Sample records for narrowband polarization-entangled photon

  1. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    PubMed

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  2. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  3. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  4. Characterization of our source of polarization-entangled photons

    NASA Astrophysics Data System (ADS)

    Adenier, Guillaume

    2012-12-01

    We present our source of polarization entangled photons, which consist of orthogonally polarized and collinear parametric down converted photons sent to the same input of a nonpolarizing beam splitter. We show that a too straightforward characterization of the quantum state cannot account for all the experimental observations, in particular for the behavior of the doublecounts, which are the coincidences produced whenever both photons are dispatched by the beam splitter to the same measuring station (either Alice or Bob). We argue that in order to account for all observations, the state has to be entangled in polarization before the non-polarizing beam splitter, and we discuss the intriguing and nevertheless essential role of the time-compensation required to obtain such a polarization entanglement.

  5. Annual-ring-type quasi-phase-matching crystal for generation of narrowband high-dimensional entanglement

    NASA Astrophysics Data System (ADS)

    Hua, Yi-Lin; Zhou, Zong-Quan; Liu, Xiao; Yang, Tian-Shu; Li, Zong-Feng; Li, Pei-Yun; Chen, Geng; Xu, Xiao-Ye; Tang, Jian-Shun; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2018-01-01

    A photon pair can be entangled in many degrees of freedom such as polarization, time bins, and orbital angular momentum (OAM). Among them, the OAM of photons can be entangled in an infinite-dimensional Hilbert space which enhances the channel capacity of sharing information in a network. Twisted photons generated by spontaneous parametric down-conversion offer an opportunity to create this high-dimensional entanglement, but a photon pair generated by this process is typically wideband, which makes it difficult to interface with the quantum memories in a network. Here we propose an annual-ring-type quasi-phase-matching (QPM) crystal for generation of the narrowband high-dimensional entanglement. The structure of the QPM crystal is designed by tracking the geometric divergences of the OAM modes that comprise the entangled state. The dimensionality and the quality of the entanglement can be greatly enhanced with the annual-ring-type QPM crystal.

  6. Generating polarization-entangled photon pairs using cross-spliced birefringent fibers.

    PubMed

    Meyer-Scott, Evan; Roy, Vincent; Bourgoin, Jean-Philippe; Higgins, Brendon L; Shalm, Lynden K; Jennewein, Thomas

    2013-03-11

    We demonstrate a novel polarization-entangled photon-pair source based on standard birefringent polarization-maintaining optical fiber. The source consists of two stretches of fiber spliced together with perpendicular polarization axes, and has the potential to be fully fiber-based, with all bulk optics replaced with in-fiber equivalents. By modelling the temporal walk-off in the fibers, we implement compensation necessary for the photon creation processes in the two stretches of fiber to be indistinguishable. Our source subsequently produces a high quality entangled state having (92.2 ± 0.2) % fidelity with a maximally entangled Bell state.

  7. Heralded noiseless amplification for single-photon entangled state with polarization feature

    NASA Astrophysics Data System (ADS)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  8. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    PubMed Central

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-01-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100

  9. Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties

    NASA Astrophysics Data System (ADS)

    A, Karimi; M, K. Tavassoly

    2016-04-01

    In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.

  10. State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting

    NASA Astrophysics Data System (ADS)

    Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng

    2017-11-01

    Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.

  11. Three-color Sagnac source of polarization-entangled photon pairs.

    PubMed

    Hentschel, Michael; Hübel, Hannes; Poppe, Andreas; Zeilinger, Anton

    2009-12-07

    We demonstrate a compact and stable source of polarization-entangled pairs of photons, one at 810 nm wavelength for high detection efficiency and the other at 1550 nm for long-distance fiber communication networks. Due to a novel Sagnac-based design of the interferometer no active stabilization is needed. Using only one 30 mm ppKTP bulk crystal the source produces photons with a spectral brightness of 1.13 x 10(6) pairs/s/mW/THz with an entanglement fidelity of 98.2%. Both photons are single-mode fiber coupled and ready to be used in quantum key distribution (QKD) or transmission of photonic quantum states over large distances.

  12. A monolithically integrated polarization entangled photon pair source on a silicon chip

    PubMed Central

    Matsuda, Nobuyuki; Le Jeannic, Hanna; Fukuda, Hiroshi; Tsuchizawa, Tai; Munro, William John; Shimizu, Kaoru; Yamada, Koji; Tokura, Yasuhiro; Takesue, Hiroki

    2012-01-01

    Integrated photonic circuits are one of the most promising platforms for large-scale photonic quantum information systems due to their small physical size and stable interferometers with near-perfect lateral-mode overlaps. Since many quantum information protocols are based on qubits defined by the polarization of photons, we must develop integrated building blocks to generate, manipulate, and measure the polarization-encoded quantum state on a chip. The generation unit is particularly important. Here we show the first integrated polarization-entangled photon pair source on a chip. We have implemented the source as a simple and stable silicon-on-insulator photonic circuit that generates an entangled state with 91 ± 2% fidelity. The source is equipped with versatile interfaces for silica-on-silicon or other types of waveguide platforms that accommodate the polarization manipulation and projection devices as well as pump light sources. Therefore, we are ready for the full-scale implementation of photonic quantum information systems on a chip. PMID:23150781

  13. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.

    PubMed

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen

    2015-11-02

    Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.

  14. Photon Entanglement Through Brain Tissue

    PubMed Central

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-01-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness. PMID:27995952

  15. Photon Entanglement Through Brain Tissue.

    PubMed

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  16. Photon Entanglement Through Brain Tissue

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-12-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  17. Multi-user distribution of polarization entangled photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trapateau, J.; Orieux, A.; Diamanti, E.

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on themore » demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.« less

  18. Nonlocal correlations of polarization-entangled photons through brain tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Galvez, Enrique J.; Shi, Lingyan; Alfano, Robert R.

    2017-02-01

    We investigated the preservation of non-local correlations between polarization-entangled photons when one of them traveled through brain tissue slices of different thicknesses. Using down-converted photons at a wavelength of 802 nm minimized the absorption by the tissue. After the light passed through the tissue samples, we performed quantum state tomography to obtain quantitative measures of the entanglement. We found that entanglement is preserved to a surprising degree, and when it degrades, it does so following a particular path in a tangle versus linear-entropy graph. Such a trajectory reveals direct transfer of probability from entangled to mixed state.

  19. Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiaoying; Liang Chuang; Fook Lee, Kim

    We demonstrate an optical-fiber-based source of polarization-entangled photon pairs with improved quality and efficiency, which has been integrated with off-the-shelf telecom components and is, therefore, well suited for quantum communication applications in the 1550-nm telecom band. Polarization entanglement is produced by simultaneously pumping a loop of standard dispersion-shifted fiber with two orthogonally polarized pump pulses, one propagating in the clockwise and the other in the counterclockwise direction. We characterize this source by investigating two-photon interference between the generated signal-idler photon pairs under various conditions. The experimental parameters are carefully optimized to maximize the generated photon-pair correlation and to minimize contaminationmore » of the entangled photon pairs from extraneously scattered background photons that are produced by the pump pulses for two reasons: (i) spontaneous Raman scattering causes uncorrelated photons to be emitted in the signal and idler bands and (ii) broadening of the pump-pulse spectrum due to self-phase modulation causes pump photons to leak into the signal and idler bands. We obtain two-photon interference with visibility >90% without subtracting counts caused by the background photons (only dark counts of the detectors are subtracted), when the mean photon number in the signal (idler) channel is about 0.02/pulse, while no interference is observed in direct detection of either the signal or idler photons.« less

  20. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.

    PubMed

    Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank

    2012-02-27

    We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

  1. Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide.

    PubMed

    Li, Ming; Zou, Chang-Ling; Ren, Xi-Feng; Xiong, Xiao; Cai, Yong-Jing; Guo, Guo-Ping; Tong, Li-Min; Guo, Guang-Can

    2015-04-08

    Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state Φ(+). Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495 ± 0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.

  2. Photonic Crystal Fiber Based Entangled Photon Sources

    DTIC Science & Technology

    2014-03-01

    5 Figure 2: The diagram of the counter- propagating scheme. FP: fiber port ( free - space to fiber). PBS: polarization beam splitter. LP: Linear... entangled photon -pairs using the highly nonlinear fiber in a counter- propagating scheme (CPS). With the HNLF at room temperature, we obtain a... propagating scheme for generating polarization entangled photon pairs at telecom wavelengths. We use 10 m of highly nonlinear fiber. We measure a

  3. Beamlike photon pairs entangled by a 2x2 fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Hsin-Pin; Department of Electrophysics, National Chiao-Tung University, Hsinchu, 300, Taiwan; Yabushita, Atsushi

    Polarization-entangled photon pairs have been widely used as a light source of quantum communication. The polarization-entangled photon pairs are generally obtained at the crossing points of the light cones that are generated from a type-II nonlinear crystal. However, it is hard to pick up the photon pairs coming out from the crossing points because of their invisible wavelength and low intensity. In our previous work, we succeeded in generating polarization-entangled photon pairs by overlapping two light paths for the photon-pair generation. The photon pairs could be entangled in all of the generated photon pairs without clipping the crossing points, evenmore » with some difficulty in its alignment to overlap the two light paths. In this paper, we have developed an optical system which generates polarization-entangled photon pairs using a beamlike photon pair, without the difficulty in alignment. The measured results show that the photon pairs generated in the system are entangled in their polarizations.« less

  4. Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network.

    PubMed

    Ikuta, Rikizo; Kobayashi, Toshiki; Kawakami, Tetsuo; Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka; Koashi, Masato; Mukai, Tetsuya; Yamamoto, Takashi; Imoto, Nobuyuki

    2018-05-21

    Long-lifetime quantum storages accessible to the telecom photonic infrastructure are essential to long-distance quantum communication. Atomic quantum storages have achieved subsecond storage time corresponding to 1000 km transmission time for a telecom photon through a quantum repeater algorithm. However, the telecom photon cannot be directly interfaced to typical atomic storages. Solid-state quantum frequency conversions fill this wavelength gap. Here we report on the experimental demonstration of a polarization-insensitive solid-state quantum frequency conversion to a telecom photon from a short-wavelength photon entangled with an atomic ensemble. Atom-photon entanglement has been generated with a Rb atomic ensemble and the photon has been translated to telecom range while retaining the entanglement by our nonlinear-crystal-based frequency converter in a Sagnac interferometer.

  5. On-chip entangled photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel B. S.; Bisson, Scott E.

    Various technologies pertaining to an on-chip entangled photon source are described herein. A light source is used to pump two resonator cavities that are resonant at two different respective wavelengths and two different respective polarizations. The resonator cavities are coupled to a four-wave mixing cavity that receives the light at the two wavelengths and outputs polarization-entangled photons.

  6. Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength.

    PubMed

    Lutz, Thomas; Kolenderski, Piotr; Jennewein, Thomas

    2014-03-15

    Spectrally correlated photon pairs can be used to improve the performance of long-range fiber-based quantum communication protocols. We present a source based on spontaneous parametric downconversion, which allows one to control spectral correlations within the entangled photon pair without spectral filtering by changing the pump-pulse duration or the characteristics of the coupled spatial modes. The spectral correlations and polarization entanglement are characterized. We find that the generated photon pairs can feature both positive spectral correlations, decorrelation, or negative correlations at the same time as polarization entanglement with a high fidelity of 0.97 (no background subtraction) with the expected Bell state.

  7. Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs

    NASA Astrophysics Data System (ADS)

    Rieländer, Daniel; Lenhard, Andreas; Jime`nez Farìas, Osvaldo; Máttar, Alejandro; Cavalcanti, Daniel; Mazzera, Margherita; Acín, Antonio; de Riedmatten, Hugues

    2018-01-01

    We demonstrate frequency-bin entanglement between ultra-narrowband photons generated by cavity enhanced spontaneous parametric down conversion. Our source generates photon pairs in widely non-degenerate discrete frequency modes, with one photon resonant with a quantum memory material based on praseodymium doped crystals and the other photon at telecom wavelengths. Correlations between the frequency modes are analyzed using phase modulators and narrowband filters before detection. We show high-visibility two photon interference between the frequency modes, allowing us to infer a coherent superposition of the modes. We develop a model describing the state that we create and use it to estimate optimal measurements to achieve a violation of the Clauser-Horne (CH) Bell inequality under realistic assumptions. With these settings we perform a Bell test and show a significant violation of the CH inequality, thus proving the entanglement of the photons. Finally we demonstrate the compatibility with a quantum memory material by using a spectral hole in the praseodymium (Pr) doped crystal as spectral filter for measuring high-visibility two-photon interference. This demonstrates the feasibility of combining frequency-bin entangled photon pairs with Pr-based solid state quantum memories.

  8. Method for universal detection of two-photon polarization entanglement

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Horodecki, Paweł; Lemr, Karel; Miranowicz, Adam; Życzkowski, Karol

    2015-03-01

    Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.

  9. Experimental generation of complex noisy photonic entanglement

    NASA Astrophysics Data System (ADS)

    Dobek, K.; Karpiński, M.; Demkowicz-Dobrzański, R.; Banaszek, K.; Horodecki, P.

    2013-02-01

    We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.

  10. Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Shimizu, Ryosuke; Wakui, Kentaro; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-05-19

    We demonstrate pulsed polarization-entangled photons generated from a periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied, the intrinsic spectral purity of the photons is much higher than in the previous scheme at around 800 nm wavelength. The combination of a Sagnac interferometer and the GVM-PPKTP crystal makes our entangled source compact, stable, highly entangled, spectrally pure and ultra-bright. The photons were detected by two superconducting nanowire single photon detectors (SNSPDs) with detection efficiencies of 70% and 68% at dark counts of less than 1 kcps. We achieved fidelities of 0.981 ± 0.0002 for |ψ(-)〉 and 0.980 ± 0.001 for |ψ(+)〉 respectively. This GVM-PPKTP-Sagnac scheme is directly applicable to quantum communication experiments at telecom wavelength, especially in free space.

  11. 1.5-μm band polarization entangled photon-pair source with variable Bell states.

    PubMed

    Arahira, Shin; Kishimoto, Tadashi; Murai, Hitoshi

    2012-04-23

    In this paper we report a polarization-entangled photon-pair source in a 1.5-μm band which can generate arbitrary entangled states including four maximum entangled states (Bell states) by using cascaded optical second nonlinearities (second-harmonic generation and the following spontaneous parametric down conversion) in a periodically poled LiNbO(3) (PPLN) ridge-waveguide device. Exchange among the Bell states was achieved by using an optical phase bias compensator (OPBC) in a Sagnac loop interferometer and a half-wave plate outside the loop for polarization conversion. Quantitative evaluation was made on the performance of the photon-pair source through the experiments of two-photon interferences, quantum state tomography, and test of violation of Bell inequality. We observed high visibilities of 96%, fidelities of 97%, and 2.71 of the S parameter in inequality of Clauser, Horne, Shimony, and Holt (CHSH). The experimental values, including peak coincidence counts in the two-photon interference (approximately 170 counts per second), remained almost unchanged in despite of the exchange among the Bell states. They were also in good agreement with the theoretical assumption from the mean number of the photon-pairs under the test (0.04 per pulse). More detailed experimental studies on the dependence of the mean number of the photon-pairs revealed that the quantum states were well understood as the Werner state. © 2012 Optical Society of America

  12. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field

    PubMed Central

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-01-01

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72±0.05. PMID:22314357

  13. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.

    PubMed

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-02-07

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.

  14. Entangled photons from single atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  15. Highly retrievable spin-wave-photon entanglement source.

    PubMed

    Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-05-29

    Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

  16. Experimental realization of narrowband four-photon Greenberger-Horne-Zeilinger state in a single cold atomic ensemble.

    PubMed

    Dong, Ming-Xin; Zhang, Wei; Hou, Zhi-Bo; Yu, Yi-Chen; Shi, Shuai; Ding, Dong-Sheng; Shi, Bao-Sen

    2017-11-15

    Multi-photon entangled states not only play a crucial role in research on quantum physics but also have many applications in quantum information fields such as quantum computation, quantum communication, and quantum metrology. To fully exploit the multi-photon entangled states, it is important to establish the interaction between entangled photons and matter, which requires that photons have narrow bandwidth. Here, we report on the experimental generation of a narrowband four-photon Greenberger-Horne-Zeilinger state with a fidelity of 64.9% through multiplexing two spontaneous four-wave mixings in a cold Rb85 atomic ensemble. The full bandwidth of the generated GHZ state is about 19.5 MHz. Thus, the generated photons can effectively match the atoms, which are very suitable for building a quantum computation and quantum communication network based on atomic ensembles.

  17. Temporal Multimode Storage of Entangled Photon Pairs

    NASA Astrophysics Data System (ADS)

    Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas

    2016-12-01

    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

  18. Experimental noise-resistant Bell-inequality violations for polarization-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, Fabio A.; Castagnoli, Giuseppe; Cabello, Adan

    2006-06-15

    We experimentally demonstrate that violations of Bell's inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello et al. [Phys. Rev. A 72, 052112 (2005)].

  19. Experimental extraction of an entangled photon pair from two identically decohered pairs.

    PubMed

    Yamamoto, Takashi; Koashi, Masato; Ozdemir, Sahin Kaya; Imoto, Nobuyuki

    2003-01-23

    Entanglement is considered to be one of the most important resources in quantum information processing schemes, including teleportation, dense coding and entanglement-based quantum key distribution. Because entanglement cannot be generated by classical communication between distant parties, distribution of entangled particles between them is necessary. During the distribution process, entanglement between the particles is degraded by the decoherence and dissipation processes that result from unavoidable coupling with the environment. Entanglement distillation and concentration schemes are therefore needed to extract pairs with a higher degree of entanglement from these less-entangled pairs; this is accomplished using local operations and classical communication. Here we report an experimental demonstration of extraction of a polarization-entangled photon pair from two decohered photon pairs. Two polarization-entangled photon pairs are generated by spontaneous parametric down-conversion and then distributed through a channel that induces identical phase fluctuations to both pairs; this ensures that no entanglement is available as long as each pair is manipulated individually. Then, through collective local operations and classical communication we extract from the two decohered pairs a photon pair that is observed to be polarization-entangled.

  20. Teleportation of a general two-photon state employing a polarization-entangled χ state with nondemolition parity analyses

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun

    2016-07-01

    Employing a polarization-entangled χ state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender's analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender's location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.

  1. Fiber transport of spatially entangled photons

    NASA Astrophysics Data System (ADS)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  2. Experimental Limits on Local Realism with Separable and Entangled Photons

    DTIC Science & Technology

    2011-01-01

    DATES COVERED (From - To) OCT 2009 – SEP 2011 4. TITLE AND SUBTITLE EXPERIMENTAL LIMITS ON LOCAL REALISM WITH SEPARABLE AND ENTANGLED PHOTONS 5a...realization of the quantum state must be chosen. Entangled photons or electrons provide the most viable choices. In this work we consider a simplified...fewer measurements, and is more advantageous in its conceptual clarity. 15. SUBJECT TERMS polarization- entangled photons , Bell inequalities, local

  3. Nonlocal polarization interferometer for entanglement detection

    DOE PAGES

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less

  4. Free-Space Quantum Key Distribution using Polarization Entangled Photons

    NASA Astrophysics Data System (ADS)

    Kurtsiefer, Christian

    2007-06-01

    We report on a complete experimental implementation of a quantum key distribution protocol through a free space link using polarization-entangled photon pairs from a compact parametric down-conversion source [1]. Based on a BB84-equivalent protocol, we generated without interruption over 10 hours a secret key free-space optical link distance of 1.5 km with a rate up to 950 bits per second after error correction and privacy amplification. Our system is based on two time stamp units and relies on no specific hardware channel for coincidence identification besides an IP link. For that, initial clock synchronization with an accuracy of better than 2 ns is achieved, based on a conventional NTP protocol and a tiered cross correlation of time tags on both sides. Time tags are used to servo a local clock, allowing a streamed measurement on correctly identified photon pairs. Contrary to the majority of quantum key distribution systems, this approach does not require a trusted large-bandwidth random number generator, but integrates that into the physical key generation process. We discuss our current progress of implementing a key distribution via an atmospherical link during daylight conditions, and possible attack scenarios on a physical timing information side channel to a entanglement-based key distribution system. [1] I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Appl. Phys. Lett. 89, 101122 (2006).

  5. Storing a single photon as a spin wave entangled with a flying photon in the telecommunication bandwidth

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ding, Dong-Sheng; Shi, Shuai; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-01

    Quantum memory is an essential building block for quantum communication and scalable linear quantum computation. Storing two-color entangled photons with one photon being at the telecommunication (telecom) wavelength while the other photon is compatible with quantum memory has great advantages toward the realization of the fiber-based long-distance quantum communication with the aid of quantum repeaters. Here, we report an experimental realization of storing a photon entangled with a telecom photon in polarization as an atomic spin wave in a cold atomic ensemble, thus establishing the entanglement between the telecom-band photon and the atomic-ensemble memory in a polarization degree of freedom. The reconstructed density matrix and the violation of the Clauser-Horne-Shimony-Holt inequality clearly show the preservation of quantum entanglement during storage. Our result is very promising for establishing a long-distance quantum network based on cold atomic ensembles.

  6. Measurement problem and local hidden variables with entangled photons

    NASA Astrophysics Data System (ADS)

    Muchowski, Eugen

    2017-12-01

    It is shown that there is no remote action with polarization measurements of photons in singlet state. A model is presented introducing a hidden parameter which determines the polarizer output. This model is able to explain the polarization measurement results with entangled photons. It is not ruled out by Bell's Theorem.

  7. Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber.

    PubMed

    Li, Xiaoying; Voss, Paul L; Chen, Jun; Sharping, Jay E; Kumar, Prem

    2005-05-15

    We demonstrate storage of polarization-entangled photons for 125 micros, a record storage time to date, in a 25-km-long fiber spool, using a telecommunications-band fiber-based source of entanglement. With this source we also demonstrate distribution of polarization entanglement over 50 km by separating the two photons of an entangled pair and transmitting them individually over separate 25-km fibers. The measured two-photon fringe visibilities were 82% in the storage experiment and 86% in the distribution experiment. Preservation of polarization entanglement over such long-distance transmission demonstrates the viability of all-fiber sources for use in quantum memories and quantum logic gates.

  8. Why did we elaborate an entangled photons experiment in our engineering school?

    NASA Astrophysics Data System (ADS)

    Jacubowiez, Lionel; Avignon, Thierry

    2005-10-01

    We will describe a simple setup experiment that allows students to create polarization-entangled photons pairs. These photon pairs are in an entangled state first described in the famous 1935 article in Phys.Rev by Einstein-Podolsky-Rosen, often called E.P.R. state. Photons pairs at 810 nm are produced in two nonlinear crystals by spontaneous parametric downconversion of photons at 405 nm emitted by a violet laser diode. The polarization state of the photons pairs is easily tunable with a half-wave plate and a Babinet compensator on the laser diode beam. After having adjusted the polarization-entangled state of the photon pairs, our students can perform a test of Bell's inequalities. They will find the amazing value for the Bell parameter between 2.3 and 2.6, depending on the quality of the adjustments of the state of polarization. The experiments described can be done in 4 or 5 hours. What is the importance of creating an entangled photons experiment for our engineering students? First of all, entanglement concept is clearly one of the most strikingly nonclassical features of quantum theory and it is playing an increasing role in present-day physics. But in this paper, we will emphasise the experimental point of view. We will try to explain why we believe that for our students this lab experiment is a unique opportunity to deal with established concepts and experimental techniques on polarization, non linear effects, phase matching, photon counting avalanche photodiodes, counting statistics, coincidences detectors. Let us recall that the first convincing experimental violations of Bell's inequalities were performed by Alain Aspect and Philippe Grangier with pairs of entangled photons at the Institut d'Optique between 1976 and 1982. Twenty five years later, due to recent advances in laser diode technology, new techniques for generation of photon pairs and avalanche photodiodes, this experiment is now part of the experimental lab courses for our students.

  9. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    PubMed

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  10. Nonlocal hyperconcentration on entangled photons using photonic module system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using twomore » identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.« less

  11. High-efficient entanglement distillation from photon loss and decoherence.

    PubMed

    Wang, Tie-Jun; Wang, Chuan

    2015-11-30

    We illustrate an entanglement distillation protocol (EDP) for a mixed photon-ensemble which composed of four kinds of entangled states and vacuum states. Exploiting the linear optics and local entanglement resource (four-qubit entangled GHZ state), we design the nondemolition parity-checking and qubit amplifying (PCQA) setup for photonic polarization degree of freedom which are the key device of our scheme. With the PCQA setup, a high-fidelity entangled photon-pair system can be achieved against the transmission losses and the decoherence in noisy channels. And in the available purification range for our EDP, the fidelity of this ensemble can be improved to the maximal value through iterated operations. Compared to the conventional entanglement purification schemes, our scheme largely reduces the initialization requirement of the distilled mixed quantum system, and overcomes the difficulties posed by inherent channel losses during photon transmission. All these advantages make this scheme more useful in the practical applications of long-distance quantum communication.

  12. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  13. Coherent dynamics of a telecom-wavelength entangled photon source.

    PubMed

    Ward, M B; Dean, M C; Stevenson, R M; Bennett, A J; Ellis, D J P; Cooper, K; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2014-01-01

    Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell's inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

  14. Polarization entanglement purification of nonlocal microwave photons based on the cross-Kerr effect in circuit QED

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Qian; Xu, Xu-Sheng; Xiong, Jun; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2017-11-01

    Microwave photons have become very important qubits in quantum communication, as the first quantum satellite has been launched successfully. Therefore, it is a necessary and meaningful task for ensuring the high security and efficiency of microwave-based quantum communication in practice. Here, we present an original polarization entanglement purification protocol for nonlocal microwave photons based on the cross-Kerr effect in circuit quantum electrodynamics (QED). Our protocol can solve the problem that the purity of maximally entangled states used for constructing quantum channels will decrease due to decoherence from environment noise. This task is accomplished by means of the polarization parity-check quantum nondemolition (QND) detector, the bit-flipping operation, and the linear microwave elements. The QND detector is composed of several cross-Kerr effect systems which can be realized by coupling two superconducting transmission line resonators to a superconducting molecule with the N -type level structure. We give the applicable experimental parameters of QND measurement system in circuit QED and analyze the fidelities. Our protocol has good applications in long-distance quantum communication assisted by microwave photons in the future, such as satellite quantum communication.

  15. Entangled, guided photon generation in (1+1)-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciscione, L.; Centini, M.; Sibilia, C.

    A scheme based on photonic crystal technology is proposed as an ultrabright source of entangled photons on a miniaturized scale. The geometry consists of a multilayer microcavity, excited by a resonant pump frequency, such that the emitted photons are guided transversally to the direction of the incident pump. The entanglement occurs in direction, frequency, and polarization, and the bandwidth of the emitted photons is of the order of 1 nm. We propose a feasible design based on Al{sub 0.3}Ga{sub 0.7}As/Al{sub 2}O{sub 3} structures and predict an emission rate 10{sup 5} pairs per second with 100 mW pump power. These resultsmore » are promising for realization of chip and future quantum computer applications.« less

  16. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

    NASA Astrophysics Data System (ADS)

    Zopf, Michael; Keil, Robert; Chen, Yan; HöFer, Bianca; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G.

    Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (< 1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum repeater - among many other key enabling quantum photonic elements - can be practically implemented with this new material. Financially supported by BMBF Q.Com-H (16KIS0106) and the Euro- pean Union Seventh Framework Programme 209 (FP7/2007-2013) under Grant Agreement No. 601126 210 (HANAS).

  17. Efficient Entanglement Concentration of Nonlocal Two-Photon Polarization-Time-Bin Hyperentangled States

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Hang; Yu, Wen-Xuan; Wu, Xiao-Yuan; Gao, Cheng-Yan; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2018-03-01

    We present two different hyperentanglement concentration protocols (hyper-ECPs) for two-photon systems in nonlocal polarization-time-bin hyperentangled states with known parameters, including Bell-like and cluster-like states, resorting to the parameter splitting method. They require only one of two parties in quantum communication to operate her photon in the process of entanglement concentration, not two, and they have the maximal success probability. They work with linear optical elements and have good feasibility in experiment, especially in the case that there are a big number of quantum data exchanged as the parties can obtain the information about the parameters of the nonlocal hyperentangled states by sampling a subset of nonlocal hyperentangled two-photon systems and measuring them. As the quantum state of photons in the time-bin degree of freedom suffers from less noise in an optical-fiber channel, these hyper-ECPs may have good applications in practical long-distance quantum communication in the future.

  18. Rapid creation of distant entanglement by multi-photon resonant fluorescence

    NASA Astrophysics Data System (ADS)

    Cohen, Guy Z.; Sham, L. J.

    2014-03-01

    We study a simple, effective and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multi-photon Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel (HOM) effect, to selective pairing of photon holes (photon absences in the fluorescent signals). By the HOM effect, two photon holes with the same polarization end up at the same beam splitter output. As a result, two odd photon number detections at the outgoing beams, which must correspond to two photon holes with different polarizations, herald entanglement creation. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, non-ideal and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities. This research was supported by the U.S. Army Research Office MURI award W911NF0910406, by NSF grant PHY-1104446 and by ARO (IARPA, W911NF-08-1-0487). The authors thank D. G. Steel for useful discussions.

  19. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.

    PubMed

    Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G

    2016-01-27

    Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

  20. Quantum and classical noise in practical quantum-cryptography systems based on polarization-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelletto, S.; Degiovanni, I.P.; Rastello, M.L.

