Sample records for nasa earth observations

  1. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  2. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  3. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for

  4. The NASA Space Shuttle Earth Observations Office

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Wood, Charles A.

    1989-01-01

    The NASA Space Shuttle Earth Observations Office conducts astronaut training in earth observations, provides orbital documentation for acquisition of data and catalogs, and analyzes the astronaut handheld photography upon the return of Space Shuttle missions. This paper provides backgrounds on these functions and outlines the data constraints, organization, formats, and modes of access within the public domain.

  5. Improving the Interoperability and Usability of NASA Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; Berrick, S. W.; Murphy, K. J.; Mitchell, A. E.; Tilmes, C.

    2014-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth Science data. The system supports a multitude of missions and serves diverse science research and other user communities. While NASA has made, and continues to make, great strides in the discoverability and accessibility of its earth observation data holdings, issues associated with data interoperability and usability still present significant challenges to realizing the full scientific and societal benefits of these data. This concern has been articulated by multiple government agencies, both U.S. and international, as well as other non-governmental organizations around the world. Among these is the White House Office of Science and Technology Policy who, in response, has launched the Big Earth Data Initiative and the Climate Data Initiative to address these concerns for U.S. government agencies. This presentation will describe NASA's approach for addressing data interoperability and usability issues with our earth observation data.

  6. Digest of NASA earth observation sensors

    NASA Technical Reports Server (NTRS)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  7. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden speaks to students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA sponsored the Earth Day event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. Photo Credit: (NASA/Aubrey Gemignani)

  8. NASA's Earth Observations of the Global Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to Africa and Cape Town. See the latest spectacular images from NASA & NOAA remote sensing missions like Meteosat, TRMM, Landsat 7, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in the Middle East and Africa, and retreat of the glaciers on Mt. Kilimanjaro. See the dynamics of vegetation growth and decay over Africa over 17 years. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of Africa and South America, showing land use and land cover change from Bolivian highlands. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, pant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nifia. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  9. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Schmaltz, J. E.; King, B. A.; Wong, M. M.; Rice, Z.; Gunnoe, T.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.

    2017-12-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real-time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  10. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Technical Reports Server (NTRS)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Wong, M.; King, B.; Rice, Z.; Sprague, J.; hide

    2017-01-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  11. Bridging the Gap Between NASA Earth Observations and Decision Makers Through the NASA Develop National Program

    NASA Astrophysics Data System (ADS)

    Remillard, C. M.; Madden, M.; Favors, J.; Childs-Gleason, L.; Ross, K. W.; Rogers, L.; Ruiz, M. L.

    2016-06-01

    The NASA DEVELOP National Program bridges the gap between NASA Earth Science and society by building capacity in both participants and partner organizations that collaborate to conduct projects. These rapid feasibility projects highlight the capabilities of satellite and aerial Earth observations. Immersion of decision and policy makers in these feasibility projects increases awareness of the capabilities of Earth observations and contributes to the tools and resources available to support enhanced decision making. This paper will present the DEVELOP model, best practices, and two case studies, the Colombia Ecological Forecasting project and the Miami-Dade County Ecological Forecasting project, that showcase the successful adoption of tools and methods for decision making. Through over 90 projects each year, DEVELOP is always striving for the innovative, practical, and beneficial use of NASA Earth science data.

  12. Value of Earth Observations: NASA Activities with Socioeconomic Analysis

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    There is greater emphasis internationally on the social and economic benefits that organizations can derive from applications of Earth observations. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services. To support these efforts, there are needs to develop impact assessments, populate the literature, and develop familiarity in the Earth science community with the terms, concepts and methods to assess impacts. Within NASA, the Earth Science Division's Applied Sciences Program has initiated and supported numerous activities in recent years to quantify the socioeconomic benefits from Earth observations applications and to build familiarity within the Earth science community. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to support analytic techniques, expand the literature, and promote broader skills and capabilities.

  13. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden poses for a quick selfie with students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  14. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Astronaut John Mace Grunsfeld takes a quick selfie with astronauts at the International Space Station at the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  15. Current NASA Earth Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  16. Observing the Earth from Afar with NASA's Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Boller, Ryan; Baynes, Kathleen; King, Benjamin; Rice, Zachary

    2017-01-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land, Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  17. Observing the Earth from afar with NASA's Worldview

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.

    2017-12-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  18. Network Performance Measurements for NASA's Earth Observation System

    NASA Technical Reports Server (NTRS)

    Loiacono, Joe; Gormain, Andy; Smith, Jeff

    2004-01-01

    NASA's Earth Observation System (EOS) Project studies all aspects of planet Earth from space, including climate change, and ocean, ice, land, and vegetation characteristics. It consists of about 20 satellite missions over a period of about a decade. Extensive collaboration is used, both with other US. agencies (e.g., National Oceanic and Atmospheric Administration (NOA), United States Geological Survey (USGS), Department of Defense (DoD), and international agencies (e.g., European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA)), to improve cost effectiveness and obtain otherwise unavailable data. Scientific researchers are located at research institutions worldwide, primarily government research facilities and research universities. The EOS project makes extensive use of networks to support data acquisition, data production, and data distribution. Many of these functions impose requirements on the networks, including throughput and availability. In order to verify that these requirements are being met, and be pro-active in recognizing problems, NASA conducts on-going performance measurements. The purpose of this paper is to examine techniques used by NASA to measure the performance of the networks used by EOSDIS (EOS Data and Information System) and to indicate how this performance information is used.

  19. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  20. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  1. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    An attendee of NASA's Earth Day event observes the glow from a bracelet that is part of an exhibit at the event. The Earth Day event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  2. NASA Earth Observations Informing Renewable Energy Management and Policy Decision Making

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.; Stackhouse, Paul W., Jr.

