Sample records for nasa aquarius mission

  1. Aquarius and the Aquarius/SAC-D Mission

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Torrusio, S.

    2010-01-01

    Aquarius is a combination L-band radiometer and scatterometer designed to map the salinity field at the ocean surface from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA space agency (NASA) and Argentine space agency (CONAE). The mission is composed of two parts: (a) The Aquarius instrument being developed as part of NASA.s Earth System Science Pathfinder (ESSP) program; and (b) SAC-D the fourth spacecraft service platform in the CONAE Satellite de Aplicaciones Cientificas (SAC) program. The primary focus of the mission is to monitor the seasonal and interannual variations of the salinity field in the open ocean. The mission also meets the needs of the Argentine space program for monitoring the environment and for hazard detection and includes several instruments related to these goals.

  2. Improving an Atlantic Fisheries DSS using Sea Surface Salinity Data from NASA's Aquarius Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    This report assesses the capacity of incorporating NASA#s Aquarius SSS (sea surface salinity) data into the SMAST (School of Marine Science and Technology) DSS for Fisheries Science. This data will enhance the SMAST DSS by providing SSS over a large area. Aquarius is a focused satellite mission designed to measure global SSS. SSS mapping is limited because conventional in situ SSS sampling is too sparse to give a large-scale view of the salinity variability. Aquarius will resolve missing physical processes that link the water cycle, the climate, and the ocean. The SMAST Fisheries program provides a DSS for fisheries science. It collects fisheries and environmental data, integrates them into a suite of data assimilation ocean models, and provides hindcasts, nowcasts, and forecasts for fisheries research, fisheries management, and the fishery industry. Currently, SMAST is using SSS data from the National Oceanic and Atmospheric Administration#s National Data Buoy Center. The SMAST DSS would be enhanced with SSS data from the Aquarius mission.

  3. Aquarius Mission Technical Overview

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Yueh, S.; Dinnat, E.; Pellerano, F.

    2007-01-01

    Aquarius is an L-band microwave instrument being developed to map the surface salinity field of the oceans from space. It is part of the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for early in 2009. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  4. Aquarius/SAC-D mission overview

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Kim, Yunjin; Caruso, Daniel; Lagerloef, Gary; Colomb, Raul; Yueh, Simon; Le Vine, David

    2006-09-01

    Aquarius/SAC-D is a cooperative international mission developed between the National Aeronautics and Space Administration (NASA) of United States of America (USA) and the Comisión Nacional de Actividades Espaciales (CONAE) of Argentina. The overall mission objective is to contribute to the understanding of the total Earth system and the consequences of the natural and man-made changes in the environment of the planet. Major themes are: ocean surface salinity, carbon, water cycle, geo-hazards, and cryosphere.

  5. NASA Aquarius Maps Ocean Salinity Structure

    NASA Image and Video Library

    2012-06-12

    NASA Aquarius instrument on the Aquarius/SAC-D observatory gives an unprecedented look at a key factor involved in the formation of an oceanic wave feature in the tropical Pacific and Atlantic Oceans that influences global climate patterns.

  6. The Aquarius Mission: Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    Koblinsky, Chester; Chao, Y.; deCharon, A.; Edelstein, W.; Hildebrand, P.; Lagerloef, G.; LeVine, D.; Pellerano, F.; Rahmat-Samii, Y.; Ruf, C.

    2001-01-01

    Aquarius is a new satellite mission concept to study the impact of the global water cycle on the ocean, including the response of the ocean to buoyancy forcing and the subsequent feedback of the ocean on the climate. The measurement objective of Aquarius is sea surface salinity, which reflects the concentration of freshwater at the ocean surface. Salinity affects the dielectric constant of sea water and, consequently, the radiometric emission of the sea surface to space. Rudimentary space observations with an L-band radiometer were first made from Skylab in the mid-70s and numerous aircraft missions of increasing quality and improved technology have been conducted since then. Technology is now available to carry out a global mission, which includes both an accurate L band (1.413 Ghz) radiometer and radar system in space and a global array of in situ observations for calibration and validation, in order to address key NASA Earth Science Enterprise questions about the global cycling of water and the response of the ocean circulation to climate change. The key scientific objectives of Aquarius examine the cycling of water at the ocean's surface, the response of the ocean circulation to buoyancy forcing, and the impact of buoyancy forcing on the ocean's thermal feedback to the climate. Global surface salinity will also improve our ability to model the surface solubility chemistry needed to estimate the air-sea exchange of CO2. In order to meet these science objectives, the NASA Salinity Sea Ice Working Group over the past three years has concluded that the mission measurement goals should be better than 0.2 practical salinity units (psu) accuracy, 100 km resolution, and weekly to revisits. The Aquarius mission proposes to meet these measurement requirements through a real aperture dual-polarized L band radiometer and radar system. This system can achieve the less than 0.1 K radiometric temperature measurement accuracy that is required. A 3 m antenna at approx. 600km

  7. Accomplishments of Aquarius: NASA's first global Sea Surface Salinity Mission: a review of the technical findings to date

    NASA Astrophysics Data System (ADS)

    Sen, Amit

    2014-10-01

    Launched 10 June 2011, the NASA's Aquarius instrument onboard the Argentine built and managed Satélite de Aplicaciones Científicas (SAC-D) has been tirelessly observing the open oceans, confirming and adding new knowledge to the not so vast measured records of our Earth's global oceans. This paper reviews the data collected over the last 3 years, it's findings, challenges and future work that is at hand for the sleepless oceanographers, hydrologists and climate scientists. Although routine data is being collected, a snapshot is presented from almost 3-years of flawless operations showing new discoveries and possibilities of lot more in the future. Repetitive calibration and validation of measurements from Aquarius continue together with comparison of the data to the existing array of Argo temperature/salinity profiling floats, measurements from the recent Salinity Processes in the Upper Ocean Regional Study (SPURS) in-situ experiment and research, and to the data collected from the European Soil Moisture Ocean Salinity (SMOS) mission. This all aids in the optimization of computer model functions to improve the basic understanding of the water cycle over the oceans and its ties to climate. The Aquarius mission operations team also has been tweaking and optimizing algorithms, reprocessing data as needed, and producing salinity movies that has never been seen before. A brief overview of the accomplishments, technical findings to date will be covered in this paper.

  8. Aquarius SAC-D Post-Launch Briefing

    NASA Image and Video Library

    2011-06-10

    Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  9. Aquarius SAC-D Post-Launch Briefing

    NASA Image and Video Library

    2011-06-10

    From left, George Diller, NASA Public Affairs Officer; Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate; Hector Timerman, Foreign Minister of Argentina, Buenos Aires; Michael Freilich, NASA Earth Science Division Director, NASA Headquarters; and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, are seen at the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  10. Aquarius SAC-D Post-Launch Briefing

    NASA Image and Video Library

    2011-06-10

    Seated from left, George Diller, NASA Public Affairs Officer; Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate; Hector Timerman, Foreign Minister of Argentina, Buenos Aires; Michael Freilich, NASA Earth Science Division Director, NASA Headquarters; and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, are seen at the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  11. Aquarius SAC-D Post-Launch Briefing

    NASA Image and Video Library

    2011-06-10

    Michael Freilich, NASA Earth Science Division Director, NASA Headquarters, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  12. Aquarius SAC-D Launch

    NASA Image and Video Library

    2011-06-09

    A Delta II rocket launches with the Aquarius/SAC-D spacecraft payload from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Friday, June 10, 2011. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  13. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; hide

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  14. Aquarius SAC-D Launch

    NASA Image and Video Library

    2011-06-10

    A Delta II rocket launches with the Aquarius/SAC-D spacecraft payload from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Friday, June 10, 2011. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  15. Aquarius SAC-D Post-Launch Briefing

    NASA Image and Video Library

    2011-06-10

    Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  16. Aquarius SAC-D Post-Launch Briefing

    NASA Image and Video Library

    2011-06-10

    Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, looks on as other panelest speak during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  17. Aquarius SAC-D Post-Launch Briefing

    NASA Image and Video Library

    2011-06-10

    Hector Timerman, Foreign Minister of Argentina, Buenos Aires, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  18. Aquarius SAC-D Launch

    NASA Image and Video Library

    2011-06-08

    The Delta II rocket with it's Aquarius/SAC-D spacecraft payload is seen shortly after the service structure is rolled back on Thursday, June 9, 2011, at Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  19. Aquarius SAC-D Launch

    NASA Image and Video Library

    2011-06-08

    The Delta II rocket with it's Aquarius/SAC-D spacecraft payload is seen as the service structure is rolled back on Thursday, June 9, 2011, at Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  20. Aquarius SAC-D Post-Launch Briefing

    NASA Image and Video Library

    2011-06-10

    Hector Timerman, Foreign Minister of Argentina, Buenos Aires, left, Michael Freilich, NASA Earth Science Division Director, NASA Headquarters, Washington, center, and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, laugh at the start of the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)

  1. Launch and on-orbit checkout of Aquarius/SAC-D Observatory: an international remote sensing satellite mission measuring sea surface salinity

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Caruso, Daniel; Durham, David; Falcon, Carlos

    2011-11-01

    The Aquarius/SAC-D observatory was launch in June 2011 from Vandenberg Air Force Base (VAFB), in California, USA. This mission is the fourth joint earth-observation endeavor between NASA and CONAE. The primary objective of the Aquarius/SAC-D mission is to investigate the links between global water cycle, ocean circulation and climate by measuring Sea Surface Salinity (SSS). Over the last year, the observatory successfully completed system level environmental and functional testing at INPE, Brazil and was transported to VAFB for launch operations. This paper will present the challenges of this mission, the system, the preparation of the spacecraft, instruments, testing, launch, inorbit checkout and commissioning of this Observatory in space.

  2. Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.

    2012-01-01

    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.

  3. Tools, Services & Support of NASA Salinity Mission Data Archival Distribution through PO.DAAC

    NASA Astrophysics Data System (ADS)

    Tsontos, V. M.; Vazquez, J.

    2017-12-01

    The Physical Oceanography Distributed Active Center (PO.DAAC) serves as the designated NASA repository and distribution node for all Aquarius/SAC-D and SMAP sea surface salinity (SSS) mission data products in close collaboration with the projects. In addition to these official mission products, that by December 2017 will include the Aquarius V5.0 end-of-mission data, PO.DAAC archives and distributes high-value, principal investigator led satellite SSS products, and also datasets from NASA's "Salinity Processes in the Upper Ocean Regional Study" (SPURS 1 & 2) field campaigns in the N. Atlantic salinity maximum and high rainfall E. Tropical Pacific regions. Here we report on the status of these data holdings at PO.DAAC, and the range of data services and access tools that are provided in support of NASA salinity. These include user support and data discovery services, OPeNDAP and THREDDS web services for subsetting/extraction, and visualization via LAS and SOTO. Emphasis is placed on newer capabilities, including PODAAC's consolidated web services (CWS) and advanced L2 subsetting tool called HiTIDE.

  4. Extreme Underwater Mission on This Week @NASA – July 29, 2016

    NASA Image and Video Library

    2016-07-29

    The 21st NASA Extreme Environment Mission Operations got underway July 21 in the Florida Keys. NASA astronauts Reid Wiseman and Megan McArthur are part of the international crew of NEEMO-21 aquanauts performing research during the 16-day mission, which takes place about 60 feet below the surface of the Atlantic Ocean, in the Aquarius habitat – the world's only undersea science station. Simulated spacewalks are designed to evaluate tools and mission operation techniques that could be used on future space missions. NEEMO-21’s objectives include testing a mini DNA sequencer similar to the one NASA astronaut Kate Rubins also will test aboard the International Space Station, and a telemedicine device that will be used for future space applications. The mission also will simulate communications delays like those that would be encountered on a mission to Mars. Also, Space Launch System Work Platforms, All-Electric X-Plane Arrives, Asteroid Mission Technology, and NASA @Comic-Con International.

  5. NASA Aquarius Detects Possible Effects of Tropical Storm Lee in Gulf

    NASA Image and Video Library

    2011-12-07

    Tropical Storm Lee made landfall over New Orleans on Sept. 2-3, 2011, with predicted rainfall of 15 to 20 inches 38 to 51 centimeters over southern Louisiana. These charts are from NASA Aquarius spacecraft.

  6. Aquarius iPhone Application

    NASA Technical Reports Server (NTRS)

    Estes, Joseph C., Jr.; Arca. Jeremy M.; Ko, Michael A.; Oks, Boris

    2012-01-01

    The Office of the CIO at JPL has developed an iPhone application for the Aquarius/SAC-D mission. The application includes specific information about the science and purpose of the Aquarius satellite and also features daily mission news updates pulled from sources at Goddard Space Flight Center as well as Twitter. The application includes a media and data tab section. The media section displays images from the observatory, viewing construction up to the launch and also includes various videos and recorded diaries from the Aquarius Project Manager. The data tab highlights many of the factors that affect the Earth s ocean and the water cycle. The application leverages the iPhone s accelerometer to move the Aquarius Satellite over the Earth, revealing these factors. Lastly, this application features a countdown timer to the satellite s launch, which is currently counting the days since launch. This application was highly successful in promoting the Aquarius Mission and educating the public about how ocean salinity is paramount to understanding the Earth.

  7. Aquarius main structure configuration

    NASA Astrophysics Data System (ADS)

    Eremenko, A.

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  8. Aquarius Main Structure Configuration

    NASA Technical Reports Server (NTRS)

    Eremenko, Alexander

    2012-01-01

    The Aquarius/SAC-D Observatory is a joint US-Argentine mission to map the salinity at the ocean surface. This information is critical to improving our understanding of two major components of Earth's climate system - the water cycle and ocean circulation. By measuring ocean salinity from space, the Aquarius/SAC-D Mission will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Aquarius is the primary instrument on the SAC-D spacecraft. It consists of a Passive Microwave Radiometer to detect the surface emission that is used to obtain salinity and an Active Scatterometer to measure the ocean waves that affect the precision of the salinity measurement. The Aquarius Primary Structure houses instrument electronics, feed assemblies, and supports a deployable boom with a 2.5 m Reflector, and provides the structural interface to the SAC-D Spacecraft. The key challenge for the Aquarius main structure configuration is to satisfy the needs of component accommodations, ensuring that the instrument can meet all operational, pointing, environmental, and launch vehicle requirements. This paper describes the evolution of the Aquarius main structure configuration, the challenges of balancing the conflicting requirements, and the major configuration driving decisions and compromises.

  9. Aquarius Principal Investigator with Observatory

    NASA Image and Video Library

    2011-04-19

    NASA Aquarius Principal Investigator Gary Lagerloef photographed in front of the Aquarius/SAC-D satellite observatory as it is being readied for transportation from Brazil to Vandenberg Air Force Base in California for a June 2011 launch.

  10. Aquarius: A Mission to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Pellerano, F.; Yueh, S.; Colomb, R.

    2006-01-01

    Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument for measuring salinity is the radiometer. The scatterometer will provide a correction for surface roughness (waves) which is one of the largest potential sources of error in the retrieval. Unique features of the sensor are the large reflector (2.5 meter offset fed reflector with three feeds), polarimetric operation, and the tight thermal control. The three feeds produce three beams arranged to image in pushbroom fashion looking to the side of the orbit away from the sun to avoid sunglint. Polarimetric operation is included to assist in correcting for Faraday rotation which can be important at L-band. The tight thermal control is necessary to meet stability requirements (less than 0.12K drift over 7 days) which have been imposed to assist in meeting the science requirements for the retrieval of surface salinity (0.2 psu). The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6ad6pm (ascending at 6 pm). The objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. To accomplish this, the measurement goals are a spatial resolution of 100 km and retrieval accuracy of 0.2 psu globally on a monthly basis. Aquarius is being developed by NASA and is a partnership between JPL and the Goddard Space Flight Center. The SAC-D mission is being developed by CONAE and will include the spacecraft and several additional instruments, including visible and infrared cameras and a microwave radiometer to monitor rain and wind velocity over the oceans, and sea ice.

  11. The NEEMO Project: A Report on how NASA Utilizes the "Aquarius" Undersea Habitat as an Analog for Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Reagan, Marc; Todd, William

    2003-01-01

    NEEMO is the NASA Extreme Environment Mission Operations, a cooperative project between NASA and the National Oceanic and Atmospheric Administration (NOAA). NEEMO was created and is managed by the Mission Operations Directorate at the Johnson Space Center in Houston, Texas. On the NOAA side, the National Undersea Research Center (NURC) in Key Largo, FL, with the help of the University of North Carolina at Wilmington, manages and operates the Aquarius Program. NEEMO was developed by astronaut training specialists to utilize an undersea research habitat as a multi-objective mission analog for long-duration space flight. Each mission was designed to expose astronauts to extreme environments for training purposes and to research crew behavior, habitability, and space analog life sciences. All of this was done much in the model of a space mission utilizing specific crew procedures, mission rules and timelines. Objectives of the missions were very diverse and contained many of the typical space mission type activities such as EV As (also known as extra vehicular activities), in-habitat science and research, and educational, public outreach, and media events. Five missions, dubbed NEEMO 1-5, were conducted between October 2001 and July 2003, the longest of which (NEEMO 5) lasted 14 days.

  12. Global monitoring of Sea Surface Salinity with Aquarius

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  13. Comparison of SMOS and Aquarius Sea Surface Salinity and Analysis of Possible Causes for the Differences

    NASA Technical Reports Server (NTRS)

    Dinnat, E. P.; Boutin, J.; Yin, X.; Le Vine, D. M.; Waldteufel, P.; Vergely, J. -L.

    2014-01-01

    Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and some components of the retrieval algorithm used by both mission on these differences.

  14. Digital Learning Network Education Events of NASA's Extreme Environments Mission Operations

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Guillory, Erika

    2007-01-01

    NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and web casting. The DLN has created a series of live education videoconferences connecting NASA s Extreme Environment Missions Operations (NEEMO) team to students across the United States. The programs are also extended to students around the world live web casting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO Crewmembers including NASA astronauts, engineers and scientists inform and inspire students about the importance of exploration and share the impact of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration s underwater laboratory. With this program, NASA continues the Agency s tradition of investing in the nation's education programs. It is directly tied to the Agency's major education goal of attracting and retaining students in science, technology, and engineering disciplines. Before connecting with the aquanauts, the students conduct experiments of their own designed to coincide with mission objectives. This paper describes the events that took place in September 2006.

  15. The Impact of Dielectric Constant Model and Surface Reference on Differences Between SMOS and Aquarius Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Dinnat, E. P.; Boutin, J.; Yin, X.; LeVine, D. M.

    2014-01-01

    Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and retrieval algorithm used by both mission on these differences.

  16. Global soil moisture from the aquarius satellite: Description and initial assessment

    USDA-ARS?s Scientific Manuscript database

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scop...

  17. Aquarius/SAC-D Observatory Being Crated for Shipment to Brazil

    NASA Image and Video Library

    2011-04-19

    NASA Aquarius/SAC-D being prepared for shipment to Brazil National Institute for Space Research Integration and Testing Lab. At INPE, the Aquarius/SAC-D observatory will undergo its final environmental testing.

  18. Final Checks of Aquarius Instrument

    NASA Image and Video Library

    2011-04-29

    Less than two months before launch, team members conduct their final checks of NASA Aquarius instrument at Vandenberg Air Force Base, Calif. Subsequent final instrument tests will be conducted on the launch pad.

  19. Aquarius: An Instrument to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S .E.; Colomb, R.; Yueh, S.; Pellerano, F.

    2007-01-01

    Aquarius is a combined passive/active L-band microwave instrument that is being developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, global water cycle, and climate. Aquarius is part of the Aquarius/SAC-D mission, which is a partnership between the U.S. (National Aeronautics and Space Administration) and Argentina (CONAE). The primary science objective of this mission is to monitor the seasonal and interannual variation of the large-scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  20. Aquarius Radiometer Performance: Early On-Orbit Calibration and Results

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; LeVine, David M.; Yueh, Simon H.; Wentz, Frank; Ruf, Christopher

    2012-01-01

    The Aquarius/SAC-D observatory was launched into a 657-km altitude, 6-PM ascending node, sun-synchronous polar orbit from Vandenberg, California, USA on June 10, 2011. The Aquarius instrument was commissioned two months after launch and began operating in mission mode August 25. The Aquarius radiometer meets all engineering requirements, exhibited initial calibration biases within expected error bars, and continues to operate well. A review of the instrument design, discussion of early on-orbit performance and calibration assessment, and investigation of an on-going calibration drift are summarized in this abstract.

  1. NEEMO - NASA's Extreme Environment Mission Operations: On to a NEO

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Baskin, P. J.; Todd, W. L.

    2011-01-01

    During NEEMO missions, a crew of six Aquanauts lives aboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory the world's only undersea laboratory located 5.6 km off shore from Key Largo, Florida. The Aquarius habitat is anchored 62 feet deep on Conch Reef which is a research only zone for coral reef monitoring in the Florida Keys National Marine Sanctuary. The crew lives in saturation for a week to ten days and conducts a variety of undersea EVAs (Extra Vehicular Activities) to test a suite of long-duration spaceflight Engineering, Biomedical, and Geoscience objectives. The crew also tests concepts for future lunar exploration using advanced navigation and communication equipment in support of the Constellation Program planetary exploration analog studies. The Astromaterials Research and Exploration Science (ARES) Directorate and Behavioral Health and Performance (BHP) at NASA/Johnson Space Center (JSC), Houston, Texas support this effort to produce a high-fidelity test-bed for studies of human planetary exploration in extreme environments as well as to develop and test the synergy between human and robotic curation protocols including sample collection, documentation, and sample handling. The geoscience objectives for NEEMO missions reflect the requirements for Lunar Surface Science outlined by the LEAG (Lunar Exploration Analysis Group) and CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials) white paper [1]. The BHP objectives are to investigate best meas-ures and tools for assessing decrements in cogni-tive function due to fatigue, test the feasibility study examined how teams perform and interact across two levels, use NEEMO as a testbed for the development, deployment, and evaluation of a scheduling and planning tool. A suite of Space Life Sciences studies are accomplished as well, ranging from behavioral health and performance to immunology, nutrition, and EVA suit design results of which will

  2. Aquarius/SAC-D soil moisture product using V3.0 observations

    USDA-ARS?s Scientific Manuscript database

    Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development ...

  3. Aquarius' Object-Oriented, Plug and Play Component-Based Flight Software

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Shahabuddin, Mohammad

    2013-01-01

    The Aquarius mission involves a combined radiometer and radar instrument in low-Earth orbit, providing monthly global maps of Sea Surface Salinity. Operating successfully in orbit since June, 2011, the spacecraft bus was furnished by the Argentine space agency, Comision Nacional de Actividades Espaciales (CONAE). The instrument, built jointly by NASA's Caltech/JPL and Goddard Space Flight Center, has been successfully producing expectation-exceeding data since it was powered on in August of 2011. In addition to the radiometer and scatterometer, the instrument contains an command & data-handling subsystem with a computer and flight software (FSW) that is responsible for managing the instrument, its operation, and its data. Aquarius' FSW is conceived and architected as a Component-based system, in which the running software consists of a set of Components, each playing a distinctive role in the subsystem, instantiated and connected together at runtime. Component architectures feature a well-defined set of interfaces between the Components, visible and analyzable at the architectural level (see [1]). As we will describe, this kind of an architecture offers significant advantages over more traditional FSW architectures, which often feature a monolithic runtime structure. Component-based software is enabled by Object-Oriented (OO) techniques and languages, the use of which again is not typical in space mission FSW. We will argue in this paper that the use of OO design methods and tools (especially the Unified Modeling Language), as well as the judicious usage of C++, are very well suited to FSW applications, and we will present Aquarius FSW, describing our methods, processes, and design, as a successful case in point.

  4. Validation of Aquarius Measurements Using Radiative Transfer Models at L-Band

    NASA Technical Reports Server (NTRS)

    Dinnat, E.; LeVine, David M.; Abraham, S.; DeMattheis, P.; Utku, C.

    2012-01-01

    Aquarius/SAC-D was launched in June 2011 by NASA and CONAE (Argentine space agency). Aquarius includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons were used as part ofthe initial assessment of Aquarius data. In particular, they were used successfully to estimate the radiometer calibration bias and stability. Further comparisons are being performed to assess the performance of models in the retrieval algorithm for correcting the effect of sources of geophysical "noise" (e.g. the galactic background, atmospheric attenuation and reflected signal from the Sun). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit (psu) on monthly global maps at 150 km by 150 km resolution. The forward models making up the Aquarius simulator have been very useful for preparatory studies in the years leading to Aquarius' launch. The simulator includes various components to compute effects ofthe following processes on the measured signal: 1) emission from Earth surfaces (ocean, land, ice), 2) atmospheric emission and absorption, 3) emission from the Sun, Moon and celestial Sky (directly through the antenna sidelobes or after reflection/scattering at the Earth surface), 4) Faraday rotation, and 5) convolution of the scene by the antenna gain patterns. Since the Aquarius radiometers tum-on in late July 2011, the simulator has been used to perform a first order validation of the data. This included checking the order of magnitude ofthe signal over ocean, land and ice surfaces, checking the relative amplitude of signal at different polarizations, and checking the variation with incidence angle. The comparisons were also used to assess calibration bias and monitor instruments calibration drift. The simulator is also being used in the salinity retrieval. For example, initial

  5. Sac-D Aquarius a Satellite for Ocean, Climate and Environment. One Year of Data

    NASA Astrophysics Data System (ADS)

    Torrusio, S.; Lagerloef, G.; Rabolli, M.; LeVine, D.

    2012-07-01

    The SAC-D/Aquarius satellite was launched in June 10, 2011. It's a joint mission between Argentina (through CONAE) and US (NASA). This satellite is a true Observatory with a suite of sensors for Earth Observation, its weight is 1400 kg, sun-synchronous orbit at 657 km (6 pm ascendant node), revisit of seven days. Other space agencies have contributed with instruments and support (facilities and ground segment), as CNES, CSI, ASI and AEB/INPE. The primary objective is to monitor global variations in ocean surface salinity (SSS) in order to improve the knowledge about ocean circulation, water cycle and climate. The SSS is performed with Aquarius instrument (NASA). Other oceanic and atmospheric parameters are measured with a MWR, from CONAE, in K and Ka band, as wind speed, rain rate, sea ice, water vapour and liquid water in clouds. The thermal camera (NIRST) estimates sea surface temperature and detect high temperature events (fires and volcanic eruptions). The High Sensitivity Camera (HSC) generates night images (very useful for fishery activity monitoring in the sea, studying of electrical storms, polar auroras and urban application). The DCS (Data Collection System, from CONAE) can receive meteorological and environmental data from ground platforms and distribute among users. The TDP (Technological Demonstration Package, from CONAE) measures different parameters of satellite position and velocity. Other two important instruments are ROSA (from Italy) and CARMEN 1 (from France). The first is an atmospheric sounder, it allows elaborating atmospheric profiles of temperature, pressure and humidity, and the second has detectors for studies of space debris and the effects of radiation on electronic devices. This work provides a review of the first year of data, including the status of calibration and validation, other finding and at the same time we want to present the progress in the active educational and outreach program including the information of SAC-D Aquarius

  6. Aquarius/SAC-D Observatory before Departing Brazil

    NASA Image and Video Library

    2011-04-19

    After months of environmental tests at Brazil National Institute for Space Research Instituto Nacional de Pesquisas Espaciais, INPE, NASA Aquarius/SAC-D observatory is loaded into a crate for shipment to Vandenberg Air Force Base.

  7. Aquarius Radiometer RFI Detection, Mitigation, and Impact Assessment

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher; Chen, David; Le Vine, David; de Matthaeis, Paolo; Piepmeier, Jeffrey

    2012-01-01

    The Aquarius/SAC-D satellite was launched on 10 June 2011 into a sun-synchronous polar orbit and the Aquarius microwave radiometers [1] became operational on 25 August 2011. Since that time, it has been measuring brightness temperatures at 1.4 GHz with vertical, horizontal and 3rd Stokes polarizations . Beginning well before the launch, there has been the concern that Radio Frequency Interference (RFI) could have an appreciable presence. This concern was initiated by, among other things, its prevalence in both early [2] and more recent [3,4] aircraft field experiments using 1.4 GHz radiometers, as well as by the strong RFI environment encountered during the recent ESA SMOS mission, also at 1.4 GHz [5]. As a result, a number of methods for RFI detection and mitigation have been developed and tested. One in particular, "glitch detection" and "pulse blanking" mitigation has been adapted for use by Aquarius [6, 7]. The early on-orbit performance of the Aquarius RFI detection and mitigation algorithm is presented here, together with an assessment of the global RFI environment at 1.4 GHz which can be derived from the Aquarius results.

  8. Three Years of Aquarius Salinity Measurements: Algorithm, Validation and Applications

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Wentz, F. J.; Le Vine, D. M.; Lagerloef, G. S. E.

    2014-12-01

    Aquarius is an L-band radiometer/scatterometer (i.e. active/passive) system designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011 as part of the Aquarius/SAC-D mission and has been collecting data since August 25, 2011. Version 3 of the data product was released in June 2014 and provides a major milestone towards reaching the mission requirement of 0.2 psu. This presentation reports the status of the Aquarius salinity retrieval algorithm highlighting the advances that have been made for and since the Version 3 release. The most important ones are: 1) An improved surface roughness correction that is based on Aquarius scatterometer observations; 2) A reduction in ascending/descending differences due to galactic background radiation reflected from the ocean surface; 3) A refinement of the quality control flags and masks that indicate degradation under certain environmental conditions. The Aquarius salinity algorithm also retrieves wind speed as part of the roughness correction with an accuracy comparable to the products from other satellites such as WindSat, SSMIS, ASCAT, and QuikSCAT. Validation of the salinity retrievals is accomplished using measurements from ARGO drifters measuring at 5 m depth and in the tropics also from moored buoys measuring at 1 m depth which are co-located with the nearest Aquarius footprint. In the most recent work an effort has also been made to identify areas with frequent rain to isolate potential issues with rain freshening in the upper ocean layer. Results in rain-free regions indicate that on monthly basis and 150 km grid, the V3 Aquarius salinity maps have an accuracy of about 0.13 psu in the tropics and 0.22 psu globally. Comparing Aquarius with ARGO and moored buoy salinity measurements during and after rain events permits a quantitative assessment of the effect of salinity stratification within the first 5 m of the upper ocean layer.

  9. Aquarius Radiometer Status

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Piepmeier, J. R.; Dinnat, E. P.; de Matthaeis, P.; Utku, C.; Abraham, S.; Lagerloef, G.S.E.; Meissner, T.; Wentz, F.

    2014-01-01

    Aquarius was launched on June 10, 2011 as part of the Aquarius/SAC-D observatory and the instrument has been operating continuously since being turned on in August of the same year. The initial map of sea surface salinity was released one month later (September) and the quality of the retrieval has continuously improved since then. The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results.

  10. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  11. The Aquarius Salinity Product: Intercomparison with SMOS and In-Situ Observations and Importance of the Ocean Surface Roughness Correction

    NASA Astrophysics Data System (ADS)

    Meissner, Thomas; Hilburn, Kyle; Wentz, Frank; Gentemann, Chelle

    2013-04-01

    The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This first part of the presentation gives an overview over the major features of the Version 2.1 Aquarius Level 2 salinity retrieval algorithm: 1. Antenna pattern correction: spillover and cross polarization contamination. 2. Correction for the drift of the Aquarius internal calibration system. 3. Correction for intruding celestial radiation, foremost from the galaxy. 4. Correction for effects of the wind roughened ocean surface. We then present a thorough validation study for the salinity product, which consists in a 3-way intercomparison between Aquarius, SMOS and in-situ buoy salinity measurements. The Aquarius - buy comparison shows that that the Aquarius Version 2.1 salinity product is very close to meet the aforementioned mission requirement of 0.2 psu. We demonstrate that in order to meet this accuracy it is crucial to use the L-band scatterometer for correcting effects from the wind roughened ocean surface, which turns out to be the major driver in the salinity retrieval uncertainty budget. A surface roughness correction algorithm that is based solely on auxiliary input of wind fields from numerical weather prediction models (e.g. NCEP, ECMWF) is not sufficient to meet the stringent Aquarius mission requirement, especially at wind speeds above 10 m/s. We show that presence of the Aquarius L-band scatterometer together with the L-band radiometer allows the retrieval of an Aquarius wind speed product whose accuracy matches or exceeds that of other common ocean wind speeds (WindSat, SSMIS). By comparing SMOS and Aquarius salinity fields with the in-situ observations we assess the importance of the roughness correction

  12. Consistency of Aquarius version-4 sea surface salinity with Argo products on various spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Lee, T.

