Sample records for nasa astrobiology initiatives

  1. The NASA astrobiology program

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  2. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  3. Astrobiology Drilling Program of the NASA Astrobiology Institute

    NASA Astrophysics Data System (ADS)

    Runnegar, B.

    2004-12-01

    Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores

  4. Assessment of the NASA Astrobiology Institute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astrobiology is a scientific discipline devoted to the study of life in the universe--its origins, evolution, distribution, and future. It brings together the physical and biological sciences to address some of the most fundamental questions of the natural world: How do living systems emerge? How do habitable worlds form and how do they evolve? Does life exist on worlds other than Earth? As an endeavor of tremendous breadth and depth, astrobiology requires interdisciplinary investigation in order to be fully appreciated and examined. As part of a concerted effort to undertake such a challenge, the NASA Astrobiology Institute (NAI) was established in 1998 as an innovative way to develop the field of astrobiology and provide a scientific framework for flight missions. Now that the NAI has been in existence for almost a decade, the time is ripe to assess its achievements. At the request of NASA's Associate Administrator for the Science Mission Directorate (SMD), the Committee on the Review of the NASA Astrobiology Institute undertook the assignment to determine the progress made by the NAI in developing the field of astrobiology. It must be emphasized that the purpose of this study was not to undertake a review of the scientific accomplishments of NASA's Astrobiology program, in general, or of the NAI, in particular. Rather, the objective of the study is to evaluate the success of the NAI in achieving its stated goals of: 1. Conducting, supporting, and catalyzing collaborative interdisciplinary research; 2. Training the next generation of astrobiology researchers; 3. Providing scientific and technical leadership on astrobiology investigations for current and future space missions; 4. Exploring new approaches, using modern information technology, to conduct interdisciplinary and collaborative research among widely distributed investigators; and 5. Supporting outreach by providing scientific content for use in K-12 education programs, teaching undergraduate classes, and

  5. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  6. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  7. The NASA Astrobiology Institute: early history and organization.

    PubMed

    Blumberg, Baruch S

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  8. The NASA Astrobiology Institute: early history and organization

    NASA Technical Reports Server (NTRS)

    Blumberg, Baruch S.

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.

  9. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  10. The Living Universe: NASA and the Development of Astrobiology

    NASA Technical Reports Server (NTRS)

    Dick, Steven J.; Strick, James E.

    2004-01-01

    In the opening weeks of 1998 a news article in the British journal Nature reported that NASA was about to enter biology in a big way. A "virtual" Astrobiology Institute was gearing up for business, and NASA administrator Dan Goldin told his external advisory council that he would like to see spending on the new institute eventually reach $100 million per year. "You just wait for the screaming from the physical scientists (when that happens)," Goldin was quoted as saying. Nevertheless, by the time of the second Astrobiology Science Conference in 2002, attended by seven hundred scientists from many disciplines, NASA spending on astrobiology had reached nearly half that amount and was growing at a steady pace. Under NASA leadership numerous institutions around the world applied the latest scientific techniques in the service of astrobiology's ambitious goal: the study of what NASA's 1996 Strategic Plan termed the "living universe." This goal embraced nothing less than an understanding of the origin, history, and distribution of life in the universe, including Earth. Astrobiology, conceived as a broad interdisciplinary research program, held the prospect of being the science for the twenty-first century which would unlock the secrets to some of the great questions of humanity. It is no surprise that these age-old questions should continue into the twenty-first century. But that the effort should be spearheaded by NASA was not at all obvious to those - inside and outside the agency - who thought NASA's mission was human spaceflight, rather than science, especially biological science. NASA had, in fact, been involved for four decades in "exobiology," a field that embraced many of the same questions but which had stagnated after the 1976 Viking missions to Mars. In this volume we tell the colorful story of the rise of the discipline of exobiology, how and why it morphed into astrobiology at the end of the twentieth century, and why NASA was the engine for both the

  11. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  12. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such

  13. Astrobiology Workshop: Leadership in Astrobiology

    NASA Technical Reports Server (NTRS)

    DeVincenzi, D. (Editor); Briggs, G.; Cohen, M.; Cuzzi, J.; DesMarais, D.; Harper, L.; Morrison, D.; Pohorille, A.

    1996-01-01

    Astrobiology is defined in the 1996 NASA Strategic Plan as 'The study of the living universe.' At NASA's Ames Research Center, this endeavor encompasses the use of space to understand life's origin, evolution, and destiny in the universe. Life's origin refers to understanding the origin of life in the context of the origin and diversity of planetary systems. Life's evolution refers to understanding how living systems have adapted to Earth's changing environment, to the all-pervasive force of gravity, and how they may adapt to environments beyond Earth. Life's destiny refers to making long-term human presence in space a reality, and laying the foundation for understanding and managing changes in Earth's environment. The first Astrobiology Workshop brought together a diverse group of researchers to discuss the following general questions: Where and how are other habitable worlds formed? How does life originate? How have the Earth and its biosphere influenced each other over time? Can terrestrial life be sustained beyond our planet? How can we expand the human presence to Mars? The objectives of the Workshop included: discussing the scope of astrobiology, strengthening existing efforts for the study of life in the universe, identifying new cross-disciplinary programs with the greatest potential for scientific return, and suggesting steps needed to bring this program to reality. Ames has been assigned the lead role for astrobiology by NASA in recognition of its strong history of leadership in multidisciplinary research in the space, Earth, and life sciences and its pioneering work in studies of the living universe. This initial science workshop was established to lay the foundation for what is to become a national effort in astrobiology, with anticipated participation by the university community, other NASA centers, and other agencies. This workshop (the first meeting of its kind ever held) involved life, Earth, and space scientists in a truly interdisciplinary sharing

  14. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Dan Goldin, NASA's longest serving Administrator from 1992-2001 speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: ‚"How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?‚" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  15. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James L. Green, Director for Planetary Science in NASA's Science Mission Directorate, helps kick off the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  16. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James Lovelock, Honorary Visiting Fellow of Green Templeton College, University of Oxford speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  17. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Lynn Margulis, Distinguished University Professor in the Department of Geosciences at the University of Massachusetts-Amherst speaks during the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  18. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    Stephen Price from Lockheed Martin Space Systems Company kicks off the ‚Äö√Ñ√∫Seeking Signs of Life‚Äö√Ñ√π Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  19. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  20. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, director, Astrobiology Program, NASA Headquarters, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  1. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, a lead researcher and NASA astrobiology research fellow, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  2. Astrobiological Studies Plan at UCSD and the University of Buckingham

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Wickramasinghe, N. Chandra

    2011-10-01

    A UC-HBCU grant is requested to assist undergraduate and masters level HBCU Interns to achieve their professional and academic goals by attending summer school classes at UCSD along with graduate students in the UCSD Astrobiology Studies program, and by also attending a NASA sponsored scientific meeting in San Diego on Astrobiology organized by NASA scientist Richard Hoover (the 14th in a sequence). Hoover has recently published a paper in the Journal of Cosmology claiming extraterrestrial life fossils in three meteorites. Students will attend a workshop to prepare research publications on Astrobiological Science for the Journal of Cosmology or equivalent refereed journal, mentored by UCSD faculty and graduate students as co-authors and referees, all committed to the several months of communication usually required to complete a publishable paper. The program is intended to provide pathways to graduate admissions in the broad range of science and engineering fields, and by exposure to fundamental science and engineering disciplines needed by Astrobiologists. A three year UC-HBCU Astrobiological Studies program is proposed: 2011, 2012 and 2013. Interns would be eligible to enter this program when they become advanced graduate students. A center of excellence in astrobiology is planned for UCSD similar to that Directed by Professor Wickramasinghe for many years with Fred Hoyle at Cardiff University, http://www.astrobiology.cf.ac.uk /chandra1.html. Professor Wickramasinghe's CV is attached as Appendix 1. Figures A2-1,2 of Appendix 2 compare Astrobiology timelines of modern fluid mechanical and astrobiological models of Gibson/Wickramasinghe/Schild of the Journal of Cosmology with standard NASA- CDMHC models. NASA support will be sought to support research and educational aspects of both initiatives. Overload teaching of up to two courses a year by UCSD faculty of key astrobiology courses at either UCSD or at HBCU campuses is authorized by recent guidelines of UCSD

  3. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Felisa Wolfe-Simon, a lead researcher and NASA astrobiology research fellow, speaks during a press conference, as Mary Voytek, Steven Benner and Pamela Conrad look on, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  4. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution, right, speaks during a press conference as Mary Voytek, director of the Astrobiology Program at NASA looks on, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  5. Data Sharing in Astrobiology: The Astrobiology Habitable Environments Database (AHED)

    NASA Technical Reports Server (NTRS)

    Lafuente, B.; Bristow, T.; Stone, N.; Pires, A.; Keller, R.; Downs, Robert; Blake, D.; Fonda, M.

    2017-01-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. NASA uses the results of Astrobiology research to help define targets for future missions that are searching for life elsewhere in the universe. The understanding of complex questions in Astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for Astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. The Astrobiology Habitable Environments Database (AHED), developed with a consolidated group of astrobiologists from different active research teams at NASA Ames Research Center, is designed to help to address these issues. AHED is a central, high-quality, long-term data repository for mineralogical, textural, morphological, inorganic and organic chemical, isotopic and other information pertinent to the advancement of the field of Astrobiology.

  6. Data Sharing in Astrobiology: the Astrobiology Habitable Environments Database (AHED)

    NASA Technical Reports Server (NTRS)

    Lafuente, B.; Bristow, T.; Stone, N.; Pires, A.; Keller, R. M.; Downs, R. T.; Blake, D.; Fonda, M.

    2017-01-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. NASA uses the results of Astrobiology research to help define targets for future missions that are searching for life elsewhere in the universe. The understanding of complex questions in Astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for Astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. The Astrobiology Habitable Environments Database (AHED), developed with a consolidated group of astrobiologists from different active research teams at NASA Ames Research Center, is designed to help to address these issues. AHED is a central, high-quality, long-term data repository for mineralogical, textural, morphological, inorganic and organic chemical, isotopic and other information pertinent to the advancement of the field of Astrobiology.

  7. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  8. The NASA Astrobiology Institute: A Decade of Education and Outreach

    NASA Astrophysics Data System (ADS)

    Scalice, Daniella

    The mission statement of the NASA Astrobiology Institute (NAI) charts a course to establishing astrobiology as a new and influential field of scientific inquiry. It integrates world class, interdisciplinary research with training for the next generation of astrobiologists. It enables collaboration between distributed research teams by prioritizing the use of modern information technologies, and empowers astrobiologists to provide leadership for space missions. But this unique vision would not have been complete without the inclusion of an Education and Public Outreach (E/PO) program. Over the past ten years, NAI's E/PO program has taken shape - from bootstrapping in the early days, to partnering with the likes of Disney and PBS - in pursuit of inspiring young people onto the scientific path. The E/PO program's highly collaborative group of education specialists has worked with museums, national parks, filmmakers, radio broadcasters, families, teachers, and students to ensure that the bright young faces of today find themselves in the labs of tomorrow's astrobiologists.

  9. UK Astrobiology : Vanguard: a new development in experimental astrobiology

    NASA Astrophysics Data System (ADS)

    Ellery, Alex; Wynn-Williams, David

    2002-04-01

    Alex Ellery and David Wynn-Williams propose a new UK astrobiology project, in which a micro-rover would deploy ground-penetrating moles to burrow into the Martian subsurface. One of the linchpins of the UK's contribution to the burgeoning field of astrobiology is the Beagle 2 mission, due to fly to Mars in 2003 on the Mars Express bus. Given that NASA has declared its intention to focus on ``whole planet'' geological investigation in its future Mars missions, beginning with the Mars Exploration Rovers which are due to fly in 2003/2004, the UK is well placed to consider post-Beagle 2 astrobiology-focused Mars missions to ensure its leadership in the future in astrobiology. In this paper we present such a proposal - Vanguard.

  10. A concept for NASA's Mars 2016 astrobiology field laboratory.

    PubMed

    Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  11. Cultural Aspects of Astrobiology: A Preliminary Reconnaissance at

    NASA Astrophysics Data System (ADS)

    Dick, Steven

    NASA's Astrobiology Roadmap, developed in 1998 by an interdisciplinary team of more than 150 individuals, recognizes ten science goals, 17 more specific science objectives, and four broad principles for the Astrobiology Program. Among the four operating principles, which emphasize multidisciplinarity, planetary stewardship and public outreach, is one that also recognizes broad societal interest for the implications of astrobiology, especially its extraterrestrial life component. Although several meetings ahve been convened in the past decade to discuss the implications of extraterrestrial intelligence, including NASA's own CASETI workshops in 1991-1992, none have surveyed the broader implications of astrobiology as now defined at NASA. In this paper we survey these societal questions raised by astrobiology, and then focus on those related to extraterrestrial life, and in particular how they might differ from SETI concerns already discussed. As we enter the new millennium, the necessity for interdisciplinary studies is increasingly recognized in academia, industry and government. Astrobiology provides an unprecedented opportunity to encourage the unity of knowledge, as recently proposed in E. O. Wilson's book Consilience: The Unity of Knowledge. It is incumbent on scientists to support research on the implications of their work, in particular large government-funded scientific projects. The deep insights such study may yield has been amply demonstrated by the Human Genome Project, among others.

  12. Report on a NASA astrobiology institute-funded workshop without walls: stellar stoichiometry.

    PubMed

    Desch, Steven J; Young, Patrick A; Anbar, Ariel D; Hinkel, Natalie; Pagano, Michael; Truitt, Amanda; Turnbull, Margaret

    2014-04-01

    We report on the NASA Astrobiology Institute-funded Workshop Without Walls entitled "Stellar Stoichiometry," hosted by the "Follow the Elements" team at Arizona State University in April 2013. We describe several innovative practices we adopted that made effective use of the Workshop Without Walls videoconferencing format, including use of information technologies, assignment of scientific tasks before the workshop, and placement of graduate students in positions of authority. A companion article will describe the scientific results arising from the workshop. Our intention here is to suggest best practices for future Workshops Without Walls.

  13. Space Environment Survivability of Live Organisms: Results From a NASA Astrobiology Nanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Santos, Orlando; Ehrenfreund, Pascale; Mancinelli, Rocco; Nicholson, Wayne; Ricco, Antonio

    NASA's Organism/Organic Exposure to Orbital Stresses, or O/OREOS, nanosatellite is a sci-ence demonstration mission that showcases achievements in using hardware from a technology development program led by the Small Spacecraft Division at NASA's Ames Research Center, Moffett Field, California. Continuing Ames' development of triple-cube nanosatellite tech-nology and flight systems, which includes the successful GeneSat-1 and PharmaSat missions, O/OREOS is constructed from off-the-shelf commercial and NASA-designed parts to create a fully self-contained, automated, stable, light-weight space science laboratory with innovative environment and power control techniques; sensors to monitor the levels of pressure, temper-ature, humidity, radiation and acceleration; and a communications system able to regularly accept commands from the ground and transmit data back to Earth for scientific analysis. The overall goal of the O/OREOS mission is to demonstrate the capability to do low-cost sci-ence experiments on autonomous nanosatellites in space in support of the Astrobiology Small Payloads program under the Planetary Science Division of the Science Mission Directorate at NASA Headquarters. The spacecraft houses two science payloads: the Space Environment Viability of Organics (SEVO) experiment will monitor the stability and changes in four classes of organic matter (results presented at another COSPAR session); and the Space Environment Survivability of Live Organisms (SESLO) experiment (presented here). SESLO will charac-terize the growth, activity, health, and ability of microorganisms to adapt to the stresses of the space environment. The experiment is sealed in a vessel at one atmosphere and contains two types of microbes commonly found in salt ponds and soil, in a dried and dormant state: Halorubrum chaoviator and Bacillus subtilis. After it reaches orbit, the experiment will initiate and begin to rehydrate and grow three sets of the microbes at three different times

  14. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Steven Benner, a distinguished fellow at the Foundation for Applied Molecular Evolution, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  15. Astrobiology Press Conference

    NASA Image and Video Library

    2010-12-02

    Pamela Conrad, an astrobiologist from Goddard Space Flight Center, speaks during a press conference, Thursday, Dec. 2, 2010, at NASA Headquarters in Washington. NASA-funded astrobiology research has changed the fundamental knowledge about what comprises all known life on Earth. Researchers conducting tests in the harsh environment of Mono Lake in California have discovered the first known microorganism on Earth able to thrive and reproduce using the toxic chemical arsenic. Photo Credit: (NASA/Paul E. Alers)

  16. The narrative power of astrobiology

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    The narrative power of astrobiology: Telling the story of the quest to understand life's origins and the search for evidence of extraterrestrial life INTRODUCTION The story of the origins and evolution of life is a narrative with nearuniversal appeal. The story of life on Earth is meaningful to all people, and the search for life elsewhere is appealing across cultural boundaries. The U.S. National Aeronautics and Space Administration (NASA) funds an Astrobiology Program in NASA's Science Mission Directorate that is dedicated to the study of the origin, evolution, distribution, and future of life in the universe. Because public interest in astrobiology is great and advances in the field are rapid, the NASA Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. This strategic approach to communication is intended to promote the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by the Astrobiology Program. This paper will address how scientists in the field of astrobiology can participate in the telling of an ongoing story of interest to multicultural audiences and why it is important to tell this story. SUMMARY Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Goals of the NASA Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of

  17. Astrobiology and society: building an interdisciplinary research community.

    PubMed

    Race, Margaret; Denning, Kathryn; Bertka, Constance M; Dick, Steven J; Harrison, Albert A; Impey, Christopher; Mancinelli, Rocco

    2012-10-01

    This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers-astrobiologists as well as scholars in the humanities and social sciences-to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology.

  18. Exo/Astrobiology in Europe

    NASA Astrophysics Data System (ADS)

    Brack, André; Horneck, Gerda; Wynn-Williams, David

    2001-08-01

    The question of the chemical origins of life is engraved in the European scientific patrimony as it can be traced back to the pioneer ideas of Charles Darwin, Louis Pasteur, and more recently to Alexander Oparin. During the last decades, the European community of origin of life scientists has organized seven out of the twelve International Conferences on the Origins of Life held since 1957. This community contributed also to enlarge the field of research to the study of life in extreme environments and to the search for extraterrestrial life, i.e. exobiology in its classical definition or astrobiology if one uses a more NASA-inspired terminology. The present paper aims to describe the European science background in exo/astrobiology as well as the project of a European Network of Exo/Astrobiology.

  19. Astrobiology and Society: Building an Interdisciplinary Research Community

    PubMed Central

    Denning, Kathryn; Bertka, Constance M.; Dick, Steven J.; Harrison, Albert A.; Impey, Christopher; Mancinelli, Rocco

    2012-01-01

    Abstract This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers—astrobiologists as well as scholars in the humanities and social sciences—to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology. Key Words: Astrobiology—Extraterrestrial life—Life detection. Astrobiology 12, 958–965. PMID:23046203

  20. The Astrobiology Field Guide in World Wind

    NASA Astrophysics Data System (ADS)

    Scalice, D. M.

    2004-12-01

    In collaboration with the Australian Centre for Astrobiology (ACA), and NASA Learning Technologies (NLT), and utilizing the powerful visualization capabilities of their "World Wind" software, the NASA Astrobiology Institute (NAI) is crafting a prototype "Astrobiology Field Guide" to bring the field experiences and stories of astrobiology science to the public and classrooms around the world. The prototype focuses on one region in particular - The Pilbara in Western Australia. This first Field Guide "hotspot" is an internationally recognized area hosting the best known example of the earliest evidence of life on Earth - a stromatolitic chert precipitation in the 3.45 Ga Warrawoona Group. The goal of the Astrobiology Field Guide is to engage students of all ages with the ongoing field expeditions of today's astrobiologists as they explore the ends of the Earth searching for clues to life's origin, evolution, and distribution in the Universe. The NAI hopes to expand this Field Guide to include many more astrobiologically relevant areas across the globe such as Cuatro Cienegas in Mexico, the Rio Tinto in Spain, Yellowstone National Park in the US, and the Lost City hydrothermal vent field on the mid-Atlantic ridge - and possibly sites on Mars. To that end, we will be conducting feasibility studies and evaluations with informal and formal education contacts. The Astrobiology Field Guide is also serving as a cornerstone to educational materials being developed focused on the Pilbara region for use in classrooms in Australia, the UK, and potentially the US. These materials are being developed by the Australian Centre for Astrobiology, and the ICT Innovations Centre at Macquarie University in Sydney, in collaboration with the NAI and the Centre for Astronomy and Science Education at the University of Glamorgan in the UK.

  1. The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016.

    PubMed

    Cockell, Charles S; Biller, Beth; Bryce, Casey; Cousins, Claire; Direito, Susana; Forgan, Duncan; Fox-Powell, Mark; Harrison, Jesse; Landenmark, Hanna; Nixon, Sophie; Payler, Samuel J; Rice, Ken; Samuels, Toby; Schwendner, Petra; Stevens, Adam; Nicholson, Natasha; Wadsworth, Jennifer

    2018-02-01

    The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology-Centre-Education-Subsurface-Analog research. Astrobiology 18, 224-243.

  2. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    PubMed

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  3. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  4. The Lassen Astrobiology Intern Program - Concept, Implementation and Evaluation

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Dueck, S. L.; Davis, H. B.; Parenteau, M. N.; Kubo, M. D.

    2014-12-01

    The program goal was to provide a hands-on astrobiology learning experience to high school students by introducing astrobiology and providing opportunities to conduct field and lab research with NASA scientists. The program sought to increase interest in interdisciplinary science, technology, engineering, math and related careers. Lassen Volcanic National Park (LVNP), Red Bluff High School and the Ames Team of the NASA Astrobiology Institute led the program. LVNP was selected because it shares aspects of volcanism with Mars and it hosts thermal springs with microbial mat communities. Students documented volcanic deposits, springs and microbial mats. They analyzed waters and sampled rocks, water and microorganisms. They cultured microorganisms and studied chemical reactions between rocks and simulated spring waters. Each student prepared a report to present data and discuss relationships between volcanic rocks and gases, spring waters and microbial mats. At a "graduation" event the students presented their findings to the Red Bluff community. They visited Ames Research Center to tour the facilities and learn about science and technology careers. To evaluate program impact, surveys were given to students after lectures, labs, fieldwork and discussions with Ames scientists. Students' work was scored using rubrics (labs, progress reports, final report, presentation). Students took pre/post tests on core astrobiology concepts. Parents, teachers, rangers, Ames staff and students completed end-of-year surveys on program impact. Several outcomes were documented. Students had a unique and highly valued learning experience with NASA scientists. They understood what scientists do through authentic scientific work, and what scientists are like as individuals. Students became knowledgeable about astrobiology and how it can be pursued in the lab and in the field. The students' interest increased markedly in astrobiology, interdisciplinary studies and science generally.

  5. The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011–2016

    PubMed Central

    Biller, Beth; Bryce, Casey; Cousins, Claire; Direito, Susana; Forgan, Duncan; Fox-Powell, Mark; Harrison, Jesse; Landenmark, Hanna; Nixon, Sophie; Payler, Samuel J.; Rice, Ken; Samuels, Toby; Schwendner, Petra; Stevens, Adam; Nicholson, Natasha; Wadsworth, Jennifer

    2018-01-01

    Abstract The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology—Centre—Education—Subsurface—Analog research. Astrobiology 18, 224–243. PMID:29377716

  6. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This

  7. Astrobiology Student Intern Program at Lassen Volcanic National Park

    NASA Astrophysics Data System (ADS)

    Dueck, S. L.; Zachary, S.; Michael, D.; Parenteau, M.; Kubo, M.; Jahnke, L. L.; Scalice, D.; Des Marais, D. J.

    2010-04-01

    The NASA Astrobiology Institute (NAI) Ames Team has partnered with Lassen Volcanic National Park and Red Bluff High School to engage high school students in the collection of scientific data for NASA astrobiologists and the National Park Service.

  8. Data Sharing in Astrobiology: the Astrobiology Habitable Environments Database (AHED)

    NASA Astrophysics Data System (ADS)

    Bristow, T.; Lafuente Valverde, B.; Keller, R.; Stone, N.; Downs, R. T.; Blake, D. F.; Fonda, M.; Pires, A.

    2016-12-01

    Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. The understanding of complex questions in astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. Astrobiology, as any other scientific discipline, needs to respond to these mandates. The Astrobiology Habitable Environments Database (AHED) is a central, high quality, long-term searchable repository designed to help the community by promoting the integration and sharing of all the data generated by these diverse disciplines. AHED provides public and open-access to astrobiology-related research data through a user-managed web portal implemented using the open-source software The Open Data Repository's (ODR) Data Publisher [1]. ODR-DP provides a user-friendly interface that research teams or individual scientists can use to design, populate and manage their own databases or laboratory notebooks according to the characteristics of their data. AHED is then a collection of databases housed in the ODR framework that store information about samples, along with associated measurements, analyses, and contextual information about field sites where samples were collected, the instruments or equipment used for analysis, and people and institutions involved in their collection. Advanced graphics are implemented together with advanced online tools for data analysis (e.g. R, MATLAB, Project Jupyter-http://jupyter.org). A permissions system will be put in place so that

  9. Astrobiology and Microbial Diversity Websites at MBL

    NASA Astrophysics Data System (ADS)

    Bahr, M.; Bordenstein, S. R.

    2006-12-01

    The NASA Astrobiology Institute (NAI) mission is to study the origin, evolution and future of life in the Universe. The MBL Astrobiology team explores the evolution and interaction of genomes of diverse organisms that play significant roles in environmental biology over evolutionary time scales. Communication about our research includes the personal contact of teacher workshops, and the development of web-based resources. Microbial Life Educational Resources (MLER) provides an expanding internet resource about the ecology, diversity and evolution for students, K-12 teachers, university faculty, and the general public. MLER includes websites, PowerPoint presentations, teaching activities, data sets, and other useful materials for creating or enhancing courses related to astrobiology. Our second site, micro*scope (http://microscope.mbl.edu), has images of microbes, classification schemes, descriptions of organisms, talks and other educational resources to improve awareness of the biodiversity of our microbial partners.

  10. Astrobiology and the Biological Universe

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2002-12-01

    Four hundred years ago two astronomical world views hung in the balance: the geocentric and the heliocentric. Today astronomy faces a similar choice between two grand world views: a purely physical universe, in which cosmic evolution commonly ends in planets, stars and galaxies, and a biological universe, in which cosmic evolution routinely results in life, mind and intelligence. Astrobiology is the science providing the data to make this critical choice. This 20th century overview shows how we have arrived at the view that cosmic evolution may have resulted in life and intelligence in the universe. It examines how our astronomical world view has changed over the last century, recalls the opinions of astronomical pioneers like Russell, Shapley, and Struve on life in the universe, and shows how planetary science, planetary systems science, origins of life studies and SETI have combined to form a new discipline. Astrobiology now commands \\$50 million in direct funding from NASA, funds 15 Astrobiology Institute members around the country and four affiliates around the world, and seeks to answer one of astronomy's oldest questions. Whether we live in a mostly physical universe, as exemplified in Isaac Asimov's Foundation series, or in a biological universe, as portrayed in Arthur C. Clarke's works, this reality will have profound consequences, no less than the Copernican theory. Astrobiology also looks to the future of life; taking a long-term ``Stapledonian" view, it is possible we may live in a postbiological universe.

  11. Collaboration as a Strategy to Transform the Impact of EPO Efforts in the New York Center for Astrobiology

    NASA Astrophysics Data System (ADS)

    Svirsky, A.; Rogers, K. L.; Meissner, M.; Busby, G.; Roberge, W.

    2014-12-01

    The New York Center for Astrobiology (NYCA) EPO effort is a collaboration combining expertise in evaluation and assessment of STEM educational modules with disciplinary expertise in astrobiology. In practice, the NYCA partners with external experts in professional development, informal education and evaluation to assist in developing and implementing certain programs of the NYCA EPO activities. Two specific program initiatives of the NYCA EPO effort offer excellent examples of programs with strong science content knowledge as well as using effective tools to address the NSF impact categories. These are the ExxonMobil Bernard Harris Summer Science Camp (EMBHSSC, in conjunction with RPI's STEM Pipeline Initiative) and the Astrobiology Teachers Academy (ATA). The EMBHSSC for middle school students focuses on NASA astrobiology initiatives around the "Quest for Life" theme. The Camp has a comprehensive evaluation component and uses pre-and post- assessment of student knowledge and interest in STEM. Recent data suggest that every student has shown a measurable gain in these areas. The ATA is a weeklong summer intensive professional development program for P-12 STEM teachers that combines discipline scientists in the NYCA with an external evaluation organization, the Association for the Cooperative Advancement of Science and Education (ACASE). The goal is for teachers to develop a new learning module for a course they teach that uses astrobiology as a content focus to engage students. The Academy has scientists collaborating with teachers in this effort, providing content and assistance in designing instructional activities. Assessments are woven into the fabric of the work in a few ways: 1. There is a purposeful focus on assessment as part of the learning module, and the content of the ATA; 2. ACASE offers teachers a tool for tracking their students' attainment of the learning goals identified in their learning module; 3. There are daily evaluations of the teachers

  12. Development, Evaluation, and Dissemination of an Astrobiology Curriculum for Secondary Students: Establishing a Successful Model for Increasing the Use of Scientific Data by Underrepresented Students.

    NASA Astrophysics Data System (ADS)

    Arino de La Rubia, L.; Butler, J.; Gary, T.; Stockman, S.; Mumma, M.; Pfiffner, S.; Davis, K.; Edmonds, J.

    2009-12-01

    The Minority Institution Astrobiology Collaborative began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms modules are being developed to emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Since this time, more NASA Astrobiology Institute Teams have joined this education and public outreach (EPO)effort. Field-testing of the Astrobiology in Secondary Classrooms materials began in 2007 in five US locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics.

  13. Data Management in Astrobiology: Challenges and Opportunities for an Interdisciplinary Community

    PubMed Central

    Suomela, Todd; Malone, Jim

    2014-01-01

    Abstract Data management and sharing are growing concerns for scientists and funding organizations throughout the world. Funding organizations are implementing requirements for data management plans, while scientists are establishing new infrastructures for data sharing. One of the difficulties is sharing data among a diverse set of research disciplines. Astrobiology is a unique community of researchers, containing over 110 different disciplines. The current study reports the results of a survey of data management practices among scientists involved in the astrobiology community and the NASA Astrobiology Institute (NAI) in particular. The survey was administered over a 2-month period in the first half of 2013. Fifteen percent of the NAI community responded (n=114), and additional (n=80) responses were collected from members of an astrobiology Listserv. The results of the survey show that the astrobiology community shares many of the same concerns for data sharing as other groups. The benefits of data sharing are acknowledged by many respondents, but barriers to data sharing remain, including lack of acknowledgement, citation, time, and institutional rewards. Overcoming technical, institutional, and social barriers to data sharing will be a challenge into the future. Key Words: Data management—Data sharing—Data preservation. Astrobiology 14, 451–461. PMID:24840364

  14. Astrobiology in Brazil: early history and perspectives

    NASA Astrophysics Data System (ADS)

    Rodrigues, Fabio; Galante, Douglas; Paulino-Lima, Ivan G.; Duarte, Rubens T. D.; Friaça, Amancio C. S.; Lage, Claudia; Janot-Pacheco, Eduardo; Teixeira, Ramachrisna; Horvath, Jorge E.

    2012-10-01

    This review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies.

  15. Summer Research Experiences for Science and Art Teachers to Explore Astrobiology

    NASA Astrophysics Data System (ADS)

    Cola, J.; Gaucher, E.; Snell, T.; Greenwood, J.; Angra, A.; Zimmerman, C.; Williams, L. D.

    2012-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational program titled, "Life on the Edge: Astrobiology." The purpose of the program was to provide high school educators with the exposure, materials, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with undergraduate students interested in becoming a teacher through the NSF Pre-Teaching REU program. The GIFT and Pre-Teaching fellows investigated extremophiles, which became the focus of a week-long, "Life on the Edge: Astrobiology " summer program developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty high school students were introduced to hands-on activities, such as astrobiology inspired art and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact of the Astrobiology program on the GIFT researchers, Pre-Teaching REU students, high school students, and faculty are discussed.

  16. Astrobiology Research Experience for Undergraduates: An Interdisciplinary REU Program at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Devore, E. K.

    2009-12-01

    The SETI Institute hosts a summer Astrobiology Research Experience for Undergraduates program for highly motivated students interested in astrobiology research. Students work with scientists at the SETI Institute and at the nearby NASA Ames Research Center on projects spanning the field of astrobiology from microbiology to planetary geology to astronomy and astrophysics. Each student is mentored by a scientist for his/her summer research project. As astrobiology is interdisciplinary, the first week includes a seminar series to provide a broad foundation in the field as the students begin their research projects. The 10-week program includes a week-long field trip to the SETI Institute’s Allen Telescope Array, located at the Hat Creek Radio Astronomy Observatory in Northern California, as well as a field experience at hydrothermal systems at nearby Lassen Volcanic National Park. Students also participate in local field trips to places like the California Academy of Sciences and other nearby locations of scientific interest, and attend seminars, lectures, and discussions on astrobiology. Students are also invited to attend events at nearby NASA Ames Research Center, which offers the opportunity to interact with other undergraduate and graduate students participating in NASA summer programs. At the end of the program, students write up and present their research projects, and mentors recommend some projects for submission to a national scientific conference, which the selected students will be funded to attend. The Astrobiology REU program emphasizes three main areas, which are listed in the table along with typical project themes. Each year, specific student research projects are described on the website, and students are asked to select the three that most interest them as a part of their applications. Applications are due in early February. Typically, 10 students apply for each available position. Students have been selected from colleges and universities

  17. Robots for Astrobiology!

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  18. The Astrobiological Landscape

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.

    2012-06-01

    Introduction; Acknowledgements; 1. Astrobiology: the colour out of space?; 2. Cosmology, life, and duration of the past; 3. Cosmology, life, and selection effects; 4. Cosmology, life, and the archipelago; 5. Astrobiology as a natural extension of Darwinism; 6. Rare Earths and the continuity thesis; 7. SETI and its discontents; 8. Natural and artificial: cosmic domain of Arnheim; 9. Astrobiology as the neo-Copernican synthesis?; Index.

  19. Undergraduate Research at SETI in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kress, Monika; Phillips, C.; DeVore, E.; Hubickyj, O.