    2008-01-01

    The NASA Applied Sciences Program partners with domestic and international governmental organizations, universities, and private entities to improve their decisions and assessments. These improvements are enabled by using the knowledge generated from research resulting from spacecraft observations and model predictions conducted by NASA and providing these as inputs to the decision support and scenario assessment tools used by partner organizations. The Program is divided into eight societal benefit areas, aligned in general with the Global Earth Observation System of Systems (GEOSS) themes. The Climate Application of the Applied Sciences Program has as one of its focuses, efforts to provide for improved decisions and assessments in the areas of renewable energy technologies, energy efficiency, and climate change impacts. The goals of the Applied Sciences Program are aligned with national initiatives such as the U.S. Climate Change Science and Technology Programs and with those of international organizations including the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). Activities within the Program are funded principally through proposals submitted in response to annual solicitations and reviewed by peers.

  3. NASA's Earth Observing Data and Information System - Near-Term Challenges

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Mitchell, Andrew; Ramapriyan, Hampapuram

    2018-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. EOSDIS manages data covering a wide range of Earth science disciplines including cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, and many others. One of the key components of EOSDIS is a set of twelve discipline-based Distributed Active Archive Centers (DAACs) distributed across the United States. Managed by NASA's Earth Science Data and Information System (ESDIS) Project at Goddard Space Flight Center, these DAACs serve over 3 million users globally. The ESDIS Project provides the infrastructure support for EOSDIS, which includes other components such as the Science Investigator-led Processing systems (SIPS), common metadata and metrics management systems, specialized network systems, standards management, and centralized support for use of commercial cloud capabilities. Given the long-term requirements, and the rapid pace of information technology and changing expectations of the user community, EOSDIS has evolved continually over the past three decades. However, many challenges remain. Challenges addressed in this paper include: growing volume and variety, achieving consistency across a diverse set of data producers, managing information about a large number of datasets, migration to a cloud computing environment, optimizing data discovery and access, incorporating user feedback from a diverse community, keeping metadata updated as data collections grow and age, and ensuring that all the content needed for understanding datasets by future users is identified and preserved.

  4. NASA's Earth Observations Program: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    A presentation will be given at the Annual National Awards and President's Invited Lecture. The event is sponsored by the Associated Scientific and Technical Societies, an organization which serves the interests of 40,000 scientists and engineers all over South Africa. A general presentation will be given on the topic of NASA's Earth Observation Program and will be supplemented with visualizations using the NASA/NOAA Earth Science Electronic theater. Included will be space observations with an eye on southern Africa, including Etosha National Park, Namibia, Okavanga Delta, Botswana, Victoria Falls, Zimbabwe, and Cape Town, the Highveld around Johannesburg, Blyde River Canyon, and the Lowveld of Kruger National Park in South Africa; also included will be some AVHRR imagery of fire occurrence during the dry season, mostly the Miombo woodland of Zambia, Angola, Malawi, and northern Mozambique, supplemented with SeaWiFS imagery for VI, aerosols, clouds, AVHRR fire time series, Landsat TM (and possibly ETM+, if available), and other global data sets. Would also like to include some Terra animations from SVS, including perhaps the launch sequence. The presentation would conclude with some of the ER-2 MAS imagery from Brazil that highlights the capability that we plan to bring to Africa in August 2000.

  5. The DEVELOP National Program: Building Dual Capacity in Decision Makers and Young Professionals Through NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Childs, L. M.; Rogers, L.; Favors, J.; Ruiz, M.

    2012-12-01

    Through the years, NASA has played a distinct/important/vital role in advancing Earth System Science to meet the challenges of environmental management and policy decision making. Within NASA's Earth Science Division's Applied Sciences' Program, the DEVELOP National Program seeks to extend NASA Earth Science for societal benefit. DEVELOP is a capacity building program providing young professionals and students the opportunity to utilize NASA Earth observations and model output to demonstrate practical applications of those resources to society. Under the guidance of science advisors, DEVELOP teams work in alignment with local, regional, national and international partner organizations to identify the widest array of practical uses for NASA data to enhance related management decisions. The program's structure facilitates a two-fold approach to capacity building by fostering an environment of scientific and professional development opportunities for young professionals and students, while also providing end-user organizations enhanced management and decision making tools for issues impacting their communities. With the competitive nature and growing societal role of science and technology in today's global workplace, DEVELOP is building capacity in the next generation of scientists and leaders by fostering a learning and growing environment where young professionals possess an increased understanding of teamwork, personal development, and scientific/professional development and NASA's Earth Observation System. DEVELOP young professionals are partnered with end user organizations to conduct 10 week feasibility studies that demonstrate the use of NASA Earth science data for enhanced decision making. As a result of the partnership, end user organizations are introduced to NASA Earth Science technologies and capabilities, new methods to augment current practices, hands-on training with practical applications of remote sensing and NASA Earth science, improved remote

  6. NASA's Earth Observing Data and Information System - Supporting Interoperability through a Scalable Architecture (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.

    2011-12-01

    Initiated in 1990, NASA's Earth Observing System Data and Information System (EOSDIS) is currently a petabyte-scale archive of data designed to receive, process, distribute and archive several terabytes of science data per day from NASA's Earth science missions. Comprised of 12 discipline specific data centers collocated with centers of science discipline expertise, EOSDIS manages over 6800 data products from many science disciplines and sources. NASA supports global climate change research by providing scalable open application layers to the EOSDIS distributed information framework. This allows many other value-added services to access NASA's vast Earth Science Collection and allows EOSDIS to interoperate with data archives from other domestic and international organizations. EOSDIS is committed to NASA's Data Policy of full and open sharing of Earth science data. As metadata is used in all aspects of NASA's Earth science data lifecycle, EOSDIS provides a spatial and temporal metadata registry and order broker called the EOS Clearing House (ECHO) that allows efficient search and access of cross domain data and services through the Reverb Client and Application Programmer Interfaces (APIs). Another core metadata component of EOSDIS is NASA's Global Change Master Directory (GCMD) which represents more than 25,000 Earth science data set and service descriptions from all over the world, covering subject areas within the Earth and environmental sciences. With inputs from the ECHO, GCMD and Soil Moisture Active Passive (SMAP) mission metadata models, EOSDIS is developing a NASA ISO 19115 Best Practices Convention. Adoption of an international metadata standard enables a far greater level of interoperability among national and international data products. NASA recently concluded a 'Metadata Harmony Study' of EOSDIS metadata capabilities/processes of ECHO and NASA's Global Change Master Directory (GCMD), to evaluate opportunities for improved data access and use, reduce

  7. NASA's Earth Observing Data and Information System - Supporting Interoperability through a Scalable Architecture (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.