    2016-12-01

    Understanding the accuracies of satellite-derived sea surface salinity (SSS) measurements in depicting temporal changes and the dependence of the accuracies on spatio-temporal scales are important to applications, capability assessment, and future mission design. This study quantifies the consistency between Aquarius Version-4 monthly gridded SSS (released in October 2015) with two widely used Argo monthly gridded near-surface salinity products. The analysis focused on their consistency in depicting temporal changes (including seasonal and non-seasonal) on various spatial scales: 1°x1°, 3°x3°, and 10°x10°. Globally averaged standard deviation (STD) values for Aquarius-Argo salinity differences on these three spatial scales are 0.16, 0.14, 0.09 psu, compared to those between the two Argo products of 0.10, 0.09, and 0.04 psu. Aquarius SSS compare better with Argo data on non-seasonal (e.g., interannual and intraseasonal) than for seasonal time scales. The seasonal Aquarius-Argo SSS differences are mostly concentrated at high latitudes. The Aquarius team is making active efforts to further reduce these high-latitude seasonal biases. The consistency between Aquarius and Argo salinity is similar to that between the two Argo products in the tropics and subtropics for non-seasonal signals, and in the tropics for seasonal signals. Therefore, the representativeness errors of the Argo products for various spatial scales (related to sampling and gridding) need to be taken into account when estimating the uncertainty of Aquarius SSS. The globally averaged uncertainty of large-scale (10°x10°) non-seasonal Aquarius SSS is approximately 0.04 psu. These estimates reflect the significant improvements of Aquarius Version-4 SSS over the previous versions. The estimates can be used as baseline requirements for future ocean salinity missions from space.

  13. Consistency of Aquarius version-4 sea surface salinity with Argo products on various spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Lee, Tong

    2017-04-01

    Understanding the accuracies of satellite-derived sea surface salinity (SSS) measurements in depicting temporal changes and the dependence of the accuracies on spatiotemporal scales are important to capability assessment, future mission design, and applications to study oceanic phenomena of different spatiotemporal scales. This study quantifies the consistency between Aquarius Version-4 monthly gridded SSS (released in late 2015) with two widely used Argo monthly gridded near-surface salinity products. The analysis focused on their consistency in depicting temporal changes (including seasonal and non-seasonal) on various spatial scales: 1˚ x1˚ , 3˚ x3˚ , and 10˚ x10˚ . Globally averaged standard deviation (STD) values for Aquarius-Argo salinity differences on these three spatial scales are 0.16, 0.14, 0.09 psu, compared to those between the two Argo products of 0.10, 0.09, and 0.04 psu. Aquarius SSS compare better with Argo data on non-seasonal (e.g., interannual and intraseasonal) than for seasonal time scales. The seasonal Aquarius-Argo SSS differences are mostly concentrated at high latitudes. The Aquarius team is making active efforts to further reduce these high-latitude seasonal biases. The consistency between Aquarius and Argo salinity is similar to that between the two Argo products in the tropics and subtropics for non-seasonal signals, and in the tropics for seasonal signals. Therefore, the representativeness errors of the Argo products for various spatial scales (related to sampling and gridding) need to be taken into account when estimating the uncertainty of Aquarius SSS. The globally averaged uncertainty of large-scale (10˚ x10˚ ) non-seasonal Aquarius SSS is approximately 0.04 psu. These estimates reflect the significant improvements of Aquarius Version-4 SSS over the previous versions. The estimates can be used as baseline requirements for future ocean salinity missions from space. The spatial distribution of the uncertainty estimates is

  14. Seasonal to Interannual Surface Ocean Salinity Trends With Aquarius Data

    NASA Astrophysics Data System (ADS)

    Lagerloef, G. S. E.; Kao, H. Y.; Carey, D.

    2017-12-01

    An important scientific goal for satellite salinity observations is to document oceanic climate trends and their link to changes in the water cycle. This study is a re-examination of seasonal to interannual sea surface salinity (SSS) variations from more recent analyses of V5.0 reprocessing of the Aquarius satellite data, Sep 2011 to May 2015. Sensor calibration over these time scales has been a concern, and the V5.0 includes improved calibration reference data compared to previous versions, which will be explained. Orthogonal mode analyses show that the annual cycle dominates the variability, and is strongest in the tropics. Interannual trends indicate the principal salinity patterns during onset of the 2015-16 El Niño. Recognizing that the Aquarius data record is now finite (Sep 2011 through May 2015) due to the mission failure in early June 2015, we will conclude with a status summary of the disposition of the Aquarius data and the prospects for continuing satellite salinity measurements.

  15. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  16. Electromechanical Power for NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2005-01-01

    NASA has a wide range of missions that require electrochemical power sources. These needs are met with a variety of options that include primary and secondary cells and batteries, fuel cells, and regenerative fuel cells. This presentation wil cover an overview of NASA missions and requirements for electrochemical power sources and investigate the synergy and diversity that exist between NASA's requirements and those for military tactical power sources. Current development programs at GRC and other NASA centers, aimed at meeting NASA's future requirements will also be discussed.

  17. Consistent Transition of Salinity Retrievals From Aquarius to SMAP

    NASA Astrophysics Data System (ADS)

    Mears, C. A.; Meissner, T.; Wentz, F. J.; Manaster, A.

    2017-12-01

    The Aquarius Version 5.0 release in late 2017 has achieved an excellent level of accuracy and significantly mitigated most of the regional and seasonal biases that had been observed in prior releases. The SMAP NASA/RSS Version 2.0 release does not quite yet reach that level of accuracy. Our presentation discusses the necessary steps that need to be undertaken in the upcoming V 3.0 of the SMAP salinity retrieval algorithm to achieve a seamless transition between the salinity products from the two instruments. We also discuss where fundamental differences in the sensors make it difficult to reach complete consistency. In the Aquarius V 4.0 and earlier releases, comparison with ARGO floats have revealed small fresh biases at low latitudes and larger seasonally varying salty biases at high latitudes. These biases have been tracked back to inaccuracies in the models that are used for correcting the absorption by atmospheric oxygen and for correcting the wind induced roughness. The geophysical models have been changed in Aquarius V5.0, which resulted in a significant improvement of these biases. The upcoming SMAP V3 release will implement the same geophysical model. In deriving the changes of the geophysical model, monthly ARGO analyzed fields from Scripps are now being used consistently as reference salinity for both Aquarius V5.0 and the upcoming SMAP V3.0 releases. Earlier versions had used HYOCM as reference salinity field. The development of the Aquarius V 5.0 algorithm has already strongly benefited from the full 360o look capability of SMAP. This aided in deriving the correction of the reflected galaxy, which is a strong spurious signal for both sensors. Consistent corrections for the galactic signal are now used for both Aquarius and SMAP. It is also important to filter out rain when developing the GMF and when validating the satellite salinities versus in-situ measurements on order to avoid mismatches due to salinity stratification in the upper ocean layer. One

  18. Comparisons of Aquarius Measurements over Oceans with Radiative Transfer Models at L-Band

    NASA Technical Reports Server (NTRS)

    Dinnat, E.; LeVine, D.; Abraham, S.; DeMattheis, P.; Utku, C.

    2012-01-01

    The Aquarius/SAC-D spacecraft includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. It was launched in June 2011 by NASA and CONAE (Argentine space agency). We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons are used as part of the initial assessment of Aquarius data and to estimate the radiometer calibration bias and stability. Comparisons are also being performed to assess the performance of models used in the retrieval algorithm for correcting the effect of various sources of geophysical "noise" (e.g. Faraday rotation, surface roughness). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit on monthly global maps at 150 km by 150 km resolution.

  19. Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy

    2015-01-01

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.

  20. Characterization and Correction of Aquarius Long Term Calibration Drift Using On-Earth Brightness Temperature Refernces

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Misra, Sidharth

    2013-01-01

    The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.

  1. NASA's small planetary mission plan released

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.

  2. Aquarius Reflector Surface Temperature Monitoring Test and Analysis

    NASA Technical Reports Server (NTRS)

    Abbott, Jamie; Lee, Siu-Chun; Becker, Ray

    2008-01-01

    The presentation addresses how to infer the front side temperatures for the Aquarius L-band reflector based upon backside measurement sites. Slides discussing the mission objectives and design details are at the same level found on typical project outreach websites and in conference papers respectively. The test discussion provides modest detail of an ordinary thermal balance test using mockup hardware. The photographs show an off-Lab vacuum chamber facility with no compromising details.

  3. Aquarius: The Instrument and Initial Results

    NASA Technical Reports Server (NTRS)

    Vine, David M Le; Lagerloef, G.S.E.; Ruf, C.; Wentz, F.; Yueh, S.; Piepmeier, J.; Lindstrom, E.; Dinnat, E.

    2012-01-01

    Aquarius was launched on June 10, 2011 aboard the Aquarius/SAC-D observatory and the instrument has been operating continuously since the initial turned-on was completed on August 25. The initial observed antenna temperatures were close to predicted and the first salinity map was released in September. In order to map the ocean salinity field, Aquarius includes several special features such as the inclusion of a scatterometer to provide a roughness correction, measurement of the third Stokes parameter to correct for Faraday rotation, and fast sampling to mitigate the effects of RFI. This paper provides an overview of the instrument and an example of initial results. Details are covered in subsequent papers in the session on Aquarius

  4. Soil Moisture Retrieval from Aquarius

    USDA-ARS?s Scientific Manuscript database

    Aquarius observations over land offer an unprecedented opportunity to provide a value-added product, land surface soil moisture, which will contribute to a better understanding of the Earth’s climate and water cycle. Additionally, Aquarius will provide the first spaceborne data that can be used to a...

  5. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  6. Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando

    2004-01-01

    The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.

  7. The NASA X-Ray Mission Concepts Study

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; hide

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  8. Ultra Stable Microwave Radiometers for Future Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Tanner, Alan B.; Pellerano, Fernando A.; Horgan, Kevin A.

    2005-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius will measure global sea surface salinity with 100-km spatial resolution every 8 days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than 0.1 K over 8 days. This three-year research program on ultra stable radiometers has addressed the radiometer requirements and configuration necessary to achieve this objective for Aquarius and future ocean salinity missions. The system configuration and component performance have been evaluated with radiometer testbeds at both JPL and GSFC. The research has addressed several areas including component characterization as a function of temperature, a procedure for the measurement and correction for radiometer system non-linearity, noise diode calibration versus temperature, low noise amplifier performance over voltage, and temperature control requirements to achieve the required stability. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability. This report also presents the results of the radiometer test program, a detailed radiometer noise model, and details of the operational switching sequence optimization that can be used to achieve the low noise and stability requirements. Many of the results of this research have been incorporated into the Aquarius radiometer design and will allow this instrument to achieve its goals.

  9. EPO in NASA's Science Mission Directorate

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, A.; Cooper, L. P.

    2005-05-01

    The Science Mission Directorate (SMD) at NASA believes very strongly in education and public outreach (EPO) and has embedded such programs within its missions. There are also some funding opportunities that are available outside the mission context. We will provide an overview of the various funding opportunities available through the SMD at NASA to carry out EPO programs. We will introduce speakers who have won such EPO awards and they will discuss their experience with writing the proposals and carrying out their projects.

  10. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael (Editor); Shaw, Tianna

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve

  11. Technology Development for NASA Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    2005-01-01

    A viewgraph presentation on technology development for NASA Mars Missions is shown. The topics include: 1) Mars mission roadmaps; 2) Focus and Base Technology programs; 3) Technology Infusion; and 4) Feed Forward to Future Missions.

  12. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  13. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  14. Inter-Comparison of SMOS and Aquarius Sea Surface Salinity: Effects of the Dielectric Constant and Vicarious Calibration

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Boutin, Jacqueline; Yin, Xiaobin; Le Vine, David M.

    2014-01-01

    Two spaceborne instruments share the scientific objective of mapping the global Sea Surface Salinity (SSS). ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometry to retrieve SSS. We find that SSS retrieved by SMOS is generally lower than SSS retrieved by Aquarius, except for very cold waters where SMOS SSS is higher overall. The spatial distribution of the differences in SSS is similar to the distribution of sea surface temperature. There are several differences in the retrieval algorithm that could explain the observed SSS differences. We assess the impact of the dielectric constant model and the ancillary sea surface salinity used by both missions for calibrating the radiometers and retrieving SSS. The differences in dielectric constant model produce differences in SSS of the order of 0.3 psu and exhibit a dependence on latitude and temperature. We use comparisons with the Argo in situ data to assess the performances of the model in various regions of the globe. Finally, the differences in the ancillary sea surface salinity products used to perform the vicarious calibration of both instruments are relatively small (0.1 psu), but not negligible considering the requirements for spaceborne remote sensing of SSS.

  15. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, left, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  16. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  17. Component Verification and Certification in NASA Missions

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Penix, John; Norvig, Peter (Technical Monitor)

    2001-01-01

    Software development for NASA missions is a particularly challenging task. Missions are extremely ambitious scientifically, have very strict time frames, and must be accomplished with a maximum degree of reliability. Verification technologies must therefore be pushed far beyond their current capabilities. Moreover, reuse and adaptation of software architectures and components must be incorporated in software development within and across missions. This paper discusses NASA applications that we are currently investigating from these perspectives.

  18. The Aquarius Level 2 Algorithm

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Wentz, F. J.; Hilburn, K. A.; Lagerloef, G. S.; Le Vine, D. M.

    2012-12-01

    The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to an accuracy of 0.2 psu. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. This presentation discusses the current state of the Aquarius Level processing algorithm, which transforms radiometer counts ultimately into sea surface salinity (SSS). We focus on several topics that we have investigated since launch: 1. Updated Pointing A detailed check of the Aquarius pointing angles was performed, which consists in making adjustments of the two pointing angles, azimuth angle and off-nadir angle, for each horn. It has been found that the necessary adjustments for all 3 horns can be explained by a single offset for the antenna pointing if we introduce a constant offset in the roll angle by - 0.51 deg and the pitch angle by + 0.16 deg. 2. Antenna Patterns and Instrument Calibration In March 2012 JPL has produced a set of new antenna patterns using the GRASP software. Compared with the various pre-launch patterns those new patterns lead to an increase in the spillover coefficient by about 1%. We discuss its impact on several components of the Level 2 processing: the antenna pattern correction (APC), the correction for intrusion of galactic and solar radiation that is reflected from the ocean surface into the Aquarius field of view, and the correction of contamination from land surface radiation entering into the sidelobes. We show that the new antenna patterns result in a consistent calibration of all 3 Stokes parameters, which can be best demonstrated during spacecraft pitch maneuvers. 3. Cross Polarization Couplings of the 3rd Stokes Parameter Using the APC values for the cross polarization coupling of the 3rd Stokes parameter into the 1st and 2nd Stokes parameter lead to a spurious image of the 3rd Stokes

  19. NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.

    2010-01-01

    BACKGROUND Spaceflight-associated immune dysregulation (SAID) occurs during spaceflight and may represent specific clinical risks for exploration-class missions. An appropriate ground analog for spaceflight-associated immune dysregulation would offer a platform for ground-evaluation of various potential countermeasures. This study evaluated the NASA Undersea Mission Operations ( NEEMO ), consisting of 14 day undersea deployment at the Aquarius station, as an analog for SAID. Sixteen Aquanauts from missions NEEMO-12, 13 and 14 participated in the study. RESULTS Mid-mission alterations leukocyte distribution occurred, including granulocytosis and elevations in central-memory CD8+ T-cells. General T cell function was reduced during NEEMO missions in roughly 50% of subjects. Secreted cytokines profiles were evaluated following whole blood stimulation with CD3/CD28 (T cells) or LPS (monocytes). T cell production of IFNg, IL-5, IL-10, IL-2, TNFa and IL-6 were all reduced before and during the mission. Conversely, monocyte production of TNFa, IL-10, IL-6, IL-1b and IL-8 were elevated during mission, moreso at the MD-14 timepoint. Antibodies to Epstein-Barr virus (EBV) viral capsid antigen and early antigen were increased in approximately 40% of the subjects. Changes in EBV tetramer-positive CD8+ T-cells exhibited a variable pattern. Antibodies against Cytomegalovirus (CMV) were marginally increased during the mission. Herpesvirus reactivation was determined by PCR. EBV viral load was generally elevated at L-6. Higher levels of salivary EBV were found during the NEEMO mission than before and after as well as than the healthy controls. No VZV or CMV was found in any pre, during and after NEEMO mission or control samples. Plasma cortisol was elevated at L-6. CONCLUSION Unfortunately, L-6 may be too near to mission start to be an appropriate baseline measurement. The general immune changes in leukocyte distribution, T cell function, cytokine production, virus specific

  20. NASA's Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Mazanek, Dan; Reeves, David; Naasz, Bo; Cichy, Benjamin

    2015-11-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA’s plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  1. NASA's Gravitational-Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consists of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to refine the conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The status of the Study are reported.

  2. NASA's Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2017-01-01

    Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.

  3. Satellite Sea-surface Salinity Retrieval Dependencies

    NASA Astrophysics Data System (ADS)

    Bayler, E. J.; Ren, L.

    2016-02-01

    Comparing satellite sea-surface salinity (SSS) measurements and in situ observations reveals large-scale differences. What causes these differences? In this study, five boxes, sampling various oceanic regimes of the global ocean, provide insights on the relative performance of satellite SSS retrievals with respect to the influences of SST, precipitation and wind speed. The regions sampled are: the Inter-tropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), NASA's Salinity Processes of the Upper-ocean Regional Study (SPURS) area, the North Pacific subarctic region, and the southern Indian Ocean. This study examines satellite SSS data from NASA's Aquarius Mission and ESA's Soil Moisture - Ocean Salinity (SMOS) mission, specifically: Aquarius official Aquarius Data Processing System (ADPS) Level-2 data, experimental Aquarius Combined Active-Passive (CAP) Level-2 SSS data developed by NASA's Jet Propulsion Laboratory (JPL), and SMOS Level-2 data.

  4. NASA Facts, The Viking Mission.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  5. Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon

    2002-01-01

    With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.

  6. NASA's New Discovery Missions

    NASA Image and Video Library

    2017-01-04

    On Jan. 4, 2017 NASA announced the selection of two missions to explore previously unexplored asteroids. The first mission, called Lucy, will study asteroids, known as Trojan asteroids, trapped by Jupiter’s gravity. The Psyche mission will explore a very large and rare object in the solar system’s asteroid belt that’s made of metal, and scientists believe might be the exposed core of a planet that lost its rocky outer layers from a series of violent collisions. Lucy is targeted for launch in 2021 and Psyche in 2023. Both missions have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 million years after the birth of our sun.

  7. Aquarius-Pisces Constellation Boundary Update

    NASA Astrophysics Data System (ADS)

    Durst, Steve

    2017-06-01

    Observation, mapping and study of Galaxy Stars has provided humanity direction, foundation, clarity and understanding through the ages.Human civilization advances itself using increasing intelligence and knowledge to develop tools and know how, the science of constellation star maps included: All that has been created by humanity, is to serve humanity.When people continue to use constellation star maps that no longer serve people effectively, the maps are updated, as is now the Aquarius-Pisces Constellation Boundary Update (APCBU), which marks 2000 as the year the Sun is in Aquarius at the vernal equinox.The 21st Century APCBU accounts for and incorporates science factors of precession, relativity and galacticity for professional astronomers, and social imperatives of increasing freedom, liberation and egalitarian culture for the 7.5 billion people of Earth.Twenty years into this first century of a new millennium and a new age is an effective time for an APCBU of such elegant simplicity that it changes less than 0.1% of the area of the IAU 1930 official constellation map, which marks 2597 about the year the Sun is in Aquarius at the time of the vernal equinox.The 21st Century APCBU results provide clarity and direction for humanity's next 2,000 years, if not 10,000 or 12,000 years, and advance the official astronomy / science start of the Aquarius Age -- long anticipated, desired, and imperative, especially in America -- by some 600 years.How much attention is increasingly focused on this region of the sky -- such as the recent discovery of 7 Earth-like worlds orbiting the Trappist-1 star in the Aquarius constellation -- will be an epochal 21st Century phenomenon of human science, society, and starlife.

  8. The Economics of NASA Mission Cost Reserves

    NASA Technical Reports Server (NTRS)

    Whitley, Sally; Shinn, Stephen

    2012-01-01

    Increases in NASA mission costs have led to analysis of the causes and magnitude of historical mission overruns as well as mitigation and prevention attempts. This paper hypothesizes that one cause is that the availability of reserves may reduce incentives to control costs. We draw a comparison to the insurance concept of moral hazard, and we use actuarial techniques to better understand the increase in mission costs due to the availability of reserves. NASA's CADRe database provided the data against which we tested our hypothesis and discovered that there is correlation between the amount of available reserves and project overruns, particularly for mission hardware cost increases. We address the question of how to prevent reserves from increasing mission spending without increasing cost risk to projects.

  9. Joint NASA-ESA Outer Planet Mission study overview

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Niebur, C.; Cutts, J.; Falkner, P.; Greeley, R.; Lunine, J.; Blanc, M.; Coustenis, A.; Pappalardo, R.; Matson, D.; Clark, K.; Reh, K.; Stankov, A.; Erd, C.; Beauchamp, P.

    2009-04-01

    In 2008, ESA and NASA performed joint studies of two highly capable scientific missions to the outer planets: the Europa Jupiter System Mission (EJSM) and the Titan Saturn System Mission (TSSM). Joint Science Definition Teams (JSDTs) were formed with U.S. and European membership to guide study activities that were conducted collaboratively by engineering teams working on both sides of the Atlantic. EJSM comprises the Jupiter Europa Orbiter (JEO) that would be provided by NASA and the Jupiter Ganymede Orbiter (JGO) that would be provided by ESA. Both spacecraft would be launched independently in 2020, and arrive 6 years later for a 3-4 year mission within the Jupiter System. Both orbiters would explore Jupiter's system on trajectories that include flybys of Io (JEO only), Europa (JEO only), Ganymede and Callisto. The operation of JEO would culminate in orbit around Europa while that of JGO would culminate in orbit around Ganymede. Synergistic and coordinated observations would be planned. The Titan Saturn System Mission (TSSM) comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the lake lander. The mission would launch in 2020 and arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfière would last at least 6-12 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a ~2-year orbit around Titan. Synergistic and coordinated observations would be planned between the orbiter and in situ elements. The ESA contribution to this joint endeavor will be implemented as the first Cosmic Vision Large-class (L1) mission; the NASA contribution will be implemented as the Outer Planet Flagship Mission. The contribution to each mission is being reviewed and

  10. NASA Sample Return Missions: Recovery Operations

    NASA Technical Reports Server (NTRS)

    Pace, L. F.; Cannon, R. E.

    2017-01-01

    The Utah Test and Training Range (UTTR), southwest of Salt Lake City, Utah, is the site of all NASA unmanned sample return missions. To date these missions include the Genesis solar wind samples (2004) and Stardust cometary and interstellar dust samples (2006). NASA’s OSIRIS-REx Mission will return its first asteroid sample at UTTR in 2023.

  11. Tylopilus aquarius, comb. et stat. nov., and its new variety from Brazil

    Treesearch

    Anderlechi Barbosa-Silva; Clark L. Ovrebo; Beatriz Ortiz-Santana; Mariana C.A. Sá; Marcelo A. Sulzbacher; Melanie Roy; Felipe. Wartchow

    2017-01-01

    We propose the new species and new combination, Tylopilus aquarius var. aquarius, by elevating T. potamogeton v. aquarius to species level. We also describe a new variety, T. aquarius var. megistus, from the Atlantic Forest states Paraiba and...

  12. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Bonnie Buratti, senior scientist at NASA's Jet Propultion Laboratory, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  13. NASA SSA for Robotic Missions

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.

    2009-01-01

    This viewgraph presentation reviews NASA's Space Situational Awareness (SSA) activities as preparation for robotic missions and Goddard's role in this work. The presentation includes the preparations that Goddard Space Flight Center (GSFC) has made to provide consolidated space systems protection indluding consolidating GSFC support for Orbit Debris analysis, conjunction assessment and collision avoidance, commercial and foreign support, and protection of GSFC managed missions.

  14. NASA's Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Les; McNutt, Leslie; Castillo-Rogez, Julie

    2017-01-01

    NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission and laying the groundwork for their future use in deep space science and exploration missions. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m2 solar sail and will weigh less than 14 kilograms. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 3 microns thick. NEA Scout will launch on the Space Launch System (SLS) first mission in 2018 and deploy from the SLS after the Orion spacecraft is separated from the SLS upper stage. The NEA Scout spacecraft will stabilize its orientation after ejection using an onboard cold-gas thruster system. The same system provides the vehicle Delta-V sufficient for a lunar flyby. After its first encounter with the moon, the 86 m2 sail will deploy, and the sail characterization phase will begin. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. Once the system is checked out, the spacecraft will perform a series of lunar flybys until it achieves optimum departure trajectory to the target asteroid. The spacecraft will then begin its two year-long cruise. About one month before the asteroid flyby, NEA Scout will pause to search for the target and start its approach phase using a combination of radio tracking and optical navigation. The solar sail will provide

  15. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  16. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Jennifer Sager; Ritter, Sheila

    2009-01-01

    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  17. Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions - Part 1: Product description

    NASA Astrophysics Data System (ADS)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-05-01

    Passive and active observations at L band (frequency ~1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50° are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km × 156 km and 74 km × 122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at aquarius/index.html"target="_blank"> http://nsidc.org/data/aquarius/index.html .

  18. Kepler's Third Law and NASA's "Kepler Mission"

    ERIC Educational Resources Information Center

    Gould, Alan; Komatsu, Toshi; DeVore, Edna; Harman, Pamela; Koch, David

    2015-01-01

    NASA's "Kepler Mission" has been wildly successful in discovering exoplanets. This paper summarizes the mission goals, briefly explains the transit method of finding exoplanets and design of the mission, provides some key findings, and describes useful education materials available at the "Kepler" website.

  19. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  20. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    Four reindeer walk past the BARREL payload on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Samar Mathur NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A member of the BARREL team prepares a payload for launch from Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The fourth BARREL balloon of this campaign sits on the launch pad shortly before it launched on Aug. 21, 2016. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The third BARREL balloon floats towards the stratosphere on Aug. 21, 2016. This payload flew for nearly 30 hours, measuring X-rays in Earth’s atmosphere. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL payload sits on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL team member recovers the second payload after it landed. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Montana State University/Arlo Johnson NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    Prior to launch, the BARREL team works on the payload from the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Dartmouth/Robyn Millan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The BARREL team prepares to launch their third payload from Esrange Space Center near Kiruna, Sweden, on Aug. 21, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL team member watches as one of their payloads launches from Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL balloon inflates on the launch pad at Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The first BARREL balloon is inflated just before its launch on Aug. 13, 2016, from Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The BARREL team inflates the balloon to launch their fifth scientific payload from Esrange Space Center near Kiruna, Sweden, on Aug. 24, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL payload sits on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Dartmouth/Robyn Millan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  14. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  15. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  16. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. David H. Grinspoon, senior scientist at the Planetary Science Institute, speaks about working on NASA's Voyager team while serving as moderator for a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  17. Parachute Testing for NASA InSight Mission

    NASA Image and Video Library

    2015-05-27

    This parachute testing for NASA's InSight mission to Mars was conducted inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California, in February 2015. The wind tunnel is 80 feet (24 meters) tall and 120 feet (37 meters) wide. It is part of the National Full-Scale Aerodynamics Complex, operated by the Arnold Engineering Development Center of the U.S. Air Force. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19405

  18. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute in Boulder, Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  19. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Fran Bagenal, senior scientist at the University of Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  20. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Fran Bagenal, senior scientist at the University of Colorado, far right, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  1. NASA's Asteroid Redirect Mission: The Boulder Capture Option

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more

  2. NASA ER-2 flys over Hurricane Dennis during TSCP mission.

    NASA Image and Video Library

    2005-07-06

    The NASA ER-2 airplane flew over hurricane Dennis as part of the Tropical Cloud Systems and Processes "TSCP" Mission. This 28-day field mission sponsored by NASA's Science Mission Directorate is studying the bursting conditions for tropical storms, hurricanes and related phenomena. The flight originated from TSCP's base-of-operations in San Juan Santa Maria airport in San Jose, Costa Rica. Photo Credit: "NASA/Bill Ingalls"

  3. Weekly Gridded Aquarius L-band Radiometer-scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 1: Product Description

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Koenig, Lora S.

    2014-01-01

    Passive and active observations at L band (frequency (is) approximately 1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50 degrees are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km×156 km and 74 km×122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html

  4. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, answers a question from the audience during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  5. The Value of Participating Scientists on NASA Planetary Missions

    NASA Astrophysics Data System (ADS)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  6. Globular Cluster Messier 2 in Aquarius

    NASA Image and Video Library

    2003-12-11

    This image of the Globular cluster Messier 2 (M2) was taken by Galaxy Evolution Explorer on August 20, 2003. This image is a small section of a single All Sky Imaging Survey exposure of only 129 seconds in the constellation Aquarius. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors (colored red). Globular clusters are gravitationally bound systems of hundreds of thousands of stars that orbit in the halos of galaxies. The globular clusters in out Milky Way galaxy contain some of the oldest stars known. M2 lies 33,000 light years from our Sun with stars distributed in a spherical system with a radius of approximately 100 light years. http://photojournal.jpl.nasa.gov/catalog/PIA04926

  7. Challenges of Developing New Classes of NASA Self-Managing Mission

    NASA Technical Reports Server (NTRS)

    Hinchey, M. G.; Rash, J. I.; Truszkowski, W. F.; Rouff, C. A.; Sterritt, R.

    2005-01-01

    NASA is proposing increasingly complex missions that will require a high degree of autonomy and autonomicity. These missions pose hereto unforeseen problems and raise issues that have not been well-addressed by the community. Assuring success of such missions will require new software development techniques and tools. This paper discusses some of the challenges that NASA and the rest of the software development community are facing in developing these ever-increasingly complex systems. We give an overview of a proposed NASA mission as well as techniques and tools that are being developed to address autonomic management and the complexity issues inherent in these missions.

  8. NASA Celebrates 40 Years of the Voyager Mission

    NASA Image and Video Library

    2017-09-05

    NASA celebrates 40 years of the Voyager 1 and 2 spacecraft -- humanity's farthest and longest-lived mission -- on Tuesday, Sept. 5. The Voyagers’ original mission was to explore Jupiter and Saturn. Although the twin spacecraft are now far beyond the planets in the solar system, NASA continues to communicate with them daily as they explore the frontier where interstellar space begins.

  9. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  10. Meeting NASA's Mission Through Commercial Partnerships

    NASA Technical Reports Server (NTRS)

    Nall, Mark

    2003-01-01

    This paper examines novel approaches to furthering NASA's missions through the use of commercial partnerships. The exploration of space ha proven to be a costly endeavor requiring the development of new technologies at significant expense. One of the prime factors holding bac the robust development of space is insufficient investment in the technologies necessary to make it a reality. The key to success in bringin needed space development technologies to maturation lies in bringing technology investors together from government, industry and academia. aggressive road map for developing space will require a diverse set of interest to industry or other government agencies. By having each invest( contributing to the part of the technology development of interest to them development of space systems can be put together at a cost far below wl would be required to develop for a stand-alone effort. The NASA Space Partnership Division has been employing this technique to leverage a 30 million dollar NASA investment into at 100 million dollar advanced technology development effort focused on meeting NASA's mission needs.

  11. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, left, Dr. Jeffrey Moore, senior scientist at NASA Ames Researh Center, center, and Dr. David H. Grinspoon, senior scientist at the Plentary Science Institute, left, are seen during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  12. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The faint green glow of aurora can be seen above the clouds at Esrange Space Center in this photo from Aug. 23, 2016. Auroras are created by energetic electrons, which rain down from Earth’s magnetic bubble and interact with particles in the upper atmosphere to create glowing lights that stretch across the sky. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling

  13. Solutions Network Formulation Report. Integrating Salinity Measurements from Aquarius into the Harmful Algal Blooms Observing System

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Lewis, David; Hilbert, Kent

    2007-01-01

    This Candidate Solution suggests the use of Aquarius sea surface salinity measurements to improve the NOAA/NCDDC (National Oceanic and Atmospheric Administration s National Coastal Data Development Center) HABSOS (Harmful Algal Blooms Observing System) DST (decision support tool) by enhancing development and movement forecasts of HAB events as well as potential species identification. In the proposed configuration, recurring salinity measurements from the Aquarius mission would augment HABSOS sea surface temperature and in situ ocean current measurements. Thermohaline circulation observations combined with in situ measurements increase the precision of HAB event movement forecasting. These forecasts allow coastal managers and public health officials to make more accurate and timely warnings to the public and to better direct science teams to event sites for collection and further measurements.