    2003-02-01

    Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement in spontaneous parametric down-conversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up themore » overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.« less

  1. All-versus-nothing violation of local realism for two entangled photons.

    PubMed

    Chen, Zeng-Bing; Pan, Jian-Wei; Zhang, Yong-De; Brukner, Caslav; Zeilinger, Anton

    2003-04-25

    It is shown that the Greenberger-Horne-Zeilinger theorem can be generalized to the case with only two entangled particles. The reasoning makes use of two photons which are maximally entangled both in polarization and in spatial degrees of freedom. In contrast to Cabello's argument of "all versus nothing" nonlocality with four photons [Phys. Rev. Lett. 87, 010403 (2001)

  2. Extended phase-matching properties of periodically poled potassium niobate crystals for mid-infrared polarization-entangled photon-pair generation.

    PubMed

    Lee, Kwang Jo; Lee, Sunmi; Shin, Heedeuk

    2016-12-01

    We report the extended phase-matching (EPM) properties of two kinds of periodically poled potassium niobate (KNbO3 or KN) crystals (i.e., periodic 180°- and 90°-domain structures) that are highly useful for the generation of polarization-entangled photon pairs in the mid-infrared (IR) spectral region. Under the degenerate Type II spontaneous parametric downconversion process satisfying the EPM condition, an input single photon with a frequency of 2ω generates a pair of synchronized photons with identical frequencies of ω that are orthogonally polarized with respect to each other (i.e., the frequency-coincident, polarization-entangled biphoton states). Our simulation results illustrate that the EPM is achievable in the mid-IR spectral region: at the wavelengths of 3.80 μm and 4.03 μm for periodic 90°- and 180°-domain structures, respectively. We will describe in detail the EPM properties of both cases in terms of interaction types and the corresponding nonlinear optic coefficients, phase-matching bandwidths, and domain poling periods. The calculated EPM bandwidths are much broader than 200 nm in the mid-IR for both cases, exhibiting a great potential for nonlinear-optic signal processing in quantum communication systems operating in the mid-IR bands.

  3. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review

    NASA Astrophysics Data System (ADS)

    Huber, Daniel; Reindl, Marcus; Aberl, Johannes; Rastelli, Armando; Trotta, Rinaldo

    2018-07-01

    More than 80 years have passed since the first publication on entangled quantum states. Over this period, the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon pairs. While it was originally believed that quantum dots must exhibit a limited degree of entanglement related to decoherence effects typical of the solid-state, recent studies have invalidated this preconception. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.

  4. Quantum cryptography with entangled photons

    PubMed

    Jennewein; Simon; Weihs; Weinfurter; Zeilinger

    2000-05-15

    By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.

  5. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  6. Two-photon absorption by spectrally shaped entangled photons

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2018-03-01

    We theoretically investigate two-photon excitation by spectrally shaped entangled photons with energy anticorrelation in terms of how the real excitation of an intermediate state affects two-photon absorption by entangled photons. Spectral holes are introduced in the entangled photons around the energy levels of an intermediate state so that two-step excitation via the real excitation of the intermediated state can be suppressed. Using a three-level atomic system as an example, we show that the spectral holes well suppress the real excitation of the intermediate state and recover two-photon absorption via a virtual state. Furthermore, for a short pulse close to a monocycle, we show that the excitation efficiency by the spectrally shaped entangled photons can be enhanced a thousand times as large as that by uncorrelated photons.

  7. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.

    PubMed

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S; Schmidt, Oliver G; Rastelli, Armando; Trotta, Rinaldo

    2017-05-26

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.

  8. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

    PubMed Central

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S.; Schmidt, Oliver G.; Rastelli, Armando; Trotta, Rinaldo

    2017-01-01

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. PMID:28548081

  9. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.

    PubMed

    De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2013-01-01

    Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

  10. Polarization entangled photons from quantum dots embedded in nanowires.

    PubMed

    Huber, Tobias; Predojević, Ana; Khoshnegar, Milad; Dalacu, Dan; Poole, Philip J; Majedi, Hamed; Weihs, Gregor

    2014-12-10

    In this Letter, we present entanglement generated from a novel structure: a single InAsP quantum dot embedded in an InP nanowire. These structures can grow in a site-controlled way and exhibit high collection efficiency; we detect 0.5 million biexciton counts per second coupled into a single mode fiber with a standard commercial avalanche photo diode. If we correct for the known setup losses and detector efficiency, we get an extraction efficiency of 15(3) %. For the measured polarization entanglement, we observe a fidelity of 0.76(2) to a reference maximally entangled state as well as a concurrence of 0.57(6).

  11. Observation of quantum entanglement between a photon and a single electron spin confined to an InAs quantum dot

    NASA Astrophysics Data System (ADS)

    Schaibley, John; Burgers, Alex; McCracken, Greg; Duan, Luming; Berman, Paul; Steel, Duncan; Bracker, Allan; Gammon, Daniel; Sham, Lu

    2013-03-01

    A single electron spin confined to a single InAs quantum dot (QD) can serve as a qubit for quantum information processing. By utilizing the QD's optically excited trion states in the presence of an externally applied magnetic field, the QD spin can be rapidly initialized, manipulated and read out. A key resource for quantum information is the ability to entangle distinct QD spins. One approach relies on intermediate spin-photon entanglement to mediate the entanglement between distant QD spin qubits. We report a demonstration of quantum entanglement between a photon's polarization state and the spin state of a single electron confined to a single QD. Here, the photon is spontaneously emitted from one of the QD's trion states. The emitted photon's polarization along the detection axis is entangled with the resulting spin state of the QD. By performing projective measurements on the photon's polarization state and correlating these measurements with the state of the QD spin in two different bases, we obtain a lower bound on the entanglement fidelity of 0.59 (after background correction). The fidelity bound is limited almost entirely by the timing resolution of our single photon detector. The spin-photon entanglement generation rate is 3 ×103 s-1. Supported by: NSF, MURI, AFOSR, DARPA, ARO.

  12. Analysis of elliptically polarized maximally entangled states for bell inequality tests

    NASA Astrophysics Data System (ADS)

    Martin, A.; Smirr, J.-L.; Kaiser, F.; Diamanti, E.; Issautier, A.; Alibart, O.; Frey, R.; Zaquine, I.; Tanzilli, S.

    2012-06-01

    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.

  13. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    PubMed

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  14. Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Sheng, Yu-Bo

    2017-10-01

    Entanglement purification plays a fundamental role in long-distance quantum communication. In the paper, we put forward the first polarization entanglement purification protocol (EPP) for one type of nonlocal logic-qubit entanglement, i.e., concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, resorting to the photon-atom interaction in low-quality (Q) cavity. In contrast to existing EPPs, this protocol can purify the bit-flip error and phase-flip error in both physic and logic level. Instead of measuring the photons directly, this protocol only requires to measure the atom states to judge whether the protocol is successful. In this way, the purified logic entangled states can be preserved for further application. Moreover, it makes this EPP repeatable so as to obtain a higher fidelity of logic entangled states. As the logic-qubit entanglement utilizes the quantum error correction (QEC) codes, which has an inherent stability against noise and decoherence, this EPP combined with the QEC codes may provide a double protection for the entanglement from the channel noise and may have potential applications in long-distance quantum communication.

  15. Quantum entanglement between an optical photon and a solid-state spin qubit.

    PubMed

    Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D

    2010-08-05

    Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.

  16. Integrated Sources of Polarization Entangled Photon Pair States via Spontaneous Four-Wave Mixing in AlGaAs Waveguides

    NASA Astrophysics Data System (ADS)

    Kultavewuti, Pisek

    Polarization-entangled photon pair states (PESs) are indispensable in several quantum protocols that should be implemented in an integrated photonic circuit for realizing a practical quantum technology. Preparing such states in integrated waveguides is in fact a challenge due to polarization mode dispersion. Unlike other conventional ways that are plagued with complications in fabrication or in state generation, in this thesis, the scheme based on parallel spontaneous four-wave mixing processes of two polarization waveguide modes is thoroughly studied in theory and experimentation for the polarization entanglement generation. The scheme in fact needs the modal dispersion, contradictory to the general perception, as revealed by a full quantum mechanical framework. The proper modal dispersion balances the effects of temporal walk-off and state factorizability. The study also shows that the popular standard platform such as a silicon-on-insulator wafer is far from suitable to implement the proposed simple generation technique. Proven by the quantum state tomography, the technique produces a highly-entangled state with a maximum concurrence of 0.97 +/- 0:01 from AlGaAs waveguides. In addition, the devices directly generated Bell states with an observed fidelity of 0.92 +/- 0:01 without any post-generation compensating steps. Novel suspended device structures, including their components, are then investigated numerically and experimentally characterized in pursuit of finding the geometry with the optimal dispersion property. The 700 nm x 1100 nm suspended rectangular waveguide is identified as the best geometry with a predicted maximum concurrence of 0.976 and a generation bandwidth of 3.3 THz. The suspended waveguide fabrication procedure adds about 15 dB/cm and 10 dB/cm of propagation loss to the TE and TM mode respectively, on top of the loss in corresponding full-cladding waveguides. Bridges, which structurally support the suspended waveguides, are optimized using

  17. Intrinsic upper bound on two-qubit polarization entanglement predetermined by pump polarization correlations in parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Subrahmanyam, V.; Jha, Anand K.

    2016-06-01

    We study how one-particle correlations transfer to manifest as two-particle correlations in the context of parametric down-conversion (PDC), a process in which a pump photon is annihilated to produce two entangled photons. We work in the polarization degree of freedom and show that for any two-qubit generation process that is both trace-preserving and entropy-nondecreasing, the concurrence C (ρ ) of the generated two-qubit state ρ follows an intrinsic upper bound with C (ρ )≤(1 +P )/2 , where P is the degree of polarization of the pump photon. We also find that for the class of two-qubit states that is restricted to have only two nonzero diagonal elements such that the effective dimensionality of the two-qubit state is the same as the dimensionality of the pump polarization state, the upper bound on concurrence is the degree of polarization itself, that is, C (ρ )≤P . Our work shows that the maximum manifestation of two-particle correlations as entanglement is dictated by one-particle correlations. The formalism developed in this work can be extended to include multiparticle systems and can thus have important implications towards deducing the upper bounds on multiparticle entanglement, for which no universally accepted measure exists.

  18. Experimental Ten-Photon Entanglement.

    PubMed

    Wang, Xi-Lin; Chen, Luo-Kan; Li, W; Huang, H-L; Liu, C; Chen, C; Luo, Y-H; Su, Z-E; Wu, D; Li, Z-D; Lu, H; Hu, Y; Jiang, X; Peng, C-Z; Li, L; Liu, N-L; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei

    2016-11-18

    We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ∼12  MHz/W, a collection efficiency of ∼70%, and an indistinguishability of ∼91% between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.

  19. PPLN-waveguide-based polarization entangled QKD simulator

    NASA Astrophysics Data System (ADS)

    Gariano, John; Djordjevic, Ivan B.

    2017-08-01

    We have developed a comprehensive simulator to study the polarization entangled quantum key distribution (QKD) system, which takes various imperfections into account. We assume that a type-II SPDC source using a PPLN-based nonlinear optical waveguide is used to generate entangled photon pairs and implements the BB84 protocol, using two mutually unbiased basis with two orthogonal polarizations in each basis. The entangled photon pairs are then simulated to be transmitted to both parties; Alice and Bob, through the optical channel, imperfect optical elements and onto the imperfect detector. It is assumed that Eve has no control over the detectors, and can only gain information from the public channel and the intercept resend attack. The secure key rate (SKR) is calculated using an upper bound and by using actual code rates of LDPC codes implementable in FPGA hardware. After the verification of the simulation results, such as the pair generation rate and the number of error due to multiple pairs, for the ideal scenario, available in the literature, we then introduce various imperfections. Then, the results are compared to previously reported experimental results where a BBO nonlinear crystal is used, and the improvements in SKRs are determined for when a PPLN-waveguide is used instead.

  20. Two-photon spectroscopy of excitons with entangled photons.

    PubMed

    Schlawin, Frank; Mukamel, Shaul

    2013-12-28

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  1. Two-photon spectroscopy of excitons with entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlawin, Frank, E-mail: Frank.Schlawin@physik.uni-freiburg.de; Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79108 Freiburg; Mukamel, Shaul, E-mail: smukamel@uci.edu

    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  2. Simultaneous Teleportation of the Spectral and Polarization States of a Photon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2008-01-01

    We describe how spectrally multimode, polarization-entangled photons simultaneously teleport quantum information encoded into the spectral and polarization degrees of freedom of a single photon using sum frequency generation to implement a Bell-state measurement.

  3. Deterministically swapping frequency-bin entanglement from photon-photon to atom-photon hybrid systems

    NASA Astrophysics Data System (ADS)

    Ou, Bao-Quan; Liu, Chang; Sun, Yuan; Chen, Ping-Xing

    2018-02-01

    Inspired by the recent developments of the research on the atom-photon quantum interface and energy-time entanglement between single-photon pulses, we are motivated to study the deterministic protocol for the frequency-bin entanglement of the atom-photon hybrid system, which is analogous to the frequency-bin entanglement between single-photon pulses. We show that such entanglement arises naturally in considering the interaction between a frequency-bin entangled single-photon pulse pair and a single atom coupled to an optical cavity, via straightforward atom-photon phase gate operations. Its anticipated properties and preliminary examples of its potential application in quantum networking are also demonstrated. Moreover, we construct a specific quantum entanglement witness tool to detect such extended frequency-bin entanglement from a reasonably general set of separable states, and prove its capability theoretically. We focus on the energy-time considerations throughout the analysis.

  4. Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment.

    PubMed

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2008-09-15

    We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.

  5. Practical entanglement concentration of nonlocal polarization-spatial hyperentangled states with linear optics

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Hang; Wu, Xiao-Yuan; Yu, Wen-Xuan; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-05-01

    We present some different hyperentanglement concentration protocols (hyper-ECPs) for nonlocal N-photon systems in partially polarization-spatial hyperentangled states with known parameters, resorting to linear optical elements only, including those for hyperentangled Greenberger-Horne-Zeilinger-class states and the ones for hyperentangled cluster-class states. Our hyper-ECPs have some interesting features. First, they require only one copy of nonlocal N-photon systems and do not resort to ancillary photons. Second, they work with linear optical elements, neither Bell-state measurement nor two-qubit entangling gates. Third, they have the maximal success probability with only a round of entanglement concentration, not repeating the concentration process some times. Fourth, they resort to some polarizing beam splitters and wave plates, not unbalanced beam splitters, which make them more convenient in experiment.

  6. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  7. Tunable ion-photon entanglement in an optical cavity.

    PubMed

    Stute, A; Casabone, B; Schindler, P; Monz, T; Schmidt, P O; Brandstätter, B; Northup, T E; Blatt, R

    2012-05-23

    Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.

  8. Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality.

    PubMed

    Jöns, Klaus D; Schweickert, Lucas; Versteegh, Marijn A M; Dalacu, Dan; Poole, Philip J; Gulinatti, Angelo; Giudice, Andrea; Zwiller, Val; Reimer, Michael E

    2017-05-10

    Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect ~200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S CHSH  > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 ± 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.

  9. Self-stabilized narrow-bandwidth and high-fidelity entangled photons generated from cold atoms

    NASA Astrophysics Data System (ADS)

    Yu, Y. C.; Ding, D. S.; Dong, M. X.; Shi, S.; Zhang, W.; Shi, B. S.

    2018-04-01

    Entangled photon pairs are critically important in fundamental quantum mechanics research as well as in many areas within the field of quantum information, such as quantum communication, quantum computation, and quantum cryptography. Previous demonstrations of entangled photons based on atomic ensembles were achieved by using a reference laser to stabilize the phase of two spontaneous four-wave mixing paths. Here, we demonstrate a convenient and efficient scheme to generate polarization-entangled photons with a narrow bandwidth of 57.2 ±1.6 MHz and a high-fidelity of 96.3 ±0.8 % by using a phase self-stabilized multiplexing system formed by two beam displacers and two half-wave plates where the relative phase between the different signal paths can be eliminated completely. It is possible to stabilize an entangled photon pair for a long time with this system and produce all four Bell states, making this a vital step forward in the field of quantum information.

  10. Protecting single-photon entanglement with practical entanglement source

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  11. Entangled-photon coincidence fluorescence imaging

    PubMed Central

    Scarcelli, Giuliano; Yun, Seok H.

    2009-01-01

    We describe fluorescence imaging using the second-order correlation of entangled photon pairs. The proposed method is based on the principle that one photon of the pair carries information on where the other photon has been absorbed and has produced fluorescence in a sample. Because fluorescent molecules serve as “detectors” breaking the entanglement, multiply-scattered fluorescence photons within the sample do not cause image blur. We discuss experimental implementations. PMID:18825257

  12. Lithography system using quantum entangled photons

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2002-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  13. Quantum entanglement distillation with metamaterials.

    PubMed

    al Farooqui, Md Abdullah; Breeland, Justin; Aslam, Muhammad I; Sadatgol, Mehdi; Özdemir, Şahin K; Tame, Mark; Yang, Lan; Güney, Durdu Ö

    2015-07-13

    We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.

  14. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.

    PubMed

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-17

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k·p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  15. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    NASA Astrophysics Data System (ADS)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  16. Experimental entangled photon pair generation using crystals with parallel optical axes

    NASA Astrophysics Data System (ADS)

    Villar, Aitor; Lohrmann, Alexander; Ling, Alexander

    2018-05-01

    We present an optical design where polarization-entangled photon pairs are generated within two $\\beta$-Barium Borate crystals whose optical axes are parallel. This design increases the spatial mode overlap of the emitted photon pairs enhancing single mode collection without the need for additional spatial walk-off compensators. The observed photon pair rate is at least 65000 pairs/s/mW with a quantum state fidelity of 99.53$\\pm$0.22% when pumped with an elliptical spatial profile.

  17. High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits

    NASA Astrophysics Data System (ADS)

    Cai, Jiarui; Pan, Ziwen; Wang, Tie-Jun; Wang, Sihai; Wang, Chuan

    2016-11-01

    Hyper-entanglement is a system constituted by photons entangled in multiple degrees of freedom (DOF), being considered as a promising way of increasing channel capacity and guaranteeing powerful eavesdropping safeguard. In this work, we propose a coding scheme based on a 3-particle hyper-entanglement of polarization and orbital angular momentum (OAM) system and its application as a quantum secure direct communication (QSDC) protocol. The OAM values are specially encoded by Fibonacci sequence and the polarization carries information by defined unitary operations. The internal relations of the secret message enhances security due to principle of quantum mechanics and Fibonacci sequence. We also discuss the coding capacity and security property along with some simulation results to show its superiority and extensibility.

  18. Experimental entanglement and nonlocality of a two-photon six-qubit cluster state.

    PubMed

    Ceccarelli, Raino; Vallone, Giuseppe; De Martini, Francesco; Mataloni, Paolo; Cabello, Adán

    2009-10-16

    We create a six-qubit linear cluster state by transforming a two-photon hyperentangled state in which three qubits are encoded in each particle, one in the polarization and two in the linear momentum degrees of freedom. For this state, we demonstrate genuine six-qubit entanglement, persistency of entanglement against the loss of qubits, and higher violation than in previous experiments on Bell inequalities of the Mermin type.

  19. Inherent polarization entanglement generated from a monolithic semiconductor chip

    PubMed Central

    Horn, Rolf T.; Kolenderski, Piotr; Kang, Dongpeng; Abolghasem, Payam; Scarcella, Carmelo; Frera, Adriano Della; Tosi, Alberto; Helt, Lukas G.; Zhukovsky, Sergei V.; Sipe, J. E.; Weihs, Gregor; Helmy, Amr S.; Jennewein, Thomas

    2013-01-01

    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral filtering or post-selection. After splitting the twin-photons immediately after they emerge from the chip, we perform a variety of correlation tests on the photon pairs and show non-classical behaviour in their polarization. Combined with the BRW's versatile architecture our results signify the BRW design as a serious contender on which to build large scale implementations of optical quantum processing devices. PMID:23896982

  20. Conditions for entangled photon emission from (111)B site-controlled pyramidal quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juska, G., E-mail: gediminas.juska@tyndall.ie; Murray, E.; Dimastrodonato, V.

    A study of highly symmetric site-controlled pyramidal In{sub 0.25}Ga{sub 0.75}As quantum dots (QDs) is presented. It is discussed that polarization-entangled photons can be also obtained from pyramidal QDs of different designs from the one already reported in Juska et al. [Nat. Photonics 7, 527 (2013)]. Moreover, some of the limitations for a higher density of entangled photon emitters are addressed. Among these issues are (1) a remaining small fine-structure splitting and (2) an effective QD charging under non-resonant excitation conditions, which strongly reduce the number of useful biexciton-exciton recombination events. A possible solution of the charging problem is investigated exploitingmore » a dual-wavelength excitation technique, which allows a gradual QD charge tuning from strongly negative to positive and, eventually, efficient detection of entangled photons from QDs, which would be otherwise ineffective under a single-wavelength (non-resonant) excitation.« less

  1. Continuous-Variable Triple-Photon States Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    González, E. A. Rojas; Borne, A.; Boulanger, B.; Levenson, J. A.; Bencheikh, K.

    2018-01-01

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.

  2. Continuous-Variable Triple-Photon States Quantum Entanglement.

    PubMed

    González, E A Rojas; Borne, A; Boulanger, B; Levenson, J A; Bencheikh, K

    2018-01-26

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.

  3. Experimental entangled photon pair generation using crystals with parallel optical axes.

    PubMed

    Villar, Aitor; Lohrmann, Alexander; Ling, Alexander

    2018-05-14

    We present an optical design where polarization-entangled photon pairs are generated within two β-Barium Borate crystals whose optical axes are parallel. This design increases the spatial mode overlap of the emitted photon pairs enhancing single mode collection without the need for additional spatial walk-off compensators. The observed photon pair rate is at least 65 000 pairs/s/mW with a quantum state fidelity of 99.53 ± 0.22% when pumped with an elliptical spatial profile.

  4. Progress towards the development of a source of entangled photons for Space

    NASA Astrophysics Data System (ADS)

    Fedrizzi, Alessandro; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton

    2007-03-01

    Quantum entanglement offers exciting applications like quantum computing, quantum teleportation and quantum cryptography. Ground based quantum communication schemes in optical fibres however are limited to a distance of the order of ˜100 km. In order to extend this limit to a global scale we are working on the realization of an entanglement-based quantum communication transceiver for space deployment. Here we report on a compact, extremely bright source for polarization entangled photons meeting the scientific requirements for a potential space to ground optical link. The pair production rate exceeds 4*10̂6 pairs/s at just 20mW of laser diode pump power. Furthermore, we will present the results of various experiments proving the feasibility of quantum information in space, including a weak coherent pulse single-photon downlink from a LEO satellite and the distribution of entanglement over a 144km free space link, using ESAs optical ground station.

  5. Entanglement Concentration for Arbitrary Four-Photon Cluster State Assisted with Single Photons

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Yang; Cai, Chun; Liu, Jiong; Zhou, Lan; Sheng, Yu-Bo

    2016-02-01

    We present an entanglement concentration protocol (ECP) to concentrate arbitrary four-photon less-entangled cluster state into maximally entangled cluster state. Different from other ECPs for cluster state, we only exploit the single photon as auxiliary, which makes this protocol feasible and economic. In our ECP, the concentrated maximally entangled state can be retained for further application and the discarded state can be reused for a higher success probability. This ECP works with the help of cross-Kerr nonlinearity and conventional photon detectors. This ECP may be useful in future one-way quantum computation.

  6. High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources.

    PubMed

    Tsujimoto, Yoshiaki; Tanaka, Motoki; Iwasaki, Nobuo; Ikuta, Rikizo; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2018-01-23

    We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.

  7. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  8. Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state.

    PubMed

    Rådmark, Magnus; Zukowski, Marek; Bourennane, Mohamed

    2009-10-09

    Quantum multiphoton interferometry has now reached the six-photon stage. Thus far, the observed fidelities of entangled states never reached 2/3. We report a high fidelity (estimated at 88%) experiment in which six-qubit singlet correlations were observed. With such a high fidelity we are able to demonstrate the central property of these "singlet" correlations, their "rotational invariance," by performing a full set of measurements in three complementary polarization bases. The patterns are almost indistinguishable. The data reveal genuine six-photon entanglement. We also study several five-photon states, which result upon detection of one of the photons. Multiphoton singlet states survive some types of depolarization and are thus important in quantum communication schemes.

  9. Distributing entanglement and single photons through an intra-city, free-space quantum channel.

    PubMed

    Resch, K; Lindenthal, M; Blauensteiner, B; Böhm, H; Fedrizzi, A; Kurtsiefer, C; Poppe, A; Schmitt-Manderbach, T; Taraba, M; Ursin, R; Walther, P; Weier, H; Weinfurter, H; Zeilinger, A

    2005-01-10

    We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection events by calculating the cross-correlation of locally-recorded time stamps shared over a public internet channel. For this experiment, our quantum channel was maintained for a total of 40 minutes during which time a coincidence lock found approximately 60000 coincident detection events. The polarization correlations in those events yielded a Bell parameter, S=2.27+/-0.019, which violates the CHSH-Bell inequality by 14 standard deviations. This result is promising for entanglement-based freespace quantum communication in high-density urban areas. It is also encouraging for optical quantum communication between ground stations and satellites since the length of our free-space link exceeds the atmospheric equivalent.

  10. Experimental entanglement of a six-photon symmetric Dicke state.

    PubMed

    Wieczorek, Witlef; Krischek, Roland; Kiesel, Nikolai; Michelberger, Patrick; Tóth, Géza; Weinfurter, Harald

    2009-07-10

    We report on the experimental observation and characterization of a six-photon entangled Dicke state. We obtain a fidelity as high as 0.654+/-0.024 and prove genuine six-photon entanglement by, amongst others, a two-setting witness yielding -0.422+/-0.148. This state has remarkable properties; e.g., it allows obtaining inequivalent entangled states of a lower qubit number via projective measurements, and it possesses a high entanglement persistency against qubit loss. We characterize the properties of the six-photon Dicke state experimentally by detecting and analyzing the entanglement of a variety of multipartite entangled states.

  11. Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection

    PubMed Central

    2015-01-01

    We propose a novel femtosecond stimulated Raman spectroscopy (FSRS) technique that combines entangled photons with interference detection to select matter pathways and enhance the resolution. Following photoexcitation by an actinic pump, the measurement uses a pair of broad-band entangled photons; one (signal) interacts with the molecule and together with a third narrow-band pulse induces the Raman process. The other (idler) photon provides a reference for the coincidence measurement. This interferometric photon coincidence counting detection allows one to separately measure the Raman gain and loss signals, which is not possible with conventional probe transmission detection. Entangled photons further provide a unique temporal and spectral detection window that can better resolve fast excited-state dynamics compared to classical and correlated disentangled states of light. PMID:25177427

  12. Atom-atom entanglement by single-photon detection.

    PubMed

    Slodička, L; Hétet, G; Röck, N; Schindler, P; Hennrich, M; Blatt, R

    2013-02-22

    A scheme for entangling distant atoms is realized, as proposed in the seminal paper by [C. Cabrillo et al., Phys. Rev. A 59, 1025 (1999)]. The protocol is based on quantum interference and detection of a single photon scattered from two effectively one meter distant laser cooled and trapped atomic ions. The detection of a single photon heralds entanglement of two internal states of the trapped ions with high rate and with a fidelity limited mostly by atomic motion. Control of the entangled state phase is demonstrated by changing the path length of the single-photon interferometer.

  13. Time-bin entangled photons from a quantum dot

    PubMed Central

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor

    2014-01-01

    Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024

  14. Time-bin entangled photons from a quantum dot.

    PubMed

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S; Weihs, Gregor

    2014-06-26

    Long-distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single-photon pairs is required. Here we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.

  15. Range detection using entangled optical photons

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2015-05-01

    Quantum radar is an emerging field that shows a lot of promise in providing significantly improved resolution compared to its classical radar counterpart. The key to this kind of resolution lies in the correlations created from the entanglement of the photons being used. Currently, the technology available only supports quantum radar implementation and validation in the optical regime, as opposed to the microwave regime, because microwave photons have very low energy compared to optical photons. Furthermore, there currently do not exist practical single photon detectors and generators in the microwave spectrum. Viable applications in the optical regime include deep sea target detection and high resolution detection in space. In this paper, we propose a conceptual architecture of a quantum radar which uses entangled optical photons based on Spontaneous Parametric Down Conversion (SPDC) methods. After the entangled photons are created and emerge from the crystal, the idler photon is detected very shortly thereafter. At the same time, the signal photon is sent out towards the target and upon its reflection will impinge on the detector of the radar. From these two measurements, correlation data processing is done to obtain the distance of the target away from the radar. Various simulations are then shown to display the resolution that is possible.

  16. Photonic and Phononic Entanglement with Hybrid Species Ion Chains

    NASA Astrophysics Data System (ADS)

    Crocker, Clayton; Lichtman, Martin; Sosnova, Ksenia; Nguyen, Tuan; Carter, Allison; Inlek, Volkan; Ruth, Hanna; Monroe, Christopher

    2017-04-01

    Trapped atomic ions represent a leading platform for quantum information networks due to their long coherence times and diverse set of entangling operations. External fields can drive strong local entangling interactions via phonons, and remote qubits can be entangled via emitted photons. Unfortunately, resonant light from the photonic entanglement process can disrupt nearby memory qubits. We resolve this crosstalk by introducing a separate atomic species to the trap for use as a photonic entanglement qubit. We report successful demonstration of both entangling gates between the mixed species qubit pair through their collective motion, and entanglement between our remote entanglement qubit and emitted visible photons. We additionally report our progress on a new trapping apparatus that was implemented to improve these operations to a level required for scaling up the system size. This work is supported by the ARO with funding from the IARPA LogiQ program, the AFOSR, the ARO MURI on Modular Quantum Circuits, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.

  17. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  18. Heralded entanglement of two remote atoms

    NASA Astrophysics Data System (ADS)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  19. Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.