    2012-05-01

    The SETI Institute and San Jose State University (SJSU) have begun a partnership (URSA: Undergraduate Research at the SETI Institute in Astrobiology) in which undergraduate science and engineering majors from SJSU participate in research at the SETI Institute during the academic year. We are currently in our second year of the three-year NASA-funded grant. The goal of this program is to expose future scientists, engineers and educators to the science of astrobiology and to NASA in general, and by so doing, to prepare them for the transition to their future career in the Silicon Valley or beyond. The URSA students are mentored by a SETI Institute scientist who conducts research at the SETI Institute headquarters or nearby at NASA Ames Research Center. The SETI Institute is a private, nonprofit organization dedicated to scientific research, education and public outreach. Its mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. SJSU is a large urban public university that serves the greater Silicon Valley area in California. Students at SJSU come from diverse ethnic, cultural and socioeconomic backgrounds. Many of them face financial pressures that force them to pursue part-time work. URSA students are paid to work for 10 hours/week during the academic year, and also participate in monthly group meetings where they practice their presentation skills and discuss future plans. We encourage underserved and underrepresented students, including women, minority, and those who are the first in their family to go to college, to apply to the URSA program and provide ongoing mentoring and support as needed. While preparing students for graduate school is not a primary goal, some of our students have gone on to MS or PhD programs or plan to do so. The URSA program is funded by NASA EPOESS.

  20. Educational Outreach for Astrobiology

    NASA Astrophysics Data System (ADS)

    Kadooka, M.; Meech, K.

    2009-12-01

    Astrobiology, the search for life in the universe, has fascinating research areas that can excite students and teachers about science. Its integrative nature, relating to astronomy, geology, oceanography, physics, and chemistry, can be used to encourage students to pursue physical sciences careers. Since 2004, the University of Hawaii NASA Astrobiology Institute (NAI) team scientists have shared their research with secondary teachers at our ALI’I national teacher program to promote the inclusion of astrobiology topics into science courses. Since 2007, our NAI team has co-sponsored the HI STAR program for Hawaii’s middle and high school students to work on authentic astronomy research projects and to be mentored by astronomers. The students get images of asteroids, comets, stars, and extrasolar planets from the Faulkes Telescope North located at Haleakala Observatories on the island of Maui and owned by Las Cumbres Observatory Global Telescope network. They also do real time observing with DeKalb Observatory telescope personally owned by Donn Starkey who willing allows any student access to his telescope. Student project results include awards at the Hawaii State Science Fair and the Intel International Science and Engineering Fair. We believe that research experience stimulates these students to select STEM (science, technology, engineering and mathematics) majors upon entering college so a longitudinal study is being done. Plans are underway with California and Hawaii ALI’I teachers cooperating on a joint astronomy classroom project. International collaborations with Brazil, Portugal, and Italy astronomers have begun. We envision joint project between hemispheres and crossing time zones. The establishment of networking teachers, astronomers, students and educator liaisons will be discussed.

  1. NASA-ESA Joint Mission to Explore Two Worlds of Great Astrobiological Interest - Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Coustenis, A.; Lunine, J.; Matson, D.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.

    2009-04-01

    Rugged shorelines, laced with canyons, leading to ethane/methane seas glimpsed through an organic haze, vast fields of dunes shaped by alien sciroccos… An icy moon festooned with plumes of water-ice and organics, whose warm watery source might be glimpsed through surface cracks that glow in the infrared… The revelations by Cassini-Huygens about Saturn's crown jewels, Titan and Enceladus, have rocked the public with glimpses of new worlds unimagined a decade before. The time is at hand to capitalize on those discoveries with a broad mission of exploration that combines the widest range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology,Chemistry, Magnetospheres—in a single NASA/ESA collaboration. The Titan Saturn System Mission will explore these exciting new environments, flying through Enceladus' plumes and plunging deep into Titan's atmosphere with instruments tuned to find what Cassini could only hint at. Exploring Titan with an international fleet of vehicles; from orbit, from the surface of a great polar sea, and from the air with the first hot air balloon to ride an extraterrestrial breeze, TSSM will turn our snapshot gaze of these worlds into an epic film. This paper will describe a collaborative NASA-ESA Titan Saturn System Mission that will open a new phase of planetary exploration by projecting robotic presence on the land, on the sea, and in the air of an active, organic-rich world.

  2. Astrobiology: A pathway to adult science literacy?

    NASA Astrophysics Data System (ADS)

    Oliver, C. A.; Fergusson, J.

    2007-10-01

    Adult science illiteracy is widespread. This is concerning for astrobiology, or indeed any other area of science in the communication of science to public audiences. Where and how does this scientific illiteracy arise in the journey to adulthood? Two astrobiology education projects have hinted that science illiteracy may begin in high school. This relationship between high school science education and the public understanding of science is poorly understood. Do adults forget their science education, or did they never grasp it in the first place? A 2003 science education project raised these questions when 24 16-year-olds from 10 Sydney high schools were brought into contact with real science. The unexpected results suggested that even good high school science students have a poor understanding of how science is really undertaken in the field and in the laboratory. This concept is being further tested in a new high school science education project, aimed at the same age group, using authentic astrobiology cutting-edge data, NASA Learning Technologies tools, a purpose-built research Information and Communication Technology-aided learning facility and a collaboration that spans three continents. In addition, a first year university class will be tested for evidence of science illiteracy immediately after high school among non-science oriented but well-educated students.

  3. 14 CFR 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  4. An Astrobiology Microbes Exhibit and Education Module

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  5. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  6. 14 CFR § 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  7. Astrobiology from exobiology: Viking and the current Mars probes.

    PubMed

    Soffen, G A

    1997-01-01

    The development of an Astrobiology Program is an extension of current exobiology programs. Astrobiology is the scientific study of the origin, distribution, evolution, and future of life in the universe. It encompasses exobiology; formation of elements, stars, planets, and organic molecules; initiation of replicating organisms; biological evolution; gravitational biology; and human exploration. Current interest in life on Mars provides the scientific community with an example of scientific inquiry that has mass appeal. Technology is mature enough to search for life in the universe.

  8. Astrobiological stoichiometry.

    PubMed

    Young, Patrick A; Desch, Steven J; Anbar, Ariel D; Barnes, Rory; Hinkel, Natalie R; Kopparapu, Ravikumar; Madhusudhan, Nikku; Monga, Nikhil; Pagano, Michael D; Riner, Miriam A; Scannapieco, Evan; Shim, Sang-Heon; Truitt, Amanda

    2014-07-01

    Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the "Stellar Stoichiometry" Workshop Without Walls hosted at Arizona State University April 11-12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors. The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ∼ 2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport.

  9. Philosophy and data in astrobiology

    NASA Astrophysics Data System (ADS)

    Mix, Lucas John

    2018-04-01

    Creating a unified model of life in the universe - history, extent and future - requires both scientific and humanities research. One way that humanities can contribute is by investigating the relationship between philosophical commitments and data. Making those commitments transparent allows scientists to use the data more fully. Insights in four areas - history, ethics, religion and probability - demonstrate the value of careful, astrobiology-specific humanities research for improving how we talk and think about astrobiology as a whole. First, astrobiology has a long and influential history. Second, astrobiology does not decentre humanity, either physically or ethically. Third, astrobiology is broadly compatible with major world religions. Finally, claims about the probability of life arising or existing elsewhere rest heavily on philosophical priors. In all four cases, identifying philosophical commitments clarifies the ways in which data can tell us about life.

  10. Exploring Astrobiology: Future and In-Service Teacher Research Experiences

    NASA Astrophysics Data System (ADS)

    Cola, J.; Williams, L. D.; Snell, T.; Gaucher, E.; Harris, B.; Usselman, M. C.; Millman, R. S.

    2009-12-01

    The Georgia Tech Center for Ribosome Adaptation and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational Astrobiology program titled, “Life on the Edge: Astrobiology.” The purpose of the program was to provide educators with the materials, exposure, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. A one-week, non-residential summer enrichment program for high school students was conducted and tested by two high school educators, an undergraduate student, and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired in-service teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with an undergraduate student interested in becoming a teacher through the Tech to Teaching program. The GIFT and Tech to Teaching fellows investigated extremophiles which have adapted to life under extreme environmental conditions. As a result, extremophiles became the focus of a week-long, “Life on the Edge: Astrobiology” curriculum aligned with the Georgia Performance Standards in Biology. Twenty-five high school students explored the adaptation and survival rates for various types of extremophiles exposed to UV radiation and desiccation; students were also introduced to hands-on activities and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact on everyone invested and involved in the Astrobiology program including the GIFT and Tech to Teaching fellows, high school students, and faculty are discussed.

  11. Astrobiology: The Search for Life in the Universe

    NASA Technical Reports Server (NTRS)

    Pacchioli, David

    2003-01-01

    Each of the 11 lead members of NASA's Astrobiology Institute has a specific mission. According to Hiroshi Ohmoto, director of Penn State s Astrobiology Research Center, Here we are mainly concerned with the origin of life and the evolution and extinction of important organisms. These include bacteria that live on methane, cyanobacteria (the inventors of photosynthesis), eukaryotes (a big category, covering anything with a nucleus, from single-celled organisms to humans), land-dwelling organisms, and early animals. Penn State astrobiologists are studying the environment before there was life on Earth, the origin of oxygen in the atmosphere, the chemical and thermal structures of oceans, and the role of metals in the evolution of life. Overall, they want to understand the connection between changes in environment and changes in life forms in the early Earth. PSARC offers research assistantships for graduate and undergraduate students, fellowships for graduate students and post-doctoral fellows, and an undergraduate minor in astrobiology. The minor covers 18 credits in earth sciences, geochemistry, geophysics, astronomy, biology, biochemistry, meteorology, and microbiology. The goal, says Ohmoto, is to teach students to critically evaluate claims related to this field that they encounter well after their college education has ended. Under a scanning electron microscope, Martian meteorite ALH84001 yields tube-like structures that look a lot like remnants of Earthly bacteria except smaller by a factor of ten.

  12. Homemade ice cream, à la NASA

    NASA Image and Video Library

    2017-12-08

    Pictured above, Goddard's astrobiology lab makes cookies and cream ice cream using liquid nitrogen at the Science Jamboree. The NASA Goddard Science Jamboree took place on July 16, 2013. The event allowed the different departments at Goddard a chance to showcase their research and projects to other employees and summer interns. #nasa #nasagoddard #icecream Credit: NASA/Goddard Sawyer Rosenstein

  13. Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues.

    PubMed

    Oreiro, Raquel; Solbes, Jordi

    2017-01-01

    Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education. Key Words: Astrobiology-Students' views-Science education. Astrobiology 17, 91-99.

  14. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  15. Low-latency teleoperations, planetary protection, and astrobiology

    NASA Astrophysics Data System (ADS)

    Lupisella, Mark L.

    2018-07-01

    The remote operation of an asset with time-delays short enough to allow for `real-time' or near real-time control - often referred to as low-latency teleoperations (LLT) - has important potential to address planetary protection concerns and to enhance astrobiology exploration. Not only can LLT assist with the search for extraterrestrial life and help mitigate planetary protection concerns as required by international treaty, but it can also aid in the real-time exploration of hazardous areas, robotically manipulate samples in real-time, and engage in precise measurements and experiments without the presence of crew in the immediate area. Furthermore, LLT can be particularly effective for studying `Special Regions' - areas of astrobiological interest that might be adversely affected by forward contamination from humans or spacecraft contaminants during activities on Mars. LLT can also aid human exploration by addressing concerns about backward contamination that could impact mission details for returning Martian samples and crew back to Earth.This paper provides an overview of LLT operational considerations and findings from recent NASA analyses and workshops related to planetary protection and human missions beyond Earth orbit. The paper focuses primarily on three interrelated areas of Mars operations that are particularly relevant to the planetary protection and the search for life: Mars orbit-to-surface LLT activities; Crew-on-surface and drilling LLT; and Mars surface science laboratory LLT. The paper also discusses several additional mission implementation considerations and closes with information on key knowledge gaps identified as necessary for the advance of LLT for planetary protection and astrobiology purposes on future human missions to Mars.

  16. Real Science for Real Science Teachers: Providing Astrobiology Science Content and Contemporary Pedagogy for Today's Educators Online

    NASA Astrophysics Data System (ADS)

    Offerdahl, E. G.; Prather, E. E.; Slater, T. F.

    2003-12-01

    As teachers strive to improve the way science is taught in the classroom, many are turning to the interdisciplinary science of astrobiology as a way integrate inquiry effectively in the science classroom. However, it is generally recognized that teachers do not often have easy access to understandable and usable cutting-edge science to enrich their science lessons. Through the generous support of the NASA Astrobiology Institute (NAI), middle and high school teachers have the opportunity to learn current and provocative scientific results within the context of astrobiology as well as receive training in pedagogically sound methods of incorporating astrobiology appropriately in the classroom. In Astrobiology for Teachers, a 15-week on-line distance learning course co-sponsored by NAI, the National Science Teachers Association (NSTA) Professional Development Institute, National Teachers Enhancement Network (NTEN), Montana State University, and the Department of Astronomy at University of Arizona, teachers engage in a virtual classroom facilitated by an integrated teaching team of educators and scientists using a standards-based, inquiry curriculum. The collaborative nature of the course encourages, demonstrates, and enhances a professional exchange among scientists and educators which, in turn, fosters implementation of innovative science teaching in today's classroom.

  17. Propellant for the NASA Standard Initiator

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl; Tipton, Bill, Jr.; Dutton, Maureen

    2000-01-01

    This paper discusses processes employed in manufacturing zirconium-potassium perchlorate propellant for the NASA standard initiator. It provides both a historical background on the NSI device-detailing problem areas and their resolution--and on propellant blending techniques. Emphasis is placed on the precipitation blending method. The findings on mixing equipment, processing, and raw materials are described. Also detailed are findings on the bridgewire slurry operation, one of the critical steps in the production of the NASA standard initiator.

  18. The Astrobiology Habitable Environments Database (AHED)

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Stone, N.; Downs, R. T.; Blake, D. F.; Bristow, T.; Fonda, M.; Pires, A.

    2015-12-01

    The Astrobiology Habitable Environments Database (AHED) is a central, high quality, long-term searchable repository for archiving and collaborative sharing of astrobiologically relevant data, including, morphological, textural and contextural images, chemical, biochemical, isotopic, sequencing, and mineralogical information. The aim of AHED is to foster long-term innovative research by supporting integration and analysis of diverse datasets in order to: 1) help understand and interpret planetary geology; 2) identify and characterize habitable environments and pre-biotic/biotic processes; 3) interpret returned data from present and past missions; 4) provide a citable database of NASA-funded published and unpublished data (after an agreed-upon embargo period). AHED uses the online open-source software "The Open Data Repository's Data Publisher" (ODR - http://www.opendatarepository.org) [1], which provides a user-friendly interface that research teams or individual scientists can use to design, populate and manage their own database according to the characteristics of their data and the need to share data with collaborators or the broader scientific community. This platform can be also used as a laboratory notebook. The database will have the capability to import and export in a variety of standard formats. Advanced graphics will be implemented including 3D graphing, multi-axis graphs, error bars, and similar scientific data functions together with advanced online tools for data analysis (e. g. the statistical package, R). A permissions system will be put in place so that as data are being actively collected and interpreted, they will remain proprietary. A citation system will allow research data to be used and appropriately referenced by other researchers after the data are made public. This project is supported by the Science-Enabling Research Activity (SERA) and NASA NNX11AP82A, Mars Science Laboratory Investigations. [1] Nate et al. (2015) AGU, submitted.

  19. The AstroBiology Explorer (ABE) MIDEX Mission: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2002-01-01

    The AstroBiology Explorer (ABE) mission is one of four selected for Phase A Concept Study in NASA's current call for MIDEX class missions. ABE is a cooled space telescope equipped with spectrographs covering the 2.5-20 micron spectral range. The ABE mission is devoted to the detection and identification of organic and related molecular species in space. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace.

  20. The Astrobiology Matrix and the "Drake Matrix" in Education

    NASA Technical Reports Server (NTRS)

    Mizser, A.; Kereszturi, A.

    2003-01-01

    We organized astrobiology lectures in the Eotvos Lorand University of Sciences and the Polaris Observatory in 2002. We present here the "Drake matrix" for the comparison of the astrobiological potential of different bodies [1], and astrobiology matrix for the visualization of the interdisciplinary connections between different fields of astrobiology. Conclusion: In Hungary it is difficult to integrate astrobiology in the education system but the great advantage is that it can connect different scientific fields and improve the view of students. We would like to get in contact with persons and organizations who already have experience in the education of astrobiology.

  1. Philosophy of astrobiology: some recent developments

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2015-09-01

    We present some recent developments in philosophy of astrobiology which illustrate usefulness of philosophy to astrobiology. We cover applications of Aristotelian views to definition of life, of Priest's dialetheism to the question if viruses are alive, and various thought experiments in regard to these and other astrobiology issues. Thought experiments about the survival of life in the Solar system and about the role of viruses at the beginning and towards the end of life are also described.

  2. AstRoMap European Astrobiology Roadmap

    PubMed Central

    Horneck, Gerda; Westall, Frances; Grenfell, John Lee; Martin, William F.; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R.; Rettberg, Petra; Capria, Maria Teresa

    2016-01-01

    Abstract The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems• Research Topic 2: Origins of Organic Compounds in Space• Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life• Research Topic 4: Life and Habitability• Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. Key Words: Astrobiology roadmap—Europe—Origin and evolution of life—Habitability—Life detection—Life in extreme environments. Astrobiology 16, 201–243. PMID:27003862

  3. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  4. Secondary School Students' Knowledge and Opinions on Astrobiology Topics and Related Social Issues

    NASA Astrophysics Data System (ADS)

    Oreiro, Raquel; Solbes, Jordi

    2017-01-01

    Astrobiology is the study of the origin of life on Earth and the distribution of life in the Universe. Its multidisciplinary approach, social and philosophical implications, and appeal within the discipline and beyond make astrobiology a uniquely qualified subject for general science education. In this study, student knowledge and opinions on astrobiology topics were investigated. Eighty-nine students in their last year of compulsory education (age 15) completed a written questionnaire that consisted of 10 open questions on the topic of astrobiology. The results indicate that students have significant difficulties understanding the origin of life on Earth, despite exposure to the topic by way of the assigned textbooks. The students were often unaware of past or present achievements in the search for life within the Solar System and beyond, topics that are far less commonly seen in textbooks. Student questionnaire answers also indicated that students had problems in reasoning and critical thinking when asked for their opinions on issues such as the potential for life beyond Earth, the question of whether UFOs exist, or what our place is in the Universe. Astrobiology might help initiate student awareness as to current thinking on these matters and should be considered for general science education.

  5. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  6. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  7. AstroBiology Explorer (ABE) MIDEX mission concept

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Cox, Sylvia; Ellis, Benton; Gallagher, Dennis J.; Gautier, Nick; Greene, Thomas P.; McCreight, Craig R.; Mills, Gary; Purcell, William R.

    2002-02-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept under study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp. ABE will conduct IR spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Cassegrain telescope and two moderate resolution (R equals 2000-3000) spectrographs covering the 2.5-16 micron spectral region. Large format (1024x1024 pixel or larger) IR detector arrays and bandpass filters will allow each spectrograph to cover an entire octave of spectral range or more per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~8K. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1-2 year mission lifetime.

  8. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    NASA Astrophysics Data System (ADS)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  9. The europa initiative for esa's cosmic vision: a potential european contribution to nasa's Europa mission

    NASA Astrophysics Data System (ADS)

    Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.

    2016-04-01

    The assessment of the habitability of Jupiter's icy moons is considered of high priority in the roadmaps of the main space agencies, including the decadal survey and esa's cosmic vision plan. the voyager and galileo missions indicated that europa and ganymede may meet the requirements of habitability, including deep liquid aqueous reservoirs in their interiors. indeed, they constitute different end-terms of ocean worlds, which deserve further characterization in the next decade. esa and nasa are now both planning to explore these ice moons through exciting and ambitious missions. esa selected in 2012 the juice mission mainly focused on ganymede and the jupiter system, while nasa is currently studying and implementing the europa mission. in 2015, nasa invited esa to provide a junior spacecraft to be carried on board its europa mission, opening a collaboration scheme similar to the very successful cassini-huygens approach. in order to define the best contribution that can be made to nasa's europa mission, a europa initiative has emerged in europe. its objective is to elaborate a community-based strategy for the proposition of the best possible esa contribution(s) to nasa's europa mission, as a candidate for the upcoming selection of esa's 5th medium-class mission . the science returns of the different potential contributions are analysed by six international working groups covering complementary science themes: a) magnetospheric interactions; b) exosphere, including neutrals, dust and plumes; c) geochemistry; d) geology, including expressions of exchanges between layers; e) geophysics, including characterization of liquid water distribution; f) astrobiology. each group is considering different spacecraft options in the contexts of their main scientific merits and limitations, their technical feasibility, and of their interest for the development of esa-nasa collaborations. there are five options under consideration: (1) an augmented payload to the europa mission main

  10. Astrobiology, Sustainability and Ethical Perspectives

    NASA Astrophysics Data System (ADS)

    Arnould, Jacques

    2009-12-01

    Astrobiology, a new field of research associating the prospects and constraints of prebiotic chemistry, mineralogy, geochemistry, astrophysics, theoretical physics, microbial ecology, etc., is assessed in terms of sustainability through the scientific and social functions it fulfils, and the limits it encounters or strives to overcome. In the same way as sustainable development, astrobiology must also take into account the temporal dimension specific to its field of investigation and examine its underlying conception of Nature.

  11. 78 FR 64253 - NASA Asteroid Initiative Idea Synthesis Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-124] NASA Asteroid Initiative Idea.... SUMMARY: The National Aeronautics and Space Administration announces that the agency will resume the NASA... INFORMATION CONTACT: Michele Gates, Senior Technical Advisor, NASA Human Exploration and Operations Mission...

  12. Astrobiological complexity with probabilistic cellular automata.

    PubMed

    Vukotić, Branislav; Ćirković, Milan M

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.

  13. Lower Secondary Students' Views in Astrobiology

    ERIC Educational Resources Information Center

    Hansson, Lena; Redfors, Andreas

    2013-01-01

    Astrobiology is, on a profound level, about whether life exists outside of the planet Earth. The question of existence of life elsewhere in the universe has been of interest to many societies throughout history. Recently, the research area of astrobiology has grown at a fast rate, mainly due to the development of observational methods, and the…

  14. NASA's Climate Data Services Initiative

    NASA Astrophysics Data System (ADS)

    McInerney, M.; Duffy, D.; Schnase, J. L.; Webster, W. P.

    2013-12-01

    Our understanding of the Earth's processes is based on a combination of observational data records and mathematical models. The size of NASA's space-based observational data sets is growing dramatically as new missions come online. However a potentially bigger data challenge is posed by the work of climate scientists, whose models are regularly producing data sets of hundreds of terabytes or more. It is important to understand that the 'Big Data' challenge of climate science cannot be solved with a single technological approach or an ad hoc assemblage of technologies. It will require a multi-faceted, well-integrated suite of capabilities that include cloud computing, large-scale compute-storage systems, high-performance analytics, scalable data management, and advanced deployment mechanisms in addition to the existing, well-established array of mature information technologies. It will also require a coherent organizational effort that is able to focus on the specific and sometimes unique requirements of climate science. Given that it is the knowledge that is gained from data that is of ultimate benefit to society, data publication and data analytics will play a particularly important role. In an effort to accelerate scientific discovery and innovation through broader use of climate data, NASA Goddard Space Flight Center's Office of Computational and Information Sciences and Technology has embarked on a determined effort to build a comprehensive, integrated data publication and analysis capability for climate science. The Climate Data Services (CDS) Initiative integrates people, expertise, and technology into a highly-focused, next-generation, one-stop climate science information service. The CDS Initiative is providing the organizational framework, processes, and protocols needed to deploy existing information technologies quickly using a combination of enterprise-level services and an expanding array of cloud services. Crucial to its effectiveness, the CDS

  15. The astrobiology primer: an outline of general knowledge--version 1, 2006.

    PubMed

    Billings, L; Cameron, V; Claire, M; Dick, G J; Domagal-Goldman, S D; Javaux, E J; Johnson, O J; Laws, C; Race, M S; Rask, J; Rummel, J D; Schelble, R T; Vance, S

    2006-10-01

    The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Each section includes a brief overview of a topic and a short list of readable and important literature for those interested in deeper knowledge. Because of the great diversity of material, each section was written by a different author with a different expertise. Contributors, authors, and editors are listed at the beginning, along with a list of those chapters and sections for which they were responsible. We are deeply indebted to the NASA Astrobiology Institute (NAI), in particular to Estelle Dodson, David Morrison, Ed Goolish, Krisstina Wilmoth, and Rose Grymes for their continued enthusiasm and support. The Primer came about in large part because of NAI support for graduate student research, collaboration, and inclusion as well as direct funding. We have entitled the Primer version 1 in hope that it will be only the first in a series, whose future volumes will be produced every 3-5 years. This way we can insure that the Primer keeps up with the current state of research. We hope that it will be a great resource for anyone trying to stay abreast of an ever-changing field.

  16. Life Out There: An Astrobiological Multimedia Experience for the Digital Planetarium

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Grinspoon, D.

    2013-04-01

    Planetariums have a long history of experimentation with audio and visuals to create new multimedia experiences. We report on a series of innovative experiences in the Gates Planetarium at the Denver Museum of Nature & Science in 2009-2011 combining live performances of music and navigation through scientific visualizations. The Life Out There productions featured a story showcasing astrobiology concepts at scales ranging from galactic to molecular, and told using VJ-ing of immersive visualizations and musical performances from the House Band to the Universe. Funded by the NASA Astrobiology Institute's JPL-Titan Team, these hour-long shows were broken into four separate themed musical movements, with an improvisatory mix of music, dome visuals, and spoken science narrative which resulted in no two performances being exactly alike. Post-performance dissemination is continuing via a recorded version of the performance available as a DVD and online streaming video. Written evaluations from visitors who were present at the live shows reveal high satisfaction, while one of the Life Out There concerts was used to inaugurate a new evening program to draw in a younger audience demographic to DMNS.

  17. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly A.; Sandford, Scott; Allamandola, Louis; Bregman, Jesse D.; Cohen, Martin; Cruikshank, Dale; Greene, Thomas P.; Hudgins, Douglas; Kwok, Sun; Lord, Steven D.; Madden, Suzanne; McCreight, Craig R.; Roellig, Thomas L.; Strecker, Donald W.; Tielens, A. G. G. M.; Werner, Michael W.

    2003-03-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace &Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to ~7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the ~1.5 year mission lifetime.

  18. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; hide

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  19. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2017-07-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our

  20. 78 FR 31977 - NASA Asteroid Initiative Call for Ideas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-060] NASA Asteroid Initiative Call for... agency's asteroid initiative planning and to encourage feedback and ideas from the global community and... Perspective--Tom Kalil 9:55-10:15 Asteroid Initiative--Associate Administrator Lightfoot [[Page 31978

  1. 78 FR 51750 - NASA Asteroid Initiative Idea Synthesis Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-096] NASA Asteroid Initiative Idea... Conference to examine ideas in response to the recent RFI for the agency's Asteroid Initiative. SUMMARY: The... Agency's Asteroid Initiative planning and to enable feedback and discussion from the global community and...

  2. NASA's small spacecraft technology initiative _Clark_ spacecraft

    NASA Astrophysics Data System (ADS)

    Hayduk, Robert J.; Scott, Walter S.; Walberg, Gerald D.; Butts, James J.; Starr, Richard D.

    1996-11-01

    The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of "Clark," a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-Ib. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.

  3. 2016 Summer Series - Penelope Boston - Subsurface Astrobiology: Cave Habitats on Earth, Mars and Beyond

    NASA Image and Video Library

    2016-08-09

    In our quest to explore other planets, we only have our own planet as an analogue to the environments we may find life. By exploring extreme environments on Earth, we can model conditions that may be present on other celestial bodies and select locations to explore for signatures of life. Dr. Penelope Boston, the new director of the NASA Astrobiology Institute at Ames, will describe her work in some of Earth’s most diverse caves and how they inform future exploration of Mars and the search for life in our solar system.

  4. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  5. Capturing Student Interest in Astrobiology through Dilemmas and Paradoxes

    ERIC Educational Resources Information Center

    Slater, Timothy F.

    2006-01-01

    Astrobiology is an interdisciplinary science course that combines essential questions from life, physical, and Earth sciences. An effective astrobiology course also capitalizes on students' natural curiosity about social science implications of studying the origin of life and the impact of finding life elsewhere in the universe. (Contains 2…

  6. NASA Virtual Institutes: International Bridges for Space Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  7. Astrobiology in culture: the search for extraterrestrial life as "science".

    PubMed

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.

  8. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International

  9. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  10. Survey on astrobiology research and teaching activities within the United kingdom.

    PubMed

    Dartnell, Lewis R; Burchell, Mark J

    2009-10-01

    While astrobiology is apparently growing steadily around the world, in terms of the number of researchers drawn into this interdisciplinary area and teaching courses provided for new students, there have been very few studies conducted to chart this expansion quantitatively. To address this deficiency, the Astrobiology Society of Britain (ASB) conducted a questionnaire survey of universities and research institutions nationwide to ascertain the current extent of astrobiology research and teaching in the UK. The aim was to provide compiled statistics and an information resource for those who seek research groups or courses of study, and to facilitate new interdisciplinary collaborations. The report here summarizes details gathered on 33 UK research groups, which involved 286 researchers (from undergraduate project students to faculty members). The survey indicates that around 880 students are taking university-level courses, with significant elements of astrobiology included, every year in the UK. Data are also presented on the composition of astrobiology students by their original academic field, which show a significant dominance of physics and astronomy students. This survey represents the first published systematic national assessment of astrobiological academic activity and indicates that this emerging field has already achieved a strong degree of penetration into the UK academic community.

  11. Astrosociological Implications of Astrobiology (Revisited)

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving the search for extraterrestrial life should be viewed as consisting of two interrelated parts (i.e., two sides of the same coin): astrobiology and astrosociology. Together, these two fields broadly combine the two major branches of science as they relate to the relationship between human life and alien life, as appropriate. Moreover, with a formalized system of collaboration, these two complimentary fields would also focus on the implications of their research to human beings as well as their cultures and social structures. By placing the astrosociological implications of astrobiology at a high enough priority, scientists interested in the search for alien life can augment their focus to include the social, cultural, and behavioral implications that were always associated with their work (yet previously overlooked or understated, and too often misunderstood). Recognition of the astrosociological implications expands our perception about alien life by creating a new emphasis on their ramifications to human life on Earth.

  12. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.

    2000-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. The most direct approach to this problem is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing energy and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following questions about these proteins: (1) How do small proteins self-organize into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides form membrane-spanning structures (e.g. channels)? (3) By what mechanisms do such structures perform their functions? The simulations are performed using the molecular dynamics method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated in real space while long-range forces are evaluated in reciprocal space, using a particle-mesh algorithm which is of order O(NInN). With a time step of 2 femtoseconds, problems occurring on multi-nanosecond time scales (10(exp 6)-10(exp 8) time steps) are accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude, which requires algorithmic improvements and codes scalable to a large number of processors. Work in this direction is in progress. Two series of simulations are discussed. In one series, it is shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and fold into helical structures (see Figure). Once in the membrane, the peptides

  13. NASA's commercial space program - Initiatives for the future

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1990-01-01

    NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.

  14. Advanced Curation Activities at NASA: Implications for Astrobiological Studies of Future Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  15. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  16. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  17. The O/OREOS mission—Astrobiology in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Landis, D.; Luzzi, E.; Ly, D.; Mai, N.; Minelli, G.; McIntyre, M.; Neumann, M.; Parra, M.; Piccini, M.; Rasay, R.; Ricks, R.; Schooley, A.; Stackpole, E.; Timucin, L.; Yost, B.; Young, A.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small-Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72°), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cm3) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA's scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  18. Systems astrobiology for a reliable biomarker on exo-worlds

    NASA Astrophysics Data System (ADS)

    Chela Flores, Julian

    2013-04-01

    Although astrobiology is a science midway between biology and astrophysics, it has surprisingly remained largely disconnected from recent trends in certain branches of both of these disciplines. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology and should also yield insights into astrobiology. This is feasible since new large data banks in the case of astrobiology are of a geophysical/astronomical kind, rather than the also large molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry. The application of systems biology is illustrated for our own planetary system, where 3 Earth-like planets are within the habitable zone of a G2V star and where the process of photosynthesis has led to a single oxygenic atmosphere that was triggered during the Great Oxidation Event some 2,5 billion years before the present. The significance of the biogenic origin of a considerable fraction of our atmosphere has been discussed earlier (Kiang et al., 2007). Bonding of O2 ensures that it is stable enough to accumulate in a world's atmosphere if triggered by a living process. The reduction of F and Cl deliver energy release per e+-transfer, but unlike O2 the weaker bonding properties inhibit large atmospheric accumulation (Catling et al., 2005). The evolution of O2-producing photosynthesis is very likely on exo-worlds (Wolstencroft and Raven, 2002). With our simplifying assumption of evolutionary convergence, we show how to probe for a reliable biomarker in the exo-atmospheres of planets, or their satellites, orbiting stars of different luminosities and ages (Chela-Flores, 2013). We treat the living process as a system of exo-environments capable of radically modifying their geology and atmospheres, both for exo-planets, and especially for exo-moons, the presence of which can be extracted from the Kepler data (Kipping et al., 2012). What we are learning about the

  19. NASA Gulf of Mexico Initiative Hypoxia Research

    NASA Technical Reports Server (NTRS)

    Armstrong, Curtis D.

    2012-01-01

    The Applied Science & Technology Project Office at Stennis Space Center (SSC) manages NASA's Gulf of Mexico Initiative (GOMI). Addressing short-term crises and long-term issues, GOMI participants seek to understand the environment using remote sensing, in-situ observations, laboratory analyses, field observations and computational models. New capabilities are transferred to end-users to help them make informed decisions. Some GOMI activities of interest to the hypoxia research community are highlighted.

  20. Crew and Thermal Systems Strategic Communications Initiatives in Support of NASA's Strategic Goals

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    NASA has defined strategic goals to invest in next-generation technologies and innovations, to inspire students to become the future leaders of space exploration, and to expand partnerships with industry and academia around the world. The Crew and Thermal Systems Division (CTSD) at the NASA Johnson Space Center actively supports these NASA initiatives. In July 2011, CTSD created a strategic communications team to communicate CTSD capabilities, technologies, and personnel to internal NASA and external technical audiences for business development and collaborative initiatives, and to students, educators, and the general public for education and public outreach efforts. This paper summarizes the CTSD Strategic Communications efforts and metrics through the first nine months of fiscal year 2012.

  1. A systems engineering initiative for NASA's space communications

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Hei, Donald J., Jr.; Kelly, Angelita C.; Lightfoot, Patricia C.; Bell, Holland T.; Cureton-Snead, Izeller E.; Hurd, William J.; Scales, Charles H.