  14. Mission Design for NASA's Inner Heliospheric Sentinels and ESA's Solar Orbiter Missions

    NASA Technical Reports Server (NTRS)

    Downing, John; Folta, David; Marr, Greg; Rodriquez-Canabal, Jose; Conde, Rich; Guo, Yanping; Kelley, Jeff; Kirby, Karen

    2007-01-01

    This paper will document the mission design and mission analysis performed for NASA's Inner Heliospheric Sentinels (IHS) and ESA's Solar Orbiter (SolO) missions, which were conceived to be launched on separate expendable launch vehicles. This paper will also document recent efforts to analyze the possibility of launching the Inner Heliospheric Sentinels and Solar Orbiter missions using a single expendable launch vehicle, nominally an Atlas V 551.

  15. Development of a NASA 2018 Mars Landed Mission Concept

    NASA Technical Reports Server (NTRS)

    Wilson, M. G.; Salvo, C. G.; Abilleira, F.; Sengstacken, A. J.; Allwood, A. G.; Backes, P. G.; Lindemann, R. A.; Jordan, J. F.

    2010-01-01

    Fundamental to NASA's Mars Exploration Program (MEP) is an ongoing development of an integrated and coordinated set of possible future candidate missions that meet fundamental science and programmatic objectives of NASA and the Mars scientific community. In the current planning horizon of the NASA MEP, a landed mobile surface exploration mission launching in the 2018 Mars launch opportunity exists as a candidate project to meet MEP in situ science and exploration objectives. This paper describes the proposed mission science objectives and the mission implementation concept developed for the 2018 opportunity. As currently envisioned, this mission concept seeks to explore a yet-to-be-selected site with high preservation potential for physical and chemical biosignatures, evaluate paleoenvironmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry at a site on Mars.

  16. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  17. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  18. Aquarius Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface. [29

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GHz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  19. NASA's Analog Missions: Driving Exploration Through Innovative Testing

    NASA Technical Reports Server (NTRS)

    Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.

    2012-01-01

    Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).

  20. Global assessment of Level 3 SMOS and Aquarius salinity measurements using Argo and an operational ocean model

    NASA Astrophysics Data System (ADS)

    Banks, Chris; Gommenginger, Christine; Srokosz, Meric; Snaith, Helen

    2013-04-01

    The launch of the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite in November 2009 marked a new era in satellite oceanography. SMOS was joined in orbit, in June 2011, by the NASA/Argentine Aquarius/SAC-D mission, specifically designed to measure sea surface salinity (SSS). These two satellites have significantly improved our ability to measure SSS synoptically. Despite significant differences in how the two satellites estimate SSS, both utilise passive systems to measure the response of the brightness temperature (Tb) at L-band (1.4 GHz) to SSS and initial results are encouraging. The UK National Oceanography Centre has produced 'Level 3' SSS data products for SMOS and Aquarius using monthly data on a 1° by 1° global grid, between 60°S and 60°N, from 1 September 2011 to 31 August 2012. Previous and on-going work shows for both satellites significant temporally varying differences between SSS from ascending passes (satellite moving south to north) and SSS from descending passes (satellite moving north to south). Therefore, for both SMOS and Aquarius, separate Level 3 products are produced from data for ascending and descending passes. For this study, two separate monthly validation datasets are used based on the same grid as the satellite data. The first is averaged near-surface salinity (depth less than 10 m) as derived from the drifting Argo float programme. The second validation data source is output from the UK Met Office Forecasting Ocean Assimilation Model (FOAM), which is based on NEMO (Nucleus for European Modelling of the Ocean). We calculate maps of the difference between all possible pairs of SSS data for each month, and consider their relationships using regression on the 1˚ values. The analysis is carried out for the global ocean, as well as for smaller, more homogeneous, study regions (e.g. SPURS in the subtropical North Atlantic).

  1. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for

  2. Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; McCarty, Steven L.; Lantoine, Gregory B.; Qu, Min; Shen, Haijun; Smith, David A.; Vavrina, Matthew A.

    2017-01-01

    The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission.

  3. Evolution of Training in NASA's Mission Operations Directorate

    NASA Technical Reports Server (NTRS)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.

  4. Aquarius Active-Passive RFI Environment at L-Band

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; De Matthaeis, Paolo

    2014-01-01

    Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments.

  5. Impact of Aquarius and SMAP Sea Surface Salinity Observations on Seasonal Predictions of the 2015 El Nino

    NASA Technical Reports Server (NTRS)

    Hackert, E.; Kovach, R.; Marshak, J.; Borovikov, A.; Molod, A.; Vernieres, G.

    2018-01-01

    We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts for the big 2015 El Nino event. From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP (Soil Moisture Active Passive Mission), allows a unique opportunity to compare and contrast forecasts generated with the benefit of these two satellite SSS observation types. Four distinct experiments are presented that include 1) freely evolving model SSS (i.e. no satellite SSS), relaxation to 2) climatological SSS (i.e. WOA13 SSS), 3) Aquarius, and 4) SMAP initialization. Coupled hindcasts are then generated from these initial conditions for March 2015. These forecasts are then validated against observations and evaluated with respect to the observed El Nino development.

  6. Global Hawk Aircraft Lands at NASA Wallops for Hurricane Mission

    NASA Image and Video Library

    2017-12-08

    The first of two NASA Global Hawk unmanned aerial vehicles supporting the Hurricane and Severe Storm Sentinel (HS3) mission landed at 7:39 a.m. today, Aug. 14, 2013, at NASA's Wallops Flight Facility, Wallops Island, Va. During August and September, NASA will fly the two Global Hawks over the Atlantic Ocean to study tropical storms and the processes that underlie hurricane formation and intensification. The aircraft are equipped with instruments to survey the overall environment of the storms and peer into the inner core of hurricanes to study their structure and processes. For more information, visit: www.nasa.gov/HS3. Photo Credit: NASA Wallops Keith Koehler NASA Wallops Flight Facility NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Aquarius, a reusable water-based interplanetary human spaceflight transport

    NASA Astrophysics Data System (ADS)

    Adamo, Daniel R.; Logan, James S.

    2016-11-01

    Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.

  8. The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Bontempi, Paula; Maring, Hal

    2011-01-01

    In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community

  9. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  10. Status of the NASA Robotic Mission Conjunction Assessment Effort

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft

    2007-01-01

    This viewgraph presentation discusses NASA's processes and tools used to mitigate threats to NASA's robotic assets. The topics include: 1) Background; 2) Goddard Stakeholders and Mission Support; 3) ESC and TDRS Mission Descriptions; 4) TDRS Conjunction Assessment Process; 5) ESMO Conjunction Assessment Process; 6) Recent Operations Experiences; 7) Statistics Collected for ESC Regime; and 8) Current and Future Analysis Items.

  11. Guidelines for NASA Missions to Engage the User Community as a Part of the Mission Life Cycle

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Friedl, L.; Bonniksen, C. K.

    2017-12-01

    NASA continues to improve the Earth Science Directorate in the areas of thematic integration, stakeholder feedback and Project Applications Program tailoring for missions to transfer knowledge between scientists and projects. The integration of application themes and the implementation of application science activities in flight projects have evolved to formally include user feedback and stakeholder integration. NASA's new Flight Applied Science Program Guidelines are designed to bridge NASA Earth Science Directorates in Flight, Applied Sciences and Research and Development by agreeing to integrate the user community into mission life cycles. Thus science development and science applications will guide all new instruments launched by NASAs ESD. The continued integration with the user community has enabled socio-economic considerations into NASA Earth Science projects to advance significantly. Making users a natural part of mission science leverages future socio-economic impact research and provides a platform for innovative and more actionable product to be used in decision support systems by society. This presentation will give an overview of the new NASA Guidelines and provide samples that demonstrate how the user community can be a part of NASA mission designs.

  12. Satellite Servicing in Mission Design Studies at the NASA GSFC

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.

    2003-01-01

    Several NASA missions in various stages of development have undergone one-week studies in the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Integrated Mission Design Center (IMDC), mostly in preparation for proposals. The possible role of satellite servicing has been investigated for several of these missions, applying the lessons learned from Hubble Space Telescope (HST) servicing, taking into account the current state of the art, projecting into the future, and implementing NASA long-range plans, and is presented here. The general benefits and costs of injecting satellite servicing are detailed, including components such as mission timeline, mass, fuel, spacecraft design, risk abatement, life extension, and improved performance. The approach taken in addressing satellite servicing during IMDC studies is presented.

  13. NASA's asteroid redirect mission: Robotic boulder capture option

    NASA Astrophysics Data System (ADS)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-07-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4--10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (˜1--5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU_3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense.

  14. Contested Ground: The Historical Debate Over NASA's Mission

    NASA Technical Reports Server (NTRS)

    Kay, W. D.

    2000-01-01

    This book manuscript studies in depth the development and maturation of the NASA mission from the inception of the organization until the present. This study is involved in a wide divergence of questions over roles and missions: the agency's R&D/operational activities, the decentralized/centralized approaches to management, the debate over methods of conducting business. A fundamental part of this work involves the analysis of not only how NASA has defined its role but how senior government leaders, the Congress, and society at large have viewed this matter. It is be especially useful in tracing the evolution of mission ideas in the space agency and, therefore, of great use to officials wrestling with this perennial issue.

  15. Science Data Center concepts for moderate-sized NASA missions

    NASA Technical Reports Server (NTRS)

    Price, R.; Han, D.; Pedelty, J.

    1991-01-01

    The paper describes the approaches taken by the NASA Science Data Operations Center to the concepts for two future NASA moderate-sized missions, the Orbiting Solar Laboratory (OSL) and the Tropical Rainfall Measuring Mission (TRMM). The OSL space science mission will be a free-flying spacecraft with a complement of science instruments, placed in a high-inclination, sun synchronous orbit to allow continuous study of the sun for extended periods. The TRMM is planned to be a free-flying satellite for measuring tropical rainfall and its variations. Both missions will produce 'standard' data products for the benefit of their communities, and both depend upon their own scientific community to provide algorithms for generating the standard data products.

  16. The Aquarius Salinity Retrieval Algorithm: Early Results

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.; Lagerloef, Gary; LeVine, David

    2012-01-01

    The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to a 0.2 psu accuracy. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to O2, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind. This is based on the radar backscatter measurements by the scatterometer. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water and an auxiliary field for the sea surface temperature. In the current processing (as of writing this abstract) only v-pol TB are used for this last process and NCEP winds are used for the roughness correction. Before the salinity algorithm can be operationally implemented and its accuracy assessed by comparing versus in situ measurements, an extensive calibration and validation

  17. Superconductor Semiconductor Research for NASA's Submillimeter Wavelength Missions

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.

    1997-01-01

    Wideband, coherent submillimeter wavelength detectors of the highest sensitivity are essential for the success of NASA's future radio astronomical and atmospheric space missions. The critical receiver components which need to be developed are ultra- wideband mixers and suitable local oscillator sources. This research is focused on two topics, (1) the development of reliable varactor diodes that will generate the required output power for NASA missions in the frequency range from 300 GHZ through 2.5 THz, and (2) the development of wideband superconductive mixer elements for the same frequency range.

  18. The Aquarius Salinity Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank; Hilburn, Kyle; Lagerloef, Gary; Le Vine, David

    2012-01-01

    The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration [2] converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to molecular oxygen, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind, which is addressed in more detail in section 3. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water [3], [4] and an auxiliary field for the sea surface temperature. In the current processing only v-pol TB are used for this last step.

  19. Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael

    2004-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.

  20. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  1. The Role of Synthetic Biology in NASA's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  2. Integrated Network Architecture for NASA's Orion Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  3. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  4. The NASA Commercial Crew Program (CCP) Mission Assurance Process

    NASA Technical Reports Server (NTRS)

    Canfield, Amy

    2016-01-01

    In 2010, NASA established the Commercial Crew Program in order to provide human access to the International Space Station and low earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine the commercial providers transportation system complies with Programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted Hazard Reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100 percent of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (SMA) model does not support the nature of the Commercial Crew Program. To that end, NASA SMA is implementing a Risk Based Assurance (RBA) process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications. This paper will describe the evolution of the CCP Mission Assurance process from the beginning of the Program to its current incarnation. Topics to be covered include a short history of the CCP; the development of the Programmatic mission assurance requirements; the current safety review process; a description of the RBA process and its products and ending with a description of the Shared Assurance Model.

  5. NASA Missions Monitor a Waking Black Hole

    NASA Image and Video Library

    2015-06-30

    On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this system, a stream of gas from a star much like the sun flows toward a 10 solar mass black hole. Instead of spiraling toward the black hole, the gas accumulates in an accretion disk around it. Every couple of decades, the disk switches into a state that sends the gas rushing inward, starting a new outburst. Read more: www.nasa.gov/feature/goddard/nasa-missions-monitor-a-waki... Credits: NASA's Goddard Space Flight Center Download this video in HD formats from NASA Goddard's Scientific Visualization Studio svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11110

  6. Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept

    NASA Technical Reports Server (NTRS)

    Strange, Nathan; Landau, Damon; McElrath, Timothy; Lantoine, Gregory; Lam, Try; McGuire, Melissa; Burke, Laura; Martini, Michael; Dankanich, John

    2013-01-01

    Part of NASA's new asteroid initiative would be a robotic mission to capture a roughly four to ten meter asteroid and redirect its orbit to place it in translunar space. Once in a stable storage orbit at the Moon, astronauts would then visit the asteroid for science investigations, to test in space resource extraction, and to develop experience with human deep space missions. This paper discusses the mission design techniques that would enable the redirection of a 100-1000 metric ton asteroid into lunar orbit with a 40-50 kW Solar Electric Propulsion (SEP) system.

  7. NASA Post-Columbia Safety & Mission Assurance, Review and Assessment Initiatives

    NASA Astrophysics Data System (ADS)

    Newman, J. Steven; Wander, Stephen M.; Vecellio, Don; Miller, Andrew J.

    2005-12-01

    On February 1, 2003, NASA again experienced a tragic accident as the Space Shuttle Columbia broke apart upon reentry, resulting in the loss of seven astronauts. Several of the findings and observations of the Columbia Accident Investigation Board addressed the need to strengthen the safety and mission assurance function at NASA. This paper highlights key steps undertaken by the NASA Office of Safety and Mission Assurance (OSMA) to establish a stronger and more- robust safety and mission assurance function for NASA programs, projects, facilities and operations. This paper provides an overview of the interlocking OSMA Review and Assessment Division (RAD) institutional and programmatic processes designed to 1) educate, inform, and prepare for audits, 2) verify requirements flow-down, 3) verify process capability, 4) verify compliance with requirements, 5) support risk management decision making, 6) facilitate secure web- based collaboration, and 7) foster continual improvement and the use of lessons learned.

  8. Assessing the Benefits of NASA Category 3, Low Cost Class C/D Missions

    NASA Technical Reports Server (NTRS)

    Bitten, Robert E.; Shinn, Steven A.; Mahr, Eric M.

    2013-01-01

    Category 3, Class C/D missions have the benefit of delivering worthwhile science at minimal cost which is increasingly important in NASA's constrained budget environment. Although higher cost Category 1 and 2 missions are necessary to achieve NASA's science objectives, Category 3 missions are shown to be an effective way to provide significant science return at a low cost. Category 3 missions, however, are often reviewed the same as the more risk averse Category 1 and 2 missions. Acknowledging that reviews are not the only aspect of a total engineering effort, reviews are still a significant concern for NASA programs. This can unnecessarily increase the cost and schedule of Category 3 missions. This paper quantifies the benefit and performance of Category 3 missions by looking at the cost vs. capability relative to Category 1 and 2 missions. Lessons learned from successful organizations that develop low cost Category 3, Class C/D missions are also investigated to help provide the basis for suggestions to streamline the review of NASA Category 3 missions.

  9. The Economics of NASA Mission Cost Reserves

    NASA Technical Reports Server (NTRS)

    Whitley, Sally; Shinn, Stephen

    2012-01-01

    Increases in NASA mission costs are well-noted but not well-understood, and there is little evidence that they are decreasing in frequency or amount over time. The need to control spending has led to analysis of the causes and magnitude of historical mission overruns, and many program control efforts are being implemented to attempt to prevent or mitigate the problem (NPR 7120). However, cost overruns have not abated, and while some direct causes of increased spending may be obvious (requirements creep, launch delays, directed changes, etc.), the underlying impetus to spend past the original budget may be more subtle. Gaining better insight into the causes of cost overruns will help NASA and its contracting organizations to avoid .them. This paper hypothesizes that one cause of NASA mission cost overruns is that the availability of reserves gives project team members an incentive to make decisions and behave in ways that increase costs. We theorize that the presence of reserves is a contributing factor to cost overruns because it causes organizations to use their funds less efficiently or to control spending less effectively. We draw a comparison to the insurance industry concept of moral hazard, the phenomenon that the presence of insurance causes insureds to have more frequent and higher insurance losses, and we attempt to apply actuarial techniques to quantifY the increase in the expected cost of a mission due to the availability of reserves. We create a theoretical model of reserve spending motivation by defining a variable ReserveSpending as a function of total reserves. This function has a positive slope; for every dollar of reserves available, there is a positive probability of spending it. Finally, the function should be concave down; the probability of spending each incremental dollar of reserves decreases progressively. We test the model against available NASA CADRe data by examining missions with reserve dollars initially available and testing whether

  10. Reuse of Software Assets for the NASA Earth Science Decadal Survey Missions

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Downs, Robert R.; Marshall, James J.; Most, Neal F.; Samadi, Shahin

    2010-01-01

    Software assets from existing Earth science missions can be reused for the new decadal survey missions that are being planned by NASA in response to the 2007 Earth Science National Research Council (NRC) Study. The new missions will require the development of software to curate, process, and disseminate the data to science users of interest and to the broader NASA mission community. In this paper, we discuss new tools and a blossoming community that are being developed by the Earth Science Data System (ESDS) Software Reuse Working Group (SRWG) to improve capabilities for reusing NASA software assets.

  11. NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability

    NASA Astrophysics Data System (ADS)

    Dankanich, John

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.

  12. Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Srinivasan, Margaret; Peterson, Craig; Callahan, Phil

    2013-09-01

    The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop

  13. Current Level of Mission Control Automation at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Breed, Julie; Rackley, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    NASA is particularly concerned with reducing mission operations costs through increased automation. This paper examines the operations procedures within NASA Mission Control Centers in order to uncover the level of automation that currently exists within them. Based on an assessment of mission operations procedures within three representative control centers, this paper recommends specific areas where there is potential for mission cost reduction through increased automation.

  14. Aquarius salinity and wind retrieval using the cap algorithm and application to water cycle observation in the Indian ocean and subcontinent

    USDA-ARS?s Scientific Manuscript database

    Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...

  15. Topographic Signatures in Aquarius Radiometer/Scatterometer Response: Initial Results

    NASA Technical Reports Server (NTRS)

    Utku, C.; LeVine, D. M.

    2012-01-01

    The effect of topography on remote sensing at L-band is examined using the co-located Aquarius radiometer and scatterometer observations over land. A correlation with slope standard deviation is demonstrated for both the radiometer and scatterometer at topographic scales. Although the goal of Aquarius is remote sensing of sea surface salinity, the radiometer and scatterometer are on continuously and collect data for remote sensing research over land. Research is reported here using the data over land to determine if topography could have impact on the passive remote sensing at L-band. In this study, we report observations from two study regions: North Africa between 15 deg and 30 deg Northern latitudes and Australia less the Tasmania Island. Common to these two regions are the semi-arid climate and low population density; both favorable conditions to isolate the effect of topography from other sources of scatter and emission such as vegetation and urban areas. Over these study regions, topographic scale slopes within each Aquarius pixel are computed and their standard deviations are compared with Aquarius scatterometer and radiometer observations over a 36 day period between days 275 and 311 of 2011.

  16. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  17. Aquarius Instrument and Salinity Retrieval

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.

    2011-01-01

    nadir which correspond to local incidence angles at the surface of 28.7 deg., 37.8 deg. and 45.6 deg., respectively. The resolution of the three radiometer beams (axes of the 3dB ellipse) is: 76 x 94 km for the inner beam, 84 x 120 km for the middle beam to 96 x 156 km for the outer beam. Together they cover a swath of about 390 km. Aquarius will map the global ice-free ocean every 7-days from which monthly average composites will be derived. This will provide a snapshot of the mean field, as well as resolving the seasonal to interannual variations over the three-year baseline of the mission.

  18. Evaluation of Aquarius Version-5 Sea Surface Salinity on various spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Lee, T.

    2017-12-01

    Sea surface salinity (SSS) products from Aquarius have had three public releases with progressive improvement in data quality: Versions 2, 3, and 4, with the last one being released in October 2015. A systematic assessment of the Version-4, Level-3 Aquarius SSS product was performed on various spatial and temporal scales by comparing it with gridded Argo products (Lee 2016, Geophys. Res. Lett.). The comparison showed that the consistency of Aquarius Version-4 SSS with gridded Argo products is comparable to that between two different gridded Argo products. However, significant seasonal biases remain in high-latitude oceans. Further improvements are being made by the Aquarius team. Aquarius Version 5.0 SSS is scheduled to be released in October 2017 as the final version of the Aquarius Project. This presentation provides a similar evaluation of Version-5 SSS as reported by Lee (2016) and contrast it with the current Version-4 SSS.

  19. An Overview of NASA's Asteroid Redirect Mission (ARM) Concept

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is developing the Asteroid Redirect Mission (ARM) as a capability demonstration for future human exploration, including use of high-power solar electric propulsion, which allows for the efficient movement of large masses through deep space. The ARM will also demonstrate the capability to conduct proximity operations with natural space objects and crewed operations beyond the security of quick Earth return. The Asteroid Redirect Robotic Mission (ARRM), currently in formulation, will visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, conduct a demonstration of a slow push planetary defense technique, and redirect the multi-ton boulder into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts aboard an Orion spacecraft will dock with the robotic vehicle to explore the boulder and return samples to Earth. The ARM is part of NASA's plan to advance technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. The ARM and subsequent availability of the asteroidal material in cis-lunar space, provide significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, and in-situ resource utilization (ISRU). NASA established the Formulation Assessment and Support Team (FAST), comprised of scientists, engineers, and technologists, which supported ARRM mission requirements formulation, answered specific questions concerning potential target asteroid physical properties, and produced a publically available report. The ARM Investigation Team is being organized to support ARM implementation and execution. NASA is also open to collaboration with its international partners and welcomes further discussions. An overview of the ARM robotic and crewed segments, including mission requirements, NEA targets, and mission operations, and a discussion

  20. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  1. Designing astrophysics missions for NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-10-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.

  2. Aquarius Salinity Retrieval Algorithm: Final Pre-Launch Version

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Le Vine, David M.

    2011-01-01

    This document provides the theoretical basis for the Aquarius salinity retrieval algorithm. The inputs to the algorithm are the Aquarius antenna temperature (T(sub A)) measurements along with a number of NCEP operational products and pre-computed tables of space radiation coming from the galaxy and sun. The output is sea-surface salinity and many intermediate variables required for the salinity calculation. This revision of the Algorithm Theoretical Basis Document (ATBD) is intended to be the final pre-launch version.

  3. NASA's RPS Design Reference Mission Set for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  4. Parting Moon Shots from NASAs GRAIL Mission

    NASA Image and Video Library

    2013-01-10

    Video of the moon taken by the NASA GRAIL mission's MoonKam (Moon Knowledge Acquired by Middle School Students) camera aboard the Ebb spacecraft on Dec. 14, 2012. Features forward-facing and rear-facing views.

  5. NASA's Asteroid Redirect Mission: Overview and Status

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Brophy, John; Mazanek, Dan; Muirhead, Brian

    A major element of the National Aeronautics and Space Administration’s (NASA) new Asteroid Initiative is the Asteroid Redirect Mission (ARM). This concept was first proposed in 2011 during a feasibility study at the Keck Institute for Space Studies (KISS)[1] and is under consideration for implementation by NASA. The ARM involves sending a high-efficiency (ISP 3000 s), high-power (40 kW) solar electric propulsion (SEP) robotic vehicle that leverages technology developed by NASA’s Space Technology Mission Directorate (STMD) to rendezvous with a near-Earth asteroid (NEA) and return asteroidal material to a stable lunar distant retrograde orbit (LDRO)[2]. There are two mission concepts currently under study, one that captures an entire 7 - 10 meter mean diameter NEA[3], and another that retrieves a 1 - 10 meter mean diameter boulder from a 100+ meter class NEA[4]. Once the retrieved asteroidal material is placed into the LDRO, a two person crew would launch aboard an Orion capsule to rendezvous and dock with the robotic SEP vehicle. After docking, the crew would conduct two extra-vehicular activities (EVA) to collect asteroid samples and deploy instruments prior to Earth return. The crewed portion of the mission is expected to last approximately 25 days and would represent the first human exploration mission beyond low-Earth orbit (LEO) since the Apollo program. The ARM concept leverages NASA’s activities in Human Exploration, Space Technology, and Planetary Defense to accomplish three primary objectives and several secondary objectives. The primary objective relevant to Human Exploration is to gain operational experience with vehicles, systems, and components that will be utilized for future deep space exploration. In regard to Space Technology, the ARM utilizes advanced SEP technology that has high power and long duration capabilities that enable future missions to deep space destinations, such as the Martian system. With respect to Planetary Defense, the ARM

  6. Recent Electric Propulsion Development Activities for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  7. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  8. Role of Lidar Technology in Future NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2008-01-01

    The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.

  9. The Aquarius Simulator and Cold-Sky Calibration

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; Dinnat, Emmanuel P.; Abraham, Saji; deMatthaeis, Paolo; Wentz, Frank J.

    2011-01-01

    A numerical simulator has been developed to study remote sensing from space in the spectral window at 1.413 GHz (L-band), and it has been used to optimize the cold-sky calibration (CSC) for the Aquarius radiometers. The celestial sky is a common cold reference in microwave radiometry. It is currently being used by the Soil Moisture and Ocean Salinity satellite, and it is planned that, after launch, the Aquarius/SAC-D observatory will periodically rotate to view "cold sky" as part of the calibration plan. Although radiation from the celestial sky is stable and relatively well known, it varies with location. In addition, radiation from the Earth below contributes to the measured signal through the antenna back lobes and also varies along the orbit. Both effects must be taken into account for a careful calibration. The numerical simulator has been used with the Aquarius configuration (antennas and orbit) to investigate these issues and determine optimum conditions for performing a CSC. This paper provides an overview of the simulator and the analysis leading to the selection of the optimum locations for a CSC.

  10. Workmanship Challenges for NASA Mission Hardware

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette

    2010-01-01

    This slide presentation reviews several challenges in workmanship for NASA mission hardware development. Several standards for NASA workmanship exist, that are required for all programs, projects, contracts and subcontracts. These Standards contain our best known methods for avoiding past assembly problems and defects. These best practices may not be available if suppliers are used who are not compliant with them. Compliance includes having certified operators and inspectors. Some examples of problems that have occured from the lack of requirements flow-down to contractors are reviewed. The presentation contains a detailed example of the challenge in regards to The Packaging "Design" Dilemma.

  11. Comparison Between AQUARIUS and SMOS brightness temperatures for Heterogeneous Land Areas

    NASA Astrophysics Data System (ADS)

    Benlloch, Amparo; Lopez-Baeza, Ernesto; Tenjo, Carolina; Navarro, Enrique

    2016-07-01

    Intercomparison between Aquarius and SMOS brightness temperatures (TBs) over land surfaces is more challenging than over oceans because land footprints are more heterogeneous. In this work we are comparing Aquarius and SMOS TBs under coherente conditions obtained both by considering similar areas, according to land uses and by stratifying by means of TVDI (Temperature Vegetation Dryness Index) that accounts for the dynamics of the vegetation instead of assuming static characteristics as in the previous approches. The area of study was chosen in central Spain where we could get a significant number of matches between both instruments. The study period corresponded to 2012-2014. SMOS level-3 data were obtained from the Centre Aval de Traitement des Données SMOS (CATDS) and Aquarius' from the Physical Oceanography Distributed Active Archive Center (PODAAC). Land uses were obtained from the Spanish SIOSE facility (Sistema de Informacion de Ocupacion del Suelo en España) that uses a scale of 1:25.000 and polygon geometrical structure layer. SIOSE is based on panchromatic and multispectral 2.5 m resolution SPOT-5 images together with Landsat-5 images and orthophotos from the Spanish Nacional Plan of Aerial Orthophotography (PNOA). TVDI values were obtained from MODIS operational products of land surface temperature and NDVI. SMOS ascending TBs were compared to inner-beam Aquarius descending half-orbit TBs coinciding over the study area at 06:00 h. The Aquarius inner beam has an incidence angle of 28,7º and SMOS data were considered for the 27,5º incidence angle. The SMOS products corresponded to version 2.6x (data before 31st Oct 2013) and version 2.7x (data after 1st Jan 2014). Intersections between both footprints were analysed under conditions of similar areas, land uses and TVDI values. For the latter (land uses/TVDI), a linear combination of SMOS land uses/TVDI was obtained to match the larger Aquarius footprint. A more physical approach is also under way

  12. Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.

    2015-01-01

    Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.

  13. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  14. Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable

  15. Aquarius Digital Processing Unit

    NASA Technical Reports Server (NTRS)

    Forgione, Joshua; Winkert, George; Dobson, Norman

    2009-01-01

    Three documents provide information on a digital processing unit (DPU) for the planned Aquarius mission, in which a radiometer aboard a spacecraft orbiting Earth is to measure radiometric temperatures from which data on sea-surface salinity are to be deduced. The DPU is the interface between the radiometer and an instrument-command-and-data system aboard the spacecraft. The DPU cycles the radiometer through a programmable sequence of states, collects and processes all radiometric data, and collects all housekeeping data pertaining to operation of the radiometer. The documents summarize the DPU design, with emphasis on innovative aspects that include mainly the following: a) In the radiometer and the DPU, conversion from analog voltages to digital data is effected by means of asynchronous voltage-to-frequency converters in combination with a frequency-measurement scheme implemented in field-programmable gate arrays (FPGAs). b) A scheme to compensate for aging and changes in the temperature of the DPU in order to provide an overall temperature-measurement accuracy within 0.01 K includes a high-precision, inexpensive DC temperature measurement scheme and a drift-compensation scheme that was used on the Cassini radar system. c) An interface among multiple FPGAs in the DPU guarantees setup and hold times.

  16. Potential large missions enabled by NASA's space launch system

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.

    2016-07-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  17. Exploring Cognition Using Software Defined Radios for NASA Missions

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Reinhart, Richard C.

    2016-01-01

    NASA missions typically operate using a communication infrastructure that requires significant schedule planning with limited flexibility when the needs of the mission change. Parameters such as modulation, coding scheme, frequency, and data rate are fixed for the life of the mission. This is due to antiquated hardware and software for both the space and ground assets and a very complex set of mission profiles. Automated techniques in place by commercial telecommunication companies are being explored by NASA to determine their usability by NASA to reduce cost and increase science return. Adding cognition the ability to learn from past decisions and adjust behavior is also being investigated. Software Defined Radios are an ideal way to implement cognitive concepts. Cognition can be considered in many different aspects of the communication system. Radio functions, such as frequency, modulation, data rate, coding and filters can be adjusted based on measurements of signal degradation. Data delivery mechanisms and route changes based on past successes and failures can be made to more efficiently deliver the data to the end user. Automated antenna pointing can be added to improve gain, coverage, or adjust the target. Scheduling improvements and automation to reduce the dependence on humans provide more flexible capabilities. The Cognitive Communications project, funded by the Space Communication and Navigation Program, is exploring these concepts and using the SCaN Testbed on board the International Space Station to implement them as they evolve. The SCaN Testbed contains three Software Defined Radios and a flight computer. These four computing platforms, along with a tracking antenna system and the supporting ground infrastructure, will be used to implement various concepts in a system similar to those used by missions. Multiple universities and SBIR companies are supporting this investigation. This paper will describe the cognitive system ideas under consideration and

  18. Soil moisture mapping for aquarius

    USDA-ARS?s Scientific Manuscript database

    Aquarius is the first satellite to provide both passive and active L-band observations of the Earth. In addition, the instruments on Satelite de Aplicaciones Cientificas-D (SAC-D) provide complementary information for analysis and retrieval algorithms. Our research focuses on the retrieval of soil m...