    PubMed

    MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J

    2018-02-02

    Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.

  20. Photonic polarization gears for ultra-sensitive angular measurements

    PubMed Central

    D'Ambrosio, Vincenzo; Spagnolo, Nicolò; Del Re, Lorenzo; Slussarenko, Sergei; Li, Ying; Kwek, Leong Chuan; Marrucci, Lorenzo; Walborn, Stephen P.; Aolita, Leandro; Sciarrino, Fabio

    2013-01-01

    Quantum metrology bears a great promise in enhancing measurement precision, but is unlikely to become practical in the near future. Its concepts can nevertheless inspire classical or hybrid methods of immediate value. Here we demonstrate NOON-like photonic states of m quanta of angular momentum up to m=100, in a setup that acts as a ‘photonic gear’, converting, for each photon, a mechanical rotation of an angle θ into an amplified rotation of the optical polarization by mθ, corresponding to a ‘super-resolving’ Malus’ law. We show that this effect leads to single-photon angular measurements with the same precision of polarization-only quantum strategies with m photons, but robust to photon losses. Moreover, we combine the gear effect with the quantum enhancement due to entanglement, thus exploiting the advantages of both approaches. The high ‘gear ratio’ m boosts the current state of the art of optical non-contact angular measurements by almost two orders of magnitude. PMID:24045270

  1. A significant-loophole-free test of Bell's theorem with entangled photons

    NASA Astrophysics Data System (ADS)

    Giustina, Marissa; Versteegh, Marijn A. M.; Wengerowsky, Sören; Handsteiner, Johannes; Hochrainer, Armin; Phelan, Kevin; Steinlechner, Fabian; Kofler, Johannes; Larsson, Jan-Åke; Abellán, Carlos; Amaya, Waldimar; Mitchell, Morgan W.; Beyer, Jörn; Gerrits, Thomas; Lita, Adriana E.; Shalm, Lynden K.; Nam, Sae Woo; Scheidl, Thomas; Ursin, Rupert; Wittmann, Bernhard; Zeilinger, Anton

    2017-10-01

    John Bell's theorem of 1964 states that local elements of physical reality, existing independent of measurement, are inconsistent with the predictions of quantum mechanics (Bell, J. S. (1964), Physics (College. Park. Md). Specifically, correlations between measurement results from distant entangled systems would be smaller than predicted by quantum physics. This is expressed in Bell's inequalities. Employing modifications of Bell's inequalities, many experiments have been performed that convincingly support the quantum predictions. Yet, all experiments rely on assumptions, which provide loopholes for a local realist explanation of the measurement. Here we report an experiment with polarization-entangled photons that simultaneously closes the most significant of these loopholes. We use a highly efficient source of entangled photons, distributed these over a distance of 58.5 meters, and implemented rapid random setting generation and high-efficiency detection to observe a violation of a Bell inequality with high statistical significance. The merely statistical probability of our results to occur under local realism is less than 3.74×10-31, corresponding to an 11.5 standard deviation effect.

  2. Pump Spectral Bandwidth, Birefringence, and Entanglement in Type-II Parametric Down Conversion

    DOE PAGES

    Erenso, Daniel

    2009-01-01

    The twin photons produced by a type-II spontaneous parametric down conversion are well know as a potential source of photons for quantum teleportation due to the strong entanglement in polarization. This strong entanglement in polarization, however, depends on the spectral composition of the pump photon and the nature of optical isotropy of the crystal. By exact numerical calculation of the concurrence, we have shown that how pump photons spectral width and the birefringence nature of the crystal directly affect the degree of polarization entanglement of the twin photons.

  3. Photon-photon entanglement with a single trapped atom.

    PubMed

    Weber, B; Specht, H P; Müller, T; Bochmann, J; Mücke, M; Moehring, D L; Rempe, G

    2009-01-23

    An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic--an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.

  4. A two-channel, spectrally degenerate polarization entangled source on chip

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Luo, Kai Hong; Eigner, Christof; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine

    2017-12-01

    Integrated optics provides the platform for the experimental implementation of highly complex and compact circuits for quantum information applications. In this context integrated waveguide sources represent a powerful resource for the generation of quantum states of light due to their high brightness and stability. However, the confinement of the light in a single spatial mode limits the realization of multi-channel sources. Due to this challenge one of the most adopted sources in quantum information processes, i.e. a source which generates spectrally indistinguishable polarization entangled photons in two different spatial modes, has not yet been realized in a fully integrated platform. Here we overcome this limitation by suitably engineering two periodically poled waveguides and an integrated polarization splitter in lithium niobate. This source produces polarization entangled states with fidelity of F = 0.973 ±0.003 and a test of Bell's inequality results in a violation larger than 14 standard deviations. It can work both in pulsed and continuous wave regime. This device represents a new step toward the implementation of fully integrated circuits for quantum information applications.

  5. Entanglement by Path Identity.

    PubMed

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-24

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  6. Entanglement by Path Identity

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-01

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  7. Tailoring entanglement through domain engineering in a lithium niobate waveguide

    PubMed Central

    Ming, Yang; Tan, Ai-Hong; Wu, Zi-Jian; Chen, Zhao-Xian; Xu, Fei; Lu, Yan-Qing

    2014-01-01

    We propose to integrate the electro-optic (EO) tuning function into on-chip domain engineered lithium niobate (LN) waveguide. Due to the versatility of LN, both the spontaneously parametric down conversion (SPDC) and EO interaction could be realized simultaneously. Photon pairs are generated through SPDC, and the formation of entangled state is modulated by EO processes. An EO tunable polarization-entangled photon state is proposed. Orthogonally-polarized and parallel-polarized entanglements of photon pairs are instantly switchable by tuning the applied field. The characteristics of the source are theoretically investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe tailoring entanglement based on domain engineering is a very promising solution for next generation function-integrated quantum circuits. PMID:24770555

  8. Cloning entangled photons to scales one can see

    NASA Astrophysics Data System (ADS)

    Sekatski, Pavel; Sanguinetti, Bruno; Pomarico, Enrico; Gisin, Nicolas; Simon, Christoph

    2010-11-01

    By amplifying photonic qubits it is possible to produce states that contain enough photons to be seen with the human eye, potentially bringing quantum effects to macroscopic scales [P. Sekatski, N. Brunner, C. Branciard, N. Gisin, and C. Simon, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.113601 103, 113601 (2009)]. In this paper we theoretically study quantum states obtained by amplifying one side of an entangled photon pair with different types of optical cloning machines for photonic qubits. We propose a detection scheme that involves lossy threshold detectors (such as the human eye) on the amplified side and conventional photon detectors on the other side. We show that correlations obtained with such coarse-grained measurements prove the entanglement of the initial photon pair and do not prove the entanglement of the amplified state. We emphasize the importance of the detection loophole in Bell violation experiments by giving a simple preparation technique for separable states that violate a Bell inequality without closing this loophole. Finally, we analyze the genuine entanglement of the amplified states and its robustness to losses before, during, and after amplification.

  9. Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon

    NASA Astrophysics Data System (ADS)

    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2013-04-01

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  10. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  11. Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Hong, Chang-Ho; Lim, Jong-In; Yang, Hyung-Jin

    2015-05-01

    We propose an arbitrary controlled-unitary (CU) gate and a bidirectional quantum teleportation (BQTP) scheme. The proposed CU gate utilizes photonic qubits (photons) with cross-Kerr nonlinearities (XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate. Project supported by the Ministry of Science, ICT&Future Planning, Korea, under the C-ITRC (Convergence Information Technology Research Center) Support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency.

  12. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  13. Phase matching as a gate for photon entanglement

    PubMed Central

    Zheltikov, A. M.

    2017-01-01

    Phase matching is shown to provide a tunable gate that helps discriminate entangled states of light generated by four-wave mixing (FWM) in optical fibers against uncorrelated photons originating from Raman scattering. Two types of such gates are discussed. Phase-matching gates of the first type are possible in the normal dispersion regime, where FWM sidebands can be widely tuned by high-order dispersion management, enhancing the ratio of the entangled-photon output to the Raman noise. The photon-entanglement gates of the second type are created by dual-pump cross-phase-modulation-induced FWM sideband generation and can be tuned by group-velocity mismatch of the pump fields. PMID:28703217

  14. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement

    PubMed

    Pan; Bouwmeester; Daniell; Weinfurter; Zeilinger

    2000-02-03

    Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.

  15. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  16. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion.

    PubMed

    Bock, Matthias; Eich, Pascal; Kucera, Stephan; Kreis, Matthias; Lenhard, Andreas; Becher, Christoph; Eschner, Jürgen

    2018-05-21

    Entanglement between a stationary quantum system and a flying qubit is an essential ingredient of a quantum-repeater network. It has been demonstrated for trapped ions, trapped atoms, color centers in diamond, or quantum dots. These systems have transition wavelengths in the blue, red or near-infrared spectral regions, whereas long-range fiber-communication requires wavelengths in the low-loss, low-dispersion telecom regime. A proven tool to interconnect flying qubits at visible/NIR wavelengths to the telecom bands is quantum frequency conversion. Here we use an efficient polarization-preserving frequency converter connecting 854 nm to the telecom O-band at 1310 nm to demonstrate entanglement between a trapped 40 Ca + ion and the polarization state of a telecom photon with a high fidelity of 98.2 ± 0.2%. The unique combination of 99.75 ± 0.18% process fidelity in the polarization-state conversion, 26.5% external frequency conversion efficiency and only 11.4 photons/s conversion-induced unconditional background makes the converter a powerful ion-telecom quantum interface.

  17. Entangled singularity patterns of photons in Ince-Gauss modes

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.

  18. Entanglement of remote material qubits through nonexciting interaction with single photons

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2018-05-01

    We propose a scheme to entangle multiple material qubits through interaction with single photons via nonexciting processes associated with strongly coupling systems. The basic idea is based on the material state dependent reflection and transmission for the input photons. Thus, the material qubits in several systems can be entangled when one photon interacts with each system in cascade and the photon paths are mixed by the photon detection. The character of nonexciting of material qubits does not change the state of the material qubit and thus ensures the possibility of purifying entangled states by using more photons under realistic imperfect parameters. It also guarantees directly scaling up the scheme to entangle more qubits. Detailed analysis of fidelity and success probability of the scheme in the frame of an optical Fabry-Pérot cavity based strongly coupling system is presented. It is shown that a two-qubit entangled state with fidelity above 0.99 is promised with only two photons by using currently feasible experimental parameters. Our scheme can also be directly implemented on other strongly coupled system.

  19. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    PubMed

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  20. Entangled-photon compressive ghost imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.

    2011-12-15

    We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.

  1. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band

    PubMed Central

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems. PMID:27225881

  2. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band.

    PubMed

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-05-26

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems.

  3. Entanglement-secured single-qubit quantum secret sharing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherpelz, P.; Resch, R.; Berryrieser, D.

    In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participant's preparation of the qubit state and the subsequent participants' choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocol's security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of themore » initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.« less

  4. Probing dynamical symmetry breaking using quantum-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hao; Piryatinski, Andrei; Jerke, Jonathan

    Here, we present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system.

  5. Probing dynamical symmetry breaking using quantum-entangled photons

    DOE PAGES

    Li, Hao; Piryatinski, Andrei; Jerke, Jonathan; ...

    2017-11-15

    Here, we present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system.

  6. System and method for clock synchronization and position determination using entangled photon pairs

    NASA Technical Reports Server (NTRS)

    Shih, Yanhua (Inventor)

    2010-01-01

    A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.

  7. Observation of entanglement between a quantum dot spin and a single photon.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A

    2012-11-15

    Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

  8. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  9. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip

    PubMed Central

    Silverstone, J. W.; Santagati, R.; Bonneau, D.; Strain, M. J.; Sorel, M.; O'Brien, J. L.; Thompson, M. G.

    2015-01-01

    Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale. PMID:26245267

  10. Distillation of mixed-state continuous-variable entanglement by photon subtraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Shengli; Loock, Peter van

    2010-12-15

    We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible evenmore » for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.« less

  11. Experimental generation of tripartite polarization entangled states of bright optical beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less

  12. Multiphoton entanglement concentration and quantum cryptography.

    PubMed

    Durkin, Gabriel A; Simon, Christoph; Bouwmeester, Dik

    2002-05-06

    Multiphoton states from parametric down-conversion can be entangled both in polarization and photon number. Maximal high-dimensional entanglement can be concentrated postselectively from these states via photon counting. This makes them natural candidates for quantum key distribution, where the presence of more than one photon per detection interval has up to now been considered undesirable. We propose a simple multiphoton cryptography protocol for the case of low losses.

  13. Realistic loophole-free Bell test with atom-photon entanglement

    NASA Astrophysics Data System (ADS)

    Teo, C.; Araújo, M.; Quintino, M. T.; Minář, J.; Cavalcanti, D.; Scarani, V.; Terra Cunha, M.; França Santos, M.

    2013-07-01

    The establishment of nonlocal correlations, guaranteed through the violation of a Bell inequality, is not only important from a fundamental point of view but constitutes the basis for device-independent quantum information technologies. Although several nonlocality tests have been conducted so far, all of them suffered from either locality or detection loopholes. Among the proposals for overcoming these problems are the use of atom-photon entanglement and hybrid photonic measurements (for example, photodetection and homodyning). Recent studies have suggested that the use of atom-photon entanglement can lead to Bell inequality violations with moderate transmission and detection efficiencies. Here we combine these ideas and propose an experimental setup realizing a simple atom-photon entangled state that can be used to obtain nonlocality when considering realistic experimental parameters including detection efficiencies and losses due to required propagation distances.

  14. Towards Scalable Entangled Photon Sources with Self-Assembled InAs /GaAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Gong, Ming; Guo, G.-C.; He, Lixin

    2015-08-01

    The biexciton cascade process in self-assembled quantum dots (QDs) provides an ideal system for realizing deterministic entangled photon-pair sources, which are essential to quantum information science. The entangled photon pairs have recently been generated in experiments after eliminating the fine-structure splitting (FSS) of excitons using a number of different methods. Thus far, however, QD-based sources of entangled photons have not been scalable because the wavelengths of QDs differ from dot to dot. Here, we propose a wavelength-tunable entangled photon emitter mounted on a three-dimensional stressor, in which the FSS and exciton energy can be tuned independently, thereby enabling photon entanglement between dissimilar QDs. We confirm these results via atomistic pseudopotential calculations. This provides a first step towards future realization of scalable entangled photon generators for quantum information applications.

  15. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  16. Multi-frequency entanglement router system

    NASA Astrophysics Data System (ADS)

    Erdmann, Reinhard; Hughes, David

    2017-05-01

    A high performance free-space Wavelength Division Multiplexed (WDM) transceiver system is assessed as to its viability for routing collinear entangled photons in place of the classical optical signals for which it was designed. Explicit calculations demonstrate that entanglement in the input state is retained through transit of the system without intrinsic loss. Introducing spatial degrees of freedom changed the entanglement so that it could be manifested at remote locations, as required in non-local Bell test measurements or Quantum Key Distribution (QKD) Protocols. It was also found that by adding proper components, the exit state could be changed from being frequency entangled to polarization entangled, with respect to the (remote) paths of the photons. Finally it was found possible to route a complete entangled state to either of the two remote users by proper selection of the discrete frequencies in the input state. Each entanglement in the photon states was maximal, hence suited for Quantum Information Processing (QIP) applications.

  17. Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim

    2017-04-01

    Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.

  18. Quantum cryptography with perfect multiphoton entanglement.

    PubMed

    Luo, Yuhui; Chan, Kam Tai

    2005-05-01

    Multiphoton entanglement in the same polarization has been shown theoretically to be obtainable by type-I spontaneous parametric downconversion (SPDC), which can generate bright pulses more easily than type-II SPDC. A new quantum cryptographic protocol utilizing polarization pairs with the detected type-I entangled multiphotons is proposed as quantum key distribution. We calculate the information capacity versus photon number corresponding to polarization after considering the transmission loss inside the optical fiber, the detector efficiency, and intercept-resend attacks at the level of channel error. The result compares favorably with all other schemes employing entanglement.

  19. Quantum key distribution with entangled photon sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.

    2007-07-15

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDCmore » source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses.« less

  20. General hyperconcentration of photonic polarization-time-bin hyperentanglement assisted by nitrogen-vacancy centers coupled to resonators

    NASA Astrophysics Data System (ADS)

    Du, Fang-Fang; Deng, Fu-Guo; Long, Gui-Lu

    2016-11-01

    Entanglement concentration protocol (ECP) is used to extract the maximally entangled states from less entangled pure states. Here we present a general hyperconcentration protocol for two-photon systems in partially hyperentangled Bell states that decay with the interrelation between the time-bin and the polarization degrees of freedom (DOFs), resorting to an input-output process with respect to diamond nitrogen-vacancy centers coupled to resonators. We show that the resource can be utilized sufficiently and the success probability is largely improved by iteration of the hyper-ECP process. Besides, our hyper-ECP can be directly extended to concentrate nonlocal partially hyperentangled N-photon Greenberger-Horne-Zeilinger states, and the success probability remains unchanged with the growth of the number of photons. Moreover, the time-bin entanglement is a useful DOF and it only requires one path for transmission, which means it not only economizes on a large amount of quantum resources but also relaxes from the path-length dispersion in long-distance quantum communication.

  1. General hyperconcentration of photonic polarization-time-bin hyperentanglement assisted by nitrogen-vacancy centers coupled to resonators

    PubMed Central

    Du, Fang-Fang; Deng, Fu-Guo; Long, Gui-Lu

    2016-01-01

    Entanglement concentration protocol (ECP) is used to extract the maximally entangled states from less entangled pure states. Here we present a general hyperconcentration protocol for two-photon systems in partially hyperentangled Bell states that decay with the interrelation between the time-bin and the polarization degrees of freedom (DOFs), resorting to an input-output process with respect to diamond nitrogen-vacancy centers coupled to resonators. We show that the resource can be utilized sufficiently and the success probability is largely improved by iteration of the hyper-ECP process. Besides, our hyper-ECP can be directly extended to concentrate nonlocal partially hyperentangled N-photon Greenberger-Horne-Zeilinger states, and the success probability remains unchanged with the growth of the number of photons. Moreover, the time-bin entanglement is a useful DOF and it only requires one path for transmission, which means it not only economizes on a large amount of quantum resources but also relaxes from the path-length dispersion in long-distance quantum communication. PMID:27804973

  2. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    NASA Astrophysics Data System (ADS)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-07-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  3. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble.

    PubMed

    Willis, R T; Becerra, F E; Orozco, L A; Rolston, S L

    2011-07-18

    We present measurements of the polarization correlation and photon statistics of photon pairs that emerge from a laser-pumped warm rubidium vapor cell. The photon pairs occur at 780 nm and 1367 nm and are polarization entangled. We measure the autocorrelation of each of the generated fields as well as the cross-correlation function, and observe a strong violation of the two-beam Cauchy-Schwartz inequality. We evaluate the performance of the system as source of heralded single photons at a telecommunication wavelength. We measure the heralded autocorrelation and see that coincidences are suppressed by a factor of ≈ 20 from a Poissonian source at a generation rate of 1500 s(-1), a heralding efficiency of 10%, and a narrow spectral width.

  4. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.

    PubMed

    Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou

    2016-01-18

    We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.

  5. High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber.

    PubMed

    Hübel, Hannes; Vanner, Michael R; Lederer, Thomas; Blauensteiner, Bibiane; Lorünser, Thomas; Poppe, Andreas; Zeilinger, Anton

    2007-06-11

    We demonstrate non-degenerate down-conversion at 810 and 1550 nm for long-distance fiber based quantum communication using polarization entangled photon pairs. Measurements of the two-photon visibility, without dark count subtraction, have shown that the quantum correlations (raw visibility 89%) allow secure quantum cryptography after 100 km of non-zero dispersion shifted fiber using commercially available single photon detectors. In addition, quantum state tomography has revealed little degradation of state negativity, decreasing from 0.99 at the source to 0.93 after 100 km, indicating minimal loss in fidelity during the transmission.

  6. Multi-Particle Interferometry Based on Double Entangled States

    NASA Technical Reports Server (NTRS)

    Pittman, Todd B.; Shih, Y. H.; Strekalov, D. V.; Sergienko, A. V.; Rubin, M. H.

    1996-01-01

    A method for producing a 4-photon entangled state based on the use of two independent pair sources is discussed. Of particular interest is that each of the pair sources produces a two-photon state which is simultaneously entangled in both polarization and space-time variables. Performing certain measurements which exploit this double entanglement provides an opportunity for verifying the recent demonstration of nonlocality by Greenberger, Horne, and Zeilinger.

  7. Two-Photon Quantum Entanglement from Type-II Spontaneous Parametric Down-Conversion

    NASA Astrophysics Data System (ADS)

    Pittman, Todd Butler

    The concept of two (or more) particle entanglement lies at the heart of many fascinating questions concerning the foundations of quantum mechanics. The counterintuitive nonlocal behavior of entangled states led Einstein, Podolsky, and Rosen (EPR) to ask their famous 1935 question, "Can quantum mechanical description of reality be considered complete?". Although the debate has been raging on for more than 60 years, there is still no absolutely conclusive answer to this question. For if entangled states exist and can be observed, then accepting quantum mechanics as a complete theory requires a drastic overhaul of one's physical intuition with regards to the common sense notions of locality and reality put forth by EPR. Contained herein are the results of research investigating various non-classical features of the two-photon entangled states produced in Type-II Spontaneous Parametric Down -Conversion (SPDC). Through a series of experiments we have manifest the nonlocal nature of the quantum mechanical "two-photon effective wavefunction" (or Biphoton) realized by certain photon-counting coincidence measurements performed on these states. In particular, we examine a special double entanglement, in which the states are seen to be simultaneously entangled in both spin and space-time variables. The observed phenomena based on this double entanglement lead to many interesting results which defy classical explanation, but are well described within the framework of quantum mechanics. The implications provide a unique perspective concerning the nature of the photon, and the concept of quantum entanglement.

  8. Parametric source of two-photon states with a tunable degree of entanglement and mixing: Experimental preparation of Werner states and maximally entangled mixed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinelli, C.; Di Nepi, G.; De Martini, F.

    2004-08-01

    A parametric source of polarization-entangled photon pairs with striking spatial characteristics is reported. The distribution of the output electromagnetic k modes excited by spontaneous parametric down-conversion and coupled to the output detectors can be very broad. Using these states realized over a full entanglement ring output distribution, the nonlocal properties of the generated entanglement have been tested by standard Bell measurements and by Ou-Mandel interferometry. A 'mode-patchwork' technique based on the quantum superposition principle is adopted to synthesize in a straightforward and reliable way any kind of mixed state, of large conceptual and technological interest in modern quantum information. Tunablemore » Werner states and maximally entangled mixed states have indeed been created by this technique and investigated by quantum tomography. A study of the entropic and nonlocal properties of these states has been undertaken experimentally and theoretically, by a unifying variational approach.« less

  9. Observation of entanglement of a single photon with a trapped atom.

    PubMed

    Volz, Jürgen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-27

    We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment.

  10. Entanglement and quantum superposition induced by a single photon

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying

    2018-03-01

    We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.

  11. Faithful Entanglement Sharing for Quantum Communication Against Collective Noise

    NASA Astrophysics Data System (ADS)

    Niu, Hui-Chong; Ren, Bao-Cang; Wang, Tie-Jun; Hua, Ming; Deng, Fu-Guo

    2012-08-01

    We present an economical setup for faithful entanglement sharing against collective noise. It is composed of polarizing beam splitters, half wave plates, polarization independent wavelength division multiplexers, and frequency shifters. An arbitrary qubit error on the polarization state of each photon in a multi-photon system caused by the noisy channel can be rejected, without resorting to additional qubits, fast polarization modulators, and nondestructive quantum nondemolition detectors. Its success probability is in principle 100%, which is independent of the noise parameters, and it can be applied directly in any one-way quantum communication protocol based on entanglement.

  12. Barium Qubit State Detection and Ba Ion-Photon Entanglement

    NASA Astrophysics Data System (ADS)

    Sosnova, Ksenia; Inlek, Ismail Volkan; Crocker, Clayton; Lichtman, Martin; Monroe, Christopher

    2016-05-01

    A modular ion-trap network is a promising framework for scalable quantum-computational devices. In this architecture, different ion-trap modules are connected via photonic buses while within one module ions interact locally via phonons. To eliminate cross-talk between photonic-link qubits and memory qubits, we use different atomic species for quantum information storage (171 Yb+) and intermodular communication (138 Ba+). Conventional deterministic Zeeman-qubit state detection schemes require additional stabilized narrow-linewidth lasers. Instead, we perform fast probabilistic state detection utilizing efficient detectors and high-NA lenses to detect emitted photons from circularly polarized 493 nm laser excitation. Our method is not susceptible to intensity and frequency noise, and we show single-shot detection efficiency of ~ 2%, meaning that we can discriminate between the two qubits states with 99% confidence after as little as 50 ms of averaging. Using this measurement technique, we report entanglement between a single 138 Ba+ ion and its emitted photon with 86% fidelity. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness program, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.

  13. Quantum correlation of path-entangled two-photon states in waveguide arrays with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Yiling; Xu, Lei; Han, Bin

    We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled statesmore » in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.« less

  14. Experimental observation of four-photon entangled Dicke state with high fidelity.

    PubMed

    Kiesel, N; Schmid, C; Tóth, G; Solano, E; Weinfurter, H

    2007-02-09

    We present the experimental observation of the symmetric four-photon entangled Dicke state with two excitations |D_{4};{(2)}. A simple experimental setup allowed quantum state tomography yielding a fidelity as high as 0.844+/-0.008. We study the entanglement persistency of the state using novel witness operators and focus on the demonstration of a remarkable property: depending on the orientation of a measurement on one photon, the remaining three photons are projected into both inequivalent classes of genuine tripartite entanglement, the Greenberger-Horne-Zeilinger and W class. Furthermore, we discuss possible applications of |D_{4};{(2)} in quantum communication.

  15. Total teleportation of a single-photon state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2008-01-01

    Recent demonstrations of teleportation have transferred quantum information encoded into either polarization or field-quadrature degrees of freedom (DOFs), but an outstanding question is how to simultaneously teleport quantum information encoded into multiple DOFs. We describe how the transverse-spatial, spectral and polarization states of a single photon can be simultaneously teleported using a pair of multimode, polarization-entangled photons derived from spontaneous parametric down-conversion. Furthermore, when the initial photon pair is maximally entangled in the spatial, spectral, and polarization DOFs then the photon s full quantum state can be reliably teleported using a Bell-state measurement based on sum-frequency generation.

  16. Hyperentanglement purification using imperfect spatial entanglement.

    PubMed

    Wang, Tie-Jun; Mi, Si-Chen; Wang, Chuan

    2017-02-06

    As the interaction between the photons and the environment which will make the entangled photon pairs in less entangled states or even in mixed states, the security and the efficiency of quantum communication will decrease. We present an efficient hyperentanglement purification protocol that distills nonlocal high-fidelity hyper-entangled Bell states in both polarization and spatial-mode degrees of freedom from ensembles of two-photon system in mixed states using linear optics. Here, we consider the influence of the photon loss in the channel which generally is ignored in the conventional entanglement purification and hyperentanglement purification (HEP) schemes. Compared with previous HEP schemes, our HEP scheme decreases the requirement for nonlocal resources by employing high-dimensional mode-check measurement, and leads to a higher fidelity, especially in the range where the conventional HEP schemes become invalid but our scheme still can work.

  17. Photon entanglement signatures in difference-frequency-generation

    PubMed Central

    Roslyak, Oleksiy; Mukamel, Shaul

    2010-01-01

    In response to quantum optical fields, pairs of molecules generate coherent nonlinear spectroscopy signals. Homodyne signals are given by sums over terms each being a product of Liouville space pathways of the pair of molecules times the corresponding optical field correlation function. For classical fields all field correlation functions may be factorized and become identical products of field amplitudes. The signal is then given by the absolute square of a susceptibility which in turn is a sum over pathways of a single molecule. The molecular pathways of different molecules in the pair are uncorrelated in this case (each path of a given molecule can be accompanied by any path of the other). However, entangled photons create an entanglement between the molecular pathways. We use the superoperator nonequlibrium Green’s functions formalism to demonstrate the signatures of this pathway-entanglement in the difference frequency generation signal. Comparison is made with an analogous incoherent two-photon fluorescence signal. PMID:19158927

  18. Orbital Angular Momentum-Entanglement Frequency Transducer.

    PubMed

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-09-02

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

  19. Photonic simulation of entanglement growth and engineering after a spin chain quench.

    PubMed

    Pitsios, Ioannis; Banchi, Leonardo; Rab, Adil S; Bentivegna, Marco; Caprara, Debora; Crespi, Andrea; Spagnolo, Nicolò; Bose, Sougato; Mataloni, Paolo; Osellame, Roberto; Sciarrino, Fabio

    2017-11-17

    The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.

  20. Integrated photonic quantum gates for polarization qubits.

    PubMed

    Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sansoni, Linda; Bongioanni, Irene; Sciarrino, Fabio; Vallone, Giuseppe; Mataloni, Paolo

    2011-11-29

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.

  1. Quantum Logic with Cavity Photons From Single Atoms.

    PubMed

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-08

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  2. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

    PubMed

    Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P

    2013-06-21

    We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

  3. Channel-capacity gain in entanglement-assisted communication protocols based exclusively on linear optics, single-photon inputs, and coincidence photon counting

    DOE PAGES

    Lougovski, P.; Uskov, D. B.