    1993-01-01

    In addition to but separate from the Red and Blue Teams commissioned by the NASA Administrator, NASA's Associate Administrator for Space Communications commissioned a Blue Team to review the Office of Space Communications (Code O) Core Program and determine how the program could be conducted faster, better, and cheaper, without compromising safety. Since there was no corresponding Red Team for the Code O Blue Team, the Blue Team assumed a Red Team independent attitude and challenged the status quo. The Blue Team process and results are summarized. The Associate Administrator for Space Communications subsequently convened a special management session to discuss the significance and implications of the Blue Team's report and to lay the groundwork and teamwork for the next steps, including the transition from engineering systems to systems engineering. The methodology and progress toward realizing the Code O Family vision and accomplishing the systems engineering initiative for NASA's space communications are presented.

  2. Proposed biomimetic molecular sensor array for astrobiology applications

    NASA Astrophysics Data System (ADS)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  3. The Astrobiology Graduate Conference - A Unique Early Career Opportunity

    NASA Astrophysics Data System (ADS)

    Knowles, E. J.; Domagal-Goldman, S. D.; Anderson, R.; Som, S. M.

    2011-12-01

    The Astrobiology Graduate Conference (AbGradCon) is an extremely successful annual meeting of early career researchers and educators involved and interested in the field of astrobiology. The conference has been held eight times in various locations, each time organized by a different group of students. The primary objective of AbGradCon is to stimulate the future of astrobiology research by bringing together graduate students and early post-doctoral fellows in order to create and strengthen interdisciplinary and international networks of early-career astrobiologists who will lead such research in the years to come. The conference is unique in that it is a student-led meeting, from the organization to the presentations. AbGradCon strives to remove the "pressures" of typical scientific meetings by providing a relaxed atmosphere in which presentations and round-table discussions are fostered along with numerous social activities. The success of previous AbGradCons can be attributed to the sheer enthusiasm of the participants for astrobiology, and to the spirit and format of the conference, which is outlined in a charter written by past conference organizers and participants. Because it is organized and attended by only graduate students and early career astrobiologists, AbGradCon is an ideal venue for the next generation of early career astrobiologists to form bonds, share ideas, and discuss the issues that will shape the future of the field.

  4. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis; Bregman, Jesse; Ennico, Kimberly; Greene, Thomas; Hudgins, Douglas; Strecker, Donald; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be described.

  5. Prospects for nasa s astrobiology mission Leonid Mac and ground-based observations during the upcoming 2002 Leonid storms

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Schmidt, G.

    Meteors represent a unique pathway from organic matter in space to prebiotic molecules on Earth. In the process, the organic material is changed in ways that are not easily simulated in the laboratory. An essential step to knowing what molecules may have been delivered from space at the time of the origin of life is understanding the physical conditions in the meteor phenomenon and to trace the fate of organic compounds in real-live meteors. This was the objective of the NASA and USAF sponsored Leonid Multi-Instrument Aircraft Campaign, wth successful missionsi during the strong Leonid showers of November 1998, 1999 and 2001. The research aircraft offer an international team of observers the opportunity to be above clouds and scattered Moon light and to be at the right place, at the right time. One further campaign is being prepared for a mission on November 19, 2002, when the Leonid meteor shower is expected to peak twice in succession, at rates of around ZHR = 4000/hr and 5000/hr, which will be best seen over western Europe and the America's, respectively. This presentation serves to encourage ground-based observations for observers at those locations. To that purpose, a summary will be given of the results to date, with emphasis on the progress made during the spectacular storms of 2001. We will briefly outline the new meteor model that has evolved and our new understanding of persistent emissions and the fate of meteoric matter after deposition. The new data have answered some questions, but also raised numerous issues that need to be addressed further. Finally, past Leonid storms have proven ideal to involve the public in astrobiology and provided a trilling experience, examples of which will be given. The 2002 Leonid storms are expected to be the last until 2099.

  6. Life, the universe, and everything: an education outreach proposal to build a traveling astrobiology exhibit.

    PubMed

    Barge, Laura M; Pulschen, André A; Emygdio, Ana Paula Mendes; Congreve, Curtis; Kishimoto, Darío E; Bendia, Amanda G; de Morais M Teles, Antonio; DeMarines, Julia; Stoupin, Daniel

    2013-03-01

    Astrobiology is a transdisciplinary field with extraordinary potential for the scientific community. As such, it is important to educate the community at large about the growing importance of this field to increase awareness and scientific content learning and expose potential future scientists. To this end, we propose the creation of a traveling museum exhibit that focuses exclusively on astrobiology and utilizes modern museum exhibit technology and design. This exhibit (the "Astrobiology Road Show"), organized and evaluated by an international group of astrobiology students and postdocs, is planned to tour throughout the Americas.

  7. Robotic astrobiology - prospects for enhancing scientific productivity of mars rover missions

    NASA Astrophysics Data System (ADS)

    Ellery, A. A.

    2018-07-01

    Robotic astrobiology involves the remote projection of intelligent capabilities to planetary missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii) continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return for astrobiology missions, but together, they will provide full autonomous science capability.

  8. Astrobiological Implications of Titan Tholin in Methane Lakes

    NASA Astrophysics Data System (ADS)

    Khare, Bishun N.; McKay, C. P.; McPherson, S.; Cruikshank, D.; Nna-Mvondo, D.; Sekine, Y.

    2010-10-01

    We report here on our ongoing research in the Laboratory for Planetary Studies at NASA Ames Research Center dedicated to determine the degree of solubility of Titan tholin in the methane-ethane lakes. Our work is also directed toward confirming the presence of any astrobiologically significant molecules via hydrolysis and pyrolysis of a simulated lake sample. Our previous work conducted at Cornell University and subsequently in the Laboratory for Planetary Studies at NASA Ames Research Center has established that Titan tholin produces amino acids (Khare et al. Icarus 1986) on hydrolysis, and many compounds including adenine on pyrolysis (Khare et al. Adv. Space Res. 1984). Also, our previous work by Thompson et al. (Icarus 1991) has clearly indicated that when energy is supplied to Titan's atmospheric composition (methane and nitrogen), tholin results from hundreds of contemporary compounds, including highly reactive compounds such as azides and isocyanides. Cassini showed that photolysis of methane produces benzene and many polycyclic aromatic hydrocarbons, along with compounds with very high molecular weights (up to 10000 amu), resulting from the photolytic reactions of CH4 with nitrogen. These heavy aerosols, termed "tholins” by Sagan and Khare (Nature 1979), are also synthesized when Titan intercepts charged particles from the magnetosphere of Saturn. Tholins resulting from both of these syntheses eventually descend to the surface of Titan, where some quantity collects in the methane-ethane lakes. This research is supported by a grant from Planetary Atmospheres.

  9. Astrobiology, Evolution, and Society: Public Engagement Insights

    NASA Astrophysics Data System (ADS)

    Bertka, C. M.

    2009-12-01

    It is unavoidable that the science of astrobiology will intersect with, and inevitably challenge, many deeply held beliefs. Exploration possibilities, particularly those that may include the discovery of extraterrestrial life, will continue to challenge us to reconsider our views of nature and our connection to the rest of the universe. As a scientific discipline, astrobiology works from the assumption that the origin and evolution of life can be accounted for by natural processes, that life could emerge naturally from the physical materials that make up the terrestrial planets. The search for life on other terrestrial planets is focused on “life as we know it.” The only life we currently know of is the life found on Earth, and for the scientific community the shared common ancestry of all Earth life, and its astounding diversity, is explained by the theory of evolution. The work of astrobiology, at its very core, is fueled by the theory of evolution. However, a survey by the Pew Forum on Religion and Public Life (2005) revealed that 42% of US adults believe that “life has existed in its present form since the beginning of time”. This answer persists nearly 150 years after the publication of Charles Darwin’s "On the Origin of the Species", the landmark work in which Darwin proposed that living things share common ancestors and have “descended with modification” from these ancestors through a process of natural selection . Perhaps even more distressing is the fact that these numbers have not changed in decades, despite the astounding advancements in science that have resulted over this same time period. How will these facts bear on the usefulness of astrobiology as a tool for encouraging a US public to share in the excitement of scientific discovery and be informed participants in a public dialogue concerning next steps? When people were asked “to identify the biggest influence on your thinking about how life developed,” the response chosen most

  10. History of NASA/Native People Native Homelands Initiative

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy

    2000-01-01

    This workshop is one of the follow-on local assessment activities from the US National Assessment on the Impact of Climate Change on the US. N. Maynard (for NASA) helped create and get under way an initiative which brought together climate change scientists from around the US with Native Americans to bring together classic Western European scientists with knowledge from native peoples - from such sources as oral histories of drought, major fires, etc. The purpose of this was to encourage not only joint science but also bring NASA resources and education materials to Tribal schools and encourage joint preparation of educational and training materials. N. Maynard's talk will provide history of that process and discuss possible ways to collaborate in the future, building on this effort.

  11. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  12. NASA scientific and technical information program multimedia initiative

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Kaye, Karen

    1993-01-01

    This paper relates the experiences of the NASA Scientific and Technical Information Program in introducing multimedia within the STI Program framework. A discussion of multimedia technology is included to provide context for the STI Program effort. The STI Program's Multimedia Initiative is discussed in detail. Parallels and differences between multimedia and traditional information systems project development are highlighted. Challenges faced by the program in initiating its multimedia project are summarized along with lessons learned. The paper concludes with a synopsis of the benefits the program hopes to provide its users through the introduction of multimedia illustrated by examples of successful multimedia projects.

  13. Robotic astrobiology - the need for sub-surface penetration of Mars

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Ball, A.; Cockell, C.; Coste, P.; Dickensheets, D.; Edwards, H.; Hu, H.; Kolb, C.; Lammer, H.; Lorenz, R.; McKee, G.; Richter, L.; Winfield, A.; Welch, C.

    2002-11-01

    Recent interest in the astrobiological investigation of Mars has culminated in the only planned astrobiology-focussed robotic mission to Mars - the Beagle2 mission to be carried to Mars by the Mars Express spacecraft in 2003. Beagle2 will be primarily investigating the surface and near-surface environment of Mars. However, the results from the Viking Mars lander indicated that the Martian surface is saturated in peroxides and super-oxides which would rapidly degrade any organic material. Furthermore, recent models of gardening due to meteoritic impacts on the Martian surface suggest that the depth of this oxidising layer could extend to depths of 2-3m. Given that the discovery of organic fossilised residues will be the primary target for astrobiological investigation, this implies that future robotic astrobiology missions to Mars must penetrate to below these depths. The need to penetrate into the sub-surface of Mars has recently been given greater urgency with the discovery of extensive water ice-fields as little as 1m from the surface. We review the different technologies that make this penetration into the sub-surface a practical possibility on robotic missions. We further briefly present one such implementation of these technologies through the use of ground-penetrating moles - The Vanguard Mars mission proposal.

  14. Astrobiology Road Mapping (AstRoMap) - A project within FP7 of the European Commission: First results

    NASA Astrophysics Data System (ADS)

    Gomez-Gomez, Felipe; Capria, Maria Teresa; Palomba, Ernesto; Walter, Nicolas; Rettberg, Petra; Muller, Christian; Horneck, Gerda

    AstRoMap (Astrobiology and Planetary Exploration Road Mapping) is a funded project formulated in the 5th Call of the European Commission FP7 framework. The main objectives of the AstRoMap are: 1. Identify the main astrobiology issues to be addressed by Europe in the next decades in relation with space exploration 2. Identify potential mission concepts that would allow addressing these issues 3. Identify the technology developments required to enable these missions 4. Provide a prioritized roadmap integrating science and technology activities as well as ground-based approach 5. Map scientific knowledge related to astrobiology in Europe To reach those objectives, AstRoMap is executed within the following steps: 1. Community consultation. In order to map the European astrobiology landscape and to provide a collaborative networking platform for this community, the AstRoMap project hosts a database of scientists (European and beyond) interested in astrobiology and planetary exploration (see: http://www.astromap.eu/database.html). It reflects the demography and the research and teaching activities of the astrobiology community, as well as their professional profiles and involvement in astrobiology projects. Considering future aspects of astrobiology in Europe, the need for more astrobiology-dedicated funding programmes at the EU level, especially for cross-disciplinary groups, was stressed. This might eventually lead to the creation of a European laboratory of Astrobiology, or even of a European Astrobiology Institute. 2. Workshops organisation. On the basis of the feedbacks from the community consultation, the potential participants and interesting topics are being identified to take part in the following workshops: 1-. Origin of organic compounds, steps to life; 2. Physico-chemical boundary conditions for habitability 3. Biosignatures as facilitating life detection 4. Origin of the Solar system 3. Astrobiology road-mapping. Based on the results and major conclusions

  15. On the parallels between cosmology and astrobiology: a transdisciplinary approach to the search for extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Santos, Charles Morphy D.; Alabi, Leticia P.; Friaça, Amâncio C. S.; Galante, Douglas

    2016-10-01

    The establishment of cosmology as a science provides a parallel to the building-up of the scientific status of astrobiology. The rise of astrobiological studies is explicitly based on a transdisciplinary approach that reminds of the Copernican Revolution, which eroded the basis of a closed Aristotelian worldview and reinforced the notion that the frontiers between disciplines are artificial. Given the intrinsic complexity of the astrobiological studies, with its multifactorial evidences and theoretical/experimental approaches, multi- and interdisciplinary perspectives are mandatory. Insulated expertise cannot grasp the vastness of the astrobiological issues. This need for integration among disciplines and research areas is antagonistic to excessive specialization and compartmentalization, allowing astrobiology to be qualified as a truly transdisciplinary enterprise. The present paper discusses the scientific status of astrobiological studies, based on the view that every kind of life, Earth-based or not, should be considered in a cosmic context. A confluence between 'astro' and 'bio' seeks the understanding of life as an emerging phenomenon in the universe. Thus, a new epistemological niche is opened, pointing to the development of a pluralistic vision for the philosophy of astrobiology.

  16. Astrobiology: Life in Extreme Environments

    ERIC Educational Resources Information Center

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  17. The Astrobiology Primer - an Early Career Scientist Education, Outreach and Professional Development Project

    NASA Astrophysics Data System (ADS)

    Wright, K. E.; Domagal-Goldman, S. D.

    2011-12-01

    We are early-career scientists jointly leading a project to write 'The Astrobiology Primer', a brief but comprehensive introduction to astrobiology, and we are using the process of producing the document as an innovative way of strengthening the international community of early-career astrobiologists. Astrobiology is the study of the origin, evolution, distribution and future of life in our universe. It includes not just study of life on Earth, but also the potential for life to exist beyond Earth, and the development of techniques to search for such life. It therefore incorporates geological and earth sciences, life sciences, chemistry, astronomy and planetary sciences. This requires astrobiologists to integrate these different disciplines in order to address questions such as 'How did Earth and its biosphere originate?', 'How do life and the physical, chemical and geological cycles on Earth interact, and affect each other?' and so 'What does life on Earth tell us about the habitability of environments outside Earth?'. The primer will provide a brief but comprehensive introduction to the field; it will be significantly more comprehensive than a normal review paper but much shorter than a textbook. This project is an initiative run entirely by early-career scientists, for the benefit of other early-career scientists and others. All the writers and editors of the primer are graduate/post-graduate students or post-doctoral fellows, and our primary target group for the primer is other early-career scientists, although we hope and expect that the primer will also be useful far more broadly in education and outreach work. An Astrobiology Primer was first published in 2006(Ref1), written and edited by a small group of early-career astrobiologists to provide an introduction to astrobiology for other early-career scientists new to the field. It has been used not only by the target group for private study, but in formal education and outreach settings at universities and

  18. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  19. Cosmic evolution: the context for astrobiology and its cultural implications

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2012-10-01

    Astrobiology must be seen in the context of cosmic evolution, the 13.7 billion-year master narrative of the universe. The idea of an evolving universe dates back only to the 19th century, and became a guiding principle for astronomical research only in the second half of the 20th century. The modern synthesis in evolutionary biology hastened the acceptance of the idea in its cosmic setting, as did the confirmation of the Big Bang theory for the origin of the universe. NASA programmes such as Origins incorporated it as a guiding principle. Cosmic evolution encompasses physical, biological and cultural evolution, and may result in a physical, biological or postbiological universe, each with its own implications for long-term human destiny, and each imbuing the meaning of life with different values. It has the status of an increasingly accepted worldview that is beginning to have a profound effect not only in science but also in religion and philosophy.

  20. Crew and Thermal Systems Strategic Communications Initiatives in Support of NASA's Strategic Goals

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Lamberth, Erika Guillory; Jennings, Mallory A.

    2012-01-01

    NASA has defined strategic goals to invest in next-generation technologies and innovations, inspire students to become the future leaders of space exploration, and expand partnerships with industry and academia around the world. The Crew and Thermal Systems Division (CTSD) at the NASA Johnson Space Center actively supports these NASA initiatives. In July 2011, CTSD created a strategic communications team to communicate CTSD capabilities, technologies, and personnel to external technical audiences for business development and collaborative initiatives, and to students, educators, and the general public for education and public outreach efforts. This paper summarizes the CTSD Strategic Communications efforts and metrics through the first half of fiscal year 2012 with projections for end of fiscal year data.

  1. A Bioinformatics Facility for NASA

    NASA Technical Reports Server (NTRS)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  2. Astrobiology: Discovering New Worlds of Life.

    ERIC Educational Resources Information Center

    James, Charles C.; Van Dover, Cindy Lee

    2001-01-01

    Emphasizes discoveries at the frontiers of science. Includes an instructional poster illustrating the hydrothermal vent communities on the deep ocean floor. Describes research activities related to the new discipline of astrobiology, a multidisciplinary approach to studying the emergence of life in the universe. Research activities include the…

  3. NASA safety program activities in support of the Space Exploration Initiatives Nuclear Propulsion program

    NASA Technical Reports Server (NTRS)

    Sawyer, J. C., Jr.

    1993-01-01

    The activities of the joint NASA/DOE/DOD Nuclear Propulsion Program Technical Panels have been used as the basis for the current development of safety policies and requirements for the Space Exploration Initiatives (SEI) Nuclear Propulsion Technology development program. The Safety Division of the NASA Office of Safety and Mission Quality has initiated efforts to develop policies for the safe use of nuclear propulsion in space through involvement in the joint agency Nuclear Safety Policy Working Group (NSPWG), encouraged expansion of the initial policy development into proposed programmatic requirements, and suggested further expansion into the overall risk assessment and risk management process for the NASA Exploration Program. Similar efforts are underway within the Department of Energy to ensure the safe development and testing of nuclear propulsion systems on Earth. This paper describes the NASA safety policy related to requirements for the design of systems that may operate where Earth re-entry is a possibility. The expected plan of action is to support and oversee activities related to the technology development of nuclear propulsion in space, and support the overall safety and risk management program being developed for the NASA Exploration Program.

  4. Capturing Student Interest in Astrobiology through Dilemmas and Paradoxes

    NASA Astrophysics Data System (ADS)

    Slater, T. F.

    2005-12-01

    Traditionally, many non-science majoring undergraduates readily reveal fairly negative opinions about their introductory science survey courses that serve as general education distribution requirements. Often seen as unimportant and unrelated to helping them acquire knowledge and skills for the workplace, such general education courses carry nicknames such as "Physics for Poets" (PHYSICS101), "Bugs for Thugs" (BIOLOGY101), "Rocks for Jocks" (GEOLOGY101), and "Moons for Goons" or "Scopes for Dopes" (ASTRONOMY101). In response, many faculty are experimenting with more modern science course offerings as general education courses in an effort to improve students' attitudes, values, and interests. One might think that ASTROBIOLOGY has natural curb appeal for students. However, despite the seemingly innate appeal of a course on extraterrestrial life, when it comes right down to it, an astrobiology course is still a natural science course at its core. As such, it can suffer from the same student apathy that afflicts traditional science courses if students can not find some personal relevance or interest in the topics. One approach to more fully engaging students is to couch core course concepts in terms of what Grant Wiggin and Jay McTighe (2004, 2000) call "essential questions." Essential questions are intended create enduring understanding in students and help students find deeply meaningful personal relevance to concepts. In response, we have created a series of probing essential questions that tie central concepts in astrobiology to dilemmas, paradoxes, and moral questions with the goal of intellectually engaging our students in the human-side of the astrobiology enterprise.

  5. Crew and Thermal Systems Division Strategic Communications Initiatives in Support of NASA's Strategic Goals: Fiscal Year 2012 Summary and Initial Fiscal Year 2013 Metrics

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2013-01-01

    The NASA strategic plan includes overarching strategies to inspire students through interactions with NASA people and projects, and to expand partnerships with industry and academia around the world. The NASA Johnson Space Center Crew and Thermal Systems Division (CTSD) actively supports these NASA initiatives. At the end of fiscal year 2011, CTSD created a strategic communications team to communicate CTSD capabilities, technologies, and personnel to internal NASA and external technical audiences for collaborative and business development initiatives, and to students, educators, and the general public for education and public outreach efforts. The strategic communications initiatives implemented in fiscal year 2012 resulted in 707 in-reach, outreach, and commercialization events with 39,731 participant interactions. This paper summarizes the CTSD Strategic Communications metrics for fiscal year 2012 and provides metrics for the first nine months of fiscal year 2013.

  6. Case studies approach for an undergraduate astrobiology course

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Enger, Sandra

    2013-04-01

    Case studies is a well known and widely used method in law schools, medical schools, and business schools, but relatively little used in physics or astronomy courses. We developed an astrobiology course based strongly on the case studies approach, and after teaching it first at the University of Alabama in Huntsville, we have adapted it and are now teaching it at Alabama A&M University, a HBCU. The case studies approach uses several well tested and successful teaching methods - including group work, peer instruction, current interest topics, just-in-time teaching, &c. We have found that certain styles of cases are more popular among students than other styles, and will revise our cases to reflect such student preferences. We chose astrobiology -- an inherently multidisciplinary field -- because of the popularity of the subject matter, its frequent appearance in the popular media (news stories about searches for life in the universe, the discovery of Earth-like exoplanets, etc, in addition to SciFi movies and novels), and the rapid current progress in the field. In this talk we review briefly the case studies method, the styles of cases used in our astrobiology course, and student response to the course as found in our assessment analysis.

  7. Raman spectroscopic analysis of arctic nodules: relevance to the astrobiological exploration of Mars.

    PubMed

    Jorge-Villar, Susana E; Edwards, Howell G M; Benning, Liane G

    2011-11-01

    The discovery of small, spherical nodules termed 'blueberries' in Gusev Crater on Mars, by the NASA rover Opportunity has given rise to much debate on account of their interesting and novel morphology. A terrestrial analogue in the form of spherical nodules of similar size and morphology has been analysed using Raman spectroscopy; the mineralogical composition has been determined and evidence found for the biological colonisation of these nodules from the spectral signatures of cyanobacterial protective biochemical residues such as scytonemin, carotenoids, phycocyanins and xanthophylls. This is an important result for the recognition of future sites for the planned astrobiological exploration of planetary surfaces using remote robotic instrumentation in the search for extinct and extant life biosignatures and for the expansion of putative terrestrial Mars analogue geological niches and morphologies.

  8. Astrobiology Results from ILEWG EuroMoonMars Analogue Field Research

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    . v’t Houd (8), A. Bruneau (6,9), M. Cross (6,7), V. Maivald (10), C. Orgel (6), A. Elsaesser (4), S.O.L. Direito (2,4), W.F.M. Röling (2), G.R. Davies (2); EuroGeoMars2009 Team, DOMMEX-ILEWG EuroMoonMars 2010-2013 Teams (1) ESA/ ESTEC, Postbus 299, 2200 AG Noordwik, NL; (2) Vrije Universiteit, Amsterdam, Faculty of Earth & Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, NL; (3) NASA Ames Research Centre; US; (4) Leiden Institute of Chemistry, NL; (5) Space Policy Institute, GWU, Washington D.C., USA; (6) ILEWG; (7) CPSX; (8) Cerberus Blackshore, ESIC Noordwijk, NL; (9) ENSC Bordeaux; (10) DLR, Bremen References: Foing, Stoker & Ehrenfreund (Editors, 2011) “Astrobiology field Research in Moon/Mars Analogue Environments”, Special Issue of International Journal of Astrobiology , IJA 2011, 10, vol.3. 137-305; [1] Foing B. et al. (2011) Field astrobiology research at Moon-Mars analogue site: Instruments and methods, IJA 2011, 10 (3), 141; [2] Clarke, J., Stoker, C. Concretions in exhumed & inverte channels near Hanksville Utah: implications for Mars, (IJA 2011, 10 (3), 162; [3] Thiel et al., (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. (IJA 2011, 10 (3), 177; [4] Direito et al. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). (IJA 2011, 10 (3), 191; [5] Orzechowska, G. et al (20110 analysis of Mars Analog soils using solid Phase Microextraction, Organics solvent extraction and GCMS, (IJA 2011, 10 (3), 209; [6] Kotler et al. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah Desert. (IJA 2011, 10 (3), 221; [7] Martins et al. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. (IJA 2011, 10 (3), 231; [8] Ehrenfreund et al. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals

  9. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    NASA Astrophysics Data System (ADS)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  10. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  11. Understanding the nineteenth century origins of disciplines: lessons for astrobiology today?

    NASA Astrophysics Data System (ADS)

    Brazelton, William J.; Sullivan, Woodruff T., III

    2009-10-01

    Astrobiology's goal of promoting interdisciplinary research is an attempt to reverse a trend that began two centuries ago with the formation of the first specialized scientific disciplines. We have examined this era of discipline formation in order to make a comparison with the situation today in astrobiology. Will astrobiology remain interdisciplinary or is it becoming yet another specialty? As a case study, we have investigated effects on the scientific literature when a specialized community is formed by analyzing the citations within papers published during 1802-1856 in Philosophical Transactions of the Royal Society (Phil. Trans.), the most important ‘generalist’ journal of its day, and Transactions of the Geological Society of London (Trans. Geol. Soc.), the first important disciplinary journal in the sciences. We find that these two journals rarely cited each other, and papers published in Trans. Geol. Soc. cited fewer interdisciplinary sources than did geology papers in Phil. Trans. After geology had become established as a successful specialized discipline, geologists returned to publishing papers in Phil. Trans., but they wrote in the new, highly specialized style developed in Trans. Geol. Soc. They had succeeded in not only creating a new scientific discipline, but also a new way of doing science with its own modes of research and communication. A similar citation analysis was applied to papers published over the period 2001-2008 in the contemporary journals Astrobiology and the International Journal of Astrobiology to test the hypothesis that astrobiologists are in the early stages of creating their own specialized community. Although still too early to reliably detect any but the largest trends, there is no evidence yet that astrobiologists are drifting into their own isolated discipline. Instead, to date they appear to remain interdisciplinary.

  12. Astrobiology Objectives for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Meyer, M. A.

    2002-05-01

    Astrobiology is the study of life in the Universe, and a major objective is to understand the past, present, and future biologic potential of Mars. The current Mars Exploration Program encompasses a series of missions for reconnaissance and in-situ analyses to define in time and space the degree of habitability on Mars. Determining whether life ever existed on Mars is a more demanding question as evidenced by controversies concerning the biogenicity of features in the Mars meteorite ALH84001 and in the earliest rocks on Earth. In-situ studies may find samples of extreme interest but resolution of the life question most probably would require a sample returned to Earth. A selected sample from Mars has the many advantages: State-of-the-art instruments, precision sample handling and processing, scrutiny by different investigators employing different techniques, and adaptation of approach to any surprises It is with a returned sample from Mars that Astrobiology has the most to gain in determining whether life did, does, or could exist on Mars.

  13. The Role of Synthetic Biology in NASA's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  14. Astrobiological and Geological Implications of Convective Transport in Icy Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert T.; Zhong, Shi-Jie; Barr, Amy

    2005-01-01

    The oceans of large icy outer planet satellites are prime targets in the search for extraterrestrial life in our solar system. The goal of our project has been to develop models of ice convection in order to understand convection as an astrobiologically relevant transport mechanism within icy satellites, especially Europa. These models provide valuable constraints on modes of surface deformation and thus the implications of satellite surface geology for astrobiology, and for planetary protection. Over the term of this project, significant progress has been made in three areas: (1) the initiation of convection in large icy satellites, which we find probably requires tidal heating; (2) the relationship of surface features on Europa to internal ice convection, including the likely role of low-melting-temperature impurities; and (3) the effectiveness of convection as an agent of icy satellite surface-ocean material exchange, which seems most plausible if tidal heating, compositional buoyancy, and solid-state convection work in combination. Descriptions of associated publications include: 3 published papers (including contributions to 1 review chapter), 1 manuscript in revision, 1 manuscript in preparation (currently being completed under separate funding), and 1 published popular article. A myriad of conference abstracts have also been published, and only those from the past year are listed.

  15. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2003-01-01

    We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.

  16. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.; Vincenzi, Donald L. (Technical Monitor)

    2001-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. In the absence of any record of the earliest ancestors of contemporary cells, protocells, the most direct way to test our understanding of their characteristics is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs of molecules that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing and storing energy, and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following, questions about these proteins: (1) How do small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides aggregate to form membrane-spannin(y structures (e.g., channels)? (3) By what mechanisms do such aggregates perform their functions? The simulations are performed using the molecular dynamics (MD) method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated directly in real space while long-range forces are evaluated in reciprocal space, usually using a particle-mesh algorithm which is of order O(NlnN). Currently, a time step of 2 femtoseconds is typically used, thereby making studies of problems occurring on multi-nanosecond time scales (10(exp 6) - 10(exp 8) time steps) accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude. Such an extension requires both algorithmic improvements and codes scalable to a large number of parallel

  17. A Survey of Educational Activities and Resources Relevant to Mars and Astrobiology

    NASA Astrophysics Data System (ADS)

    Manning, Heidi L. K.; Bleacher, L.

    2009-09-01

    Sample Analysis at Mars (SAM) is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover, which was recently named Curiosity in a student-naming contest. SAM's three instruments are devoted to studying the chemical composition of the Martian surface and atmosphere and to understanding the planet's past habitability and potential habitability today. Curiosity is scheduled to launch in 2011, however many Education and Public Outreach (EPO) activities supported by the MSL mission are well underway. The SAM EPO plan includes elements of both formal and informal education in addition to outreach, such as incorporating data into the Mars Exploration Student Data Teams program, developing a museum exhibit and associated educational materials about SAM's research, and writing articles about the MSL mission and SAM's findings for ChemMatters magazine. One of the EPO projects currently being carried out by members of the SAM team is training secondary education teachers in Mars geology, astrobiology, and SAM science goals via professional development workshops. Several of the recent Mars missions have had extensive EPO components to them. As a result, numerous educational activities and resources have already been developed relating to understanding Mars and astrobiology. We have conducted a survey of these activities and resources previously created and have compiled those relevant and useful for our SAM teacher training workshops. Resources and activities have been modified as needed. In addition, we have identified areas in which no educational activities exist and are developing new curriculum specifically to address these gaps. This work is funded by the MN Space Grant Consortium and NASA's Science Mission Directorate.

  18. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on

  19. Lunar and Planetary Science XXXV: Astrobiology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology" included the following reports:The Role of Cometary and Meteoritic Delivery in the Origin and Evolution of Life: Biogeological Evidences Revisited; Hopane Biomarkers Traced from Bedrock to Recent Sediments and Ice at the Haughton Impact Structure, Devon Island: Implications for the Search for Biomarkers on Mars; and Survival of Organic Matter After High Temperature Events (Meteorite Impacts, Igneous Intrusions).

  20. Astrobiology: Life on Earth (and Elsewhere?)

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2016-01-01

    Astrobiology investigates the origins, evolution and distribution of life in the universe. Scientists study how stellar systems and their planets can create planetary environments that sustain biospheres. They search for biosignatures, which are objects, substances and or patterns that indicate the presence of life. Studies of Earth's early biosphere enhance these search strategies and also provide key insights about our own origins.

  1. Detecting and Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  2. Detecting and Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Infrared spectroscopy in the 2.5-16 microns (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  3. NASA industry education initiative. Education programs report, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Findings from the initial inventory of education programs show that support for the NASA-Industry Education Initiative (NIEI) appears to be strong among the organizations surveyed. In addition, the range, depth and historical baselines of NIEI education programs are encouraging. It is also apparent that there is a significant level of cooperation between NIEI members and other organizations. Heavily focused towards science, engineering, mathematics and technology achievement, NIEI activities appear to be aligned with national education goals. Three criticisms are revealed: (1) the majority of programs are targeted fairly late in the education cycle; (2) the number of initiatives geared towards adult literacy and adult skills-enhancement appears to be relatively low; (3) the majority of NIEI activities involve traditional education-assistance programs, but the number of critical assessment and systematic reform initiatives is low. Four Working Group recommendations resulted from this activity: (1) NIEI Working Group operations should continue for an indefinite period, with participation open to other like-minded private-sector organization; (2) the report should be periodically updated; (3) an analysis of ongoing education programs should be conducted; (4) American corporations should continue to support education and evaluate in-house programs periodically.

  4. Multispectral Microimager for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Farmer, Jack D.; Kieta, Andrew; Huang, Julie

    2006-01-01

    A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (i) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ii) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.

  5. Astrobiology Outreach and the Nature of Science: The Role of Creativity

    PubMed Central

    Oliver, Carol; Walter, Malcolm R.

    2012-01-01

    Abstract There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research–related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science. Key Words: Science education—School science—Creativity—Nature and processes of science—Attitudes—Astrobiology. Astrobiology 12, 1143–1153. PMID:23134090

  6. Gulf of Mexico Initiative: NASA Capacity Building in the Gulf Region

    NASA Astrophysics Data System (ADS)

    Armstrong, D.; Graham, W. D.; Searby, N. D.

    2012-12-01

    In the wake of hurricanes Katrina and Rita, NASA created the Gulf of Mexico Initiative (GOMI) to help the region recover and to build the capacity of local and regional organizations to utilize NASA Earth science assets to establish effective policies, encourage sustainable natural resource management and utilization, and to expeditiously respond to crises. GOMI worked closely with the Gulf of Mexico Alliance (GOMA), a regional collaboration of the five US Gulf states and 13 federal agencies, to select projects that addressed high priority issues of the region. Many capabilities developed by this initiative have been adopted by end-users and have been leveraged to respond to other natural and man made disasters such as the Deepwater Horizon oil spill (2010), record breaking floods along the Mississippi River (2011), unprecedented tornado supercells (2011), and extreme drought (2012). Examples of successful capacity building projects will be presented and the lessons learned from these projects will be discussed.