    2013-12-01

    Initiated in 1990, NASA's Earth Observing System Data and Information System (EOSDIS) is currently a petabyte-scale archive of data designed to receive, process, distribute and archive several terabytes of science data per day from NASA's Earth science missions. Comprised of 12 discipline specific data centers collocated with centers of science discipline expertise, EOSDIS manages over 6800 data products from many science disciplines and sources. NASA supports global climate change research by providing scalable open application layers to the EOSDIS distributed information framework. This allows many other value-added services to access NASA's vast Earth Science Collection and allows EOSDIS to interoperate with data archives from other domestic and international organizations. EOSDIS is committed to NASA's Data Policy of full and open sharing of Earth science data. As metadata is used in all aspects of NASA's Earth science data lifecycle, EOSDIS provides a spatial and temporal metadata registry and order broker called the EOS Clearing House (ECHO) that allows efficient search and access of cross domain data and services through the Reverb Client and Application Programmer Interfaces (APIs). Another core metadata component of EOSDIS is NASA's Global Change Master Directory (GCMD) which represents more than 25,000 Earth science data set and service descriptions from all over the world, covering subject areas within the Earth and environmental sciences. With inputs from the ECHO, GCMD and Soil Moisture Active Passive (SMAP) mission metadata models, EOSDIS is developing a NASA ISO 19115 Best Practices Convention. Adoption of an international metadata standard enables a far greater level of interoperability among national and international data products. NASA recently concluded a 'Metadata Harmony Study' of EOSDIS metadata capabilities/processes of ECHO and NASA's Global Change Master Directory (GCMD), to evaluate opportunities for improved data access and use, reduce

  8. NASA Earth Observing-1 Keeps Watchful Eye on South American Volcano Copahue

    NASA Image and Video Library

    2013-06-07

    NASA Earth Observing-1 EO-1 spacecraft observed Copahue volcano, a 2965 meter high volcano on the Chile-Argentina border, on Jun. 4, 2013. Having recently displayed signs of unrest, the volcano is under close scrutiny by local volcanologists.

  9. NASA Earth Observations (NEO): Data Imagery for Education and Visualization

    NASA Astrophysics Data System (ADS)

    Ward, K.

    2008-12-01

    NASA Earth Observations (NEO) has dramatically simplified public access to georeferenced imagery of NASA remote sensing data. NEO targets the non-traditional data users who are currently underserved by functionality and formats available from the existing data ordering systems. These users include formal and informal educators, museum and science center personnel, professional communicators, and citizen scientists. NEO currently serves imagery from 45 different datasets with daily, weekly, and/or monthly temporal resolutions, with more datasets currently under development. The imagery from these datasets is produced in coordination with several data partners who are affiliated either with the instrument science teams or with the respective data processing center. NEO is a system of three components -- website, WMS (Web Mapping Service), and ftp archive -- which together are able to meet the wide-ranging needs of our users. Some of these needs include the ability to: view and manipulate imagery using the NEO website -- e.g., applying color palettes, resizing, exporting to a variety of formats including PNG, JPEG, KMZ (Google Earth), GeoTIFF; access the NEO collection via a standards-based API (WMS); and create customized exports for select users (ftp archive) such as Science on a Sphere, NASA's Earth Observatory, and others.

  10. NASA's Earth Observing System Data and Information System - EOSDIS

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  11. User Needs and Assessing the Impact of Low Latency NASA Earth Observation Data Availability on Societal Benefit

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Carroll, Mark L.; Escobar, Vanessa M.

    2014-01-01

    Since the advent of NASA's Earth Observing System, knowledge of the practical benefits of Earth science data has grown considerably. The community using NASA Earth science observations in applications has grown significantly, with increasing sophistication to serve national interests. Data latency, or how quickly communities receive science observations after acquisition, can have a direct impact on the applications and usability of the information. This study was conducted to determine how users are incorporating NASA data into applications and operational processes to benefit society beyond scientific research, as well as to determine the need for data latency of less than 12 h. The results of the analysis clearly show the significant benefit to society of serving the needs of the agricultural, emergency response, environmental monitoring and weather communities who use rapidly delivered, accurate Earth science data. The study also showed the potential of expanding the communities who use low latency NASA science data products to provide new ways of transforming data into information. These benefits can be achieved with a clear and consistent NASA policy on product latency.

  12. NASA Earth Observation Systems and Applications for Health: Moving from Research to Operational End Users

    NASA Astrophysics Data System (ADS)

    Haynes, J.; Estes, S. M.

    2017-12-01

    Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate NASA's applied science programs efforts to transition from research to operations to benefit society. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in health research and the transition to operational end users.