    2015-08-04

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  4. Protecting the entanglement of twisted photons by adaptive optics

    NASA Astrophysics Data System (ADS)

    Leonhard, Nina; Sorelli, Giacomo; Shatokhin, Vyacheslav N.; Reinlein, Claudia; Buchleitner, Andreas

    2018-01-01

    We study the efficiency of adaptive optics (AO) correction for the free-space propagation of entangled photonic orbital-angular-momentum (OAM) qubit states to reverse moderate atmospheric turbulence distortions. We show that AO can significantly reduce crosstalk to modes within and outside the encoding subspace and thereby stabilize entanglement against turbulence. This method establishes a reliable quantum channel for OAM photons in turbulence, and it enhances the threshold turbulence strength for secure quantum communication by at least a factor 2.

  5. Semiconductor devices for entangled photon pair generation: a review

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara

    2017-07-01

    Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.

  6. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  7. Experimental test of photonic entanglement in accelerated reference frames

    NASA Astrophysics Data System (ADS)

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-05-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g--under free-fall as well on a spinning centrifuge--and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  8. Experimental test of photonic entanglement in accelerated reference frames

    PubMed Central

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-01-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g—under free-fall as well on a spinning centrifuge—and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. PMID:28489082

  9. Experimental test of photonic entanglement in accelerated reference frames.

    PubMed

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C; Ursin, Rupert

    2017-05-10

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g-under free-fall as well on a spinning centrifuge-and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  10. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks.

    PubMed

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-29

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51  μs.

  11. Entanglement of Ince-Gauss Modes of Photons

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Plick, William; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2012-02-01

    Ince-Gauss modes are solutions of the paraxial wave equation in elliptical coordinates [1]. They are natural generalizations both of Laguerre-Gauss and of Hermite-Gauss modes, which have been used extensively in quantum optics and quantum information processing over the last decade [2]. Ince-Gauss modes are described by one additional real parameter -- ellipticity. For each value of ellipticity, a discrete infinite-dimensional Hilbert space exists. This conceptually new degree of freedom could open up exciting possibilities for higher-dimensional quantum optical experiments. We present the first entanglement of non-trivial Ince-Gauss Modes. In our setup, we take advantage of a spontaneous parametric down-conversion process in a non-linear crystal to create entangled photon pairs. Spatial light modulators (SLMs) are used as analyzers. [1] Miguel A. Bandres and Julio C. Guti'errez-Vega ``Ince Gaussian beams", Optics Letters, Vol. 29, Issue 2, 144-146 (2004) [2] Adetunmise C. Dada, Jonathan Leach, Gerald S. Buller, Miles J. Padgett, and Erika Andersson, ``Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities", Nature Physics 7, 677-680 (2011)

  12. Studies on spatial modes and the correlation anisotropy of entangled photons generated from 2D quadratic nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.

    2017-06-01

    Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.

  13. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    NASA Astrophysics Data System (ADS)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  14. Drop-in compatible entanglement for optical-fiber networks.

    PubMed

    Hall, Matthew A; Altepeter, Joseph B; Kumar, Prem

    2009-08-17

    A growing number of quantum communication protocols require entanglement distribution among remote parties, which is best accomplished by exploiting the mature technology and extensive infrastructure of low-loss optical fiber. For this reason, a practical source of entangled photons must be drop-in compatible with optical fiber networks. Here we demonstrate such a source for the first time, in which the nonlinearity of standard single-mode fiber is utilized to yield entangled photon pairs in the 1310-nm O-band. Using an ultra-stable design, we produce polarization entanglement with 98.0% +/- 0.5% fidelity to a maximally entangled state as characterized via coincidence-basis tomography. To demonstrate the source's drop-in capability, we transmit one photon from each entangled pair through a telecommunications-grade optical amplifier set to boost classical 1550-nm (C-band) communication signals. We verify that the photon pairs experience no measurable decoherence upon passing through the active amplifier (the output state's fidelity with a maximally entangled state is 98.4% +/- 1.4%). (c) 2009 Optical Society of America

  15. Observation of entanglement between itinerant microwave photons and a superconducting qubit.

    PubMed

    Eichler, C; Lang, C; Fink, J M; Govenius, J; Filipp, S; Wallraff, A

    2012-12-14

    A localized qubit entangled with a propagating quantum field is well suited to study nonlocal aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on-demand generation and characterization of Bell-type entangled states between a superconducting qubit and propagating microwave fields composed of zero-, one-, and two-photon Fock states. Using low noise linear amplification and efficient data acquisition we extract all relevant correlations between the qubit and the photon states and demonstrate entanglement with high fidelity.

  16. Entanglement of 3000 atoms by detecting one photon

    NASA Astrophysics Data System (ADS)

    Vuletic, Vladan

    2016-05-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. In particular, entangled states of many particles can be used to overcome limits on measurements performed with ensembles of independent atoms (standard quantum limit). Metrologically useful entangled states of large atomic ensembles (spin squeezed states) have been experimentally realized. These states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. We report the generation of entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, and verify an entanglement depth (the minimum number of mutually entangled atoms) that comprises 90% of the atomic ensemble containing 3100 atoms. Further technical improvement should allow the generation of more complex Schrödinger cat states, and of states the overcome the standard quantum limit.

  17. Evolution of entanglement between distinguishable light states.

    PubMed

    Stevenson, R Mark; Hudson, Andrew J; Bennett, Anthony J; Young, Robert J; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J

    2008-10-24

    We investigate the evolution of quantum correlations over the lifetime of a multiphoton state. Measurements reveal time-dependent oscillations of the entanglement fidelity for photon pairs created by a single semiconductor quantum dot. The oscillations are attributed to the phase acquired in the intermediate, nondegenerate, exciton-photon state and are consistent with simulations. We conclude that emission of photon pairs by a typical quantum dot with finite polarization splitting is in fact entangled in a time-evolving state, and not classically correlated as previously regarded.

  18. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  19. Asymmetric Bidirectional Controlled Teleportation via Seven-Photon Entangled State

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Sang, Ming-huang

    2017-11-01

    We propose a protocol of asymmetric bidirectional controlled teleportation by using a seven-photon entangled state. In our protocol, Alice can teleport an arbitrary single-photon state to Bob and at the same time Bob can teleport an arbitrary two-photon state to Alice via the control of the supervisor Charlie. In addition, ones only carry out the Bell-state measurements and single-photon measurement.

  20. Ion-photon entanglement and quantum frequency conversion with trapped Ba+ ions.

    PubMed

    Siverns, J D; Li, X; Quraishi, Q

    2017-01-20

    Trapped ions are excellent candidates for quantum nodes, as they possess many desirable features of a network node including long lifetimes, on-site processing capability, and production of photonic flying qubits. However, unlike classical networks in which data may be transmitted in optical fibers and where the range of communication is readily extended with amplifiers, quantum systems often emit photons that have a limited propagation range in optical fibers and, by virtue of the nature of a quantum state, cannot be noiselessly amplified. Here, we first describe a method to extract flying qubits from a Ba+ trapped ion via shelving to a long-lived, low-lying D-state with higher entanglement probabilities compared with current strong and weak excitation methods. We show a projected fidelity of ≈89% of the ion-photon entanglement. We compare several methods of ion-photon entanglement generation, and we show how the fidelity and entanglement probability varies as a function of the photon collection optic's numerical aperture. We then outline an approach for quantum frequency conversion of the photons emitted by the Ba+ ion to the telecommunication range for long-distance networking and to 780 nm for potential entanglement with rubidium-based quantum memories. Our approach is significant for extending the range of quantum networks and for the development of hybrid quantum networks compromised of different types of quantum memories.

  1. Concurrent remote entanglement with quantum error correction against photon losses

    NASA Astrophysics Data System (ADS)

    Roy, Ananda; Stone, A. Douglas; Jiang, Liang

    2016-09-01

    Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. The first implementation uses propagating Schr o ̈ dinger cat states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-qubit measurement, and homodyne detections as the final single-qubit measurements. The presence of inefficiencies in realistic quantum systems limit the success rate of generating high fidelity Bell states. This motivates us to propose a second continuous variable implementation, where we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end, we encode the ancilla qubits in superpositions of Schrödinger cat states of a given photon-number parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement, and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success rate of generating high-fidelity Bell states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting circuit-QED systems.

  2. Optimal entangling operations between deterministic blocks of qubits encoded into single photons

    NASA Astrophysics Data System (ADS)

    Smith, Jake A.; Kaplan, Lev

    2018-01-01

    Here, we numerically simulate probabilistic elementary entangling operations between rail-encoded photons for the purpose of scalable universal quantum computation or communication. We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the controlled-not (cnot) gate are fully deterministic and simple to implement. Interblock communication is then allowed through said probabilistic entangling operations. We find a promising trend in the increasing probability of successful interblock communication as we increase the number of optical modes operated on by our elementary entangling operations.

  3. Photonic multipartite entanglement conversion using nonlocal operations

    NASA Astrophysics Data System (ADS)

    Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.

    2016-11-01

    We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.

  4. Quantum storage of orbital angular momentum entanglement in an atomic ensemble.

    PubMed

    Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can

    2015-02-06

    Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3%±0.8% and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.

  5. Distribution of hybrid entanglement and hyperentanglement with time-bin for secure quantum channel under noise via weak cross-Kerr nonlinearity.

    PubMed

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyung-Jin; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-31

    We design schemes to generate and distribute hybrid entanglement and hyperentanglement correlated with degrees of freedom (polarization and time-bin) via weak cross-Kerr nonlinearities (XKNLs) and linear optical devices (including time-bin encoders). In our scheme, the multi-photon gates (which consist of XKNLs, quantum bus [qubus] beams, and photon-number-resolving [PNR] measurement) with time-bin encoders can generate hyperentanglement or hybrid entanglement. And we can also purify the entangled state (polarization) of two photons using only linear optical devices and time-bin encoders under a noisy (bit-flip) channel. Subsequently, through local operations (using a multi-photon gate via XKNLs) and classical communications, it is possible to generate a four-qubit hybrid entangled state (polarization and time-bin). Finally, we discuss how the multi-photon gate using XKNLs, qubus beams, and PNR measurement can be reliably performed under the decoherence effect.

  6. Interference of Single Photons Emitted by Entangled Atoms in Free Space

    NASA Astrophysics Data System (ADS)

    Araneda, G.; Higginbottom, D. B.; Slodička, L.; Colombe, Y.; Blatt, R.

    2018-05-01

    The generation and manipulation of entanglement between isolated particles has precipitated rapid progress in quantum information processing. Entanglement is also known to play an essential role in the optical properties of atomic ensembles, but fundamental effects in the controlled emission and absorption from small, well-defined numbers of entangled emitters in free space have remained unobserved. Here we present the control of the emission rate of a single photon from a pair of distant, entangled atoms into a free-space optical mode. Changing the length of the optical path connecting the atoms modulates the single-photon emission rate in the selected mode with a visibility V =0.27 ±0.03 determined by the degree of entanglement shared between the atoms, corresponding directly to the concurrence Cρ=0.31 ±0.10 of the prepared state. This scheme, together with population measurements, provides a fully optical determination of the amount of entanglement. Furthermore, large sensitivity of the interference phase evolution points to applications of the presented scheme in high-precision gradient sensing.

  7. Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation.

    PubMed

    Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues

    2018-03-09

    Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated-time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.

  8. Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues

    2018-03-01

    Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated—time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.

  9. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  10. Experimental demonstration of four-photon entanglement and high-fidelity teleportation.

    PubMed

    Pan, J W; Daniell, M; Gasparoni, S; Weihs, G; Zeilinger, A

    2001-05-14

    We experimentally demonstrate observation of highly pure four-photon GHZ entanglement produced by parametric down-conversion and a projective measurement. At the same time this also demonstrates teleportation of entanglement with very high purity. Not only does the achieved high visibility enable various novel tests of quantum nonlocality, it also opens the possibility to experimentally investigate various quantum computation and communication schemes with linear optics. Our technique can, in principle, be used to produce entanglement of arbitrarily high order or, equivalently, teleportation and entanglement swapping over multiple stages.

  11. Experimental entanglement distillation and 'hidden' non-locality.

    PubMed

    Kwiat, P G; Barraza-Lopez, S; Stefanov, A; Gisin, N

    2001-02-22

    Entangled states are central to quantum information processing, including quantum teleportation, efficient quantum computation and quantum cryptography. In general, these applications work best with pure, maximally entangled quantum states. However, owing to dissipation and decoherence, practically available states are likely to be non-maximally entangled, partially mixed (that is, not pure), or both. To counter this problem, various schemes of entanglement distillation, state purification and concentration have been proposed. Here we demonstrate experimentally the distillation of maximally entangled states from non-maximally entangled inputs. Using partial polarizers, we perform a filtering process to maximize the entanglement of pure polarization-entangled photon pairs generated by spontaneous parametric down-conversion. We have also applied our methods to initial states that are partially mixed. After filtering, the distilled states demonstrate certain non-local correlations, as evidenced by their violation of a form of Bell's inequality. Because the initial states do not have this property, they can be said to possess 'hidden' non-locality.

  12. Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2016-02-01

    In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice's classical bits with the two-photon joint measurements and authenticates the integrity of Alice's secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.

  13. Measurement-Based Entanglement of Noninteracting Bosonic Atoms

    NASA Astrophysics Data System (ADS)

    Lester, Brian J.; Lin, Yiheng; Brown, Mark O.; Kaufman, Adam M.; Ball, Randall J.; Knill, Emanuel; Rey, Ana M.; Regal, Cindy A.

    2018-05-01

    We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62 ±0.03 ). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

  14. Measurement-Based Entanglement of Noninteracting Bosonic Atoms.

    PubMed

    Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A

    2018-05-11

    We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

  15. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  16. Distillation of photon entanglement using a plasmonic metamaterial

    PubMed Central

    Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö.; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki

    2015-01-01

    Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks. PMID:26670790

  17. Distillation of photon entanglement using a plasmonic metamaterial.

    PubMed

    Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki

    2015-12-16

    Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks.

  18. Suppression of population transport and control of exciton distributions by entangled photons

    PubMed Central

    Schlawin, Frank; Dorfman, Konstantin E.; Fingerhut, Benjamin P.; Mukamel, Shaul

    2013-01-01

    Entangled photons provide an important tool for secure quantum communication, computing and lithography. Low intensity requirements for multi-photon processes make them idealy suited for minimizing damage in imaging applications. Here we show how their unique temporal and spectral features may be used in nonlinear spectroscopy to reveal properties of multiexcitons in chromophore aggregates. Simulations demostrate that they provide unique control tools for two-exciton states in the bacterial reaction centre of Blastochloris viridis. Population transport in the intermediate single-exciton manifold may be suppressed by the absorption of photon pairs with short entanglement time, thus allowing the manipulation of the distribution of two-exciton states. The quantum nature of the light is essential for achieving this degree of control, which cannot be reproduced by stochastic or chirped light. Classical light is fundamentally limited by the frequency-time uncertainty, whereas entangled photons have independent temporal and spectral characteristics not subjected to this uncertainty. PMID:23653194

  19. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  20. Coherent control with optical pulses for deterministic spin-photon entanglement

    NASA Astrophysics Data System (ADS)

    Truex, Katherine; Webster, L. A.; Duan, L.-M.; Sham, L. J.; Steel, D. G.

    2013-11-01

    We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.030504 95, 030504 (2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field, creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity, the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by radiative decay and electron spin flips.

  1. Generation of maximally entangled states and coherent control in quantum dot microlenses

    NASA Astrophysics Data System (ADS)

    Bounouar, Samir; de la Haye, Christoph; Strauß, Max; Schnauber, Peter; Thoma, Alexander; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2018-04-01

    The integration of entangled photon emitters in nanophotonic structures designed for the broadband enhancement of photon extraction is a major challenge for quantum information technologies. We study the potential of quantum dot (QD) microlenses as efficient emitters of maximally entangled photons. For this purpose, we perform quantum tomography measurements on InGaAs QDs integrated deterministically into microlenses. Even though the studied QDs show non-zero excitonic fine-structure splitting (FSS), polarization entanglement can be prepared with a fidelity close to unity. The quality of the measured entanglement is only dependent on the temporal resolution of the applied single-photon detectors compared to the period of the excitonic phase precession imposed by the FSS. Interestingly, entanglement is kept along the full excitonic wave-packet and is not affected by decoherence. Furthermore, coherent control of the upper biexcitonic state is demonstrated.

  2. A Multipli-entangled Photon Source for Cluster State Generation

    DTIC Science & Technology

    2012-04-01

    AFRL), Timothy Genda (AFRL), A. Matthew Smith (NRC), Reinhard Erdmann (AAC) and Enrique Galvez ( Colgate University) 5d. PROJECT NUMBER T2QC 5e...Corporation, Rome, NY (USA) Enrique J. Galvez Colgate University, Hamilton, NY (USA) 1. ABSTRACT This paper expands upon prior work on an entangled...used for evaluation of our custom crystal source and the entangled photons produced. Next, we will show the experimental results obtained, and

  3. Experimental entanglement purification of arbitrary unknown states.

    PubMed

    Pan, Jian-Wei; Gasparoni, Sara; Ursin, Rupert; Weihs, Gregor; Zeilinger, Anton

    2003-05-22

    Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.

  4. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  5. Entanglement generation and manipulation in the Hong-Ou-Mandel experiment: a hidden scenario beyond two-photon interference

    NASA Astrophysics Data System (ADS)

    Yang, Li-Kai; Cai, Han; Peng, Tao; Wang, Da-Wei

    2018-06-01

    The Hong‑Ou‑Mandel (HOM) effect was long believed to be a two-photon interference phenomenon. It describes the fact that two indistinguishable photons mixed at a beam splitter will bunch together to one of the two output modes. Considering the two single-photon emitters such as trapped ions, we explore a hidden scenario of the HOM effect, where entanglement can be generated between the two ions when a single photon is detected by one of the detectors. A second photon emitted by the entangled photon sources will be subsequently detected by the same detector. However, we can also control the fate of the second photon by manipulating the entangled state. Instead of two-photon interference, the phase of the entangled state is responsible for the photon’s path in our proposal. Toward a feasible experimental realization, we conduct a quantum jump simulation on the system to show its robustness against experimental errors.

  6. Experimental determination of entanglement with a single measurement.

    PubMed

    Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A

    2006-04-20

    Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

  7. High-yield entangled single photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel B. S.; Bisson, Scott E.

    The various technologies presented herein relate to utilizing photons at respective idler and signal frequencies to facilitate generation of photons at a pump frequency. A strong pump field can be applied at the .omega..sub.i and the .omega..sub.s frequencies, with the generated idler and signal pulses being utilized to generate a photon pair at the .omega..sub.p frequency. Further, the idler pump power can be increased relative to the signal pump power such that the pump power P.sub.i>pump power P.sub.s. Such reversed operation (e.g., .omega..sub.i+.omega..sub.s.fwdarw..omega..sub.p1+.omega..sub.p2) can minimize and/or negate Raman scattering effects. By complying with an energy conservation requirement, the .omega..sub.i andmore » .omega..sub.s photons interacting with the material through the four-wave mixing process facilitates the entanglement of the .omega..sub.p1 and .omega..sub.p2 photons. The .omega..sub.i and .omega..sub.s photons can be respectively formed in different length waveguides with a delay utilized to facilitate common timing between the .omega..sub.i and .omega..sub.s photons.« less

  8. Linear-Optics-Based Entanglement Concentration of Four-Photon χ-type States for Quantum Communication Network

    NASA Astrophysics Data System (ADS)

    Li, Tao; Deng, Fu-Guo

    2014-09-01

    We present an efficient entanglement concentration protocol (ECP) for partially entangled four-photon χ-type states in the first time with only linear optical elements and single-photon detectors. Without any ancillary particles, the parties in quantum communication network can obtain a subset of four-photon systems in the standard | χ 00> state from a set of four-photon systems in a partially entangled χ-type state with the parameter-splitting method developed by Ren et al. (Phys. Rev. A 88:012302, 2013). The present ECP has the optimal success probability which is determined by the component with the minimal probability amplitude in the initial state. Moreover, it is easy to implement this ECP in experiment.

  9. Heralded entangling quantum gate via cavity-assisted photon scattering

    NASA Astrophysics Data System (ADS)

    Borges, Halyne S.; Rossatto, Daniel Z.; Luiz, Fabrício S.; Villas-Boas, Celso J.

    2018-01-01

    We theoretically investigate the generation of heralded entanglement between two identical atoms via cavity-assisted photon scattering in two different configurations, namely, either both atoms confined in the same cavity or trapped into locally separated ones. Our protocols are given by a very simple and elegant single-step process, the key mechanism of which is a controlled-phase-flip gate implemented by impinging a single photon on single-sided cavities. In particular, when the atoms are localized in remote cavities, we introduce a single-step parallel quantum circuit instead of the serial process extensively adopted in the literature. We also show that such parallel circuit can be straightforwardly applied to entangle two macroscopic clouds of atoms. Both protocols proposed here predict a high entanglement degree with a success probability close to unity for state-of-the-art parameters. Among other applications, our proposal and its extension to multiple atom-cavity systems step toward a suitable route for quantum networking, in particular for quantum state transfer, quantum teleportation, and nonlocal quantum memory.

  10. A tunable single-polarization photonic crystal fiber filter based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhuan; Li, Jianshe; Li, Shuguang; Liu, Qiang; Liu, Yingchao; Zhang, Zhen; Wang, Yujun

    2018-06-01

    A tunable single polarizing filter is proposed by selectively coating gold film on the air holes of photonic crystal fiber (PCF). The polarization properties of the PCF filter are evaluated by the finite-element method. Simulation results show that the loss of y-polarized core mode at 1250 and 1550 nm is 136.23 and 839.73 dB/cm, respectively. Furthermore, we innovatively combine stable modulation with flexible modulation. To be specific, the resonance wavelengths are slowly controlled in a small wavelength range by altering the diameter of the air-hole-coated gold film, while the resonance wavelengths are flexibly controlled in a wide wavelength range by altering the thickness of the gold film or the diameter of the small air holes. When the length of the PCF is 500 µm, the bandwidth of extinction ratio greater than - 20 dB is only 60 nm at the communication window of 1550 nm. It is beneficial to fabricate a narrow-band polarization filter.

  11. Long distance measurement-device-independent quantum key distribution with entangled photon sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Feihu; Qi, Bing; Liao, Zhongfa

    2013-08-05

    We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.

  12. Entanglement of coherent superposition of photon-subtraction squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Liu, Cun-Jin; Ye, Wei; Zhou, Wei-Dong; Zhang, Hao-Liang; Huang, Jie-Hui; Hu, Li-Yun

    2017-10-01

    A new kind of non-Gaussian quantum state is introduced by applying nonlocal coherent superposition ( τa + sb) m of photon subtraction to two single-mode squeezed vacuum states, and the properties of entanglement are investigated according to the degree of entanglement and the average fidelity of quantum teleportation. The state can be seen as a single-variable Hermitian polynomial excited squeezed vacuum state, and its normalization factor is related to the Legendre polynomial. It is shown that, for τ = s, the maximum fidelity can be achieved, even over the classical limit (1/2), only for even-order operation m and equivalent squeezing parameters in a certain region. However, the maximum entanglement can be achieved for squeezing parameters with a π phase difference. These indicate that the optimal realizations of fidelity and entanglement could be different from one another. In addition, the parameter τ/ s has an obvious effect on entanglement and fidelity.

  13. Applications of high-dimensional photonic entaglement

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.

    This thesis presents the results of four experiments related to applications of higher dimensional photonic entanglement. (1) We use energy-time entangled biphotons from spontaneous parametric down-conversion (SPDC) to implement a large-alphabet quantum key distribution (QKD) system which securely transmits up to 10 bits of the random key per photon. An advantage over binary alphabet QKD is demonstrated for quantum channels with a single-photon transmission-rate ceiling. The security of the QKD system is based on the measurable reduction of entanglement in the presence of eavesdropping. (2) We demonstrate the preservation of energy-time entanglement in a tunable slow-light medium. The fine-structure resonances of a hot Rubidium vapor are used to slow one photon from an energy-time entangled biphoton generated with non-degenerate SPDC. The slow-light medium is placed in one arm of a Franson interferometer. The observed Franson fringes witness the presence of entanglement and quantify a delay of 1.3 biphoton correlation lengths. (3) We utilize holograms to discriminate between two spatially-coherent single-photon images. Heralded single photons are created with degenerate SPDC and sent through one of two transmission masks to make single-photon images with no spatial overlap. The single-photon images are sent through a previously prepared holographic filter. The filter discriminates the single-photon images with an average confidence level of 95%. (4) We employ polarization entangled biphotons generated from non-collinear SPDC to violate a generalized Leggett-Garg inequality with non-local weak measurements. The weak measurement is implemented with Fresnel reflection of a microscope coverslip on one member of the entangled biphoton. Projective measurement with computer-controlled polarizers on the entangled state after the weak measurement yields a joint probability with three degrees of freedom. Contextual values are then used to determine statistical averages of

  14. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction

    PubMed Central

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-01-01

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability. PMID:26487083

  15. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    PubMed

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  16. Experimental verification of multipartite entanglement in quantum networks

    PubMed Central

    McCutcheon, W.; Pappa, A.; Bell, B. A.; McMillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.; Rarity, J. G.; Tame, M. S.

    2016-01-01

    Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications. PMID:27827361

  17. Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, Akira; Takeoka, Masahiro; Sasaki, Masahide

    2006-04-15

    We consider the problem of evaluating the entanglement of non-Gaussian mixed states generated by photon subtraction from entangled squeezed states. The entanglement measures we use are the negativity and the logarithmic negativity. These measures possess the unusual property of being computable with linear algebra packages even for high-dimensional quantum systems. We numerically evaluate these measures for the non-Gaussian mixed states which are generated by photon subtraction with on/off photon detectors. The results are compared with the behavior of certain operational measures, namely the teleportation fidelity and the mutual information in the dense coding scheme. It is found that all ofmore » these results are mutually consistent, in the sense that whenever the enhancement is seen in terms of the operational measures, the negativity and the logarithmic negativity are also enhanced.« less

  18. Two-Photon Entanglement and EPR Experiments Using Type-2 Spontaneous Parametric Down Conversion

    NASA Technical Reports Server (NTRS)

    Sergienko, A. V.; Shih, Y. H.; Pittman, T. B.; Rubin, M. H.

    1996-01-01

    Simultaneous entanglement in spin and space-time of a two-photon quantum state generated in type-2 spontaneous parametric down-conversion is demonstrated by the observation of quantum interference with 98% visibility in a simple beam-splitter (Hanburry Brown-Twiss) anticorrelation experiment. The nonlocal cancellation of two-photon probability amplitudes as a result of this double entanglement allows us to demonstrate two different types of Bell's inequality violations in one experimental setup.

  19. Experimental test of entangled histories

    NASA Astrophysics Data System (ADS)

    Cotler, Jordan; Duan, Lu-Ming; Hou, Pan-Yu; Wilczek, Frank; Xu, Da; Yin, Zhang-Qi; Zu, Chong

    2017-12-01

    Entangled histories arise when a system partially decoheres in such a way that its past cannot be described by a sequence of states, but rather a superposition of sequences of states. Such entangled histories have not been previously observed. We propose and demonstrate the first experimental scheme to create entangled history states of the Greenberger-Horne-Zeilinger (GHZ) type. In our experiment, the polarization states of a single photon at three different times are prepared as a GHZ entangled history state. We define a GHZ functional which attains a maximum value 1 on the ideal GHZ entangled history state and is bounded above by 1 / 16 for any three-time history state lacking tripartite entanglement. We have measured the GHZ functional on a state we have prepared experimentally, yielding a value of 0 . 656 ± 0 . 005, clearly demonstrating the contribution of entangled histories.

  20. Two-photon absorption spectroscopy using intense phase-chirped entangled beams

    NASA Astrophysics Data System (ADS)

    Svozilík, Jiří; Peřina, Jan; León-Montiel, Roberto de J.

    2018-06-01

    We numerically analyze the use of intense entangled twin beams for ultra-sensitive spectroscopic measurements in chemical and biological systems. The examined scheme makes use of intense frequency-modulated (chirped) entangled beams to successfully extract information about the intermediate material states that contribute to the two-photon excitation of an absorbing medium. Robustness of the presented method is examined with respect to the applied intervals of the frequency chirp.

  1. Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise.

    PubMed

    Banaszek, Konrad; Dragan, Andrzej; Wasilewski, Wojciech; Radzewicz, Czesław

    2004-06-25

    We present an experiment demonstrating the entanglement enhanced capacity of a quantum channel with correlated noise, modeled by a fiber optic link exhibiting fluctuating birefringence. In this setting, introducing entanglement between two photons is required to maximize the amount of information that can be encoded into their joint polarization degree of freedom. We demonstrated this effect using a fiber-coupled source of entangled photon pairs based on spontaneous parametric down-conversion, and a linear-optics Bell state measurement. The obtained experimental classical capacity with entangled states is equal to 0.82+/-0.04 per a photon pair, and it exceeds approximately 2.5 times the theoretical upper limit when no quantum correlations are allowed.