  7. Shaping NASA's Earth Science Enterprise Workforce Development Initiative to Address Industry Needs

    NASA Technical Reports Server (NTRS)

    Rosage, David; Meeson, Blanche W. (Technical Monitor)

    2001-01-01

    It has been well recognized that the commercial remote sensing industry will expand in new directions, resulting in new applications, thus requiring a larger, more skilled workforce to fill the new positions. In preparation for this change, NASA has initiated a Remote Sensing Professional Development Program to address the workforce needs of this emerging industry by partnering with the private sector, academia, relevant professional societies, and other R&D organizations. Workforce needs will in part include understanding current industry concerns, personnel competencies, current and future skills, growth rates, geographical distributions, certifications, and sources of pre-service and in-service personnel. Dave Rosage of the NASA Goddard Space Flight Center and a panel of MAPPS members will lead a discussion to help NASA specifically address private firms' near and long-term personnel needs to be included in NASA's Remote Sensing Professional Development Program. In addition, Dave Rosage will present perspectives on how remote sensing technologies are evolving, new NASA instruments being developed, and what future workforce skills are expected to support these new developments.

  8. Astrobiological Research on Tardigrades: Implications for Extraterrestrial Life Forms

    NASA Astrophysics Data System (ADS)

    Horikawa, D. D.

    2013-11-01

    Tardigrades have been considered as a model for astrobiological studies based on their tolerance to extreme environments. Future research on tardigrades might provide important insight into the possibilities of existence of multicellular life forms.

  9. Critical issues in the history, philosophy, and sociology of astrobiology.

    PubMed

    Dick, Steven J

    2012-10-01

    Fifty years after serious scientific research began in the field of exobiology, and forty years after serious historical research began on the subject of extraterrestrial life, this paper identifies and examines some of the most important issues in the history, philosophy, and sociology of what is today known as astrobiology. As in the philosophy of science in general, and in the philosophies of particular sciences, critical issues in the philosophy and sociology of astrobiology are both stimulated and illuminated by history. Among those issues are (1) epistemological issues such as the status of astrobiology as a science, the problematic nature of evidence and inference, and the limits of science; (2) metaphysical/scientific issues, including the question of defining the fundamental concepts of life, mind, intelligence, and culture in a universal context; the role of contingency and necessity in the origin of these fundamental phenomena; and whether or not the universe is in some sense fine-tuned for life and perhaps biocentric; (3) societal issues such as the theological, ethical, and worldview impacts of the discovery of microbial or intelligent life; and the question of whether the search for extraterrestrial life should be pursued at all, and with what precautions; and (4) issues related to the sociology of scientific knowledge, including the diverse attitudes and assumptions of different scientific communities and different cultures to the problem of life beyond Earth, the public "will to believe," and the formation of the discipline of astrobiology. All these overlapping issues are framed by the concept of cosmic evolution-the 13.7 billion year Master Narrative of the Universe-which may result in a physical, biological, or postbiological universe and determine the long-term destiny of humanity.

  10. The JOVE initiative - A NASA/university Joint Venture in space science

    NASA Technical Reports Server (NTRS)

    Six, F.; Chappell, R.

    1990-01-01

    The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

  11. Viton's Impact on NASA Standard Initiator Propellant Properties

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl; Tipton, Bill, Jr.

    2000-01-01

    This paper discusses some of the properties of Viton that are relevant to its use as a pyrotechnic binder in a NASA standard initiator (NSI) propellant. Nearly every aspect of NSI propellant manufacture and use is impacted by the binder system. The effect of Viton's molecular weight on solubility, solution viscosity, glass transition temperature, and strength characteristics as applied to NSI production and performance are reviewed. Emphasis is placed on the Viton fractionation that occurs during the precipitation cycle and its impact on bridgewire functions. Special consideration is given to the production of bridgewire slurry mixtures.

  12. An Ultrasonic Sampler and Sensor Platform for In-Situ Astrobiological Exploration

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoaz E.; Bao, X.; Chang, Z.; Sherrit, S.

    2003-01-01

    The search for existing or past life in the Universe is one of the most important objectives of NASA's mission. In support of this objective, ultrasonic based mechanisms are currently being developed at JPL to allow probing and sampling rocks as well as perform as a sensor platform for in-situ astrobiological analysis. The technology is based on the novel Ultrasonic/Sonic Driller/Corer (USDC), which requires low axial force, thereby overcoming one of the major limitations of planetary sampling in low gravity using conventional drills. The USDC was demonstrated to: 1) drill ice and various rocks including granite, diorite, basalt and limestone, 2) not require bit sharpening, and 3) operate at high and low temperatures. The capabilities that are being investigated including probing the ground to select sampling sites, collecting various forms of samples, and hosting sensors for measuring chemical/physical properties. A series of modifications of the USDC basic configuration were implemented leading an ultrasonic abrasion tool (URAT), Ultrasonic Gopher for deep Drilling, and the lab-on-a-drill.

  13. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Jennings, Mallory A.; Lamberth, Erika Guillory

    2012-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  14. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Lamberth, Erika Guillory

    2011-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  15. An Explorer-Class Astrobiology Mission

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Greene, Thomas; Allamandola, Louis; Arno, Roger; Bregman, Jesse; Cox, Sylvia; Davis, Paul K.; Gonzales, Andrew; Haas, Michael; Hanel, Robert; hide

    2000-01-01

    In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.

  16. The 2002 NASA Faculty Fellowship Program Research Reports

    NASA Technical Reports Server (NTRS)

    Bland, J. (Compiler)

    2003-01-01

    Contents include the following: System Identification of X-33. Neural Network Advanced Ceramic Technology for Space Applications at NASA MSFC. Developing a MATLAB-Based Tool for Visualization and Transformation. Subsurface Stress Fields in Single Crystal (Anisotropic). Contacts Our Space Future: A Challenge to the Conceptual Artist Concept Art for Presentation and Education. Identification and Characterization of Extremophile Microorganisms. Significant to Astrobiology. Mathematical Investigation of Gamma Ray and Neutron. Absorption Grid Patterns for Homeland Defense-Related Fourier Imaging Systems. The Potential of Microwave Radiation for Processing Martian Soil. Fuzzy Logic Trajectory Design and Guidance for Terminal Area.

  17. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  18. Applicability of cryoconite consortia of microorganisms and glacier-dwelling animals in astrobiological studies

    NASA Astrophysics Data System (ADS)

    Zawierucha, Krzysztof; Ostrowska, Marta; Kolicka, Małgorzata

    2017-06-01

    For several years it has been of interest to astrobiologists to focus on Earth's glaciers as a habitat that can be similar to glaciers on other moons and planets. Microorganisms on glaciers form consortia - cryoconite granules (cryoconites). They are granular/spherical mineral particles connected with archaea, cyanobacteria, heterotrophic bacteria, algae, fungi, and micro animals (mainly Tardigrada and Rotifera). Cryophilic organisms inhabiting glaciers have been studied in different aspects: from taxonomy, ecology and biogeography, to searching of biotechnological potentials and physiological strategies to survive in extreme glacial habitats. However, they have never been used in astrobiological experiments. The main aim of this paper is brief review of literature and supporting assumptions that cryoconite granules and microinvertebrates on glaciers, are promising models in astrobiology for looking for analogies and survival strategies in terms of icy planets and moons. So far, astrobiological research have been conducted on single strains of prokaryotes or microinvertebrates but never on a consortium of them. Due to the hypothetical similarity of glaciers on the Earth to those on other planets these cryoconites consortia of microorganisms and glacier microinvertebrates may be applied in astrobiological experiments instead of the limno-terrestrial ones used currently. Those consortia and animals have qualities to use them in such studies and they may be the key to understanding how organisms are able to survive, reproduce and remain active at low temperatures.

  19. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These

  20. NASA Enterprise Managed Cloud Computing (EMCC): Delivering an Initial Operating Capability (IOC) for NASA use of Commercial Infrastructure-as-a-Service (IaaS)

    NASA Technical Reports Server (NTRS)

    O'Brien, Raymond

    2017-01-01

    In 2016, Ames supported the NASA CIO in delivering an initial operating capability for Agency use of commercial cloud computing. This presentation provides an overview of the project, the services approach followed, and the major components of the capability that was delivered. The presentation is being given at the request of Amazon Web Services to a contingent representing the Brazilian Federal Government and Defense Organization that is interested in the use of Amazon Web Services (AWS). NASA is currently a customer of AWS and delivered the Initial Operating Capability using AWS as its first commercial cloud provider. The IOC, however, designed to also support other cloud providers in the future.

  1. STARLIFE-An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems.

    PubMed

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms. Key Words: Space radiation environment-Sparsely ionizing radiation-Densely ionizing radiation-Heavy ions-Gamma radiation-Astrobiological model systems. Astrobiology 17, 101-109.

  2. Astrobiology Science and Technology: A Path to Future Discovery

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Lavaery, D. B.

    2001-01-01

    The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.

  3. Astrobiology as a tool for getting high school students interested in science

    NASA Astrophysics Data System (ADS)

    Van der Meer, B. W.; Alletto, James J.; Bryant, Dudley; Carini, Mike; Elliott, Larry; Gelderman, Richard; Mason, Wayne; McDaniel, Kerrie; McGruder, Charles H.; Rinehart, Claire; Tyler, Rico; Walker, Linda

    2000-12-01

    A workshop was held (10/99) for high school students and teachers on astrobiology. NASA provided support through an IDEAS grant. Out of 63 qualified applicants, 29 were accepted: 22 students (11 minorities) and 7 teachers. The worship was held on 2 successive weekends. Activities included: culturing microbes from human skin, discussing 'what is life?', building and using a 2-inch refractive telescope and a van-Leeuwenhoek- type microscope (each participant built and kept them), listening to lectures by Dr. Richard Gelderman on detecting extra solar planets and by Dr. Richard Hoover on life in extreme environments. Other activities included: collecting samples and isolating micro-organisms from the lost river cave, studying microbial life from extreme environments in the laboratory, using the internet as a research tool and debating the logistics and feasibility of a lunar colony. Written evaluations of the workshop led to the following conclusions: 48% of the students considered a possible career in the biological and/or astrophysical sciences, and half of these stated they were spurred on by the workshop itself.

  4. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  5. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  6. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  7. Astrobiology : is humankind ready for the next revolution ?

    NASA Astrophysics Data System (ADS)

    Arnould, Jacques

    2012-07-01

    The discovery of a first exoplanet, in 1995, did not revolutionize but knocked astronomical sciences over. At the same time, by opening new prospects of research, in particular in the search of planets similar to the Earth and in a possible extraterrestrial life, this discovery, since then abundantly repeated, gave a new breath to the public interest for this scientific field. But is humanity ready to learn the existence from extraterrestrial forms of life or to remain, in spite of its efforts, in ignorance? The question of the plurality of the worlds is one of the oldest interrogations conveyed by the human cultures, as testified by the multiple answers which were brought to it. In the same way, the concept of life is itself an inexhaustible source of philosophical and religious reflexions, with many consequences in moral domains. It is today necessary to accompany the scientific development in the field of astrobiology by attaching the greatest importance to this intellectual patrimony. It constitutes even one of the first stages of an ethical responsibility in astrobiology, as important as that concerning planetary protection.

  8. NASA's Initiative to Develop Education through Astronomy (IDEA)

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-04-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  9. NASA's initiative to develop education through astronomy (IDEA)

    NASA Technical Reports Server (NTRS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-01-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  10. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  11. Enabling the space exploration initiative: NASA's exploration technology program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  12. Whitson Receives Call from President Trump on This Week @NASA - April 28, 2017

    NASA Image and Video Library

    2017-04-28

    On April 24 aboard the International Space Station, NASA astronaut Peggy Whitson set a new record for cumulative time spent in space by a U.S. astronaut. President Donald Trump marked the milestone with a call from the Oval Office, with First Daughter Ivanka Trump, and NASA astronaut Kate Rubins – to the station, where Whitson was joined by NASA’s Jack Fischer. Whitson, who in 2008 became the first woman to command the space station, also holds the record for most spacewalks by a female astronaut. NASA worked with the Department of Education, on behalf of the White House, to make the president’s call to the station available to schools across America. Whitson encouraged students to think about how the steps they take in the classroom today could someday help NASA make the next giant leap in space exploration. Also, First Live 4K Broadcast from Space, Kate Rubins Visits National Institutes of Health, Cassini Begins its Grand Finale, and 2017 Astrobiology Science Conference!

  13. Astrobiology Courses--A Useful Framework for Teaching Interdisciplinary Science.

    ERIC Educational Resources Information Center

    Sauterer, Roger

    2000-01-01

    Explains astrobiology and indicates the possibility of life on other planets and the interest of humankind in this possibility. Defines topics open to public misconception and their primary reinforcements by television shows. Expresses the need for students to learn the connections between different science majors. (YDS)

  14. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Jaffe, Richard; Liang, Shoudan; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2002-01-01

    We present results from several projects in the new field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. We have developed a procedure for calculating long-range effects in molecular dynamics using a plane wave expansion of the electrostatic potential. This method is expected to be highly efficient for simulating biological systems on massively parallel supercomputers. We have perform genomics analysis on a family of actin binding proteins. We have performed quantum mechanical calculations on carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible sources of organic material on the early earth. Finally, we have developed a model of protobiological chemistry using neural networks.

  15. Brazilian research on extremophiles in the context of astrobiology

    NASA Astrophysics Data System (ADS)

    Duarte, Rubens T. D.; Nóbrega, Felipe; Nakayama, Cristina R.; Pellizari, Vivian H.

    2012-10-01

    Extremophiles are organisms adapted to grow at extreme ranges of environmental variables, such as high or low temperatures, acid or alkaline medium, high salt concentration, high pressures and so forth. Most extremophiles are micro-organisms that belong to the Archaea and Bacteria domains, and are widely spread across the world, which include the polar regions, volcanoes, deserts, deep oceanic sediments, hydrothermal vents, hypersaline lakes, acid and alkaline water bodies, and other extreme environments considered hostile to human life. Despite the tropical climate, Brazil has a wide range of ecosystems which include some permanent or seasonally extreme environments. For example, the Cerrado is a biome with very low soil pH with high Al+3 concentration, the mangroves in the Brazilian coast are anaerobic and saline, Pantanal has thousands of alkaline-saline lakes, the Caatinga arid and hot soils and the deep sea sediments in the Brazilian ocean shelf. These environments harbour extremophilic organisms that, coupled with the high natural biodiversity in Brazil, could be explored for different purposes. However, only a few projects in Brazil intended to study the extremophiles. In the frame of astrobiology, for example, these organisms could provide important models for defining the limits of life and hypothesize about life outside Earth. Brazilian microbiologists have, however, studied the extremophilic micro-organisms inhabiting non-Brazilian environments, such as the Antarctic continent. The experience and previous results obtained from the Brazilian Antarctic Program (PROANTAR) provide important results that are directly related to astrobiology. This article is a brief synopsis of the Brazilian experience in researching extremophiles, indicating the most important results related to astrobiology and some future perspectives in this area.

  16. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    PubMed Central

    Lemus, Judith D.

    2015-01-01

    Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292

  17. Impact of the Arizona NExSS Winter School on Astrobiology Knowledge and Attitudes.

    PubMed

    Burnam-Fink, Michael; Desch, Steven J; Scalice, Daniella; Davis, Hilarie; Huff, Cierra J; Apai, Dániel

    2018-03-01

    Astrobiology is an inherently interdisciplinary area of study, demanding communication across multiple fields: astronomy, geochemistry, planetary science, and so on. Successful communication requires that researchers be aware of the basic findings, open questions, and tools and techniques of allied fields and possess an appreciation and respect for what these fields consider good science. To facilitate this communication between early-career researchers, the Arizona NExSS Winter School was hosted in February 2016, bringing together graduate students and postdoctoral researchers from backgrounds spanning the field of astrobiology. Students virtually attended a scientific Workshop Without Walls and participated in lectures, discussions, field trips, and hands-on activities, culminating in the writing and review of mock proposals by interdisciplinary teams. We assess the impact of the school on interdisciplinarity using a pre- and posttest survey of 24 students, informed by National Science Foundation impact categories (Friedman et al., 2008 ) within the Impact Analysis Method (IAM) described by Davis and Scalice ( 2015 ). We demonstrate that students gained knowledge, especially in fields outside their home discipline. Furthermore, an underlying disciplinary divide between geochemists and planetary scientists on the role of life in planetary evolution is observed and interpreted. These findings demonstrate that the Arizona NExSS Winter School had measurable impact on interdisciplinarity and that the IAM rubric has utility in measuring impact. We make recommendations for further research to understand the interdisciplinary gaps in astrobiology and how best to bridge them. Key Words: Interdisciplinarity-Attitudes-Knowledge-Scientific dialogue-Training. Astrobiology 18, 365-375.

  18. The NASA Software Research Infusion Initiative: Successful Technology Transfer for Software Assurance

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Pressburger, Thomas; Markosian, Lawrence; Feather, Martin S.

    2006-01-01

    New processes, methods and tools are constantly appearing in the field of software engineering. Many of these augur great potential in improving software development processes, resulting in higher quality software with greater levels of assurance. However, there are a number of obstacles that impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may most benefit them, and cannot afford to risk time and effort in evaluating and experimenting with them while there is still uncertainty about whether they will have payoff in this particular context. Similarly, researchers cannot readily identify those practitioners whose problems would be amenable to their techniques and lack the feedback from practical applications necessary to help them to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team, and the NASA Research Infusion Initiative, established by NASA s Software Engineering Initiative, to overcome these obstacles.

  19. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  20. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  1. The NASA Scientific and Technical Information (STI) Program's Implementation of Open Archives Initiation (OAI) for Data Interoperability and Data Exchange

    NASA Technical Reports Server (NTRS)

    Rocker, JoAnne; Roncaglia, George J.; Heimerl, Lynn N.; Nelson, Michael L.

    2002-01-01

    Interoperability and data-exchange are critical for the survival of government information management programs. E-government initiatives are transforming the way the government interacts with the public. More information is to be made available through web-enabled technologies. Programs such as the NASA's Scientific and Technical Information (STI) Program Office are tasked to find more effective ways to disseminate information to the public. The NASA STI Program is an agency-wide program charged with gathering, organizing, storing, and disseminating NASA-produced information for research and public use. The program is investigating the use of a new protocol called the Open Archives Initiative (OAI) as a means to improve data interoperability and data collection. OAI promotes the use of the OAI harvesting protocol as a simple way for data sharing among repositories. In two separate initiatives, the STI Program is implementing OAI In collaboration with the Air Force, Department of Energy, and Old Dominion University, the NASA STI Program has funded research on implementing the OAI to exchange data between the three organizations. The second initiative is the deployment of OAI for the NASA technical report server (TRS) environment. The NASA TRS environment is comprised of distributed technical report servers with a centralized search interface. This paper focuses on the implementation of OAI to promote interoperability among diverse data repositories.

  2. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2006-01-01

    The presentation describes the recently awarded ACCESS project to provide data management of NASA remote sensing data for the Northern Eurasia Earth Science Partnership Initiative (NEESPI). The project targets integration of remote sensing data from MODIS, and other NASA instruments on board US-satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEP/NCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  3. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors

  4. From systems chemistry to systems astrobiology: life in the universe as an emergent phenomenon

    NASA Astrophysics Data System (ADS)

    Chela-Flores, J.

    2013-01-01

    Although astrobiology is a science midway between the life and physical sciences, it has surprisingly remained largely disconnected from recent trends in certain branches of both life and physical sciences. We discuss potential applications to astrobiology of approaches that aim at integrating rather than reducing. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology. The systems approach should also yield insights into astrobiology, especially concerning the ongoing search for alternative abodes for life. This is feasible since new data banks in the case of astrobiology - considered as a branch of biology - are of a geophysical/astronomical kind, rather than the molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry for solving fundamental problems, such as protein or proteome folding. By focusing on how systems properties emerge in astrobiology we consider the question: can life in the universe be interpreted as an emergent phenomenon? In the search for potential habitable worlds in our galactic sector with current space missions, extensive data banks of geophysical parameters of exoplanets are rapidly emerging. We suggest that it is timely to consider life in the universe as an emergent phenomenon that can be approached with methods beyond the science of chemical evolution - the backbone of previous research in questions related to the origin of life. The application of systems biology to incorporate the emergence of life in the universe is illustrated with a diagram for the familiar case of our own planetary system, where three Earth-like planets are within the habitable zone (HZ) of a G2 V (the complete terminology for the Sun in the Morgan-Keenan system) star. We underline the advantage of plotting the age of Earth-like planets against large atmospheric fraction of a biogenic gas, whenever such anomalous atmospheres are discovered in

  5. Astrobiology at Arizona State University: An Overview of Accomplishments

    NASA Technical Reports Server (NTRS)

    Farmer, Jack

    2005-01-01

    During our five years as an NAI charter member, Arizona State University sponsored a broadly-based program of research and training in Astrobiology to address the origin, evolution and distribution of life in the Solar System. With such a large, diverse and active team, it is not possible in a reasonable space, to cover all details of progress made over the entire five years. The following paragraphs provide an overview update of the specific research areas pursued by the Arizona State University (ASU) Astrobiology team at the end of Year 5 and at the end of the 4 month and subsequent no cost month extensions. for a more detailed review, the reader is referred to the individual annual reports (and Executive Summaries) submitted to the NAI at the end of each of our five years of membership. Appended in electronic form is our complete publication record for all five years, plus a tabulation of undergraduates, graduate students and post-docs supported by our program during this time. The overarching theme of ASU s Astrobiology program was "Exploring the Living Universe: Studies of the Origin, Evolution and Distribution of Life in the Solar System". The NAi-funded research effort was organized under three basic sub- themes: 1. Origins of the Basic Building Blocks of Life. 2. Early Biosphere Evolution. and 3. Exploring for Life in the Solar System. These sub-theme areas were in turn, subdivided into Co-lead research modules. In the paragraphs that follow, accomplishments for individual research modules are briefly outlined, and the key participants presented in tabular form. As noted, publications for each module are appended in hard copy and digital formats, under the name(s) of lead co-Is.

  6. Astrobiology: The Case for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    The scientific discipline of astrobiology addresses one of the most fundamental unanswered questions of science: are we alone? Is there life elsewhere in the universe, or is life unique to Earth? The field of astrobiology includes the study of the chemical precursors for life in the solar system; it also includes the search for both presently existing life and fossil signs of previously existing life elsewhere in our own solar system, as well as the search for life outside the solar system. Two of the promising environments within the solar system being currently considered are the surface of the planet Mars, and the hypothesized oceans underneath the ice covering the moon Europa. Both of these environments differ in several key ways from the environments where life is found on Earth; the Mars environment in most places too cold and at too low pressure for liquid water to be stable, and the sub-ice environment of Europa lacking an abundance of free energy in the form of sunlight. The only place in the solar system where we know that life exists today is the Earth. To look for life elsewhere in the solar system, one promising search strategy would be to find and study the environment in the solar system with conditions that are most similar to the environmental conditions where life thrives on the Earth. Specifically, we would like to study a location in the solar system with atmospheric pressure near one bar; temperature in the range where water is liquid, 0 to 100 C; abundant solar energy; and with the primary materials required for life, carbon, oxygen, nitrogen, and hydrogen, present. Other than the surface of the Earth, the only other place where these conditions exist is the atmosphere of Venus, at an altitude of about fifty kilometers above the surface.

  7. Ethical issues in astrobiology: a Christian perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Randolph, R. O.

    2009-12-01

    With its focus on the origin, extent, and future of life, Astrobiology raises exciting, multidisciplinary questions for science. At the same time, Astrobiology raises important questions for the humanities. For instance, the prospect of discovering extraterrestrial life - either intelligent or unintelligent - raises questions about humans’ place in the universe and our relationship with nature on planet Earth. Fundamentally, such questions are rooted in our understanding of what it means to be human. From a Christian perspective, the foundational claim about human nature is that all persons bear the "imago dei", the image of God. This concept forms the basis for how humans relate to one another (dignity) and how humans relate to nature (stewardship). For many Christians the "imago dei" also suggests that humans are at the center of the universe. The discovery of extraterrestrial life would be another scientific development - similar to evolution - that essentially de-centers humanity. For some Christian perspectives this de-centering may be problematic, but I will argue that the discovery of extraterrestrial life would actually offer a much needed theological corrective for contemporary Christians’ understanding of the "imago dei". I will make this argument by examining two clusters of ethical issues confronting Astrobiology: 1. What ethical obligations would human explorers owe to extraterrestrial life? Are there ethical obligations to protect extraterrestrial ecosystems from harm or exploitation by human explorers? Do our ethical considerations change, if the extraterrestrial life is a “second genesis;” in other words a form of life completely different and independent from the carbon-based life that we know on Earth? 2. Do we have an ethical obligation to promote life as much as we can? If human explorers discover extraterrestrial life and through examination determine that it is struggling to survive, do we have an ethical obligation to assist that

  8. NASA initiatives with historically black colleges and universities

    NASA Technical Reports Server (NTRS)

    1985-01-01

    NASA programs involving students and teachers at historically Black colleges and universities are discussed. The programs at each of the NASA research centers are described. Guidance is given on proposal submission for NASA grants. The Cooperative Education program, the Graduate Student Researchers program, and summer faculty fellowships are discussed.

  9. NASA GISS Climate Change Research Initiative: A Multidisciplinary Vertical Team Model for Improving STEM Education by Using NASA's Unique Capabilities.

    NASA Astrophysics Data System (ADS)

    Pearce, M. D.

    2017-12-01

    CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and

  10. Role of the observer in the scientific process in astrobiology and in defining life

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2010-09-01

    The role of the observer in the scientific process has been studied in various contexts, including philosophical. It is notorious that the experiments are theory-loaded, that the observers pick and choose what they consider important based on their scientific and cultural backgrounds, and that the same phenomenon may be studied by different observers from different angles. In this paper we critically review various authors' views of the role of the observer in the scientific process, as they apply to astrobiology. Astrobiology is especially vulnerable to the role of the observer, since it is an interdisciplinary science. Thus, the backgrounds of the observers in the astrobiology field are even more heterogeneous than in the other sciences. The definition of life is also heavily influenced by the observer of life who injects his/her own prejudices in the process of observing and defining life. Such prejudices are often dictated by the state of science, instrumentation, and the science politics at the time, as well as the educational, scientific, cultural and other background of the observer.

  11. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  12. NASA Initiatives with Historically Black Colleges & Universities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This publication outlines the involvement of the National Aeronautics and Space Administration (NASA) with Historically Black Colleges and Universities (HBCU) programs in aeronautics and space research. NASA aims to assist HBCUs in science, engineering, and technology programs and also to encourage greater participation of minorities in its…

  13. Space Biology Meets Astrobiology: Critical Synergies and Concerns

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.; Kirven-Brooks, Melissa

    2016-01-01

    The broad fields of space biology and astrobiology share much in common in terms of science questions, approaches, and goals. However, historical circumstances and funding agency practices have frequently resulted in a wide separation between the two related areas. Is this a good thing? We believe that it is not, and that much is to be gained in each field from sharing ideas, resources, and perhaps projects between investigators traditionally working in one discipline or the other. Some of the strengths that the Space Biology community offers include sophistication and experience in flying experiments on space missions. In turn, Astrobiology has focused heavily on ground-based and field research. Challenging physical and chemical conditions experienced in space and on other planets partially overlap, and much can be gleaned from the body of work of each community along these topical lines. A combination of these areas of expertise and experience could result in major advances to all involved. When possible, avoiding having to reinvent methods or approaches already used by a sister community can result in greater efficiencies of resource use. We will discuss some case studies where we believe there are significant overlaps including adaptation to a variety of environmental stresses, extremophiles as potential flight organisms, microfluidics as applied to planetary environment simulations, and others.

  14. Preliminary investigation of proton and helium ion radiation effects on fluorescent dyes for use in astrobiology applications.

    PubMed

    Thompson, Daniel P; Wilson, Paul K; Sims, Mark R; Cullen, David C; Holt, John M C; Parker, David J; Smith, Mike D

    2006-04-15

    The Specific Molecular Identification of Life Experiment (SMILE) instrument (Sims et al. Planet. Space Science 2005, 53, 781-791) proposes to use specific molecular receptors for the detection of organic biomarkers on future astrobiology missions (e.g., to Mars). Such receptors will be used in assays with fluorescently labeled assay reagents. A key uncertainty of this approach is whether the fluorescent labels used in the system will survive exposure to levels of solar and galactic particle radiation encountered during a flight to Mars. Therefore, two fluorescent dyes (fluorescein and Alexa Fluor 633) have been exposed to low-energy proton and alpha radiation with total fluences comparable or exceeding that expected during an unshielded cruise to Mars. The results of these initial experiments are presented, which show that both dyes retain their fluorescent properties after irradiation. No significant alteration in the absorption and emission wavelengths or the quantum yields of the dyes with either radiation exposure was found. These results suggest other structurally similar fluorophores will likely retain their fluorescent properties after exposure to similar levels of proton and alpha radiation. However, more extensive radiation fluorophore testing is needed before their suitability for astrobiology missions to Mars can be fully confirmed.

  15. Astrobiology - The New Synthesis

    NASA Astrophysics Data System (ADS)

    Sik, A.; Simon, T.

    Background In connection with the complex planetology-education in Hungary [1] we have compiled an Astrobiology coursebook - as a base of its teaching in universities and perhaps in secondary schools as well. We tried to collect and assemble in a logical and thematical order the scientific breakthroughs of the last years, that made possible the fast improvement of astrobiology. The followings are a kind of summary of these. Introduction - The ultimate science Astrobiology is a young science, that search for the possibility, forms and places of extraterrestrial life. But it is not SETI, because do not search for intelligent life, just for living organisms, so SETI is a part of astrobiology. and an extremely important statement: we can search for life-forms that similar to terrestrial life in physiology so we can recognize it as life. Astrobiology is one of the most dynamical-developing sciences of the 21st century. To determine its boundaries is difficult because the complex nature of it: astrobiology melt into itself lot of other sciences, like a kind of ultimate science. The fundamental questions are very simple [2]: When, where and how converted the organic matter into life?; How does life evolve in the Universe?; Has it appeared on other planets?; How does it spread in time and space?; and What is the future of terrestrial life? However, trying to find the answers is quite difficult. So an astrobiologist has to be aware of the basics of astronomy, space research, earth and planetary sciences, and life sciences (mainly ecology, genetics, molecular and evolution biology). But it is not enough - the newest results of these at least as important as the basic knowledge. Part I. - Astro 1. Exoplanets 1995 was a particular year in astronomy: we have found the first planet out of the Solar System. Since that time the discovery of exoplanets progress fast: nowdays more than 80 examples are known and just 6 years passed [3]. The detailed analysis of these distant objects

  16. Astrobiological Significance of Microbial Extremophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative p

  17. Measuring the effect of an astrobiology course on student optimism regarding extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Morgan, David L.

    2017-07-01

    Students in an introductory undergraduate Astrobiology course were given a pre/post-test based on the Drake Equation in an attempt to measure changes in their perceptions regarding the prevalence of life in the Galaxy after taking the course. The results indicated that, after taking the course, the students were considerably more optimistic, by a 2 to 1 margin or more, about the prospect of habitable planets, the origin of life, and the evolution of intelligence in other planetary systems. The results suggest that, while it may not be the explicit goal of an astrobiology course to change student beliefs about the abundance or rarity of extraterrestrial life, such changes in opinion can and do occur.

  18. The NASA Climate Change Research Initiative - A Scientist's Perspective

    NASA Astrophysics Data System (ADS)

    LeGrande, A. N.; Pearce, M. D.; Dulaney, N.; Kelly, S. M.

    2017-12-01

    For the last four years, I have been a lead mentor in the NASA GISS Climate Change Research Initiative (CCRI) program, a component in the NASA GSFC Office of Education portfolio. It creates a multidisciplinary; vertical research team including a NYC metropolitan teacher, graduate student, undergraduate student, and high school student. While the college and high school members of this research team function like a more traditional internship component, the teacher component provides a powerful, direct way to connect state-of-the art research with students in the classroom. Because the teacher internship lasts a full year, it affords a similar relationship with a teacher that normally only exists between a PhD student and scientist. It also provides an opportunity to train the teacher in using the extensive data archives and other information maintained on NASA's publicly available websites. This time and access provide PhD-level training in the techniques and tools used in my climate research to the high school teacher. The teacher then uses his/her own pedagogical expertise to translate these techniques into age/level appropriate lesson plans for the classroom aligned with current STEM education trends and expectations. Throughout the process, there is an exchange of knowledge between the teacher and scientist that is very similar to the training given to PhD level graduate students. The teacher's understanding of the topic and implementation of the tools is done under a very close collaboration with the scientist supervisor and the NASA Education Program Specialist. This vertical team model encourages collegial communication between teachers and learners from many different educational levels and capitalizes on the efficacy of near peer mentoring strategies. This relationship is important in building trust through the difficult, iterative process that results in the development of highly accurate and quality (continuously discussed and vetted) curriculum composed

  19. Aspicilia fruticulosa: A new model for Astrobiology

    NASA Astrophysics Data System (ADS)

    Sánchez Iñigo, Fco. Javier; de La Torre Noetzel, Rosa; Martinez-Frias, Jesus; Mateo Mart, Eva; Horneck, Gerda

    In order to avoid the technological constraints that prevent the performance of experiments in other planets, Astrobiology research implies the development of models that simulate the conditions present in outer space or in planetary bodies. Extremophile organisms, like lichens have been widely studied in Astrobiology due to their high resistance to extremely harsh envi-ronments(5). The vagrant lichen species, Aspicilia fruticulosa lives detached from the substrate, and has a coralloid thalli up to 2.5 cm, which provides a very compact internal structure(6). This species typically grows in deserts and arid areas. Its resistance has been tested several times and amazing results about their vitality have been obtained. Two main experiments have been per-formed: 1. LITHOPANSPERMIA experiment(1): Integrated on board of BIOPAN (multi-user exposure facility, designed for exobiology, radiation biology, radiation dosimetry and material science investigations in space (http://www.spaceflight.esa.int/users/index.cfm?act=default.pagelevel=11p foton-next-pay-Bpan) launched on the Foton M3 satellite in September 2007); the resistance of this lichen species to the combination of the following space conditions during 10 days was tested: Ultraviolet (UV) extraterrestrial radiation, Mars UV-climate, UV-B radiation and Photosynthetically Active Radiation (PAR), microgravity, space vacuum of 1x10-6 mbar and extreme temperatures ranging from -23o C to +16o C. After the flight, the samples were revital-ized for a 72h period in a climatic chamber before taking measurements of their photosynthetic activity with a Mini-PAM fluorometer (Heinz Walz GmbH) as described by R. de la Torre et al. 2007b (2). The results showed that the samples exposed to space environment except solar UV radiation, reached a 76.5-1002. A step further on these investigations was carried out in order to study how the viability of this lichen species were affected by a combination of different sim-ulated martian

  20. The challenges of educating the public about astrobiology via the mass media

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    Scientific information in astrobiology is being generated at a pace that traditional textbooks cannot easily match. For the most part, students, teachers and the general public will continue to learn piecemeal about the latest advances in the field through headlines and mass media coverage centered around discoveries and new interpretations as they occur. Yet journalists and reporters are themselves unschooled in this emerging interdisciplinary field. While it is important to continue developing astrobiological curricular materials for future use by students in formal settings, it is equally important to find novel ways for educating the mass media in the interim. Current planning in anticipation of a Mars sample return mission has focused on a variety of ways to enlist the mass media in an educational as well as informational role.