  13. NASA Earth Observations (NEO): Data Access for Informal Education and Outreach

    NASA Technical Reports Server (NTRS)

    Ward, Kevin; Herring, David

    2005-01-01

    The NEO (NASA Earth Observations) web space is currently under development with the goal of significantly increasing the demand for NASA remote sensing data while dramatically simplifying public access to georeferenced images. NEO will target the unsophisticated, nontraditional data users who are currently underserved by the existing data ordering systems. These users will include formal and informal educators, museum and science center personnel, professional communicators, and citizen scientists and amateur Earth observers. Users will be able to view and manipulate georeferenced browse imagery and, if they desire, download directly or order the source HDF data from the data provider (e.g., NASA DAAC or science team) via a single, integrated interface. NE0 will accomplish this goal by anticipating users expectations and knowledge level, thus providing an interface that presents material to users in a more simplified manner, without relying upon the jargon/technical terminology that make even the identification of the appropriate data set a significant hurdle. NEO will also act as a gateway that manages users expectations by providing specific details about images and data formats, developing tutorials regarding the manipulation of georeferenced imagery and raw data, links to software tools and ensuring that users are able to get the image they want in the format they want as easily as possible.

  14. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  15. Web Map Apps using NASA's Earth Observing Fleet

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M. M.; King, B. A.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.

    2016-12-01

    Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASA's Earth observing fleet. Spanning 15+ years and running through as recently as "a few hours ago", GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development.

  16. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  17. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  18. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  19. Data Preservation -Progress in NASA's Earth Observing System Data and Information System (EOSDIS)

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.

    2013-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been operational since August 1994, processing, archiving and distributing data from a variety of Earth science missions. The data sources include instruments on-board satellites and aircraft and field campaigns. In addition, EOSDIS manages socio-economic data. The satellite missions whose data are managed by EOSDIS range from the Nimbus series of the 1960s and 1970s to the EOS series launched during 1997 through 2004 to the Suomi National Polar Partnership (SNPP) launched in October 2011. Data from future satellite missions such as the Decadal Survey missions will also be archived and distributed by EOSDIS. NASA is not legislatively mandated to preserve data permanently as are other agencies such as USGS, NOAA and NARA. However, NASA must preserve all the data and associated content beyond the lives of NASA's missions to meet NASA's near-term objective of supporting active scientific research. Also, NASA must ensure that the data and associated content are preserved for transition to permanent archival agencies. The term preservation implies ensuring long-term protection of bits, readability, understandability, usability and reproducibility of results. To ensure preservation of bits, EOSDIS makes sure that data are backed-up adequately. Periodically, the risk of data loss is assessed and corrective action is taken as needed. Data are copied to more modern media on a routine basis to ensure readability. For some of the oldest data within EOSDIS, we have had to go through special data rescue efforts. Data from very old media have been restored and film data have been scanned and digitized. For example, restored data from the Nimbus missions are available for ftp access at the Goddard Earth Sciences Data and Information Services Center (GES DISC). The Earth Science Data and Information System Project, which is responsible for EOSDIS, has been active within the Data Stewardship and Preservation

  20. Web Map Apps using NASA's Earth Observing Fleet

    NASA Technical Reports Server (NTRS)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Alarcon, C.; De Cesare, C.; Gunnoe, T.; Wong, M.; hide

    2016-01-01

    Through the miracle of open web mapping services for satellite imagery, a garden of new applications has sprouted to monitor the planet across a variety of domains. The Global Imagery Browse Services (GIBS) provide free and open access to full resolution imagery captured by NASAs Earth observing fleet. Spanning 15+ years and running through as recently as a few hours ago, GIBS aims to provide a general-purpose window into NASA's vast archive of the planet. While the vast nature of this archive can be daunting, many domain-specific applications have been built to meet the needs of their respective communities. This presentation will demonstrate a diverse set of these new applications which can take planetarium visitors into (virtual) orbit, guide fire resource managers to hotspots, help anglers find their next catch, illustrate global air quality patterns to local regulators, and even spur a friendly competition to find clouds which are shaped the most like cats. We hope this garden will continue to grow and will illustrate upcoming upgrades to GIBS which may open new pathways for development. data visualization, web services, open access

  1. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while NASA's Director, Earth Science Division, Mike Freilich, speaks at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  2. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  3. NASA Earth Observations Track the Gulf Oil Spill

    NASA Technical Reports Server (NTRS)

    Jones, Jason B.; Childs, Lauren

    2010-01-01

    The NASA Applied Sciences Program created the Gulf of Mexico Initiative (GOMI) in 2007 "to enhance the region s ability to recover from the devastating hurricanes of 2005 and to address its coastal management issues going into the future." The GOMI utilizes NASA Earth science assets to address regional priorities defined by the Gulf of Mexico Alliance, a partnership formed by the states of Alabama, Florida, Louisiana, Mississippi, and Texas, along with 13 federal agencies and 4 regional organizations to promote regional collaboration and enhance the ecological and economic health of the Gulf of Mexico. NASA's GOMI is managed by the Applied Science and Technology Project Office at Stennis Space Center and has awarded over $18 million in Gulf of Mexico research since 2008. After the Deepwater Horizon oil spill, GOMI personnel assisted members of the Gulf of Mexico Alliance with obtaining NASA remote sensing data for use in their oil spill response efforts.

  4. NASA Sun Earth

    NASA Image and Video Library

    2017-12-08

    CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Ea CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Earth. This left portion is composed of an EIT 304 image superimposed on a LASCO C2 coronagraph. Two to four days later, the CME cloud is shown striking and beginning to be mostly deflected around the Earth’s magnetosphere. The blue paths emanating from the Earth’s poles represent some of its magnetic field lines. The magnetic cloud of plasma can extend to 30 million miles wide by the time it reaches earth. These storms, which occur frequently, can disrupt communications and navigational equipment, damage satellites, and even cause blackouts. (Objects in the illustration are not drawn to scale.) Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  5. NASA Earth Observation Systems and Applications for Health and Air Quality

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.

