haas Public Observatory

    2018-01-01

    The total solar eclipse of 2017 was a high-profile opportunity for nationwide public education. Astronomy experts suddenly became vital sources of information for a lay population whose interest in the eclipse greatly surpassed expectations. At the National Air and Space Museum, we leveraged our relatively accessible location and particularly diverse audience to help thousands of people, from novices to enthusiasts, prepare to view the eclipse safely. The goal was to empower all people so they could experience this unique astronomical event, understand what was happening, and observe the Sun safely. Over the course of two years spent talking with the public about the eclipse, we encountered common misconceptions, worries about safety or liability, and people experiencing confusion or information overload. We developed guidelines for handling these challenges, from correcting misinformation to managing the sudden spike in demand for glasses just before August 21.In particular, we helped people understand the following essential points:- The total phase of the eclipse is only visible from a limited path.- The partial eclipse is visible from a large area outside the path of totality.- The eclipse takes up to three hours from start to finish, providing ample time for viewing.- The Sun can be observed safely using several methods, including but not limited to eclipse glasses.- The eclipse happens because the Moon’s orbit is taking it directly between the Sun and the Earth.- Eclipses do not happen every month because the Moon’s orbit is tilted with respect to the Earth's orbital plane.- Students in schools can safely view the eclipse, with proper protection and supervision, to prevent eye damage and minimize liability.Public education about the eclipse appears to have been successful, as evidenced by the large number of people who saw their first total solar eclipse and the absence of reported eye damage cases. Amidst the excitement, photographs, and stories that

  7. An Exceptionally Narrow Band-Gap (∼4 eV) Silicate Predicted in the Cubic Perovskite Structure: BaSiO3.

    PubMed

    Hiramatsu, Hidenori; Yusa, Hitoshi; Igarashi, Ryo; Ohishi, Yasuo; Kamiya, Toshio; Hosono, Hideo

    2017-09-05

    The electronic structures of 35 A 2+ B 4+ O 3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO 3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO 2 and the calculated value of 7.3 eV for orthorhombic BaSiO 3 ) and a small electron effective mass (0.3m 0 , where m 0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO 3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO 3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.

  8. Resource Letter OSE-1: Observing Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Fraknoi, Andrew

    2017-07-01

    This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.

  9. Effects of the 2017 Solar Eclipse on HF Radio Propagation and the D-Region Ionosphere: Citizen Science Investigation

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Adams, M.; Gallagher, D. L.; Habash Krause, L.; Rawlins, L.; Suggs, R. M.; Anderson, S. C.

    2017-12-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. The Amateur Radio community has developed several automated receiving and reporting networks that draw from widely-distributed, automated and manual radio stations to build a near-real time, global picture of changing radio propagation conditions. We used these networks and employed HF radio propagation modeling in our investigation. A Ham Radio Science Citizen Investigation (HamSCI) collaboration with the American Radio Relay League (ARRL) ensured that many thousands of amateur radio operators would be "on the air" communicating on eclipse day, promising an extremely large quantity of data would be collected. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Our expectations were the D-Region ionosphere would be most impacted by the eclipse, enabling over-the-horizon radio propagation on lower HF frequencies (3.5 and 7 MHz) that are typically closed during the middle of the day. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.

  10. Lunar resources: Toward living off the lunar land

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.

    1990-01-01

    The following topics are addressed: (1) lunar resources and surface conditions; (2) guidelines for early lunar technologies; (3) the lunar farm; (4) the lunar filling station; (5) lunar construction materials; (6) the lunar power company; (7) the electrolysis of molten silicate as a means of producing oxygen and metals for use on the Moon and in near-Earth space.

  11. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  12. Notable Images of the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Wilson, Teresa; Dahiwale, Aishwarya; Nemiroff, Robert; Bonnell, Jerry

    2018-01-01

    The "Great American Eclipse" – the total solar eclipse visible across the USA on 21 August 2017 – resulted in some notable eclipse images and videos high in educational and scientific value. Some of the images that were selected to appear on the Astronomy Picture of the Day (APOD) website are shown in high resolution accompanied by educational descriptions. The questions of whether this eclipse was the most viewed and the most photographed event of any type in human history will be discussed. People are invited to come by and share their own eclipse images and stories.

  13. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    USGS Publications Warehouse

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  14. The (Almost) Unseen Total Eclipse of 1831

    NASA Astrophysics Data System (ADS)

    Bartky, Ian R.

    2008-03-01

    The total eclipse of August 1831 began at sunrise in Australia, swept across the western South Pacific Ocean, and ended at sunset in the central South Pacific. As a result of the eclipse's path over mostly uninhabited ocean, the region's sparse European (British) population, and near-useless local predictions of the event at Hobart and Sydney in almanacs sold to the general public, almost no one witnessed its passage. In an attempt to document the eclipse, journals of naive observers - those having no access to a prediction - were examined. Thus far, the sole record is in the Pitcairn Island Register Book. Considering the Pitcairners' extreme isolation and the rather modest partial eclipse that occurred there, the entry is a surprising one; however, it can be explained in terms of events associated with their initial removal to Tahiti in March 1831 followed by their return home in June. Further, an authoritative means to identify any issues associated with eclipse predictions compiled for private-sector almanacs came in 1833 when sweeping changes in the British Nautical Almanac's section on eclipses were instituted.