  1. An Introduction to Astrobiology

    NASA Astrophysics Data System (ADS)

    Gilmour, Iain; Sephton, Mark A.

    2004-05-01

    Compiled by a team of experts, this textbook has been designed for elementary university courses in astrobiology. It begins with an examination of how life may have arisen on Earth and then reviews the evidence for possible life on Mars, Europa and Titan. The potential for life in exoplanetary systems and the search for extraterrestrial intelligence are also discussed. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials. Written in an accessible style that avoids complex mathematics, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a webstite hosting further teaching materials.

  2. Status of NASA's commercial cargo and crew transportation initiative

    NASA Astrophysics Data System (ADS)

    Lindenmoyer, Alan; Stone, Dennis

    2010-03-01

    To stimulate the commercial space transportation industry, the National Aeronautics and Space Administration (NASA) is facilitating the demonstration of Commercial Orbital Transportation Services (COTS) to Low Earth Orbit (LEO) by private-sector companies. In 2006, NASA entered into funded agreements with two such companies to share NASA's 500 million investment, Space Exploration Technologies (SpaceX) and Rocketplane Kistler (RpK), each of which proposed to obtain the additional private financing needed to complete its flight demonstrations. In 2007, NASA terminated the agreement with RpK because it failed to meet a series of technical and financial milestones which were necessary to receive the incremental NASA payments. In 2008, NASA conducted another competition for the remaining 170 million of NASA funding and entered into a funded agreement with Orbital Sciences Corporation (OSC). This paper provides an overview of the COTS approach of SpaceX and OSC and the status of their efforts to develop reliable and cost-effective commercial transportation to serve the LEO marketplace.

  3. Mars Atmospheric Chemistry and Astrobiology Workshop Summary

    NASA Astrophysics Data System (ADS)

    Allen, M.; Wennberg, P.

    2002-09-01

    The Mars Atmospheric Chemistry and Astrobiology (MACA) Workshop was held on the California Institute of Technology campus December 17-18, 2001. The prime objective of the workshop was to consider whether extant life beneath the surface, if it exists, would be in contact with the atmosphere and introduce a detectable signature in the atmosphere. To answer this question, the workshop also explored how well we understood the abiotic chemistry of the current atmosphere and other drivers of atmospheric composition (volcanoes, surface-atmosphere interactions, escape). The conclusions from this workshop will be presented.

  4. Widening perspectives: the intellectual and social benefits of astrobiology (regardless of whether extraterrestrial life is discovered or not)

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.

    2018-01-01

    Astrobiology is usually defined as the study of the origin, evolution, distribution and future of life in the Universe. As such it is inherently interdisciplinary and cannot help but engender a worldview infused by cosmic and evolutionary perspectives. Both these attributes of the study of astrobiology are, and will increasingly prove to be, beneficial to society regardless of whether extraterrestrial life is discovered or not.

  5. Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Swift, R. N.; Butler, M. L.

    1980-01-01

    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain).

  6. Recent Aqueous Environments in Impact Craters and the Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Wynn-Williams, D. D.; Crawford, D. A.; Grin, E. A.

    2001-01-01

    Three cases of recent aqueous environments are surveyed at Mars Orbiting Camera (MOC) high-resolution in the E-Gorgonum, Newton and Hale craters and their astrobiological implications assessed. Additional information is contained in the original extended abstract.

  7. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa

  8. The International Journal of Astrobiology

    NASA Astrophysics Data System (ADS)

    Wynn-Williams, David D.

    2002-01-01

    The launch of a new journal is appropriately like a space mission. It is the result of a scientific need, the inspiration of a group of committed scientists and technologists, a series of draft proposals, an approved mission protocol, and a launch. Today is the launch day for a journal whose remit has only recently consolidated from diverse disciplines. Cambridge University Press has an international reputation for astronomy. To this we add extreme biology and its associated environmental research to integrate astrobiology as: 'the study of the origin, evolution, adaptation and distribution of past and present life in the Universe'. Astrobiology has three main themes: (1) Origin, evolution and limits of life on Earth; (2) Future of life, both on Earth and elsewhere; (3) Search for habitats, biomolecules and life in the Solar System and elsewhere. These fundamental concepts require the integration of various disciplines, including biology (especially microbiology), chemistry, geology, palaeontology, and the physics of atmospheres, planets and stars. We must also keep our minds wide open about the nature and limits of life. We can safely assume a carbon-based system within Solar Systems as we know them, but our concept of habitable zones expands yearly. We were taught that only the spores of certain bacilli could survive temperatures above the boiling point of water, and yet we now know that the deep-sea vent microbe Pyrolobus can survive an hour at 121 °C, which is the temperature used for sterilising medical instruments. We know of cyanobacteria which can not only live inside deep-frozen Antarctic rocks but also survive on roof-tops in Jerusalem at 80 °C. The bacterium Deinococcus radiodurans tolerates lethal doses of nuclear radiation, and cyanobacteria inside Antarctic desert sandstone receive so little moisture that their carbon turnover time (from its fixation by photosynthesis to its release as carbon dioxide during respiration) is 10,000 years. Life is

  9. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2005-01-01

    The presentation describes data management of NASA remote sensing data for Northern Eurasia Earth Science Partnership Initiative (NEESPI). Many types of ground and integrative (e.g., satellite, GIs) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of Northern Eurasia cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential. The proposed project targets integration of remote sensing data from AVHRR, MODIS, and other NASA instruments on board US- satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEPNCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  10. Continuous Risk Management: A NASA Program Initiative

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.

  11. NASA's initial flight missions in the Small Explorer Program

    NASA Technical Reports Server (NTRS)

    Rasch, Nickolus O.; Brown, William W.

    1989-01-01

    A new component of NASA's Explorer Program has been initiated in order to provide research opportunities characterized by small, quick-turn-around, and frequent space missions. Objectives include the launching of one or two payloads per year, depending on mission cost and availability of funds and launch vehicles. The four missions chosen from the proposals solicited by the Small Explorer Announcement Opportunity are discussed in detail. These include the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) designed to carry out energetic particle studies of outstanding questions in the fields of space plasma, solar, heliospheric, cosmic ray, and middle atmospheric physics; the Submillimeter Wave Astronomy Satellite (SWAS), which will conduct both pointed and survey observations of dense galactic molecular clouds; the Fast Auroral Snapshot Explorer (FAST); and the Total Ozone Mapping Spectrometer (TOMS).

  12. Lunar and Planetary Science XXXV: Astrobiology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The presentations in this session are: 1. A Prototype Life Detection Chip 2. The Geology of Atlantis Basin, Mars, and Its Astrobiological Interest 3. Collecting Bacteria Together with Aerosols in the Martian Atmosphere by the FOELDIX Experimental Instrument Developed with a Nutrient Detector Pattern: Model Measurements of Effectivity 4. 2D and 3D X-ray Imaging of Microorganisms in Meteorites Using Complexity Analysis to Distinguish Field Images of Stromatoloids from Surrounding Rock Matrix in 3.45 Ga Strelley Pool Chert, Western Australia 4. Characterization of Two Isolates from Andean Lakes in Bolivia Short Time Scale Evolution of Microbiolites in Rapidly Receding Altiplanic Lakes: Learning How to Recognize Changing Signatures of Life 5. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode 6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence 7. Microbial D/H Fractionation in Extraterrestrial Materials: Application to Micrometeorites and Mars 8. Carbon Isotope Characteristics of Spring-fed Iron-precipitating Microbial Mats 9. Amino Acid Survival Under Ambient Martian Surface UV Lighting Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions 10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods 11. Thermal Decomposition of Siderite-Pyrite Assemblages: Implications for Sulfide Mineralogy in Martian Meteorite ALH84001 Carbonate Globules 12. Determination of the Three-Dimensional Morphology of ALH84001 and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy 13. On the Possibility of a Crypto-Biotic Crust on Mars Based on Northern and Southern Ringed Polar Dune Spots 14. Comparative Planetology of the Terrestrial Inner Planets: Implications for Astrobiology 15. A Possible Europa Exobiology 16. A Possible Biogeochemical Model for Titan

  13. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lafontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.

  14. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

  15. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  16. A possible first use of the word astrobiology?

    PubMed

    Briot, Danielle

    2012-12-01

    The word astrobiology was possibly first used in 1935, in an article published in a French popular science magazine. The author was Ary J. Sternfeld (1905-1980), a pioneer of astronautics who wrote numerous scientific books and papers. The article is remarkable because his portrayal of the concept is very similar to the way it is used today. Here I review the 1935 article and provide a brief history of Sternfeld's life, which was heavily influenced by the tragic events of 20(th) century history.

  17. Initial Results of Interdisciplinary Science Enabled by Eclipse 2017: NASA Perspective

    NASA Astrophysics Data System (ADS)

    Guhathakurta, M.

    2017-12-01

    The exceptionally long path over land of the August 21st total and partial solar eclipse provided an unprecedented opportunity for cross disciplinary studies of the sun, moon, Earth, and their interactions. NASA supported research using ground-based measurements, balloons and planes that "chased" the eclipse as well as data taken from a vast array of orbiting spacecraft, all of which helped scientists take continuous measurements of the sun and the effects of the eclipse on the ionosphere and Earth for relatively long periods of time. This talk will summarize some of the initial findings from these research.

  18. Woodpeckers and Diamonds: Some Aspects of Evolutionary Convergence in Astrobiology.

    PubMed

    Ćirković, Milan M

    2018-05-01

    Jared Diamond's argument against extraterrestrial intelligence from evolutionary contingency is subjected to critical scrutiny. As with the earlier arguments of George Gaylord Simpson, it contains critical loopholes that lead to its unraveling. From the point of view of the contemporary debates about biological evolution, perhaps the most contentious aspect of such arguments is their atemporal and gradualist usage of the space of all possible biological forms (morphospace). Such usage enables the translation of the adaptive value of a trait into the probability of its evolving. This procedure, it is argued, is dangerously misleading. Contra Diamond, there are reasons to believe that convergence not only plays an important role in the history of life, but also profoundly improves the prospects for search for extraterrestrial intelligence success. Some further considerations about the role of observation selection effects and our scaling of complexity in the great debate about contingency and convergence are given. Taken together, these considerations militate against the pessimism of Diamond's conclusion, and suggest that the search for traces and manifestations of extraterrestrial intelligences is far from forlorn. Key Words: Astrobiology-Evolution-Contingency-Convergence-Complex life-SETI-Major evolutionary transitions-Selection effects-Jared Diamond. Astrobiology 18, 491-502.

  19. Vanguard: A New Science Mission For Experimental Astrobiology

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Wynn-Williams, D.; Edwards, H.; Dickensheets, D.; Welch, C.; Curley, A.

    As an alternative to technically and financially problemat ic sample return missions, a rover-mounted laser Raman spectrometer sensitive to biomolecules and their mineral substrata is a promising alternative in the search for evidence of former life on Mars. We presented a new remote in situ analysis package being designed for experimental astrobiology on terrestrial-type planetary surfaces. The science is based on the hypothesis that if life arose on Mars, the selective pressure of solar radiation would have led to the evolution of pigmented systems to harness the energy of sunlight and to protect cells from concurrent UV stress. Microbial communities would have therefore become stratified by the light gradient, and our remote system would penetrate the near-subsurface profile in a vertical transect of horizontal strata in ancient sediments (such as palaeolake beds). The system will include an extensive array of robotic support to translocate and deploy a Raman spectrometer detectors beneath the surface of Mars ­ it will comprise of a base station lander to support communications, a robotic micro-rover to permit well- separated triplicate profiles made by three ground-penetrating moles mounted in a vertical configuration. Each mole will deploy a tether carrying fibre optic cables coupling the Raman spectrometer onboard the rover and the side-scanning sensor head on the mole. The complete system has been named Vanguard, and it represents a close collaboration between a space robotics engineer (Ellery), an astrobiologist (Wynn-Williams), a molecular spectroscopist (Edwards), an opto-electronic technologist (Dickensheets), a spacecraft engineer (Welch) and a robotic vision specialist (Curley). The autonomy requirement for the Vanguard instrument requires that significant scientific competence is imparted to the instrument through an expert system to ensure that quick-look analysis is performed onboard in real-time as the mole penetrates beneath the surface. Onboard

  20. The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park

    PubMed Central

    Siefert, Janet L.; Escalante, Ana E.; Elser, James J.; Eguiarte, Luis E.

    2012-01-01

    Abstract The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a “Precambrian Park” for astrobiology. Key Words: Microbial mats—Stromatolites—Early Earth—Extremophilic microorganisms—Microbial ecology. Astrobiology 12, 641–647. PMID:22920514

  1. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    PubMed

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  2. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  3. Lunar and Planetary Science XXXV: Astrobiology: Analogs and Applications to the Search for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology: Analogs and Applications to the Search for Life" included the folowing reports:The Search for Life on Mars Using Macroscopically Visible Microbial Mats (Stromatolites) in 3.5/3.3 Ga Cherts from the Pilbara in Australia and Barberton in South Africa as Analogues; Life in a Mars Analog: Microbial Activity Associated with Carbonate Cemented Lava Breccias from NW Spitsbergen; Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features; Episodic Fossilization of Microorganisms on an Annual Timescale in an Anthropogenically Modified Natural Environment: Geochemical Controls and Implications for Astrobiology; Proterozoic Microfossils and Their Implications for Recognizing Life on Mars; Microbial Alteration of Volcanic Glass in Modern and Ancient Oceanic Crust as a Proxy for Studies of Extraterrestrial Material ; Olivine Alteration on Earth and Mars; Searching for an Acidic Aquifer in the R!o Tinto Basin. First Geobiology Results of MARTE Project; In-Field Testing of Life Detection Instruments and Protocols in a Mars Analogue Arctic Environment; Habitability of the Shallow Subsurface on Mars: Clues from the Meteorites; Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain; Characterization of the Organic Matter in an Archean Chert (Warrawoona, Australia); and The Solfatara Crater, Italy: Characterization of Hydrothermal Deposits, Biosignatures and Their Astrobiological Implication.

  4. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  5. Reaching for the Stars: A New NASA-National Federation of the Blind Initiative

    NASA Astrophysics Data System (ADS)

    Maynard, N. G.; Riccobono, M. A.

    2004-12-01

    The National Aeronautics and Space Administration (NASA) and the National Federation of the Blind (NFB) recently launched a unique new partnership which will inspire and empower blind youth to consider opportunities in science, technologies, engineering, and math related careers from which they have typically been excluded. This partnership presents a framework for successful cultivation of the next generation of scientists. By partnering with the NFB Jernigan Institute, a one of a kind research and training facility developed and directed by blind people, NASA has engaged the most powerful tool for tapping the potential of blind youth. By teaming NASA scientists and engineers with successful blind adults within a national organization, the NFB, this partnership has established an unparalleled pipeline of talent and imagination. The NASA/NFB partnership seeks to facilitate the means that will lead to increased science and technology employment opportunities for the blind, and particularly within NASA. The initiative is facilitating the development of education programs and products which will stimulate better educational opportunities and supports for blind youth in the STEM areas and better preparing them to enter the NASA employment path. In addition, the partnership brings the unique perspective of the blind to the continuing effort to develop improved space technologies, which may be applied for navigation and wayfinding, technologies for education and outreach, and technologies for improving access to information using nonvisual techniques. This presentation describes some of the activities accomplished in the first year of the partnership. Examples include the establishment of the first NFB Science Academy for Blind Youth which included two summer science camps supported by NASA. During the first camp session, twelve middle school age blind youth explored earth science concepts such as identification and characterization of soils, weather parameters, plants

  6. Project ELaNa and NASA's CubeSat Initiative

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2010-01-01

    This slide presentation reviews the NASA program to use expendable lift vehicles (ELVs) to launch nanosatellites for the purpose of enhancing educational research. The Education Launch of Nanosatellite (ELaNa) project, run out of the Launch Services Program is requesting proposals for CubeSat type payload to provide information that will aid or verify NASA Projects designs while providing higher educational research

  7. STARLIFE - An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.

  8. [Discovery of Gullies on Mars Apparently Formed by Recent Seepage of Fluids

    NASA Technical Reports Server (NTRS)

    Knauth, L. Paul

    2004-01-01

    Most of the proposed objectives in this grant were achieved during the 3 year duration of the grant and its one year extension. In addition, shortly after initiation of the grant, the discovery of gullies on Mars apparently formed by recent seepage of fluids was announced. Together with partial support from the Astrobiology Institute, I devoted considerable effort during the grant interval into understanding the origin of these gullies because of their astrobiological significance. In addition, longstanding investigations of the environmental conditions of the Early Earth initiated years ago under previous NASA and NSF funding reached fruition and these were presented and published. This report summarizes the significant findings reported during the grant interval. Some of the work initiated during this interval has been completed under the subsequent Exobiology grant and will be reported at the appropriate time.

  9. Aliens are us. An innovative course in astrobiology

    NASA Astrophysics Data System (ADS)

    Oliveira, Carlos F.; Barufaldi, James P.

    2009-01-01

    We live in a scientific world; paradoxically, the scientific literacy of the population is minimal at best. Science is an ongoing process, a human endeavour; paradoxically, students tend to believe that science is a finished enterprise. Many non-science major students are not motivated in science classes; paradoxically, there is a public fascination with the possibility of life in the Universe, which is nowadays a scientific endeavour. An astrobiology course was developed at the Center for Science and Mathematics Education at The University of Texas at Austin to address these paradoxes and includes the following objectives: (a) to improve scientific literacy; (b) to demonstrate that science is a work in progress; (c) to enhance the inherent interdisciplinary aspect of science; (d) to demonstrate that science is embedded in society and relates with several social sciences; (e) to improve the content knowledge about the nature of science; (f) to illustrate how engaging learning science can be; and (g) to draw from the intrinsic motivation already incorporated in the general population. The course has been offered, taught and revised for the past three years. The informal course student feedback has been very positive and encouraging. The purpose of this paper is to provide a general overview of the course. In addition, the course's background, content, themes and mode of delivery are outlined, discussed and analysed in this paper. This paper subscribes to an educational philosophy that focuses on the multidisciplinary nature of science and includes critical thinking-based teaching strategies using the dynamic discipline of astrobiology.

  10. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  11. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Administrator Charles Bolden gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  12. Energy Exchange NASA Opening Plenary

    NASA Technical Reports Server (NTRS)

    Marrs, Rick

    2017-01-01

    Rick Marrs, Deputy Assistant Administrator Office of Strategic Infrastructure NASA Headquarters will be speaking during the 2017 Energy Exchange opening plenary. His presentation showcases the NASA mission, sustainability at NASA, NASA's strategic Sustainability Performance Plan, Existing PV Partnerships, and NASA funded Solar Initiatives at KSC.

  13. EXPOSE-E: an ESA astrobiology mission 1.5 years in space.

    PubMed

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, André; Panitz, Corinna; Horneck, Gerda; von Heise-Rotenburg, Ralf; Hoppenbrouwers, Tom; Willnecker, Rainer; Baglioni, Pietro; Demets, René; Dettmann, Jan; Reitz, Guenther

    2012-05-01

    The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110 nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10 s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.

  14. Extraterrestrial Life as the Great Analogy, Two Centuries Ago and in Modern Astrobiology

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    Mainstream ideas on the existence of extraterrestrial life in the late 18th and early 19th centuries are examined, with a focus on William Herschel, one of the greatest astronomers of all time. Herschel viewed all of the planets and moons of our solar system as inhabited, and gave logical arguments that even the Sun, and by extension all of the stars, was a giant planet fit for habitation by intelligent beings. The importance for astrobiology both two centuries ago and now of the type of inductive reasoning called "analogy" is emphasized. Analogy is an imperfect tool, but given that we have only one known case of life and of a life-bearing planet, it is very difficult to make progress in astrobiology without resorting to analogy, in particular between known life and possible other life. We cannot overcome the "N = 1 Problem" without resorting to this "Great Analogy" to guide our research.

  15. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Leland Melvin, right, Education Design Team Co-Chair and NASA Astronaut, speaks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  16. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in

  17. Building effective learning experiences around visualizations: NASA Eyes on the Solar System and Infiniscope

    NASA Astrophysics Data System (ADS)

    Tamer, A. J. J.; Anbar, A. D.; Elkins-Tanton, L. T.; Klug Boonstra, S.; Mead, C.; Swann, J. L.; Hunsley, D.

    2017-12-01

    Advances in scientific visualization and public access to data have transformed science outreach and communication, but have yet to realize their potential impacts in the realm of education. Computer-based learning is a clear bridge between visualization and education, but creating high-quality learning experiences that leverage existing visualizations requires close partnerships among scientists, technologists, and educators. The Infiniscope project is working to foster such partnerships in order to produce exploration-driven learning experiences around NASA SMD data and images, leveraging the principles of ETX (Education Through eXploration). The visualizations inspire curiosity, while the learning design promotes improved reasoning skills and increases understanding of space science concepts. Infiniscope includes both a web portal to host these digital learning experiences, as well as a teaching network of educators using and modifying these experiences. Our initial efforts to enable student discovery through active exploration of the concepts associated with Small Worlds, Kepler's Laws, and Exoplanets led us to develop our own visualizations at Arizona State University. Other projects focused on Astrobiology and Mars geology led us to incorporate an immersive Virtual Field Trip platform into the Infiniscope portal in support of virtual exploration of scientifically significant locations. Looking to apply ETX design practices with other visualizations, our team at Arizona State partnered with the Jet Propulsion Lab to integrate the web-based version of NASA Eyes on the Eclipse within Smart Sparrow's digital learning platform in a proof-of-concept focused on the 2017 Eclipse. This goes a step beyond the standard features of "Eyes" by wrapping guided exploration, focused on a specific learning goal into standards-aligned lesson built around the visualization, as well as its distribution through Infiniscope and it's digital teaching network. Experience from this

  18. The Effect of High-Dose Ionizing Radiation on the Isolated Photobiont of the Astrobiological Model Lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    Meeßen, Joachim; Backhaus, Theresa; Brandt, Annette; Raguse, Marina; Böttger, Ute; de Vera, Jean-Pierre; de la Torre, Rosa

    2017-02-01

    Lichen symbioses between fungi and algae represent successful life strategies to colonize the most extreme terrestrial habitats. Consequently, space exposure and simulation experiments have demonstrated lichens' high capacity for survival, and thus, they have become models in astrobiological research with which to discern the limits and limitations of terrestrial life. In a series of ground-based irradiation experiments, the STARLIFE campaign investigated the resistance of astrobiological model organisms to galactic cosmic radiation, which is one of the lethal stressors of extraterrestrial environments. Since previous studies have identified that the alga is the more sensitive lichen symbiont, we chose the isolated photobiont Trebouxia sp. of the astrobiological model Circinaria gyrosa as a subject in the campaign. Therein, γ radiation was used to exemplify the deleterious effects of low linear energy transfer (LET) ionizing radiation at extremely high doses up to 113 kGy in the context of astrobiology. The effects were analyzed by chlorophyll a fluorescence of photosystem II (PSII), cultivation assays, live/dead staining and confocal laser scanning microscopy (CLSM), and Raman laser spectroscopy (RLS). The results demonstrate dose-dependent impairment of photosynthesis, the cessation of cell proliferation, cellular damage, a decrease in metabolic activity, and degradation of photosynthetic pigments. While previous investigations on other extraterrestrial stressors have demonstrated a high potential of resistance, results of this study reveal the limits of photobiont resistance to ionizing radiation and characterize γ radiation-induced damages. This study also supports parallel STARLIFE studies on the lichens Circinaria gyrosa and Xanthoria elegans, both of which harbor a Trebouxia sp. photobiont.

  19. Vibrational Spectroscopy and Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  20. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    James Stofan, right, NASA Acting Associate Administrator for Education, introduces the keynote speakers at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  1. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    William Kelly, PhD, PE, Manager, Public Affairs, American Society for Engineering Education speaks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Seated are NASA Administrator Charles Bolden, left, and NASA Acting Associate Administrator for Education, James Stofan. (Photo Credit: NASA/Carla Cioffi)

  2. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  3. Bridging the Expert and Citizen Divide: Integrating Public Deliberation to Inform NASA's Asteroid Initiative

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Tomblin, D. C.; Sittenfeld, D.

    2017-12-01

    The demand for public engagement in upstream science and technology is fast becoming mainstream. From the National Academies to the European Commission, from geoengineering to gene editing, from artificial intelligence to synthetic biology—there is a growing recognition of the socio-technical nature of the inherent challenges and a variety of calls for earlier and sustained engagement with diverse stakeholders and the general public. Despite a significant increase in the number and sophistication of approaches, institutional and cultural barriers remain, particularly in linking techno-scientific discourse with socio-political discourse. We will report on a 2014 study to use Participatory Technology Assessment (pTA), a method for eliciting informed, deliberative, diverse, and representative citizen views prior to making decisions about science and technology, to inform upstream decisions concerning NASA's Asteroid Initiative. In partnership with NASA, the Expert and Citizen Assessment of Science and Technology (ECAST) network conducted pTA forums in Boston and Phoenix to assess citizens' preferences and values about potential options for asteroid detection, mitigation, and retrieval and the deployment of the Capability Driven Framework as a planning instrument for a journey to Mars. We describe the three-step trans-disciplinary research process applied for (a) issue framing and deliberation design, (b) content development and participant recruitment, and (c) value assessments and results integration. We present result highlights, describe how they were used, and what kind of impact they had on decisions made by NASA. We discuss the influence this project had on subsequent initiatives by NOAA for climate resilience planning and by DOE for nuclear waste management. We conclude with our thoughts on (i) a new institutional model and (ii) research, application and adaptation opportunities going forward focusing on the role pTA can play to bridge the divide between

  4. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  5. Astrobiological phase transition: towards resolution of Fermi's paradox.

    PubMed

    Cirković, Milan M; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi's paradox or the "Great Silence" problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are gamma-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the "Great Silence", it is not supportive of the "contact pessimist" position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  6. The Mississippi NASA Community College Initiative

    NASA Technical Reports Server (NTRS)

    Lawhead, Pamela B.

    1998-01-01

    The object of this project was to provide greater utilization of existing resources to enhance the educational opportunities of Mississippi Community College students. When first introduced to the concept the teachers were understandably reluctant. They already had very heavy, prescribed work loads and most of what they had to do did not include NASA data. Teacher cooperation became a first goal. The second goal was effective use of NASA Earth Observation Data at every campus. Some compromises had to be made. The goal became to create a methodology or system that could be used on every campus and that the teachers would use. First year Biology was taught from a state-level prescribed curriculum on every one of the fifteen campuses. However, using Earth Observation Data in that curriculum was difficult. A compromise was made that allowed us to focus, in the first year, on the lesson hosting and creation process. Ten of the thirteen participating teachers agreed to create future lessons. They also asked to have a Community College Science Symposium in the Spring to demonstrate their lessons to the other science teachers in the state.

  7. Life in the Cosmic Context. An Astrobiology Course as an Experiment in Transdisciplinarity

    NASA Astrophysics Data System (ADS)

    Friaça, A. C. S.; Janot Pacheco, E.

    2014-10-01

    ``Life in the Cosmic Context" (AGA0316) is the astrobiology course offered by University of São Paulo to undergraduate students of science and humanities majors. The variety of background of the population attending AGA0316 and the broad scope of the addresssed issues makes this course a laboratory of transdisciplinarity.

  8. Question 2: why an astrobiological study of titan will help us understand the origin of life.

    PubMed

    Raulin, Francois

    2007-10-01

    For understanding the origin(s) of life on Earth it is essential to search for and study extraterrestrial environments where some of the processes which participated in the emergence of Life on our planet are still occurring. This is one of the goals of astrobiology. In that frame, the study of extraterrestrial organic matter is essential and is certainly not of limited interest regarding prebiotic molecular evolution. Titan, the largest satellite of Saturn and the only planetary body with an atmosphere similar to that of the Earth is one of the places of prime interest for these astrobiological questions. It presents many analogies with the primitive Earth, and is a prebiotic-like laboratory at the planetary scale, where a complex organic chemistry in is currently going on.

  9. NASA AMES Remote Operations Center for 2001

    NASA Technical Reports Server (NTRS)

    Sims, M.; Marshall, J.; Cox, S.; Galal, K.

    1999-01-01

    There is a Memorandum of Agreement between NASA Ames, JPL, West Virginia University and University of Arizona which led to funding for the MECA microscope and to the establishment of an Ames facility for science analysis of microscopic and other data. The data and analysis will be by agreement of the Mars Environmental Compatibility Assessment (MECA), Robotic Arm Camera (RAC) and other PI's. This facility is intended to complement other analysis efforts with one objective of this facility being to test the latest information technologies in support of actual mission science operations. Additionally, it will be used as a laboratory for the exploration of collaborative science activities. With a goal of enhancing the science return for both Human Exploration and Development of Space (HEDS) and Astrobiology we shall utilize various tools such as superresolution and the Virtual Environment Vehicle Interface (VEVI) virtual reality visualization tools. In this presentation we will describe the current planning for this facility.

  10. The NASA SARP Software Research Infusion Initiative

    NASA Technical Reports Server (NTRS)

    Hinchey, Mike; Pressburger, Tom; Markosian, Lawrence; Feather, Martin

    2006-01-01

    A viewgraph presentation describing the NASA Software Assurance Research Program (SARP) research infusion projects is shown. The topics include: 1) Background/Motivation; 2) Proposal Solicitation Process; 3) Proposal Evaluation Process; 4) Overview of Some Projects to Date; and 5) Lessons Learned.

  11. NASA's Needs for Biomaterials within the HEDS Initiative

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2000-01-01

    The part to be played by materials scientists to further NASA's exploration missions cannot be underestimated. To quote Jerome Groopman (New Yorker, February 14, 2000), "The rocket science will be the easy part". The four main risks on the Critical Path Road Map during a three-year sojourn to Mars are osteoporosis, psychological problems, radiation induced cancer and acute medical trauma. NASA's microgravity materials science program has investigations in membrane fabrication, bone growth and materials for radiation protection. These programs will be reviewed in the context of the four main risks, as will other potential uses of biomaterials and applications of biomimetic processing.

  12. Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology

    NASA Astrophysics Data System (ADS)

    Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

    2014-06-01

    Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

  13. NASA's Education Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

  14. NASA Information Technology Implementation Plan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Information Technology (IT) resources and IT support continue to be a growing and integral part of all NASA missions. Furthermore, the growing IT support requirements are becoming more complex and diverse. The following are a few examples of the growing complexity and diversity of NASA's IT environment. NASA is conducting basic IT research in the Intelligent Synthesis Environment (ISE) and Intelligent Systems (IS) Initiatives. IT security, infrastructure protection, and privacy of data are requiring more and more management attention and an increasing share of the NASA IT budget. Outsourcing of IT support is becoming a key element of NASA's IT strategy as exemplified by Outsourcing Desktop Initiative for NASA (ODIN) and the outsourcing of NASA Integrated Services Network (NISN) support. Finally, technology refresh is helping to provide improved support at lower cost. Recently the NASA Automated Data Processing (ADP) Consolidation Center (NACC) upgraded its bipolar technology computer systems with Complementary Metal Oxide Semiconductor (CMOS) technology systems. This NACC upgrade substantially reduced the hardware maintenance and software licensing costs, significantly increased system speed and capacity, and reduced customer processing costs by 11 percent.

  15. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    PubMed Central

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging

  16. Selecting A Landing Site Of Astrobiological Interest For Mars Landers And Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Wills, Danielle; Monaghan, E.; Foing, B.

    2008-09-01

    The landscape of Mars, despite its apparent hostility to life, is riddled with geological and mineralogical signs of past or present hydrological activity. As such, it is a key target for astrobiological exploration. The aim of this work is to combine data and studies to select top priority landing locations for in-situ landers and sample return missions to Mars. We report in particular on science and technical criteria and our data analysis for sites of astrobiological interest. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidence for volatiles, organics and habitability conditions). We discuss key mission objectives, and consider the accessibility of chosen locations. We describe what additional measurements are needed, and outline the technical and scientific operations requirements of in-situ landers and sample return missions to Mars.

  17. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  18. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Special Assitant for STEM Education, U. S. Department of Education, Michael Lach, far right, addresses guests at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Seated from right are James Stofan, NASA Acting Associate Administrator for Education; Charles Bolden, NASA Administrator; and Cora B. Marrett, Acting Director, National Science Foundation. (Photo Credit: NASA/Carla Cioffi)

  19. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  20. On Beyond Star Trek, the Role of Synthetic Biology in Nasa's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit the nascent field of synthetic biology in pursuit of its mission, including aeronautics, earth science, astrobiology and notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particularly space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement and the 2012 team has expanded the use of synthetic biology to estimate the potential for life in the clouds of other planets (http://2012.igem.org/Team:Stanford-Brown; http://www.calacademy.org/sciencetoday/igem-competition/). More recent projects from the Stanford-Brown team have expanded our ideas of how synthetic biology can aid NASA's missions from "Synthetic BioCommunication" (http://2013.igem.org/Team:Stanford-Brown) to a "Biodegradable UAS (drone)" in collaboration with Spelman College (http://2014.igem.org/Team:StanfordBrownSpelman#SBS%20iGEM) and most recently, "Self-Folding Origami" (http://2015.igem.org/Team:Stanford-Brown), the winner of the 2015 award for Manufacturing.

  1. NASA Post-Columbia Safety & Mission Assurance, Review and Assessment Initiatives

    NASA Astrophysics Data System (ADS)

    Newman, J. Steven; Wander, Stephen M.; Vecellio, Don; Miller, Andrew J.

    2005-12-01

    On February 1, 2003, NASA again experienced a tragic accident as the Space Shuttle Columbia broke apart upon reentry, resulting in the loss of seven astronauts. Several of the findings and observations of the Columbia Accident Investigation Board addressed the need to strengthen the safety and mission assurance function at NASA. This paper highlights key steps undertaken by the NASA Office of Safety and Mission Assurance (OSMA) to establish a stronger and more- robust safety and mission assurance function for NASA programs, projects, facilities and operations. This paper provides an overview of the interlocking OSMA Review and Assessment Division (RAD) institutional and programmatic processes designed to 1) educate, inform, and prepare for audits, 2) verify requirements flow-down, 3) verify process capability, 4) verify compliance with requirements, 5) support risk management decision making, 6) facilitate secure web- based collaboration, and 7) foster continual improvement and the use of lessons learned.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 12: An initial investigation into the production and use of Scientific and Technical Information (STI) at five NASA centers: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Glassman, Nanci A.; Pinelli, Thomas E.