    2015-01-01

    There is a growing body of evidence that the environment can affect human health in ways that are both complex and global in scope. To address some of these complexities, NASA maintains a diverse constellation of Earth observing research satellites, and sponsors research in developing satellite data applications across a wide spectrum of areas. These include environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality in a number of interrelated efforts. The Health and Air Quality Applications fosters the use of observations, modeling systems, forecast development, application integration, and the research to operations transition process to address environmental health effects. NASA has been a primary partner with Federal operational agencies over the past nine years in these areas. This talk presents the background of the Health and Air Quality Applications program, recent accomplishments, and a plan for the future.

  6. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  7. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  8. ECHO Responds to NASA's Earth Science User Community

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; Ullman, Richard; Wichmann, Keith; Perkins, Dorothy C. (Technical Monitor)

    2001-01-01

    Over the past decade NASA has designed, built, evolved, and operated the Earth Observing System Data and Information System (EOSDIS) Information Management System (IMS) in order to provide user access to NASA's Earth Science data holdings. During this time revolutionary advances in technology have driven changes in NASA's approach to providing an IMS service. This paper will describe NASA's strategic planning and approach to build and evolve the EOSDIS IMS and to serve the evolving needs of NASA's Earth Science community. It discusses the original strategic plan and how lessons learned help to form a new plan, a new approach and a new system. It discusses the original technologies and how they have evolved to today.

  9. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  10. Ensuring Credibility of NASA's Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.

    2013-12-01

    The summary description of the Fall 2013 AGU session on 'Data Curation, Credibility, Preservation Implementation, and Data Rescue to Enable Multi-Source Science' identifies four attributes needed to ensure credibility in Earth science data records. NASA's Earth Science Data Systems Program has been working on all four of these attributes: transparency, completeness, permanence, and ease of access and use, by focusing on them and upon improving our practices of them, over many years. As far as transparency or openness, NASA was in the forefront of free and open sharing of data and associated information for Earth observations. The US data policy requires such openness, but allows for the recoup of the marginal cost of distribution of government data and information - but making the data available with no such charge greatly increases their usage in scientific studies and the resultant analyses hasten our collective understanding of the Earth system. NASA's currently available Earth observations comprise primarily those obtained from satellite-borne instruments, suborbital campaigns, and field investigations. These data are complex and must be accompanied by rich metadata and documentation to be understandable. To enable completeness, NASA utilizes standards for data format, metadata content, and required documentation for any data that are ingested into our distributed Earth Observing System Data and Information System, or EOSDIS. NASA is moving to a new metadata paradigm, primarily to enable a fuller description of data quality and fit-for-purpose attributes. This paradigm offers structured approaches for storing quality measures in metadata that include elements such as Positional Accuracy, Lineage and Cloud Cover. NASA exercises validation processes for the Earth Science Data Systems Program to ensure users of EOSDIS have a predictable level of confidence in data as well as assessing the data viability for usage and application. The Earth Science Data Systems

  11. NASA Earth Science Image Analysis for Climate Change Decisions

    NASA Technical Reports Server (NTRS)

    Hilderbrand, Peter H.

    2011-01-01

    This talk will briefly outline the ways in which NASA observes the Earth, then describes the NASA satellite measurements, and then proceeds to show how these measurements are used to understand the changes that are occurring as Earth's climate warms.

  12. Building Capacity to Use NASA Earth Observations in the Water Resource Sector

    NASA Astrophysics Data System (ADS)

    Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Clayton, A.; Ruiz, M. L.; Rogers, L.; Allsbrook, K. N.

    2017-12-01

    The NASA DEVELOP National Program builds capacity to use and apply NASA Earth observations to address environmental concerns around the globe. The DEVELOP model builds capacity in both participants (students, recent graduates, and early and transitioning career professionals) who conduct the projects and partners (decision and policy makers) who are recipients of project methodologies and results. Projects focus on a spectrum of thematic topics, including water resource management which made up 30% of the DEVELOP FY2017 portfolio. During this period, DEVELOP conducted water-focused feasibility studies in collaboration with 22 partners across 13 U.S. states and five countries. This presentation will provide an overview of needs identified, DEVELOP's response, data sources, challenges, and lessons learned.

  13. Results of scatterometer systems analysis for NASA/MSC Earth Observation Sensor Evaluation Program.

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Vlahos, N.; Brandt, O.; Graybeal, G.

    1971-01-01

    Radar scatterometers have applications in the NASA/MSC Earth Observation Aircraft Program. Over a period of several years, several missions have been flown over both land and ocean. In this paper a system evaluation of the NASA/MSC 13.3-GHz Scatterometer System is presented. The effects of phase error between the Scatterometer channels, antenna pattern deviations, aircraft attitude deviations, environmental changes, and other related factors such as processing errors, system repeatability, and propeller modulation, were established. Furthermore, the reduction in system errors and calibration improvement was investigated by taking into account these parameter deviations. Typical scatterometer data samples are presented.

  14. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  15. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global

  16. NASA's Earth Observing System Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne

    2017-01-01

    EOSDIS is a data system created by NASA to manage its collection of Earth Science data. This presentation is a brief description of the data system provided to the general user community. The presentation reviews the data types, management and software development techniques in use to organize the system.

  17. The NASA Earthdata Forums - An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Astrophysics Data System (ADS)

    Hearty, T. J., III; Acker, J. G.; Meyer, D. L.; Northup, E. A.; Bagwell, R.

    2017-12-01

    In this presentation, we will demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  18. Depending on Partnerships to Manage NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.

    2015-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's.The data collected by NASA's remote sensing instruments represent a significant public investment in research, providing access to a world-wide public research community. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. To this end, EOSDIS has collocated NASA Earth science data and processing with centers of science discipline expertise located at universities, other government agencies and NASA centers. Commercial industry is also part of this partnership as it focuses on developing the EOSDIS cross-element infrastructure. The partnership to develop and operate EOSDIS has made for a robust, flexible system that evolves continuously to take advantage of technological opportunities. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Today's EOSDIS is a loosely coupled, yet heterogeneous system designed to meet the requirements of both a diverse user community and a growing collection of data to be archived and distributed. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential

  19. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  20. The Role of NASA Observations in Understanding Earth System Change

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew M.