  15. Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Tschimmel, M.; Robinson, M. S.; Humm, D. C.; Denevi, B. W.; Lawrence, S. J.; Brylow, S.; Ravine, M.; Ghaemi, T.

    2008-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) onboard the NASA Lunar Reconnaissance Orbiter (LRO) spacecraft consists of three cameras: the Wide-Angle Camera (WAC) and two identical Narrow Angle Cameras (NAC-L, NAC-R). The WAC is push-frame imager with 5 visible wavelength filters (415 to 680 nm) at a spatial resolution of 100 m/pixel and 2 UV filters (315 and 360 nm) with a resolution of 400 m/pixel. In addition to the multicolor imaging the WAC can operate in monochrome mode to provide a global large- incidence angle basemap and a time-lapse movie of the illumination conditions at both poles. The WAC has a highly linear response, a read noise of 72 e- and a full well capacity of 47,200 e-. The signal-to-noise ratio in each band is 140 in the worst case. There are no out-of-band leaks and the spectral response of each filter is well characterized. Each NAC is a monochrome pushbroom scanner, providing images with a resolution of 50 cm/pixel from a 50-km orbit. A single NAC image has a swath width of 2.5 km and a length of up to 26 km. The NACs are mounted to acquire side-by-side imaging for a combined swath width of 5 km. The NAC is designed to fully characterize future human and robotic landing sites in terms of topography and hazard risks. The North and South poles will be mapped on a 1-meter-scale poleward of 85.5° latitude. Stereo coverage can be provided by pointing the NACs off-nadir. The NACs are also highly linear. Read noise is 71 e- for NAC-L and 74 e- for NAC-R and the full well capacity is 248,500 e- for NAC-L and 262,500 e- for NAC- R. The focal lengths are 699.6 mm for NAC-L and 701.6 mm for NAC-R; the system MTF is 28% for NAC-L and 26% for NAC-R. The signal-to-noise ratio is at least 46 (terminator scene) and can be higher than 200 (high sun scene). Both NACs exhibit a straylight feature, which is caused by out-of-field sources and is of a magnitude of 1-3%. However, as this feature is well understood it can be greatly reduced during ground

  16. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  17. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    PubMed

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-12-01

    The present study was designed to evaluate the effect of combining fractional CO 2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO 2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO 2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO 2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  18. Bringing the Great American Solar Eclipse to West Virginia

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Williamson, K.; Robertson-Honecker, J.

    2017-12-01

    West Virginia experienced up to 90% coverage during the Great American Solar Eclipse on August 21st. To reach the greatest number of West Virginians, we targeted educators and the 4-H program to provide those community leaders with the tools to help students learn about and safely view the eclipse. We developed a website that consolodated relevant eclipse activities, fact sheets, and outreach videos to train educators and others in the public about the science of the eclipse and how to view a partial eclipse safely. The 4-H Summer Experiement used at all 4-H summer camps and events was designed to focus on the eclipse. We distributed over 20,000 custom designed eclipse glasses. These were distributed to teachers through an online request system and to 4-H members involved in summer activities. We hosted a pre-eclipse event on the campus of West Virginia University for the public to learn about the science of the eclipse, relevant research being conducted at the university, and provide tips for safe viewing. Student volunteers were available on campus during the day of the eclipse to hand out glasses and answer questions. We will present the results of our outreach and events as well as lessons learned for the 2024 eclipse. Support for this project was provided by the WVU Department of Physics and Astronomy, WVU Extension, the WV Space Grant Consortium, a WVU internal grant, the Green Bank Observatory, and individual supporters of a crowdfunding campaign.

  19. Strategies for the public communication of eclipses

    NASA Astrophysics Data System (ADS)

    Bretones, P. S.

    2015-03-01

    Eclipses are among the celestial events that draw the attention of the public. This paper discusses strategies for using eclipses as public communication opportunities in the media. It discusses the impact of articles written by the author and analysis of published material for 25 observed eclipses over the last 30 years by mass media in the state of São Paulo, Brazil. On each occasion, a standard article was posted on the Internet and sent to newspapers, radio and TV with information, such as: date, time and local circumstances; type of the eclipse; area of visibility; explanation; diagram of the phenomenon, and the Moon's path through Earth's shadow; eclipses in history; techniques of observation; getting photographs; place and event for public observation. Over the years, direct contact was maintained with the media and jounralists by the press offices of the institutions.