  2. Twisted photon entanglement through turbulent air across Vienna

    PubMed Central

    Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Zeilinger, Anton

    2015-01-01

    Photons with a twisted phase front can carry a discrete, in principle, unbounded amount of orbital angular momentum (OAM). The large state space allows for complex types of entanglement, interesting both for quantum communication and for fundamental tests of quantum theory. However, the distribution of such entangled states over large distances was thought to be infeasible due to influence of atmospheric turbulence, indicating a serious limitation on their usefulness. Here we show that it is possible to distribute quantum entanglement encoded in OAM over a turbulent intracity link of 3 km. We confirm quantum entanglement of the first two higher-order levels (with OAM=± 1ℏ and ± 2ℏ). They correspond to four additional quantum channels orthogonal to all that have been used in long-distance quantum experiments so far. Therefore, a promising application would be quantum communication with a large alphabet. We also demonstrate that our link allows access to up to 11 quantum channels of OAM. The restrictive factors toward higher numbers are technical limitations that can be circumvented with readily available technologies. PMID:26578763

  3. Twisted photon entanglement through turbulent air across Vienna.

    PubMed

    Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Zeilinger, Anton

    2015-11-17

    Photons with a twisted phase front can carry a discrete, in principle, unbounded amount of orbital angular momentum (OAM). The large state space allows for complex types of entanglement, interesting both for quantum communication and for fundamental tests of quantum theory. However, the distribution of such entangled states over large distances was thought to be infeasible due to influence of atmospheric turbulence, indicating a serious limitation on their usefulness. Here we show that it is possible to distribute quantum entanglement encoded in OAM over a turbulent intracity link of 3 km. We confirm quantum entanglement of the first two higher-order levels (with OAM=± 1ħ and ± 2ħ). They correspond to four additional quantum channels orthogonal to all that have been used in long-distance quantum experiments so far. Therefore, a promising application would be quantum communication with a large alphabet. We also demonstrate that our link allows access to up to 11 quantum channels of OAM. The restrictive factors toward higher numbers are technical limitations that can be circumvented with readily available technologies.

  4. Generating multi-photon W-like states for perfect quantum teleportation and superdense coding

    NASA Astrophysics Data System (ADS)

    Li, Ke; Kong, Fan-Zhen; Yang, Ming; Ozaydin, Fatih; Yang, Qing; Cao, Zhuo-Liang

    2016-08-01

    An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.

  5. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Zalys-Geller, E.; Narla, A.; Shankar, S.; Reinhold, P.; Burkhart, L.; Axline, C.; Pfaff, W.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2018-05-01

    Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet. We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

  6. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions.

    PubMed

    Campagne-Ibarcq, P; Zalys-Geller, E; Narla, A; Shankar, S; Reinhold, P; Burkhart, L; Axline, C; Pfaff, W; Frunzio, L; Schoelkopf, R J; Devoret, M H

    2018-05-18

    Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet. We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

  7. Transverse correlation in entangled photons and light-matter interaction

    NASA Astrophysics Data System (ADS)

    Wen, Jianming

    In recent years, quantum entanglement has attracted much attention, because its unique properties provide potential applications, which could not be achieved using conventional techniques, such as quantum computing, quantum imaging and lithography. To realize these advancements, one has to obtain an entanglement-generation source, thoroughly master its physical properties, and fully understand the light-matter interaction. This dissertation is an attempt to address such issues as stated above. Conventionally, paired photons are created from spontaneous parametric down-conversion (SPDC). It is known that the transverse correlation in biphotons may improve the visibility and resolution in quantum imaging and lithography. In this thesis, we described an alternative biphoton source---Raman-EIT (electromagnetically induced transparency) generator, and emphasize on its geometrical and optical properties. We found that to utilize the transverse effects in paired Stokes-anti-Stokes, it is necessary to make the product of the EIT window times the group delay much greater than unity. To gain further insight into quantum imaging and lithography, we studied the transverse correlation in triphoton entanglement theoretically. We found that in the two-image process, the quality of images is determined by the optical path-lengths, even though the Gaussian thin lens equations are satisfied. The ghost interference-diffraction patterns of double slits show one more fold interference, which is essentially different from the biphoton case. Klyshko's advanced-wave model is still applicable, with some modifications. We also generalized the transverse correlation to the case of multi-photon entangled states. To implement quantum computing, one key element is quantum memory. In this thesis, we have theoretically explored the feasibility of such a memory by using nonclassical SPDC light in an EIT system at the single-photon level. We found that both the quantum coherence of SPDC and atomic

  8. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    NASA Astrophysics Data System (ADS)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  9. Ultrabright narrow-band telecom two-photon source for long-distance quantum communication

    NASA Astrophysics Data System (ADS)

    Niizeki, Kazuya; Ikeda, Kohei; Zheng, Mingyang; Xie, Xiuping; Okamura, Kotaro; Takei, Nobuyuki; Namekata, Naoto; Inoue, Shuichiro; Kosaka, Hideo; Horikiri, Tomoyuki

    2018-04-01

    We demonstrate an ultrabright narrow-band two-photon source at the 1.5 µm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 104. Our measurement of the second-order correlation function G (2)(τ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 µm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 105 pairs/(s·MHz·mW) is also the highest reported over all wavelengths.

  10. Single-photon three-qubit quantum logic using spatial light modulators.

    PubMed

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  11. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    NASA Astrophysics Data System (ADS)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  12. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.

    PubMed

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2015-03-26

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.

  13. Deterministic error correction for nonlocal spatial-polarization hyperentanglement

    PubMed Central

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-01-01

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681

  14. Deterministic error correction for nonlocal spatial-polarization hyperentanglement.

    PubMed

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-02-10

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.

  15. Quantum State Tomography of a Fiber-Based Source of Polarization-Entangled Photon Pairs

    DTIC Science & Technology

    2007-12-20

    Processing 175−179 (IEEE, Bangalore, 1984). 4. A. K. Ekert, “ Quantum cryptography based on Bell’s theorem ,” Phys. Rev. Lett. 67, 661–663 (1991). 5...NUMBERS Quantum State Tomography of a Fiber- Based Source of MURI Center for Photonic Quantum Information Systems: AROIARDA Program Polarization...Computer Society Press, Los Alamitos, 1996). 7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “ Quantum cryptography ,” Rev. Mod. Phys. 74, 145

  16. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.

    PubMed

    Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L

    2012-02-13

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.

  17. Teleportation of entangled states without Bell-state measurement via a two-photon process

    NASA Astrophysics Data System (ADS)

    dSouza, A. D.; Cardoso, W. B.; Avelar, A. T.; Baseia, B.

    2011-02-01

    In this letter we propose a scheme using a two-photon process to teleport an entangled field state of a bimodal cavity to another one without Bell-state measurement. The quantum information is stored in a zero- and two-photon entangled state. This scheme requires two three-level atoms in a ladder configuration, two bimodal cavities, and selective atomic detectors. The fidelity and success probability do not depend on the coefficients of the state to be teleported. For convenient choices of interaction times, the teleportation occurs with fidelity close to the unity.

  18. Experimental Measurement-Device-Independent Entanglement Detection

    NASA Astrophysics Data System (ADS)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  19. Experimental Measurement-Device-Independent Entanglement Detection

    PubMed Central

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-01-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664

  20. Experimental demonstration of robust entanglement distribution over reciprocal noisy channels assisted by a counter-propagating classical reference light.

    PubMed

    Ikuta, Rikizo; Nozaki, Shota; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2017-07-06

    Embedding a quantum state in a decoherence-free subspace (DFS) formed by multiple photons is one of the promising methods for robust entanglement distribution of photonic states over collective noisy channels. In practice, however, such a scheme suffers from a low efficiency proportional to transmittance of the channel to the power of the number of photons forming the DFS. The use of a counter-propagating coherent pulse can improve the efficiency to scale linearly in the channel transmission, but it achieves only protection against phase noises. Recently, it was theoretically proposed [Phys. Rev. A 87, 052325(2013)] that the protection against bit-flip noises can also be achieved if the channel has a reciprocal property. Here we experimentally demonstrate the proposed scheme to distribute polarization-entangled photon pairs against a general collective noise including the bit flip noise and the phase noise. We observed an efficient sharing rate scaling while keeping a high quality of the distributed entangled state. Furthermore, we show that the method is applicable not only to the entanglement distribution but also to the transmission of arbitrary polarization states of a single photon.

  1. Quantum cryptography using entangled photons in energy-time bell states

    PubMed

    Tittel; Brendel; Zbinden; Gisin

    2000-05-15

    We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.

  2. Entanglement between total intensity and polarization for pairs of coherent states

    NASA Astrophysics Data System (ADS)

    Sanchidrián-Vaca, Carlos; Luis, Alfredo

    2018-04-01

    We examine entanglement between number and polarization, or number and relative phase, in pair coherent states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables. This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties of pairs of coherent states.

  3. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    NASA Astrophysics Data System (ADS)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  4. Light for the quantum. Entangled photons and their applications: a very personal perspective

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2017-07-01

    local realistic explanations of the quantum phenomenon of entanglement in a significant way. These experiments may go down in the history books of science. Future experiments will address particularly the freedom-of-choice loophole using cosmic sources of randomness. Such experiments confirm that unconditionally secure quantum cryptography is possible, since quantum cryptography based on Bell’s theorem can provide unconditional security. The fact that the experiments were loophole-free proves that an eavesdropper cannot avoid detection in an experiment that correctly follows the protocol. I finally discuss some recent experiments with single- and entangled-photon states in higher dimensions. Such experiments realized quantum entanglement between two photons, each with quantum numbers beyond 10 000 and also simultaneous entanglement of two photons where each carries more than 100 dimensions. Thus they offer the possibility of quantum communication with more than one bit or qubit per photon. The paper concludes discussing Einstein’s contributions and viewpoints of quantum mechanics. Even if some of his positions are not supported by recent experiments, he has to be given credit for the fact that his analysis of fundamental issues gave rise to developments which led to a new information technology. Finally, I reflect on some of the lessons learned by the fact that nature cannot be local, that objective randomness exists and about the emergence of a classical world. It is suggestive that information plays a fundamental role also in the foundations of quantum physics.

  5. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2018-04-01

    We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.

  6. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  7. Experimental demonstration on the deterministic quantum key distribution based on entangled photons.

    PubMed

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-02-10

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified "Ping-Pong"(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications.

  8. Experimental demonstration on the deterministic quantum key distribution based on entangled photons

    PubMed Central

    Chen, Hua; Zhou, Zhi-Yuan; Zangana, Alaa Jabbar Jumaah; Yin, Zhen-Qiang; Wu, Juan; Han, Yun-Guang; Wang, Shuang; Li, Hong-Wei; He, De-Yong; Tawfeeq, Shelan Khasro; Shi, Bao-Sen; Guo, Guang-Can; Chen, Wei; Han, Zheng-Fu

    2016-01-01

    As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based quantum communications. PMID:26860582

  9. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Liao, Qin; Wang, Yijun; Huang, Duan; Huang, Peng; Zeng, Guihua

    2017-03-01

    A suitable photon-subtraction operation can be exploited to improve the maximal transmission of continuous-variable quantum key distribution (CVQKD) in point-to-point quantum communication. Unfortunately, the photon-subtraction operation faces solving the improvement transmission problem of practical quantum networks, where the entangled source is located in the third part, which may be controlled by a malicious eavesdropper, instead of in one of the trusted parts, controlled by Alice or Bob. In this paper, we show that a solution can come from using a non-Gaussian operation, in particular, the photon-subtraction operation, which provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that CVQKD with an entangled source in the middle (ESIM) from applying photon subtraction can well increase the secure transmission distance in both direct and reverse reconciliations of the EB-CVQKD scheme, even if the entangled source originates from an untrusted part. Moreover, it can defend against the inner-source attack, which is a specific attack by an untrusted entangled source in the framework of ESIM.

  10. Controlled quantum secure communication protocol with single photons in both polarization and spatial-mode degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Wenping

    2016-02-01

    In this paper, we propose a new controlled quantum secure direct communication (CQSDC) protocol with single photons in both polarization and spatial-mode degrees of freedom. Based on the defined local collective unitary operations, the sender’s secret messages can be transmitted directly to the receiver through encoding secret messages on the particles. Only with the help of the third side, the receiver can reconstruct the secret messages. Each single photon in two degrees of freedom can carry two bits of information, so the cost of our protocol is less than others using entangled qubits. Moreover, the security of our QSDC network protocol is discussed comprehensively. It is shown that our new CQSDC protocol cannot only defend the outsider eavesdroppers’ several sorts of attacks but also the inside attacks. Besides, our protocol is feasible since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques.

  11. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  12. Full characterization of a three-photon Greenberger-Horne-Zeilinger state using quantum state tomography.

    PubMed

    Resch, K J; Walther, P; Zeilinger, A

    2005-02-25

    We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the Greenberger-Horne-Zeilinger state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality were extracted.

  13. Multi-user quantum key distribution with entangled photons from an AlGaAs chip

    NASA Astrophysics Data System (ADS)

    Autebert, C.; Trapateau, J.; Orieux, A.; Lemaître, A.; Gomez-Carbonell, C.; Diamanti, E.; Zaquine, I.; Ducci, S.

    2016-12-01

    In view of real-world applications of quantum information technologies, the combination of miniature quantum resources with existing fibre networks is a crucial issue. Among such resources, on-chip entangled photon sources play a central role for applications spanning quantum communications, computing and metrology. Here, we use a semiconductor source of entangled photons operating at room temperature in conjunction with standard telecom components to demonstrate multi-user quantum key distribution, a core protocol for securing communications in quantum networks. The source consists of an AlGaAs chip-emitting polarisation entangled photon pairs over a large bandwidth in the main telecom band around 1550 nm without the use of any off-chip compensation or interferometric scheme; the photon pairs are directly launched into a dense wavelength division multiplexer (DWDM) and secret keys are distributed between several pairs of users communicating through different channels. We achieve a visibility measured after the DWDM of 87% and show long-distance key distribution using a 50-km standard telecom fibre link between two network users. These results illustrate a promising route to practical, resource-efficient implementations adapted to quantum network infrastructures.

  14. Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths.

    PubMed

    Kuo, Paulina S; Gerrits, Thomas; Verma, Varun B; Nam, Sae Woo

    2016-11-01

    We characterize an entangled-photon-pair source that produces signal and idler photons at 1533 nm and 1567 nm using fiber-assisted signal-photon spectroscopy. By erasing the polarization distinguishability, we observe interference between the two down-conversion paths. The observed interference signature is closely related to the spectral correlations between photons in a Hong-Ou-Mandel interferometer. These measurements suggest good indistinguishability between the two down-conversion paths, which is required for high entanglement visibility.

  15. Deterministic quantum state transfer and remote entanglement using microwave photons.

    PubMed

    Kurpiers, P; Magnard, P; Walter, T; Royer, B; Pechal, M; Heinsoo, J; Salathé, Y; Akin, A; Storz, S; Besse, J-C; Gasparinetti, S; Blais, A; Wallraff, A

    2018-06-01

    Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information 5-8 . Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

  16. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    NASA Astrophysics Data System (ADS)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  17. Projection of two biphoton qutrits onto a maximally entangled state.

    PubMed

    Halevy, A; Megidish, E; Shacham, T; Dovrat, L; Eisenberg, H S

    2011-04-01

    Bell state measurements, in which two quantum bits are projected onto a maximally entangled state, are an essential component of quantum information science. We propose and experimentally demonstrate the projection of two quantum systems with three states (qutrits) onto a generalized maximally entangled state. Each qutrit is represented by the polarization of a pair of indistinguishable photons-a biphoton. The projection is a joint measurement on both biphotons using standard linear optics elements. This demonstration enables the realization of quantum information protocols with qutrits, such as teleportation and entanglement swapping. © 2011 American Physical Society

  18. Heralded entanglement of two ions in an optical cavity.

    PubMed

    Casabone, B; Stute, A; Friebe, K; Brandstätter, B; Schüppert, K; Blatt, R; Northup, T E

    2013-09-06

    We demonstrate precise control of the coupling of each of two trapped ions to the mode of an optical resonator. When both ions are coupled with near-maximum strength, we generate ion-ion entanglement heralded by the detection of two orthogonally polarized cavity photons. The entanglement fidelity with respect to the Bell state Ψ+ reaches F≥(91.9±2.5)%. This result represents an important step toward distributed quantum computing with cavities linking remote atom-based registers.

  19. A narrowband filter based on 2D 8-fold photonic quasicrystal

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-04-01

    In this paper, a novel structure of narrowband filter based on 2D 8-fold photonic quasicrystal (PQC) is proposed and investigated. The structure size is 8 μm × 8 μm, which promises its applications in optical integrated circuits and communication devices. Finite Element Method (FEM) has been employed to investigate the band gap of the filter. The resonance wavelength, transmission coefficient and 3 dB bandwidth are analyzed by varying the parameters of the structure. By optimizing the parameters of the filter, two design formulas of resonance wavelength are obtained. Also, for its better linearity of the resonance, the structure with line-defect has also seen a large uptake in sensor design.

  20. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  1. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    PubMed

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  2. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    PubMed

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  3. Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels

    NASA Astrophysics Data System (ADS)

    Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo

    2017-01-01

    We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.

  4. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centini, M.; Sciscione, L.; Sibilia, C.

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.

  5. Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator.

    PubMed

    Fujiwara, Mikio; Wakabayashi, Ryota; Sasaki, Masahide; Takeoka, Masahiro

    2017-02-20

    We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 μm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.

  6. Photonic sources and detectors for quantum information protocols: A trilogy in eight parts

    NASA Astrophysics Data System (ADS)

    Rangarajan, Radhika

    Quantum information processing (QIP) promises to revolutionize existing methods of manipulating data, via truly unique paradigms based on fundamental nonclassical physical phenomenon. However, the eventual success of optical QIP depends critically on the available technologies. Currently, creating multiple-photon states is extremely inefficient because almost no source thus far has been well optimized. Additionally, high-efficiency single-photon detectors can drastically improve multi-photon QIP (typical efficiencies are ˜70%). In fact, it has been shown that scalable linear optical quantum computing is possible only if the product of the source and detector efficiencies exceeds ˜67%. The research presented here focuses on developing optimized source and detector technologies for enabling scalable QIP. The goal of our source research is to develop an ideal " indistinguishable" source of ultrabright polarization-entangled but spatially- and spectrally-unentangled photon pairs. We engineer such an ideal source by first designing spatio-spectrally unentangled photons using optimized and group-velocity matched spontaneous parametric down conversion (SPDC). Next, we generate polarization-entangled photons using the engineered SPDC. Here we present solutions to the various challenges encountered during the indistinguishable source development. We demonstrate high-fidelity ultrafast pulsed and cw-diode laser-pumped sources of polarization-entangled photons, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB3O6 (BiBO). We also discuss the first experimental confirmation of the emission-angle dependence of the downconversion polarization (the Migdall effect), and a novel scheme for polarization-dependent focusing. The goal of our single-photon detector research is to develop a very high-efficiency detection system that can also resolve incident photon number, a feature absent from the typical detectors

  7. Entanglement with negative Wigner function of three thousand atoms heralded by one photon

    NASA Astrophysics Data System (ADS)

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2016-06-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], but these states display Gaussian spin distribution functions with a non-negative Wigner function. Non-Gaussian entangled states have been produced in small ensembles of ions [11, 12], and very recently in large atomic ensembles [13, 14, 15]. Here, we generate entanglement in a large atomic ensemble via the interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, an important hallmark of nonclassicality, and verify an entanglement depth (minimum number of mutually entangled atoms) of 2910 ± 190 out of 3100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. While the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing.

  8. Photon exchange and entanglement formation during transmission through a rectangular quantum barrier.

    PubMed

    Sulyok, Georg; Durstberger-Rennhofer, Katharina; Summhammer, Johann

    2015-09-04

    When a quantum particle traverses a rectangular potential created by a quantum field both photon exchange and entanglement between particle and field take place. We present the full analytic solution of the Schrödinger equation of the composite particle-field system allowing investigation of these phenomena in detail and comparison to the results of a classical field treatment. Besides entanglement formation, remarkable differences also appear with respect to the symmetry between energy emission and absorption, resonance effects and if the field initially occupies the vacuum state.

  9. Entangled state quantum cryptography: eavesdropping on the ekert protocol

    PubMed

    Naik; Peterson; White; Berglund; Kwiat

    2000-05-15

    Using polarization-entangled photons from spontaneous parametric down-conversion, we have implemented Ekert's quantum cryptography protocol. The near-perfect correlations of the photons allow the sharing of a secret key between two parties. The presence of an eavesdropper is continually checked by measuring Bell's inequalities. We investigated several possible eavesdropper strategies, including pseudo-quantum-nondemolition measurements. In all cases, the eavesdropper's presence was readily apparent. We discuss a procedure to increase her detectability.

  10. Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation.

    PubMed

    Chung, Hung-Pin; Huang, Kuang-Hsu; Wang, Kai; Yang, Sung-Lin; Yang, Shih-Yuan; Sung, Chun-I; Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Chen, Yen-Hung

    2017-12-04

    Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems. In this work, we demonstrate an on-chip polarization beam-splitter based on z-cut titanium-diffused lithium niobate asymmetric adiabatic couplers (AAC) designed for integration with a type-II SPDC source. Our experimental measurements reveal unique polarization beam-splitting regime with the ability to tune the splitting ratios based on wavelength. In particular, we measured a splitting ratio of 17 dB over broadband regions (>60 nm) for both H- and V-polarized lights and a specific 50%/50% splitting ratio for a cross-polarized photon pair from the AAC. The results show that such a system can be used for preparing different quantum polarization-path states that are controllable by changing the phase-matching conditions in the SPDC over a broad band. Furthermore, we propose a fully integrated electro-optically tunable type-II SPDC polarization-path-entangled state preparation circuit on a single lithium niobate photonic chip.

  11. Spin in Compton scattering with pronounced polarization dynamics

    NASA Astrophysics Data System (ADS)

    Ahrens, Sven; Sun, Chang-Pu

    2017-12-01

    We theoretically investigate a scattering configuration in Compton scattering, in which the orientation of the electron spin is reversed and, simultaneously, the photon polarization changes from linear polarization into circular polarization. The intrinsic angular momentum of electron and photon are computed along the coincident propagation direction of the incoming and outgoing photon. We find that this intrinsic angular momentum is not conserved in the considered scattering process. We also discuss the generation of entanglement for the considered scattering setup and present an angle-dependent investigation of the corresponding differential cross section, Stokes parameters, and spin expectation.

  12. Narrowband infrared emitters for combat ID

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Puscasu, Irina; Daly, James; Fallon, Keith; Loges, Peter; Greenwald, Anton; Johnson, Edward

    2007-04-01

    There is a strong desire to create narrowband infrared light sources as personnel beacons for application in infrared Identify Friend or Foe (IFF) systems. This demand has augmented dramatically in recent years with the reports of friendly fire casualties in Afghanistan and Iraq. ICx Photonics' photonic crystal enhanced TM (PCE TM) infrared emitter technology affords the possibility of creating narrowband IR light sources tuned to specific IR wavebands (near 1-2 microns, mid 3-5 microns, and long 8-12 microns) making it the ideal solution for infrared IFF. This technology is based on a metal coated 2D photonic crystal of air holes in a silicon substrate. Upon thermal excitation the photonic crystal modifies the emitted yielding narrowband IR light with center wavelength commensurate with the periodicity of the lattice. We have integrated this technology with microhotplate MEMS devices to yield 15mW IR light sources in the 3-5 micron waveband with wall plug efficiencies in excess of 10%, 2 orders of magnitude more efficient that conventional IR LEDs. We have further extended this technology into the LWIR with a light source that produces 9 mW of 8-12 micron light at an efficiency of 8%. Viewing distances >500 meters were observed with fielded camera technologies, ideal for ground to ground troop identification. When grouped into an emitter panel, the viewing distances were extended to 5 miles, ideal for ground to air identification.

  13. Evaluation of polarization mode dispersion in a telecommunication wavelength selective switch using quantum interferometry.

    PubMed

    Fraine, A; Minaeva, O; Simon, D S; Egorov, R; Sergienko, A V

    2012-01-30

    A polarization mode dispersion (PMD) measurement of a commercial telecommunication wavelength selective switch (WSS) using a quantum interferometric technique with polarization-entangled states is presented. Polarization-entangled photons with a broad spectral width covering the telecom band are produced using a chirped periodically poled nonlinear crystal. The first demonstration of a quantum metrology application using an industrial commercial device shows a promising future for practical high-resolution quantum interference.

  14. Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Ren, Bao-Cang; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-10-01

    Hyperentanglement has significant applications in quantum information processing. Here we present an efficient hyperentanglement concentration protocol (hyper-ECP) for partially hyperentangled Bell states simultaneously entangled in polarization, spatial-mode and time-bin degrees of freedom (DOFs) with the parameter-splitting method, where the parameters of the partially hyperentangled Bell states are known to the remote parties. In this hyper-ECP, only one remote party is required to perform some local operations on the three DOFs of a photon, only the linear optical elements are considered, and the success probability can achieve the maximal value. Our hyper-ECP can be easily generalized to concentrate the N-photon partially hyperentangled Greenberger-Horne-Zeilinger states with known parameters, where the multiple DOFs have largely improved the channel capacity of long-distance quantum communication. All of these make our hyper-ECP more practical and useful in high-capacity long-distance quantum communication.

  15. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    NASA Astrophysics Data System (ADS)

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-11-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  16. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    PubMed

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  17. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    PubMed Central

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-01-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. PMID:26597223

  18. Three-particle hyper-entanglement: teleportation and quantum key distribution

    NASA Astrophysics Data System (ADS)

    Perumangatt, Chithrabhanu; Abdul Rahim, Aadhi; Salla, Gangi Reddy; Prabhakar, Shashi; Samanta, Goutam Kumar; Paul, Goutam; Singh, Ravindra Pratap

    2015-10-01

    We present a scheme to generate three-particle hyper-entanglement utilizing polarization and orbital angular momentum (OAM) of photons. We show that the generated state can be used to teleport a two-qubit state described by the polarization and the OAM. The proposed quantum system has also been used to describe a new efficient quantum key distribution (QKD) protocol. We give a sketch of the experimental arrangement to realize the proposed teleportation and the QKD.

  19. Spatial two-photon coherence of the entangled field produced by down-conversion using a partially spatially coherent pump beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Anand Kumar; Boyd, Robert W.

    2010-01-15

    We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less

  20. Entangled State Quantum Cryptography: Eavesdropping on the Ekert Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, D. S.; Peterson, C. G.; White, A. G.

    2000-05-15

    Using polarization-entangled photons from spontaneous parametric down-conversion, we have implemented Ekert's quantum cryptography protocol. The near-perfect correlations of the photons allow the sharing of a secret key between two parties. The presence of an eavesdropper is continually checked by measuring Bell's inequalities. We investigated several possible eavesdropper strategies, including pseudo-quantum-nondemolition measurements. In all cases, the eavesdropper's presence was readily apparent. We discuss a procedure to increase her detectability. (c) 2000 The American Physical Society.

  1. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    PubMed Central

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-01-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon. PMID:27856742

  2. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    NASA Astrophysics Data System (ADS)

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  3. Quantum entanglement of angular momentum states with quantum numbers up to 10,010.

    PubMed

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-29

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  4. An entangled-light-emitting diode.

    PubMed

    Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2010-06-03

    An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.

  5. Optomechanics with a polarization nondegenerate cavity

    NASA Astrophysics Data System (ADS)

    Buters, F. M.; Weaver, M. J.; Eerkens, H. J.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-12-01

    Experiments in the field of optomechanics do not yet fully exploit the photon polarization degree of freedom. Here experimental results for an optomechanical interaction in a polarization nondegenerate system are presented and schemes are proposed for how to use this interaction to perform accurate side-band thermometry and to create interesting forms of photon-phonon entanglement. The experimental system utilizes the compressive force in the mirror attached to a mechanical resonator to create a micromirror with two radii of curvature which leads, when combined with a second mirror, to a significant polarization splitting of the cavity modes.

  6. Two-photon geometrical phase

    NASA Astrophysics Data System (ADS)

    Strekalov, D. V.; Shih, Y. H.

    1997-10-01

    An advanced wave model is applied to a two-photon interference experiment to show that the observed interference effect is due to the geometrical phase of a two-photon state produced in spontaneous parametric down-conversion. The polarization state of the signal-idler pair is changed adiabatically so that the ``loop'' on the Poincaré sphere is opened in the signal channel and closed in the idler channel. Therefore, we observed an essentially nonlocal geometrical phase, shared by the entangled photon pair, or a biphoton.

  7. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  8. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  9. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Yang; Wu, Zi-jian; Xu, Fei, E-mail: feixu@nju.edu.cn

    The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglementmore » architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.« less

  10. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  11. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE PAGES

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; ...

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  12. Optimal estimation of entanglement in optical qubit systems

    NASA Astrophysics Data System (ADS)

    Brida, Giorgio; Degiovanni, Ivo P.; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander P.

    2011-05-01

    We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occurring in the generation of entanglement.

  13. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2003-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  14. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2001-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  15. On entanglement of light and Stokes parameters

    NASA Astrophysics Data System (ADS)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2016-08-01

    We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements.

  16. Generation of circular polarization in CMB radiation via nonlinear photon-photon interaction

    NASA Astrophysics Data System (ADS)

    Sadegh, Mahdi; Mohammadi, Rohoollah; Motie, Iman

    2018-01-01

    Standard cosmological models do predict a measurable amount of anisotropies in the intensity and linear polarization of the cosmic microwave background radiation (CMB) via Thomson scattering, even though these theoretical models do not predict circular polarization for CMB radiation. In other hand, the circular polarization of CMB has not been excluded in observational evidences. Here we estimate the circular polarization power spectrum ClV (S ) in CMB radiation due to Compton scattering and nonlinear photon-photon forward scattering via Euler-Heisenberg effective Lagrangian. We have estimated the average value of circular power spectrum is l (l +1 )ClV (S )/(2 π )˜10-4 (μ K) 2 for l ˜300 at present time which is smaller than recently reported data for upper limit of circular polarization (SPIDER collaboration). As a result to test our results, the ability to detect nano-Kelvin level signals of CMB circular polarization requires. We also show that the generation of B-mode polarization for CMB photons in the presence of the primordial scalar perturbation via Euler-Heisenberg interaction is possible however this contribution for B-mode polarization is not remarkable.