    2009-01-01

    This presentation will introduce a non-technical audience to NASA Earth science research goals and the technologies used to achieve them. The talk will outline the primary science focus areas and then provide overviews of current and planned missions, in addition to instruments, aircraft, and other technologies that are used to turn data into useful information for scientists and policy-makers. This presentation is part of an Earth Day symposium at the University of Mary.

  1. NASA's EOSDIS Approach to Big Earth Data Challenges

    NASA Astrophysics Data System (ADS)

    Lowe, D. R.; Behnke, J.; Murphy, K. J.

    2014-12-01

    Over the past 20 years, NASA has been committed to making our Earth Science data more useable and accessible, not only to the community of NASA science researchers, but also to the world-wide public research community. The data collected by NASA's remote sensing instruments represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. The Earth Observing System Data & Information System (EOSDIS) was established to meet this goal. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Over the past 2 decades the EOSDIS has evolved substantially. Today's EOSDIS is a tightly coupled, yet heterogeneous system designed to meet the requirements of a diverse user community. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential increase in user demand that has occurred over the past 15 years. We will present how the EOSDIS has evolved to support the variety and volume of NASA's Earth Science data.

  2. Integrating NASA Earth Observations into the Global Indicator Framework for Monitoring the United Nations' Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Crepps, G.; Gotschalk, E.; Childs-Gleason, L. M.; Favors, J.; Ruiz, M. L.; Allsbrook, K. N.; Rogers, L.; Ross, K. W.

    2016-12-01

    The NASA DEVELOP National Program conducts rapid 10-week feasibility projects that build decision makers' capacity to utilize NASA Earth observations in their decision making. Teams, in collaboration with partner organizations, conduct projects that create end products such as maps, analyses, and automated tools tailored for their partners' specific decision making needs. These projects illustrate the varied applications about which Earth observations can assist in making better informed decisions, such topics as land use changes, ecological forecasting, public health, and species habitats. As a capacity building program, DEVELOP is interested in understanding how these end products are utilized once the project is over and if Earth observations become a regular tool in the partner's decision making toolkit. While DEVELOP's niche is short-term projects, to assess the impacts of these projects, a longer-term scale is needed. As a result, DEVELOP has created a project strength metrics, and partner assessments, pre- and post-project, as well as a follow up form. This presentation explores the challenges in both quantitative and qualitative assessments of valuing the contributions of these Earth observation tools. This proposal lays out the assessment framework created within the program, and illustrates case studies in which projects have been assessed and long-term partner use of tools examined and quantified.

  3. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  4. New Earth-Observing Small Satellite Missions on This Week @NASA – November 11, 2016

    NASA Image and Video Library

    2016-11-11

    NASA this month is scheduled to launch the first of six next-generation, Earth-observing small satellites. They’ll demonstrate innovative new approaches for measuring hurricanes, Earth's energy budget – which is essential to understanding greenhouse gas effects on climate, aerosols, and other atmospheric factors affecting our changing planet. These small satellites range in size from a loaf of bread to a small washing machine, and weigh as little as a few pounds to about 400 pounds. Their size helps keeps development and launch costs down -- because they often hitchhike to space as a “secondary payload” on another mission’s rocket. Small spacecraft and satellites are helping NASA advance scientific and human exploration, test technologies, reduce the cost of new space missions, and expand access to space. Also, CYGNSS Hurricane Mission Previewed, Expedition 50-51 Crew Prepares for Launch in Kazakhstan, and Orion Underway Recovery Test 5 Completed!

  5. Archive Management of NASA Earth Observation Data to Support Cloud Analysis

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark A.

    2017-01-01

    NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly.

  6. Archive Management of NASA Earth Observation Data to Support Cloud Analysis

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark

    2017-01-01

    NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly. Reviewed by Mark McInerney ESDIS Deputy Project Manager.

  7. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA's Administrator, Charles Bolden, conducts an experiment using circuits at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  8. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2013-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  9. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2012-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  10. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA's Administrator, Charles Bolden watches as some students conduct an experiment with a balloon at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  11. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  12. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  13. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while an exhibitor conducts an experiment at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  14. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while Astronaut John Mace Grunsfeld speaks at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  15. Southern Africa Validation of NASA's Earth Observing System (SAVE EOS)

    NASA Technical Reports Server (NTRS)

    Privette, Jeffrey L.

    2000-01-01

    Southern Africa Validation of EOS (SAVE) is 4-year, multidisciplinary effort to validate operational and experimental products from Terra-the flagship satellite of NASA's Earth Observing System (EOS). At test sites from Zambia to South Africa, we are measuring soil, vegetation and atmospheric parameters over a range of ecosystems for comparison with products from Terra, Landsat 7, AVHRR and SeaWiFS. The data are also employed to parameterize and improve vegetation process models. Fixed-point and mobile "transect" sampling are used to collect the ground data. These are extrapolated over larger areas with fine-resolution multispectral imagery. We describe the sites, infrastructure, and measurement strategies developed underSAVE, as well as initial results from our participation in the first Intensive Field Campaign of SAFARI 2000. We also describe SAVE's role in the Kalahari Transect Campaign (February/March 2000) in Zambia and Botswana.