  20. Warm Spitzer and Palomar near-IR secondary eclipse photometry of two hot Jupiters: WASP-48b and HAT-P-23b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Rourke, Joseph G.; Knutson, Heather A.; Désert, Jean-Michel

    2014-02-01

    We report secondary eclipse photometry of two hot Jupiters, WASP-48b and HAT-P-23b, at 3.6 and 4.5 μm taken with the InfraRed Array Camera aboard the Spitzer Space Telescope during the warm Spitzer mission and in the H and K{sub S} bands with the Wide Field IR Camera at the Palomar 200 inch Hale Telescope. WASP-48b and HAT-P-23b are Jupiter-mass and twice Jupiter-mass objects orbiting an old, slightly evolved F star and an early G dwarf star, respectively. In the H, K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.047% ± 0.016%, 0.109%more » ± 0.027%, 0.176% ± 0.013%, and 0.214% ± 0.020% for WASP-48b. In the K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.234% ± 0.046%, 0.248% ± 0.019%, and 0.309% ± 0.026% for HAT-P-23b. For WASP-48b and HAT-P-23b, respectively, we measure delays of 2.6 ± 3.9 minutes and 4.0 ± 2.4 minutes relative to the predicted times of secondary eclipse for circular orbits, placing 2σ upper limits on |ecos ω| of 0.0053 and 0.0080, both of which are consistent with circular orbits. The dayside emission spectra of these planets are well-described by blackbodies with effective temperatures of 2158 ± 100 K (WASP-48b) and 2154 ± 90 K (HAT-P-23b), corresponding to moderate recirculation in the zero albedo case. Our measured eclipse depths are also consistent with one-dimensional radiative transfer models featuring varying degrees of recirculation and weak thermal inversions or no inversions at all. We discuss how the absence of strong temperature inversions on these planets may be related to the activity levels and metallicities of their host stars.« less

  1. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    NASA Astrophysics Data System (ADS)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  2. EE Cep observations requested for upcoming eclipse

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2014-07-01

    The AAVSO requests observations for the upcoming eclipse of EE Cephei, a long-period eclipsing variable. EE Cep has a period of 2,050 days, and shows strong variations in the eclipse light curve from one event to the next. Observations are needed to study the morphology of the upcoming eclipse, which will be used to better understand the shape of the eclipsing disk and how it precesses. Mid-eclipse is predicted to be August 23, 2014, but the early stages of the eclipse may begin as much as a month earlier. EE Cep is being observed by a number of amateur and professional astronomers using multiple telescopes at multiple wavelengths. Among these is a collaboration (see https://sites.google.com/site/eecep2014campaign/) headed by Cezary Galan at the Nicolaus Copernicus Astronomical Center in Poland; several individual AAVSO observers are already participating in this effort. The AAVSO is not currently a partner in that campaign, but all data submitted to the AAVSO will be publicly available. The AAVSO strongly encourages observers to begin following this star now, and to continue observations into October 2014 at least. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  3. Determination of the Fundamental Properties of the Eclipsing Binary V541 Cygni

    NASA Astrophysics Data System (ADS)

    McGruder, Chima; Torres, Guillermo; Siverd, Robert; Pepper, Joshua; Rodriguez, Joseph; KELT Collaboration

    2017-01-01

    We report new high-resolution spectroscopic observations of the B-type detached spectroscopic eclipsing binary V541 Cygni (e = 0.465 and P =15.34 days). We combine analysis of these new spectra with analysis of V-band photometry from the literature to obtain the most precise measurements of the fundamental properties of the stars to date (yielding ~1% errors in the masses and ~2% for the radii). A comparison with current stellar evolution models indicates good fits for an age of ~ 200 million years and [Fe/H] ~ -0.2. Available eclipse timings gathered over 40 years were used to re-determine the apsidal motion of the system, dω/dt = 0.993 degs/cent, which is larger than what theory suggests.The SAO REU program was funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  4. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Krisdon Manecke and Danielle Burleson of the Office of the Chief Information Officer (OCIO) view the August 21, 2017 solar eclipse at the Marshall Space Flight Center’s viewing opportunity at the activities building. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  5. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Judy Darwin of the Marshall Space Flight Center’s Office of the Chief Information Officer (CIO) views the August 21, 2017 solar eclipse through the telescope set up for Marshall employees. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  6. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less

  7. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  8. Multi-band photometric study of the short-period eclipsing binary GR Boo

    NASA Astrophysics Data System (ADS)

    Wang, Daimei; Zhang, Liyun; Han, Xianming L.; Lu, Hongpeng

    2017-05-01

    We present BVRI light curves with complete phase coverage for the short-period (p = 0.377day) eclipsing binary star GR Boo. We carried out the observations using the SARA 90 cm telescope located at Kitt Peak National Observatory. We obtained six new light curve minimum times. By fitting all of the available O-C minimum times, we obtained an updated ephemeris that shows the orbital period of GR Boo is decreasing at a rate of P˙ = - 2.36 ×10-7 days/year. This decrease in its period can be explained by either mass transfer from the more massive component to the less massive one, or angular momentum exchange due to magnetic activities. We also obtained a set of revised orbital parameters using the Wilson & Devinney program. And finally, we concluded that GR Boo is a contact binary with a dark spot.