  19. Technology Needs for the Next Generation of NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2013-01-01

    In-Space propulsion technologies relevant to Mars presentation is for the 14.03 Emerging Technologies for Mars Exploration panel. The talk will address propulsion technology needs for future Mars science missions, and will address electric propulsion, Earth entry vehicles, light weight propellant tanks, and the Mars ascent vehicle. The second panel presentation is Technology Needs for the Next Generation of NASA Science Missions. This talk is for 14.02 Technology Needs for the Next Generation of NASA Science Missions panel. The talk will summarize the technology needs identified in the NAC's Planetary Science Decadal Survey, and will set the stage for the talks for the 4 other panelist.

  20. NASA/ESTO investments in remote sensing technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Babu, Sachidananda R.

    2017-02-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  1. Developing Software for NASA Missions in the New Millennia

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is working on new mission concepts for exploration of the solar system. The concepts for these missions include swarms of hundreds of cooperating intelligent spacecraft which will be able to work in teams and gather more data than current single spacecraft missions. These spacecraft will not only have to operate independently for long periods of time on their own and in teams, but will also need to have autonomic properties of self healing, self configuring, self optimizing and self protecting for them to survive in the harsh space environment. Software for these types of missions has never been developed before and represents some of the challenges of software development in the new millennia. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm missions NASA is considering. The ANTS mission will use a swarm of one thousand pico-spacecraft that weigh less than five pounds. Using an insect colony analog, ANTS will explore the asteroid belt and catalog the mass, density, morphology, and chemical composition of the asteroids. Due to the size of the spacecraft, each will only carry a single miniaturized science instrument which will require them to cooperate in searching for asteroids that are of scientific interest. This article also discusses the ANTS mission, the properties the spacecraft will need and how that will effect future software development.

  2. Education and Public Outreach and Engagement at NASA's Analog Missions in 2012

    NASA Technical Reports Server (NTRS)

    Watkins, Wendy L.; Janoiko, Barbara A.; Mahoney, Erin; Hermann, Nicole B.

    2013-01-01

    Analog missions are integrated, multi-disciplinary activities that test key features of future human space exploration missions in an integrated fashion to gain a deeper understanding of system-level interactions and operations early in conceptual development. These tests often are conducted in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They may also be conducted at NASA facilities, using advanced modeling and human-in-the-loop scenarios. As NASA develops a capability driven framework to transport crew to a variety of space environments, it will use analog missions to gather requirements and develop the technologies necessary to ensure successful exploration beyond low Earth orbit. NASA s Advanced Exploration Systems (AES) Division conducts these high-fidelity integrated tests, including the coordination and execution of a robust education and public outreach (EPO) and engagement program for each mission. Conducting these mission scenarios in unique environments not only provides an opportunity to test the EPO concepts for the particular future-mission scenario, such as the best methods for conducting events with a communication time delay, but it also provides an avenue to deliver NASA s human space exploration key messages. These analogs are extremely exciting to students and the public, and they are performed in such a way that the public can feel like part of the mission. They also provide an opportunity for crew members to obtain training in education and public outreach activities similar to what they would perform in space. The analog EPO team is responsible for the coordination and execution of the events, the overall social media component for each mission, and public affairs events such as media visits and interviews. They also create new and exciting ways to engage the public, manage and create website content, coordinate video footage for missions, and coordinate and integrate

  3. Electric Propulsion Requirements and Mission Analysis Under NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.

    2007-01-01

    The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.

  4. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  5. NASA Electronic Parts and Packaging (NEPP) - A NASA Office of Safety and Mission Assurance (OSMA) Program

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.

    2017-01-01

    NEPP Mission Statement: Provide NASA's leadership for developing and maintaining guidance for the screening, qualification, test, and reliable usage of electrical, electronic, and electromechanical (EEE) parts by NASA, in collaboration with other government Agencies and industry.

  6. Fission Power System Technology for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  7. Overview of the NASA soil moisture active/passive mission

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) Mission is currently in design Phase C and scheduled for launch in October 2014. Its mission concept is based on combined L-band radar and radiometry measurements obtained from a shared, rotating 6-meter antennae. These measurements will be used to retrie...

  8. KSC-04pd1500

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - After their return from a practice dive at the NOAA Aquarius underwater station offshore at Key Largo, John Herrington and Tara Ruttley look over their dive gear. Herrington is mission commander and Ruttley, a biomedical engineer, is a member of the crew on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius offshore from Key Largo - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. Other team members are astronauts Doug Wheelock and Nick Patrick. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  9. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  10. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  11. Heat Shield Construction for NASA InSight Mission

    NASA Image and Video Library

    2015-05-27

    In this February 2015 scene from a clean room at Lockheed Martin Space Systems, Denver, specialists are building the heat shield to protect NASA's InSight spacecraft when it is speeding through the Martian atmosphere. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19404

  12. Electrical Power System Architectures for In-House NASA/GSFC Missions

    NASA Technical Reports Server (NTRS)

    Yun, Diane D.

    2006-01-01

    This power point presentation reviews the electrical power system (EPS) architecture used for a few NASA GSFC's missions both current and planned. Included in the presentation are reviews of electric power systems for the Space Technology 5 (ST5) mission, the Solar Dynamics Observatory (SDO) Mission, and the Lunar Reconnaissance Orbiter (LRO). There is a slide that compares the three missions' electrical supply systems.

  13. KSC-04pd1499

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - After their return from a practice dive at the NOAA Aquarius underwater station offshore at Key Largo, Marc Reagan, John Herrington and Nick Patrick unload dive gear. Herrington is mission commander and Patrick is a member of the crew on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. Reagan is mission lead as well as underwater still photographer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius offshore from Key Largo - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. Other team members are Doug Wheelock and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  14. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  15. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  16. Call for NASA Mission Supporting Observations

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.

    2018-04-01

    Lightcurve observations are requested to support NASA missions planned for launch to study main-belt and Trojan asteroids. In some cases, the rotations of the target asteroids are unknown. In other cases, the periods are well established and ongoing measurements will deliver the precision needed to deduce the rotation phase at the time of encounter more than a decade away.

  17. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  18. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  19. Grand Challenge Problems in Real-Time Mission Control Systems for NASA's 21st Century Missions

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara B.; Donohue, John T.; Hughes, Peter M.

    1999-01-01

    Space missions of the 21st Century will be characterized by constellations of distributed spacecraft, miniaturized sensors and satellites, increased levels of automation, intelligent onboard processing, and mission autonomy. Programmatically, these missions will be noted for dramatically decreased budgets and mission development lifecycles. Current progress towards flexible, scaleable, low-cost, reusable mission control systems must accelerate given the current mission deployment schedule, and new technology will need to be infused to achieve desired levels of autonomy and processing capability. This paper will discuss current and future missions being managed at NASA's Goddard Space Flight Center in Greenbelt, MD. It will describe the current state of mission control systems and the problems they need to overcome to support the missions of the 21st Century.

  20. NASA's Discovery Mission to (16) Psyche: Visiting a Metal World

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Bell, J. F., III

    2017-09-01

    The Psyche mission is one of NASA's most recent Discovery mission selections. It is designed to explore the large metallic Main Belt asteroid (16) Psyche and test the hypothesis that it is the exposed core of an ancient differentiated planetesimal.

  1. Aquarius Whole Range Calibration: Celestial Sky, Ocean, and Land Targets

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Bindlish, Rajat; Piepmeier, Jeffrey R.; Brown, Shannon T.

    2014-01-01

    Aquarius is a spaceborne instrument that uses L-band radiometers to monitor sea surface salinity globally. Other applications of its data over land and the cryosphere are being developed. Combining its measurements with existing and upcoming L-band sensors will allow for long term studies. For that purpose, the radiometers calibration is critical. Aquarius measurements are currently calibrated over the oceans. They have been found too cold at the low end (celestial sky) of the brightness temperature scale, and too warm at the warm end (land and ice). We assess the impact of the antenna pattern model on the biases and propose a correction. We re-calibrate Aquarius measurements using the corrected antenna pattern and measurements over the Sky and oceans. The performances of the new calibration are evaluated using measurements over well instrument land sites.

  2. KSC-2011-3887

    NASA Image and Video Library

    2011-03-21

    VANDENBERG AIR FORCE BASE, Calif. -- Workers attach cables from an overhead crane to the United Launch Alliance Delta II second stage motor for mating to the first stage at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California. Following final tests, the Aquarius/SAC-D spacecraft will be integrated to the Delta II launch vehicle in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB

  3. Toward Baseline Software Anomalies in NASA Missions

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.

    2012-01-01

    In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.

  4. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2007-01-01

    The NASA Ikhana unmanned aerial vehicle (UAV) is a General Atomics Aeronautical Systems Inc. (San Diego, California) MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate and, through partnerships, other government agencies and universities. It can carry over 2000 lb of experiment payloads in the avionics bay and external pods and is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. The aircraft is remotely piloted from a mobile ground control station (GCS) that is designed to be deployable by air, land, or sea. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled for Summer 2007.

  5. Freshening in the South China Sea during 2012 Revealed By Aquarius and in-Situ Data

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Liu, W. T.; Xue, H.; Wang, D.; Xing, T.

    2014-12-01

    Newly available sea surface salinity (SSS) data from the Aquarius together with in-situ hydrographic data are used to explore the spatial and temporal characteristics of SSS in the South China Sea (SCS). An evaluation of daily Aquarius data indicates that there exists a negative bias of 0.45 psu for the version 3.0 dataset. The root-mean-square differences (RMSD) for daily Aquarius SSS is about 0.53 after correcting the systematic bias, and those for weekly and monthly Aquarius SSSs are 0.45 and 0.29 psu, respectively. Nevertheless, the Aquarius SSS shows a reliable freshening in 2012, especially in the northern SCS, as the in-situ data does. The northern SCS freshening was around 0.40 psu, which is larger than Aquarius uncertainty indicated by the monthly RMSD. This freshening was caused by a combined effect of local freshwater flux and Kuroshio intrusion. By comparing with 2011, we attribute reduced Kuroshio intrusion as the cause for the freshening over the northern SCS in 2012. In the region near the Mekong River mouth, the river discharge during flood season plays an important role.

  6. KSC-04pd1507

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - Ready for another dive to the NOAA undersea station Aquarius, offshore from Key Largo, the site of the NASA Extreme Environment Mission Operations 6 (NEEMO-6), are (left to right) Monike Schultz, CB Office lead; Bill Todd, project lead; Marc Reagan, mission lead; and Michele Lucas, OPS planner. Todd and Lucas are also the underwater videographer and still photographer, respectively, for the mission. The NEEMO-6 team comprises John Herrington, commander, Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  7. Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2005-01-01

    To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).

  8. Advanced Methodologies for NASA Science Missions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.

    2017-12-01

    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  9. NASA Cassini Mission Prepares for “Grand Finale” on This Week @NASA – April 7, 2017

    NASA Image and Video Library

    2017-04-07

    NASA held a news conference April 4 at the Jet Propulsion Laboratory, with participation from NASA headquarters, to preview the final phase of the Cassini spacecraft’s mission to Saturn. On April 26, Cassini will begin its “Grand Finale” – a series of deep dives between the planet and its rings. No other mission has ever explored this unique region that is so close to the planet. Cassini will make 22 orbits that swoop between the rings and the planet before ending its 20-year mission on Sept. 15, with a final plunge into Saturn. The mission team hopes to gain powerful insights into the planet's internal structure and the origins of the rings, obtain the first-ever sampling of Saturn's atmosphere and particles coming from the main rings, and capture the closest-ever views of Saturn's clouds and inner rings. Also, Next Space Station Crew Travels to Launch Site, New Target Launch Date for Orbital ATK Mission to ISS, Lightfoot Visits Industry Partners, Human Exploration Rover Challenge, and John Glenn Interred at Arlington National Cemetery.

  10. NASA's Swift Mission Observes Mega Flares from a Mini Star

    NASA Image and Video Library

    2017-12-08

    Caption: DG CVn, a binary consisting of two red dwarf stars shown here in an artist's rendering, unleashed a series of powerful flares seen by NASA's Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions. Image Credit: NASA's Goddard Space Flight Center/S. Wiessinger ----- On April 23, NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star. The initial blast from this record-setting series of explosions was as much as 10,000 times more powerful than the largest solar flare ever recorded. Read more: 1.usa.gov/1poKiJ5 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Remote Sensing of Salinity and Overview of Results from Aquarius

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Dinnat, E. P.; Meissner, T.; Wentz, F.; Yueh, S. H.; Lagerloef, G. S. E.

    2015-01-01

    Aquarius is a combined active/passive microwave (L-band) instrument designed to map the salinity of global oceans from space. The specific goal of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the sea surface salinity (SSS) field of the open ocean (i.e. away from land). The instrumentation has been designed to provide monthly maps with a spatial resolution of 150 km and an accuracy of 0.2 psu

  12. Aerospace Communications Technologies in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  13. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  14. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  15. Next Generation System and Software Architectures: Challenges from Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Rouff, Christopher A.; Hinchey, Michael G.; Rash, James L.; Truszkowski, Walt

    2006-01-01

    The four key objective properties of a system that are required of it in order for it to qualify as "autonomic" are now well-accepted-self-configuring, self-healing, self-protecting, and self-optimizing- together with the attribute properties-viz. self-aware, environment-aware, self-monitoring and self- adjusting. This paper describes the need for next generation system software architectures, where components are agents, rather than objects masquerading as agents, and where support is provided for self-* properties (both existing self-chop and emerging self-* properties). These are discussed as exhibited in NASA missions, and in particular with reference to a NASA concept mission, ANTS, which is illustrative of future NASA exploration missions based on the technology of intelligent swarms.

  16. NASA's Decadal Planning Team Mars Mission Analysis Summary

    NASA Astrophysics Data System (ADS)

    Drake, Bret G.

    2007-02-01

    In June 1999 the NASA Administrator chartered an internal NASA task force, termed the Decadal Planning Team, to create new integrated vision and strategy for space exploration. The efforts of the Decadal Planning Team evolved into the Agency-wide team known as the NASA Exploration Team (NEXT). This team was also instructed to identify technology roadmaps to enable the science-driven exploration vision, established a cross-Enterprise, cross-Center systems engineering team with emphasis focused on revolutionary not evolutionary approaches. The strategy of the DPT and NEXT teams was to "Go Anywhere, Anytime" by conquering key exploration hurdles of space transportation, crew health and safety, human/robotic partnerships, affordable abundant power, and advanced space systems performance. Early emphasis was placed on revolutionary exploration concepts such as rail gun and electromagnetic launchers, propellant depots, retrograde trajectories, nano structures, and gas core nuclear rockets to name a few. Many of these revolutionary concepts turned out to be either not feasible for human exploration missions or well beyond expected technology readiness for near-term implementation. During the DPT and NEXT study cycles, several architectures were analyzed including missions to the Earth-Sun Libration Point (L2), the Earth-Moon Gateway and L1, the lunar surface, Mars (both short and long stays), one-year round trip Mars, and near-Earth asteroids. Common emphasis of these studies included utilization of the Earth-Moon Libration Point (L1) as a staging point for exploration activities, current (Shuttle) and near-term launch capabilities (EELV), advanced propulsion, and robust space power. Although there was much emphasis placed on utilization of existing launch capabilities, the team concluded that missions in near-Earth space are only marginally feasible and human missions to Mars were not feasible without a heavy lift launch capability. In addition, the team concluded that

  17. NASA's Decadal Planning Team Mars Mission Analysis Summary

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    2007-01-01

    In June 1999 the NASA Administrator chartered an internal NASA task force, termed the Decadal Planning Team, to create new integrated vision and strategy for space exploration. The efforts of the Decadal Planning Team evolved into the Agency-wide team known as the NASA Exploration Team (NEXT). This team was also instructed to identify technology roadmaps to enable the science-driven exploration vision, established a cross-Enterprise, cross-Center systems engineering team with emphasis focused on revolutionary not evolutionary approaches. The strategy of the DPT and NEXT teams was to "Go Anywhere, Anytime" by conquering key exploration hurdles of space transportation, crew health and safety, human/robotic partnerships, affordable abundant power, and advanced space systems performance. Early emphasis was placed on revolutionary exploration concepts such as rail gun and electromagnetic launchers, propellant depots, retrograde trajectories, nano structures, and gas core nuclear rockets to name a few. Many of these revolutionary concepts turned out to be either not feasible for human exploration missions or well beyond expected technology readiness for near-term implementation. During the DPT and NEXT study cycles, several architectures were analyzed including missions to the Earth-Sun Libration Point (L2), the Earth-Moon Gateway and L1, the lunar surface, Mars (both short and long stays), one-year round trip Mars, and near-Earth asteroids. Common emphasis of these studies included utilization of the Earth-Moon Libration Point (L1) as a staging point for exploration activities, current (Shuttle) and near-term launch capabilities (EELV), advanced propulsion, and robust space power. Although there was much emphasis placed on utilization of existing launch capabilities, the team concluded that missions in near-Earth space are only marginally feasible and human missions to Mars were not feasible without a heavy lift launch capability. In addition, the team concluded that

  18. Developing a Fault Management Guidebook for Nasa's Deep Space Robotic Missions

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Jacome, Raquel Weitl

    2015-01-01

    NASA designs and builds systems that achieve incredibly ambitious goals, as evidenced by the Curiosity rover traversing on Mars, the highly complex International Space Station orbiting our Earth, and the compelling plans for capturing, retrieving and redirecting an asteroid into a lunar orbit to create a nearby a target to be investigated by astronauts. In order to accomplish these feats, the missions must be imbued with sufficient knowledge and capability not only to realize the goals, but also to identify and respond to off-nominal conditions. Fault Management (FM) is the discipline of establishing how a system will respond to preserve its ability to function even in the presence of faults. In 2012, NASA released a draft FM Handbook in an attempt to coalesce the field by establishing a unified terminology and a common process for designing FM mechanisms. However, FM approaches are very diverse across NASA, especially between the different mission types such as Earth orbiters, launch vehicles, deep space robotic vehicles and human spaceflight missions, and the authors were challenged to capture and represent all of these views. The authors recognized that a necessary precursor step is for each sub-community to codify its FM policies, practices and approaches in individual, focused guidebooks. Then, the sub-communities can look across NASA to better understand the different ways off-nominal conditions are addressed, and to seek commonality or at least an understanding of the multitude of FM approaches. This paper describes the development of the "Deep Space Robotic Fault Management Guidebook," which is intended to be the first of NASA's FM guidebooks. Its purpose is to be a field-guide for FM practitioners working on deep space robotic missions, as well as a planning tool for project managers. Publication of this Deep Space Robotic FM Guidebook is expected in early 2015. The guidebook will be posted on NASA's Engineering Network on the FM Community of Practice

  19. Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.

    2015-12-01

    As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.

  20. Photovoltaic cell and array technology development for future unique NASA missions

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; hide

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  1. Potential Large Decadal Missions Enabled by Nasas Space Launch System

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-01-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  2. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Lockett, Tiffany

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.

  3. NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star

    NASA Astrophysics Data System (ADS)

    Zurbuchen, T.

    2017-12-01

    This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.

  4. PADME (Phobos And Deimos & Mars Environment): A Proposed NASA Discovery Mission

    NASA Astrophysics Data System (ADS)

    Lee, Pascal

    2014-11-01

    Ever the since their discovery in 1877 by American astronomer Asaph Hall, the two moons of Mars, Phobos and Deimos, have been enigmas. Spacecraft missions have revealed irregular-shaped small bodies with different densities, morphologies, and evolutionary histories. Spectral data suggest that they might be akin to D-type asteroids, although compositional interpretations of the spectra are ambiguous. The origin of Phobos and Deimos remains unknown. There are three prevailing hypotheses for their origin: 1) They are captured asteroids, possibly primitive D-type bodies from the outer main belt or beyond; 2) They are reaccreted impact ejecta from Mars; 3) They are remnants of Mars’s formation. Each one of these hypotheses has radically different and important implications regarding the evolution of the solar system, and/or the formation and evolution of planets and satellites, including the delivery of water and organics to the inner solar system. The Phobos And Deimos & Mars Environment (PADME) mission is a proposed NASA Discovery mission that will test these hypotheses, by investigating simultaneously the internal structure of Phobos and Deimos, and the composition and dynamics of their surface and near-surface materials. PADME would launch in 2020 and reach Mars orbit in early 2021. PADME would then begin a series of slow and increasingly close flybys of Phobos first, then of Deimos. PADME would use the proven LADEE spacecraft and mature instrument systems to enable a low-cost and low risk approach to carrying out its investigation. In addition to achieving its scientific objectives, PADME would fill strategic knowledge gaps identified by NASA’s SBAG and HEOMD for planning future, more ambitious robotic landed or sample return missions to Phobos and/or Deimos, and eventual human missions to Mars Orbit. PADME would be built, managed, and operated by NASA Ames Research Center. Partners include the SETI Institute, NASA JPL, NASA GSFC, NASA JSC, NASA KSC, LASP

  5. Control-Structure-Interaction (CSI) technologies and trends to future NASA missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Control-structure-interaction (CSI) issues which are relevant for future NASA missions are reviewed. This goal was achieved by: (1) reviewing large space structures (LSS) technologies to provide a background and survey of the current state of the art (SOA); (2) analytically studying a focus mission to identify opportunities where CSI technology may be applied to enhance or enable future NASA spacecraft; and (3) expanding a portion of the focus mission, the large antenna, to provide in-depth trade studies, scaling laws, and methodologies which may be applied to other NASA missions. Several sections are presented. Section 1 defines CSI issues and presents an overview of the relevant modeling and control issues for LLS. Section 2 presents the results of the three phases of the CSI study. Section 2.1 gives the results of a CSI study conducted with the Geostationary Platform (Geoplat) as the focus mission. Section 2.2 contains an overview of the CSI control design methodology available in the technical community. Included is a survey of the CSI ground-based experiments which were conducted to verify theoretical performance predictions. Section 2.3 presents and demonstrates a new CSI scaling law methodology for assessing potential CSI with large antenna systems.

  6. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  7. Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Morris, K. R.; Petersen, W. A.

    2007-01-01

    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.

  8. Mission to Mars: Connecting Diverse Student Groups with NASA Experts

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Jones, David; Sadowski-Fugitt, Leslie; Kowrach, Nicole

    2012-01-01

    The Museum of Science and Industry in Chicago has formulated an innovative approach to inspiring the next generation to pursue STEM education. Middle school students in Chicago and at nearby Challenger Learning Centers work in teams to design a mission to Mars. Each mission includes real time access to NASA experts through partnerships with Marshall Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory. Interactive videoconferencing connects students at the museum with students at a Challenger Learning Center and with NASA experts. This paper describes the approach, the results from the program s first year, and future opportunities for nationwide expansion.

  9. Predictive Modeling for NASA Entry, Descent and Landing Missions

    NASA Technical Reports Server (NTRS)

    Wright, Michael

    2016-01-01

    Entry, Descent and Landing (EDL) Modeling and Simulation (MS) is an enabling capability for complex NASA entry missions such as MSL and Orion. MS is used in every mission phase to define mission concepts, select appropriate architectures, design EDL systems, quantify margin and risk, ensure correct system operation, and analyze data returned from the entry. In an environment where it is impossible to fully test EDL concepts on the ground prior to use, accurate MS capability is required to extrapolate ground test results to expected flight performance.

  10. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. The image shows a map of the recent star formation history of M33. The bright blue and white areas are where star formation has been extremely active over the past few million years. The patches of yellow and gold are regions where star formation was more active 100 million years ago. In addition, the ultraviolet image shows the most massive young stars in M33. These stars burn their large supply of hydrogen fuel quickly, burning hot and bright while emitting most of their energy at ultraviolet wavelengths. Compared with low-mass stars like our sun, which live for billions of years, these massive stars never reach old age, having a lifespan as short as a few million years. http://photojournal.jpl.nasa.gov/catalog/PIA12000

  11. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  12. Complexity analysis of the cost effectiveness of PI-led NASA science missions

    NASA Astrophysics Data System (ADS)

    Yoshida, J.; Cowdin, M.; Mize, T.; Kellogg, R.; Bearden, D.

    For the last 20 years, NASA has allowed Principal Investigators (PIs) to manage the development of many unmanned space projects. Advocates of PI-led projects believe that a PI-led implementation can result in a project being developed at lower cost and shorter schedule than other implementation modes. This paper seeks to test this hypothesis by comparing the actual costs of NASA and other comparable projects developed under different implementation modes. The Aerospace Corporation's Complexity-Based Risk Assessment (CoBRA) analysis tool is used to normalize the projects such that the cost can be compared for equivalent project complexities. The data is examined both by complexity and by launch year. Cost growth will also be examined for any correlation with implementation mode. Defined in many NASA Announcements of Opportunity (AOs), a PI-led project is characterized by a central, single person with full responsibility for assembling a team and for the project's scientific integrity and the implementation and integrity of all other aspects of the mission, while operating under a cost cap. PIs have larger degrees of freedom to achieve the stated goals within NASA guidelines and oversight. This study leverages the definitions and results of previous National Research Council studies of PI-led projects. Aerospace has defined a complexity index, derived from mission performance, mass, power, and technology choices, to arrive at a broad representation of missions for purposes of comparison. Over a decade of research has established a correlation between mission complexity and spacecraft development cost and schedule. This complexity analysis, CoBRA, is applied to compare a PI-led set of New Frontiers, Discovery, Explorers, and Earth System Science Pathfinder missions to the overall NASA mission dataset. This reveals the complexity trends against development costs, cost growth, and development era.

  13. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from center, are Martin Still, TESS Program Scientist, NASA Headquarters, and Jessie Christiansen, Staff scientist, NASA Exoplanet Science Institute, California Institute of Technology. At far left is Jason Townsend, NASA Communications. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  14. Developing the NASA food system for long-duration missions.

    PubMed

    Cooper, Maya; Douglas, Grace; Perchonok, Michele

    2011-03-01

    Even though significant development has transformed the space food system over the last 5 decades to attain more appealing dietary fare for low-orbit space crews, the advances do not meet the need for crews that might travel to Mars and beyond. It is estimated that a food system for a long-duration mission must maintain organoleptic acceptability, nutritional efficacy, and safety for a 3- to 5-y period to be viable. In addition, the current mass and subsequent waste of the food system must decrease significantly to accord with the allowable volume and payload limits of the proposed future space vehicles. Failure to provide the appropriate food or to optimize resource utilization introduces the risk that an inadequate food system will hamper mission success and/or threaten crew performance. Investigators for the National Aeronautics and Space Administration (NASA) Advanced Food Technology (AFT) consider identified concerns and work to mitigate the risks to ensure that any new food system is adequate for the mission. Yet, even with carefully planned research, some technological gaps remain. NASA needs research advances to develop food that is nutrient-dense and long-lasting at ambient conditions, partial gravity cooking processes, methods to deliver prescribed nutrients over time, and food packaging that meets the mass, barrier, and processing requirements of NASA. This article provides a brief review of research in each area, details the past AFT research efforts, and describes the remaining gaps that present barriers to achieving a food system for long exploration missions.

  15. Throttling Impacts on Hall Thruster Performance, Erosion, and Qualification for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; DeHoyos, Amado

    2007-01-01

    With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.

  16. A Class for Teachers Featuring a NASA Satellite Mission

    NASA Astrophysics Data System (ADS)

    Battle, R.; Hawkins, I.

    1996-05-01

    As part of the NASA IDEA (Initiative to Develop Education through Astronomy) program, the UC Berkeley Center for EUV Astrophysics (CEA) received a grant to develop a self-contained teacher professional development class featuring NASA's Extreme Ultraviolet Explorer (EUVE) satellite mission. This class was offered in collaboration with the Physics/Astronomy Department and the Education Department of San Francisco State University during 1994, and in collaboration with the UCB Graduate School of Education in 1995 as an extension course. The class served as the foundation for the Science Education Program at CEA, providing valuable lessons and experience through a full year of intense collaboration with 50 teachers from the diverse school districts of the San Francisco Bay Area teaching in the 3rd--12th grade range. The underlying theme of the class focused on how scientists carry out research using a NASA satellite mission. Emphasis was given to problem-solving techniques, with specific examples taken from the pre- and post-launch stages of the EUVE mission. The two, semester-long classes were hosted by the CEA, so the teachers spent an average of 4 hours/week during 17 weeks immersed in astrophysics, collaborating with astronomers, and working with colleagues from the Lawrence Hall of Science and the Graduate School of Education. The teachers were taught the computer skills and space astrophysics concepts needed to perform hands-on analysis and interpretation of the EUVE satellite data and the optical identification program. As a final project, groups of teachers developed lesson plans based on NASA and other resources that they posted on the World Wide Web using html. This project's model treats teachers as professionals, and allows them to collaborate with scientists and to hone their curriculum development skills, an important aspect of their professional growth. We will summarize class highlights and showcase teacher-developed lesson plans. A detailed evaluation

  17. LUVOIR and HabEx mission concepts enabled by NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC Advanced Concept Office

    2016-01-01

    NASA Marshall Space Flight Center has developed candidate concepts for the 'decadal' LUVOIR and HabEx missions. ATLAST-12 is a 12.7 meter diameter on-axis telescope designed to meet the science objectives of the AURA Cosmic Earth to Living Earth report. HabEx-4 is a 4.0 meter diameter off-axis telescope designed to both search for habitable planets and perform general astrophysics observations. These mission concepts take advantage of the payload mass and volume capacity enabled by NASA Space Launch System to make the design architectures as simple as possible. Simplicity is important because complexity is a significant contributor to mission risk and cost. This poster summarizes the two mission concepts.

  18. NASA Systems Analysis and Concepts Directorate Mission and Trade Study Analysis

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell; Guynn, Mark; Hahn, Andrew; Lepsch, Roger; Mazanek, Dan; Dollyhigh, Sam

    2006-01-01

    Mission analysis, as practiced by the NASA Langley Research Center's Systems Analysis and Concepts Directorate (SACD), consists of activities used to define, assess, and evaluate a wide spectrum of aerospace systems for given requirements. The missions for these systems encompass a broad range from aviation to space exploration. The customer, who is usually another NASA organization or another government agency, often predefines the mission. Once a mission is defined, the goals and objectives that the system will need to meet are delineated and quantified. A number of alternative systems are then typically developed and assessed relative to these goals and objectives. This is done in order to determine the most favorable design approaches for further refinement. Trade studies are performed in order to understand the impact of a requirement on each system and to select among competing design options. Items varied in trade studies typically include: design variables or design constraints; technology and subsystem options; and operational approaches. The results of trade studies are often used to refine the mission and system requirements. SACD studies have been integral to the decision processes of many organizations for decades. Many recent examples of SACD mission and trade study analyses illustrate their excellence and influence. The SACD-led, Agency-wide effort to analyze a broad range of future human lunar exploration scenarios for NASA s Exploration Systems Mission Directorate (ESMD) and the Mars airplane design study in support of the Aerial Regional-scale Environment Survey of Mars (ARES) mission are two such examples. This paper describes SACD's mission and trade study analysis activities in general and presents the lunar exploration and Mars airplane studies as examples of type of work performed by the SACD.

  19. Lessons Learned from NASA UAV Science Demonstration Program Missions

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Schoenung, Susan M.

    2003-01-01

    During the summer of 2002, two airborne missions were flown as part of a NASA Earth Science Enterprise program to demonstrate the use of uninhabited aerial vehicles (UAVs) to perform earth science. One mission, the Altus Cumulus Electrification Study (ACES), successfully measured lightning storms in the vicinity of Key West, Florida, during storm season using a high-altitude Altus(TM) UAV. In the other, a solar-powered UAV, the Pathfinder Plus, flew a high-resolution imaging mission over coffee fields in Kauai, Hawaii, to help guide the harvest.