  16. NASA's Van Allen Probes Discover a Surprise Circling Earth

    NASA Image and Video Library

    2017-12-08

    On Aug. 31, 2012, a giant prominence on the sun erupted, sending out particles and a shock wave that traveled near Earth. This event may have been one of the causes of a third radiation belt that appeared around Earth a few days later, a phenomenon that was observed for the very first time by the newly-launched Van Allen Probes. This image of the prominence before it erupted was captured by NASA's Solar Dynamics Observatory (SDO). Credit: NASA/SDO/AIA/Goddard Space Flight Center To read more go to: www.nasa.gov/mission_pages/rbsp/news/third-belt.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Accessing Earth Science Data Visualizations through NASA GIBS & Worldview

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Wong, M. M.; King, B. A.; Schmaltz, J. E.; De Luca, A. P.; King, J.; Roberts, J. T.; Rodriguez, J.; Thompson, C. K.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has operated dozens of remote sensing satellites collecting nearly 15 Petabytes of data that span thousands of science parameters. Within these observations are keys the Earth Scientists have used to unlock many things that we understand about our planet. Also contained within these observations are a myriad of opportunities for learning and education. The trick is making them accessible to educators and students in convenient and simple ways so that effort can be spent on lesson enrichment and not overcoming technical hurdles. The NASA Global Imagery Browse Services (GIBS) system and NASA Worldview website provide a unique view into EOS data through daily full resolution visualizations of hundreds of earth science parameters. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. Accompanying the visualizations are visual aids such as color legends, place names, and orbit tracks. By using these visualizations, educators and students can observe natural phenomena that enrich a scientific education. This poster will provide an overview of the visualizations available in NASA GIBS and Worldview and how they are accessed. We invite discussion on how the visualizations can be used or improved for educational purposes.

  18. NASA's Earth Science Data Systems: A "Bit of History" and Observations

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2008-01-01

    NASA has significantly improved its Earth Science Data Systems over the last two decades. Open data policy and inexpensive (or free) availability of data has promoted data usage by broad research and applications communities. Flexibility, accommodation of diversity, evolvability, responsiveness to community feedback are key to success.

  19. Monitoring Drought Conditions in the Navajo Nation Using NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Ly, Vickie; Gao, Michael; Cary, Cheryl; Turnbull-Appell, Sophie; Surunis, Anton

    2016-01-01

    The Navajo Nation, a 65,700 sq km Native American territory located in the southwestern United States, has been increasingly impacted by severe drought events and changes in climate. These events are coupled with a lack of domestic water infrastructure and economic resources, leaving approximately one-third of the population without access to potable water in their homes. Current methods of monitoring drought are dependent on state-based monthly Standardized Precipitation Index value maps calculated by the Western Regional Climate Center. However, these maps do not provide the spatial resolution needed to illustrate differences in drought severity across the vast Nation. To better understand and monitor drought events and drought regime changes in the Navajo Nation, this project created a geodatabase of historical climate information specific to the area, and a decision support tool to calculate average Standardized Precipitation Index values for user-specified areas. The tool and geodatabase use Tropical Rainfall Monitoring Mission (TRMM) and Global Precipitation Monitor (GPM) observed precipitation data and Parameter-elevation Relationships on Independent Slopes Model modeled historical precipitation data, as well as NASA's modeled Land Data Assimilation Systems deep soil moisture, evaporation, and transpiration data products. The geodatabase and decision support tool will allow resource managers in the Navajo Nation to utilize current and future NASA Earth observation data for increased decision-making capacity regarding future climate change impact on water resources.

  20. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  1. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. See the latest spectacular images from NASA remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua, which will be visualized and explained in the context of global change and man s impact on our world s environment. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights. Shown in high resolution are visualizations of tropical cyclone Eline and the resulting flooding of Mozambique. See flybys of Cape Town, South Africa with its dramatic mountains and landscape, as well as satellite imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001, and how new satellite tools can be used to help fight these disasters from spreading further. See where and when lightning occurs globally, and how dramatic urbanization has been in the desert southwest since 1910. Spectacular visualizations of the global atmosphere and oceans are shown. Learn when and where carbon is absorbed by vegetation on the land and ocean as the product of photosynthesis. See demonstrations of the 3-dimensional structure of hurricanes and cloud structures derived from recently launched Earth-orbiting satellites, and how hurricanes can modify the sea surface temperature in their wake. See massive dust storms in the Middle East as well as dust transport sweeping from north Africa across the Atlantic to the Caribbean and Amazon basin. Learn where and how much the temperature of the Earth s surface has changed during the 20th century, as well as how sea ice has decreased over the Arctic region, how sea level has and is likely to continue to change, and how glaciers have

  2. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  3. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  4. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  5. NASA's Earth Observations Commercialization Applications Program: A model for government promotion of commercial space opportunities

    NASA Technical Reports Server (NTRS)

    Macauley, Molly K.

    1995-01-01

    The role of government in promoting space commerce is a topic of discussion in every spacefaring nation. This article describes a new approach to government intervention which, based on its five-year track record, appears to have met with success. The approach, developed in NASA's Earth Observations Commercialization Application Program (EOCAP), offer several lessons for effective government sponsorship of commercial space development in general and of commercial remote sensing in particular.

  6. Transforming Science Data for GIS: How to Find and Use NASA Earth Observation Data Without Being a Rocket Scientist

    NASA Technical Reports Server (NTRS)

    Bagwell, Ross; Peters, Byron; Berrick, Stephen

    2017-01-01

    NASAs Earth Observing System Data Information System (EOSDIS) manages Earth Observation satellites and the Distributed Active Archive Centers (DAACs), where the data is stored and processed. The challenge is that Earth Observation data is complicated. There is plenty of data available, however, the science teams have had a top-down approach: define what it is you are trying to study -select a set of satellite(s) and sensor(s), and drill down for the data.Our alternative is to take a bottom-up approach using eight environmental fields of interest as defined by the Group on Earth Observations (GEO) called Societal Benefit Areas (SBAs): Disaster Resilience (DR) Public Health Surveillance (PHS) Energy and Mineral Resource Management (EMRM) Water Resources Management (WRM) Infrastructure and Transport Management (ITM) Sustainable Urban Development (SUD) Food Security and Sustainable Agriculture (FSSA) Biodiversity and Ecosystems Sustainability (BES).