  9. Eclipsing Binaries in Open Clusters

    NASA Astrophysics Data System (ADS)

    Southworth, John; Clausen, Jens Viggo

    2006-08-01

    The study of detached eclipsing binaries in open clusters can provide stringent tests of theoretical stellar evolutionary models, which must simultaneously fit the masses, radii, and luminosities of the eclipsing stars and the radiative properties of every other star in the cluster. We review recent progress in such studies and discuss two unusually interesting objects currently under analysis. GV Carinae is an A0 m + A8 m binary in the Southern open cluster NGC 3532; its eclipse depths have changed by 0.1 mag between 1990 and 2001, suggesting that its orbit is being perturbed by a relatively close third body. DW Carinae is a high-mass unevolved B1 V + B1 V binary in the very young open cluster Collinder 228, and displays double-peaked emission in the centre of the Hα line which is characteristic of Be stars. We conclude by pointing out that the great promise of eclipsing binaries in open clusters can only be satisfied when both the binaries and their parent clusters are well-observed, a situation which is less common than we would like.

  10. Diagnosis of early gastric cancer using narrow band imaging and acetic acid

    PubMed Central

    Matsuo, Ken; Takedatsu, Hidetoshi; Mukasa, Michita; Sumie, Hiroaki; Yoshida, Hikaru; Watanabe, Yasutomo; Akiba, Jun; Nakahara, Keita; Tsuruta, Osamu; Torimura, Takuji

    2015-01-01

    AIM: To determine whether the endoscopic findings of depressed-type early gastric cancers (EGCs) could precisely predict the histological type. METHODS: Ninety depressed-type EGCs in 72 patients were macroscopically and histologically identified. We evaluated the microvascular (MV) and mucosal surface (MS) patterns of depressed-type EGCs using magnifying endoscopy (ME) with narrow-band imaging (NBI) (NBI-ME) and ME enhanced by 1.5% acetic acid, respectively. First, depressed-type EGCs were classified according to MV pattern by NBI-ME. Subsequently, EGCs unclassified by MV pattern were classified according to MS pattern by enhanced ME (EME) images obtained from the same angle. RESULTS: We classified the depressed-type EGCs into the following 2 MV patterns using NBI-ME: a fine-network pattern that indicated differentiated adenocarcinoma (25/25, 100%) and a corkscrew pattern that likely indicated undifferentiated adenocarcinoma (18/23, 78.3%). However, 42 of the 90 (46.7%) lesions could not be classified into MV patterns by NBI-ME. These unclassified lesions were then evaluated for MS patterns using EME, which classified 33 (81.0%) lesions as MS patterns, diagnosed as differentiated adenocarcinoma. As a result, 76 of the 90 (84.4%) lesions were matched with histological diagnoses using a combination of NBI-ME and EME. CONCLUSION: A combination of NBI-ME and EME was useful in predicting the histological type of depressed-type EGC. PMID:25632201

  11. Colliding stellar winds in the eclipsing Wolf-Rayet binary V444 Cygni

    NASA Technical Reports Server (NTRS)

    Brown, Douglas N.; Shore, Steven N.

    1988-01-01

    High resolution spectra of V444 Cygni have been obtained using the International Ultraviolet Explorer Satellite. These spectra span both eclipses and include one observation at third quadrature. Together with seven archival spectra, they provide reasonably complete phase coverage for the system. The variations in the P Cygni profiles of the He(II) and N(IV) lines, imply the existence of a low density region in the WR wind. This region occupies a relatively narrow range of orbital phase coinciding with the highest terminal velocities observed in C IV. These data are interpreted to be evidence of an interaction region separating the winds of the O-star and Wolf-Rayet star.

  12. Campaign for a New Eclipsing Cepheid

    NASA Astrophysics Data System (ADS)

    Henden, Arne; Welch, Doug; Terrell, Dirk

    2007-06-01

    ASAS 182611+1212.6, discovered by Pojmanski et al. during the ASAS survey, independently discovered by Antipin at al. on Moscow archive plates, and found in the NSVS (Wozniak et al. 2004, AJ 127, 2436), was initially classified as a typical Type II Cepheid with a period of 4.1523 days. However, scatter in the light curve indicated possible multiperiodic behavior. After 3 years of CCD observations by Antipin, the system was seen to exhibit eclipses of period 51.38 days and amplitude about 0.3 mag (primary) and possibly about 0.2 mag (secondary). This is the first known glactic eclipsing binary Cepheid. The AAVSO is conducting a campaign to study this star via high-precision, multicolor photometry obtained over several eclipse cycles. Observers are requested to obtain multicolor photometry with a S/N=100 or better on every image. Time resolution of one hour is adequate, so cycling through the filters need not be rushed. Apply transformation coefficients when possible. For calculating ephemerides, the pulsational maximum occurred on HJD 2453196.529 with a period of 4.1523 days; the eclipse primary minimum occurred on HJD 2453571.36 with a period of 51.38 days. The next primary eclipse will occur around July 9, but these eclipses are several days wide. A finding chart may be found at http://www.aavso.org/observing/charts/vsp (enter ASAS182612 for its name, or use the coordinates) with suitable comparison stars marked. Report/upload observations to the AAVSO.