  17. Quantum-Dot Single-Photon Sources for Entanglement Enhanced Interferometry.

    PubMed

    Müller, M; Vural, H; Schneider, C; Rastelli, A; Schmidt, O G; Höfling, S; Michler, P

    2017-06-23

    Multiphoton entangled states such as "N00N states" have attracted a lot of attention because of their possible application in high-precision, quantum enhanced phase determination. So far, N00N states have been generated in spontaneous parametric down-conversion processes and by mixing quantum and classical light on a beam splitter. Here, in contrast, we demonstrate superresolving phase measurements based on two-photon N00N states generated by quantum dot single-photon sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed resonance fluorescence of a charged exciton state, we achieve, in postselection, a quantum enhanced improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum limit. An analytical description of the measurement scheme is provided, reflecting requirements, capability, and restraints of single-photon emitters in optical quantum metrology. Our results point toward the realization of a real-world quantum sensor in the near future.

  18. Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Li, Yu-Huai; Zou, Wen-Jie; Li, Zheng-Ping; Shen, Qi; Liao, Sheng-Kai; Ren, Ji-Gang; Yin, Juan; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2018-04-01

    Quantum entanglement was termed "spooky action at a distance" in the well-known paper by Einstein, Podolsky, and Rosen. Entanglement is expected to be distributed over longer and longer distances in both practical applications and fundamental research into the principles of nature. Here, we present a proposal for distributing entangled photon pairs between Earth and the Moon using a Lagrangian point at a distance of 1.28 light seconds. One of the most fascinating features in this long-distance distribution of entanglement is as follows. One can perform the Bell test with human supplying the random measurement settings and recording the results while still maintaining spacelike intervals. To realize a proof-of-principle experiment, we develop an entangled photon source with 1 GHz generation rate, about 2 orders of magnitude higher than previous results. Violation of Bell's inequality was observed under a total simulated loss of 103 dB with measurement settings chosen by two experimenters. This demonstrates the feasibility of such long-distance Bell test over extremely high-loss channels, paving the way for one of the ultimate tests of the foundations of quantum mechanics.

  19. Multipli-Entangled Photons from a Spontaneous Parametric Down-Conversion Source

    DTIC Science & Technology

    2011-01-01

    Alsing, Corey J. Peters (AFRL/RITA); Enrique J. Galvez ( Colgate University, Hamilton, NY) 5d. PROJECT NUMBER QIS0 5e. TASK NUMBER PR 5f...and Enrique J. Galvez Colgate University, Hamilton, NY (USA) 1. ABSTRACT In this work, we discuss a novel compact source that generates six...single pair of entangled photons per pass in conventional SPDC-based sources. We first describe the experimental testbed used for evaluation and

  20. Polarization properties of long-lived stimulated photon echo

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.; Popov, E. N.

    2015-01-01

    The polarization properties of the long-lived stimulated photon echo formed on the transition ja → jb with the atomic levels degenerate in the projections of the angular momenta are studied theoretically. The two particular transitions ja = 1 → jb = 0 and ja = 1 → jb = 1 with degenerate ground state ja = 1 are discussed. For the transitions ja = 1 → jb = 1 the polarizations and areas of the first (‘write’) and the third (‘read’) excitation pulses are found when the echo polarization faithfully reproduces the arbitrary polarization of the weak (single-photon) second (‘information’) pulse, so that this echo scheme may implement the quantum memory for a single-photon polarization qubit, while for the transitions ja = 1 → jb = 0 it is shown, that the echo polarization differs from that of the second pulse at any conditions.

  1. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2017-02-01

    In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.

  2. Cartesian and polar Schmidt bases for down-converted photons. How high dimensional entanglement protects the shared information from non-ideal measurements

    NASA Astrophysics Data System (ADS)

    Miatto, F. M.; Brougham, T.; Yao, A. M.

    2012-07-01

    We derive an analytical form of the Schmidt modes of spontaneous parametric down-conversion (SPDC) biphotons in both Cartesian and polar coordinates. We show that these correspond to Hermite-Gauss (HG) or Laguerre-Gauss (LG) modes only for a specific value of their width, and we show how such value depends on the experimental parameters. The Schmidt modes that we explicitly derive allow one to set up an optimised projection basis that maximises the mutual information gained from a joint measurement. The possibility of doing so with LG modes makes it possible to take advantage of the properties of orbital angular momentum eigenmodes. We derive a general entropic entanglement measure using the Rényi entropy as a function of the Schmidt number, K, and then retrieve the von Neumann entropy, S. Using the relation between S and K we show that, for highly entangled states, a non-ideal measurement basis does not degrade the number of shared bits by a large extent. More specifically, given a non-ideal measurement which corresponds to the loss of a fraction of the total number of modes, we can quantify the experimental parameters needed to generate an entangled SPDC state with a sufficiently high dimensionality to retain any given fraction of shared bits.

  3. Quantum entanglement beyond Gaussian criteria.

    PubMed

    Gomes, R M; Salles, A; Toscano, F; Souto Ribeiro, P H; Walborn, S P

    2009-12-22

    Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states.

  4. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  5. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE PAGES

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.; ...

    2018-01-18

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  6. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, De-Qin; School of Science, Tianjin University of Technology and Education, Tianjin 300222; Song, Xin-Bing

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical predictionmore » in the two-photon quantum imaging regime.« less

  7. Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  8. Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit.

    PubMed

    Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  9. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  10. Quantum entanglement beyond Gaussian criteria

    PubMed Central

    Gomes, R. M.; Salles, A.; Toscano, F.; Souto Ribeiro, P. H.; Walborn, S. P.

    2009-01-01

    Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states. PMID:19995963

  11. Quantum teleportation in the spin-orbit variables of photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoury, A. Z.; Milman, P.; Laboratoire Materiaux et Phenomenes Quantiques, CNRS UMR 7162, Universite Paris Diderot, F-75013, Paris

    2011-06-15

    We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down-conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories.

  12. Time-resolved double-slit interference pattern measurement with entangled photons

    PubMed Central

    Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas

    2014-01-01

    The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360

  13. Bell violation using entangled photons without the fair-sampling assumption.

    PubMed

    Giustina, Marissa; Mech, Alexandra; Ramelow, Sven; Wittmann, Bernhard; Kofler, Johannes; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Ursin, Rupert; Zeilinger, Anton

    2013-05-09

    The violation of a Bell inequality is an experimental observation that forces the abandonment of a local realistic viewpoint--namely, one in which physical properties are (probabilistically) defined before and independently of measurement, and in which no physical influence can propagate faster than the speed of light. All such experimental violations require additional assumptions depending on their specific construction, making them vulnerable to so-called loopholes. Here we use entangled photons to violate a Bell inequality while closing the fair-sampling loophole, that is, without assuming that the sample of measured photons accurately represents the entire ensemble. To do this, we use the Eberhard form of Bell's inequality, which is not vulnerable to the fair-sampling assumption and which allows a lower collection efficiency than other forms. Technical improvements of the photon source and high-efficiency transition-edge sensors were crucial for achieving a sufficiently high collection efficiency. Our experiment makes the photon the first physical system for which each of the main loopholes has been closed, albeit in different experiments.

  14. Decoherence-free emergence of macroscopic local realism for entangled photons in a cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portolan, S.; Rossi, F.; Di Stefano, O.

    2006-02-15

    We investigate the influence of environmental noise on polarization entangled light generated by parametric emission in a cavity. By adopting a recent separability criterion, we show that (i) self-stimulation may suppress the detrimental influence of noise on entanglement, but (ii) once it becomes effective, a noise-equipped classical model of parametric emission provides the same results of quantum theory with respect to the separability criterion. More generally we also show that, in the macroscopic limit, it is not possible to observe violations of local realism with measurements of finite order n-particle correlations only. These results provide a prototypical case of themore » emergence of macroscopic local realism in the presence of strong entanglement even in the absence of decoherence.« less

  15. Parameter Estimation with Entangled Photons Produced by Parametric Down-Conversion

    NASA Technical Reports Server (NTRS)

    Cable, Hugo; Durkin, Gabriel A.

    2010-01-01

    We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.

  16. Parameter estimation with entangled photons produced by parametric down-conversion.

    PubMed

    Cable, Hugo; Durkin, Gabriel A

    2010-07-02

    We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.

  17. Quantum correlation of fiber-based telecom-band photon pairs through standard loss and random media.

    PubMed

    Sua, Yong Meng; Malowicki, John; Lee, Kim Fook

    2014-08-15

    We study quantum correlation and interference of fiber-based telecom-band photon pairs with one photon of the pair experiencing multiple scattering in a random medium. We measure joint probability of two-photon detection for signal photon in a normal channel and idler photon in a channel, which is subjected to two independent conditions: standard loss (neutral density filter) and random media. We observe that both conditions degrade the correlation of signal and idler photons, and depolarization of the idler photon in random medium can enhance two-photon interference at certain relative polarization angles. Our theoretical calculation on two-photon polarization correlation and interference as a function of mean free path is in agreement with our experiment data. We conclude that quantum correlation of a polarization-entangled photon pair is better preserved than a polarization-correlated photon pair as one photon of the pair scatters through a random medium.

  18. Photon losses depending on polarization mixedness

    NASA Astrophysics Data System (ADS)

    Memarzadeh, L.; Mancini, S.

    2010-01-01

    We introduce a quantum channel describing photon losses depending on the degree of polarization mixedness. This can be regarded as a model of quantum channel with correlated errors between discrete and continuous degrees of freedom. We consider classical information over a continuous alphabet encoded on weak coherent states as well as classical information over a discrete alphabet encoded on single photons using dual rail representation. In both cases we study the one-shot capacity of the channel and its behaviour in terms of correlation between losses and polarization mixedness.

  19. Entanglement indicators for quantum optical fields: three-mode multiport beamsplitters EPR interference experiments

    NASA Astrophysics Data System (ADS)

    Ryu, Junghee; Marciniak, Marcin; Wieśniak, Marcin; Żukowski, Marek

    2018-04-01

    We generalize a new approach to entanglement conditions for light of undefined photons numbers given in Żukowski et al (2017 Phys. Rev. A 95 042113) for polarization correlations to a broader family of interferometric phenomena. Integrated optics allows one to perform experiments based upon multiport beamsplitters. To observe entanglement effects one can use multi-mode parametric down-conversion emissions. When the structure of the Hamiltonian governing the emissions has (infinitely) many equivalent Schmidt decompositions into modes (beams), one can have perfect EPR-like correlations of numbers of photons emitted into ‘conjugate modes’ which can be monitored at spatially separated detection stations. We provide entanglement conditions for experiments involving three modes on each side, and three-input-three-output multiport beamsplitters, and show their violations by bright squeezed vacuum states. We show that a condition expressed in terms of averages of observed rates is a much better entanglement indicator than a related one for the usual intensity variables. Thus, the rates seem to emerge as a powerful concept in quantum optics, especially for fields of undefined intensities.

  20. Highly efficient entanglement swapping and teleportation at telecom wavelength

    PubMed Central

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  1. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-03-20

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  2. Relativity, entanglement and the physical reality of the photon

    NASA Astrophysics Data System (ADS)

    Tiwari, S. C.

    2002-04-01

    Recent experiments on the classic Einstein-Podolsky-Rosen (EPR) setting claim to test the compatibility between nonlocal quantum entanglement and the (special) theory of relativity. Confirmation of quantum theory has led to the interpretation that Einstein's image of physical reality for each photon in the EPR pair cannot be maintained. A detailed critique on two representative experiments is presented following the original EPR notion of local realism. It is argued that relativity does not enter into the picture, however for the Bell-Bohm version of local realism in terms of hidden variables such experiments are significant. Of the two alternatives, namely incompleteness of quantum theory for describing an individual quantum system, and the ensemble view, it is only the former that has been ruled out by the experiments. An alternative approach gives a statistical ensemble interpretation of the observed data, and the significant conclusion that these experiments do not deny physical reality of the photon is obtained. After discussing the need for a photon model, a vortex structure is proposed based on the space-time invariant property-spin, and pure gauge fields. To test the prime role of spin for photons and the angular-momentum interpretation of electromagnetic fields, experimental schemes feasible in modern laboratories are suggested.

  3. The influence of atmospheric turbulence on partially coherent two-photon entangled field

    NASA Astrophysics Data System (ADS)

    Qiu, Y.; She, W.

    2012-09-01

    The propagation of a two-photon field from down-conversion of a partially coherent Gaussian Schell-model (GSM) pump beam in free space has been reported. However, the propagation of this two-photon field through a turbulent atmosphere has not been investigated yet. In this paper, an analytical expression of the coincidence count rate of the two-photon entangled field is derived. Unlike what has been reported, the field is from a parameter down-conversion of a partially coherent dark hollow pump beam and propagates through a turbulent atmosphere. The effects of the propagation parameters on the coincidence count rate are evaluated and illustrated. The results show that the pump beam parameters and atmospheric turbulence can evidently affect the detection probability of the photon pair at two different positions. It is found that the detection probability of the two-photon field is higher, and thus less susceptible to turbulence, if the field is produced by a lower mode of partially coherent pump beam.

  4. Holographic storage of biphoton entanglement.

    PubMed

    Dai, Han-Ning; Zhang, Han; Yang, Sheng-Jun; Zhao, Tian-Ming; Rui, Jun; Deng, You-Jin; Li, Li; Liu, Nai-Le; Chen, Shuai; Bao, Xiao-Hui; Jin, Xian-Min; Zhao, Bo; Pan, Jian-Wei

    2012-05-25

    Coherent and reversible storage of multiphoton entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although a single photon has been successfully stored in different quantum systems, storage of multiphoton entanglement remains challenging because of the critical requirement for coherent control of the photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates the Bell inequality for 1 μs storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  5. Remote entanglement between a single atom and a Bose-Einstein condensate.

    PubMed

    Lettner, M; Mücke, M; Riedl, S; Vo, C; Hahn, C; Baur, S; Bochmann, J; Ritter, S; Dürr, S; Rempe, G

    2011-05-27

    Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μs exceeds the photon duration by 2 orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information. © 2011 American Physical Society

  6. Efficient room-temperature source of polarized single photons

    DOEpatents

    Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.

    2007-08-07

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  7. Capsize of polarization in dilute photonic crystals.

    PubMed

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  8. Wide-band polarization controller for Si photonic integrated circuits.

    PubMed

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  9. Characterization of a remote optical element with bi-photons

    NASA Astrophysics Data System (ADS)

    Puhlmann, D.; Henkel, C.; Heuer, A.; Pieplow, G.; Menzel, R.

    2016-02-01

    We present a simple setup that exploits the interference of entangled photon pairs. ‘Signal’ photons are sent through a Mach-Zehnder-like interferometer, while ‘idlers’ are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.

  10. Room Temperature Memory for Few Photon Polarization Qubits

    NASA Astrophysics Data System (ADS)

    Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden

    2014-05-01

    We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

  11. Continuously active interferometer stabilization and control for time-bin entanglement distribution

    DOE PAGES

    Toliver, Paul; Dailey, James M.; Agarwal, Anjali; ...

    2015-02-10

    In this study, we describe a new method enabling continuous stabilization and fine-level phase control of time-bin entanglement interferometers. Using this technique we demonstrate entangled photon transmission through 50 km of standard single-mode fiber. This technique reuses the entangled-pair generation pump which is co-propagated with the transmitted entangled photons. In addition, the co-propagating pump adds minimal noise to the entangled photons which are characterized by measuring a two-photon interference fringe.

  12. Design of ultra compact polarization splitter based on complete photonic band gap

    NASA Astrophysics Data System (ADS)

    Sinha, R. K.; Nagpal, Yogita

    2005-11-01

    Certain select structures in photonic crystals (PhCs) exhibit complete photonic band gap i.e. a frequency region where the photonic band gaps for both polarizations (i.e. transverse electric and transverse magnetic modes) exist and overlap. One of the most fundamental applications of the photonic band gap structures is the design of photonic crystal waveguides, which can be made by inserting linear defects in the photonic crystal structures. By setting closely two parallel 2D PhC waveguides, a directional waveguide coupler can be designed, which can be used to design a polarization splitter. In this paper we design a polarization splitter in a photonic crystal structure composed of two dimensional honeycomb pattern of dielectric rods in air. This photonic crystal structure exhibits a complete photonic band gap that extends from λ = 1.49 μm to λ = 1.61 μm, where lambda is the wavelength in free space, providing a large bandwidth of 120 nm. A polarization splitter can be made by designing a polarization selective coupler. The coupling lengths at various wavelengths for both polarizations have been calculated using the Finite Difference Time Domain method. It has been shown that the coupling length, for TE polarization is much smaller as compared to that for the TM polarization. This principle is used to design a polarization splitter of length 32 μm at λ = 1.55 μm. Further, the spectral response of the extinction ratios for both polarizations in the two waveguides at propagation distance of 32 μm has been studied.

  13. Waveguide-mode polarization gaps in square spiral photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan

    2015-09-01

    We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.

  14. Entangled quantum key distribution over two free-space optical links.

    PubMed

    Erven, C; Couteau, C; Laflamme, R; Weihs, G

    2008-10-13

    We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.

  15. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states.

    PubMed

    Han, Jia-Xing; Hu, Yuan; Jin, Yu; Zhang, Guo-Feng

    2016-04-07

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.

  16. Advanced tests of nonlocality with entangled photons

    NASA Astrophysics Data System (ADS)

    Christensen, Bradley G.

    In 1935, Einstein, Podolsky, and Rosen questioned whether quantum mechanics can be complete, as it seemingly does not adhere to a natural view of reality: local realism, which is the notion that an event can only be influenced by events in the past lightcone, and can only influence events in the future lightcone. This question sparked a philosophical debate that lasted for three decades, until John Bell demonstrated that not only are quantum mechanics and local realism philosophically incompatible, but they predict different statistical results for an appropriate set of measurements on entangled particles, which changed the debate to a scientific discussion. Since then, Bell inequality violations have occurred in a plethora of systems, hinting that local realism is indeed wrong. However, every experiment had imperfections that complicated the interpretation -- the experiments had so-called "loopholes" which allowed local realism to persist. In this manuscript, we present our work in using optimized sources of entangled photons to perform the long-sought loophole-free Bell test. This landmark experiment invalidates local realism to the best that science will allow. Beyond answering questions on reality, these Bell tests have a important application in generating provably-secure private random numbers, which then can be used as a seed for cryptographic applications. Not only do we demonstrate that nonlocality must exist, but we begin an experimental exploration in an attempt to understand and quantify this nonlocality. We do so by considering all theories that obey no-signaling (or relativistic causality). In our experiments, we observe the counter-intuitive feature of measuring more nonlocality with less entangled states. We also place a bound on the predictive power of any theory that obeys relativistic causality. And finally, we are able to measure quantum correlations only attainable through complex qubits. This work merely begins to probe the quantum boundary

  17. Entangled Two Photon Absorption Cross Section on the 808 nm Region for the Common Dyes Zinc Tetraphenylporphyrin and Rhodamine B.

    PubMed

    Villabona-Monsalve, Juan P; Calderón-Losada, Omar; Nuñez Portela, M; Valencia, Alejandra

    2017-10-19

    We report the measurement of the entangled two-photon absorption (ETPA) cross section, σ E , at 808 nm on organic chromophores in solution in a low photon flux regime. We performed measurements on zinc tetraphenylporphyrin (ZnTPP) in toluene and rhodamine B (RhB) in methanol. This is, to the best of our knowledge, the first time that σ E is measured for RhB. Additionally, we report a study of the dependence of σ E on the molecular concentration for both molecular systems. In contrast to previous experiments, our measurements are based on detecting the pairs of photons that are transmitted by the molecular system. By using a coincidence count circuit it was possible to improve the signal-to-noise ratio. This type of work is important for the development of spectroscopic and microscopic techniques using entangled photons.

  18. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  19. Rapid creation of distant entanglement by multiphoton resonant fluorescence

    NASA Astrophysics Data System (ADS)

    Cohen, Guy Z.; Sham, L. J.

    2013-12-01

    We study a simple, effective, and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multiphoton Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel effect, to selective pairing of photon holes (photon absences in the fluorescent signals). As a result, two odd photon number detections at the outgoing beams herald trion entanglement creation, and subsequent reduction of the trions to the spin ground states leads to spin-spin entanglement. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, nonideal, and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities.

  20. Measuring qutrit-qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon.

    PubMed

    Inoue, R; Yonehara, T; Miyamoto, Y; Koashi, M; Kozuma, M

    2009-09-11

    Three-dimensional entanglement of orbital angular momentum states of an atomic qutrit and a single photon qutrit has been observed. Their full state was reconstructed using quantum state tomography. The fidelity to the maximally entangled state of Schmidt rank 3 exceeds the threshold 2/3. This result confirms that the density matrix cannot be decomposed into an ensemble of pure states of Schmidt rank 1 or 2. That is, the Schmidt number of the density matrix must be equal to or greater than 3.

  1. Single photon detector with high polarization sensitivity.

    PubMed

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  2. Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Mrowiński, P.; Emmerling, M.; Schneider, C.; Reithmaier, J. P.; Misiewicz, J.; Höfling, S.; Sek, G.

    2018-04-01

    In this work, we discuss a method to control the polarization anisotropy of spontaneous emission from neutral excitons confined in quantum-dot-like nanostructures, namely single epitaxial InAs quantum dashes emitting at telecom wavelengths. The nanostructures are embedded inside lithographically defined, in-plane asymmetric photonic mesa structures, which generate polarization-dependent photonic confinement. First, we study the influence of the photonic confinement on the polarization anisotropy of the emission by photoluminescence spectroscopy, and we find evidence of different contributions to a degree of linear polarization (DOLP), i.e., from the quantum dash and the photonic mesa, in total giving rise to DOLP =0.85 . Then, we perform finite-difference time-domain simulations of photonic confinement, and we calculate the DOLP in a dipole approximation showing well-matched results for the established model. Furthermore, by using numerical calculations, we demonstrate several types of photonic confinements where highly linearly polarized emission with DOLP of about 0.9 is possible by controlling the position of a quantum emitter inside the photonic structure. Then, we elaborate on anisotropic quantum emitters allowing for exceeding DOLP =0.95 in an optimized case, and we discuss the ways towards efficient linearly polarized single photon source at telecom bands.

  3. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.

    PubMed

    Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia

    2018-03-26

    We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.

  4. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jia-Xing; Hu, Yuan; Jin, Yu

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for bothmore » systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.« less

  5. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  6. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  7. Phase-Tuned Entangled State Generation between Distant Spin Qubits.

    PubMed

    Stockill, R; Stanley, M J; Huthmacher, L; Clarke, E; Hugues, M; Miller, A J; Matthiesen, C; Le Gall, C; Atatüre, M

    2017-07-07

    Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ^{(+)}⟩ and |ψ^{(-)}⟩ states of 61.6±2.3% and a record-high entanglement generation rate of 7.3 kHz between distant qubits.

  8. Phase-Tuned Entangled State Generation between Distant Spin Qubits

    NASA Astrophysics Data System (ADS)

    Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.

    2017-07-01

    Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.

  9. Quantum key distribution with an entangled light emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurementsmore » also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.« less

  10. Robust distant-entanglement generation using coherent multiphoton scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-03-01

    The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.

  11. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals

    PubMed Central

    Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2016-01-01

    Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377

  12. Interferometric weak measurement of photon polarization

    NASA Astrophysics Data System (ADS)

    Iinuma, Masataka; Suzuki, Yutaro; Taguchi, Gen; Kadoya, Yutaka; Hofmann, Holger F.

    2011-10-01

    We realize a minimum back-action quantum non-demolition measurement of variable strength on photon polarization in the diagonal(PM) basis by two-mode path interference. This method uses the phase difference between the positive (P) and negative (M) superpositions in the interference between the horizontal (H) and vertical (V) polarized paths in the input beam. Although the interference can not occur when the H and V polarizations are distinguishable, a well-controlled amount of interference is induced by erasing the H and V information using a coherent rotation of polarization toward a common diagonal polarization. This method is particularly suitable for the realization of weak measurements, where the control of the back-action is essential.

  13. Dynamic entanglement transfer in a double-cavity optomechanical system

    NASA Astrophysics Data System (ADS)

    Huan, Tiantian; Zhou, Rigui; Ian, Hou

    2015-08-01

    We give a theoretical study of a double-cavity system in which a mechanical resonator beam is coupled to two cavity modes on both sides through radiation pressures. The indirect coupling between the cavities via the resonator sets up a correlation in the optomechanical entanglements between the two cavities with the common resonator. This correlation initiates an entanglement transfer from the intracavity photon-phonon entanglements to an intercavity photon-photon entanglement. Using numerical solutions, we show two distinct regimes of the optomechanical system, in which the indirect entanglement either builds up and eventually saturates or undergoes a death-and-revival cycle, after a time lapse for initiating the cooperative motion of the left and right cavity modes.

  14. Witnessing entanglement without entanglement witness operators

    PubMed Central

    Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto

    2016-01-01

    Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625

  15. Witnessing entanglement without entanglement witness operators.

    PubMed

    Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto

    2016-10-11

    Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.

  16. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  17. Two-Photon Emission of a Hydrogenlike Atom with Photon Polarization and Electron Spin States Taken into Account

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2017-02-01

    The process of two-photon emission ( Ze)* → ( Ze) + 2 γ of a hydrogenlike atom is considered with spin states of the electron and polarization of the photons taken into account, which had not been done before. A general expression for the probability of the process per unit time has been obtained for different polarization states of the photons with a formulation of hard and soft selection rules for the quantum numbers m and l. It is shown that by virtue of the established specifics of the properties of the two-photon emission process (absence of a Zeeman effect and dependence of the probability on the polarization states of the photons), it can in principle be identified against the background of single-photon emission ( Ze)* → ( Ze) + γ, despite the presence of additional small factors: 1) α = e 2/ ћc ≈ 1/137 of the perturbation theory in e, and 2) the square of the atomic expansion parameter ( Zα)2 in the expression for the probability.

  18. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.

    PubMed

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-10-15

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.

  19. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    PubMed Central

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  20. Qubit-qubit entanglement dynamics control via external classical pumping and Kerr nonlinearity mediated by a single detuned cavity field powered by two-photon processes

    NASA Astrophysics Data System (ADS)

    Ateto, M. S.

    2017-11-01

    The nonlinear time-dependent two-photon Hamiltonian of a couple of classically pumped independent qubits is analytically solved, and the corresponding time evolution unitary operator, in an exact form, is derived. Using the concurrence, entanglement dynamics between the qubits under the influence of a wide range of effective parameters are examined and, in detail, analyzed. Observations analysis is documented with aid of the field phase-space distribution Wigner function. A couple of initial qubit states is considered, namely similar excited states and a Bell-like pure state. It is demonstrated that an initial Bell-like pure state is as well typical initial qubits setting for robust, regular and a high degree of entanglement. Moreover, it is established that high-constant Kerr media represent an effective tool for generating periodical entanglement at fixed time cycles of maxima reach unity forever when qubits are initially in a Bell-like pure state. Further, it is showed that the medium strength of the classical pumping stimulates efficiently qubits entanglement, specially, when the interaction occurs off resonantly. However, the high-intensity pumping thermalizes the coherent distribution of photons, thus, the least photons number is used and, hence, the least minimum degree of qubits entanglement could be created. Furthermore, when the cavity field and external pumping are detuned, the external pumping acts like an auxiliary effective frequency for the cavity, as a result, the field Gaussian distribution acquires linear chirps, and consequently, more entanglement revivals appear in the same cycle during timescale.

  1. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    NASA Astrophysics Data System (ADS)

    Li, Tao; Deng, Fu-Guo

    2015-10-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  2. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-10-27

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  3. Robust Distant Entanglement Generation Using Coherent Multiphoton Scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-02-01

    We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.

  4. Robust distant entanglement generation using coherent multiphoton scattering.

    PubMed

    Chan, Ching-Kit; Sham, L J

    2013-02-15

    We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.

  5. Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogyan, A.

    We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

  6. Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide.

    PubMed

    Zhang, Zhe-Yong; Dong, Yu-Li; Zhang, Sheng-Li; Zhu, Shi-Qun

    2013-09-09

    Polarization-dependent photon switch is one of the most important ingredients in building future large-scale all-optical quantum network. We present a scheme for a single-photon switch in a one-dimensional coupled-resonator waveguide, where N(a) Λ-type three-level atoms are individually embedded in each of the resonator. By tuning the interaction between atom and field, we show that an initial incident photon with a certain polarization can be transformed into its orthogonal polarization state. Finally, we use the fidelity as a figure of merit and numerically evaluate the performance of our photon switch scheme in varieties of system parameters, such as number of atoms, energy detuning and dipole couplings.

  7. Satellite-to-Ground Entanglement-Based Quantum Key Distribution.

    PubMed

    Yin, Juan; Cao, Yuan; Li, Yu-Huai; Ren, Ji-Gang; Liao, Sheng-Kai; Zhang, Liang; Cai, Wen-Qi; Liu, Wei-Yue; Li, Bo; Dai, Hui; Li, Ming; Huang, Yong-Mei; Deng, Lei; Li, Li; Zhang, Qiang; Liu, Nai-Le; Chen, Yu-Ao; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-11-17

    We report on entanglement-based quantum key distribution between a low-Earth-orbit satellite equipped with a space borne entangled-photon source and a ground observatory. One of the entangled photons is measured locally at the satellite, and the other one is sent via a down link to the receiver in the Delingha ground station. The link attenuation is measured to vary from 29 dB at 530 km to 36 dB at 1000 km. We observe that the two-photon entanglement survives after being distributed between the satellite and the ground, with a measured state fidelity of ≥0.86. We then perform the entanglement-based quantum key distribution protocol and obtain an average final key rate of 3.5  bits/s at the distance range of 530-1000 km.

  8. 1.5- μm single photon counting using polarization-independent up-conversion detector

    NASA Astrophysics Data System (ADS)

    Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.

  9. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    PubMed

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-28

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  10. Spatial and polarization entanglement of lasing patterns and related dynamic behaviors in laser-diode-pumped solid-state lasers.