    1992-01-01

    A study was conducted to provide NASA management with an 'initial' look at the production and use of scientific and technical information (STI) at five NASA centers (Ames, Goddard, Langley, Lewis, and Marshall). The 550 respondents who were interviewed by telephone held favorable views regarding the NASA STI system. About 65 percent of the respondents stated that it is either very or somewhat important for them to publish their work through the NASA STI system. About 10 percent of those respondents encountered problems using the NASA STI system services for publication. The most frequently reported problem was 'the process is too time consuming' (8.6 percent). Overall, those respondents using the NASA STI system to publish their work rated the system as excellent (24.6 percent) or good (37.6 percent). About 79 percent of the respondents stated that it is either very or somewhat important for them to use the NASA STI system to access information. The most frequently reported problems were 'the time and effort it takes to locate and obtain information through the system' (14.4 percent). Overall, about 83 percent of the respondents stated that the NASA STI system is important to performing their work. Overall, about 73 percent of the respondents stated that the NASA STI system meets their information needs.

  3. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  4. NASA's Big Earth Data Initiative Accomplishments

    NASA Technical Reports Server (NTRS)

    Klene, Stephan A.; Pauli, Elisheva; Pressley, Natalie N.; Cechini, Matthew F.; McInerney, Mark

    2017-01-01

    The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Services (GIBS).

  5. NASA's Big Earth Data Initiative Accomplishments

    NASA Astrophysics Data System (ADS)

    Klene, S. A.; Pauli, E.; Pressley, N. N.; Cechini, M. F.; McInerney, M.

    2017-12-01

    The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Service(GIBS)

  6. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.

  7. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  8. From Extremophiles to Star Trek, The Use of Synthetic Biology in Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Fujishima, Kosuke; Lima, Ivan Paulino; Gentry, Diana; Phan, Samson; Navarette, Jesica; Palmer, Jesse; Burnier, Andre

    2012-01-01

    Synthetic biology – the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes – has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as bio-mining, human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  9. Microorganisms in extreme environments with a view to astrobiology in the outer solar system

    NASA Astrophysics Data System (ADS)

    Seckbach, Joseph; Chela-Flores, Julian

    2015-09-01

    We review the various manifestations of the evolution of life in extreme environments. We review those aspects of extremophiles that are most relevant for astrobiology. We are aware that geothermal energy triggering sources of heat in oceanic environments are not unique to our planet, a fact that was exposed by the Voyager mission images of volcanic activity on Io, the Jovian moon. Such activity exceeded by far what was known form terrestrial geology. The science of astrobiology has considered the possible presence of several moon oceans in the vicinity of both giant gas and icy planets. These watery environments include, not only Europa (strongly suggested by data from the Galileo mission), but the Voyager flybys exposed, not only the unusual geothermal activity on Io, but also the possible presence of subsurface oceans and some geothermal activity on the Neptune's moon Triton. More recently, calculations of Hussmann and coworkers with available data do not exclude that even Uranus moons may be candidates for bearing subsurface oceans. These possibilities invite a challenge that we gladly welcome, of preliminary discussions of habitability of extremophiles in so far novel environments for the science of astrobiology. Nevertheless, such exploration is currently believed to be feasible with the new generations of missions suggested for the time window of 2030 - 2040, or even earlier. We are envisaging, not only the current exploration of the moons of Saturn, but in the coming years we expect to go beyond to Uranus and Neptune to include dwarf planets and trans-neptunian worlds. Consequently, it is necessary to begin questioning whether the Europa-like conditions for the evolution of microorganisms are repeatable elsewhere. At present three new missions are in the process of being formulated, including the selection of payloads that will be necessary for the exploration of the various so far unexplored moons.

  10. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Marion C. Blakey, President and CEO, Aerospace Industries Association, addresses guests at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  11. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Burnham, Karen; Scully, Robert; Norgard, John

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This presentation will outline the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability

  12. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Burnham, Karen; Scully, Robert C.; Norgard, John D.

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This paper outlines the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability.

  13. Astrobiology: An astronomer's perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less

  14. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  15. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Administrator Charles Bolden, far right, gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Administrator Bolden is joined on the panel from left to right by Leland Melvin, Education Design Team Co-Chair and NASA Astronaut; William Kelly, Manager, Public Affairs, American Society for Engineering Education; Michael Lach, Special Assistant for STEM Education, U.S. Department of Education; Cora Marrett, Acting Director, National Science Foundation; and James Stofan, NASA Acting Associate Administrator for Education. (Photo Credit: NASA/Carla Cioffi)

  16. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Cora B. Marrett, right, PhD, Acting Director, National Science Foundation gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  17. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Cora B. Marrett, PhD, Acting Director, National Science Foundation gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  18. NASA WISE Cryostat

    NASA Image and Video Library

    2009-10-13

    Initial assembly of NASA Wide-field Infrared Survey Explorer cryostat. The cryostat is a 2-stage solid hydrogen dewar that is used to cool the WISE optics and detectors. Here the cryostat internal structures are undergoing their initial vacuum pumpdown.

  19. Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Kotler, Julia Michelle; Billi, Daniela; Cockell, Charles; Demets, René; Ehrenfreund, Pascale; Elsaesser, Andreas; d'Hendecourt, Louis; van Loon, Jack J. W. A.; Martins, Zita; Onofri, Silvano; Quinn, Richard C.; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; de la Torre, Rosa; de Vera, Jean-Pierre; Westall, Frances; Carrasco, Nathalie; Fresneau, Aurélien; Kawaguchi, Yuko; Kebukawa, Yoko; Nguyen, Dara; Poch, Olivier; Saiagh, Kafila; Stalport, Fabien; Yamagishi, Akihiko; Yano, Hajime; Klamm, Benjamin A.

    2017-07-01

    The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format.

  20. Micro-XRF : Elemental Analysis for In Situ Geology and Astrobiology Exploration

    NASA Technical Reports Server (NTRS)

    Allwood, Abigail; Hodyss, Robert; Wade, Lawrence

    2012-01-01

    The ability to make close-up measurements of rock chemistry is one of the most fundamental tools for astrobiological exploration of Mars and other rocky bodies of the solar system. When conducting surface-based exploration, lithochemical measurements provide critical data that enable interpretation of the local geology, which in turn is vital for determining habitability and searching for evidence of life. The value of lithochemical measurements for geological interpretations has been repeatedly demonstrated with virtually every landed Mars mission over the past four decades.

  1. NASA's post-Challenger safety program - Themes and thrusts

    NASA Technical Reports Server (NTRS)

    Rodney, G. A.

    1988-01-01

    The range of managerial, technical, and procedural initiatives implemented by NASA's post-Challenger safety program is reviewed. The recommendations made by the Rogers Commission, the NASA post-Challenger review of Shuttle design, the Congressional investigation of the accident, the National Research Council, the Aerospace Safety Advisory Panel, and NASA internal advisory panels and studies are summarized. NASA safety initiatives regarding improved organizational accountability for safety, upgraded analytical techniques and methodologies for risk assessment and management, procedural initiatives in problem reporting and corrective-action tracking, ground processing, maintenance documentation, and improved technologies are discussed. Safety issues relevant to the planned Space Station are examined.

  2. The Formation of Organic Compounds of Astrobiological Interest by the Irradiation Processing of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2015-01-01

    Many environments in space contain very low temperature mixed molecular ices that are exposed to ionizing radiation in the form of cosmic rays and high-energy photons. While traditional chemistry would not be expected to occur at the temperatures typical of these ices (T < 50 K), ionizing radiation can break bonds in the original molecules in the ices to form highly reactive ions and radicals. These ions and radicals are subsequently free to react despite the low temperatures of the original ices. Laboratory experiments, many of them carried out at the Astrochemistry Laboratory at NASA-Ames, show that the irradiation of ices made of even simple molecules like H2O, CO, CO2, CH4, NH3, etc. can result in the robust formation of large numbers of far more complex organic compounds. Many of these new products are of direct interest to astrobiology. For example, the irradiation of mixed molecular ices has been shown to produce amino acids, amphiphiles, quinones, sugars, heterocyclic compounds, and nucleobases, all molecular building blocks used by terrestrial life. Insofar as the presence of these materials plays a role in the origin of life on planets, this has profound implications for the potential abundance of life in the universe since these experiments simulate universal conditions that are expected to be found wherever new stars and planets form.

  3. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  4. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, C.; Coe, L.; Rask, Jon; Paradise, Jim; Wynne, J.J.

    2008-01-01

    Introduction: NASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers. Purpose: This paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs. Methods: The investigation further provides a detailed overview of the structure of these two NASA education outreach programs, while providing information regarding selection criteria and program developments over time. Results: Since its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  5. NASA Education and Public Outreach Initiatives at the MIT Center for Space Research

    NASA Astrophysics Data System (ADS)

    Porro, I. L.

    2003-12-01

    Since its inception in 1999, the EPO office of the MIT Center for Space Research (CSR) has fostered direct participation of local scientists in educational initiatives such as teachers workshops and public tours of the Chandra Operations and Control Center. The role played by the CSR EPO office has grown significantly, thanks to the award of a number of EPO grants associated with the Chandra and HETE missions. In the past year about one-third of the CSR research staff was involved in the office's EPO initiatives: more than 500 K-12 students, about half from underrepresented groups, were included in formal education programs and informal education events attracted an estimated 900 people. Today the mission of the CSR EPO office is focused in two areas: professional development for K-12 science teachers, and educational programs in out-of-school time. To be associated with major NASA research missions is beneficial to our mission in several respects, but provides also specific challenges. We present here some of the strategies and intiatives that we have undertaken to overcome those challenges.

  6. NASA's Productivity Improvement and Quality Enhancement Initiatives

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The National Aeronautics and Space Administration celebrated its 25th Anniversary in 1983 at the Air and Space Museum in Washington, DC, with President Reagan in attendance. We look back on the accomplishments of these twenty-five years with pride in our missions and our people. NASA captured the world's imagination during the days of the Apollo mission. So much so, that we now talk about the Apollo era. In the l970s, we moved into the Space Transportation business and in the 199Os, we look forward to having a manned Space Station. Each succeeding mission has presented its own challenge in terms of technology and resources. This is especially true today, when we are being asked to do more with less. To ensure that NASA continues to be a productive and quality conscious agency, one of our highest Agency goals is leadership in the development and application of practices which contribute to high productivity and quality. greatest competitive strength, and this country has a solid scientific and engineering foundation. Traditionally we have spent more money on research and development than Japan and Europe combined, and we are the source of most of this century significant innovations. We should build on this solid base and use it more effectively.

  7. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson

    2010-01-01

    IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  8. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  9. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  10. Viking GCMS Data Restoral and Perceiving Temperature on Other Worlds: Astrobiology Projects at NASA Ames

    NASA Technical Reports Server (NTRS)

    Guzman, Melissa

    2015-01-01

    The primary task for the summer was to procure the GCMS data from the National Space Science Data Coordinated Archive (NSSDCA) and to assess the current state of the data set for possible reanalysis opportunities. After procurement of the Viking GCMS data set and analysis of its current state, the internship focus shifted to preparing a plan for restoral and archiving of the GCMS data set. A proposal was prepared and submitted to NASA Headquarters to restore and make available the 8000 mass chromatographs that are the basic data generated by the Viking GCMS instrument. The relevance of this restoral and the methodology we propose for restoral is presented. The secondary task for the summer is to develop a thermal model for the perceived temperature of a human standing on Mars, Titan, or Europa. Traditionally, an equation called "Fanger's comfort equation" is used to measure the perceived temperature by a human in a given reference environment. However, there are limitations to this model when applied to other planets. Therefore, the approach for this project has been to derive energy balance equations from first principles and then develop a methodology for correlating "comfort" to energy balance. Using the -20 C walk-in freezer in the Space Sciences building at NASA Ames, energy loss of a human subject is measured. Energy loss for a human being on Mars, Titan and Europa are calculated from first principles. These calculations are compared to the freezer measurements, e.g. for 1 minute on Titan, a human loses as much energy as x minutes in a -20 C freezer. This gives a numerical comparison between the environments. These energy calculations are used to consider the physiological comfort of a human based on the calculated energy losses.

  11. Heterocyclic Anions of Astrobiological Interest

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Demarais, Nicholas J.; Yang, Zhibo; Snow, Theodore P.; Bierbaum, Veronica M.

    2013-12-01

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N2O, O2, CO, OCS, CO2, and SO2) and other reactive species (CS2, CH3Cl, (CH3)3CCl, and (CH3)3CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  12. 78 FR 20359 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NASA Robotics Technologies project and NASA's work with the National Robotics Initiative; and an annual... Sail project --Update on NASA's Robotic Technologies and the National Robotics Initiative It is...

  13. Next Generation NASA Initiative for Space Geodesy

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  14. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  15. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the

  16. Field/Lab Training Workshops in Planetary Geology and Astrobiology for Secondary School Teachers

    NASA Astrophysics Data System (ADS)

    Treiman, A.; Newsom, H.; Hoehler, T.; Tsairides, C.; Karlstrom, K.; Crossey, L.; Kiefer, W.; Kadel, S.; Garcia-Pichel, F.; Aubele, J.; Crumpler, L.

    2003-12-01

    , with heightened appreciation, excited, and energetic. The teachers are asked to share their knowledge in their districts (in one case, saving the district thousands of dollars). For the presenters, the workshop format allows personal interactions with the teachers, leading to enhanced appreciation of their perspectives and needs. This year, teacher input assisted with an NSF-sponsored National Park education initiative. And in one case, a meaningful research collaboration has come from these workshops. Logistics is the greatest challenge of this workshop format. Hosts and teaching/lab venues need to be arranged early in sites dictated by science content, not convenience. Travel and lodging must be arranged for teachers and presenters at several sites, usually all distant from the organizing institution. Logistics also dictates that each workshop cannot serve more than about 30 teachers. The depth of knowledge imparted and its long-term effects on the teachers and their districts offsets the small number of teachers reached per year. Authors here are the 2003 organizers and presenters. Many others have organized and presented at past workshops - especially Dr. A.J. Irving of U. Wash. We are grateful for past support from NASA Broker/Facilitator, and now from Sandia National Laboratory and NASA OSS/EPO.

  17. The NASA Scientific and Technical Information (STI) Program's Implementation of Open Archives Initiative (OAI) for Data Interoperability and Data Exchange.

    ERIC Educational Resources Information Center

    Rocker, JoAnne; Roncaglia, George J.; Heimerl, Lynn N.; Nelson, Michael L.

    Interoperability and data-exchange are critical for the survival of government information management programs. E-government initiatives are transforming the way the government interacts with the public. More information is to be made available through Web-enabled technologies. Programs such as the NASA's Scientific and Technical Information (STI)…

  18. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  19. Astrobiology and Venus exploration

    NASA Astrophysics Data System (ADS)

    Grinspoon, David H.; Bullock, Mark A.

    For hundreds of years prior to the space age, Venus was considered among the most likely homes for extraterrestrial life. Since planetary exploration began, Venus has not been considered a promising target for Astrobiological exploration. However, Venus should be central to such an exploration program for several reasons. At present Venus is the only other Earth-sized terrestrial planet that we know of, and certainly the only one we will have the opportunity to explore in the foreseeable future. Understanding the divergence of Earth and Venus is central to understanding the limits of habitability in the inner regions of habitable zones around solar-type stars. Thus Venus presents us with a unique opportunity for putting the bulk properties, evolution and ongoing geochemical processes of Earth in a wider context. Many geological and meteorological processes otherwise active only on Earth at present are currently active on Venus. Active volcanism most likely affects the climate and chemical equilibrium state of the atmosphere and surface, and maintains the global cloud cover. Further, if we think beyond the specifics of a particular chemical system required to build complexity and heredity, we can ask what general properties a planet must possess in order to be considered a possible candidate for life. The answers might include an atmosphere with signs of flagrant chemical disequilibrium and active, internally driven cycling of volatile elements between the surface, atmosphere and interior. At present, the two planets we know of which possess these characteristics are Earth and Venus. Venus almost surely once had warm, habitable oceans. The evaporation of these oceans, and subsequent escape of hydrogen, most likely resulted in an oxygenated atmosphere. The duration of this phase is poorly understood, but during this time the terrestrial planets were not isolated. Rather, due to frequent impact transport, they represented a continuous environment for early microbial

  20. The Co-Evolution of Life & Environment, and the Astrobiological Quest

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.

    2016-12-01

    Physicochemical and environmental conditions determine the range of possible biogeochemistries on planets and moons. Yet, the Earth shows that as soon as life took hold, it modified its environment, from the mineralogy of sediments to the global composition of the atmosphere. In their evolution, life and environment are intertwined and cannot be separated. This coevolution is one of the most fundamental concepts in astrobiology, one that is central to our understanding of what, where, and how to search for life beyond Earth. In that quest, Mars will be the first destination for planetary missions seeking biosignatures. Both Earth and Mars had shared traits during the Archean/Noachian period. However, for Mars, the impact of a different environmental evolution on the development of life and the preservation of biosignatures remains unclear. In addition to an irreversible global climate change, Mars always had greater environmental variability than Earth due to its astronomical characteristics. Biological evolution, if any, would have had to proceed in this distinct context. If parallels can be drawn, the major metabolisms supporting Earth's biogeochemical cycles had evolved early. Understanding the succession of physical and environmental processes and their combination in the first 700 million years of Mars history is, therefore, essential to envision possible metabolisms, adaptation strategies life would have required to survive changes, and the biosignatures that could still be preserved today. Ultimately, the astrobiological significance of exploring Mars is also about teaching us invaluable lessons about the uniqueness of each planetary experiment, regardless of similarities. Beyond the Solar System, this notion can be expanded to the search for earth-like exoplanets, and for what it means to search for life as we know it, simple or complex.

  1. Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akihiko; Yano, Hajime; Yamashita, Masamichi; Hashimoto, Hirofumi; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Tabata, Makoto; Yabuta, Hikaru

    2012-07-01

    There is a long history of the microbe-collection experiments at high altitude (1). Microbes have been collected using balloons, aircraft and meteorological rockets. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments (1). It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. Tanpopo, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS) (2). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. In this presentation, we will present the recent results related to the microbiological analyses. The results suggested that the bleaching speeds and the spectra of fluorescence are different between different origins of the fluorescence: whether it is emitted from microbe or not. It is also shown that PCR analysis of the microbe can be used to determine the species. References 1)Yang, Y., Yokobori, S. and Yamagishi, A.: Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol. Sci. Space, 23 (2009), pp. 151-163. 2) Yamagishi, A., H. Yano, K. Kobayashi, K. Kobayashi, S. Yokobori, M. Tabata, H. Kawai, M. Yamashita, H. Hashimoto, H. Naraoka, & H. Mita (2008) TANPOPO: astrobiology exposure and micrometeoroid capture

  2. Tanpopo: Astrobiology exposure and micrometeoroid capture experiments

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akihiko; Yano, Hajime; Okudaira, Kyoko; Kobayashi, Kensei; Yokobori, Shin-Ichi; Kawai, Hideyuki; Yamashita, Masamichi; Hashimoto, Hirofumi; Yabuta, Hikaru

    There is a long history of the microbe-collection experiments at high altitude (1). Microbes have been collected using balloons, aircraft and meteorological rockets. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments (1). It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. Tanpopo, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS) (2). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. In this presentation, we will present the recent results related to the microbiological analyses. The results suggested that the bleaching speeds and the spectra of fluorescence are different between different origins of the fluorescence: whether it is emitted from microbe or not. It is also shown that PCR analysis of the microbe can be used to determine the species. References 1)Yang, Y., Yokobori, S. and Yamagishi, A.: Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol. Sci. Space, 23 (2009), pp. 151-163. 2) Yamagishi, A., H. Yano, K. Kobayashi, K. Kobayashi, S. Yokobori, M. Tabata, H. Kawai, M. Yamashita, H. Hashimoto, H. Naraoka, H. Mita (2008) TANPOPO: astrobi-ology exposure and micrometeoroid capture

  3. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  4. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Student Ambassadors and Facilitator are seen on a panel at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. From left to right are: Quenton Bonds, University of South Florida; Geoffrey Wawrzyniak, Purdue University; Heriberto Reynoso, University of Texas at Brownsville; Marie Kingbird-Lowry, Leech Lake Tribal College; Kareen Borders, University of Washington; Katelyn Doran, University of North Carolina at Charlotte and Ashanti Johnson, PhD, Executive Director, Institute for Broadening Participation. (Photo Credit: NASA/Carla Cioffi)

  5. Joint NASA/EPA AVIRIS Analysis in the Chesapeake Bay Region: Plans and Initial Results

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Stokely, Peter; Lobitz, Brad; Shelton, Gary

    1998-01-01

    NASA's Ames Research Center is performing an AVIRIS demonstration project in conjunction with the U. S. Environmental Protection Agency (Region 3). NASA and EPA scientists have jointly defined a Study Area in eastern Virginia to include portions of the Chesapeake Bay, southern Delmarva Peninsula, and the mouths of the York and James Rivers. Several environmental issues have been identified for study. These include, by priority: 1) water constituent analysis in the Chesapeake Bay, 2) mapping of submerged aquatic vegetation in the Bay, 3) detection of vegetation stress related to Superfund sites at the Yorktown Naval Weapons Station, and 4) wetland species analysis in the York River vicinity. In support of this project, three lines of AVIRIS data were collected during the Wallops Island deployment on 17 August 1997. The remote sensing payload included AVIRIS, MODIS Airborne Simulator and an RC-10 color infrared film camera. The AVIRIS data were delivered to Ames from the JPL AVIRIS Data Facility, on 29 September 1997. Quicklook images indicate nominal data acquisition, and at the current time an atmospheric correction is being applied. Water constituent analysis of the Bay is our highest priority based on EPA interest and available collateral data, both from the surface and from other remote sensing instruments. Constituents of interest include suspended sediments, chlorophyll-a and accessory pigments, Analysis steps will include: verification of data quality, location of study sites in imagery, incorporation of relevant field data from EPA and other Chesapeake Bay cooperators, processing of imagery to show phenomenon of interest, verification of results with cooperators. By 1st quarter CY98 we plan to circulate initial results to NASA and EPA management for review. In the longer term we will finalize documentation, prepare results for publication, and complete any needed technology transfer to EPA remote sensing personnel.

  6. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  7. Mars Analog Research and Technology Experiment (MARTE): A Simulated Mars Drilling Mission to Search for Subsurface Life at the Rio Tinto, Spain

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Lemke, Larry; Mandell, Humboldt; McKay, David; George, Jeffrey; Gomez-Alvera, Javier; Amils, Ricardo; Stevens, Todd; Miller, David

    2003-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project was selected by the new NASA ASTEP program, which supports field experiments having an equal emphasis on Astrobiology science and technology development relevant to future Astrobiology missions. MARTE will search for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River in southwestern Spain while also demonstrating technology needed to search for a subsurface biosphere on Mars. The experiment is informed by the strategy for searching for life on Mars.

  8. NASA's Big Data Task Force

    NASA Astrophysics Data System (ADS)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  9. Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: Relevance to Astrobiology

    NASA Astrophysics Data System (ADS)

    Shapiro, Russell Scott

    2004-12-01

    Recovery of prokaryotic body fossils from methane seep carbonates such as those of the Cretaceous Tepee Buttes of Colorado serves as a model for sampling in future astrobiological missions. The fossils, found primarily at the interface between paragenetic fabrics, suggest a sharp physicochemical gradient. Evidence of these microbial fossils occurs at a variety of scales. In the field, microbialite is found as meter-scale thrombolitic zones and centimeterscale stromatolitic crusts lining voids inferred to be the sites of ancient methane seepage. Petrographic fabrics suggestive of microbialite include indistinct peloids (0.1-1 mm in diameter) and crusts of authigenic micrite. Primary evidence obtained from scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis comprises pinnate bacteria (0.3 µm in diameter and 1-1.5 µm long), sheaths (2-4 µm in diameter), coccoids (0.5-1 µm in diameter, up to 40 per cluster), and the presence of framboidal pyrite (6-8 µm in diameter). These results are in agreement with studies of other ancient and modern seeps and suggest a morphological conservatism of microbial form that can be incorporated into studies of extraterrestrial environments where it is presumed that reduced gases drive the metabolic activity of prokaryote-like organisms. Target areas that could serve as conduits for reduced gas seeps include tectonic or impact-driven faulting, zones of cryosphere melting, or other disruptions in crustal coherence. Ancient seeps, preserved as localized anomalous evaporite deposits in the sedimentary cover, could be detected by remote sensing. Astrobiology 4, 438-449.

  10. Astrobiological Effects of Stellar Radiation in Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.

    2006-10-01

    The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.

  11. An Astrobiological View on Sustainable Life

    NASA Astrophysics Data System (ADS)

    Naganuma, Takeshi

    2009-10-01

    Life on a global biosphere basis is substantiated in the form of organics and organisms, and defined as the intermediate forms (briefly expressed as CH2O) hovering between the reduced (CH4, methane) and (CO2, carbon dioxide) ends, different from the classical definition of life as a complex organization maintaining ordered structure and information. Both definitions consider sustenance of life meant as protection of life against chaos through an input of external energy. The CH2O-life connection is maintained as long as the supply of H and O lasts, which is in turn are provided by the splitting of the water molecule H2O. Water is split by electricity, as well-known from school-level experiments, and by solar radiation and geothermal heat on a global scale. In other words, the Sun's radiation and the Earth's heat as well as radioactivity split water to supply H and O for continued existence of life on the Earth. These photochemical, radiochemical and geothermal processes have influences on the evolution and current composition of the Earth's atmosphere, compared with those of Venus and Mars, and influences on the planetary climatology. This view of life may be applicable to the "search-for-life in space" and to sustainability assessment of astrobiological habitats.

  12. Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research I. Morphological and Anatomical Characteristics

    NASA Astrophysics Data System (ADS)

    Meeßen, J.; Sánchez, F. J.; Brandt, A.; Balzer, E.-M.; de la Torre, R.; Sancho, L. G.; de Vera, J.-P.; Ott, S.

    2013-06-01

    Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species— Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum—used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.

  13. 2004 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (1) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (2) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (3) Overview of NASA Glenn s seal program aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (4) Reviews of NASA prime contractor and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (5) Reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA s new Exploration Initiative. Plans to develop the necessary mechanism and androgynous seal technologies were reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes during operation, and durability to meet mission requirements.

  14. An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel; Sapers, Haley; Simoncini, Eugenio; Lutz, Stefanie; Alexandre, Marcelo da Rosa; Galante, Douglas

    2014-04-01

    We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.

  15. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    NASA Administrator Charles Bolden, right, poses with U.S. Rep. Lincoln Diaz-Balart, R-Fla., prior to the start of an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  16. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    NASA Administrator Charles Bolden, left, speaks with Melinda French Gates, of the Bill & Melinda Gates Foundation, right, prior to the start of an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  17. An Archean Biosphere Initiative

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Boyd, E. S.; Buick, R.; Claire, M.; DesMarais, D.; Domagal-Goldman, D.; Eigenbrode, J.; Erwin, D.; Freeman, K.; Hazen, R.; hide

    2011-01-01

    The search for life on extrasolar planets will necessarily focus on the imprints of biolgy on the composition of planetary atmospheres. The most notable biological imprint on the modern terrestrial atmosphere is the presence of 21 % O2, However, during most of the past 4 billion years, life and the surface environments on Earth were profoundly different than they are today. It is therefore a major goal of the astrobiology community to ascertain how the O2 content of the atmosphere has varied with time. and to understand the causes of these variations. The NAI and NASA Exobiology program have played critical roles in developing our current understanding of the ancient Earth's atmosphere, supporting diverse observational, analytical, and computational research in geoscience, life science, and related fields. In the present incarnation of the NAI, ongoing work is investigating (i) variations in atmospheric O2 in the Archean to the Cambrian, (ii) characterization of the redox state of the oceans shortly before, during and after the Great Oxidation Event (GOE), and (iii) unraveling the complex connections between environmental oxygenation, global climate, and the evolution of life.

  18. Partnering With NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and PSAMS Initiative

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa; Draper, David

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. In order to continue to provide this level of support to the planetary sciences community, and also expand our services and collaboration within the broader scientific community, we intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science. This initiative should result in substantial cost savings to PIs with NASA funding who wish to use our facilities. Another cost saving could be realized by aggregating visiting user experiments and analyses through COMPRES, which would be of particular interest to researchers in earth and material sciences. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs and mission teams easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products that could be shared and distributed to COMPRES community members. These experimental run products could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, CETUS (see companion abstract), to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale.

  19. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  20. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  1. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  2. Nasa's Emerging Productivity Program

    NASA Technical Reports Server (NTRS)

    Braunstein, D. R.

    1984-01-01

    The goals, membership, and organizational structure of the NASA Productivity Steering Committee are described as well as steps taken to make NASA a leader in the development and application of productivity and quality concepts at every level of agency management. The overall strategy for the Productivity Improvement and Quality Enhancement (PIQE) Program is through employee involvement, both civil servant and contractor, in all phases of agency-wide activity. Elements of the PIQE program and initial thrusts are examined.

  3. Automated payload and instruments for astrobiology research developed and studied by German medium-sized space industry in cooperation with European academia

    NASA Astrophysics Data System (ADS)

    Schulte, Wolfgang; Hofer, Stefan; Hofmann, Peter; Thiele, Hans; von Heise-Rotenburg, Ralf; Toporski, Jan; Rettberg, Petra

    2007-06-01

    For more than a decade Kayser-Threde, a medium-sized enterprise of the German space industry, has been involved in astrobiology research in partnership with a variety of scientific institutes from all over Europe. Previous projects include exobiology research platforms in low Earth orbit on retrievable carriers and onboard the Space Station. More recently, exobiology payloads for in situ experimentation on Mars have been studied by Kayser-Threde under ESA contracts, specifically the ExoMars Pasteur Payload. These studies included work on a sample preparation and distribution systems for Martian rock/regolith samples, instrument concepts such as Raman spectroscopy and a Life Marker Chip, advanced microscope systems as well as robotic tools for astrobiology missions. The status of the funded technical studies and major results are presented. The reported industrial work was funded by ESA and the German Aerospace Center (DLR).

  4. Simulating a Submarine Hydrothermal Vent

    NASA Image and Video Library

    2013-01-16

    A team of scientists at NASA Jet Propulsion Laboratory is testing whether organic molecules can be brewed in a simulated ocean vent. Pictured here is Lauren White, a member of the NASA Astrobiology Icy Worlds team.

  5. The effect of environmental initiatives on NASA specifications and standards activities

    NASA Technical Reports Server (NTRS)

    Griffin, Dennis; Webb, David; Cook, Beth

    1995-01-01

    The NASA Operational Environment Team (NOET) has conducted a survey of NASA centers specifications and standards that require the use of Ozone Depleting Substances (ODS's) (Chlorofluorocarbons (CFCs), Halons, and chlorinated solvents). The results of this survey are presented here, along with a pathfinder approach utilized at Marshall Space Flight Center (MSFC) to eliminate the use of ODS's in targeted specifications and standards. Presented here are the lessons learned from a pathfinder effort to replace CFC-113 in a significant MSFC specification for cleaning and cleanliness verification methods for oxygen, fuel and pneumatic service, including Shuttle propulsion elements.

  6. Status of the NASA Balloon Program

    NASA Astrophysics Data System (ADS)

    Needleman, H. C.; Nock, R. S.; Bawcom, D. W.

    1993-02-01

    In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.

  7. Research and Technology 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.

  8. NASA's Education Program Inventory FY 91

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In 1988, the Education Division produced an inventory of NASA-supported education programs. Since then, mathematics, science, and technology education has taken on a more visible role, not only as part of NASA's mission, but as part of the National Education Goals and other Federal initiatives. Therefore, it became important to update the 1988 inventory in order to achieve a more accurate and comprehensive look at NASA's educational programs. The data collected is summarized and descriptions of each program are provided.

  9. NASA geodynamics program: Bibliography

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Seventh Geodynamics Program report summarizes program activities and achievements during 1988 and 1989. Included is a 115 page bibliography of the publications associated with the NASA Geodynamics Program since its initiation in 1979.

  10. NASA as a Convener: Government, Academic and Industry Collaborations Through the NASA Human Health and Performance Center

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2011-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 60 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed below. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations are in development: Space Act Agreement between NASA and GE for collaborative projects, NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011), NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011), NASA and the San Diego Zoo

  11. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    NASA Administrator Charles Bolden delivers remarks before a panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  12. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  13. Tumbleweed: Wind-propelled Surficial Measurements for Astrobiology and Planetary Science

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Behar, A. E.; Jones, J. A.; Carsey, F.; Coleman, M.; Bearman, G.; Buehler, M.; Boston, P. J.; McKay, C. P.; Rothschild, L.

    2004-01-01

    Tumbleweed is a wind-propelled long-range vehicle based on well-developed and tested technology, instrumented to perform surveys Mars analog environments for habitability and suitable for a variety of missions on Mars. Tumbleweeds are light-weight and relatively inexpensive, making it very attractive for multiple deployments or piggy-backing on a larger mission. Tumbleweeds with rigid structures are also being developed for similar applications. Modeling and testing have shown that a 6 meter diameter Tumbleweed is capable of climbing 25 hills, traveling over 1 meter diameter boulders, and ranging over a thousand kilometers. Tumbleweeds have a potential payload capability of about 10 kilograms with approximately 10-20 Watts of power. Stopping for science investigations can also be accomplished using partial deflation or other braking mechanisms. Surveys for Astrobiology and other applications of tumbleweeds are shown.

  14. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Univision news anchor Jorge Ramos speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  15. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Univision Networks president Cesar Conde speaks at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  16. OAI and NASA's Scientific and Technical Information.

    ERIC Educational Resources Information Center

    Nelson, Michael L.; Rocker, JoAnne; Harrison, Terry L.

    2003-01-01

    Details NASA's (National Aeronautics & Space Administration (USA)) involvement in defining and testing the Open Archives Initiative (OAI) Protocol for Metadata Harvesting (OAI-PMH) and experience with adapting existing NASA distributed searching DLs (digital libraries) to use the OAI-PMH and metadata harvesting. Discusses some new digital…

  17. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    NASA Administrator Charles Bolden, left, presents NASA's Group Achievement Award to Gwynne Shotwell, President, SpaceX, at NASA Headquarters in Washington on Thursday, November 13, 2013. Shotwell received the award for outstanding contributions and innovative accomplishments in the completion of the Commercial Orbital Transportation Services (COTS) initiative. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  18. NASA grievance system: Employee handbook

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This revised handbook updates the minimum provisions of the agency-wide Grievance System and applies to NASA Headquarters and field installations. All grievances initiated on or after June 15, 1981, will be processed under these provisions. NASA recognizes and endorses the importance of bringing to light and adjusting grievances promptly and of treating all employees reasonably and fairly. Achieving these objectives requires great competence, mature judgment, and true willingness to reach a satisfactory solution. Provisions of the NASA Grievance System are directed to this purpose. Grievances and misunderstandings can arise in almost any working situation. It follows then that an employee's initiation of a grievance in good faith should not cast any reflection on the employee's standing with his or her supervisor or loyalty and importance to the organization. At the same time, the initiation of a grievance should not automatically be considered as a reflection on the employee's supervisor or on the general management of the activity. This handbook should be used in conjunction with Office of Personnel Management regulations in 5 CFR Part 771 and Chapter 771 of the Federal Personnel Manual. Installations may issue implementing instructions, e.g. specifying when fact-finding is required or when an unresolved grievance must be referred to a higher level of authority.