  13. Observations of the eclipsing binary b Persei

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2015-01-01

    Dr. Robert Zavala (USNO-Flagstaff) et al. request V time-series observations of the bright variable star b Persei 7-21 January 2015 UT, in hopes of catching a predicted eclipse on January 15. This is a follow-up to the February 2013 campaign announced in Alert Notice 476, and will be used as a photometric comparison for upcoming interferometric observations with the Navy Precision Optical Interferometer (NPOI) in Arizona. b Per (V=4.598, B-V=0.054) is ideal for photoelectric photometers or DSLR cameras. Telescopic CCD observers may observe by stopping down larger apertures. Comparison and check stars assigned by PI: Comp: SAO 24412, V=4.285, B-V = -0.013; Check: SAO 24512, V=5.19, B-V = -0.05. From the PI: "[W]e wanted to try and involve AAVSO observers in a follow up to our successful detection of the b Persei eclipse of Feb 2013, AAVSO Alert Notice 476 and Special Notice 333. Our goal now is to get good time resolution photometry as the third star passes in front of the close ellipsoidal binary. The potential for multiple eclipses exists. The close binary has a 1.5 day orbital period, and the eclipsing C component requires about 4 days to pass across the close binary pair. The primary eclipse depth is 0.15 magnitude. Photometry to 0.02 or 0.03 mags would be fine to detect this eclipse. Eclipse prediction date (JD 2457033.79 = 2015 01 11 UT, ~+/- 1 day) is based on one orbital period from the 2013 eclipse." More information is available at PI's b Persei eclipse web page: http://inside.warren-wilson.edu/~dcollins/bPersei/. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and information on the targets.

  14. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding

    PubMed Central

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-01-01

    AIM: To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. METHODS: A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. RESULTS: Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. CONCLUSION: Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both

  15. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding.

    PubMed

    Ashktorab, Hassan; Etaati, Firoozeh; Rezaeean, Farahnaz; Nouraie, Mehdi; Paydar, Mansour; Namin, Hassan Hassanzadeh; Sanderson, Andrew; Begum, Rehana; Alkhalloufi, Kawtar; Brim, Hassan; Laiyemo, Adeyinka O

    2016-07-28

    To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm. A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care. Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar. Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both imaging and training, it may be possible

  16. NASA Videofile of Solar Eclipse from Jefferson City, Missouri

    NASA Image and Video Library

    2017-08-21

    During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. During this event, NASA Glenn Research Center celebrates the eclipse at the capital eclipse event in Jefferson City, MO

  17. NEWS: Eye safety and the solar eclipse

    NASA Astrophysics Data System (ADS)

    LeConte, David

    1999-05-01

    Total eclipses of the Sun are amongst nature's most magnificent spectacles, and offer the opportunity for an exceptional educational experience. Many people never see one in their lifetime, but it has been estimated that this August's eclipse will be seen by more people than any other. It would be a sadly lost opportunity if they were denied the experience because they fear a danger that is easily avoided. The dangers of eye damage are real and precautions need to be taken. Staring at the bright solar photosphere can cause temporary or permanent retinal damage. Since the retina has no pain receptors the observer can be unaware that the eye is being `cooked', and the damage may only become apparent several hours later. However, when the photosphere is completely blocked by the Moon during the brief period of totality (two minutes or less), it is quite safe to look directly. In fact, you will not otherwise see anything at all. It is a complex message to get across to the public, and especially to children, that protection is required during the partial phases but not during totality, and that those outside the path of totality require protection for the whole eclipse. The National Eclipse Group was established by PPARC in 1997 to coordinate educational activities, issue public information and give authoritative advice for the 1999 eclipse. It has published a Solar Eclipse Safety Code, which is available on the national eclipse web site (mentioned above). It advises that the safest way to view the Sun is indirectly, by projecting an image of the Sun with a `pinhole', mirror, binoculars or telescope. Most people, however, will wish to observe the eclipse directly. Sunglasses, photographic film, crossed polarizers, smoked glass and similar filters must not be used. The Safety Code states that the Sun may be viewed directly only through special filters made specifically for solar viewing. Such eclipse viewers are typically made of aluminized polyester film (often

  18. High-level magnetic activity nature of the eclipsing binary KIC 12418816

    NASA Astrophysics Data System (ADS)

    Dal, H. A.; Özdarcan, O.

    2018-02-01

    We present comprehensive spectroscopic and photometric analysis of the detached eclipsing binary KIC 12418816, which is composed of two very similar and young main-sequence stars of spectral type K0 on a circular orbit. Combining spectroscopic and photometric modelling, we find masses and radii of the components of 0.88 ± 0.06 M⊙ and 0.85 ± 0.02 R⊙ for the primary and 0.84 ± 0.05 M⊙ and 0.84 ± 0.02 R⊙ for the secondary. Both components exhibit narrow emission features superposed on the cores of the Ca II H and K lines, while H α and H β photospheric absoprtion is more completely infilled by broader emission. Very high precision Kepler photometry reveals remarkable sinusoidal light variation at out-of-eclipse phases, indicating strong spot activity, presumably on the surface of the secondary component. Spots on the secondary component appear to migrate towards decreasing orbital phase with a migration period of 0.72 ± 0.05 yr. Besides the sinusoidal variation, we detect 81 flares and find that both components possess flare activity. Our analysis shows that 25 flares out of 81 exhibit very high energies together with lower frequency, while the rest of them are very frequent but with lower energies.

  19. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. V.; Mironova, T. V.; Sultanov, T. T.

    2010-09-01

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases.