    PubMed

    Otsuka, K; Chu, S-C; Lin, C-C; Tokunaga, K; Ohtomo, T

    2009-11-23

    To provide the underlying physical mechanism for formations of spatial- and polarization-entangled lasing patterns (namely, SPEPs), we performed experiments using a c-cut Nd:GdVO(4) microchip laser with off-axis laser-diode pumping. This extends recent work on entangled lasing pattern generation from an isotropic laser, where such a pattern was explained only in terms of generalized coherent states (GCSs) formed by mathematical manipulation. Here, we show that polarization-resolved transverse patterns can be well explained by the transverse mode-locking of distinct orthogonal linearly polarized Ince-Gauss (IG) mode pairs rather than GCSs. Dynamic properties of SPEPs were experimentally examined in both free-running and modulated conditions to identify long-term correlations of IG mode pairs over time. The complete chaos synchronization among IG mode pairs subjected to external perturbation is also demonstrated.

  11. Polarization-maintaining reflection-mode THz time-domain spectroscopy of a polyimide based ultra-thin narrow-band metamaterial absorber.

    PubMed

    Astorino, Maria Denise; Fastampa, Renato; Frezza, Fabrizio; Maiolo, Luca; Marrani, Marco; Missori, Mauro; Muzi, Marco; Tedeschi, Nicola; Veroli, Andrea

    2018-01-31

    This paper reports the design, the microfabrication and the experimental characterization of an ultra-thin narrow-band metamaterial absorber at terahertz frequencies. The metamaterial device is composed of a highly flexible polyimide spacer included between a top electric ring resonator with a four-fold rotational symmetry and a bottom ground plane that avoids misalignment problems. Its performance has been experimentally demonstrated by a custom polarization-maintaining reflection-mode terahertz time-domain spectroscopy system properly designed in order to reach a collimated configuration of the terahertz beam. The dependence of the spectral characteristics of this metamaterial absorber has been evaluated on the azimuthal angle under oblique incidence. The obtained absorbance levels are comprised between 67% and 74% at 1.092 THz and the polarization insensitivity has been verified in transverse electric polarization. This offers potential prospects in terahertz imaging, in terahertz stealth technology, in substance identification, and in non-planar applications. The proposed compact experimental set-up can be applied to investigate arbitrary polarization-sensitive terahertz devices under oblique incidence, allowing for a wide reproducibility of the measurements.

  12. Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fang-Fang; Li, Tao; Long, Gui-Lu, E-mail: gllong@tsinghua.edu.cn

    Hyperentanglement, defined as the entanglement in multiple degrees of freedom (DOFs) of a photonic quantum system, has attracted much attention recently as it can improve the channel capacity of quantum communication largely. Here we present a refined hyperentanglement purification protocol (hyper-EPP) for two-photon systems in mixed hyperentangled states in both the spatial-mode and polarization DOFs, assisted by cavity quantum electrodynamics. By means of the spatial (polarization) quantum state transfer process, the quantum states that are discarded in the previous hyper-EPPs can be preserved. That is, the spatial (polarization) state of a four-photon system with high fidelity can be transformed intomore » another four-photon system with low fidelity, not disturbing its polarization (spatial) state, which makes this hyper-EPP take the advantage of possessing a higher efficiency.« less

  13. Polarization operator of a photon in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katkov, V. M., E-mail: V.M.Katkov@inp.nsk.su

    2016-08-15

    The polarization operator of a photon in a static uniform magnetic field has been studied at photon energies both above and below the threshold of electron–positron pair production by a photon. In the first order of the fine-structure constant α, expressions for the refractive index of a photon with a certain polarization in both low and high fields as compared to the critical field H{sub 0} = 4.41 × 10{sup 13} G have been obtained. Both the purely quantum range of photon energies, where the particles of a pair are produced at the lowest Landau levels, and the region ofmore » applicability of the semiclassical approximation in the case of the population of high energy levels have been considered. A general spectral integral formula has been obtained with divergent threshold terms separated in an explicit form.« less

  14. Minimal tomography with entanglement witnesses

    NASA Astrophysics Data System (ADS)

    Zhu, Huangjun; Teo, Yong Siah; Englert, Berthold-Georg

    2010-05-01

    We introduce informationally complete measurements whose outcomes are entanglement witnesses and so answer the question of how many witnesses need to be measured to decide whether an arbitrary state is entangled or not: as many as the dimension of the state space. The witnesses can be measured successively; if all of them give an inconclusive result, one exploits their tomographic completeness for a reconstruction of the quantum state and can then determine its entanglement properties by data processing. There are witnesses that are optimal for this purpose. The optimized witness-based measurement can provide exponential improvement with respect to witness efficiency in high-dimensional Hilbert spaces, at the price of a reduction in the tomographic efficiency. We describe a systematic construction and illustrate the matter with the example of two qubits. For the case of two polarization qubits of photons, we show how existing technology can be used to implement the optimized witnesses in a very efficient way. Owing to the details of the implementation, which actually measures the eigenstate basis of the witness rather than solely determining the expectation value of the witness, one does not need to measure more than six witnesses in this example of a 16-dimensional state space.

  15. Transverse correlations in multiphoton entanglement

    NASA Astrophysics Data System (ADS)

    Wen, Jianming; Rubin, Morton H.; Shih, Yanhua

    2007-10-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N -photon state. The Klyshko’s two-photon advanced-wave picture is generalized to the N -photon case.

  16. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  17. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our schememore » is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.« less

  18. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  19. Indistinguishable near-infrared single photons from an individual organic molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebbia, Jean-Baptiste; Tamarat, Philippe; Lounis, Brahim

    2010-12-15

    By using the zero-phonon line emission of an individual organic molecule, we realized a source of indistinguishable single photons in the near infrared. A Hong-Ou-Mandel interference experiment is performed and a two-photon coalescence probability higher than 50% at 2 K is obtained. The contribution of the temperature-dependent dephasing processes to the two-photon interference contrast is studied. We show that the molecule delivers nearly ideal indistinguishable single photons at the lowest temperatures when the dephasing is nearly lifetime limited. This source is used to generate postselected polarization-entangled photon pairs as a test bench for applications in quantum information.

  20. A probabilistic quantum communication protocol using mixed entangled channel

    NASA Astrophysics Data System (ADS)

    Choudhury, Binayak S.; Dhara, Arpan

    2016-05-01

    Qubits are realized as polarization state of photons or as superpositions of the spin states of electrons. In this paper we propose a scheme to probabilistically teleport an unknown arbitrary two-qubit state using a non-maximally entangled GHZ- like state and a non-maximally Bell state simultaneously as quantum channels. We also discuss the success probability of our scheme. We perform POVM in the protocol which is operationally advantageous. In our scheme we show that the non-maximal quantum resources perform better than maximal resources.

  1. Quantum Communication without Alignment using Multiple-Qubit Single-Photon States

    NASA Astrophysics Data System (ADS)

    Aolita, L.; Walborn, S. P.

    2007-03-01

    We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell’s inequalities, quantum dense coding, and quantum teleportation.

  2. Tripartite counterfactual entanglement distribution.

    PubMed

    Chen, Yuanyuan; Gu, Xuemei; Jiang, Dong; Xie, Ling; Chen, Lijun

    2015-08-10

    We propose two counterfactual schemes for tripartite entanglement distribution without any physical particles travelling through the quantum channel. One scheme arranges three participators to connect with the absorption object by using switch. Using the "chained" quantum Zeno effect, three participators can accomplish the task of entanglement distribution with unique counterfactual interference probability. Another scheme uses Michelson-type interferometer to swap two entanglement pairs such that the photons of three participators are entangled. Moreover, the distance of entanglement distribution is doubled as two distant absorption objects are used. We also discuss the implementation issues to show that the proposed schemes can be realized with current technology.

  3. Self-collimating photonic crystal polarization beam splitter.

    PubMed

    Zabelin, V; Dunbar, L A; Le Thomas, N; Houdré, R; Kotlyar, M V; O'Faolain, L; Krauss, T F

    2007-03-01

    We present theoretical and experimental results of a polarization splitter device that consists of a photonic crystal (PhC) slab, which exhibits a large reflection coefficient for TE and a high transmission coefficient for TM polarization. The slab is embedded in a PhC tile operating in the self-collimation mode. Embedding the polarization-discriminating slab in a PhC with identical lattice symmetry suppresses the in-plane diffraction losses at the PhC-non-PhC interface. The optimization of the PhC-non-PhC interface is thereby decoupled from the optimization of the polarizing function. Transmissions as high as 35% for TM- and 30% for TE-polarized light are reported.

  4. Reconstructing high-dimensional two-photon entangled states via compressive sensing

    PubMed Central

    Tonolini, Francesco; Chan, Susan; Agnew, Megan; Lindsay, Alan; Leach, Jonathan

    2014-01-01

    Accurately establishing the state of large-scale quantum systems is an important tool in quantum information science; however, the large number of unknown parameters hinders the rapid characterisation of such states, and reconstruction procedures can become prohibitively time-consuming. Compressive sensing, a procedure for solving inverse problems by incorporating prior knowledge about the form of the solution, provides an attractive alternative to the problem of high-dimensional quantum state characterisation. Using a modified version of compressive sensing that incorporates the principles of singular value thresholding, we reconstruct the density matrix of a high-dimensional two-photon entangled system. The dimension of each photon is equal to d = 17, corresponding to a system of 83521 unknown real parameters. Accurate reconstruction is achieved with approximately 2500 measurements, only 3% of the total number of unknown parameters in the state. The algorithm we develop is fast, computationally inexpensive, and applicable to a wide range of quantum states, thus demonstrating compressive sensing as an effective technique for measuring the state of large-scale quantum systems. PMID:25306850

  5. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source

    PubMed Central

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-01-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159

  6. Entanglement-enhanced quantum metrology in a noisy environment

    NASA Astrophysics Data System (ADS)

    Wang, Kunkun; Wang, Xiaoping; Zhan, Xiang; Bian, Zhihao; Li, Jian; Sanders, Barry C.; Xue, Peng

    2018-04-01

    Quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic inputs provides a path towards practical quantum metrology.

  7. Qudit-teleportation for photons with linear optics.

    PubMed

    Goyal, Sandeep K; Boukama-Dzoussi, Patricia E; Ghosh, Sibasish; Roux, Filippus S; Konrad, Thomas

    2014-04-01

    Quantum Teleportation, the transfer of the state of one quantum system to another without direct interaction between both systems, is an important way to transmit information encoded in quantum states and to generate quantum correlations (entanglement) between remote quantum systems. So far, for photons, only superpositions of two distinguishable states (one "qubit") could be teleported. Here we show how to teleport a "qudit", i.e. a superposition of an arbitrary number d of distinguishable states present in the orbital angular momentum of a single photon using d beam splitters and d additional entangled photons. The same entanglement resource might also be employed to collectively teleport the state of d/2 photons at the cost of one additional entangled photon per qubit. This is superior to existing schemes for photonic qubits, which require an additional pair of entangled photons per qubit.

  8. Qudit-Teleportation for photons with linear optics

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Boukama-Dzoussi, Patricia E.; Ghosh, Sibasish; Roux, Filippus S.; Konrad, Thomas

    2014-04-01

    Quantum Teleportation, the transfer of the state of one quantum system to another without direct interaction between both systems, is an important way to transmit information encoded in quantum states and to generate quantum correlations (entanglement) between remote quantum systems. So far, for photons, only superpositions of two distinguishable states (one ``qubit'') could be teleported. Here we show how to teleport a ``qudit'', i.e. a superposition of an arbitrary number d of distinguishable states present in the orbital angular momentum of a single photon using d beam splitters and d additional entangled photons. The same entanglement resource might also be employed to collectively teleport the state of d/2 photons at the cost of one additional entangled photon per qubit. This is superior to existing schemes for photonic qubits, which require an additional pair of entangled photons per qubit.

  9. SeaQuaKE: Sea-optimized Quantum Key Exchange

    DTIC Science & Technology

    2015-01-01

    of photon pairs in both polarization [3] and time-bin [4] degrees of freedom simultaneously. Entanglement analysis components in both the...greater throughput per entangled photon pair compared to alternative sources that encode in only a Photon -pair source Time-bin entanglement ...Polarization Entanglement & Pair Generation Hyperentangled Photon Pair Source •Wavelength availability • Power • Pulse rate Time-bin Mux • Waveguide vs

  10. Heralded entanglement between solid-state qubits separated by three metres.

    PubMed

    Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R

    2013-05-02

    Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

  11. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    PubMed Central

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  12. Nonlocal effects on the polarization state of a photon, induced by distant absorbers

    NASA Technical Reports Server (NTRS)

    Ryff, Luis Carlos B.

    1994-01-01

    A variant of a Franson's two-photon correlation experiment is discussed, in which the linear polarization state of one of the photons depends on the path followed in the interferometer. It is shown that although the path difference is greater than the coherence length, the photon can be found in a polarization state represented by the superposition of the polarization states associated to the paths when there is coincident detection. Since the photons, produced via parametric down-conversion, are fairly well localized in space and time, the situation in which one of the photons is detected before the other can reach the interferometer raises an intriguing point: it seems that in some cases the second photon would have to be described by two wave packets simultaneously. Unlike previous experiments, in which nonlocal effects were induced by means of polarizers of phase shifters, in the proposed experiment nonlocal effects can be induced by means of variable absorbers.

  13. High-dimensional entanglement certification

    NASA Astrophysics Data System (ADS)

    Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto

    2016-06-01

    Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs.

  14. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations

  15. Integrated devices for quantum information and quantum simulation with polarization encoded qubits

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-06-01

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.

  16. Qudit-Teleportation for photons with linear optics

    PubMed Central

    Goyal, Sandeep K.; Boukama-Dzoussi, Patricia E.; Ghosh, Sibasish; Roux, Filippus S.; Konrad, Thomas

    2014-01-01

    Quantum Teleportation, the transfer of the state of one quantum system to another without direct interaction between both systems, is an important way to transmit information encoded in quantum states and to generate quantum correlations (entanglement) between remote quantum systems. So far, for photons, only superpositions of two distinguishable states (one “qubit”) could be teleported. Here we show how to teleport a “qudit”, i.e. a superposition of an arbitrary number d of distinguishable states present in the orbital angular momentum of a single photon using d beam splitters and d additional entangled photons. The same entanglement resource might also be employed to collectively teleport the state of d/2 photons at the cost of one additional entangled photon per qubit. This is superior to existing schemes for photonic qubits, which require an additional pair of entangled photons per qubit. PMID:24686274

  17. Understanding interference experiments with polarized light through photon trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz, A.S.; Davidovic, M.; Bozic, M.

    2010-04-15

    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectoriesmore » in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.« less

  18. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection.

    PubMed

    Meng, Xin; Pan, Hui; Lu, Tao; Chen, Zhixin; Chen, Yanru; Zhang, Di; Zhu, Shenmin

    2018-08-10

    Fibers with self-assembled photonic structures are of special interest due to their unique photonic properties and potential applications in the smart textile industry. Inspired by nature, the photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNCs) and the fibers showed tunably brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of the mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, a cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective color reflection of the composite fibers in the polarized condition showed a typical red-shift tendency with an increase in the PVA content, which was attributed to the increased helical pitch of the CNC. Furthermore, the polarized angle could also alter the reflected colors. Owing to their excellent selective reflection properties under the polarized condition, CNC-based photonic fibers are promising as the next-generation of smart fibers, applied in the fields of specific display and sensing.

  19. Quantum Sensing and Communications Being Developed for Nanotechnology

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Seibert, Marc A.

    2003-01-01

    An interdisciplinary quantum communications and sensing research effort has been underway at the NASA Glenn Research Center since the summer of 2000. Researchers in the Communications Technology, Instrumentation and Controls, and Propulsion and Turbomachinery Divisions have been working together to study and develop techniques that use the principle of quantum entanglement (QE). This work is supported principally by the Nanotechnology Base R&T program at Glenn. As applied to communications and sensing, QE is an emerging technology that holds promise as a new and innovative way to communicate faster and farther, and to sense, measure, and image environmental properties in ways that are not possible with existing technology. Quantum entangled photons are "inseparable" as described by a wave function formalism. For two entangled photons, the term "inseparable" means that one cannot describe one photon without completely describing the other. This inseparability gives rise to what appears as "spooky," or nonintuitive, behavior because of the quantum nature of the process. For example, two entangled photons of lower energy can be created simultaneously from a single photon of higher energy in a process called spontaneous parametric down-conversion. Our research is focused on the use of polarization-entangled photons generated by passing a high-energy (blue) photon through a nonlinear beta barium borate crystal to generate two red photons that have orthogonal, but entangled, polarization states. Although the actual polarization state of any one photon is not known until it is measured, the act of measuring the polarization of one photon completely determines the polarization state of its twin because of entanglement. This unique relationship between the photons provides extra information about the system. For example, entanglement makes it easy to distinguish entangled photons from other photons impinging on a detector. For many other applications, ranging from quantum

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grice, Warren P; Bennink, Ryan S; Evans, Philip G

    A growing number of experiments make use of multiple pairs of photons generated in the process of spontaneous parametric down-conversion. We show that entanglement in unwanted degrees of freedom can adversely affect the results of these experiments. We also discuss techniques to reduce or eliminate spectral and spatial entanglement, and we present results from two-photon polarization-entangled source with almost no entanglement in these degrees of freedom. Finally, we present two methods for the generation of four-photon polarization- entangled states. In one of these methods, four-photon can be generated without the need for intermediate two-photon entanglement.

  1. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of

  2. Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation.

    PubMed

    Qi, Bing

    2006-09-15

    We propose a new quantum key distribution protocol in which information is encoded on continuous variables of a single photon. In this protocol, Alice randomly encodes her information on either the central frequency of a narrowband single-photon pulse or the time delay of a broadband single-photon pulse, while Bob randomly chooses to do either frequency measurement or time measurement. The security of this protocol rests on the energy-time uncertainty relation, which prevents Eve from simultaneously determining both frequency and time information with arbitrarily high resolution. Since no interferometer is employed in this scheme, it is more robust against various channel noises, such as polarization and phase fluctuations.

  3. Narrow-band radio flares from red dwarf stars

    NASA Technical Reports Server (NTRS)

    White, Stephen M.; Kundu, Mukul R.; Jackson, Peter D.

    1986-01-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles.

  4. GENERAL: Teleportation of a Bipartite Entangled Coherent State via a Four-Partite Cluster-Type Entangled State

    NASA Astrophysics Data System (ADS)

    Chen, Hui-Na; Liu, Jin-Ming

    2009-10-01

    We present an optical scheme to almost completely teleport a bipartite entangled coherent state using a four-partite cluster-type entangled coherent state as quantum channel. The scheme is based on optical elements such as beam splitters, phase shifters, and photon detectors. We also obtain the average fidelity of the teleportation process. It is shown that the average fidelity is quite close to unity if the mean photon number of the coherent state is not too small.

  5. High-dimensional entanglement certification

    PubMed Central

    Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto

    2016-01-01

    Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935

  6. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.

    PubMed

    Jin, Jeongwan; Saglamyurek, Erhan; Puigibert, Marcel lí Grimau; Verma, Varun; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-10-02

    Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realizations of photonic quantum information technologies due to the ease of performing single qubit manipulations, the availability of polarization-entangled photon-pair sources, and the possibility of leveraging existing fiber-optic links for distributing qubits over long distances. An optical quantum memory compatible with this platform could serve as a building block for these technologies. Here we present the first experimental demonstration of an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. We show that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.

  7. Polarization entangled cluster state generation in a lithium niobate chip

    NASA Astrophysics Data System (ADS)

    Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.

    2016-10-01

    We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.

  8. Testing for entanglement with periodic coarse graining

    NASA Astrophysics Data System (ADS)

    Tasca, D. S.; Rudnicki, Łukasz; Aspden, R. S.; Padgett, M. J.; Souto Ribeiro, P. H.; Walborn, S. P.

    2018-04-01

    Continuous-variable systems find valuable applications in quantum information processing. To deal with an infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to experimentally demonstrate entanglement criteria based on a periodic structure of coarse-grained measurements. The periodization of the measurements allows an efficient evaluation of entanglement using spatial masks acting as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility of the derived criteria with a success rate in entanglement detection of ˜60 % relative to 7344 studied cases.

  9. Hong-Ou-Mandel interference of entangled Hermite-Gauss modes

    NASA Astrophysics Data System (ADS)

    Zhang, Yingwen; Prabhakar, Shashi; Rosales-Guzmán, Carmelo; Roux, Filippus S.; Karimi, Ebrahim; Forbes, Andrew

    2016-09-01

    Hong-Ou-Mandel (HOM) interference is demonstrated experimentally for entangled photon pairs in the Hermite-Gauss (HG) basis. We use two Dove prisms in one of the paths of the photons to manipulate the entangled quantum state that enters the HOM interferometer. It is demonstrated that, when entangled photon pairs are in a symmetric Bell state in the Laguerre-Gauss (LG) basis, they will remain symmetric after decomposing them into the HG basis, thereby resulting in no coincidence events after the HOM interference. On the other hand, if the photon pairs are in an antisymmetric Bell state in the LG basis, then they will also be antisymmetric in the HG basis, thereby producing only coincidence events as a result of the HOM interference.

  10. Quantum storage of a photonic polarization qubit in a solid.

    PubMed

    Gündoğan, Mustafa; Ledingham, Patrick M; Almasi, Attaallah; Cristiani, Matteo; de Riedmatten, Hugues

    2012-05-11

    We report on the quantum storage and retrieval of photonic polarization quantum bits onto and out of a solid state storage device. The qubits are implemented with weak coherent states at the single photon level, and are stored for a predetermined time of 500 ns in a praseodymium doped crystal with a storage and retrieval efficiency of 10%, using the atomic frequency comb scheme. We characterize the storage by using quantum state tomography, and find that the average conditional fidelity of the retrieved qubits exceeds 95% for a mean photon number μ=0.4. This is significantly higher than a classical benchmark, taking into account the poissonian statistics and finite memory efficiency, which proves that our crystal functions as a quantum storage device for polarization qubits. These results extend the storage capabilities of solid state quantum light matter interfaces to polarization encoding, which is widely used in quantum information science.

  11. Simultaneous entanglement swapping of multiple orbital angular momentum states of light.

    PubMed

    Zhang, Yingwen; Agnew, Megan; Roger, Thomas; Roux, Filippus S; Konrad, Thomas; Faccio, Daniele; Leach, Jonathan; Forbes, Andrew

    2017-09-21

    High-bit-rate long-distance quantum communication is a proposed technology for future communication networks and relies on high-dimensional quantum entanglement as a core resource. While it is known that spatial modes of light provide an avenue for high-dimensional entanglement, the ability to transport such quantum states robustly over long distances remains challenging. To overcome this, entanglement swapping may be used to generate remote quantum correlations between particles that have not interacted; this is the core ingredient of a quantum repeater, akin to repeaters in optical fibre networks. Here we demonstrate entanglement swapping of multiple orbital angular momentum states of light. Our approach does not distinguish between different anti-symmetric states, and thus entanglement swapping occurs for several thousand pairs of spatial light modes simultaneously. This work represents the first step towards a quantum network for high-dimensional entangled states and provides a test bed for fundamental tests of quantum science.Entanglement swapping in high dimensions requires large numbers of entangled photons and consequently suffers from low photon flux. Here the authors demonstrate entanglement swapping of multiple spatial modes of light simultaneously, without the need for increasing the photon numbers with dimension.

  12. Polarization of photons scattered by electrons in any spectral distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zhe; Lin, Hai-Nan; Jiang, Yunguo, E-mail: jiangyg@ihep.ac.cn

    On the basis of the quantum electrodynamics, we present a generic formalism of the polarization for beamed monochromatic photons scattered by electrons in any spectral distribution. The formulae reduce to the components of the Fano matrix when electrons are at rest. We mainly investigate the polarization in three scenarios, i.e., electrons at rest, isotropic electrons with a power-law spectrum, and thermal electrons. If the incident beam is polarized, the polarization is reduced significantly by isotropic electrons at large viewing angles; the degree of polarization caused by thermal electrons is about half of that caused by power-law electrons. If the incidentmore » bean is unpolarized, soft γ-rays can lead to about 15% polarization at viewing angles around π/4. For isotropic electrons, one remarkable feature is that the polarization as a function of the incident photon energy always peaks roughly at 1 MeV; this is valid for both the thermal and power-law cases. This feature can be used to distinguish the model of the inverse Compton scattering from that of the synchrotron radiation.« less

  13. Measurement of the Asymmetry of Photoproduction of π- Mesons on Linearly Polarized Deuterons by Linearly Polarized Photons

    NASA Astrophysics Data System (ADS)

    Gauzshtein, V. V.; Zevakov, S. A.; Levchuk, M. I.; Loginov, A. Yu.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh.; Toporkov, D. K.; Shestakov, Yu. V.

    2018-05-01

    The first results of a double polarization experiment to extract the asymmetry of the reaction of photoproduction of a π- meson by a linearly polarized photon on a tensor-polarized deuteron in the energy range of the virtual photon (300-700 MeV) are presented. The measurements were performed on an internal tensor-polarized deuterium target in the VEPP-3 electron-positron storage ring for the electron beam energy equal to 2 GeV. The experiment employed the method of recording two protons and the scattered electron in coincidence. The obtained measurement results are compared with the theoretical predictions obtained in the momentum approximation with allowance for πN and NN rescattering in the final state.

  14. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes.

    PubMed

    Krenn, Mario; Malik, Mehul; Erhard, Manuel; Zeilinger, Anton

    2017-02-28

    The identification of orbital angular momentum (OAM) as a fundamental property of a beam of light nearly 25 years ago has led to an extensive body of research around this topic. The possibility that single photons can carry OAM has made this degree of freedom an ideal candidate for the investigation of complex quantum phenomena and their applications. Research in this direction has ranged from experiments on complex forms of quantum entanglement to the interaction between light and quantum states of matter. Furthermore, the use of OAM in quantum information has generated a lot of excitement, as it allows for encoding large amounts of information on a single photon. Here, we explain the intuition that led to the first quantum experiment with OAM 15 years ago. We continue by reviewing some key experiments investigating fundamental questions on photonic OAM and the first steps to applying these properties in novel quantum protocols. At the end, we identify several interesting open questions that could form the subject of future investigations with OAM.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  15. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes

    PubMed Central

    Malik, Mehul; Erhard, Manuel; Zeilinger, Anton

    2017-01-01

    The identification of orbital angular momentum (OAM) as a fundamental property of a beam of light nearly 25 years ago has led to an extensive body of research around this topic. The possibility that single photons can carry OAM has made this degree of freedom an ideal candidate for the investigation of complex quantum phenomena and their applications. Research in this direction has ranged from experiments on complex forms of quantum entanglement to the interaction between light and quantum states of matter. Furthermore, the use of OAM in quantum information has generated a lot of excitement, as it allows for encoding large amounts of information on a single photon. Here, we explain the intuition that led to the first quantum experiment with OAM 15 years ago. We continue by reviewing some key experiments investigating fundamental questions on photonic OAM and the first steps to applying these properties in novel quantum protocols. At the end, we identify several interesting open questions that could form the subject of future investigations with OAM. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069773

  16. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  17. Generation of entanglement and its decay in a noisy environment

    NASA Astrophysics Data System (ADS)

    Huang, Jiehui

    Entanglement plays a central role in distinguishing quantum mechanics from classical physics. Due to its fantastic properties and many potential applications in quantum information science, entanglement is attracting more and more attention. This thesis focuses on the generation of entanglement and its decay in a noisy environment. In the first experimental scheme to entangle two thermal fields, an atomic ensemble, composed of many identical four-level atoms, is employed. In the first Raman scattering, this atomic ensemble emits write signal photons after the pumping by a weak write pulse, accompanied by the transfer from one lower level to the other for some atoms. Similarly, the atomic ensemble emits read signal photons after the driving by a strong read pulse, and the ensemble turns back to its ground state after the second Raman scattering. The coherence between the two lower atomic levels plays a key role in establishing the quantum correlation between two emission fields, which is verified through the violation of Cauchy-Schwarz inequality. In particular, the controllable time delay between the two emission fields actually means the storage time of photonic information in this system, which sheds light on some potential applications, such as quantum memory. In the second experimental scheme for the generation of spatially separated multiphoton entanglement, two or more identical optical cavities are aligned along a bee-line, and a four-level atom runs through these cavities sequentially. By appropriately adjusting the passage time of the atom in each cavity or the Rabi frequency of the classical pumping laser, a photon can be generated via the interaction between the excited atom and the cavity modes. This adiabatic passage model is an effective method to map atomic coherence to photonic state in cavity QED, thus all photons in different cavities quantum-mechanically correlate with the moving atom. When a final detection is made on this atom, a generalized n-photon

  18. Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements

    NASA Astrophysics Data System (ADS)

    Jiang, YuXiao; Guo, PengLiang; Gao, ChengYan; Wang, HaiBo; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for single-photon transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.

  19. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  20. Spin entanglement, decoherence and Bohm's EPR paradox.

    PubMed

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  1. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    PubMed

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  2. Self-healing of quantum entanglement after an obstruction.

    PubMed

    McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J; Roux, Filippus S; Forbes, Andrew

    2014-01-01

    Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.

  3. Experimental entanglement of 25 individually accessible atomic quantum interfaces.

    PubMed

    Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming

    2018-04-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.