  20. NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Pham, Bruce; Ganel, Opher

    2017-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects

  1. NASA's Suborbital Missions Teach Engineering and Technology: Goddard Space Flight Center's Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Winterton, Joyce L.

    2016-01-01

    A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.

  2. EDOS Evolution to Support NASA Future Earth Sciences Missions

    NASA Technical Reports Server (NTRS)

    Cordier, Guy R.; McLemore, Bruce; Wood, Terri; Wilkinson, Chris

    2010-01-01

    This paper presents a ground system architecture to service future NASA decadal missions and in particular, the high rate science data downlinks, by evolving EDOS current infrastructure and upgrading high rate network lines. The paper will also cover EDOS participation to date in formulation and operations concepts for the respective missions to understand the particular mission needs and derived requirements such as data volumes, downlink rates, data encoding, and data latencies. Future decadal requirements such as onboard data recorder management and file protocols drive the need to emulate these requirements within the ground system. The EDOS open system modular architecture is scalable to accommodate additional missions using the current sites antennas and future sites as well and meet the data security requirements and fulfill mission's objectives

  3. Global Precipitation Measurement Mission Products and Services at the NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Deshong, B.; MacRitchie, K.; Greene, M.; Kempler, S.

    2017-01-01

    This article describes NASA/JAXA Global Precipitation Measurement (GPM) mission products and services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Built on the success of the Tropical Rainfall Measuring Mission (TRMM), the next-generation GPM mission consists of new precipitation measurement instruments and a constellation of international research and operational satellites to provide improved measurements of precipitation globally. To facilitate data access, research, applications, and scientific discovery, the GES DISC has developed a variety of data services for GPM. This article is intended to guide users in choosing GPM datasets and services at the GES DISC.

  4. Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; O'Neill, Peggy E.; Entekhabi, Dara; Njoku, Eni G.; Kellogg, Kent H.

    2010-01-01

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.

  5. Woven Thermal Protection System (WTPS) a Novel Approach to Meet Nasa's Most Demanding Reentry Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M.; Ellerby, Donald T.; Gasch, Matt; Ventkatapathy, Ethiraj; Beerman, Adam; Boghozian, Tane; Gonzales, Gregory; Feldman, Jay; Peterson, Keith; Prabhu, Dinesh

    2014-01-01

    NASA's future robotic missions to Venus and other planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS, however, its high density and thermal conductivity constrain mission planners to steep entries, high fluxes, pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose certification challenges in existing ground based test facilities. In 2012 the Game Changing Development Program in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASA's most challenging entry missions. This presentation will summarize the maturation of the WTPS project.

  6. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  7. Freshening in the South China Sea during 2012 revealed by Aquarius and in situ data

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Liu, W. T.; Xue, H.; Xiu, P.; Wang, D.

    2016-02-01

    Newly available sea surface salinity (SSS) data from the Aquarius together with in situ hydrographic data are used to explore the spatial and temporal characteristics of SSS in the South China Sea (SCS). Using in situ observations as the reference, an evaluation of daily Aquarius data indicates that there exists a negative bias of 0.45 psu for the version 3.0 data set. The root-mean-square difference for daily Aquarius SSS is about 0.53 psu after correcting the systematic bias, and those for weekly and monthly Aquarius SSSs are 0.45 and 0.29 psu, respectively. Nevertheless, the Aquarius SSS shows a reliable freshening in the SCS in 2012, which is larger than the Aquarius uncertainty. The freshening of up to 0.4 psu in the upper-ocean of the northern SCS was confirmed by in situ observations. This freshening in 2012 was caused by a combined effect of abundant local freshwater flux and limited Kuroshio intrusion. By comparing the Kuroshio intrusion in 2012 with that in 2011, we found the reduction as a relatively important cause for the freshening over the northern SCS. In contrast to the northern SCS, reduced river discharge in 2012 played the leading role to the saltier surface in the region near the Mekong River mouth with respect to 2011.

  8. Freshening in the South China Sea during 2012 revealed by Aquarius and in situ data

    NASA Astrophysics Data System (ADS)

    Zeng, Lili; Timothy Liu, W.; Xue, Huijie; Xiu, Peng; Wang, Dongxiao

    2014-12-01

    Newly available sea surface salinity (SSS) data from the Aquarius together with in situ hydrographic data are used to explore the spatial and temporal characteristics of SSS in the South China Sea (SCS). Using in situ observations as the reference, an evaluation of daily Aquarius data indicates that there exists a negative bias of 0.45 psu for the version 3.0 data set. The root-mean-square difference for daily Aquarius SSS is about 0.53 psu after correcting the systematic bias, and those for weekly and monthly Aquarius SSSs are 0.45 and 0.29 psu, respectively. Nevertheless, the Aquarius SSS shows a reliable freshening in the SCS in 2012, which is larger than the Aquarius uncertainty. The freshening of up to 0.4 psu in the upper-ocean of the northern SCS was confirmed by in situ observations. This freshening in 2012 was caused by a combined effect of abundant local freshwater flux and limited Kuroshio intrusion. By comparing the Kuroshio intrusion in 2012 with that in 2011, we found the reduction as a relatively important cause for the freshening over the northern SCS. In contrast to the northern SCS, reduced river discharge in 2012 played the leading role to the saltier surface in the region near the Mekong River mouth with respect to 2011.

  9. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  10. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  11. Petascale Computing: Impact on Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Brooks, Walter

    2006-01-01

    This slide presentation reviews NASA's use of a new super computer, called Columbia, capable of operating at 62 Tera Flops. This computer is the 4th fastest computer in the world. This computer will serve all mission directorates. The applications that it would serve are: aerospace analysis and design, propulsion subsystem analysis, climate modeling, hurricane prediction and astrophysics and cosmology.

  12. Asteroid Redirect Mission Briefing on This Week @NASA – September 19, 2016

    NASA Image and Video Library

    2016-09-19

    On Sept. 14, officials from the White House and NASA discussed the space agency’s Asteroid Redirect Mission (ARM) during a televised event at NASA’s Goddard Space Flight Center. On the mission, which is targeted for launch in Dec. 2021, NASA plans to send a robotic spacecraft to an asteroid tens of millions of miles from Earth, capture a multi-ton boulder, and bring it to an orbit near the moon for future exploration by astronauts on a following mission aboard NASA’s Orion spacecraft. During the live discussion, John Holdren, assistant to President Obama for Science and Technology, NASA Administrator Charles Bolden and ARM Program Director Michele Gates highlighted the mission’s scientific and technological benefits, how the mission will support NASA’s goal of sending humans to Mars in the 2030s, and how it will demonstrate technology relevant to defending Earth from potentially hazardous asteroids. Also, Astronaut Tim Kopra Visits DC Area, The Warmest August in 136 Years, and 2016 Arctic Sea Ice Minimum Ties 2nd Lowest on Record!

  13. KSC-04pd1501

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Onboard the dive boat, members of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission don dive suits. From left are Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. John Herrington is mission commander. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius offshore from Key Largo - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  14. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  15. Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  16. Woven Thermal Protection System (WTPS) a Novel Approach to Meet NASA's Most Demanding Reentry Missions

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead

    2014-01-01

    NASA's future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid-density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust Thermal Protection System (TPS) however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose certification challenges in existing ground based test facilities. In 2012 the Game Changing Development Program in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This presentation will summarize maturation of the WTPS project.

  17. NASA Facts: Edison Demonstration of Spacecraft Networks (EDSN) Mission

    NASA Technical Reports Server (NTRS)

    Ord, Stephen; Yost, Bruce D.; Petro, Andrew J.

    2013-01-01

    NASA's Edison Demonstration of Smallsat Networks (EDSN) mission will launch and deploy a swarm of 8 cubesats into a loose formation approximately 500 km above Earth. EDSN will develop technology to send multiple, advanced, yet affordable nanosatellites into space with cross-link communications to enable a wide array of scientific, commercial, and academic research. Other goals of the mission include lowering the cost and shortening the development time for future small spacecraft.

  18. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity

    NASA Astrophysics Data System (ADS)

    Felton, Clifford S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.

    2014-07-01

    Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS) and Aquarius SAC-D salinity missions are utilized to estimate the BLT. The MRM relates BLT to sea surface salinity (SSS), sea surface temperature (SST), and sea surface height anomalies (SSHA). Three regions where the BLT variability is most rigorous are selected to evaluate the performance of the MRM for 2012; the Southeast Arabian Sea (SEAS), Bay of Bengal (BoB), and Eastern Equatorial Indian Ocean (EEIO). The MRM derived BLT estimates are compared to gridded Argo and Hybrid Coordinate Ocean Model (HYCOM) BLTs. It is shown that different mechanisms are important for sustaining the BLT variability in each of the selected regions. Sensitivity tests show that SSS is the primary driver of the BLT within the MRM. Results suggest that salinity measurements obtained from Aquarius and SMOS can be useful for tracking and predicting the BLT in the Indian Ocean. Largest MRM errors occur along coastlines and near islands where land contamination skews the satellite SSS retrievals. The BLT evolution during 2012, as well as the advantages and disadvantages of the current model are discussed. BLT estimations using HYCOM simulations display large errors that are related to model layer structure and the selected BLT methodology.

  19. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. Pictured here, the galaxy NGC598 known as M33. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars farther away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, and dust rich in organic molecules burns red. This image is a 3-band composite including far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11998

  20. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Elisa Quintana, TESS scientist, NASA's Goddard Space Flight Center. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  1. Is the Aquarius sea surface salinity variability representative?

    NASA Astrophysics Data System (ADS)

    Carton, J.; Grodsky, S.

    2016-12-01

    The leading mode of the Aquarius monthly anomalous sea surface salinity (SSS) is evaluated within the 50S-50N belt, where SSS retrieval accuracy is higher. This mode accounts for about 18% of the variance and resembles a pattern of the ENSO-induced anomalous rainfall. The leading mode of SSS variability deducted from a longer JAMSTEC analysis also accounts for about 17% of the variance and has very similar spatial pattern and almost a perfect correspondence of its temporal principal component to the SOI index. In that sense, the Aquarius SSS variability at low and middle latitudes is representative of SSS variability that may be obtained from longer records. This is explained by the fact that during the Aquarius period (2011-2015), the SOI index changed significantly from La Nina toward El Nino state, thus spanning a significant range of its characteristic variations. Multivariate EOF analysis of anomalous SSS and SST suggests that ENSO-induced shift in the tropical Pacific rainfall produces negatively correlated variability of temperature and salinity, which are expected if the anomalous surface flux (stronger rainfall coincident with less downward radiation) drives the system. But, anomalous SSS and SST are positively correlated in some areas including the northwestern Atlantic shelf (north of the Gulfstream) and the Pacific sector adjusting to the California peninsula. This positive correlation is indicative of an advection driven regime that is analyzed separately.

  2. Packaging a Successful NASA Mission to Reach a Large Audience with a Small Budget. Earth's Dynamic Space: Solar-Terrestrial Physics and NASA's Polar Mission

    NASA Technical Reports Server (NTRS)

    Fox, Nicola J.; Goldberg, Richard; Barnes, Robin J.; Sigwarth, John B.; Beisser, Kerri B.; Moore, Thomas E.; Hoffman, Robert A.; Russell, Christopher T.; Scudder, Jack D.; Spann, James F.

    2004-01-01

    To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth's dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story. Team members also created visualizations using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA's Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.

  3. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  4. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, B.

    2007-01-01

    The NASA Ikhana unmanned aerial vehicle (UAV) is a General Atomics Ae ronautical Systems Inc. (San Diego, California) MQ-9 Predator-B modif ied to support the conduct of Earth science missions for the NASA Sci ence Mission Directorate and, through partnerships, other government agencies and universities. It can carry over 2000 lb of experiment p ayloads in the avionics bay and external pods and is capable of missi on durations in excess of 24 hours at altitudes above 40,000 ft. The aircraft is remotely piloted from a mobile ground control station (GC S) that is designed to be deployable by air, land, or sea. On-board s upport capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The Ikhana project will complete GCS d evelopment, science support systems integration, external pod integra tion and flight clearance, and operations crew training in early 2007 . A large-area remote sensing mission is currently scheduled for Summ er 2007.

  5. Education And Public Outreach For NASA's EPOXI Mission

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Warner, E. M.; Crow, C. A.; Ristvey, J. D.; Counley, J.

    2008-09-01

    NASA's EPOXI mission has two scientific objectives in using the Deep Impact flyby spacecraft for further studies of comets and adding studies of extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission, observations of extrasolar planets transiting their parent stars are observed to further knowledge and understanding of planetary systems. Observations of Earth allow for comparison with Earth-like planets around other stars. A movie of Earth during a day when the Moon passed between Earth and the spacecraft is an educational highlight with scientific significance. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comets with a flyby of comet Hartley 2 in November 2010 to further explore the properties of comets and their formation. The EPOXI Education and Public Outreach (E/PO) program builds upon existing materials related to exploring comets and the Deep Impact mission, updating and modifying activities based on results from Deep Impact. An educational activity called Comparing Comets is under development that will guide students in conducting analyses similar to those that DIXI scientists will perform after observing comet Hartley 2. Existing educational materials related to planet finding from other NASA programs are linked from EPOXI's web page. Journey Through the Universe at the National Air and Space Museum encourages education in family and community groups and reaches out to underrepresented minorities. EPOXI's E/PO program additionally offers a newsletter to keep the public, teachers, and space enthusiasts apprised of mission activities. For more information visit: http://epoxi.umd.edu.

  6. Tools to Support the Reuse of Software Assets for the NASA Earth Science Decadal Survey Missions

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Downs, Robert R.; Marshall, James J.; Most, Neal F.; Samadi, Shahin

    2011-01-01

    The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group (SRWG) is chartered with the investigation, production, and dissemination of information related to the reuse of NASA Earth science software assets. One major current objective is to engage the NASA decadal missions in areas relevant to software reuse. In this paper we report on the current status of these activities. First, we provide some background on the SRWG in general and then discuss the group s flagship recommendation, the NASA Reuse Readiness Levels (RRLs). We continue by describing areas in which mission software may be reused in the context of NASA decadal missions. We conclude the paper with pointers to future directions.

  7. KSC-2011-3227

    NASA Image and Video Library

    2011-04-28

    VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, a technician measures the clearance between the solar panel and a dual-thruster module after the array was installed to the Aquarius/SAC-D spacecraft. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB

  8. Photovoltaic Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey; Bailey, Sheila G.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    Recent advances in crystalline solar cell technology are reviewed. Dual-junction and triple-junction solar cells are presently available from several U. S. vendors. Commercially available triple-junction cells consisting of GaInP, GaAs, and Ge layers can produce up to 27% conversion efficiency in production lots. Technology status and performance figures of merit for currently available photovoltaic arrays are discussed. Three specific NASA mission applications are discussed in detail: Mars surface applications, high temperature solar cell applications, and integrated microelectronic power supplies for nanosatellites.

  9. The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription.

    PubMed

    Akay, Alper; Di Domenico, Tomas; Suen, Kin M; Nabih, Amena; Parada, Guillermo E; Larance, Mark; Medhi, Ragini; Berkyurek, Ahmet C; Zhang, Xinlian; Wedeles, Christopher J; Rudolph, Konrad L M; Engelhardt, Jan; Hemberg, Martin; Ma, Ping; Lamond, Angus I; Claycomb, Julie M; Miska, Eric A

    2017-08-07

    Small RNAs play a crucial role in genome defense against transposable elements and guide Argonaute proteins to nascent RNA transcripts to induce co-transcriptional gene silencing. However, the molecular basis of this process remains unknown. Here, we identify the conserved RNA helicase Aquarius/EMB-4 as a direct and essential link between small RNA pathways and the transcriptional machinery in Caenorhabditis elegans. Aquarius physically interacts with the germline Argonaute HRDE-1. Aquarius is required to initiate small-RNA-induced heritable gene silencing. HRDE-1 and Aquarius silence overlapping sets of genes and transposable elements. Surprisingly, removal of introns from a target gene abolishes the requirement for Aquarius, but not HRDE-1, for small RNA-dependent gene silencing. We conclude that Aquarius allows small RNA pathways to compete for access to nascent transcripts undergoing co-transcriptional splicing in order to detect and silence transposable elements. Thus, Aquarius and HRDE-1 act as gatekeepers coordinating gene expression and genome defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Anderson, David J.

    2008-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  11. Mission EarthFusing GLOBE with NASA Assets to Build SystemicInnovation in STEM Education

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Garik, P.; Padgett, D.; Darche, S.; Struble, J.; Adaktilou, N.

    2016-12-01

    Mission Earth is a project funded through the NASA CAN that is developing a systematic embedding of NASA assets that is being implemented by a partnership of organizations across the US. Mission Earth brings together scientists and science educators to develop a K-12 "Earth as a system" curriculum progression following research-based best practices. GLOBE and NASA assets will be infused into the curricula of schools along the K-12 continuum, leveraging existing partnerships and networks and supported through state departments of education and targeting underrepresented groups, as a systemic, effective, and sustainable approach to meeting NASA's science education objectives. This presentation will discuss plans for the Mission Earth project and successes and lessons learned in the first year. Mission Earth is developing curricular materials to support vertically integrated learning progressions. It develops models of professional development utilizing sustainable infrastructures. It will support STEM careers focusing on career technical education (CTE). And, it will engage undergraduate education majors through pre-service courses and engineering students through engineering challenges.

  12. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Jessie Christiansen, staff scientiest, NASA Exoplaneet Science Institute, California Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  13. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2006-01-01

    NASA's Ikhana unmanned aerial vehicle (UAV) is a General Atomics MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate through partnerships, other government agencies and universities. Ikhana, a Native American word meaning 'intelligence', can carry over 2000 lbs of atmospheric and remote sensing instruments in the payload bay and external pods. The aircraft is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. Redundant flight control, avionics, power, and network systems increase the system reliability and allow easier access to public airspace. The aircraft is remotely piloted from a mobile ground control station (GCS) using both C-band line-of-sight and Ku-band over-the-horizon satellite datalinks. NASA's GCS has been modified to support on-site science monitoring, or the downlink data can be networked to remote sites. All ground support systems are designed to be deployable to support global Eart science investigations. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The ARTS can host research algorithms that will autonomously command and control on-board sensors, perform sensor health monitoring, conduct data analysis, and request changes to the flight plan to maximize data collection. The ARTS also has the ability to host algorithms that will autonomously control the aircraft trajectory based on sensor needs, (e.g. precision trajectory for repeat pass interferometry) or to optimize mission objectives (e.g. search for specific atmospheric conditions). Standard on-board networks will collect science data for recording and for inclusion in the aircraft's high bandwidth downlink. The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled

  14. Game Changing: NASA's Space Launch System and Science Mission Design

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  15. Game changing: NASA's space launch system and science mission design

    NASA Astrophysics Data System (ADS)

    Creech, S. D.

    NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher characteristic energy (C3) energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as “ monolithic” telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  16. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  17. Towards Risk Based Design for NASA's Missions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Barrientos, Francesca; Meshkat, Leila

    2004-01-01

    This paper describes the concept of Risk Based Design in the context of NASA s low volume, high cost missions. The concept of accounting for risk in the design lifecycle has been discussed and proposed under several research topics, including reliability, risk analysis, optimization, uncertainty, decision-based design, and robust design. This work aims to identify and develop methods to enable and automate a means to characterize and optimize risk, and use risk as a tradeable resource to make robust and reliable decisions, in the context of the uncertain and ambiguous stage of early conceptual design. This paper first presents a survey of the related topics explored in the design research community as they relate to risk based design. Then, a summary of the topics from the NASA-led Risk Colloquium is presented, followed by current efforts within NASA to account for risk in early design. Finally, a list of "risk elements", identified for early-phase conceptual design at NASA, is presented. The purpose is to lay the foundation and develop a roadmap for future work and collaborations for research to eliminate and mitigate these risk elements in early phase design.

  18. KSC-04pd1505

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo are the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team: (left to right) Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick, John Herrington and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  19. KSC-04pd1506

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - A dive boat is moored to the Life Support Buoy, anchored above the NOAA undersea station Aquarius, offshore from Key Largo. Underwater is the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team: (left to right) Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick, John Herrington and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy.

  20. KSC-04pd1510

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo is astronaut John Herrington. He is commander of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are Nick Patrick, Doug Wheelock, and Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  1. KSC-04pd1504

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - In the water for a practice dive in the ocean offshore from Key Largo is astronaut John Herrington. He is commander of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are Nick Patrick, Doug Wheelock, and Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  2. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  3. Aquarius and SMOS detect effects of an extreme Mississippi River flooding event in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gierach, Michelle M.; Vazquez-Cuervo, Jorge; Lee, Tong; Tsontos, Vardis M.

    2013-10-01

    surface salinity (SSS) measurements from the Aquarius/Satélite de Aplicaciones Científicas (SAC)-D satellite and Soil Moisture and Ocean Salinity (SMOS) mission were used to document the freshening associated with the record 2011 Mississippi River flooding event in the Gulf of Mexico (GoM). Assessment of the salinity response was aided by additional satellite observations, including chlorophyll-a (chl-a) and ocean surface currents, and a passive tracer simulation. Low SSS values associated with the spreading of the river plume were observed 1-3 months after peak river discharge which then receded and became unidentifiable from satellite observations 5 months after maximum discharge. The seasonal wind pattern and general circulation of the GoM dramatically impacted the observed salinity response, transporting freshwater eastward along the Gulf coast and entraining low salinity waters into the open GoM. The observed salinity response from Aquarius was consistent with SMOS SSS, chl-a concentrations, and the passive tracer simulation in terms of the pathway and transit time of the river plume spreading. This study is the first successful application of satellite SSS to study salinity variation in marginal seas.

  4. NASA Instrument Cost Model for Explorer-Like Mission Instruments (NICM-E)

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, Hamid; Fox, George; Mrozinski, Joe; Ball, Gary

    2013-01-01

    NICM-E is a cost estimating relationship that supplements the traditional NICM System Level CERs for instruments flown on NASA Explorer-like missions that have the following three characteristics: 1) fly on Class C missions, 2) major development led and performed by universities or research foundations, and 3) have significant level of inheritance.

  5. The europa initiative for esa's cosmic vision: a potential european contribution to nasa's Europa mission

    NASA Astrophysics Data System (ADS)

    Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.

    2016-04-01

    The assessment of the habitability of Jupiter's icy moons is considered of high priority in the roadmaps of the main space agencies, including the decadal survey and esa's cosmic vision plan. the voyager and galileo missions indicated that europa and ganymede may meet the requirements of habitability, including deep liquid aqueous reservoirs in their interiors. indeed, they constitute different end-terms of ocean worlds, which deserve further characterization in the next decade. esa and nasa are now both planning to explore these ice moons through exciting and ambitious missions. esa selected in 2012 the juice mission mainly focused on ganymede and the jupiter system, while nasa is currently studying and implementing the europa mission. in 2015, nasa invited esa to provide a junior spacecraft to be carried on board its europa mission, opening a collaboration scheme similar to the very successful cassini-huygens approach. in order to define the best contribution that can be made to nasa's europa mission, a europa initiative has emerged in europe. its objective is to elaborate a community-based strategy for the proposition of the best possible esa contribution(s) to nasa's europa mission, as a candidate for the upcoming selection of esa's 5th medium-class mission . the science returns of the different potential contributions are analysed by six international working groups covering complementary science themes: a) magnetospheric interactions; b) exosphere, including neutrals, dust and plumes; c) geochemistry; d) geology, including expressions of exchanges between layers; e) geophysics, including characterization of liquid water distribution; f) astrobiology. each group is considering different spacecraft options in the contexts of their main scientific merits and limitations, their technical feasibility, and of their interest for the development of esa-nasa collaborations. there are five options under consideration: (1) an augmented payload to the europa mission main

  6. KSC-2011-1971

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  7. KSC-2011-1966

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  8. KSC-2011-1967

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  9. KSC-2011-1968

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  10. KSC-2011-1969

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- Technicians guide the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  11. KSC-2011-1964

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  12. KSC-2011-1962

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  13. KSC-2011-1965

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  14. KSC-2011-1963

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  15. KSC-2011-1970

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is raised onto the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  16. KSC-04pd1497

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - The boat with NEEMO-6 personnel ties up at the dock in Key Largo after a training session offshore at NASA’s undersea research station, named Aquarius. At right is Bill Todd, project lead. The NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission involves spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station. The NEEMO-6 team comprises astronaut John Herrington, mission commander, astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  17. KSC-04pd1496

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - A boat returns to the dock in Key Largo from a training session offshore at NASA’s undersea research station, named Aquarius. At left is Marc Reagan, lead on the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. In the bow is astronaut John Herrington, mission commander. The others are support personnel. Members of the team also include astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day. While stationed in Aquarius, the team conducted spacewalk-like diving excursions and field-testing a variety of biomedical equipment designed to help astronauts living aboard the International Space Station.

  18. KSC-04pd1503

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Getting ready to enter the water on a practice dive in the ocean offshore from Key Largo is Nick Patrick. He is a member of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. The others are astronauts John Herrington, mission commander, and Doug Wheelock, plus Tara Ruttley, a biomedical engineer. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  19. Final Report of the NASA Office of Safety and Mission Assurance Agile Benchmarking Team

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2016-01-01

    To ensure that the NASA Safety and Mission Assurance (SMA) community remains in a position to perform reliable Software Assurance (SA) on NASAs critical software (SW) systems with the software industry rapidly transitioning from waterfall to Agile processes, Terry Wilcutt, Chief, Safety and Mission Assurance, Office of Safety and Mission Assurance (OSMA) established the Agile Benchmarking Team (ABT). The Team's tasks were: 1. Research background literature on current Agile processes, 2. Perform benchmark activities with other organizations that are involved in software Agile processes to determine best practices, 3. Collect information on Agile-developed systems to enable improvements to the current NASA standards and processes to enhance their ability to perform reliable software assurance on NASA Agile-developed systems, 4. Suggest additional guidance and recommendations for updates to those standards and processes, as needed. The ABT's findings and recommendations for software management, engineering and software assurance are addressed herein.

  20. Importance of Nuclear Physics to NASA's Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

  1. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  2. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; hide

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  3. Development of Network-based Communications Architectures for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Slywczak, Richard A.

    2007-01-01

    Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by

  4. NASA Dryden's Lori Losey was named NASA's 2004 Videographer of the Year in part for her camera work during NASA's AirSAR 2004 science mission in Chile.

    NASA Image and Video Library

    2004-03-11

    Lori Losey, an employee of Arcata Associates at Dryden, was honored with NASA's 2004 Videographer of the Year award for her work in two of the three categories in the NASA video competition, public affairs and documentation. In the public affairs category, Losey received a first-place citation for her footage of an Earth Science mission that was flown aboard NASA's DC-8 Flying Laboratory in South America last year. Her footage not only depicted the work of the scientists aboard the aircraft and on the ground, but she also obtained spectacular footage of flora and fauna in the mission's target area that helped communicate the environmental research goals of the project. Losey also took first place in the documentation category for her acquisition of technical videography of the X-45A Unmanned Combat Air Vehicle flight tests. The video, shot with a hand-held camera from the rear seat of a NASA F/A-18 mission support aircraft, demonstrated her capabilities in recording precise technical visual data in a very challenging airborne environment. The award was presented to Losey during a NASA reception at the National Association of Broadcasters convention in Las Vegas April 19. A three-judge panel evaluated entries for public affairs, documentation and production videography on professional excellence, technical quality, originality, creativity within restrictions of the project, and applicability to NASA and its mission. Entries consisted of a continuous video sequence or three views of the same subject for a maximum of three minutes duration. Linda Peters, Arcata Associates' Video Systems Supervisor at NASA Dryden, noted, "Lori is a talented videographer who has demonstrated extraordinary abilities with the many opportunities she has received in her career at NASA." Losey's award was the second major NASA video award won by members of the Dryden video team in two years. Steve Parcel took first place in the documentation category last year for his camera and editing

  5. Packaging a successful NASA mission to reach a large audience within a small budget. Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Goldberg, R.; Barnes, R. J.; Sigwarth, J. B.; Beisser, K. B.; Moore, T. E.; Hoffman, R. A.; Russell, C. T.; Scudder, J.; Spann, J. F.; Newell, P. T.; Hobson, L. J.; Gribben, S. P.; Obrien, J. E.; Menietti, J. D.; Germany, G. G.; Mobilia, J.; Schulz, M.

    2004-12-01

    To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth’s dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story, and visualizations were created using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts in order to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA’s Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.

  6. Testing of NASA LaRC Materials under MISSE 6 and MISSE 7 Missions

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2009-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Two lasers and a few optical components from NASA Langley Research Center (LaRC) were included in the MISSE 6 mission for long term exposure. MISSE 6 items were characterized and packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. MISSE 6 was transported to the international Space Station (ISS) via STS 123 on March 11. 2008. The astronauts successfully attached the PEC to external handrails of the ISS and opened the PEC for long term exposure to the space environment. The current plan is to bring the MISSE 6 PEC back to the Earth via STS 128 mission scheduled for launch in August 2009. Currently, preparations for launching the MISSE 7 mission are progressing. Laser and lidar components assembled on a flight-worthy platform are included from NASA LaRC. MISSE 7 launch is scheduled to be launched on STS 129 mission. This paper will briefly review recent efforts on MISSE 6 and MISSE 7 missions at NASA Langley Research Center (LaRC).

  7. Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.

  8. Human-in-the-Loop Operations over Time Delay: NASA Analog Missions Lessons Learned

    NASA Technical Reports Server (NTRS)

    Rader, Steven N.; Reagan, Marcum L.; Janoiko, Barbara; Johnson, James E.

    2013-01-01

    Teams at NASA have conducted studies of time-delayed communications as it effects human exploration. In October 2012, the Advanced Exploration Systems (AES) Analog Missions project conducted a Technical Interchange Meeting (TIM) with the primary stakeholders to share information and experiences of studying time delay, to build a coherent picture of how studies are covering the problem domain, and to determine possible forward plans (including how to best communicate study results and lessons learned, how to inform future studies and mission plans, and how to drive potential development efforts). This initial meeting s participants included personnel from multiple NASA centers (HQ, JSC, KSC, ARC, and JPL), academia, and ESA. It included all of the known studies, analog missions, and tests of time delayed communications dating back to the Apollo missions including NASA Extreme Environment Mission Operations (NEEMO), Desert Research and Technology Studies (DRATS/RATS), International Space Station Test-bed for Analog Research (ISTAR), Pavilion Lake Research Project (PLRP), Mars 520, JPL Mars Orbiters/Rovers, Advanced Mission Operations (AMO), Devon Island analog missions, and Apollo experiences. Additionally, the meeting attempted to capture all of the various functional perspectives via presentations by disciplines including mission operations (flight director and mission planning), communications, crew, Capcom, Extra-Vehicular Activity (EVA), Behavioral Health and Performance (BHP), Medical/Surgeon, Science, Education and Public Outreach (EPO), and data management. The paper summarizes the descriptions and results from each of the activities discussed at the TIM and includes several recommendations captured in the meeting for dealing with time delay in human exploration along with recommendations for future development and studies to address this issue.