  20. Fifty year canon of solar eclipses: 1986-2035

    NASA Technical Reports Server (NTRS)

    Espenak, Fred

    1986-01-01

    A reference of moderately detailed eclipse predictions and maps for use by the professional astronomical community is provided. The general characteristics of every solar eclipse and a detailed set of cylindrical project world maps which show the umbral paths of every solar eclipse from 1901 to 2100 are presented. The geodetic path coordinates and local circumstance on the center line, and a series of orthographic projection maps which show the regions of visibility of both partial and central phases for every eclipse from 1986 through 2035 are also provided.

  1. Moon eclipse from 21 december 2010 in Romania

    NASA Astrophysics Data System (ADS)

    Gaina, Alex; Haus, Marian; Conovici, Matei; Vasiliu, Dan

    2010-12-01

    The authors discuss the Total Moon's eclipse from 21 december 2010, their circumstances for Romania and Central Europe. One notes that the informations from the NASA eclipses website do not inform correctly about the observability of the initial penumbral phase (P1-U1) of the eclipse. The same reffer to the Anuarul Astronomic Roman, published by the Institutul Astronomic Roman for 2010. By contrary the web site by Fred Espenac informed correctly the astronomical community. The Moon setted before the begining of the penumbral phase of the eclipse.

  2. Phototherapy with Narrow-Band UVB in Adult Guttate Psoriasis: Results and Patient Assessment.

    PubMed

    Fernández-Guarino, Montserrat; Aboín-González, Sonsoles; Velázquez, Diana; Barchino, Lucia; Cano, Natividad; Lázaro, Pablo

    2016-01-01

    Acute guttate psoriasis (AGP) is a distinctive clinical entity with good response to treatment with narrow-band ultraviolet B (NB-UVB). To investigate the results of NB-UVB phototherapy in adult patients with adult guttate psoriasis. We carried out a prospective, open, and observational study. Patients over 18 years with more than 5% of body surface area affected were included. The PASI was assessed prior to and after treatment. The follow-up period was 18 months. After treatment, patients completed a simple questionnaire to assess their overall impression of the treatment. The 67 adult patients with AGP included in this study had an initial PASI of 8.55 (SD 5.03). Patients were treated with a mean of 19.9 sessions (SD 13.5) and mean doses of 14 mJ/cm2 (SD 10.5). Of the 67 patients, 52 achieved PASI90 with 96.15% of PASI reduction, and of these, 46 (88%) maintained PASI90 during the 18 months of follow-up. Patients were very satisfied with the treatment. AGP is a defined clinical entity with a variable course. Phototherapy with NB-UVB appears to be a very good option for treatment of AGP because of the good results obtained and patient satisfaction. © 2016 S. Karger AG, Basel.

  3. Poster 16: Eclipse-induced changes of Titan's meteorology at equinox

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya

    2016-06-01

    Titan experiences solar eclipses by Saturn on ˜20 consecutive orbits around equinox for durations of up to ˜6 hours. The impact of these eclipses on Titan's surface, lower atmosphere and middle atmosphere is investigated by a global climate model. When an eclipse commences, the surface temperature on the subsaturnian side drops by up to 0.3 K, so that the diurnal maximum surface temperature remains lower than on the antisaturnian side, which is never eclipsed. By contrast, the tropospheric air temperature does not abruptly decrease during the eclipses because of the large thermal inertia, but the diurnal mean temperature slightly decreases. The surface wind at low latitudes becomes less gusty in the presence of eclipse due to damping of turbulence. The troposphere outside the planetary boundary layer is not sensitive to eclipses. In most parts of the stratosphere and mesosphere the temperature decreases by up to 2 K due to eclipses, but there are also layers, which experience relative warming due to thermal contraction of the underlying layers. The temperature in the middle atmosphere rapidly recovers after the end of the eclipse season. Eclipse-induced cooling and warming changes the zonal wind speed by a few m/s due to thermal wind adjustment to changing latitudinal temperature gradients.

  4. Lunar remote sensing and measurements

    USGS Publications Warehouse

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  5. The Late-type Eclipsing Binaries in the Large Magellanic Cloud: Catalog of Fundamental Physical Parameters

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Pietrzyński, Grzegorz; Thompson, Ian B.; Gieren, Wolfgang; Pilecki, Bogumił; Konorski, Piotr; Villanova, Sandro; Górski, Marek; Suchomska, Ksenia; Karczmarek, Paulina; Stepień, Kazimierz; Storm, Jesper; Taormina, Mónica; Kołaczkowski, Zbigniew; Wielgórski, Piotr; Narloch, Weronika; Zgirski, Bartłomiej; Gallenne, Alexandre; Ostrowski, Jakub; Smolec, Radosław; Udalski, Andrzej; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Szymański, Michał K.; Wyrzykowski, Łukasz; Ulaczyk, Krzysztof; Poleski, Radosław; Pietrukowicz, Paweł; Kozłowski, Szymon; Skowron, Jan; Mróz, Przemysław