  19. NASA Science4Girls: Engaging Girls in STEM at Their Local Library

    NASA Astrophysics Data System (ADS)

    Meinke, B.; Smith, D.; Bleacher, L.; Hauck, K.; Soeffing, C.; NASA SMD EPO Community

    2014-07-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. The initiative has expanded from the successful 2012 Astro4Girls pilot to engage girls in all four NASA science discipline areas, which broadens the impact of the pilot by enabling audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  20. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    Alan Lindenmoyer, Manager of Commercial Crew and Cargo Program at NASA, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  1. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    Phil McAlister, Director of Commercial Spaceflight Development at NASA, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  2. Psychrophiles and astrobiology: microbial life of frozen worlds

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    Most bodies of our Solar System are "Frozen Worlds" where the prevailing surface temperature remains at or below freezing. On Earth there are vast permanently frozen regions of permafrost, polar ice sheets, and glaciers and the deep oceans and deep-sea marine sediments have remained at 2 - 4°C for eons. Psychrophilic and psychrotrophic microbiota that inhabit these regimes provide analogs for microbial life that might inhabit ice sheets and permafrost of Mars, comets, or the ice/water interfaces or sediments deep beneath the icy crusts of Europa, Callisto, or Ganymede. Cryopreserved micro-organisms can remain viable (in a deep anabiotic state) for millions of years frozen in permafrost and ice. Psychrophilic and psychrotrophic (cold-loving) microbes can carry out metabolic processes in water films and brine, acidic, or alkaline chanels in permafrost or ice at temperatures far below 0°C. These microbes of the cryosphere help define the thermal and temporal limits of life on Earth and may provide clues to where and how to search for evidence of life elsewhere in the Cosmos. Astrobiologists at the NASA Marshall Space Flight Center have collected microbial extremophiles from the Pleistocene ice wedges and frozen thermokarst ponds from the Fox Permafrost Tunnel of Alaska. Microbes have also been isolated from samples of Magellanic Penguin guano from Patagonia; deep-sea marine muds near hydrothermal vents; snow and permafrost from Siberia, and deep ice cores, ice-bubble and cryoconite rocks of the Central Antarctic Ice Sheet. These samples have yielded microbial extremophiles representing a wide variety of anaerobic bacteria and archaea. These microbes have been isolated, cultured, characterized and analyzed by phylogenetic and genomic methods. Images were obtained by Phase Contrast, Environmental, Field Emission Scanning and Transmission Electron Microscopes to study the ultra-microstructure and elemental distribution in the composition of these micro-organisms. We

  3. Spacecraft Hybrid Control At NASA: A Look Back, Current Initiatives, and Some Future Considerations

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheels failures on aging, but still scientifically productive, NASA spacecraft. This paper describes the highlights of the first NASA Cross-Center Hybrid Control Workshop that was held in Greenbelt, Maryland in April of 2013 under the sponsorship of the NASA Engineering and Safety Center (NESC). A brief historical summary of NASA's past experiences with spacecraft mixed actuator hybrid attitude control approaches, some of which were implemented on-orbit, will be provided. This paper will also convey some of the lessons learned and best practices captured at that workshop. Some relevant recent and current hybrid control activities will be described with an emphasis on work in support of a repurposed Kepler spacecraft. Specific technical areas for future considerations regarding spacecraft hybrid control will also be identified.

  4. The use of NASA GEOS Global Analysis in MM5/WRF Initialization: Current Studies and Future Applications

    NASA Technical Reports Server (NTRS)

    Pu, Zhao-Xia; Tao, Wei-Kuo

    2004-01-01

    An effort has been made at NASA/GSFC to use the Goddard Earth Observing system (GEOS) global analysis in generating the initial and boundary conditions for MM5/WRF simulation. This linkage between GEOS global analysis and MM5/WRF models has made possible for a few useful applications. As one of the sample studies, a series of MM5 simulations were conducted to test the sensitivity of initial and boundary conditions to MM5 simulated precipitation over the eastern; USA. Global analyses horn different operational centers (e.g., NCEP, ECMWF, I U ASA/GSFCj were used to provide first guess field and boundary conditions for MM5. Numerical simulations were performed for one- week period over the eastern coast areas of USA. the distribution and quantities of MM5 simulated precipitation were compared. Results will be presented in the workshop. In addition,other applications from recent and future studies will also be addressed.

  5. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  6. Pharmacy in Space: A Session on NASA Technologies

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    1998-01-01

    In 1993, Vice-president Gore was charged with creation of a correctional plan for the poor findings from an efficiency study of governmental agencies. That correctional analysis was then used to support efforts to balance the budget in ways anticipated to improve the value returned per tax payer dollar spent. The final result was a broad initiative collectively termed "reinventing the government", which included major restructuring within NASA as well, termed "reinventing NASA This included substantial elimination of middle management and downsizing such that about 2 million government workers employed in 1992 has shrunk now to about 1.2 million government workers who are employed in ways that at least somewhat decrease bureaucratic and programmatic inefficiencies. Today, "reinvented NASA" has an awareness of contractual commitment to the public. NASA now operates within a so-called "strategic plan" that requires awareness and response to domestic needs. This is important to this audience because it means that NASA is committed to exploring interactions that you may wish to initiate. That is, you are urged to explore with NASA on topics of educational support, collaborative research, or commercial partnerships in drug development and application, as the pertinent examples here, in ways that can include involvement of central NASA resources and missions.

  7. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Melinda French Gates, of the Bill & Melinda Gates Foundation, speaks during an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  8. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Melinda French Gates, of the Bill & Melinda Gates Foundation speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  9. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Univision Communications President and Chief Executive Officer Joe Uva speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  10. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    U.S. Secretary of Education Arne Duncan speaks during an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  11. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    U.S. Secretary of Education Arne Duncan speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  12. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    U.S. Secretary of Labor Hilda Solis speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  13. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, listens as other NASA senior leadership talk during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  14. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  15. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  16. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  17. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Science John Grunsfeld, Ph.D, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  18. The 2nd NASA Aerospace Pyrotechnic Systems Workshop

    NASA Technical Reports Server (NTRS)

    St.Cyr, William W. (Compiler)

    1994-01-01

    This NASA Conference Publication contains the proceedings of the Second NASA Aerospace Pyrotechnics Systems Workshop held at Sandia National Laboratories, Albuquerque, New Mexico, February 8-9, 1994. The papers are grouped by sessions: (1) Session 1 - Laser Initiation and Laser Systems; (2) Session 2 - Electric Initiation; (3) Session 3 - Mechanisms & Explosively Actuated Devices; (4) Session 4 - Analytical Methods and Studies; and (5) Session 5 - Miscellaneous. A sixth session, a panel discussion and open forum, concluded the workshop.

  19. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Deputy Administrator Lori Garver discusses the progress being made on NASA's mission to capture, redirect, and explore an asteroid during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  20. Life in ice: implications to astrobiology

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Pikuta, Elena V.

    2009-08-01

    During previous research expeditions to Siberia, Alaska and Antarctica, it was observed that glaciers and ice wedges contained bacterial cells that became motile as soon as the ice melted. This phenomenon of live bacteria in ice was first documented for microbes in ancient ice cores from Vostok, Antarctica. The first validly published species of Pleistocene bacteria alive on Earth today was Carnobacterium pleistocenium. This extremophile had remained for 32,000 years, encased in ice recently exposed in the Fox Tunnel of Alaska. These frozen bacteria began to swim as soon as the ice was thawed. Dark field microscopy studies revealed that large numbers of bacteria exhibited motility as soon as glacial ice was melted during our recent Expeditions to Alaska and Antarctica led to the conclusion that microbial life in ice was not a rare phenomenon. The ability of bacteria to remain alive while frozen in ice for long periods of time is of great significance to Astrobiology. In this paper, we describe the recent observations and advance the hypothesis that life in ice provides valuable clues to how we can more easily search for evidence of life on the Polar Caps of Mars, comets and other icy bodies of our Solar System. It is suggested that cryopanspermia may have played a far more important role in Origin of Life on Earth and the distribution of Life throughout the Cosmos and than previously thought possible.

  1. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  2. NASA spinoffs to energy and the environment

    NASA Technical Reports Server (NTRS)

    Gilbert, Ray L.; Lehrman, Stephen A.

    1989-01-01

    Thousands of aerospace innovations have found their way into everyday use, and future National Aeronautics and Space Administration (NASA) missions promise to provide many more spinoff opportunities. Each spinoff has contributed some measure of benefit to the national economy, productivity, or lifestyle. In total, these spinoffs represent a substantial dividend on the national investment in aerospace research. Along with examples of the many terrestrial applications of NASA technology to energy and the environment, this paper presents the mechanisms by which NASA promotes technology transfer. Also discussed are new NASA initiatives in superconductivity research, global warming, and aeropropulsion.

  3. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    NASA Administrator Charles Bolden, left, presents NASA's Group Achievement Award to (L-R) Frank Culbertson, Executive Vice President and General Manager, Orbital Sciences Advanced Programs Group,at NASA Headquarters in Washington on Thursday, November 13, 2013. Culbertson received the award for outstanding contributions and innovative accomplishments in the completion of the Commercial Orbital Transportation Services (COTS) initiative. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  4. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, left, talks as NASA Associate Administrator Science John Grunsfeld, Ph.D, listens, during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  5. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, left, talks as NASA Associate Administrator Science John Grunsfeld, Ph.D, listens during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  6. NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets

    NASA Technical Reports Server (NTRS)

    Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn

    2017-01-01

    Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.

  7. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  8. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    Jenn Gustetic, Prizes Program Executive, NASA Office of the Chief Technologist moderates the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  9. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Space Technology, Mike Gazarik, Ph.D, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  10. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    Jason Kessler, Special Projects Program Executive, NASA Office of the Chief Technologist, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  11. NASA's East and Southeast Asia Initiatives: BASE-ASIA and EAST-AIRE

    NASA Technical Reports Server (NTRS)

    Tsay, S.; Maring, H.

    2005-01-01

    Airborne dust from northern China influences air quality and regional climate in Asia during springtime. However, with the economic growth in China, increased emission of particulate air pollutants from industrial and vehicular sources will not only impact the earth's radiation balance, but also adversely affect human health year round. In addition, both of dust and aerosol pollutants can be transported swiftly across the Pacific affecting North America within a few days. Asian dust and pollutant aerosols can be detected by their colored appearance using current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and by sunphotometers deployed on the surface of the earth. Biomass burning has been a regular practice for land clearing and conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Globally significant sources of greenhouse gases (eg., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play a role in determining cloud lifetime and precipitation, altering the earth's radiation and water budgets. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds; the hydrological cycle; land surface reflectivity and emissivity; and ecosystem biodiversity and stability. Two NASA initiatives, EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) and BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment) will be presented. The objectives of these initiatives is to

  12. Issues in NASA program and project management. Special Report: 1993 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, ED (Editor); Kishiyama, Jenny S. (Editor)

    1993-01-01

    This volume is the seventh in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1993 Conference: perspectives in NASA program/project management; the best job in aerospace; improvements in project management at NASA; strategic planning...mapping the way to NASA's future; new NASA procurement initiatives; international cooperation; and industry, government and university partnership. A section on resources for NASA managers rounds out the publication.

  13. Life and the Universe: From Astrochemistry to Astrobiology

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2013-01-01

    Great strides have been made in our understanding of interstellar material thanks to advances in infrared astronomy and laboratory astrophysics. Ionized polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier astrochemical standards, are widespread and very abundant throughout much of the cosmos. In cold molecular clouds, the birthplace of planets and stars, interstellar atoms and molecules freeze onto extremely cold dust and ice particles forming mixed molecular ices dominated by simple species such as water, methanol, ammonia, and carbon monoxide. Within these clouds, and especially in the vicinity of star and planet forming regions, these ices and PAHs are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of biogenic interest. Eventually, these are delivered to primordial planets by comets and meteorites. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex organic materials delivered to habitable planets (including the primordial Earth) and their composition may be related to the origin of life. This talk will focus on the chemical evolution of these cosmic materials and their relevance to astrobiology.

  14. Selecting a landing site of astrobiological interest for Mars landers and sample return missions

    NASA Astrophysics Data System (ADS)

    Wills, D.; Monaghan, E.; Foing, B. H.

    2008-09-01

    Abstract The landscape of Mars, despite its apparent hostility to life, is riddled with geological and mineralogical signs of past or present hydrological activity. As such, it is a key target for astrobiological exploration. There are, however, many factors that will need to be considered when planning in-situ and sample return missions, if these missions are indeed to adequately exploit the science potential of this intriguing world. These will not only take into account the environment of the landing site in terms of topography and ambient atmosphere etc., but also the geochemical make up of the surface regolith, evidence of hydrological processes and various other considerations. The knowledge base in all aspects of Martian science is being added to on an almost daily basis, and the aim of this work is to combine data and studies to nominate top priority landing locations for the search for evidence of life on Mars. We report in particular on science and technical criteria and our data analysis for sites of astrobiological interest. This includes information from previous missions (such as Mars Express, MGS, Odyssey, MRO and MER rovers) on mineralogical composition, geomorphology, evidence from past water history from imaging and spectroscopic data, and existence of in-situ prior information from landers and rovers (concerning evidences for volatiles, organics and habitability conditions). We discuss key mission objectives, and assess what sort of sites should be targeted in the light of these. We consider the accessibility of chosen locations, taking into account difficulties presented in accessing the polar regions and other regions of high altitude. We describe what additional measurements are needed, and outline the technical and scientific operations requirements of such in-situ landers and sample return missions. Approach In the first step of this study we focus on the science objectives of in-situ and sample return missions to Mars. We investigate the

  15. NASA SPoRT Initialization Datasets for Local Model Runs in the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Carcione, Brian; Wood, Lance; Maloney, Joseph; Estupinan, Jeral; Medlin, Jeffrey M.; Blottman, Peter; Rozumalski, Robert A.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can be used to initialize local model runs within the Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). These real-time datasets consist of surface-based information updated at least once per day, and produced in a composite or gridded product that is easily incorporated into the WRF EMS. The primary goal for making these NASA datasets available to the WRF EMS community is to provide timely and high-quality information at a spatial resolution comparable to that used in the local model configurations (i.e., convection-allowing scales). The current suite of SPoRT products supported in the WRF EMS include a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Greenness Vegetation Fraction (GVF) composite, and Land Information System (LIS) gridded output. The SPoRT SST composite is a blend of primarily the Moderate Resolution Imaging Spectroradiometer (MODIS) infrared and Advanced Microwave Scanning Radiometer for Earth Observing System data for non-precipitation coverage over the oceans at 2-km resolution. The composite includes a special lake surface temperature analysis over the Great Lakes using contributions from the Remote Sensing Systems temperature data. The Great Lakes Environmental Research Laboratory Ice Percentage product is used to create a sea-ice mask in the SPoRT SST composite. The sea-ice mask is produced daily (in-season) at 1.8-km resolution and identifies ice percentage from 0 100% in 10% increments, with values above 90% flagged as ice.

  16. Take Me Out to the Ball Game: Science Outreach to Non-traditional Audiences

    NASA Astrophysics Data System (ADS)

    Norsted, B. A.

    2010-08-01

    Science outreach often targets audiences that are already interested in science and are looking for related educational experiences for themselves or their families. The University of Wisconsin Geology Museum (UWGM) with funding from the NASA Astrobiology Institute (NAI) is targeting unique venues and thereby new audiences who may not typically seek out science outreach events. With this goal in mind, in June, 2009 the UWGM and NAI sponsored an "Astrobiology Night at the Ballpark" at the Madison Mallards Ballpark, the local Madison, Wisconsin minor league baseball venue. At the game, 6,250 attendees were exposed to current NASA-funded astrobiology research being conducted at the University of Wisconsin-Madison. Fans were greeted at the gate by volunteers passing out a nine-card pack of extremophile trading cards, each of which featured a different extremophile group (e.g. halophiles, cryophiles, and barophiles). Next, participants could interact with project scientists, graduate students and museum staff at four exploration stations, where each station highlighted astrobiology themes (i.e. extremophiles, banded iron formation, earth's oldest rocks, earth's oldest fossils). Before the game began, the video board on the field was used to broadcast short NASA videos about recent Mars missions as well as the search for life in space. Additionally, inning breaks were used as fun opportunities to engage fans through an "Alien vs. Kids" tug-of-war as well as the distribution of Frisbees with an astrobiology timeline printed on them. Engaging the broader public at a non-science venue is a means to breaking down perceived barriers between scientists and the general public. We found Mallards fans to be receptive and ready to connect with our science themes. Tapping into a new audience also builds a larger awareness of our museum and University, expanding our impact in the community.

  17. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Space Technology, Mike Gazarik, Ph.D, listens to a question from the audience during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  18. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, listens to a question from the audience during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  19. A Modeling and Verification Study of Summer Precipitation Systems Using NASA Surface Initialization Datasets

    NASA Technical Reports Server (NTRS)

    Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.

    2010-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using

  20. The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.

  1. A NASA Applied Spaceflight Environments Office Concept

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Edwards, David L.; Burns, Howard D.; Xapsos, Mike

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use and for use outside NASA. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling. Additionally the ASE office will serve as an entry point of contact for external users who wish to take advantage of data and assets associated with space environments, including space weather. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas.

  2. First Light from Extrasolar Planets and Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  3. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  4. Physics of Granular Materials: Investigations in Support of Astrobiology

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    2002-01-01

    This publication list is submitted as a summary of the work conducted under Cooperative Agreement 1120. The goal of the 1120 research was to study granular materials within a planetary, astrophysical, and astrobiological context. This involved research on the physical, mechanical and electrostatic properties of granular systems, as well as the examination of these materials with atomic force microscopy and x-ray analysis. Instruments for analyzing said materials in planetary environments were developed, including the MECA (Mars Environment Compatibility Assessment) experiment for the MSP '01 lander, the ECHOS/MATADOR experiment for the MSP '03 lander, an ISRU experiment for the '03 lander, and MiniLEAP technology. Flight experiments for microgravity (Space Station and Shuttle) have also been developed for the study of granular materials. As expressed in the publications, work on 1120 encompassed laboratory research, theoretical modeling, field experiments, and flight experiments: a series of successful new models were developed for understanding the behavior of triboelectrostatically charged granular masses, and 4 separate instruments were selected for space flight. No inventions or patents were generated by the research under this Agreement.

  5. NASA's Indigenous Capacity Building Initiative: Balancing Traditional Knowledge and Existing Remote Sensing Training to Inform Management Decisions

    NASA Astrophysics Data System (ADS)

    McCullum, A. J. K.; Schmidt, C.; Palacios, S. L.; Ly, V.

    2017-12-01

    NASA's Indigenous Capacity Building Initiative is aimed to provide remote sensing training, mentoring, and research opportunities to the indigenous community. A key programmatic goal is the co-production of place-based trainings where participants have the opportunity to address specific natural resource research and management issues facing their tribal lands. Three primary strategies have been adopted to engage with our tribal partners, these include: (1) the use of existing tribal networks and conferences such as the National Tribal GIS Conference, (2) coordination with other federal agencies such as the Bureau of Indian Affairs (BIA) and tribal liaisons at regional Climate Science Centers, and (3) connecting with tribes directly. Regional partner visits with tribes, such as meetings with the Samish Indian Nation, are integral to cultivate trusting, collaborative, and sustained partnerships and an understanding of how Earth Observations can be applied to the unique set of challenges and goals each tribe faces. As the program continues to grow, we aim to increase our incorporation of Traditional Ecological Knowledge (TEK) into technical methods and to develop trainings tailored to thematic areas of interest to specific tribes. Engagement and feedback are encouraged to refine our approaches to increase capacity within the indigenous community to utilize NASA Earth Observations.

  6. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars

    USGS Publications Warehouse

    Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.

  7. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    PubMed

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  8. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    Gwynne Shotwell, President of SpaceX, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  9. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, right, talks as NASA Associate Administrator Robert Lightfoot, left, NASA Associate Administrator Science John Grunsfeld, Ph.D, second from left, and NASA Associate Administrator for Space Technology, Mike Gazarik, Ph.D, look on during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  10. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, left, talks as NASA Associate Administrator Science John Grunsfeld, Ph.D, second from left, NASA Associate Administrator for Space Technology, Mike Gazarik, Ph.D, and, NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, right, look on during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  11. Volcanic Rocks As Targets For Astrobiology Missions

    NASA Astrophysics Data System (ADS)

    Banerjee, N.

    2010-12-01

    Almost two decades of study highlight the importance of terrestrial subaqueous volcanic rocks as microbial habitats, particularly in glass produced by the quenching of basaltic lava upon contact with water. On Earth, microbes rapidly begin colonizing glassy surfaces along fractures and cracks exposed to water. Microbial colonization of basaltic glass leads to enhanced alteration through production of characteristic granular and/or tubular bioalteration textures. Infilling of formerly hollow alteration textures by minerals enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggest the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend back ~3.5 billion years and is widespread in modern oceanic crust and its ancient metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  12. 2005 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2006-01-01

    The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.

  13. Space Exploration Initiative: Chronology

    NASA Technical Reports Server (NTRS)

    McCurdy, Howard E.

    1992-01-01

    This chronology gives an overview of the human space exploration initiative from 1956 through 1989. Details are given for the political milestones of the initiative, including information on presidential mandates and NASA Administrator appointments.

  14. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  15. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    Tom Kalil, Deputy Director for Technology and Innovation, White House Office of Science and Technology Policy, and, NASA Deputy Administrator Lori Garver, listen as NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  16. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    Tom Kalil, Deputy Director for Technology and Innovation, White House Office of Science and Technology Policy, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  17. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Bencic, Timothy; King, Michael; Ratvasky, Thomas; Van Zante, Judith

    2017-01-01

    This presentation shows results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This presentation shows data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  18. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.

    2017-01-01

    This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  19. NASA's approach to commercial cargo and crew transportation

    NASA Astrophysics Data System (ADS)

    Stone, Dennis; Lindenmoyer, Alan; French, George; Musk, Elon; Gump, David; Kathuria, Chirinjeev; Miller, Charles; Sirangelo, Mark; Pickens, Tom

    2008-07-01

    To stimulate the commercial space industry and potentially serve the logistics needs of the International Space Station (ISS) in the post-Space Shuttle era, the National Aeronautics and Space Administration (NASA) in 2006 began the Commercial Orbital Transportation Services (COTS) initiative. NASA entered into agreements with two U.S. firms, Rocketplane Kistler and Space Exploration Technologies to share up to 485,000,000 USD to demonstrate cargo transportation services to and from Low Earth orbit (LEO), with an option for additional funds to demonstrate human transportation services. Subsequently, NASA also entered into unfunded agreements with five companies to develop innovative space transportation capabilities. This paper reviews this unique initiative, describes the concepts of these seven companies, and discusses the potential of this emerging industry to make LEO more accessible.

  20. NASA NDATC Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian

  1. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  2. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    L-R: Alan Lindenmoyer, Manager of Commercial Crew and Cargo Program, NASA; Gwynne Shotwell, President, SpaceX; Frank Culbertson, Executive Vice President and General Manager, Orbital Sciences Advanced Programs Group; Frank Slazer, Vice President of Space Systems, Aerospace Industries Association and Phil McAlister, Director of Commercial Spaceflight Development at NASA, participate in a panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  3. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    Frank Slazer, Vice President of Space Systems, Aerospace Industries Association, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  4. NASA Year 2000 (Y2K) Program Plan

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA initiated the Year 2000 (Y2K) program in August 1996 to address the challenges imposed on Agency software, hardware, and firmware systems by the new millennium. The Agency program is centrally managed by the NASA Chief Information Officer, with decentralized execution of program requirements at each of the nine NASA Centers, Headquarters and the Jet Propulsion Laboratory. The purpose of this Program Plan is to establish Program objectives and performance goals; identify Program requirements; describe the management structure; and detail Program resources, schedules, and controls. Project plans are established for each NASA Center, Headquarters, and the Jet Propulsion Laboratory.

  5. Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Irwin, Louis N.; Irwin, Troy

    2002-11-01

    The lower cloud level of the Venusian atmosphere is an environmental niche that could harbor microbial life. Particularly the mode 3 particles that are enriched in this atmospheric layer are of astrobiological interest. We propose here a sample collection mission to the atmosphere of Venus and evaluate three mission options. The first option is a Stardust-type spacecraft used for sample collection, the second option is a Rotating Probe Tether System, and the third option is a Parachute Drop - Balloon Floatation System. Given the current state of technology, the result of our preliminary analysis is that the Parachute Drop - Balloon Floatation Mission is the most feasible and practical option.

  6. Investigation of heat transfer in zirconium potassium perchlorate at low temperature: A study of the failure mechanism of the NASA standard initiator

    NASA Technical Reports Server (NTRS)

    Varghese, Philip L.

    1989-01-01

    The objective of this work was to study the reasons for the failure of pyrotechnic initiators at very low temperatures (10 to 100 K). A two-dimensional model of the NASA standard initiator was constructed to model heat transfer from the electrically heated stainless steel bridgewire to the zirconium potassium perchlorate explosive charge and the alumina charge cup. Temperature dependent properties were used in the model to simulate initiator performance over a wide range of initial temperatures (10 to 500 K). A search of the thermophysical property data base showed that pure alumina has a very high thermal conductivity at low temperatures. It had been assumed to act as a thermal insulator in all previous analyses. Rapid heat transfer from the bridgewire to the alumina at low initial temperatures was shown to cause failure of the initiators if the wire did not also make good contact with the zirconium potassium perchlorate charge. The mode is able to reproduce the results of the tests that had been conducted to investigate the cause for failure. It also provides an explanation for previously puzzling results and suggests simple design changes that will increase reliability at very low initial temperatures.

  7. Establishment of a Rearing System of the Extremotolerant Tardigrade Ramazzottius varieornatus: A New Model Animal for Astrobiology

    NASA Astrophysics Data System (ADS)

    Horikawa, Daiki D.; Kunieda, Takekazu; Abe, Wataru; Watanabe, Masahiko; Nakahara, Yuichi; Yukuhiro, Fumiko; Sakashita, Tetsuya; Hamada, Nobuyuki; Wada, Seiichi; Funayama, Tomoo; Katagiri, Chihiro; Kobayashi, Yasuhiko; Higashi, Seigo

    2008-06-01

    Studies on the ability of multicellular organisms to tolerate specific environmental extremes are relatively rare compared to those of unicellular microorganisms in extreme environments. Tardigrades are extremotolerant animals that can enter an ametabolic dry state called anhydrobiosis and have high tolerance to a variety of extreme environmental conditions, particularly while in anhydrobiosis. Although tardigrades have been expected to be a potential model animal for astrobiological studies due to their excellent anhydrobiotic and extremotolerant abilities, few studies of tolerance with cultured tardigrades have been reported, possibly due to the absence of a model species that can be easily maintained under rearing conditions. We report the successful rearing of the herbivorous tardigrade, Ramazzottius varieornatus, by supplying the green alga Chlorella vulgaris as food. The life span was 35 ± 16.4 d, deposited eggs required 5.7 ± 1.1 d to hatch, and animals began to deposit eggs 9 d after hatching. The reared individuals of this species had an anhydrobiotic capacity throughout their life cycle in egg, juvenile, and adult stages. Furthermore, the reared adults in an anhydrobiotic state were tolerant of temperatures of 90°C and -196°C, and exposure to 99.8% acetonitrile or irradiation with 4000 Gy 4He ions. Based on their life history traits and tolerance to extreme stresses, R. varieornatus may be a suitable model for astrobiological studies of multicellular organisms.

  8. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  9. NASA Weather Support 2017

    NASA Technical Reports Server (NTRS)

    Carroll, Matt

    2017-01-01

    In the mid to late 1980's, as NASA was studying ways to improve weather forecasting capabilities to reduce excessive weather launch delays and to reduce excessive weather Launch Commit Criteria (LCC) waivers, the Challenger Accident occurred and the AC-67 Mishap occurred.[1] NASA and USAF weather personnel had advance knowledge of extremely high levels of weather hazards that ultimately caused or contributed to both of these accidents. In both cases, key knowledge of the risks posed by violations of weather LCC was not in the possession of final decision makers on the launch teams. In addition to convening the mishap boards for these two lost missions, NASA convened expert meteorological boards focusing on weather support. These meteorological boards recommended the development of a dedicated organization with the highest levels of weather expertise and influence to support all of American spaceflight. NASA immediately established the Weather Support Office (WSO) in the Office of Space Flight (OSF), and in coordination with the United Stated Air Force (USAF), initiated an overhaul of the organization and an improvement in technology used for weather support as recommended. Soon after, the USAF established a senior civilian Launch Weather Officer (LWO) position to provide meteorological support and continuity of weather expertise and knowledge over time. The Applied Meteorology Unit (AMU) was established by NASA, USAF, and the National Weather Service to support initiatives to place new tools and methods into an operational status. At the end of the Shuttle Program, after several weather office reorganizations, the WSO function had been assigned to a weather branch at Kennedy Space Center (KSC). This branch was dismantled in steps due to further reorganization, loss of key personnel, and loss of budget line authority. NASA is facing the loss of sufficient expertise and leadership required to provide current levels of weather support. The recommendation proposed

  10. NASA Advisory Council: Fact-Finding Session

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron; Martin, Franklin D.; Craig, Mark K.; Duke, Michael B.

    1992-01-01

    The principal agenda item for this fact-finding meeting of the NASA Advisory Council was NASA's preliminary planning of options to implement the President's initiative for establishing a base on the Moon and launching a human expedition to Mars. NASA's presentation (1) reviewed the key elements in the President's speech of July 20, 1989, summoning the Nation to launch a new exploration initiative to the Moon and Mars; (2) outlined five candidate options analyzed in terms of schedule and scale of effort (for a return to the Moon and for a voyage to Mars); (3) outlined tentative robotic mission milestones for both a 'vigorous deployment' option and a 'paced deployment' option; (4) reviewed Earth-to-orbit delivery requirements for a lunar heavy-lift launch vehicle, the National Space Transportation System, and a Mars heavy-lift launch vehicle; (5) summarized the associated Space Station Freedom requirements; (6) outlined the technology as well as human factors requirements for the candidate options; and (7) summarized the themes and approaches that could be employed for the science aspects of a national Moon/Mars exploration program.

  11. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  12. NASA PC software evaluation project

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kuan, Julie C.

    1986-01-01

    The USL NASA PC software evaluation project is intended to provide a structured framework for facilitating the development of quality NASA PC software products. The project will assist NASA PC development staff to understand the characteristics and functions of NASA PC software products. Based on the results of the project teams' evaluations and recommendations, users can judge the reliability, usability, acceptability, maintainability and customizability of all the PC software products. The objective here is to provide initial, high-level specifications and guidelines for NASA PC software evaluation. The primary tasks to be addressed in this project are as follows: to gain a strong understanding of what software evaluation entails and how to organize a structured software evaluation process; to define a structured methodology for conducting the software evaluation process; to develop a set of PC software evaluation criteria and evaluation rating scales; and to conduct PC software evaluations in accordance with the identified methodology. Communication Packages, Network System Software, Graphics Support Software, Environment Management Software, General Utilities. This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of context of the full Final Report.

  13. Astrobiology, space and the future age of discovery.

    PubMed

    Blumberg, Baruch S

    2011-02-13

    Astrobiology is the study of the origins, evolution, distribution and future of life in the Universe, and specifically seeks to understand the origin of life and to test the hypothesis that life exists elsewhere than on Earth. There is a general mathematics, physics and chemistry; that is, scientific laws that obtain on Earth also do so elsewhere. Is there a general biology? Is the Universe life-rich or is Earth an isolated island of biology? Exploration in the Age of Enlightenment required the collection of data in unexplored regions and the use of induction and empiricism to derive models and natural laws. The current search for extra-terrestrial life has a similar goal, but with a much greater amount of data and with computers to help with management, correlations, pattern recognition and analysis. There are 60 active space missions, many of them aiding in the search for life. There is not a universally accepted definition of life, but there are a series of characteristics that can aid in the identification of life elsewhere. The study of locations on Earth with similarities to early Mars and other space objects could provide a model that can be used in the search for extra-terrestrial life.

  14. 2006 NASA Seal/Secondary Air System Workshop; Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)

    2007-01-01

    The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).

  15. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the needs of Underrepresented Audiences through NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  16. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Science John Grunsfeld, Ph.D, displays a fragment of the Pallasite meteorite from Chubut, Argentina found in 1951 and given to him by his daughter on Father's Day during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  17. Refining the Ares V Design to Carry Out NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA's Ares V cargo launch vehicle is part of an overall architecture for u.S. space exploration that will span decades. The Ares V, together with the Ares I crew launch vehicle, Orion crew exploration vehicle and Altair lunar lander, will carry out the national policy goals of retiring the Space Shuttle, completing the International Space Station program, and expanding exploration of the Moon as a steps toward eventual human exploration of Mars. The Ares fleet (Figure 1) is the product of the Exploration Systems Architecture study which, in the wake of the Columbia accident, recommended separating crew from cargo transportation. Both vehicles are undergoing rigorous systems design to maximize safety, reliability, and operability. They take advantage of the best technical and operational lessons learned from the Apollo, Space Shuttle and more recent programs. NASA also seeks to maximize commonality between the crew and cargo vehicles in an effort to simplify and reduce operational costs for sustainable, long-term exploration.

  18. Eclipse 2017: Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; NASA Heliophysics Education Consortium

    2017-10-01

    The August 21, 2017 total solar eclipse across America was, by all accounts, the biggest science education program ever carried out by NASA, significantly larger than the Curiosity Mars landing and the New Horizons Pluto flyby. Initial accounting estimates over two billion people reached and website hits exceeding five billion. The NASA Science Mission Directorate spent over two years planning and developing this enormous public education program, establishing over 30 official NASA sites along the path of totality, providing imagery from 11 NASA space assets, two high altitude aircraft, and over 50 high altitude balloons. In addition, a special four focal plane ground based solar telescope was developed in partnership with Lunt Solar Systems that observed and processed the eclipse in 6K resolution. NASA EDGE and NASA TV broadcasts during the entirity of totality across the country reached hundreds of millions, world wide.This talk will discuss NASA's strategy, results, and lessons learned; and preview some of the big events we plan to feature in the near future.