  9. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  10. NASA'S Space Launch System: Opening Opportunities for Mission Design

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will

  11. KSC-04pd1498

    NASA Image and Video Library

    2004-07-07

    KENNEDY SPACE CENTER, FLA. - Disembarking from the boat in Key Largo are Otto Rutten and Marc Reagan, participating in the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission at the NOAA Aquarius underwater station offshore. Rutten is director for the National Underwater Research Center; Reagan is mission lead. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. The NEEMO-6 team comprises astronaut John Herrington, mission commander, astronauts Doug Wheelock and Nick Patrick, and biomedical engineer Tara Ruttley. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  12. NASA Galaxy Mission Celebrates Sixth Anniversary

    NASA Image and Video Library

    2009-04-28

    NASA Galaxy Evolution Explorer Mission celebrates its sixth anniversary studying galaxies beyond our Milky Way through its sensitive ultraviolet telescope, the only such far-ultraviolet detector in space. The mission studies the shape, brightness, size and distance of distant galaxies across 10 billion years of cosmic history, giving scientists a wealth of data to help us better understand the origins of the universe. One such object is pictured here, the galaxy NGC598, more commonly known as M33. This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies. Together, the Galaxy Evolution Explorer and Spitzer can see a broad spectrum of sky. Spitzer, for example, can detect mid-infrared radiation from dust that has absorbed young stars' ultraviolet light. That's something the Galaxy Evolution Explorer cannot see. This combined image shows in amazing detail the beautiful and complicated interlacing of the heated dust and young stars. In some regions of M33, dust gathers where there is very little far-ultraviolet light, suggesting that the young stars are obscured or that stars further away are heating the dust. In some of the outer regions of the galaxy, just the opposite is true: There are plenty of young stars and very little dust. Far-ultraviolet light from young stars glimmers blue, near-ultraviolet light from intermediate age stars glows green, near-infrared light from old stars burns yellow and orange, and dust rich in organic molecules burns red. The small blue flecks outside the spiral disk of M33 are most likely distant background galaxies. This image is a four-band composite that, in addition to the two ultraviolet bands, includes near infrared as yellow/orange and far infrared as red. http://photojournal.jpl.nasa.gov/catalog/PIA11999

  13. NASA Program Office Technology Investments to Enable Future Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley; Pham, Thai; Ganel, Opher

    2018-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86

  14. Assuring NASA's Safety and Mission Critical Software

    NASA Technical Reports Server (NTRS)

    Deadrick, Wesley

    2015-01-01

    What is IV&V? Independent Verification and Validation (IV&V) is an objective examination of safety and mission critical software processes and products. Independence: 3 Key parameters: Technical Independence; Managerial Independence; Financial Independence. NASA IV&V perspectives: Will the system's software: Do what it is supposed to do?; Not do what it is not supposed to do?; Respond as expected under adverse conditions?. Systems Engineering: Determines if the right system has been built and that it has been built correctly. IV&V Technical Approaches: Aligned with IEEE 1012; Captured in a Catalog of Methods; Spans the full project lifecycle. IV&V Assurance Strategy: The IV&V Project's strategy for providing mission assurance; Assurance Strategy is driven by the specific needs of an individual project; Implemented via an Assurance Design; Communicated via Assurance Statements.

  15. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would bemore » that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.« less

  16. Safety and Mission Assurance: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.

    2016-01-01

    Manned spaceflight is an incredibly complex and inherently risky human endeavor. As the result of the lessons learned through years of triumph and tragedy, the National Aeronautics and Space Administration (NASA) has embraced a comprehensive and integrated approach to the challenge of ensuring safety and mission success. This presentation will provide an overview of some of the techniques employed in this effort, with a focus on the processing operations performed at the Kennedy Space Center (KSC).

  17. On Beyond Star Trek, the Role of Synthetic Biology in Nasa's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit the nascent field of synthetic biology in pursuit of its mission, including aeronautics, earth science, astrobiology and notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particularly space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement and the 2012 team has expanded the use of synthetic biology to estimate the potential for life in the clouds of other planets (http://2012.igem.org/Team:Stanford-Brown; http://www.calacademy.org/sciencetoday/igem-competition/). More recent projects from the Stanford-Brown team have expanded our ideas of how synthetic biology can aid NASA's missions from "Synthetic BioCommunication" (http://2013.igem.org/Team:Stanford-Brown) to a "Biodegradable UAS (drone)" in collaboration with Spelman College (http://2014.igem.org/Team:StanfordBrownSpelman#SBS%20iGEM) and most recently, "Self-Folding Origami" (http://2015.igem.org/Team:Stanford-Brown), the winner of the 2015 award for Manufacturing.

  18. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.

    NASA Astrophysics Data System (ADS)

    Coughlan, J. C.

    2005-12-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.

  19. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.

  20. Take off with NASA's Kepler Mission!: The Search for Other "Earths"

    ERIC Educational Resources Information Center

    Koch, David; DeVore, Edna K.; Gould, Alan; Harman, Pamela

    2009-01-01

    Humans have long wondered about life in the universe. Are we alone? Is Earth unique? What is it that makes our planet a habitable one, and are there others like Earth? NASA's Kepler Mission seeks the answers to these questions. Kepler is a space-based, specially designed 0.95 m aperture telescope. Launching in 2009, Kepler is NASA's first mission…

  1. Advanced Curation Activities at NASA: Preparing to Receive, Process, and Distribute Samples Returned from Future Missions

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Zeigler, Ryan A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  2. Education and Public Outreach for NASA's EPOXI Mission.

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Crow, C. A.; Behne, J.; Brown, R. N.; Counley, J.; Livengood, T. A.; Ristvey, J. D.; Warner, E. M.

    2009-09-01

    NASA's EPOXI mission is reusing the Deep Impact (DI) flyby spacecraft to study comets and extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission extrasolar planets transiting their parent stars were observed to gain further knowledge and understanding of planetary systems. Observations of Earth also allowed for characterization of Earth as an extrasolar planet. A movie of a lunar transit of the Earth created from EPOCh images and links to existing planet finding activities from other NASA missions are available on the EPOXI website. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comet properties and formation by observing comet Hartley 2 in November 2010. The EPOXI Education and Public Outreach (E/PO) program is both creating new materials and updating and modifying existing Deep Impact materials based on DI mission results. Comparing Comets is a new educational activity under development that will guide students in conducting analyses of comet surface features similar to those the DIXI scientists will perform after observing comet Hartley 2. A new story designed to stimulate student creativity was developed in alignment with national educational standards. EPOXI E/PO also funded Family Science Night (FSN), a program bringing together students, families, and educators for an evening at the National Air and Space Museum in Washington, DC. FSN events include time for families to explore the museum, a presentation by a space scientist, and an astronomy themed IMAX film. Nine events were held during the 2008-2009 school year with a total attendance of 3,145 (attendance since inception reached 44,732). Half of attendance is reserved for schools with high percentages of underrepresented minorities. EPOXI additionally offers a bi-monthly newsletter to keep the public, teachers, and space enthusiasts updated on current mission activities. For more

  3. The NASA Mission Operations and Control Architecture Program

    NASA Technical Reports Server (NTRS)

    Ondrus, Paul J.; Carper, Richard D.; Jeffries, Alan J.

    1994-01-01

    The conflict between increases in space mission complexity and rapidly declining space mission budgets has created strong pressures to radically reduce the costs of designing and operating spacecraft. A key approach to achieving such reductions is through reducing the development and operations costs of the supporting mission operations systems. One of the efforts which the Communications and Data Systems Division at NASA Headquarters is using to meet this challenge is the Mission Operations Control Architecture (MOCA) project. Technical direction of this effort has been delegated to the Mission Operations Division (MOD) of the Goddard Space Flight Center (GSFC). MOCA is to develop a mission control and data acquisition architecture, and supporting standards, to guide the development of future spacecraft and mission control facilities at GSFC. The architecture will reduce the need for around-the-clock operations staffing, obtain a high level of reuse of flight and ground software elements from mission to mission, and increase overall system flexibility by enabling the migration of appropriate functions from the ground to the spacecraft. The end results are to be an established way of designing the spacecraft-ground system interface for GSFC's in-house developed spacecraft, and a specification of the end to end spacecraft control process, including data structures, interfaces, and protocols, suitable for inclusion in solicitation documents for future flight spacecraft. A flight software kernel may be developed and maintained in a condition that it can be offered as Government Furnished Equipment in solicitations. This paper describes the MOCA project, its current status, and the results to date.

  4. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from center are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. At far left is Jason Townsend, NASA Communications. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  5. Dynamic Emulation of NASA Missions for IVandV: A Case Study of JWST and SLS

    NASA Technical Reports Server (NTRS)

    Yokum, Steve

    2015-01-01

    Software-Only-Simulations are an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations ranging from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).

  6. NASA's Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  7. High temperature superconducting magnetic energy storage for future NASA missions

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Rudnick, Stanley J.

    1988-01-01

    Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

  8. NASA Expands BEAM’s Mission

    NASA Image and Video Library

    2017-12-05

    The mission of the Bigelow Expandable Activity Module (BEAM) on the International Space Station has been, well, expanded. After more than a year and a half on orbit providing performance data on expandable habitat technologies, NASA and Bigelow Aerospace have reached agreement to extend the life of the privately-owned module. For a minimum of three more years, BEAM will be a more operational element of the station used in crew activities and on board storage, allowing time to gather more data on the technology’s structural integrity, thermal stability, and resistance to space debris, radiation and microbial growth. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  9. Recent Applications of Space Weather Research to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

    2013-01-01

    Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

  10. Hyperbaric hyperoxia alters innate immune functional properties during NASA Extreme Environment Mission Operation (NEEMO).

    PubMed

    Strewe, C; Crucian, B E; Sams, C F; Feuerecker, B; Stowe, R P; Choukèr, A; Feuerecker, M

    2015-11-01

    Spaceflight is associated with immune dysregulation which is considered as risk factor for the performance of exploration-class missions. Among the consequences of confinement and other environmental factors of living in hostile environments, the role of different oxygen concentrations is of importance as either low (e.g. as considered for lunar or Martian habitats) or high (e.g. during extravehicular activities) can trigger immune dysfunction. The aim of this study was to investigate the impact of increased oxygen availability--generated through hyperbaricity--on innate immune functions in the course of a 14 days NEEMO mission. 6 male subjects were included into a 14 days undersea deployment at the Aquarius station (Key Largo, FL, USA). The underwater habitat is located at an operating depth of 47 ft. The 2.5 times higher atmospheric pressure in the habitat leads to hyperoxia. The collection of biological samples occurred 6 days before (L-6), at day 7 (MD7) and 11/13 (MD11/13) during the mission, and 90 days thereafter (R). Blood analyses included differential blood cell count, ex vivo innate immune activation status and inhibitory competences of granulocytes. The absolute leukocyte count showed an increase during deployment as well as the granulocyte and monocyte count. Lymphocyte count was decreased on MD7. The assessments of native adhesion molecules on granulocytes (CD11b, CD62L) indicated a highly significant cellular activation (L-6 vs. MD7/MD13) during mission. In contrast, granulocytes were more sensitive towards anti-inflammatory stimuli (adenosine) on MD13. Living in the NEEMO habitat for 14 days induced significant immune alterations as seen by an activation of adhesion molecules and vice versa higher sensitivity towards inhibition. This investigation under hyperbaric hyperoxia is important especially for Astronauts' immune competence during extravehicular activities when exposed to similar conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. KSC-04pd1502

    NASA Image and Video Library

    2004-07-08

    KENNEDY SPACE CENTER, FLA. - Getting ready to enter the water on a practice dive in the ocean offshore from Key Largo are Tara Ruttley (below) and Nick Patrick (above). The two are members of the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission team. Ruttley is a biomedical engineer. The others are astronauts John Herrington, mission commander, and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  12. NASA Mars 2020 Rover Mission: New Frontiers in Science

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  13. Products from NASA's In-Space Propulsion Technology Program Applicable to Low-Cost Planetary Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

    2011-01-01

    Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

  14. NASA's 2004 In-Space Propulsion Refocus Studies for New Frontiers Class Missions

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.; Manzella, David; Oh, David; Cupples, Mike

    2006-01-01

    The New Frontiers (NF) program is designed to provide opportunities to fulfill the science objectives for top priority, medium class missions identified in the Decadal Solar System Exploration Survey. This paper assesses the applicability of the In-Space Propulsion s (ISP) Solar Electric Propulsion (SEP) technologies for representative NF class missions that include a Jupiter Polar Orbiter with Probes (JPOP), Comet Surface Sample Return (CSSR), and two different Titan missions. The SEP technologies evaluated include the 7-kW, 4,100-second NASA's Evolutionary Xenon Thruster (NEXT), the 3-kW, 2,700-second Hall thruster, and two different NASA Solar Electric Propulsion Technology Readiness (NSTAR) thrusters that are variants of the Deep Space 1 (DS1) thruster. One type of NSTAR, a 2.6-kW, 3,100-second thruster, will be the primary propulsion system for the DAWN mission that is scheduled to launch in 2006; the other is an "enhanced", higher power variant (3.8-kW, 4,100-second) and is so-called because it uses NEXT system components such as the NEXT power processing unit (PPU). The results show that SEP is applicable for the CSSR mission and a Titan Lander mission. In addition, NEXT has improved its applicability for these types of missions by modifying its thruster performance relative to its performance at the beginning of this study.

  15. Cryogenic Propulsion Stage (CPS) Configuration in Support of NASA's Multiple Design Reference Missions (DRMs)

    NASA Technical Reports Server (NTRS)

    Hanna, Stephen G.; Jones, David L.; Creech, Stephen D.; Lawrence, Thomas D.

    2012-01-01

    In support of the National Aeronautics and Space Administration's (NASA) Human Exploration and Operations Mission Directorate (HEOMD), the Space Launch System (SLS) is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's or-bit (BEO). The SLS Team is tasked with developing a system capable of safely and repeatedly lofting a new fleet of spaceflight vehicles beyond Earth orbit. The Cryogenic Propulsion Stage (CPS) is a key enabler for evolving the SLS capability for BEO missions. This paper reports on the methodology and initial recommendations relative to the CPS, giving a brief retrospective of early studies on this promising propulsion hardware. This paper provides an overview of the requirements development and CPS configuration in support of NASA's multiple Design Reference Missions (DRMs).

  16. How NASA Utilizes Dashboards to Help Ensure Mission Success

    NASA Technical Reports Server (NTRS)

    Blakeley, Chris

    2013-01-01

    NASA is actively planning to expand human spaceflight and robotic exploration beyond low Earth orbit. To prepare for the challenge of exploring these destinations in space, NASA conducts missions here on Earth in remote locations that have physical similarities to extreme space environments. Program managers for the Advanced Exploration Systems program requested a simple way to track financial information to ensure that each task stayed within their budgetary constraints. Using SAP BusinessObjects Dashboards (Formerly Xcelsius), a dashboard was created to satisfy all of their key requirements. Lessons learned, along with some tips and tricks, will be highlighted during this session.

  17. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellant-less thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA’s Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA’s of interest for possible future human exploration. The NEA Scout spacecraft is housed in a 6U CubeSat-form factor and utilizes an 86 square meter solar sail for a total mass less than 14 kilograms. The mission is in partnership with the Jet Propulsion Laboratory with support from Langley Research Center and science participants from various institutions. NEA Scout will be launched on the maiden flight of the Space Launch System in 2019. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and flown on The Planetary Society’s Lightsail-A. Four approximately-7-meter stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor driven and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar

  18. NASA's Kepler Mission: Lessons Learned from Teacher Professional Development Workshops

    NASA Astrophysics Data System (ADS)

    Devore, E.; Harman, P.; Koch, D.; Gould, A.

    2010-08-01

    NASA's Kepler Mission conducts teacher professional development workshops on the search for exoplanets in the habitable zone of Sun-like stars. Each is supported by a Kepler team scientist, two Education and Public Outreach staff and local hosts. Activities combine a science content lecture and discussion, making models, kinesthetic activities, and interpretation of transit data. The emphasis is on inquiry-based instruction and supports science education standards in grades 7-12. Participants' kit includes an orrery, optical sensor and software to demonstrate transit detection. The workshop plan, teaching strategies, and lessons learned from evaluation will be discussed. Future events are planned. The Kepler Mission teacher professional development workshops are designed using the best practices and principals from the National Science Education Standards and similar documents. Sharing the outcome of our plans, strategies and formative evaluation results can be of use to other Education and Public Outreach practitioners who plan similar events. In sharing our experiences, we hope to assist others, and to learn from them as well. Supported by NASA Grants to the E. DeVore, SETI Institute NAG2-6066 Kepler Education and Public Outreach and NNX08BA74G, IYA Kepler Mission Pre-launch Workshops.

  19. Communicating the Science of Nasa's Maven Mission through Public Engagement

    NASA Astrophysics Data System (ADS)

    Mason, T.; Peticolas, L. M.; Wood, E. L.

    2014-12-01

    As education, public outreach, and communications professionals, we see the direct benefits of online outreach and other public engagement strategies in communicating complex scientific concepts. While public understanding of science and scientific literacy rates has stagnated at best, online engagement has never been more active. About 40% of Americans receive information about science and technology primarily from online sources; however, the ability to pursue enhanced learning opportunities is directly correlated with higher education and income. The MAVEN E/PO team has recognized an opportunity to bring the science of the mission to a growing, online community of engaged learners and potential supporters of future scientific research and data. We have taken a wide variety of approaches to educate the public—particularly non-traditional audiences—about a mission that is not as "sexy" as many other NASA missions, but is critical to understanding the evolution of Mars over time as part of an ongoing, long-term effort by NASA's Mars Exploration Program. We will highlight some of the tools—including online platforms—that we have used to share the science of MAVEN and will present preliminary evaluation results from our education and public outreach projects.

  20. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global

  1. ``Big Bang" for NASA's Buck: Nearly Three Years of EUVE Mission Operations at UCB

    NASA Astrophysics Data System (ADS)

    Stroozas, B. A.; Nevitt, R.; McDonald, K. E.; Cullison, J.; Malina, R. F.

    1999-12-01

    After over seven years in orbit, NASA's Extreme Ultraviolet Explorer (EUVE) satellite continues to perform flawlessly and with no significant loss of science capabilities. EUVE continues to produce important and exciting science results and, with reentry not expected until 2003-2004, many more such discoveries await. In the nearly three years since the outsourcing of EUVE from NASA's Goddard Space Flight Center, the small EUVE operations team at the University of California at Berkeley (UCB) has successfully conducted all aspects of the EUVE mission -- from satellite operations, science and mission planning, and data processing, delivery, and archival, to software support, systems administration, science management, and overall mission direction. This paper discusses UCB's continued focus on automation and streamlining, in all aspects of the Project, as the means to maximize EUVE's overall scientific productivity while minimizing costs. Multitasking, non-traditional work roles, and risk management have led to expanded observing capabilities while achieving significant cost reductions and maintaining the mission's historical 99 return. This work was funded under NASA Cooperative Agreement NCC5-138.

  2. Validation of Aquarius sea surface salinity with in situ measurements from Argo floats and moored buoys

    NASA Astrophysics Data System (ADS)

    Tang, Wenqing; Yueh, Simon H.; Fore, Alexander G.; Hayashi, Akiko

    2014-09-01

    We validate sea surface salinity (SSS) retrieved from Aquarius instrument on SAC-D satellite with in situ measurements by Argo floats and moored buoy arrays. We assess the error structure of three Aquarius SSS products: the standard product processed by Aquarius Data Processing System (ADPS) and two data sets produced at the Jet Propulsion Laboratory (JPL): the Combined Active-Passive algorithm with and without rain correction, CAP and CAP_RC, respectively. We examine the effect of various filters to prevent unreliable point retrievals from entering Level 3 averaging, such as land or ice contamination, radio frequency interference (RFI), and cold water. Our analyses show that Aquarius SSS agrees well with Argo in a monthly average sense between 40°S and 40°N except in the Eastern Pacific Fresh Pool and Amazon River outflow. Buoy data within these regions show excellent agreement with Aquarius but have discrepancies with the Argo gridded products. Possible reasons include strong near-surface stratification and sampling problems in Argo in regions with significant western boundary currents. We observe large root-mean-square (RMS) difference and systematic negative bias between ADPS and Argo in the tropical Indian Ocean and along the Southern Pacific Convergence Zone. Excluding these regions removes the suspicious seasonal peak in the monthly RMS difference between the Aquarius SSS products and Argo. Between 40°S and 40°N, the RMS difference for CAP is less than 0.22 PSU for all 28 months, CAP_RC has essentially met the monthly 0.2 PSU accuracy requirement, while that for ADPS fluctuates between 0.22 and 0.3 PSU.

  3. Analysis of RFI Statistics for Aquarius RFI Detection and Mitigation Improvements

    NASA Technical Reports Server (NTRS)

    de Matthaeis, Paolo; Soldo, Yan; Le Vine, David M.

    2016-01-01

    Aquarius is an L-band active/passive sensor designed to globally map sea surface salinity from space. Two instruments, a radar scatterometer and a radiometer, observe the same surface footprint almost simultaneously. The radiometer is the primary instrument for sensing sea surface salinity (SSS), while the scatterometer is included to provide a correction for sea surface roughness, which is a primary source of error in the salinity retrieval. Although the primary objective is the measurement of SSS, the instrument combination operates continuously, acquiring data over land and sea ice as well. An important feature of the data processing includes detection and mitigation of Radio Frequency Interference (RFI) which is done separately for both active and passive instruments. Correcting for RFI is particularly critical over ocean because of the high accuracy required in the brightness temperature measurements for SSS retrieval. It is also necessary for applications of the Aquarius data over land, where man-made interference is widespread, even though less accuracy is required in this case. This paper will provide an overview of the current status of the Aquarius RFI processing and an update on the ongoing work on the improvement of the RFI detection and mitigation performance.

  4. Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

  5. NASA's initial flight missions in the Small Explorer Program

    NASA Technical Reports Server (NTRS)

    Rasch, Nickolus O.; Brown, William W.

    1989-01-01

    A new component of NASA's Explorer Program has been initiated in order to provide research opportunities characterized by small, quick-turn-around, and frequent space missions. Objectives include the launching of one or two payloads per year, depending on mission cost and availability of funds and launch vehicles. The four missions chosen from the proposals solicited by the Small Explorer Announcement Opportunity are discussed in detail. These include the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) designed to carry out energetic particle studies of outstanding questions in the fields of space plasma, solar, heliospheric, cosmic ray, and middle atmospheric physics; the Submillimeter Wave Astronomy Satellite (SWAS), which will conduct both pointed and survey observations of dense galactic molecular clouds; the Fast Auroral Snapshot Explorer (FAST); and the Total Ozone Mapping Spectrometer (TOMS).

  6. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Tom Barclay, TESS scientist, NASA’s Goddard Space Flight Center. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  7. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Zach Berta-Thompson, assistant professor, University of Colorado Boulder. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  8. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  9. NASA OMG Mission Maps Sea Floor Depth off Greenland Coast

    NASA Image and Video Library

    2016-03-08

    This image shows a region of the sea floor off the coast of northwest Greenland mapped as part of NASA Oceans Melting Greenland OMG mission. The data shown here will be used to understand the pathways by which warm water can reach glacier edges.

  10. NASA Completes LADEE Mission with Planned Impact on Moon's Surface (Reporter Package)

    NASA Image and Video Library

    2014-04-23

    NASA's LADEE mission came to an end as the spacecraft executed a planned de-orbit into the surface of the Moon at nearly three thousand, six hundred miles per hour. The primary goal of the mission was to collect data about the thin lunar atmosphere and the amounts of dust that are in it at multiple altitudes.

  11. Emergency Communications for NASA's Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Lee, Charles H.; Morabito, David D.; Cesarone, Robert J.; Abraham, Douglas S.

    2011-01-01

    The ability to communicate with spacecraft during emergencies is a vital service that NASA's Deep Space Network (DSN) provides to all deep space missions. Emergency communications is characterized by low data rates(typically is approximately10 bps) with the spacecraft using either a low-gain antenna (LGA, including omnidirectional antennas) or,in some cases, a medium-gain antenna (MGA). Because of the use of LGAs/MGAs for emergency communications, the transmitted power requirements both on the spacecraft andon the ground are substantially greater than those required for normal operations on the high-gain antenna (HGA) despite the lower data rates. In this paper, we look at currentand future emergency communications capabilities available to NASA's deep-space missions and discuss their limitations in the context of emergency mode operations requirements.These discussions include the use of the DSN 70-m diameter antennas, the use of the 34-m diameter antennas either alone or arrayed both for the uplink (Earth-to-spacecraft) and the downlink (spacecraft-to-Earth), upgrades to the ground transmitters, and spacecraft power requirements both with unitygain (0 dB) LGAs and with antennas with directivity (>0 dB gain, either LGA or MGA, depending on the gain). Also discussed are the requirements for forward-error-correctingcodes for both the uplink and the downlink. In additional, we introduce a methodology for proper selection of a directionalLGA/MGA for emergency communications.

  12. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen A.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the

  13. Collaborative Mission Design at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  14. NASA Has Joined America True's Design Mission for 2000

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    Engineers at the NASA Lewis Research Center will support the America True design team led by America s Cup innovator Phil Kaiko. The joint effort between NASA and America True is encouraged by Mission HOME, the official public awareness campaign of the U.S. space community. NASA Lewis and America True have entered into a Space Act Agreement to focus on the interaction between the airfoil and the large deformation of the pretensioned sails and rigs along with the dynamic motions related to the boat motions. This work will require a coupled fluid and structural simulation. Included in the simulation will be both a steadystate capability, to capture the quasi-state interactions between the air loads and sail geometry and the lift and drag on the boat, and a transient capability, to capture the sail/mast pumping effects resulting from hull motions.

  15. Aquarius Radiometer and Scatterometer Weekly Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the Aquarius/SAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freeze/thaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  16. Aquarius Radiometer and Scatterometer Weekly-Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the AquariusSAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freezethaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  17. Spatial and Temporal Patterns of SMAP Brightness Temperatures for Use in Level 1 TB Characterization

    NASA Astrophysics Data System (ADS)

    Kim, E. J.

    2015-12-01

    1. IntroductionThe recent launch of NASA's Soil Moisture Active Passive (SMAP) mission [Entekhabi, et al] has opened the door to improved brightness temperature (TB) calibration of satellite L-band microwave radiometers, through the use of SMAP's lower noise performance and better immunity to man-made interference (vs. ESA's Soil Moisture Ocean Salinity (SMOS) mission [Kerr, et al]), better spatial resolution (vs. NASA's Aquarius sea surface salinity mission [Le Vine, et al]), and cleaner antenna pattern (vs. SMOS). All three radiometers use/used large homogeneous places on Earth's surface as calibration targets—parts of the ocean, Antarctica, and tropical forests. Despite the recent loss of Aquarius data, there is still hope for creating a longer-term L-band data set that spans the timeframe of all 3 missions. 2. Description of Analyses and Expected Results In this paper, we analyze SMAP brightness temperature data to quantify the spatial and temporal characteristics of external target areas in the oceans, Antarctica, forests, and other areas. Existing analyses have examined these targets in terms of averages, standard deviations, and other basic statistics (for Aquarius & SMOS as well). This paper will approach the problem from a signal processing perspective. Coupled with the use of SMAP's novel RFI-mitigated TBs, and the aforementioned lower noise and cleaner antenna pattern, it is expected that of the 3 L-band missions, SMAP should do the best job of characterizing such external targets. The resulting conclusions should be useful to extract the best possible TB calibration from all 3 missions, helping to inter-compare the TB from the 3 missions, and to eventually inter-calibrate the TBs into a single long-term dataset.

  18. KSC-2011-1961

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- As the sun rises over Vandenberg Air Force Base in California, the first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit is on its way to Space Launch Complex-2 (SLC-2). While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  19. Obama sets out NASA's new mission to Mars

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2010-05-01

    US President Barack Obama has announced a new direction for NASA that includes plans to send astronauts to an asteroid by 2025. Speaking last month at Florida's Kennedy Space Center, the launching location for US manned spaceflights, Obama also called for a new "heavy-lift" rocket design to take astronauts on a mission to orbit Mars by the mid-2030s that will "eventually" be used to transport humans to the Martian surface.

  20. Asteroid Sample Return Mission Launches on This Week @NASA – September 9, 2016

    NASA Image and Video Library

    2016-09-09

    On Sept. 8, NASA launched the Origins, Spectral Interpretation, Resource Identification, Security - Regolith Explorer, or OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida. OSIRIS-REx, the first U.S. mission to sample an asteroid, is scheduled to arrive at near-Earth asteroid Bennu in 2018. Mission plans call for the spacecraft to survey the asteroid, retrieve a small sample from its surface, and return the sample to Earth for study in 2023. Analysis of that sample is expected to reveal clues about the history of Bennu over the past 4.5 billion years, as well as clues about the evolution of our solar system. Also, Jeff Williams’ Record-Breaking Spaceflight Concludes, Next ISS Crew Prepares for Launch, Sample Return Robot Challenge, NASA X-Plane Gets its Wing, and Convergent Aeronautics Solutions Showcase!

  1. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  2. Architecture and System Engineering Development Study of Space-Based Satellite Networks for NASA Missions

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2003-01-01

    Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.

  3. The Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Karpati, Gabriel; Martin, John; Steiner, Mark; Reinhardt, K.

    2002-01-01

    NASA Goddard has used its Integrated Mission Design Center (IMDC) to perform more than 150 mission concept studies. The IMDC performs rapid development of high-level, end-to-end mission concepts, typically in just 4 days. The approach to the studies varies, depending on whether the proposed mission is near-future using existing technology, mid-future using new technology being actively developed, or far-future using technology which may not yet be clearly defined. The emphasis and level of detail developed during any particular study depends on which timeframe (near-, mid-, or far-future) is involved and the specific needs of the study client. The most effective mission studies are those where mission capabilities required and emerging technology developments can synergistically work together; thus both enhancing mission capabilities and providing impetus for ongoing technology development.

  4. Dawn Mission E/PO Use of NASA Archived Images

    NASA Astrophysics Data System (ADS)

    Wise, J.

    2004-12-01

    The Dawn Mission is a mission in time to the very origins of the solar system. We will orbit both Vesta and Ceres for extended periods of time, collecting data that we hope will answer fundamental questions about the formation of planet earth and the solar system in general. Because of the length of this mission, our EPO plan has a unique opportunity to involve students, teachers, parents, and the general public in the anticipation and excitement of the cruise, arrival, and exploration of these asteroids. This presentation focuses on the Clickworkers activity of the Dawn EPO because of its extensive repurposing of NASA images as EPO resources. Clickworkers was designed by Bob Kanefsky at NASA AMES. Currently, it engages the public in counting and classifying craters using NASA images of Mars. The Dawn mission is developing and extending the curricular material within the existing Clickworkers activity as well as adding images of Eros and of course eventually, Vesta and Ceres. Our plan is to use the Clickworkers activity and accompanying curricular material to inform and educate the general public in preparation for the first images from Vesta and then Ceres. For example, what can be learned from counting and classifying craters. We are also informing people of the scientific process by using images from several of NASA's missions to demonstrate the accumulation of facts and information that is the process of science. We will present and discuss our difficulties: . First of which is preparing appropriate information about cratering for people. Scientists have developed an understanding of crater counting, classification, and analysis over years of study and research. How do we scaffold enough information to make the activity meaningful and a learning experience for our clients. . Another difficulty is communicating key concepts in terms that are accessible to space science neophytes. The scaffolding may be correct, but not in terms that the general public can relate

  5. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, at left is Hans Koenigsmann, vice president of Build and Flight Reliability at SpaceX. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  6. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Hans Koenigsmann, vice president of Build and Flight Reliability at SpaceX. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  7. KSC-04pd1508

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - Onboard the dive boat at the Life Support Buoy offshore from Key Largo is Marc Reagan, mission lead for the NASA Extreme Environment Mission Operations 6 (NEEMO-6) mission. At right is Lt. Scott Sparks, a Navy medical officer. Reagan is also the underwater still photographer. The NEEMO-6 team comprises John Herrington, commander, Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  8. KSC-04pd1509

    NASA Image and Video Library

    2004-07-11

    KENNEDY SPACE CENTER, FLA. - In the water offshore from Key Largo, site of the NASA Extreme Environment Mission Operations 6 (NEEMO-6), are (left to right) Bill Todd, project lead, and Marc Reagan, mission lead. Todd and Lucas are also the underwater videographer and still photographer, respectively, for the mission. The NEEMO-6 team comprises John Herrington, commander, Tara Ruttley, a biomedical engineer, and astronauts Nick Patrick and Doug Wheelock. The NEEMO-6 mission involves exposing an astronaut/scientist crew to a real mission experience in an extreme environment - the NOAA undersea station Aquarius - to prepare for future space flight. Spacewalk-like diving excursions and field-tests on a variety of biomedical equipment are designed to help astronauts living aboard the International Space Station. To prepare for their 10-day stay, the team had dive training twice a day at the Life Support Buoy, anchored above Aquarius.

  9. NASA CYGNSS Mission Applications Workshop

    NASA Technical Reports Server (NTRS)

    Amin, Aimee V. (Compiler); Murray, John J. (Editor); Stough, Timothy M. (Editor); Molthan, Andrew (Editor)

    2015-01-01

    NASA's Cyclone Global Navigation Satellite System, (CYGNSS), mission is a constellation of eight microsatellites that will measure surface winds in and near the inner cores of hurricanes, including regions beneath the eyewall and intense inner rainbands that could not previously be measured from space. The CYGNSS-measured wind fields, when combined with precipitation fields (e.g., produced by the Global Precipitation Measurement [GPM] core satellite and its constellation of precipitation imagers), will provide coupled observations of moist atmospheric thermodynamics and ocean surface response, enabling new insights into hurricane inner core dynamics and energetics. The outcomes of this workshop, which are detailed in this report, comprise two primary elements: (1) A report of workshop proceedings, and; (2) Detailed Applications Traceability Matrices with requirements and operational considerations to serve broadly for development of value-added tools, applications, and products.