    2018-06-01

    We present a determination of the precise fundamental physical parameters of 20 detached, double-lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems; the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalog results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria Project). The V-band brightnesses of the systems range from 15.4 to 17.7 mag, and their orbital periods range from 49 to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3%, and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M ⊙, and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show an age–metallicity relation with no evolution of metallicity for systems older than 0.6 Gyr, followed by a rise to a metallicity maximum at age 0.5 Gyr and then a slow metallicity decrease until 0.1 Gyr. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by a single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or hierarchical binary merger scenario in the case of ECL-05430. The longest-period system, OGLE LMC SC9_230659, shows a surprising apsidal motion that shifts the apparent position of the eclipses. This is a clear sign of a physical companion to the system; however, neither investigation of the spectra nor light-curve analysis indicates a third-light contribution larger than 2%–3%. In one spectrum of OGLE LMC-ECL-12669, we noted a peculiar dimming of one of the components by 65% well outside of the

  6. LROC Advances in Lunar Science

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.

    2012-12-01

    Since entering orbit in 2009 the Lunar Reconnaissance Orbiter Camera (LROC) has acquired over 700,000 Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images of the Moon. This new image collection is fueling research into the origin and evolution of the Moon. NAC images revealed a volcanic complex 35 x 25 km (60N, 100E), between Compton and Belkovich craters (CB). The CB terrain sports volcanic domes and irregular depressed areas (caldera-like collapses). The volcanic complex corresponds to an area of high-silica content (Diviner) and high Th (Lunar Prospector). A low density of impact craters on the CB complex indicates a relatively young age. The LROC team mapped over 150 volcanic domes and 90 volcanic cones in the Marius Hills (MH), many of which were not previously identified. Morphology and compositional estimates (Diviner) indicate that MH domes are silica poor, and are products of low-effusion mare lavas. Impact melt deposits are observed with Copernican impact craters (>10 km) on exterior ejecta, the rim, inner wall, and crater floors. Preserved impact melt flow deposits are observed around small craters (25 km diam.), and estimated melt volumes exceed predictions. At these diameters the amount of melt predicted is small, and melt that is produced is expected to be ejected from the crater. However, we observe well-defined impact melt deposits on the floor of highland craters down to 200 m diameter. A globally distributed population of previously undetected contractional structures were discovered. Their crisp appearance and associated impact crater populations show that they are young landforms (<1 Ga). NAC images also revealed small extensional troughs. Crosscutting relations with small-diameter craters and depths as shallow as 1 m indicate ages <50 Ma. These features place bounds on the amount of global radial contraction and the level of compressional stress in the crust. WAC temporal coverage of the poles allowed quantification of highly

  7. Simulations of Effects of Nanophase Iron Space Weather Products on Lunar Regolith Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Escobar-Cerezo, J.; Penttilä, A.; Kohout, T.; Muñoz, O.; Moreno, F.; Muinonen, K.

    2018-01-01

    Lunar soil spectra differ from pulverized lunar rocks spectra by reddening and darkening effects, and shallower absorption bands. These effects have been described in the past as a consequence of space weathering. In this work, we focus on the effects of nanophase iron (npFe0) inclusions on the experimental reflectance spectra of lunar regolith particles. The reflectance spectra are computed using SIRIS3, a code that combines ray optics with radiative-transfer modeling to simulate light scattering by different types of scatterers. The imaginary part of the refractive index as a function of wavelength of immature lunar soil is derived by comparison with the measured spectra of the corresponding material. Furthermore, the effect of adding nanophase iron inclusions on the reflectance spectra is studied. The computed spectra qualitatively reproduce the observed effects of space weathered lunar regolith.

  8. NELIOTA: First temperature measurement of lunar impact flashes

    NASA Astrophysics Data System (ADS)

    Bonanos, A. Z.; Avdellidou, C.; Liakos, A.; Xilouris, E. M.; Dapergolas, A.; Koschny, D.; Bellas-Velidis, I.; Boumis, P.; Charmandaris, V.; Fytsilis, A.; Maroussis, A.

    2018-04-01

    We report the first scientific results from the NELIOTA (NEO Lunar Impacts and Optical TrAnsients) project, which has recently begun lunar monitoring observations with the 1.2-m Kryoneri telescope. NELIOTA aims to detect faint impact flashes produced by near-Earth meteoroids and asteroids and thereby help constrain the size-frequency distribution of near-Earth objects in the decimeter to meter range. The NELIOTA setup, consisting of two fast-frame cameras observing simultaneously in the R and I bands, enables - for the first time - direct analytical calculation of the flash temperatures. We present the first ten flashes detected, for which we find temperatures in the range 1600 to 3100 K, in agreement with theoretical values. Two of these flashes were detected on multiple frames in both filters and therefore yield the first measurements of the temperature drop for lunar flashes. In addition, we compute the impactor masses, which range between 100 g and 50 kg.

  9. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the Lunar Module 'Spider' has been deployed. Note Lunar Module's upper hatch and docking tunnel.

  10. Light curve solutions of the eclipsing eccentric binaries KIC 8111622, KIC 10518735, KIC 8196180 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Vasileva, Doroteya L.

    2018-02-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.

  11. The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon

    NASA Astrophysics Data System (ADS)

    Ahn, Young Sook; Lee, Yong Sam

    2004-12-01

    The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.