  19. NASA GRC Technology Development Project for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.

  20. NASA Report to Education, Volume 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an edition of 'NASA Report to Education' covering NASA's Educational Workshop, Lewis Research Center's T-34 and the Space Exploration Initiative. The first segment shows NASA Education Workshop program (NEWEST - NASA Educational Workshops for Elementary School Teachers). Highlights of the 14 days of intense training, lectures, fieldtrips and simple projects that the educators went through to teach the program are included. Participants are shown working on various projects such as the electromagnetic spectrum, living in Space Station Freedom, experience in T-34, tour of tower at the Federal Aviation Administrative Facilities, conducting an egg survival system and an interactive video conference with astronaut Story Musgrave. Participants share impressions of the workshop. The second segment tells how Lewis Research Center's T-34 aircraft is used to promote aerospace education in several Cleveland schools and excite students.

  1. The NASA Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  2. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  3. The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars.

    PubMed

    Fairén, Alberto G; Dohm, James M; Rodríguez, J Alexis P; Uceda, Esther R; Kargel, Jeffrey; Soare, Richard; Cleaves, H James; Oehler, Dorothy; Schulze-Makuch, Dirk; Essefi, Elhoucine; Banks, Maria E; Komatsu, Goro; Fink, Wolfgang; Robbins, Stuart; Yan, Jianguo; Miyamoto, Hideaki; Maruyama, Shigenori; Baker, Victor R

    2016-02-01

    At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.

  4. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program's function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned-standards integration system. The Program maintains a 'one stop-shop' Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  5. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, WIlliam W.

    2003-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program s function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned - standards integration system. The Program maintains a "one stop-shop" Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  6. Atmosphere of Freedom: Sixty Years at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bugos, Glenn E.; Launius, Roger (Technical Monitor)

    2000-01-01

    Throughout Ames History, four themes prevail: a commitment to hiring the best people; cutting-edge research tools; project management that gets things done faster, better and cheaper; and outstanding research efforts that serve the scientific professions and the nation. More than any other NASA Center, Ames remains shaped by its origins in the NACA (National Advisory Committee for Aeronautics). Not that its missions remain the same. Sure, Ames still houses the world's greatest collection of wind tunnels and simulation facilities, its aerodynamicists remain among the best in the world, and pilots and engineers still come for advice on how to build better aircraft. But that is increasingly part of Ames' past. Ames people have embraced two other missions for its future. First, intelligent systems and information science will help NASA use new tools in supercomputing, networking, telepresence and robotics. Second, astrobiology will explore lore the prospects for life on Earth and beyond. Both new missions leverage Ames long-standing expertise in computation and in the life sciences, as well as its relations with the computing and biotechnology firms working in the Silicon Valley community that has sprung up around the Center. Rather than the NACA missions, it is the NACA culture that still permeates Ames. The Ames way of research management privileges the scientists and engineers working in the laboratories. They work in an atmosphere of freedom, laced with the expectation of integrity and responsibility. Ames researchers are free to define their research goals and define how they contribute to the national good. They are expected to keep their fingers on the pulse of their disciplines, to be ambitious yet frugal in organizing their efforts, and to always test their theories in the laboratory or in the field. Ames' leadership ranks, traditionally, are cultivated within this scientific community. Rather than manage and supervise these researchers, Ames leadership merely

  7. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  8. NASA's Carbon Cycle OSSE Initiative - Informing future space-based observing strategies through advanced modeling and data assimilation

    NASA Astrophysics Data System (ADS)

    Ott, L.; Sellers, P. J.; Schimel, D.; Moore, B., III; O'Dell, C.; Crowell, S.; Kawa, S. R.; Pawson, S.; Chatterjee, A.; Baker, D. F.; Schuh, A. E.

    2017-12-01

    Satellite observations of carbon dioxide (CO2) and methane (CH4) are critically needed to improve understanding of the contemporary carbon budget and carbon-climate feedbacks. Though current carbon observing satellites have provided valuable data in regions not covered by surface in situ measurements, limited sampling of key regions and small but spatially coherent biases have limited the ability to estimate fluxes at the time and space scales needed for improved process-level understanding and informed decision-making. Next generation satellites will improve coverage in data sparse regions, either through use of active remote sensing, a geostationary vantage point, or increased swath width, but all techniques have limitations. The relative strengths and weaknesses of these approaches and their synergism have not previously been examined. To address these needs, a significant subset of the US carbon modeling community has come together with support from NASA to conduct a series of coordinated observing system simulation experiments (OSSEs), with close collaboration in framing the experiments and in analyzing the results. Here, we report on the initial phase of this initiative, which focused on creating realistic, physically consistent synthetic CO2 and CH4 observational datasets for use in inversion and signal detection experiments. These datasets have been created using NASA's Goddard Earth Observing System Model (GEOS) to represent the current state of atmospheric carbon as well as best available estimates of expected flux changes. Scenarios represented include changes in urban emissions, release of permafrost soil carbon, changes in carbon uptake in tropical and mid-latitude forests, changes in the Southern Ocean sink, and changes in both anthropogenic and natural methane emissions. This GEOS carbon `nature run' was sampled by instrument simulators representing the most prominent observing strategies with a focus on consistently representing the impacts of

  9. Searching for Amino Acids in Meteorites and Comet Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elsila

    2010-01-01

    Chemistry plays an important role in the interdisciplinary field of astrobiology, which strives to understand the origin, distribution, and evolution of life throughout the universe. Chemical techniques are used to search for and characterize the basic ingredients for life, from the elements through simple molecules and up to the more complex compounds that may serve as the ingredients for life. The Astrobiology Analytical Laboratory at NASA Goddard uses state-of-the-art laboratory analytical instrumentation in unconventional ways to examine extraterrestrial materials and tackle some of the big questions in astrobiology. This talk will discuss some of the instrumentation and techniques used for these unique samples, as well as some of our most interesting results. The talk will present two areas of particular interest in our laboratory: (1) the search for chiral excesses in meteoritic amino acids, which may help to explain the origin of homochirality in life on Earth; and (2) the detection of amino acids and amines in material returned by NASA's Stardust mission, which rendevouzed with a cornet and brought back cometary particles to the Earth.

  10. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  11. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  12. NASA y Tú (NASA and You) - NASA's partnership with UNIVISION to promote Science, Technology, Engineering, and Math (STEM) careers among Hispanic youth

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Gilman, I.; Verstynen, S.; Jaramillo, R.; Bednar, S.; Shortridge, T.; Bravo, J.; Bowers, S.

    2010-12-01

    NASA is working with Univision Communications Inc. in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. A total of 52 Public Service Announcements (PSAs) named “Visión NASA” or “Vision: NASA” are being developed by NASA centered on current innovative technologies from all four NASA mission directorates (Science, Exploration Systems, Space Operations, and Aerodynamics). Public service announcements are being produced from scratch in both English and Spanish for a total of 26 announcements in each language. Interviews were conducted with NASA Hispanic Scientists or Engineers on the selected PSAs topics to both supply information on their subject matter and to serve as role models for Hispanic youth. Each topic selected for the PSAs has an accompanying website which includes the announcements, interviews with a Hispanic scientists or engineers, background information on the topic, and educational resources for students, parents and teachers. Products developed through this partnership will be presented including the websites of each PSA and their accompanying educational resources. The use of these educational resources for professional development, outreach and informal events, and for in-classroom uses will also be presented. This collaboration with Univision complements NASA's current education efforts to engage underrepresented and underserved students in the critical STEM fields.

  13. Enhancing a Person, Enhancing a Civilization: A Research Program at the Intersection of Bioethics, Future Studies, and Astrobiology.

    PubMed

    Ćirković, Milan M

    2017-07-01

    There are manifold intriguing issues located within largely unexplored borderlands of bioethics, future studies (including global risk analysis), and astrobiology. Human enhancement has for quite some time been among the foci of bioethical debates, but the same cannot be said about its global, transgenerational, and even cosmological consequences. In recent years, discussions of posthuman and, in general terms, postbiological civilization(s) have slowly gained a measure of academic respect, in parallel with the renewed interest in the entire field of future studies and the great strides made in understanding of the origin and evolution of life and intelligence in their widest, cosmic context. These developments promise much deeper synergic answers to questions regarding the long-term future of enhancement: how far can it go? Is human enhancement a further step toward building a true postbiological civilization? Should we actively participate and help shape this process? Is the future of humanity "typical" in the same Copernican sense as our location in space and time is typical in the galaxy, and if so, can we derive important insights about the evolutionary pathways of postbiological evolution from astrobiological and Search for ExtraTerrestrial Intelligence (SETI) studies? These and similar questions could be understood as parts of a possible unifying research program attempting to connect cultural and moral evolution with what we know and understand about their cosmological and biological counterparts.

  14. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  15. NASA's Swift Mission Observes Mega Flares from a Mini Star

    NASA Image and Video Library

    2017-12-08

    Caption: DG CVn, a binary consisting of two red dwarf stars shown here in an artist's rendering, unleashed a series of powerful flares seen by NASA's Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions. Image Credit: NASA's Goddard Space Flight Center/S. Wiessinger ----- On April 23, NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star. The initial blast from this record-setting series of explosions was as much as 10,000 times more powerful than the largest solar flare ever recorded. Read more: 1.usa.gov/1poKiJ5 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Improving the Interoperability and Usability of NASA Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; Berrick, S. W.; Murphy, K. J.; Mitchell, A. E.; Tilmes, C.

    2014-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth Science data. The system supports a multitude of missions and serves diverse science research and other user communities. While NASA has made, and continues to make, great strides in the discoverability and accessibility of its earth observation data holdings, issues associated with data interoperability and usability still present significant challenges to realizing the full scientific and societal benefits of these data. This concern has been articulated by multiple government agencies, both U.S. and international, as well as other non-governmental organizations around the world. Among these is the White House Office of Science and Technology Policy who, in response, has launched the Big Earth Data Initiative and the Climate Data Initiative to address these concerns for U.S. government agencies. This presentation will describe NASA's approach for addressing data interoperability and usability issues with our earth observation data.

  17. Astrobiology outreach and the nature of science: the role of creativity.

    PubMed

    Fergusson, Jennifer; Oliver, Carol; Walter, Malcolm R

    2012-12-01

    There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research-related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science.

  18. The Myth, the Truth, the NASA IRB

    NASA Technical Reports Server (NTRS)

    Covington, M. D.; Flores, M. P.; Neutzler, V. P.; Schlegel, T. T.; Platts, S. H.; Lioyd, C. W.

    2017-01-01

    The purpose of the NASA Institutional Review Board (IRB) is to review research activities involving human subjects to ensure that ethical standards for the care and protection of human subjects have been met and research activities are in compliance with all pertinent federal, state and local regulations as well as NASA policies. NASA IRB's primary role is the protection of human subjects in research studies. Protection of human subjects is the shared responsibility of NASA, the IRB, and the scientific investigators. Science investigators who plan to conduct NASA-funded human research involving NASA investigators, facilities, or funds must submit and coordinate their research studies for review and approval by the NASA IRB prior to initiation. The IRB has the authority to approve, require changes in, or disapprove research involving human subjects. Better knowledge of the NASA IRB policies, procedures and guidelines should help facilitate research protocol applications and approvals. In this presentation, the myths and truths of NASA IRB policies and procedures will be discussed. We will focus on the policies that guide a protocol through the NASA IRB and the procedures that principal investigators must take to obtain required IRB approvals for their research studies. In addition, tips to help ensure a more efficient IRB review will be provided. By understanding the requirements and processes, investigators will be able to more efficiently prepare their protocols and obtain the required NASA IRB approval in a timely manner.

  19. On the formation of polyacetylenes and cyanopolyacetylenes in Titan's atmosphere and their role in astrobiology.

    PubMed

    Kaiser, Ralf I; Mebel, Alexander M

    2012-08-21

    This tutorial review compiles recent experimental and theoretical studies on the formation of polyacetylenes (H(C≡C)(n)H) and cyanopolyacetylenes (H(C≡C)(n)CN) together with their methyl-substituted counterparts (CH(3)(C≡C)(n)H, CH(3)(C≡C)(n)CN) as probed under single collision conditions in crossed beam studies via the elementary reactions of ethynyl (CCH) and cyano radicals (CN) with unsaturated hydrocarbons. The role of these key reaction classes in the chemical evolution of Titan's orange-brownish haze layers is also discussed. We further comment on astrobiological implications of our findings with respect to proto-Earth and present a brief outlook on future research directions.

  20. NASA's Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2003-01-01

    Marshall Space Flight Center (MSFC) was selected as the Principal Center for review of Clean Air Act (CAA) regulations. The CAA Principal Center is tasked to: 1) Provide centralized support to NASA/HDQ Code JE for the management and leadership of NASA's CAA regulation review process; 2) Identify potential impact from proposed CAA regulations to NASA program hardware and supporting facilities. The Shuttle Environmental Assurance Initiative, one of the responsibilities of the NASA CAA Working Group (WG), is described in part of this viewgraph presentation.

  1. Concepts for a NASA Applied Spaceflight Environments Office

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Xapsos, Michael; Spann, Jim; Suggs, Robert

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling and prediction. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas

  2. NASA HyspIRI Workshop Report

    USDA-ARS?s Scientific Manuscript database

    On October 21-23rd 2008 NASA held a three-day workshop to consider the Hyperspectral and Infrared Imager (HyspIRI) mission recommended for implementation by the 2007 National Research Council Earth Science Decadal Survey. The open workshop provided a forum to present the initial observational requir...

  3. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  4. SMOS Soil Moisture Data Assimilation in the NASA Land Information System: Impact on LSM Initialization and NWP Forecasts

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan L.; Zavodsky, Bradley

    2015-01-01

    Land surface models are important components of numerical weather prediction (NWP) models, partitioning incoming energy into latent and sensitive heat fluxes that affect boundary layer growth and destabilization. During warm-season months, diurnal heating and convective initiation depend strongly on evapotranspiration and available boundary layer moisture, which are substantially affected by soil moisture content. Therefore, to properly simulate warm-season processes in NWP models, an accurate initialization of the land surface state is important for accurately depicting the exchange of heat and moisture between the surface and boundary layer. In this study, soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) satellite radiometer are assimilated into the Noah Land Surface Model via an Ensemble Kalman Filter embedded within the NASA Land Information System (LIS) software framework. The output from LIS-Noah is subsequently used to initialize runs of the Weather Research and Forecasting (WRF) NWP model. The impact of assimilating SMOS retrievals is assessed by initializing the WRF model with LIS-Noah output obtained with and without SMOS data assimilation. The southeastern United States is used as the domain for a preliminary case study. During the summer months, there is extensive irrigation in the lower Mississippi Valley for rice and other crops. The irrigation is not represented in the meteorological forcing used to drive the LIS-Noah integration, but the irrigated areas show up clearly in the SMOS soil moisture retrievals, resulting in a case with a large difference in initial soil moisture conditions. The impact of SMOS data assimilation on both Noah soil moisture fields and on short-term (0-48 hour) WRF weather forecasts will be presented.

  5. NASA Instrument Cost/Schedule Model

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, Hamid; Mrozinski, Joe; Fox, George

    2011-01-01

    NASA's Office of Independent Program and Cost Evaluation (IPCE) has established a number of initiatives to improve its cost and schedule estimating capabilities. 12One of these initiatives has resulted in the JPL developed NASA Instrument Cost Model. NICM is a cost and schedule estimator that contains: A system level cost estimation tool; a subsystem level cost estimation tool; a database of cost and technical parameters of over 140 previously flown remote sensing and in-situ instruments; a schedule estimator; a set of rules to estimate cost and schedule by life cycle phases (B/C/D); and a novel tool for developing joint probability distributions for cost and schedule risk (Joint Confidence Level (JCL)). This paper describes the development and use of NICM, including the data normalization processes, data mining methods (cluster analysis, principal components analysis, regression analysis and bootstrap cross validation), the estimating equations themselves and a demonstration of the NICM tool suite.

  6. Civil space technology initiative

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Civil Space Technology Initiative (CSTI) is a major, focused, space technology program of the Office of Aeronautics, Exploration and Technology (OAET) of NASA. The program was initiated to advance technology beyond basic research in order to expand and enhance system and vehicle capabilities for near-term missions. CSTI takes critical technologies to the point at which a user can confidently incorporate the new or expanded capabilities into relatively near-term, high-priority NASA missions. In particular, the CSTI program emphasizes technologies necessary for reliable and efficient access to and operation in Earth orbit as well as for support of scientific missions from Earth orbit.

  7. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  8. Mars for Earthlings: An Analog Approach to Mars in Undergraduate Education

    PubMed Central

    Kahmann-Robinson, Julia

    2014-01-01

    Abstract Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html. Key Words: Mars—Geology—Planetary science—Astrobiology—NASA education. Astrobiology 14, 42–49. PMID:24359289

  9. EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hood, Drew; Walker, Mary; Venkateswaran, Kasthuri J.; Schuerger, Andrew C.

    2018-01-01

    When we send humans to search for life on other planets, we'll need to know what we brought with us versus what may already be there. To ensure our crewed systems meet planetary protection requirements-and to protect our science from human contamination-we'll need to assess whether microorganisms may be leaking or venting from our spacecraft. Microbial sample collection outside of a pressurized spacecraft is complicated by temperature extremes, low pressures that preclude the use of laboratory standard (wetted) swabs, and operation either in bulky spacesuits or with robotic assistance. A team at the National Aeronautics and Space Administration (NASA) recently developed a swab kit for use in collecting microbial samples from the external surfaces of crewed spacecraft, including spacesuits. The Extravehicular Activity (EVA) Swab Kit consists of a single swab tool handle and an eight-canister sample caddy. The design team minimized development cost by re-purposing a heritage Space Shuttle tile repair handle that was designed to quickly snap into different tool attachments by engaging a mating device in each end effector. This allowed the tool handle to snap onto a fresh swab end effector much like popular shaving razor handles can snap onto a disposable blade cartridge. To disengage the handle from a swab, the user performs two independent functions, which can be done with a single hand. This dual operation mitigates the risk that a swab will be inadvertently released and lost in microgravity. Each swab end effector is fitted with commercially available foam swab tips, vendor-certified to be sterile for Deoxyribonucleic Acid (DNA). A microbial filter installed in the bottom of each sample container allows the container to outgas and re-pressurize without introducing microbial contaminants to internal void spaces. Extensive ground testing, post-test handling, and sample analysis confirmed the design is able to maintain sterile conditions as the canister moves between

  10. EVA Swab Tool to Support Planetary Protection and Astrobiology Evaluations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hood, Drew; Walker, Mary; Venkateswaran, Kasthuri J.; Schuerger, Andrew C.

    2018-01-01

    When we send humans to search for life on other planets, we'll need to know what we brought with us versus what may already be there. To ensure our crewed systems meet planetary protection requirements-and to protect our science from human contamination-we'll need to assess whether microorganisms may be leaking or venting from our spacecraft. Microbial sample collection outside of a pressurized spacecraft is complicated by temperature extremes, low pressures that preclude the use of laboratory standard (wetted) swabs, and operation either in bulky spacesuits or with robotic assistance. Engineers at the National Aeronautics and Space Administration (NASA) recently developed a swab kit for use in collecting microbial samples from the external surfaces of crewed spacecraft, including spacesuits. The Extravehicular Activity (EVA) Swab Kit consists of a single swab tool handle and an eight-canister sample caddy. The design team minimized development cost by re-purposing a heritage Space Shuttle tile repair handle that was designed to quickly snap into different tool attachments by engaging a mating device in each attachment. This allowed the tool handle to snap onto a fresh swab attachment much like popular shaving razor handles can snap onto a disposable blade cartridge. To disengage the handle from a swab, the user performs two independent functions, which can be done with a single hand. This dual operation mitigates the risk that a swab will be inadvertently released and lost in microgravity. Each swab attachment is fitted with commercially available foam swab tips, vendor-certified to be sterile for Deoxyribonucleic Acid (DNA). A microbial filter installed in the bottom of each sample container allows the container to outgas and repressurize without introducing microbial contaminants to internal void spaces. Extensive ground testing, post-test handling, and sample analysis confirmed the design is able to maintain sterile conditions as the canister moves between

  11. The Formation of Complex Organic Compounds in Astrophysical Ices and their Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2015-01-01

    Ices in astrophysical environments are generally dominated by very simple molecules like H2O, CH3OH, CH4, NH3, CO, CO2, etc, although they likely contain PAHs as well. These molecules, particularly H2O, are of direct interest to astrobiology in-and-of themselves since they represent some of the main carriers of the biogenic elements C, H, O, and N. In addition, these compounds are present in the dense interstellar clouds in which new stars and planetary systems are formed and may play a large role in the delivery of volatiles and organics to the surfaces of new planets. However, these molecules are all far simpler than the more complex organic compounds found in living systems.

  12. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    PubMed Central

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon K.-M. R.

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  13. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  14. The NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Averner, Maurice M.

    1990-01-01

    The NASA Controlled Ecological Life Support System (CELSS) program was initiated with the premise that NASA's goal would eventually include extended duration missions with sizable crews requiring capabilities beyond the ability of conventional life support technology. Currently, as mission duration and crew size increase, the mass and volume required for consumable life support supplies also increase linearly. Under these circumstances the logistics arrangements and associated costs for life support resupply will adversely affect the ability of NASA to conduct long duration missions. A solution to the problem is to develop technology for the recycling of life support supplies from wastes. The CELSS concept is based upon the integration of biological and physico-chemical processes to construct a system which will produce food, potable water, and a breathable atmosphere from metabolic and other wastes, in a stable and reliable manner. A central feature of a CELSS is the use of green plant photosynthesis to produce food, with the resulting production of oxygen and potable water, and the removal of carbon dioxide.

  15. Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons

    NASA Technical Reports Server (NTRS)

    Smith, David J.; Sowa, Marianne

    2017-01-01

    Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.

  16. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    EPA Science Inventory

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  17. AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.

    2003-01-01

    The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.

  18. Advanced Stirling Convertor (ASC) Development for NASA RPS

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  19. Impact of DYNAMO observations on NASA GEOS-5 reanalyses and the representation of MJO initiation

    NASA Astrophysics Data System (ADS)

    Achuthavarier, D.; Wang, H.; Schubert, S. D.; Sienkiewicz, M.

    2017-01-01

    This study examines the impact of the Dynamics of the Madden-Julian Oscillation (DYNAMO) campaign in situ observations on NASA Goddard Earth Observing System version 5 (GEOS-5) reanalyses and the improvements gained thereby in the representation of the Madden-Julian Oscillation (MJO) initiation processes. To this end, we produced a global, high-resolution (1/4° spatially) reanalysis that assimilates the level-4, quality-controlled DYNAMO upper air soundings from about 87 stations in the equatorial Indian Ocean region along with a companion data-denied control reanalysis. The DYNAMO reanalysis produces a more realistic vertical structure of the temperature and moisture in the central tropical Indian Ocean by correcting the model biases, namely, the cold and dry biases in the lower troposphere and warm bias in the upper troposphere. The reanalysis horizontal winds are substantially improved, in that, the westerly acceleration and vertical shear of the zonal wind are enhanced. The DYNAMO reanalysis shows enhanced low-level diabatic heating, moisture anomalies and vertical velocity during the MJO initiation. Due to the warmer lower troposphere, the deep convection is invigorated, which is evident in convective cloud fraction. The GEOS-5 atmospheric general circulation model (AGCM) employed in the reanalysis is overall successful in assimilating the additional DYNAMO observations, except for an erroneous model response for medium rain rates, between 700 and 600 hPa, reminiscent of a bias in earlier versions of the AGCM. The moist heating profile shows a sharp decrease there due to the excessive convective rain re-evaporation, which is partly offset by the temperature increment produced by the analysis.

  20. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  1. NASA-IGES Translator and Viewer

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.; Logan, Michael A.

    1995-01-01

    NASA-IGES Translator (NIGEStranslator) is a batch program that translates a general IGES (Initial Graphics Exchange Specification) file to a NASA-IGES-Nurbs-Only (NINO) file. IGES is the most popular geometry exchange standard among Computer Aided Geometric Design (CAD) systems. NINO format is a subset of IGES, implementing the simple and yet the most popular NURBS (Non-Uniform Rational B-Splines) representation. NIGEStranslator converts a complex IGES file to the simpler NINO file to simplify the tasks of CFD grid generation for models in CAD format. The NASA-IGES Viewer (NIGESview) is an Open-Inventor-based, highly interactive viewer/ editor for NINO files. Geometry in the IGES files can be viewed, copied, transformed, deleted, and inquired. Users can use NIGEStranslator to translate IGES files from CAD systems to NINO files. The geometry then can be examined with NIGESview. Extraneous geometries can be interactively removed, and the cleaned model can be written to an IGES file, ready to be used in grid generation.

  2. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS). In last year's NWA abstract on this topic, the suite of SPoRT products supported in the STRC EMS was presented, which includes a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This abstract and companion presentation describes recent upgrades made to the SST and GVF composites, as well as the real-time LIS runs. The Great Lakes sea-ice product is unchanged from 2011. The SPoRT SST composite product has been expanded geographically and as a result, the resolution has been coarsened from 1 km to 2 km to accommodate the larger domain. The expanded domain covers much of the northern hemisphere from eastern Asia to western Europe (0 N to 80 N latitude and 150 E to 10 E longitude). In addition, the NESDIS POES-GOES product was added to fill in gaps caused by the Moderate Resolution Imaging Spectroradiometer (MODIS) being unable to sense in cloudy regions, replacing the recently-lost Advanced Microwave Scanning Radiometer for EOS with negligible change to product fidelity. The SST product now runs twice per day for Terra and Aqua combined data collections from 0000 to 1200 UTC and from 1200 to 0000 UTC, with valid analysis times at 0600 and 1800 UTC. The twice-daily compositing technique reduces the overall latency of the previous version while still representing the diurnal cycle characteristics. The SST composites are available at approximately four hours after the end of each collection period (i.e. 1600 UTC for the nighttime analysis and 0400 UTC for the daytime analysis). The real-time MODIS GVF composite has only received minor updates in the

  3. The manager's guide to NASA graphics standards

    NASA Technical Reports Server (NTRS)

    1980-01-01

    NASA managers have the responsibility to initiate and carry out communication projects with a degree of sophistication that properly reflects the agency's substantial work. Over the course of the last decade, it has become more important to clearly communicate NASA's objectives in aeronautical research, space exploration, and related sciences. Many factors come into play when preparing communication materials for internal and external use. Three overriding factors are: producing the materials by the most cost-efficient method; ensuring that each item reflects the vitality, knowledge, and precision of NASA; and portraying all visual materials with a unified appearance. This guide will serve as the primary tool in meeting these criteria. This publication spells out the many benefits inherent in the Unified Visual Communication System and describes how the system was developed. The last section lists the graphic coordinators at headquarters and the centers who can assist with graphic projects. By understanding the Unified Visual Communication System, NASA managers will be able to manage a project from inception through production in the most cost-effective manner while maintaining the quality of NASA communications.

  4. Unique Education and Workforce Development for NASA Engineers

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Miller, Lauren L.

    2010-01-01

    NASA engineers are some of the world's best-educated graduates, responsible for technically complex, highly significant scientific programs. Even though these professionals are highly proficient in traditional analytical competencies, there is a unique opportunity to offer continuing education that further enhances their overall scientific minds. With a goal of maintaining the Agency's passionate, "best in class" engineering workforce, the NASA Academy of Program/Project & Engineering Leadership (APPEL) provides educational resources encouraging foundational learning, professional development, and knowledge sharing. NASA APPEL is currently partnering with the scientific community's most respected subject matter experts to expand its engineering curriculum beyond the analytics and specialized subsystems in the areas of: understanding NASA's overall vision and its fundamental basis, and the Agency initiatives supporting them; sharing NASA's vast reservoir of engineering experience, wisdom, and lessons learned; and innovatively designing hardware for manufacturability, assembly, and servicing. It takes collaboration and innovation to educate an organization that possesses such a rich and important historyand a future that is of great global interest. NASA APPEL strives to intellectually nurture the Agency's technical professionals, build its capacity for future performance, and exemplify its core valuesalJ to better enable NASA to meet its strategic visionand beyond.

  5. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  6. NASA advanced cryocooler technology development program

    NASA Astrophysics Data System (ADS)

    Coulter, Daniel R.; Ross, Ronald G., Jr.; Boyle, Robert F.; Key, R. W.

    2003-03-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Over the years, NASA has developed new cryocooler technologies for a wide variety of space missions. Recent achievements include the NCS, AIRS, TES and HIRDLS cryocoolers, and miniature pulse tube coolers at TRW and Lockheed Martin. The largest technology push within NASA right now is in the temperature range of 4 to 10 K. Missions such as the Next Generation Space Telescope (NGST) and Terrestrial Planet Finder (TPF) plan to use infrared detectors operating between 6-8 K, typically arsenic-doped silicon arrays, with IR telescopes from 3 to 6 meters in diameter. Similarly, Constellation-X plans to use X-ray microcalorimeters operating at 50 mK and will require ~6 K cooling to precool its multistage 50 mK magnetic refrigerator. To address cryocooler development for these next-generation missions, NASA has initiated a program referred to as the Advanced Cryocooler Technology Development Program (ACTDP). This paper presents an overview of the ACTDP program including programmatic objectives and timelines, and conceptual details of the cooler concepts under development.

  7. NASA Nationwide and the Year of the Solar System (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2010-12-01

    NASA depends on the efforts of several volunteer networks to help implement its formal and informal education goals, to disseminate its key messages related to space and Earth science missions and to support broad public initiatives such as the upcoming Year of the Solar System (YSS), sponsored by the Planetary Science Education and Public Outreach Forum (SEPOF). These highly leveraged networks include programs such as Solar System Ambassadors, Solar System Educators, Night Sky Network, and NASA Explorer Schools. Founded in June 2008, NASA Nationwide: A Consortium of Formal and Informal Education Networks is a program that brings together these volunteer networks by creating an online community and shared resources which broadens the member networks’ base of support and provides opportunities to coordinate, cooperate, and collaborate with each other. Since its inception, NASA Nationwide has grown to include twelve NASA-funded volunteer networks as members and collaborates with three other NASA networks as affiliates. NASA Nationwide’s support for the Year of the Solar System includes management of several recently completed Solar System Nights kits, which will be made available regionally to collaborative teams of volunteers and affiliates for use in connecting with students in underserved, underrepresented and rural populations. In the latter part of 2010, the program will be further enhanced by the debut of the public NASA Nationwide website to showcase the successful efforts of these volunteers, provide information about member organizations and advertise their upcoming events in support of the Year of the Solar System. Through its broad reach and the dedicated enthusiasm of its members, NASA Nationwide will be an essential factor utilized to help achieve Year of the Solar System goals and ensure the ultimate success of the initiative.

  8. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Birur, Gajanana C.

    2003-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future robotic NASA missions.

  9. NASA's Space Launch Initiative Targets Toxic Propellants

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; McNeal, Curtis; Davis, Daniel J. (Technical Monitor)

    2001-01-01

    When manned and unmanned space flight first began, the clear and overriding design consideration was performance. Consequently, propellant combinations of all kinds were considered, tested, and, when they lifted the payload a kilometer higher, or an extra kilogram to the same altitude, they became part of our operational inventory. Cost was not considered. And with virtually all of the early work being performed by the military, safety was hardly a consideration. After all, fighting wars has always been dangerous. Those days are past now. With space flight, and the products of space flight, a regular part of our lives today, safety and cost are being reexamined. NASA's focus turns naturally to its Shuttle Space Transportation System. Designed, built, and flown for the first time in the 1970s, this system remains today America's workhorse for manned space flight. Without its tremendous lift capability and mission flexibility, the International Space Station would not exist. And the Hubble telescope would be a monument to shortsighted management, rather than the clear penetrating eye on the stars it is today. But the Shuttle system fully represents the design philosophy of its period: it is too costly to operate, and not safe enough for regular long term access to space. And one of the key reasons is the utilization of toxic propellants. This paper will present an overview of the utilization of toxic propellants on the current Shuttle system.

  10. Carbon-Based Ion Optics Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Patterson, Michael; Rawlin, Vince; Soulas, George

    2002-01-01

    With recent success of the NSTAR ion thruster on Deep Space 1, there is continued interest in long term, high propellant throughput thrusters to perform energetic missions. This requires flight qualified thrusters that can operate for long periods at high beam density, without degradation in performance resulting from sputter induced grid erosion. Carbon-based materials have shown nearly an order of magnitude improvement in sputter erosion resistance over molybdenum. NASA Glenn Research Center (GRC) has been active over the past several years pursuing carbon-based grid development. In 1995, NASA GRC sponsored work performed by the Jet Propulsion Laboratory to fabricate carbon/carbon composite grids using a machined panel approach. In 1999, a contract was initiated with a commercial vendor to produce carbon/carbon composite grids using a chemical vapor infiltration process. In 2001, NASA GRC purchased pyrolytic carbon grids from a commercial vendor. More recently, a multi-year contract was initiated with North Carolina A&T to develop carbon/carbon composite grids using a resin injection process. The following paper gives a brief overview of these four programs.

  11. NASA Update

    NASA Image and Video Library

    2010-04-08

    "NASA Update" program with NASA Administrator Charles Bolden, NASA Deputy Administrator Lori Garver and NASA Acting Asistant Administrator for Public Affairs Bob Jacobs as moderator, NASA Headquarters, Thursday, April 8, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)

  12. OAI and NASA's Scientific and Technical Information

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Rocker, JoAnne; Harrison, Terry L.

    2002-01-01

    The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is an evolving protocol and philosophy regarding interoperability for digital libraries (DLs). Previously, "distributed searching" models were popular for DL interoperability. However, experience has shown distributed searching systems across large numbers of DLs to be difficult to maintain in an Internet environment. The OAI-PMH is a move away from distributed searching, focusing on the arguably simpler model of "metadata harvesting". We detail NASA s involvement in defining and testing the OAI-PMH and experience to date with adapting existing NASA distributed searching DLs (such as the NASA Technical Report Server) to use the OAI-PMH and metadata harvesting. We discuss some of the entirely new DL projects that the OAI-PMH has made possible, such as the Technical Report Interchange project. We explain the strategic importance of the OAI-PMH to the mission of NASA s Scientific and Technical Information Program.

  13. CubeSat Launch Initiative

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  14. Infusing Software Engineering Technology into Practice at NASA

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence

    2006-01-01

    We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.

  15. Management of government quality assurance functions for NASA contracts

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  16. Management of government quality assurance functions for NASA contracts

    NASA Astrophysics Data System (ADS)

    1993-04-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  17. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  18. Expanding NASA Science Cooperation with New Partners

    NASA Astrophysics Data System (ADS)

    Allen, Marc; Bress, Kent

    Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.

  19. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  20. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.