  10. Comparison of seasonal variability of Aquarius sea surface salinity time series with in situ observations in the Karimata Strait, Indonesia

    NASA Astrophysics Data System (ADS)

    Susanto, R. D.; Setiawan, A.; Zheng, Q.; Sulistyo, B.; Adi, T. R.; Agustiadi, T.; Trenggono, M.; Triyono, T.; Kuswardani, A.

    2016-12-01

    The seasonal variability of a full lifetime of Aquarius sea surface salinity time series from August 25, 2011 to June 7, 2015 is compared to salinity time series obtained from in situ observations in the Karimata Strait. The Karimata Strait plays dual roles in water exchange between the Pacific and the Indian Ocean. The salinity in the Karimata Strait is strongly affected by seasonal monsoon winds. During the boreal winter monsoon, northwesterly winds draws low salinity water from the South China Sea into the Java Sea and at the same time, the Java Sea receives an influx of the Indian Ocean water via the Sunda Strait. The Java Sea water will reduce the main Indonesian throughflow in the Makassar Strait. Conditions are reversed during the summer monsoon. Low salinity water from the South China Sea also controls the vertical structure of water properties in the upper layer of the Makassar Strait and the Lombok Strait. As a part of the South China Sea and Indonesian Seas Transport/Exchange (SITE) program, trawl resistance bottom mounted CTD was deployed in the Karimata Strait in mid-2010 to mid-2016 at water depth of 40 m. CTD casts during the mooring recoveries and deployments are used to compare the bottom salinity data. This in situ salinity time series is compared with various Aquarius NASA salinity products (the level 2, level 3 ascending and descending tracks and the seven-days rolling averaged) to check the consistency, correlation and statistical analysis. The preliminary results show that the seasonal variability of Aquarius salinity time series has larger amplitude variability compared to that of in situ data.

  11. Mars Lander Deck of NASA's InSight Mission

    NASA Image and Video Library

    2017-08-28

    This view looks upward toward the InSight Mars lander suspended upside down. It shows the top of the lander's science deck with the mission's two main science instruments -- the Seismic Experiment for Interior Structure (SEIS) and the Heat Flow and Physical Properties Probe (HP3) -- plus the robotic arm and other subsystems installed. The photo was taken Aug. 9, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21847

  12. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  13. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. From left are moderator Claire Saravia, NASA Communications; Paul Hertz, Astrophysics Division director, NASA Headquarters; George Ricker, TESS principal investigator, Massachusetts Institute of Technology; Padi Boyd, TESS Guest Investigator Program lead, NASA’s Goddard Space Flight Center; Stephen Rinehart, TESS Project scientist, NASA’s Goddard Space Flight Center; and Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  14. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; hide

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  15. The Nasa-Isro SAR Mission Science Data Products and Processing Workflows

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Agram, P. S.; Lavalle, M.; Cohen, J.; Buckley, S.; Kumar, R.; Misra-Ray, A.; Ramanujam, V.; Agarwal, K. M.

    2017-12-01

    The NASA-ISRO SAR (NISAR) Mission is currently in the development phase and in the process of specifying its suite of data products and algorithmic workflows, responding to inputs from the NISAR Science and Applications Team. NISAR will provide raw data (Level 0), full-resolution complex imagery (Level 1), and interferometric and polarimetric image products (Level 2) for the entire data set, in both natural radar and geocoded coordinates. NASA and ISRO are coordinating the formats, meta-data layers, and algorithms for these products, for both the NASA-provided L-band radar and the ISRO-provided S-band radar. Higher level products will be also be generated for the purpose of calibration and validation, over large areas of Earth, including tectonic plate boundaries, ice sheets and sea-ice, and areas of ecosystem disturbance and change. This level of comprehensive product generation has been unprecedented for SAR missions in the past, and leads to storage processing challenges for the production system and the archive center. Further, recognizing the potential to support applications that require low latency product generation and delivery, the NISAR team is optimizing the entire end-to-end ground data system for such response, including exploring the advantages of cloud-based processing, algorithmic acceleration using GPUs, and on-demand processing schemes that minimize computational and transport costs, but allow rapid delivery to science and applications users. This paper will review the current products, workflows, and discuss the scientific and operational trade-space of mission capabilities.

  16. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors

  17. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  18. The Evolution of the NASA Commercial Crew Program Mission Assurance Process

    NASA Technical Reports Server (NTRS)

    Canfield, Amy C.

    2016-01-01

    In 2010, the National Aeronautics and Space Administration (NASA) established the Commercial Crew Program (CCP) in order to provide human access to the International Space Station and low Earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine that the Commercial Provider's transportation system complies with programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted hazard reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100% of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (S&MA) model does not support the nature of the CCP. To that end, NASA S&MA is implementing a Risk Based Assurance process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications.

  19. Using NASA's Space Launch System to Enable Game Changing Science Mission Designs

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2013-01-01

    NASA's Marshall Space Flight Center is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will help restore U.S. leadership in space by carrying the Orion Multi-Purpose Crew Vehicle and other important payloads far beyond Earth orbit. Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids, Mars, and the outer solar system. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip times and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as monolithic telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  20. Using Existing NASA Satellites as Orbiting Testbeds to Accelerate Technology Infusion into Future Missions

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Ly, Vuong; Frye, Stuart

    2006-01-01

    One of the shared problems for new space mission developers is that it is extremely difficult to infuse new technology into new missions unless that technology has been flight validated. Therefore, the issue is that new technology is required to fly on a successful mission for flight validation. We have been experimenting with new technology on existing satellites by retrofitting primarily the flight software while the missions are on-orbit to experiment with new operations concepts. Experiments have been using Earth Observing 1 (EO-1), which is part of the New Millennium Program at NASA. EO-1 finished its prime mission one year after its launch on November 21,2000. From November 21,2001 until the present, EO-1 has been used in parallel with additional science data gathering to test out various sensor web concepts. Similarly, the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) satellite was also a one year mission flown by the University of Berkeley, sponsored by NASA and whose prime mission ended August 30,2005. Presently, CHIPS is being used to experiment with a seamless space to ground interface by installing Core Flight System (cFS), a "plug-and-play" architecture developed by the Flight Software Branch at NASA/GSFC on top of the existing space-to-ground Internet Protocol (IP) interface that CHIPS implemented. For example, one targeted experiment is to connect CHIPS to a rover via this interface and the Internet, and trigger autonomous actions on CHIPS, the rover or both. Thus far, having satellites to experiment with new concepts has turned out to be an inexpensive way to infuse new technology for future missions. Relevant experiences thus far and future plans will be discussed in this presentation.

  1. NASA's Kepler Mission Discovers Multiple Planets Orbiting Twin Suns (Reporter Pkg)

    NASA Image and Video Library

    2012-08-28

    NASA's Kepler mission has discovered the first transiting circumbinary system -- multiple planets orbiting two suns -- 4,900 light-years from Earth, in the constellation Cygnus, proving that more than one planets can form and survive in orbit around a binary star.

  2. Alternative Approaches to Mission Control Automation at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rackley, Michael; Cooter, Miranda; Davis, George; Mackey, Jennifer

    2001-01-01

    To meet its objective of reducing operations costs without incurring a corresponding increase in risk, NASA is seeking new methods to automate mission operations. This paper examines the state of the art in automating ground operations for space missions. A summary of available technologies and methods for automating mission operations is provided. Responses from interviews with several space mission FOTs (Flight Operations Teams) to assess the degree and success of those technologies and methods implemented are presented. Mission operators that were interviewed approached automation using different tools and methods resulting in varying degrees of success - from nearly completely automated to nearly completely manual. Two key criteria for successful automation are the active participation of the FOT in the planning, designing, testing, and implementation of the system and the relative degree of complexity of the mission.

  3. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, from left are Tom Barclay, TESS scientist, NASA’s Goddard Space Flight Center, and Jenn Burt, Torres Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  4. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from left are Tom Barclay, TESS scientist, NASA’s Goddard Space Flight Center, and Jenn Burt, Torres Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  5. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, from left are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  6. NASA's Swarm Missions: The Challenge of Building Autonomous Software

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hinchey, Mike; Rash, James; Rouff, Christopher

    2004-01-01

    The days of watching a massive manned cylinder thrust spectacularly off a platform into space might rapidly become ancient history when the National Aeronautics and Space Administration (NASA) introduces its new millenium mission class. Motivated by the need to gather more data than is possible with a single spacecraft, scientists have developed a new class of missions based on the efficiency and cooperative nature of a hive culture. The missions, aptly dubbed nanoswarm will be little more than mechanized colonies cooperating in their exploration of the solar system. Each swarm mission can have hundreds or even thousands of cooperating intelligent spacecraft that work in teams. The spacecraft must operate independently for long periods both in teams and individually, as well as have autonomic properties - self-healing, -configuring, -optimizing, and -protecting- to survive the harsh space environment. One swarm mission under concept development for 2020 to 2030 is the Autonomous Nano Technology Swarm (ANTS), in which a thousand picospacecraft, each weighing less than three pounds, will work cooperatively to explore the asteroid belt. Some spacecraft will form teams to catalog asteroid properties, such as mass, density, morphology, and chemical composition, using their respective miniature scientific instruments. Others will communicate with the data gatherers and send updates to mission elements on Earth. For software and systems development, this is uncharted territory that calls for revolutionary techniques.

  7. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit (LEO). The SLS Program, managed at NASA s Marshall Space Flight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions-opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include Mars, Jupiter, Lagrange Points, and near-Earth asteroids (NEAs), among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions

  8. Enhanced Resolution for Aquarius Salinity Retrieval near Land-Water Boundaries

    NASA Technical Reports Server (NTRS)

    Utku, Cuneyt; Le Vine, David M.

    2014-01-01

    A numerical reconstruction of the brightness temperature is examined as a potential way to improve the retrieval of salinity from Aquarius measurements closer to landwater boundaries. A test case using simulated ocean-land scenes suggest promise for the technique.

  9. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  10. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  11. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  12. A Pre-launch Analysis of NASA's SMAP Mission Data

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Brown, M. E.

    2012-12-01

    Product applications have become an integral part of converting the data collected into actionable knowledge that can be used to inform policy. Successfully bridging scientific research with operational decision making in different application areas requires looking into thematic user requirements and data requirements. NASA's Soil Moisture Active/Passive mission (SMAP) has an applications program that actively seeks to integrate the data prior to launch into a broad range of environmental monitoring and decision making systems from drought and flood guidance to disease risk assessment and national security SMAP is a a combined active/passive microwave instrument, which will be launched into a near-polar orbit in late 2014. It aims to produce a series of soil moisture products and soil freeze/thaw products with an accuracy of +/- 10%, a nominal resolution of between 3 and 40km, and latency between 12 hours and 7 days. These measurements will be used to enhance the understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The driving success of the SMAP applications program is joining mission scientists to thematic end users and leveraging the knowledge base of soil moisture data applications, increase the speed SMAP data product ingestion into critical processes and research, improving societal benefits to science. Because SMAP has not yet launched, the mission is using test algorithms to determine how the data will interact with existing processes. The objective of this profession review is to solicit data requirements, accuracy needs and current understanding of the SMAP mission from the user community and then feed that back into mission product development. Thus, understanding how users will apply SMAP data, prior to the satellite's launch, is an important component of SMAP Applied Sciences and one of NASA's measures for mission success. This paper presents an analysis of

  13. Selection of a Brine Processor Technology for NASA Manned Missions

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Gleich, Andrew F.

    2016-01-01

    The current ISS Water Recovery System (WRS) reclaims water from crew urine, humidity condensate, and Sabatier product water. Urine is initially processed by the Urine Processor Assembly (UPA) which recovers 75% of the urine as distillate. The remainder of the water is present in the waste brine which is currently disposed of as trash on ISS. For future missions this additional water must be reclaimed due to the significant resupply penalty for missions beyond Low Earth Orbit (LEO). NASA has pursued various technology development programs for a brine processor in the past several years. This effort has culminated in a technology down-select to identify the optimum technology for future manned missions. The technology selection is based on various criteria, including mass, power, reliability, maintainability, and safety. Beginning in 2016 the selected technology will be transitioned to a flight hardware program for demonstration on ISS. This paper summarizes the technology selection process, the competing technologies, and the rationale for the technology selected for future manned missions.

  14. Computational needs survey of NASA automation and robotics missions. Volume 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Davis, Gloria J.

    1991-01-01

    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is the fact that mission computing requirements are frequency unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. Here, NASA, industry and academic communities are provided with a preliminary set of advanced mission computational processing requirements of automation and robotics (A and R) systems. The results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implemented capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Here, appendixes are provided.

  15. NASA Briefing New Mission to Weigh in on Earth's Changing Water

    NASA Image and Video Library

    2018-04-30

    At a NASA media briefing on April 30, scientists discussed an upcoming mission that will provide unique insights into Earth’s changing climate and have far-reaching benefits to society, such as improved water resource management. The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission will measure monthly changes in how mass is redistributed within and among Earth’s atmosphere, oceans, land and ice sheets. GRACE-FO’s pair of spacecraft are in final preparations for a California launch no earlier than Saturday, May 19.

  16. Halfway point of the one year mission on This Week @NASA – September 18, 2015

    NASA Image and Video Library

    2015-09-18

    Sept. 15 marked the halfway point in the yearlong mission on the International Space Station with NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko. An event the day before at the National Press Club in Washington included a discussion about the biomedical research conducted on the station, to help formulate future human missions to Mars. Kelly participated from the space station. His identical twin, retired NASA astronaut Mark Kelly, and NASA astronaut Terry Virts, who served as commander of Expedition 43, participated from the press club. Also, I spy the space station: Live!, Expedition 43 post-flight visit, Key milestone for Orion spacecraft, Global ocean on Enceladus, Connecting space to village and more!

  17. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Claire Saravia, NASA Communications, moderated the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  18. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Paul Hertz, Astrophysics Division director, NASA Headquarters, answered questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  19. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Felicia Chou, NASA Communications, asks questions from online participants during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  20. An Overview of Space Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Scott, John H.

    2007-01-01

    Power is a critical commodity for all engineering efforts and is especially challenging in the aerospace field. This paper will provide a broad brush overview of some of the immediate and important challenges to NASA missions in the field of aerospace power, for generation, energy conversion, distribution, and storage. NASA s newest vehicles which are currently in the design phase will have power systems that will be developed from current technology, but will have the challenges of being light-weight, energy-efficient, and space-qualified. Future lunar and Mars "outposts" will need high power generation units for life support and energy-intensive exploration efforts. An overview of the progress in concepts for power systems and the status of the required technologies are discussed.

  1. The Influence of Antenna Pattern on Faraday Rotation in Remote Sensing at L-band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Jacob, S. Daniel

    2007-01-01

    Faraday rotation is a change in the polarization vector of electromagnetic radiation that occurs as the waves propagate from the Earth surface through the ionosphere to a spaceborne sensor. This change can cause errors in monitoring parameters at the surface such as soil moisture and sea surface salinity and it is an important consideration for radiometers on future missions in space such as NASA's Aquarius mission and ESA's SMOS mission. Two prominent strategies for compensating for Faraday rotation are using a sum of the signal at two polarizations and using the correlation between the signals at the two polarizations. These strategies work for an idealized antenna. This paper evaluates the strategies in the context of realistic antennas such as will be built for the Aquarius radiometer. Realistic antennas will make small differences that need to be included in planning for retrieval algorithms in future missions.

  2. New NASA Mission to Reveal Moon Internal Structure and Evolution Artist Concept

    NASA Image and Video Library

    2007-12-11

    The Gravity Recovery and Interior Laboratory, or GRAIL, mission will fly twin spacecraft in tandem orbits around the moon to measure its gravity field in unprecedented detail. GRAIL is a part of NASA Discovery Program.

  3. Recent Advances in the Salinity Retrieval Algorithms for Aquarius and SMAP

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Wentz, F. J.

    2016-12-01

    Our presentation discusses the latest improvements in the salinity retrievals for both Aquarius and SMAP since the last releases. The Aquarius V4.0 was released in June 2015 and the SMAP V 1.0 was released in November 2015. Upcoming releases are planned for SMAP (V 2.0) in August 2016 and for Aquarius (V 5.0) late 2017. The full 360o look capability of SMAP makes it possible to take observations from the forward and backward looking direction at the same instance of time. This two-look capability strongly aids the salinity retrievals. One of the largest spurious contaminations in the salinity retrievals is caused by the galaxy that is reflected from the ocean surface. Because in most instances the reflected galaxy appears only in either the forward or the backward look, it is possible to determine its contribution by taking the difference of the measured SMAP brightness temperatures between the two looks. Our result suggests that the surface roughness that is used in the galactic correction needs to be increased and also the strength of some of the galactic sources need to be slightly adjusted. The improved galaxy correction is getting implemented in upcoming Aquarius and SMAP salinity releases and strongly aids the mitigation of residual zonal and temporal biases that are observed in both products. Another major cause of the observed zonal biases in SMAP is the emissive SMAP mesh antenna. In order to correct for it the physical temperature of the antenna is needed. No direct measurements but only a thermal model are available. We discuss recent improvements in the correction for the emissive SMAP antenna and show how most of the zonal biases in V1.0 can be mitigated. Finally, we show that observed salty biases at higher Northern latitudes can be explained by inaccuracies in the model that is used in correcting for the absorption by atmospheric oxygen. These biases can be decreased by fine-tuning the parameters in the absorption model.

  4. Large Unmanned Aircraft System Operations in the National Airspace System - the NASA 2007 Western States Fire Missions

    NASA Technical Reports Server (NTRS)

    Buoni, Gregory P.; Howell, Kathleen M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) Ikhana (ee-kah-nah) project executed the 2007 Western States Fire Missions over several of the western United States using an MQ-9 unmanned aircraft system (UAS) in partnership with the NASA Ames Research Center, the United States Forest Service, and the National Interagency Fire Center. The missions were intended to supply infrared imagery of wildfires to firefighters on the ground within 10 minutes of data acquisition. For each of the eight missions, the NASA DFRC notified the Federal Aviation Administration (FAA) of specific flight plans within three or fewer days of the flight. The FAA Certificate of Waiver or Authorization (commonly referred to as a COA ) process was used to obtain access to the United States National Airspace System. Significant time and resources were necessary to develop the COA application, perform mission planning, and define and approve emergency landing sites. Unique aspects of flying unmanned aircraft created challenges to mission operations. Close coordination with FAA headquarters and air traffic control resulted in safe and successful missions that assisted firefighters by providing near-real-time imagery of selected wildfires.

  5. The supercam instrument on the NASA Mars 2020 mission: optical design and performance

    NASA Astrophysics Data System (ADS)

    Perez, R.; Parès, Laurent P.; Newell, R.; Robinson, S.; Bernardi, P.; Réess, J.-M.; Caïs, Ph.; McCabe, K.; Maurice, S.; Wiens, R. C.

    2017-09-01

    NASA is developing the MARS 2020 mission, which includes a rover that will land and operate on the surface of Mars. MARS 2020, scheduled for launch in July, 2020, is designed to conduct an assessment of Mars' past habitability, search for potential biosignatures, demonstrate progress toward the future return of samples to Earth, and contribute to NASA's Human Exploration and Space Technology Programs.

  6. Recent Development Activities and Future Mission Applications of NASA's Evolutionary Xenon Thruster (NEXT)

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Pencil, Eric J.

    2014-01-01

    NASAs Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. This presentation is a follow-up to the NEXT project overviews presented in 2009-2010. It reviews the status of the NEXT project, presents the current system performance characteristics, and describes planned activities in continuing the transition of NEXT technology to a first flight. In 2013 a voluntary decision was made to terminate the long duration test of the NEXT thruster, given the thruster design has exceeded all expectations by accumulating over 50,000 hours of operation to demonstrate around 900 kg of xenon throughput. Besides its promise for upcoming NASA science missions, NEXT has excellent potential for future commercial and international spacecraft applications.

  7. Miniature Wireless Sensors Size Up to Big Applications

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Like the environment of space, the undersea world is a hostile, alien place for humans to live. But far beneath the waves near Key Largo, Florida, an underwater laboratory called Aquarius provides a safe harbor for scientists to live and work for weeks at a time. Aquarius is the only undersea laboratory in the world. It is owned by the National Oceanic and Atmospheric Administration (NOAA), administered by NOAA s National Undersea Research Program, and operated by the National Undersea Research Center at the University of North Carolina at Wilmington. Aquarius was first deployed in underwater operations in 1988 and has since hosted more than 200 scientists representing more than 90 organizations from around the world. For NASA, Aquarius provides an environment that is analogous to the International Space Station (ISS) and the space shuttle. As part of its NASA Extreme Environment Mission Operations (NEEMO) program, the Agency sends personnel to live in the underwater laboratory for up to 2 weeks at a time, some of whom are crew members or "aquanauts" who are subjected to the same tasks and challenges underwater that they would face in space. In fact, many participants have found the deep-sea diving experience to be much akin to spacewalking. To maintain Aquarius, the ISS, and the space shuttle as safe, healthy living/research habitats for its personnel, while keeping costs in mind, NASA, in 1997, recruited the help of Conroe, Texas-based Invocon, Inc., to develop wireless sensor technology that monitors and measures various environmental and structural parameters inside these facilities.

  8. Aquarius reveals salinity structure of tropical instability waves

    NASA Astrophysics Data System (ADS)

    Lee, Tong; Lagerloef, Gary; Gierach, Michelle M.; Kao, Hsun-Ying; Yueh, Simon; Dohan, Kathleen

    2012-06-01

    Sea surface salinity (SSS) measurements from the Aquarius/SAC-D satellite during September-December 2011 provide the first satellite observations of the salinity structure of tropical instability waves (TIWs) in the Pacific. The related SSS anomaly has a magnitude of approximately ±0.5 PSU. Different from sea surface temperature (SST) and sea surface height anomaly (SSHA) where TIW-related propagating signals are stronger a few degrees away from the equator, the SSS signature of TIWs is largest near the equator in the eastern equatorial Pacific where salty South Pacific water meets the fresher Inter-tropical Convergence Zone water. The dominant westward propagation speed of SSS near the equator is approximately 1 m/s. This is twice as fast as the 0.5 m/s TIW speed widely reported in the literature, typically from SST and SSHA away from the equator. This difference is attributed to the more dominant 17-day TIWs near the equator that have a 1 m/s dominant phase speed and the stronger 33-day TIWs away from the equator that have a 0.5 m/s dominant phase speed. The results demonstrate the important value of Aquarius in studying TIWs.

  9. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  10. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, R. Wayne; Moore, Arlene; Rogers, John

    1999-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA's) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  11. A Reliable Service-Oriented Architecture for NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan; Keely, Leslie; Hehner, Dennis; Chan, Louise

    2005-01-01

    The Collaborative Information Portal (CIP) was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory (JPL) for NASA's highly successful Mars Exploration Rover (MER) mission. Both MER and CIP have performed far beyond their original expectations. Mission managers and engineers ran CIP inside the mission control room at JPL, and the scientists ran CIP in their laboratories, homes, and offices. All the users connected securely over the Internet. Since the mission ran on Mars time, CIP displayed the current time in various Mars and Earth time zones, and it presented staffing and event schedules with Martian time scales. Users could send and receive broadcast messages, and they could view and download data and image files generated by the rovers' instruments. CIP had a three-tiered, service-oriented architecture (SOA) based on industry standards, including J2EE and web services, and it integrated commercial off-the-shelf software. A user's interactions with the graphical interface of the CIP client application generated web services requests to the CIP middleware. The middleware accessed the back-end data repositories if necessary and returned results for these requests. The client application could make multiple service requests for a single user action and then present a composition of the results. This happened transparently, and many users did not even realize that they were connecting to a server. CIP performed well and was extremely reliable; it attained better than 99% uptime during the course of the mission. In this paper, we present overviews of the MER mission and of CIP. We show how CIP helped to fulfill some of the mission needs and how people used it. We discuss the criteria for choosing its architecture, and we describe how the developers made the software so reliable. CIP's reliability did not come about by chance, but was the result of several key design decisions. We conclude with some of the important

  12. Security Vulnerability Profiles of NASA Mission Software: Empirical Analysis of Security Related Bug Reports

    NASA Technical Reports Server (NTRS)

    Goseva-Popstojanova, Katerina; Tyo, Jacob P.; Sizemore, Brian

    2017-01-01

    NASA develops, runs, and maintains software systems for which security is of vital importance. Therefore, it is becoming an imperative to develop secure systems and extend the current software assurance capabilities to cover information assurance and cybersecurity concerns of NASA missions. The results presented in this report are based on the information provided in the issue tracking systems of one ground mission and one flight mission. The extracted data were used to create three datasets: Ground mission IVV issues, Flight mission IVV issues, and Flight mission Developers issues. In each dataset, we identified the software bugs that are security related and classified them in specific security classes. This information was then used to create the security vulnerability profiles (i.e., to determine how, why, where, and when the security vulnerabilities were introduced) and explore the existence of common trends. The main findings of our work include:- Code related security issues dominated both the Ground and Flight mission IVV security issues, with 95 and 92, respectively. Therefore, enforcing secure coding practices and verification and validation focused on coding errors would be cost effective ways to improve mission's security. (Flight mission Developers issues dataset did not contain data in the Issue Category.)- In both the Ground and Flight mission IVV issues datasets, the majority of security issues (i.e., 91 and 85, respectively) were introduced in the Implementation phase. In most cases, the phase in which the issues were found was the same as the phase in which they were introduced. The most security related issues of the Flight mission Developers issues dataset were found during Code Implementation, Build Integration, and Build Verification; the data on the phase in which these issues were introduced were not available for this dataset.- The location of security related issues, as the location of software issues in general, followed the Pareto

  13. NASA Social and Media Briefing on Next Mars Mission

    NASA Image and Video Library

    2018-05-03

    News media and social media participants gathered at Vandenberg Air Force Base in Central California Thursday, May 3 to hear from NASA and its partners about the agency’s mission to study the interior of the Red Planet. NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) is scheduled to launch May 5 on a United Launch Alliance Atlas V rocket, from Space Launch Complex 3 at Vandenberg.

  14. Portable Diagnostics Technology Assessment for Space Missions. Part 1; General Technology Capabilities for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    The changes in the scope of NASA s mission in the coming decade are profound and demand nimble, yet insightful, responses. On-board clinical and environmental diagnostics must be available for both mid-term lunar and long-term Mars exploration missions in an environment marked by scarce resources. Miniaturization has become an obvious focus. Despite solid achievements in lab-based devices, broad-based, robust tools for application in the field are not yet on the market. The confluence of rapid, wide-ranging technology evolution and internal planning needs are the impetus behind this work. This report presents an analytical tool for the ongoing evaluation of promising technology platforms based on mission- and application-specific attributes. It is not meant to assess specific devices, but rather to provide objective guidelines for a rational down-select of general categories of technology platforms. In this study, we have employed our expertise in the microgravity operation of fluidic devices, laboratory diagnostics for space applications, and terrestrial research in biochip development. A rating of the current state of technology development is presented using the present tool. Two mission scenarios are also investigated: a 30-day lunar mission using proven, tested technology in 5 years; and a 2- to 3-year mission to Mars in 10 to 15 years.

  15. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  16. High Output Maximum Efficiency Resonator (HOMER) Laser for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission

    NASA Technical Reports Server (NTRS)

    Stysley, Paul; Coyle, Barry; Clarke, Greg; Poulios, Demetrios; Kay, Richard

    2015-01-01

    The Global Ecosystems Dynamics Investigation (GEDI) is a planned mission sending a LIDAR instrument to the International Space Station that will employ three NASA laser transmitters. This instrument will produce parallel tracks on the Earth's surface that will provide global 3D vegetation canopy measurements. To meet the mission goals a total of 5 High Output Maximum Efficiency Resonator lasers will to be built (1 ETU + 3 Flight + 1 spare) in-house at NASA-GSFC. This presentation will summarize the HOMER design, the testing the design has completed in the past, and the plans to successfully build the units needed for the GEDI mission.

  17. MFE/Magnolia - A joint CNES/NASA mission for the earth magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Runavot, Josette; Ousley, Gilbert W.

    1988-01-01

    The joint phase B study in the CNES/NASA MFE/Magnolia mission to study the earth's magnetic field are reported. The scientific objectives are summarized and the respective responsibilities of NASA and CNES are outlined. The MFE/Magnolia structure and power systems, mass and power budgets, attitude control system, instrument platform and boom, tape recorders, rf system, propellant system, and scientific instruments are described.

  18. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  19. NASA CYGNSS Tropical Cyclone Mission

    NASA Astrophysics Data System (ADS)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling

  20. Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

    2012-01-01

    We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

  1. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology, answered questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  2. NASA's Swift Mission Maps a Star's 'Death Spiral' into a Black Hole

    NASA Image and Video Library

    2017-12-08

    Some 290 million years ago, a star much like the sun wandered too close to the central black hole of its galaxy. Intense tides tore the star apart, which produced an eruption of optical, ultraviolet and X-ray light that first reached Earth in 2014. Now, a team of scientists using observations from NASA's Swift satellite have mapped out how and where these different wavelengths were produced in the event, named ASASSN-14li, as the shattered star's debris circled the black hole. "We discovered brightness changes in X-rays that occurred about a month after similar changes were observed in visible and UV light," said Dheeraj Pasham, an astrophysicist at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, and the lead researcher of the study. "We think this means the optical and UV emission arose far from the black hole, where elliptical streams of orbiting matter crashed into each other." Read more: go.nasa.gov/2nLmSoa NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  4. Mission leverage education: NSU/NASA innovative undergraduate model

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Shaw, Paula R. D.

    2005-01-01

    The BEST Lab (Center for Excellence in Science Education), the Center for Materials Research (CMR), and the Chemistry, Mathematics, Physics, and Computer Science (CS) Departments at Norfolk State University (NSU) joined forces to implement MiLEN(2) IUM - an innovative approach tu integrate current and emerging research into the undergraduate curricula and train students on NASA-related fields. An Earth Observing System (EOS) mission was simulated where students are educated and trained in many aspects of Remote Sensing: detector physics and spectroscopy; signal processing; data conditioning, analysis, visualization; and atmospheric science. This model and its continued impact is expected to significantly enhance the quality of the Mathematics, Science, Engineering and Technology (MSET or SMET) educational experience and to inspire students from historically underrepresented groups to pursue careers in NASA-related fields. MiLEN(2) IUM will be applicable to other higher education institutions that are willing to make the commitment to this endeavor in terms of faculty interest and space.

  5. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.

    2015-12-01

    The Global Precipitation Measurement (GPM) Mission education and communication team is involved in variety of efforts to share the science of GPM via hands-on activities for formal and informal audiences and engaging students in authentic citizen science data collection, as well as connecting students and teachers with scientists and other subject matter experts. This presentation will discuss the various forms of those efforts in relation to best practices as well as lessons learned and evaluation data. Examples include: GPM partnered with the Global Observations to Benefit the Environment (GLOBE) Program to conduct a student precipitation field campaign in early 2015. Students from around the world collected precipitation data and entered it into the GLOBE database, then were invited to develop scientific questions to be answered using ground observations and satellite data available from NASA. Webinars and blogs by scientists and educators throughout the campaign extended students' and teachers' knowledge of ground validation, data analysis, and applications of precipitation data. To prepare teachers to implement the new Next Generation Science Standards, the NASA Goddard Earth science education and outreach group, led by GPM Education Specialists, held the inaugural Summer Watershed Institute in July 2015 for 30 Maryland teachers of 3rd-5th grades. Participants in the week-long in-person workshop met with scientists and engineers at Goddard, learned about NASA Earth science missions, and were trained in seven protocols of the GLOBE program. Teachers worked collaboratively to make connections to their own curricula and plan for how to implement GLOBE with their students. Adding the arts to STEM, GPM is producing a comic book story featuring the winners of an anime character contest held by the mission during 2013. Readers learn content related to the science and technology of the mission as well as applications of the data. The choice of anime/manga as the style

  6. NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission

    NASA Astrophysics Data System (ADS)

    Hoffman, James P.; Shaffer, Scott; Perkovic-Martin, Dragana

    2016-05-01

    The National Aeronautics and Space Administration (NASA) in the United States and the Indian Space Research Organization (ISRO) have partnered to develop an Earth-orbiting science and applications mission that exploits synthetic aperture radar to map Earth's surface every 12 days or less. To meet demanding coverage, sampling, and accuracy requirements, the system was designed to achieve over 240 km swath at fine resolution, and using full polarimetry where needed. To address the broad range of disciplines and scientific study areas of the mission, a dual-frequency system was conceived, at L-band (24 cm wavelength) and S-band (10 cm wavelength). To achieve these observational characteristics, a reflector-feed system is considered, whereby the feed aperture elements are individually sampled to allow a scan-on-receive ("SweepSAR") capability at both L-band and S-band. The instrument leverages the expanding capabilities of on-board digital processing to enable real-time calibration and digital beamforming. This paper describes the mission characteristics, current status of the L-band Synthetic Aperture Radar (L-SAR) portion of the instrument, and the technology development efforts in the United States that are reducing risk on the key radar technologies needed to ensure proper SweepSAR operations.