  12. Analysis of penumbral eclipse data

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.

    1977-01-01

    Two days of data from the ATS-6 1976 eclipse season were analyzed to determine the effects of varying photoelectron flux on spacecraft potential. Particular emphasis was placed on the variation in potential as the satellite entered the earth's penumbra. Measurements from the AE-C satellite of the solar UV radiation were used to construct a model of atmospheric attenuation. This model was found to be consistent with direct measurements of the variations in photoelectron flux as Injun 5 passed into eclipse. Applying the model to the ATS-6 data gave the time dependency of the solar illumination/photoelectron flux as the satellite was eclipsed. This relationship, when combined with the ATS-6 measurements of satellite potential, revealed a nearly linear relation between the solar illumination/photoelectron flux and the logarithm of the satellite potential.

  13. Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.

    2010-07-01

    This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.

  14. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  15. The solar eclipse: a natural meteorological experiment

    PubMed Central

    2016-01-01

    A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10–1000 km), which is almost impossible to achieve by other means. This modern approach to ‘eclipse meteorology’ as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ). This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550768

  16. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Sylvester Dorsey III, avionics lead for the Europa Deorbit Stage Team in Marshall's Engineering Directorate, is joined during Marshall's eclipse-viewing event by his three children, from left, Sylvester IV, Sidney and Sakari. Though Huntsville was south of the path of totality, the Dorseys were among those awestruck by the natural phenomenon. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  17. New Lunar Paleointensity Measurements, Ancient Lunar Dynamo or Lunar Dud?

    NASA Astrophysics Data System (ADS)

    Lawrence, K. P.; Johnson, C. L.; Tauxe, L.; Gee, J. S.

    2007-12-01

    We analyze published and new paleointensity data from Apollo samples to reexamine the hypothesis of an early (3.9 to 3.6 Ga) lunar dynamo. Our new paleointensity experiments on four Apollo samples use modern absolute and relative measurement techniques. Our samples (60015, 76535, 72215, 62235) have ages ranging from 3.3 to 4.2 Ga, bracketing the putative period of a lunar dynamo. Samples 60015 (anorthosite) and 76535 (troctolite) failed during absolute paleointensity experiments, using the IZZI-modified Thellier-Thellier method. Samples 72215 and 62235 recorded a complicated, multi-component magnetic history that includes a low temperature (< 500°C) component with a high intensity (~90 μT), and a high temperature (> 500°C) component with a low intensity (~2 μT). These two samples were also subjected to a relative paleointensity experiment (sIRM), from which neither provided unambiguous evidence for a thermal origin of the recorded remanent magnetization. We found similar multi-component behavior in several published experiments on lunar samples. We test and present several magnetization scenarios in an attempt to explain the complex magnetization recorded in lunar samples. Specifically, an overprint from exposure to a small magnetic field (i.e. IRM) results in multi-component behavior (similar to lunar sample results), from which we could not recover the correct magnitude of the original TRM. The non-unique interpretation of these multi-component results combined with IRM (isothermal remanent magnetization) contamination during Apollo sample return ( Strangway et al., 1973), indicates that techniques incapable of distinguishing between single- and multi-component records (e.g., sIRM), cannot be reliably used to infer magnetic conditions of the early Moon. In light of these new experiments and a thorough reevaluation of existing paleointensity measurements, we conclude that there is a paucity of lunar samples that demonstrate a primary thermal remanent

  18. Radiometric calibration stability and inter-calibration of solar-band instruments in orbit using the moon

    USGS Publications Warehouse

    Stone, T.C.

    2008-01-01

    With the increased emphasis on monitoring the Earth's climate from space, more stringent calibration requirements are being placed on the data products from remote sensing satellite instruments. Among these are stability over decade-length time scales and consistency across sensors and platforms. For radiometer instruments in the solar reflectance wavelength range (visible to shortwave infrared), maintaining calibration on orbit is difficult due to the lack of absolute radiometric standards suitable for flight use. The Moon presents a luminous source that can be viewed by all instruments in Earth orbit. Considered as a solar diffuser, the lunar surface is exceedingly stable. The chief difficulty with using the Moon is the strong variations in the Moon's brightness with illumination and viewing geometry. This mandates the use of a photometric model to compare lunar observations, either over time by the same instrument or between instruments. The U.S. Geological Survey in Flagstaff, Arizona, under NASA sponsorship, has developed a model for the lunar spectral irradiance that explicitly accounts for the effects of phase, the lunar librations, and the lunar surface reflectance properties. The model predicts variations in the Moon's brightness with precision ???1% over a continuous phase range from eclipse to the quarter lunar phases. Given a time series of Moon observations taken by an instrument, the geometric prediction capability of the lunar irradiance model enables sensor calibration stability with sub-percent per year precision. Cross-calibration of instruments with similar passbands can be achieved with precision comparable to the model precision. Although the Moon observations used for intercomparison can be widely separated in phase angle and/or time, SeaWiFS and MODIS have acquired lunar views closely spaced in time. These data provide an example to assess inter-calibration biases between these two instruments.

  19. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  20. The X-ray eclipse of the LMC binary CAL 87

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.

    1993-01-01

    ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.