  4. Experimental entanglement of 25 individually accessible atomic quantum interfaces

    PubMed Central

    Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng

    2018-01-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing. PMID:29725621

  5. Design framework for entanglement-distribution switching networks

    NASA Astrophysics Data System (ADS)

    Drost, Robert J.; Brodsky, Michael

    2016-09-01

    The distribution of quantum entanglement appears to be an important component of applications of quantum communications and networks. The ability to centralize the sourcing of entanglement in a quantum network can provide for improved efficiency and enable a variety of network structures. A necessary feature of an entanglement-sourcing network node comprising several sources of entangled photons is the ability to reconfigurably route the generated pairs of photons to network neighbors depending on the desired entanglement sharing of the network users at a given time. One approach to such routing is the use of a photonic switching network. The requirements for an entanglement distribution switching network are less restrictive than for typical conventional applications, leading to design freedom that can be leveraged to optimize additional criteria. In this paper, we present a mathematical framework defining the requirements of an entanglement-distribution switching network. We then consider the design of such a switching network using a number of 2 × 2 crossbar switches, addressing the interconnection of these switches and efficient routing algorithms. In particular, we define a worst-case loss metric and consider 6 × 6, 8 × 8, and 10 × 10 network designs that optimize both this metric and the number of crossbar switches composing the network. We pay particular attention to the 10 × 10 network, detailing novel results proving the optimality of the proposed design. These optimized network designs have great potential for use in practical quantum networks, thus advancing the concept of quantum networks toward reality.

  6. Effects of the Stark Shift on the Evolution of the Field Entropy and Entanglement in the Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Fang, Mao Fa

    1996-01-01

    The evolution of the field entropy in the two-photon JCM in the presence of the Stark shift is investigated, and the effects of the dynamic Stark shift on the evolution of the field entropy and entanglement between the atom and field, are examined. The results show that the dynamic Stark shift plays an important role in the evolution of the field entropy in two-photon processes.

  7. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    NASA Astrophysics Data System (ADS)

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  8. Photonic qubits for remote quantum information processing

    NASA Astrophysics Data System (ADS)

    Maunz, P.; Olmschenk, S.; Hayes, D.; Matsukevich, D. N.; Duan, L.-M.; Monroe, C.

    2009-05-01

    Quantum information processing between remote quantum memories relies on a fast and faithful quantum channel. Recent experiments employed both, the photonic polarization and frequency qubits, in order to entangle remote atoms [1, 2], to teleport quantum information [3] and to operate a quantum gate between distant atoms. Here, we compare the dierent schemes used in these experiments and analyze the advantages of the dierent choices of atomic and photonic qubits and their coherence properties. [4pt] [1] D. L. Moehring et al. Nature 449, 68 (2007).[0pt] [2] D. N. Matsukevich et al. Phys. Rev. Lett. 100, 150404 2008).[0pt] [3] S. Olmschenk et al. Science, 323, 486 (2009).

  9. Schrodinger's catapult II: entanglement between stationary and flying fields

    NASA Astrophysics Data System (ADS)

    Pfaff, W.; Axline, C.; Burkhart, L.; Vool, U.; Reinhold, P.; Frunzio, L.; Jiang, L.; Devoret, M.; Schoelkopf, R.

    Entanglement between nodes is an elementary resource in a quantum network. An important step towards its realization is entanglement between stationary and flying states. Here we experimentally demonstrate entanglement generation between a long-lived cavity memory and traveling mode in circuit QED. A large on/off ratio and fast control over a parametric mixing process allow us to realize conversion with tunable magnitude and duration between standing and flying mode. In the case of half-conversion, we observe correlations between the standing and flying state that confirm the generation of entangled states. We show this for both single-photon and multi-photon states, paving the way for error-correctable remote entanglement. Our system could serve as an essential component in a modular architecture for error-protected quantum information processing.

  10. Teleportation of entanglement over 143 km

    PubMed Central

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-01-01

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel. PMID:26578764

  11. Teleportation of entanglement over 143 km.

    PubMed

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-11-17

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.

  12. Distilling quantum entanglement via mode-matched filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Yuping; Kumar, Prem

    We propose an avenue toward distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems, where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.

  13. Entanglement distillation for quantum communication network with atomic-ensemble memories.

    PubMed

    Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo

    2014-10-06

    Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.

  14. Joint temporal density measurements for two-photon state characterization.

    PubMed

    Kuzucu, Onur; Wong, Franco N C; Kurimura, Sunao; Tovstonog, Sergey

    2008-10-10

    We demonstrate a technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time-resolved single-photon detection by femtosecond up-conversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anticorrelation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.88. The time-domain correlation technique complements existing frequency-domain measurement methods for a more complete characterization of photonic entanglement.

  15. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    NASA Astrophysics Data System (ADS)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  16. Working Beyond Moore’s Limit - Coherent Nonlinear Optical Control of Individual and Coupled Single Electron Doped Quantum Dots

    DTIC Science & Technology

    2015-07-06

    preparation for deterministic spin-photon entanglement ; (3) Demonstration of initialization of the 2 qubit states; (4) Demonstration of nonlocal nuclear...Demonstration of a flying qubit by entanglement of the quantum dot spin polarization with the polarization of a spontaneously emitted photon. Future...coherent optical control steps in preparation for deterministic spin-photon entanglement ; (3) Demonstration of initialization of the 2 qubit states in

  17. Photon polarization version of the GHz-Mermin Gedanken

    NASA Technical Reports Server (NTRS)

    Kiess, Thomas E.

    1992-01-01

    We have defined a photon polarization analog of the Greenberger, Horne, and Zeilinger (GHZ) experiment that was initially proposed for spin-1/2 quanta. Analogs of the ket states and Pauli spin matrix operators are presented.

  18. Entanglement-enhanced lidars for simultaneous range and velocity measurements

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.

    2017-10-01

    Lidar is a well-known optical technology for measuring a target's range and radial velocity. We describe two lidar systems that use entanglement between transmitted signals and retained idlers to obtain significant quantum enhancements in simultaneous measurements of these parameters. The first entanglement-enhanced lidar circumvents the Arthurs-Kelly uncertainty relation for simultaneous measurements of range and radial velocity from the detection of a single photon returned from the target. This performance presumes there is no extraneous (background) light, but is robust to the round-trip loss incurred by the signal photons. The second entanglement-enhanced lidar—which requires a lossless, noiseless environment—realizes Heisenberg-limited accuracies for both its range and radial-velocity measurements, i.e., their root-mean-square estimation errors are both proportional to 1 /M when M signal photons are transmitted. These two lidars derive their entanglement-based enhancements from the use of a unitary transformation that takes a signal-idler photon pair with frequencies ωS and ωI and converts it to a signal-idler photon pair whose frequencies are (ωS+ωI)/2 and (ωS-ωI)/2 . Insight into how this transformation provides its benefits is provided through an analogy to continuous-variable superdense coding.

  19. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-06-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  20. Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons.

    PubMed

    Giustina, Marissa; Versteegh, Marijn A M; Wengerowsky, Sören; Handsteiner, Johannes; Hochrainer, Armin; Phelan, Kevin; Steinlechner, Fabian; Kofler, Johannes; Larsson, Jan-Åke; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Mitchell, Morgan W; Beyer, Jörn; Gerrits, Thomas; Lita, Adriana E; Shalm, Lynden K; Nam, Sae Woo; Scheidl, Thomas; Ursin, Rupert; Wittmann, Bernhard; Zeilinger, Anton

    2015-12-18

    Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

  1. Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems

    NASA Astrophysics Data System (ADS)

    Bleu, O.; Solnyshkov, D. D.; Malpuech, G.

    2018-05-01

    We propose theoretically a method that allows to measure all the components of the quantum geometric tensor (the metric tensor and the Berry curvature) in a photonic system. The method is based on standard optical measurements. It applies to two-band systems, which can be mapped to a pseudospin, and to four-band systems, which can be described by two entangled pseudospins. We apply this method to several specific cases. We consider a 2D planar cavity with two polarization eigenmodes, where the pseudospin measurement can be performed via polarization-resolved photoluminescence. We also consider the s band of a staggered honeycomb lattice with polarization-degenerate modes (scalar photons), where the sublattice pseudospin can be measured by performing spatially resolved interferometric measurements. We finally consider the s band of a honeycomb lattice with polarized (spinor) photons as an example of a four-band model. We simulate realistic experimental situations in all cases. We find the photon eigenstates by solving the Schrödinger equation including pumping and finite lifetime, and then simulate the measurements to finally extract realistic mappings of the k-dependent tensor components.

  2. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    PubMed

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-06-20

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

  3. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    PubMed Central

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  4. Deterministic delivery of remote entanglement on a quantum network.

    PubMed

    Humphreys, Peter C; Kalb, Norbert; Morits, Jaco P J; Schouten, Raymond N; Vermeulen, Raymond F L; Twitchen, Daniel J; Markham, Matthew; Hanson, Ronald

    2018-06-01

    Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7 . Moving beyond current two-node networks 8-13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform 14 . At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.

  5. Geometric metasurface enabling polarization independent beam splitting.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-21

    A polarization independent holographic beam splitter that generates equal-intensity beams based on geometric metasurface is demonstrated. Although conventional geometric metasurfaces have the advantages of working over a broad frequency range and having intuitive design principles, geometric metasurfaces have the limitation that they only work for circular polarization. In this work, Fourier holography is used to overcome this limitation. A perfect overlap resulting from the origin-symmetry of the encoded image enables polarization independent operation of geometric metasurfaces. The designed metasurface beam splitter is experimentally demonstrated by using hydrogenated amorphous silicon, and the device performs consistent beam splitting regardless of incident polarizations as well as wavelengths. Our device can be applied to generate equal-intensity beams for entangled photon light sources in quantum optics, and the design approach provides a way to develop ultra-thin broadband polarization independent components for modern optics.

  6. Counterfactual entanglement distribution without transmitting any particles.

    PubMed

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2014-04-21

    To date, all schemes for entanglement distribution needed to send entangled particles or a separable mediating particle among distant participants. Here, we propose a counterfactual protocol for entanglement distribution against the traditional forms, that is, two distant particles can be entangled with no physical particles travel between the two remote participants. We also present an alternative scheme for realizing the counterfactual photonic entangled state distribution using Michelson-type interferometer and self-assembled GaAs/InAs quantum dot embedded in a optical microcavity. The numerical analysis about the effect of experimental imperfections on the performance of the scheme shows that the entanglement distribution may be implementable with high fidelity.

  7. Three-photon states in nonlinear crystal superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonosyan, D. A.; Kryuchkyan, G. Yu.; Institute for Physical Researches, National Academy of Sciences Ashtarak-2, 0203 Ashtarak

    2011-04-15

    It has been a longstanding goal in quantum optics to realize controllable sources generating joint multiphoton states, particularly photon triplet with arbitrary spectral characteristics. We demonstrate that such sources can be realized via cascaded parametric down-conversion (PDC) in superlattice structures of nonlinear and linear segments. We consider a scheme that involves two parametric processes--{omega}{sub 0{yields}{omega}1}+{omega}{sub 2}, {omega}{sub 2{yields}{omega}1}+{omega}{sub 1} under pulsed pump--and investigate the spontaneous creation of a photon triplet as well as the generation of high-intensity mode in intracavity three-photon splitting. We show the preparation of Greenberger-Horne-Zeilinger polarization-entangled states in cascaded type-II and type-I PDC in the framework ofmore » considering the dual-grid structure that involves two periodically poled crystals. We demonstrate the method of compensation of the dispersive effects in nonlinear segments by appropriately chosen linear dispersive segments of superlattice for preparation of the heralded joint states of two polarized photons. In the case of intracavity three-photon splitting, we concentrate on the investigation of photon-number distributions, third-order photon-number correlation function, as well as the Wigner functions. These quantities are observed both for short interaction time intervals and the over-transient regime, when dissipative effects are essential.« less

  8. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons

    PubMed Central

    Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang

    2016-01-01

    Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276

  9. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    PubMed

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high

  10. Free-space entangled quantum carpets

    NASA Astrophysics Data System (ADS)

    Barros, Mariana R.; Ketterer, Andreas; Farías, Osvaldo Jiménez; Walborn, Stephen P.

    2017-04-01

    The Talbot effect in quantum physics is known to produce intricate patterns in the probability distribution of a particle, known as "quantum carpets," corresponding to the revival and replication of the initial wave function. Recently, it was shown that one can encode a D -level qudit in such a way that the Talbot effect can be used to process the D -dimensional quantum information [Farías et al., Phys. Rev. A 91, 062328 (2015), 10.1103/PhysRevA.91.062328]. Here we introduce a scheme to produce free-propagating "entangled quantum carpets" with pairs of photons produced by spontaneous parametric down-conversion. First we introduce an optical device that can be used to synthesize arbitrary superposition states of Talbot qudits. Sending spatially entangled photon pairs through a pair of these devices produces an entangled pair of qudits. As an application, we show how the Talbot effect can be used to test a D -dimensional Bell inequality. Numerical simulations show that violation of the Bell inequality depends strongly on the amount of spatial correlation in the initial two-photon state. We briefly discuss how our optical scheme might be adapted to matter wave experiments.

  11. Minimal Entanglement Witness from Electrical Current Correlations.

    PubMed

    Brange, F; Malkoc, O; Samuelsson, P

    2017-01-20

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  12. Minimal Entanglement Witness from Electrical Current Correlations

    NASA Astrophysics Data System (ADS)

    Brange, F.; Malkoc, O.; Samuelsson, P.

    2017-01-01

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  13. Experimental Realization of Efficient, Room Temperature Single-Photon Sources with Definite Circular and Linear Polarizations

    NASA Astrophysics Data System (ADS)

    Boutsidis, Christos

    In this thesis I present experimental demonstrations of room-temperature, single-photon sources with definite linear and circular polarizations. Definite photon polarization increases the efficiency of quantum communication systems. In contrast with cryogenic-temperature single-photon sources based on epitaxial quantum dots requiring expensive MBE and nanofabrication, my method utilizes a mature liquid crystal technology, which I made consistent with single-emitter fluorescence microscopy. The structures I have prepared are planar-aligned cholesteric liquid crystals forming 1-D photonic bandgaps for circularly-polarized light, which were used to achieve definite circularly-polarized fluorescence of single emitters doped in this environment. I also used planar-aligned nematic liquid crystals to align single molecules with linear dipole moments and achieved definite linearly-polarized fluorescence. I used single nanocrystal quantum dots, single nanodiamond color-centers, rare-earth-doped nanocrystals, and single terrylene and DiIC18(3) dye molecules as emitters. For nanocrystal quantum dots I observed circular polarization dissymmetry factors as large as ge = --1.6. In addition, I observed circularly-polarized resonances in the fluorescence of emitters within a cholesteric microcavity, with cavity quality factors of up to Q ˜ 250. I also showed that the fluorescence of DiIC18(3) dye molecules in planar-aligned nematic cells exhibits definite linear polarization, with a degree of polarization of rho = --0.58 +/- 0.03. Distributed Bragg reflectors form another type of microcavity that can be used to realize a single-photon source. I characterized the fluorescence from nanocrystal quantum dots doped in the defect layers of such microcavites, both organic and inorganic. Finally, to demonstrate the single-photon properties of single-emitter-doped cholesteric and nematic liquid crystal structures and distributed Bragg reflector microcavities, I present observations of

  14. On-chip continuous-variable quantum entanglement

    NASA Astrophysics Data System (ADS)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  15. Hybrid methods for witnessing entanglement in a microscopic-macroscopic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spagnolo, Nicolo; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Piazzale Aldo Moro 5, I-00185 Roma; Vitelli, Chiara

    2011-09-15

    We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state.more » The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.« less

  16. Role of initial coherence on entanglement dynamics of two qubit X states

    NASA Astrophysics Data System (ADS)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  17. Integrated optic single-ring filter for narrowband phase demodulation

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.

    2017-05-01

    Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.

  18. Parametrically driven hybrid qubit-photon systems: Dissipation-induced quantum entanglement and photon production from vacuum

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-10-01

    We consider a dissipative evolution of a parametrically driven qubit-cavity system under the periodic modulation of coupling energy between two subsystems, which leads to the amplification of counter-rotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists the stabilization of entanglement and quantum correlations between qubits even in the steady state and the compensation of finite qubit relaxation. On the contrary, energy dissipation in qubit subsystems results in enhanced photon production from vacuum for strong modulation but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in the context of quantum information processing and might be of importance for dissipative quantum state engineering.

  19. The Search for Missing Baryons with Linearly Polarized Photons at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Cole, Philip

    2006-05-01

    The set of experiments forming the g8 run took place in Hall B of Jefferson Lab during the summers of 2001 and 2005 These experiments made use of a beam of linearly-polarized photons produced through coherent bremsstrahlung and represent the first time such a probe has been employed at Jefferson Lab. The scientific purpose of g8 is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. With the high-quality beam of the tagged and collimated linearly-polarized photons and the nearly complete angular coverage of the Hall-B spectrometer, we seek to extract the differential cross sections and attendant polarization observables for the photoproduction of vector mesons and kaons at photon energies ranging between 1.3 and 2.2 GeV. We achieved polarizations exceeding 90% and collected over six billion events, which, after our data cuts and analysis, should give us well over 100 times the world's data set. I shall report on the experimental details of establishing the Coherent Bremsstrahlung Facility and present some preliminary results from our first run.

  20. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  1. g8: Physics with Linearly-Polarized Photons in Hall B of JLab

    NASA Astrophysics Data System (ADS)

    Cole, Philip L.

    2001-11-01

    The set of experiments forming the g8 run in Hall B took place this past summer (6/4/01-8/13/01) in Hall B of Jefferson Lab. These experiments make use of a beam of linearly-polarized photons produced through coherent bremsstrahlung and represent the first time such a probe has been employed at Jefferson Lab. Several new and upgraded Hall-B beamline devices were commissioned prior to the production running of g8. The scientific purpose of g8 is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. With the high-quality beam of the tagged and collimated linearly-polarized photons and the nearly complete angular coverage of the Hall-B spectrometer, we will extract the differential cross sections and polarization observables for the photoproduction of vector mesons and kaons at photon energies ranging between 1.9 and 2.1 GeV. We collected over 1.2 trillion triggers. After data cuts, we expect to have 500 times the world's data set on rhos and omegas produced via a beam of linearly-polarized photons. A report on the results of the commissioning of the beamline devices and the progress of the analysis of the g8 run will be presented.

  2. Joint spectral characterization of photon-pair sources

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin; Garay-Palmett, Karina; Cruz-Delgado, Daniel; Cruz-Ramirez, Hector; O'Boyle, Michael F.; Fang, Bin; Lorenz, Virginia O.; U'Ren, Alfred B.; Kwiat, Paul G.

    2018-06-01

    The ability to determine the joint spectral properties of photon pairs produced by the processes of spontaneous parametric downconversion (SPDC) and spontaneous four-wave mixing (SFWM) is crucial for guaranteeing the usability of heralded single photons and polarization-entangled pairs for multi-photon protocols. In this paper, we compare six different techniques that yield either a characterization of the joint spectral intensity or of the closely related purity of heralded single photons. These six techniques include: (i) scanning monochromator measurements, (ii) a variant of Fourier transform spectroscopy designed to extract the desired information exploiting a resource-optimized technique, (iii) dispersive fibre spectroscopy, (iv) stimulated-emission-based measurement, (v) measurement of the second-order correlation function ? for one of the two photons, and (vi) two-source Hong-Ou-Mandel interferometry. We discuss the relative performance of these techniques for the specific cases of a SPDC source designed to be factorable and SFWM sources of varying purity, and compare the techniques' relative advantages and disadvantages.

  3. Quantum entanglement in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila

    2017-10-01

    We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.

  4. Entanglement enhancement in multimode integrated circuits

    NASA Astrophysics Data System (ADS)

    Léger, Zacharie M.; Brodutch, Aharon; Helmy, Amr S.

    2018-06-01

    The faithful distribution of entanglement in continuous-variable systems is essential to many quantum information protocols. As such, entanglement distillation and enhancement schemes are a cornerstone of many applications. The photon subtraction scheme offers enhancement with a relatively simple setup and has been studied in various scenarios. Motivated by recent advances in integrated optics, particularly the ability to build stable multimode interferometers with squeezed input states, a multimodal extension to the enhancement via photon subtraction protocol is studied. States generated with multiple squeezed input states, rather than a single input source, are shown to be more sensitive to the enhancement protocol, leading to increased entanglement at the output. Numerical results show the gain in entanglement is not monotonic with the number of modes or the degree of squeezing in the additional modes. Consequently, the advantage due to having multiple squeezed input states can be maximized when the number of modes is still relatively small (e.g., four). The requirement for additional squeezing is within the current realm of implementation, making this scheme achievable with present technologies.

  5. The generation of entangled states from independent particle sources

    NASA Technical Reports Server (NTRS)

    Rubin, Morton H.; Shih, Yan-Hua

    1994-01-01

    The generation of entangled states of two systems from product states is discussed for the case in which the paths of the two systems do not overlap. A particular method of measuring allows one to project out the nonlocal entangled state. An application to the production of four photon entangled states is outlined.

  6. Spatial EPR entanglement in atomic vapor quantum memory

    NASA Astrophysics Data System (ADS)

    Parniak, Michal; Dabrowski, Michal; Wasilewski, Wojciech

    Spatially-structured quantum states of light are staring to play a key role in modern quantum science with the rapid development of single-photon sensitive cameras. In particular, spatial degree of freedom holds a promise to enhance continous-variable quantum memories. Here we present the first demonstration of spatial entanglement between an atomic spin-wave and a photon measured with an I-sCMOS camera. The system is realized in a warm atomic vapor quantum memory based on rubidium atoms immersed in inert buffer gas. In the experiment we create and characterize a 12-dimensional entangled state exhibiting quantum correlations between a photon and an atomic ensemble in position and momentum bases. This state allows us to demonstrate the Einstein-Podolsky-Rosen paradox in its original version, with an unprecedented delay time of 6 μs between generation of entanglement and detection of the atomic state.

  7. Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Shirakawa, Akira; Tanisho, Motoyuki; Ueda, Ken-Ichi

    2006-12-01

    Structural birefringent properties of a hollow-core photonic-bandgap fiber were carefully investigated and applied to all-fiber chirped-pulse amplification as a compressor. The group birefringence of as high as 6.9×10-4 and the dispersion splitting by as large as 149 ps/nm/km between the two principal polarization modes were observed at 1557 nm. By launching the amplifier output to one of the polarization modes a 17-dB polarization extinction ratio was obtained without any pulse degradation originating from polarization-mode dispersion. A hybrid fiber stretcher effectively compensates the peculiar dispersion of the photonic-bandgap fiber and pedestal-free 440-fs pulses with a 1-W average power and 21-nJ pulse energy were obtained. Polarization-maintaining fiber-pigtail output of high-power femtosecond pulses is useful for various applications.

  8. Experimental purification of two-atom entanglement.

    PubMed

    Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J

    2006-10-19

    Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.

  9. Quantum coherence and entanglement control for atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  10. Measurement-induced entanglement for excitation stored in remote atomic ensembles.

    PubMed

    Chou, C W; de Riedmatten, H; Felinto, D; Polyakov, S V; van Enk, S J; Kimble, H J

    2005-12-08

    A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.

  11. Generalized quantum interference of correlated photon pairs

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  12. Generalized quantum interference of correlated photon pairs.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  13. Circularly polarized guided modes in dielectrically chiral photonic crystal fiber.

    PubMed

    Li, Junqing; Su, Qiyao; Cao, Yusheng

    2010-08-15

    The effect of dielectric chirality on the polarization states and mode indices of guided modes in photonic crystal fiber (PCF) is investigated by a modified plane-wave expansion (PWE) method. Using a solid-core chiral PCF as a numerical example, we show that circular polarization is the eigenstate of the fundamental mode. Mode index divergence between right-handed circularly polarized (RCP) and left-handed circularly polarized (LCP) states is demonstrated. Chirality's effect on mode index and circular birefringence (CB) in such a PCF is found to be similar to that in bulk chiral media.

  14. Atomic vapor quantum memory for a photonic polarization qubit.

    PubMed

    Cho, Young-Wook; Kim, Yoon-Ho

    2010-12-06

    We report an experimental realization of an atomic vapor quantum memory for the photonic polarization qubit. The performance of the quantum memory for the polarization qubit, realized with electromagnetically-induced transparency in two spatially separated ensembles of warm Rubidium atoms in a single vapor cell, has been characterized with quantum process tomography. The process fidelity better than 0.91 for up to 16 μs of storage time has been achieved.

  15. Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-01

    We propose quantum information processing schemes to generate and swap entangled states based on the interactions between flying photons and quantum dots (QDs) confined within optical cavities for quantum communication. To produce and distribute entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between the photonic qubits of flying photons of consumers (Alice and Bob) and electron-spin qubits of a provider (trust center, or TC), the TC employs the interactions of the QD-cavity system, which is composed of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, the TC constructs an entanglement channel (Bell state and 4-qubit GHZ state) to link one consumer with another through entanglement swapping, which can be realized to exploit a probe photon with interactions of the QD-cavity systems and single-qubit measurements without Bell state measurement, for quantum communication between consumers. Consequently, the TC, which has quantum nodes (QD-cavity systems), can accomplish constructing the entanglement channel (authenticated channel) between two separated consumers from the distributions of entangled states and entanglement swapping. Furthermore, our schemes using QD-cavity systems, which are feasible with a certain probability of success and high fidelity, can be experimentally implemented with technology currently in use.

  16. Quantum entanglement: facts and fiction - how wrong was Einstein after all?

    PubMed

    Nordén, Bengt

    2016-01-01

    Einstein was wrong with his 1927 Solvay Conference claim that quantum mechanics is incomplete and incapable of describing diffraction of single particles. However, the Einstein-Podolsky-Rosen paradox of entangled pairs of particles remains lurking with its 'spooky action at a distance'. In molecules quantum entanglement can be viewed as basis of both chemical bonding and excitonic states. The latter are important in many biophysical contexts and involve coupling between subsystems in which virtual excitations lead to eigenstates of the total Hamiltonian, but not for the separate subsystems. The author questions whether atomic or photonic systems may be probed to prove that particles or photons may stay entangled over large distances and display the immediate communication with each other that so concerned Einstein. A dissociating hydrogen molecule is taken as a model of a zero-spin entangled system whose angular momenta are in principle possible to probe for this purpose. In practice, however, spins randomize as a result of interactions with surrounding fields and matter. Similarly, no experiment seems yet to provide unambiguous evidence of remaining entanglement between single photons at large separations in absence of mutual interaction, or about immediate (superluminal) communication. This forces us to reflect again on what Einstein really had in mind with the paradox, viz. a probabilistic interpretation of a wave function for an ensemble of identically prepared states, rather than as a statement about single particles. Such a prepared state of many particles would lack properties of quantum entanglement that make it so special, including the uncertainty upon which safe quantum communication is assumed to rest. An example is Zewail's experiment showing visible resonance in the dissociation of a coherently vibrating ensemble of NaI molecules apparently violating the uncertainty principle. Einstein was wrong about diffracting single photons where space-like anti

  17. Experimental Estimation of Entanglement at the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander

    2010-03-01

    Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.

  18. Polarized two-photon fluorescence excitation spectra of indole and benzimidazole

    NASA Astrophysics Data System (ADS)

    Anderson, Bruce E.; Jones, Richard D.; Rehms, Aden A.; Ilich, Predrag; Callis, Patrik R.

    1986-03-01

    Polarized two-photon fluorescence excitation spectra of indole in hexane, benzimidazole in isopropanol, and benzimidazole cation in methanol-H 2SO 4, all at 0.2 M and 25°C are reported for the excitation range 470-600 nm, the region of their L b, and L a bands. Relative two-photon absorptivities are deduced by correcting for different fluorescence response and are compared to toluene's L b band. The indole integrated absorptivity is about 10 times greater than that of toluene. The L a band of indole appears less dominant than in one-photon but still outweighs the L b band by a factor of 4. The two-photon polarization spectrum for indole indicates that the L a origin lies ≈500-1000 cm -1 above the L b origin in hexane. The benzimidazoles absorb only about twice as strongly as toluene and show strong vibronic peaks; the L a, bands are only faintly seen. Two-photon properties calculated from INDO/S CI wavefunctions with doubly excited configurations are in good agreement with those of indole, but predict the benzimidazole TPA to be several times stronger than observed. For the cation, the predicted results are nearly two orders of magnitude too high.

  19. Behavior of light polarization in photon-scalar interaction

    NASA Astrophysics Data System (ADS)

    Azizi, Azizollah; Nasirimoghadam, Soudabe

    2017-11-01

    Quantum theories of gravity help us to improve our insight into the gravitational interactions. Motivated by the interesting effect of gravity on the photon trajectory, we treat a quantum recipe concluding a classical interaction of light and a massive object such as the sun. We use the linear quantum gravity to compute the classical potential of a photon interacting with a massive scalar. The leading terms have a traditional 1/r subordinate and demonstrate a polarization-dependent behavior. This result challenges the equivalence principle; attractive and/or repulsive interactions are admissible.

  20. Laguerre-polynomial-weighted squeezed vacuum: generation and its properties of entanglement

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhang, Kuizheng; Zhang, Haoliang; Xu, Xuexiang; Hu, Liyun

    2018-02-01

    We theoretically prepare a kind of two-mode entangled non-Gaussian state generated by combining quantum catalysis and parametric-down amplifier operated on the two-mode squeezing vacuum state. We then investigate the entanglement properties by examining Von Neumann entropy, EPR correlation, squeezing effect and the fidelity of teleportation. It is shown that only Von Neumann entropy can be enhanced by both single- and two-mode catalysis in a small squeezing region, while the other properties can be enhanced only by two-mode catalysis including symmetrical and asymmetrical cases. A comparison among these properties shows that the squeezing and the EPR correlation definitely lead to the improvement of both the entanglement and the fidelity, and the region of enhanced fidelity can be seen as a sub-region of the enhanced entanglement which indicates that the entanglement is not always beneficial for the fidelity. In addition, the effect of photon-loss after catalysis on the fidelity is considered and the symmetrical two-photon catalysis may present better behavior than the symmetrical single-photon case against the decoherence in a certain region.