  7. Science Goal Monitor: Science Goal Driven Automation for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Pell, Melissa; Matusow, David; Bailyn, Charles

    2004-01-01

    Infusion of automation technologies into NASA s future missions will be essential because of the need to: (1) effectively handle an exponentially increasing volume of scientific data, (2) successfully meet dynamic, opportunistic scientific goals and objectives, and (3) substantially reduce mission operations staff and costs. While much effort has gone into automating routine spacecraft operations to reduce human workload and hence costs, applying intelligent automation to the science side, i.e., science data acquisition, data analysis and reactions to that data analysis in a timely and still scientifically valid manner, has been relatively under-emphasized. In order to introduce science driven automation in missions, we must be able to: capture and interpret the science goals of observing programs, represent those goals in machine interpretable language; and allow spacecrafts onboard systems to autonomously react to the scientist's goals. In short, we must teach our platforms to dynamically understand, recognize, and react to the scientists goals. The Science Goal Monitor (SGM) project at NASA Goddard Space Flight Center is a prototype software tool being developed to determine the best strategies for implementing science goal driven automation in missions. The tools being developed in SGM improve the ability to monitor and react to the changing status of scientific events. The SGM system enables scientists to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of science data to identify occurrences of key events previously specified by the scientist. When an event occurs, the system autonomously coordinates the execution of the scientist s desired reactions. Through SGM, we will improve om understanding about the capabilities needed onboard for success, develop metrics to understand the potential increase in science returns, and develop an operational prototype so that the perceived risks associated

  8. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  9. NEEMO 21: Tools, Techniques, Technologies & Training for Science Exploration EVA

    NASA Technical Reports Server (NTRS)

    Graff, Trevor

    2016-01-01

    The 21st mission of the NASA Extreme Environment Mission Operations (NEEMO) was a highly integrated operational test and evaluation of tools, techniques, technologies, and training for science driven exploration during Extravehicular Activity (EVA).The 16-day mission was conducted from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo, FL. The unique facility, authentic science objectives, and diverse skill-sets of the crew/team facilitate the planning and design for future space exploration.

  10. Software Defined Radio Standard Architecture and its Application to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Andro, Monty; Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  11. Chemistry and Kinematics of the Late-forming Dwarf Irregular Galaxies Leo A, Aquarius, and Sagittarius DIG

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Rizzi, Luca; Held, Enrico V.; Cohen, Judith G.; Cole, Andrew A.; Manning, Ellen M.; Skillman, Evan D.; Weisz, Daniel R.

    2017-01-01

    We present Keck/DEIMOS spectroscopy of individual stars in the relatively isolated Local Group dwarf galaxies Leo A, Aquarius, and the Sagittarius dwarf irregular galaxy. The three galaxies—but especially Leo A and Aquarius—share in common delayed star formation histories (SFHs) relative to many other isolated dwarf galaxies. The stars in all three galaxies are supported by dispersion. We found no evidence of stellar velocity structure, even for Aquarius, which has rotating H I gas. The velocity dispersions indicate that all three galaxies are dark-matter-dominated, with dark-to-baryonic mass ratios ranging from {4.4}-0.8+1.0 (SagDIG) to {9.6}-1.8+2.5 (Aquarius). Leo A and SagDIG have lower stellar metallicities than Aquarius, and they also have higher gas fractions, both of which would be expected if Aquarius were further along in its chemical evolution. The metallicity distribution of Leo A is inconsistent with a closed or leaky box model of chemical evolution, suggesting that the galaxy was pre-enriched or acquired external gas during star formation. The metallicities of stars increased steadily for all three galaxies, but possibly at different rates. The [α/Fe] ratios at a given [Fe/H] are lower than that of the Sculptor dwarf spheroidal galaxy, which indicates more extended SFHs than Sculptor, consistent with photometrically derived SFHs. Overall, the bulk kinematic and chemical properties for the late-forming dwarf galaxies do not diverge significantly from those of less delayed dwarf galaxies, including dwarf spheroidal galaxies. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  13. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design

  14. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  15. NASA Curation Preparation for Ryugu Sample Returned by JAXA's Hayabusa2 Mission

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, Keiko; Righter, Kevin; Snead, Christopher J.; McCubbin, Francis M.; Pace, Lisa F.; Zeigler, Ryan A.; Evans, Cindy

    2017-01-01

    The NASA OSIRIS-REx and JAXA Hayabusa2 missions to near-Earth asteroids Bennu and Ryugu share similar mission goals of understanding the origins of primitive, organic-rich asteroids. Under an agreement between JAXA and NASA, there is an on-going and productive collaboration between science teams of Hayabusa2 and OSIRIS-REx missions. Under this agreement, a portion of each of the returned sample masses will be exchanged between the agencies and the scientific results of their study will be shared. NASA’s portion of the returned Hayabusa2 sample, consisting of 10% of the returned mass, will be jointly separated by NASA and JAXA. The sample will be legally and physically transferred to NASA’s dedicated Hayabusa2 curation facility at Johnson Space Center (JSC) no later than one year after the return of the Hayabusa2 sample to Earth (December 2020). The JSC Hayabusa2 curation cleanroom facility design has now been completed. In the same manner, JAXA will receive 0.5% of the total returned OSIRIS-REx sample (minimum required sample to return 60 g, maximum sample return capacity of 2 kg) from the rest of the specimen. No later than one year after the return of the OSIRIS-REx sample to Earth (September 2023), legal, physical, and permanent custody of this sample subset will be transferred to JAXA, and the sample subset will be brought to JAXA’s Extraterrestrial Sample Curation Center (ESCuC) at Institute of Space and Astronautical Science, Sagamihara City Japan.

  16. A compiler and validator for flight operations on NASA space missions

    NASA Astrophysics Data System (ADS)

    Fonte, Sergio; Politi, Romolo; Capria, Maria Teresa; Giardino, Marco; De Sanctis, Maria Cristina

    2016-07-01

    In NASA missions the management and the programming of the flight systems is performed by a specific scripting language, the SASF (Spacecraft Activity Sequence File). In order to perform a check on the syntax and grammar it is necessary a compiler that stress the errors (eventually) found in the sequence file produced for an instrument on board the flight system. In our experience on Dawn mission, we developed VIRV (VIR Validator), a tool that performs checks on the syntax and grammar of SASF, runs a simulations of VIR acquisitions and eventually finds violation of the flight rules of the sequences produced. The project of a SASF compiler (SSC - Spacecraft Sequence Compiler) is ready to have a new implementation: the generalization for different NASA mission. In fact, VIRV is a compiler for a dialect of SASF; it includes VIR commands as part of SASF language. Our goal is to produce a general compiler for the SASF, in which every instrument has a library to be introduced into the compiler. The SSC can analyze a SASF, produce a log of events, perform a simulation of the instrument acquisition and check the flight rules for the instrument selected. The output of the program can be produced in GRASS GIS format and may help the operator to analyze the geometry of the acquisition.

  17. Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission

    NASA Technical Reports Server (NTRS)

    Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett

    2003-01-01

    Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.

  18. NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation?

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Chouker, A.; Feuerecker, M.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.

    2011-01-01

    This poster paper reviews the use of 14 day undersea missions as a possible analog for short duration spaceflight for the study of immune system dysregulation. Sixteen subjects from the the NASA Extreme Enviro nment Mission Operations (NEEMO) 12, 13 and 14 missions were studied for immune system dysregulation. The assays that are presented in this poster are the Virleukocyte subsets, the T Cell functions, and the intracellular/secreted cytokine profiles. Other assays were performed, but are not included in this presntation.

  19. Heritage Systems Engineering Lessons from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications

  20. Momentum Management for the NASA Near Earth Asteroid Scout Solar Sail Mission

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew; Diedrich, Benjamin L.; Orphee, Juan; Stiltner, Brandon; Becker, Christopher

    2017-01-01

    The Momentum Management (MM) system is described for the NASA Near Earth Asteroid Scout (NEA Scout) cubesat solar sail mission. Unlike many solar sail mission proposals that used solar torque as the primary or only attitude control system, NEA Scout uses small reaction wheels (RW) and a reaction control system (RCS) with cold gas thrusters, as described in the abstract "Solar Sail Attitude Control System for Near Earth Asteroid Scout Cubesat Mission." The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The MM system keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS.

  1. A NASA Strategy for Leveraging Emerging Launch Vehicles for Routine, Small Payload Missions

    NASA Technical Reports Server (NTRS)

    Underwood, Bruce E.

    2005-01-01

    Orbital flight opportunities for small payloads have always been few and far between, and then on February 1, 2002, the situation got worse. In the wake of the loss of the Columbia during STS- 107, changing NASA missions and priorities led to the termination of the Shuttle Small Payloads Projects, including Get-Away Special, Hitcbker, and Space Experiment Module. In spite of the limited opportunities, long queue, and restrictions associated with flying experiments on a man-rated transportation system; the carriers provided a sustained, high quality experiment services for education, science, and technology payloads, and was one of the few games in town. Attempts to establish routine opportunities aboard existing ELVs have been unsuccessful, as the cost-per-pound on small ELVs and conflicts with primary spacecraft on larger vehicles have proven prohibitive. Ths has led to a backlog of existing NASA-sponsored payloads and no prospects or plans for fbture opportunities within the NASA community. The prospects for breaking out of this paradigm appear promising as a result of NASA s partnership with DARPA in pursuit of low-cost, responsive small ELVs under the Falcon Program. Through this partnership several new small ELVs, providing 1000 lbs. to LEO will be demonstrated in less than two years that promise costs that are reasonable enough that NASA, DoD, and other sponsors can once again invest in small payload opportunities. Within NASA, planning has already begun. NASA will be populating one or more of the Falcon demonstration flights with small payloads that are already under development. To accommodate these experiments, Goddard s Wallops Flight Facility has been tasked to develop a multi-payload ejector (MPE) to accommodate the needs of these payloads. The MPE capabilities and design is described in detail in a separately submitted abstract. Beyond use of the demonstration flights however, Goddard has already begun developing strategies to leverage these new ELVs

  2. NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.

  3. The NASA ISS-RapidScat Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.

    2013-12-01

    After NASA's QuikSCAT satellite stopped spinning on November 2009, an observational gap opened in the international ocean surface winds constellation of observing satellites that also includes EUMETSAT's ASCAT and ISRO's OSCAT. While QuikSCAT continues to provide calibration data to the ISRO OSCAT on OceanSat-2 scatterometer, these data are sorely limited due to the satellite's hampered capabilities. Recognizing this gap, NASA has put together in a matter of a few months the ISS-RapidScat mission, which is a partnership between JPL, the ISS, ESA, KSC, and SpaceX. This mission, expected to launch in spring of 2014, is a very low-cost mission, enabled by the creative use of spare parts and a very rapid development process that nevertheless has great benefit to the science and operational weather and marine support communities. Since it uses the QuikSCAT engineering model, the RapidScat data will be quite similar to QuikSAT's in terms of data quality and spatial resolution, although modest gains in the latter are foreseen. However, due to the lower orbit and inclination, the RapidScat swath will be approximately a factor of two smaller than QuikSCAT's, and its geographic coverage will be limited to latitudes smaller than about 55 deg. Nevertheless, the unique sampling capabilities of the ISS non-sun-synchronous orbit opens up new science applications not available for typical sun-synchronous scatterometers. Foremost among these, is the ability to provide many more data that are collocated in space and time with each of the satellites in the international scatterometer constellation. Sun-synchronous satellites typically see each other with a suitably small temporal separation at high latitudes, and therefore, cross-calibration is limited in terms of the conditions that occur. RapidScat's orbit enables coincident wind observations in nearly every orbit, with a global geographical distribution, which will enable the determination of the global patterns of wind biases

  4. The October 1973 NASA mission model analysis and economic assessment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results are presented of the 1973 NASA Mission Model Analysis. The purpose was to obtain an economic assessment of using the Shuttle to accommodate the payloads and requirements as identified by the NASA Program Offices and the DoD. The 1973 Payload Model represents a baseline candidate set of future payloads which can be used as a reference base for planning purposes. The cost of implementing these payload programs utilizing the capabilities of the shuttle system is analyzed and compared with the cost of conducting the same payload effort using expendable launch vehicles. There is a net benefit of 14.1 billion dollars as a result of using the shuttle during the 12-year period as compared to using an expendable launch vehicle fleet.

  5. NASA Science Mission Directorate Science Education and Public Outreach Forums: A Six-Year Retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Denise Anne; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie; Lawton, Brandon L.; Meinke, Bonnie; Manning, James G.; Bartolone, Lindsay; Schultz, Gregory

    2015-08-01

    NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The NASA SMD education and public engagement community and Forum teams have worked together to share the science, the story, and the adventure of SMD's science missions with students, educators, and the public. In doing so, SMD's programs have emphasized collaboration between scientists with content expertise and educators with pedagogy expertise. The goal of the Education Forums has been to maximize program efficiency, effectiveness, and coherence by organizing collaborations that reduce duplication of effort; sharing best practices; aligning products to national education standards; creating and maintaining the NASA Wavelength online catalog of SMD education products; and disseminating metrics and evaluation findings. We highlight examples of our activities over the past six years, along with the role of the scientist-educator partnership and examples of program impact. We also discuss our community’s coordinated efforts to expand the Astro4Girls pilot program into the NASA Science4Girls and Their Families initiative, which partners NASA science education programs with public libraries to engage underrepresented audiences in science.

  6. NASA flight controllers - Meeting cultural and leadership challenges on the critical path to mission success

    NASA Technical Reports Server (NTRS)

    Clement, James L., Jr.; Ritsher, Jennifer Boyd

    2006-01-01

    As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.

  7. The Role of the NASA Global Hawk Link Module as an Information Nexus For Atmospheric Mapping Missions

    NASA Technical Reports Server (NTRS)

    Sullivan, D. V.

    2015-01-01

    The Link Module described in this paper was developed for the NASA Uninhabited Aerial System (UAS) Global Hawk Pacific Mission (GloPAC) Airborne Science Campaign; four flights of 30 hour duration, supporting the Aura Validation Experiment (AVE). It was used again during the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth Science field experiment to better understand how tropical storms form and develop into major hurricanes. In these missions, the Link Module negotiated all communication over the high bandwidth Ku satellite link, archived all the science data from onboard experiments in a spatially enabled database, routed command and control of the instruments from the Global Hawk Operations Center, and re-transmitted select data sets directly to experimenters control and analysis systems. The availability of aggregated information from collections of sensors, and remote control capabilities, in real-time, is revolutionizing the way Airborne Science is being conducted. The Link Module NG now being flown in support of the NASA Earth Venture missions, the Hurricane and Severe Storm Sentinel (HS3) mission, and Airborne Tropical Tropopause Experiment (A TTREX) mission, has advanced data fusion technologies that are further advancing the Scientific productivity, flexibility and robustness of these systems. On-the-fly traffic shaping has been developed to allow the high definition video, used for critical flight control segments, to dynamically allocate variable bandwidth on demand. Historically, the Link Module evolved from the instrument and communication interface controller used by NASA's Pathfinder and Pathfinder plus solar powered UAS's in the late 1990' s. It later was expanded for use in the AIRDAS four channel scanner flown on the NASA Altus UAS, and then again to a module in the AMS twelve channel multispectral scanner flying on the NASA (Predator-b) Ikhana UAS. The current system is the answer to the challenges imposed by extremely

  8. Student Planetary Investigators: A Program to Engage Students in Authentic Research Using NASA Mission Data

    NASA Astrophysics Data System (ADS)

    Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.

    2015-12-01

    The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.

  9. KSC-2011-2751

    NASA Image and Video Library

    2011-04-02

    VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is being prepared for its move to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB

  10. KSC-2011-2753

    NASA Image and Video Library

    2011-04-02

    VANDENBERG AIR FORCE BASE, Calif. -- Technicians prepare the Aquarius/SAC-D spacecraft for its move to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB

  11. KSC-2011-2752

    NASA Image and Video Library

    2011-04-02

    VANDENBERG AIR FORCE BASE, Calif. -- Technicians await the arrival of the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB

  12. KSC-2011-2759

    NASA Image and Video Library

    2011-04-02

    VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane moves the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB

  13. Lidar and Mission Parameter Trade Study of Space-Based Coherent Wind Measurement Centered on NASA's 2006 GWOS Wind Mission Study Parameters

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Frehlich, Rod G.

    2007-01-01

    The global measurement of vertical profiles of horizontal vector winds has been highly desired for many years by NASA, NOAA and the Integrated Program Office (IPO) implementing the National Polar-orbiting Operational Environmental Satellite Systems (NPOESS). Recently the global wind mission was one of 15 missions recommended to NASA by the first ever NRC Earth Sciences Decadal Survey. Since before 1978, the most promising method to make this space-based measurement has been pulsed Doppler lidar. The favored technology and technique has evolved over the years from obtaining line-of-sight (LOS) wind profiles from a single laser shot using pulsed CO2 gas laser technology to the current plans to use both a coherent-detection and direct-detection pulsed Doppler wind lidar systems with each lidar employing multiple shot accumulation to produce an LOS wind profile. The idea of using two lidars (hybrid concept) entails coherent detection using the NASA LaRC-developed pulsed 2-micron solid state laser technology, and direct detection using pulsed Nd:YAG laser technology tripled in frequency to 355 nm wavelength.

  14. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  15. Improving the recognition of near-miss events on NASA missions

    NASA Astrophysics Data System (ADS)

    Dillon, R. L.; Rogers, E. W.; Madsen, P.; Tinsley, C. H.

    Organizations that ignore near-miss data may be inappropriately rewarding risky behavior. If managers engage in risky behavior and succeed, research shows that these managers are likely to be promoted without close scrutiny of their risky decisions, even if the success is because of good fortune. Over time such risk taking compounds as similar near-misses are repeatedly observed and the ability to recognize anomalies and document the events decreases (i.e., normalization of deviance). History from the shuttle program shows that only the occasional large failure increases attention to anomalies again. This research demonstrates the presence of normalization of deviance in NASA missions and also examines a factor (the significance of the project) that may increase people's awareness of near-misses to counter this trend. Increasing awareness of chance success should increase the likelihood that significant learning can occur from the mission regardless of outcome. We conclude with prescriptions for project managers based on several on-going activities at NASA Goddard Space Flight Center (GSFC) to improve organizational learning. We discuss how these efforts can contribute to reducing near-miss bias and the normalization of deviance. This research should help organizations design learning processes that draw lessons from near-misses.

  16. Salinity signal of the Magdalena River in the Caribbean Sea, Colombian basin revealed by AQUARIUS mission supported by high resolution SST and Color data

    NASA Astrophysics Data System (ADS)

    Maza Chamorro, M. A.; Vazquez, J.; Palacio Pinedo, A.

    2013-05-01

    A comparison of time series of river discharge of Magdalena River and Aquarius sea surface salinity data indicates a significant influence of the river in the SSS of its plume area of influence. The period of analysis spans from august 2011 to august 2012. The period with higher values of river discharge is coincident with the lower values of SSS from September to December 2011. Once the maximum of river discharge is observed in December 2011 and the fluxes start to decline the values of SSS show a significant increment; that trend continues until the middle of March 2012 when the river discharge increases again and the SSS decreases. The influence of the Magdalena River in the area considered for the SSS data analysis is confirmed by examination of high resolution SST and color data, which were used for defining the seasonal boundaries of the Magdalena river plume area of influence. The spatial distribution of a significant positive correlation between SST and Color indicates boundaries of the plume that are consistent with the physics of a near equatorial river plume. The results highlight the great potential of the use of SSS AQUARIUS data combined with high resolution SST and color data in the study of the oceanography of regions of fresh water influence in the tropical ocean.

  17. FOSTERING APPLICATIONS OPPORTUNITIES FOR THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s (NRC’s) Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. SMAP will ma...

  18. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  19. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Astrophysics Data System (ADS)

    Hoffman, Stephen J.; Kaplan, David I.

    1997-07-01

    Personnel representing several NASA field centers have formulated a "Reference Mission" addressing human exploration of Mars. This report summarizes their work and describes a plan for the first human missions to Mars, using approaches that are technically feasible, have reasonable risks, and have relatively low costs. The architecture for the Mars Reference Mission builds on previous work of the Synthesis Group (1991) and Zubrin's (1991) concepts for the use of propellants derived from the Martian Atmosphere. In defining the Reference Mission, choices have been made. In this report, the rationale for each choice is documented; however, unanticipated technology advances or political decisions might change the choices in the future.

  20. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor); Kaplan, David I. (Editor)

    1997-01-01

    Personnel representing several NASA field centers have formulated a "Reference Mission" addressing human exploration of Mars. This report summarizes their work and describes a plan for the first human missions to Mars, using approaches that are technically feasible, have reasonable risks, and have relatively low costs. The architecture for the Mars Reference Mission builds on previous work of the Synthesis Group (1991) and Zubrin's (1991) concepts for the use of propellants derived from the Martian Atmosphere. In defining the Reference Mission, choices have been made. In this report, the rationale for each choice is documented; however, unanticipated technology advances or political decisions might change the choices in the future.

  1. What's Up? Look Up and Discover the Universe Using NASA Missions and the Night Sky to Inspire the Public

    NASA Astrophysics Data System (ADS)

    Jones, J. H.

    2008-12-01

    NASA's monthly What's Up video podcasts connect night sky observations with NASA mission milestones. During 2009, each month's podcast will highlight NASA's IYA topic and celestial target. With a news you can use formula, each two-minute podcast connects an easy to see celestial target with an important NASA mission, instrument or discovery. The podcasts, plus supporting star charts, hands-on activities, standards-based educational lessons and mission links can be used by museums, planetariums, astronomy clubs, civic and youth groups, as well as by teachers, students, and the general public. They can be translated into other languages, too. Saturn Observation Night - March 8-28, 2009, weather permitting. Saturn Observation Night 2009 is centered near Saturn Opposition, when the Sun and Saturn are on opposite sides of the Earth, and Saturn is easy to see in the evening sky. All IYA participants, in all countries around the world, will be encouraged to take their telescopes out and share the planet Saturn with their communities and share images and stories with others. NASA's Cassini Equinox Mission, the 2-year extended mission of the Cassini Huygens Mission to Saturn and Titan has a 400 member strong volunteer network called the Saturn Observation Campaign. These astronomy enthusiast volunteers in 54 countries have conducted a Saturn Observation Night event the past 2 years, and it succeeded by building an international community all sharing a view of our solar system's jewel, Saturn. This celebration has been successfully conducted in hundreds of locations all over the world, from Australia to Vietnam, from South Africa to Slovenia, and from Arkansas to Washington.

  2. Evaluation of “The Space Place,” a NASA Integrated, Multi-mission Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Fisher, Diane K.; Leon, N. J.

    2006-12-01

    The Space Place is an integrated NASA education and public outreach program, so far representing over 40 different NASA missions. It combines Web-based, printed, and externally published media to reach underserved audiences across the nation. Its primary mission is to develop and provide a highly desirable suite of attractive and educational products designed to appeal to and immerse the general public in space exploration. Its primary target audience is elementary school age kids. The program has developed an extensive network of partnerships with museums and libraries in rural areas, English and Spanish language newspapers, astronomy societies, rocketry clubs, and national youth organizations. Materials are distributed monthly through all these channels. Originally a New Millennium Program (NMP) outreach effort only, it is open to all NASA missions. NMP (a NASA-level program managed out of the Jet Propulsion Laboratory) continues to provide the base of support to build and maintain the outreach program’s infrastructure. Obtaining independent evaluation and reporting of the effectiveness of the program is one of NASA’s requirements for education and public outreach efforts. The Program Evaluation and Research Group (PERG) at Lesley University, Cambridge, MA, was retained to perform this service for The Space Place. PERG is also evaluating education and public outreach programs for NASA’s Science Mission Directorate. PERG recently delivered a report evaluating The Space Place program. Using both qualitative and quantitative methods, PERG surveyed representative samples of Space Place partner museums, astronomy clubs, and newspapers. The survey included questions about all the products the program provides. The report concludes that The Space Place fills a niche by serving small institutions, giving them a personal alliance with NASA that they would otherwise not have. By providing free, quality materials, The Space Place program provides these under

  3. Our Newest Mission to Mars on This Week @NASA – May 5, 2018

    NASA Image and Video Library

    2018-05-05

    Our newest mission to Mars is on its way, Vice President Pence visits our Jet Propulsion Laboratory, and observing our planet’s ever-changing water cycle – a few of the stories to tell you about – This Week at NASA!

  4. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe

    2014-01-01

    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations

  5. KSC-06pd0623

    NASA Image and Video Library

    2006-04-03

    KENNEDY SPACE CENTER, FLA. -- Astronaut Nicole Stott, Dr. Tim Broderick of the University of Cincinnati, and astronaut Dave Williams are preparing for their 17-day mission on the NASA Extreme Environment Mission Operations (NEEMO) project. The mission will take place onboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory situated three miles off Key Largo in the Florida Keys National Marine Sanctuary, anchored 62 feet below the surface. Williams is leading the undersea mission, which also includes astronaut Ron Garan. The astronauts are testing space medicine concepts and moon-walking techniques.

  6. Electrochemical Energy Storage and Power Sources for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2007-01-01

    An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

  7. NASA's Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; hide

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  8. Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions - Part 2: Initial product analysis

    NASA Astrophysics Data System (ADS)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-05-01

    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency ~1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze/thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of ~5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze/thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used are distributed by the US Snow and Ice Data Center at aquarius/index.html "target="_blank"> http://nsidc.org/data/aquarius/index.html , and show potential for cryospheric studies.

  9. NEEMO 21: Tools, Techniques, Technologies and Training for Science Exploration

    NASA Technical Reports Server (NTRS)

    Graff, T.; Young, K.; Coan, D.; Merselis, D.; Bellantuono, A.; Dougan, K.; Rodriguez-Lanetty, M.; Nedimyer, K.; Chappell, S.; Beaton, K.; hide

    2017-01-01

    The 21st mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated operational field test and evaluation of tools, techniques, technologies, and training for science driven exploration during extravehicular activity (EVA). The mission was conducted in July 2016 from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo in the Florida Keys National Marine Sanctuary. An international crew of eight (comprised of NASA and ESA astronauts, engineers, medical personnel, and habitat technicians) lived and worked in and around Aquarius and its surrounding reef environment for 16 days. The integrated testing (both interior and exterior objectives) conducted from this unique facility continues to support current and future human space exploration endeavors. Expanding on the scientific and operational evaluations conducted during NEEMO 20, the 21st NEEMO mission further incorporated a diverse Science Team comprised of planetary geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center, marine scientists from the Department of Biological Sciences at Florida International University (FIU) Integrative Marine Genomics and Symbiosis (IMaGeS) Lab, and conservationists from the Coral Restoration Foundation. The Science Team worked in close coordination with the long-standing EVA operations, planning, engineering, and research components of NEEMO in all aspects of mission planning, development, and execution.

  10. Recent advances in the salinity retrieval algorithms for Aquarius and Soil Moisture Active Passive (SMAP)

    NASA Astrophysics Data System (ADS)

    Meissner, Thomas; Wentz, Frank; Lee, Tong

    2017-04-01

    Our presentation discusses the latest improvements in the salinity retrievals both for Aquarius and Soil Moisture Active-Passive (SMAP) since the last releases. The Aquarius V4.0 was released in June 2015. The final V5.0 release is planned for late 2017. SMAP V 2.0 has been released in September 2016. We will present validation results for both Aquarius V5.0 pre-release and SMAP V2.0 salinity comparing with near-surface salinity measurements from Argo floats. We show that salty biases at higher northern latitudes in Aquarius V4.0 can be explained by inaccuracy in the model used in correcting for the absorption by atmospheric oxygen. These biases will be mitigated in V5.0 by fine-tuning the parameters in the oxygen absorption model. The full 360-degree look capability of SMAP makes it possible to take observations from the forward and backward looking direction at the same instance of time. This two-look capability aids the salinity retrievals. One of the largest spurious contaminations in the salinity retrievals is caused by the galactic reflection from the ocean surface. Because in most instances the reflected galaxy appears only in either the forward or the backward look, it is possible to determine its contribution by taking the difference of the measured SMAP brightness temperatures between the two looks. Our result suggests that the surface roughness that is used in the galactic correction needs to be increased and also the estimated strength of some of the galactic sources need to be slightly adjusted. The improved galaxy correction has been implemented in SMAP V2.0 retrieval and will be included in Aquarius V5.0 as well. It helps the mitigation of residual zonal and temporal biases that were present in both products. Another major cause of the observed zonal biases in SMAP is the emissive SMAP mesh antenna. In order to correct for it, an accurate knowledge of the emissivity of the antenna and its physical temperature are required. We discuss the improvements

  11. Enabling Laser and Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA s Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  12. Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  13. KSC-2011-2195

    NASA Image and Video Library

    2011-03-09

    VANDENBERG AIR FORCE BASE, Calif. --At Vandenberg Air Force Base in California, a crane raises one of three United Launch Alliance Delta II solid rocket motors on the pad at Space Launch Complex-2 West (SLC-2W). Scheduled to launch in June, the Delta II rocket will carry NASA's Aquarius satellite into low Earth orbit. Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing

  14. KSC-2011-2452

    NASA Image and Video Library

    2011-03-21

    VANDENBERG AIR FORCE BASE, Calif. -- United Space Alliance technicians hoist the second stage of a Delta II rocket into position in the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California. The rocket is being prepared to launch NASA's Aquarius satellite into low Earth orbit. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing

  15. KSC-2011-2450

    NASA Image and Video Library

    2011-03-21

    VANDENBERG AIR FORCE BASE, Calif. -- The Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California is moved to allow United Launch Alliance technicians to hoist into position the second stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing

  16. KSC-2011-2453

    NASA Image and Video Library

    2011-03-21

    VANDENBERG AIR FORCE BASE, Calif. -- United Space Alliance technicians hoist the second stage of a Delta II rocket into position in the Space Launch Complex-2 (SLC-2) service tower at Vandenberg Air Force Base in California. The rocket is being prepared to launch NASA's Aquarius satellite into low Earth orbit. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing

  17. KSC-2011-2198

    NASA Image and Video Library

    2011-03-09

    VANDENBERG AIR FORCE BASE, Calif. --At Vandenberg Air Force Base in California, United Launch Alliance technicians finish installing one of three Delta II solid rocket motors on the pad at Space Launch Complex-2 West (SLC-2W). Scheduled to launch in June, the Delta II rocket will carry NASA's Aquarius satellite into low Earth orbit. Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing

  18. KSC-2011-1960

    NASA Image and Video Library

    2011-03-01

    VANDENBERG AIR FORCE BASE, Calif. -- As the sun rises over Vandenberg Air Force Base in California, the first stage of the United Launch Alliance Delta II rocket that will carry the Aquarius/SAC-D satellite into low Earth orbit is prepared for its move to Space Launch Complex-2 (SLC-2). Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB

  19. Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.

    2010-01-01

    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the

  20. Computational needs survey of NASA automation and robotics missions. Volume 1: Survey and results

    NASA Technical Reports Server (NTRS)

    Davis, Gloria J.

    1991-01-01

    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is that mission computing requirements are frequently unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. A preliminary set of advanced mission computational processing requirements of automation and robotics (A&R) systems are provided for use by NASA, industry, and academic communities. These results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implementation capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Volume one includes the survey and results. Volume two contains the appendixes.