  7. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  8. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  9. NASA Benefits Earth

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This slide presentation reviews several ways in which NASA research has benefited Earth and made life on Earth better. These innovations include: solar panels, recycled pavement, thermometer pill, invisible braces for straightening teeth, LASIK, aerodynamic helmets and tires for bicycles, cataract detection, technology that was used to remove Anthrax spores from mail handling facilities, study of atomic oxygen erosion of materials has informed the restoration of artwork, macroencapsulation (a potential mechanism to deliver anti cancer drugs to specific sites), and research on a salmonella vaccine. With research on the International Space Station just beginning, there will be opportunities for entrepreneurs and other government agencies to access space for their research and development. As well as NASA continuing its own research on human health and technology development.

  10. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2006-01-01

    This presentation focuses on the latest spectacular images from NASA's remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua which will be visualized and explained in the context of global change and man's impact on our world's environment. Visualizations of global data currently available from Earth orbiting satellites include the Earth at night with its city lights, high resolutions of tropical cyclone Eline and the resulting flooding of Mozambique as well as flybys of Cape Town, South Africa with its dramatic mountains and landscape, imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001. Visualizations of the global atmosphere and oceans are shown and demonstrations of the 3-dimensional structure of hurricane and cloud structures derived from recently launched Earth-orbiting satellites are are presented with other topics with a dynamic theater-style , along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  11. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  12. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  13. NASA's Van Allen Probes Discover a Surprise Circling Earth

    NASA Image and Video Library

    2017-12-08

    Two giant swaths of radiation, known as the Van Allen Belts, surrounding Earth were discovered in 1958. In 2012, observations from the Van Allen Probes showed that a third belt can sometimes appear. The radiation is shown here in yellow, with green representing the spaces between the belts. Credit: NASA/Van Allen Probes/Goddard Space Flight Center To read more go to: www.nasa.gov/mission_pages/rbsp/news/third-belt.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. WCS Challenges for NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cantrell, S.; Swentek, L.; Khan, A.

    2017-12-01

    In an effort to ensure that data in NASA's Earth Observing System Data and Information System (EOSDIS) is available to a wide variety of users through the tools of their choice, NASA continues to focus on exposing data and services using standards based protocols. Specifically, this work has focused recently on the Web Coverage Service (WCS). Experience has been gained in data delivery via GetCoverage requests, starting out with WCS v1.1.1. The pros and cons of both the version itself and different implementation approaches will be shared during this session. Additionally, due to limitations with WCS v1.1.1's ability to work with NASA's Earth science data, this session will also discuss the benefit of migrating to WCS 2.0.1 with EO-x to enrich this capability to meet a wide range of anticipated user needs This will enable subsetting and various types of data transformations to be performed on a variety of EOS data sets.

  15. Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.

  16. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  17. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  18. Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)

    NASA Technical Reports Server (NTRS)

    Williams, B. G.

    1988-01-01

    An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.

  19. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  20. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  1. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.

    2010-01-01

    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  2. Multi-Instrument Tools and Services to Access NASA Earth Science Data from the GSFC Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Leptoukh, Greg; Lynnes, Chris

    2010-01-01

    The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.

  3. Making NASA Earth Observing System Satellite Data Accessible to the K-12 and Citizen Scientist Communities

    NASA Technical Reports Server (NTRS)

    Moore, Susan W.; Phelps, Carrie S.; Chambers, Lin H.

    2004-01-01

    The Atmospheric Sciences Data Center (ASDC) at NASA s Langley Research Center houses over 700 data sets related to Earth s radiation budget, clouds, aerosols and tropospheric chemistry. These data sets are produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. The Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education by reducing these large data holdings to microsets that will be easily explored and understood by the K-12 and the amateur scientist communities

  4. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  5. Nasa s near earth object program office

    NASA Astrophysics Data System (ADS)

    Yeomans, D.; Chamberlin, A.; Chesley, S.; Chodas, P.; Giorgini, J.; Keesey, M.

    In 1998, NASA formed the Near-Earth Object Program Office at JPL to provide a focal point for NASA's efforts to discover and monitor the motions of asteroids and comets that can approach the Earth. This office was charged with 1.) facilitating communication between the near-Earth object (NEO) community and the public, 2.) helping coordinate the search efforts for NEOs, 3.) monitoring the progress in finding NEOs at NASA -supported sites, and 4.) monitoring the future motions of all known NEOs and cataloging their orbits. There are far more near-Earth asteroids (NEAs) than near-Earth comets and one of the driving motivations for NASA's NEO Program is the Spaceguard Goal to find 90% of the NEAs larger than one kilometer by 2008. While the total population of NEAs is not clearly established, the consensus opinion seems to be that the total population of NEAs larger than one kilometer is about 1000 (with a range of perhaps 800 - 1200). By April 2002, nearly 60% of the total population of large NEAs had been discovered and while the discovery rate will likely drop off as the easy ones are found, these early discovery efforts are encouraging. The five NASA-supported NEO discovery teams are the Lincoln Laboratory Near-Earth Asteroid Research effort (LINEAR, Grant Stokes, Principal Investigator), the Near-Earth Asteroid Tracking team at JPL (NEAT, Eleanor Helin, P.I.), the Lowell Observatory Near-Earth Object Search (LONEOS, E. Bowell, P.I.), and two discovery teams near Tucson Arizona - the Spacewatch effort (R. McMillan, P.I.) and the Catalina Sky Survey group (S. Larson, P.I.). Mention should also be made of the Japanese Spaceguard discovery site at Bisei Japan (S. Isobe, P.I.). A substantial portion of the critical follow-up observations necessary to secure the orbits of NEOs and provide information on their physical characteristics is provided by a group of very sophisticated amateur astronomers who might better be described as unfunded professionals. After nearly two

  6. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  7. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  8. Improving Access to NASA Earth Science Data through Collaborative Metadata Curation

    NASA Astrophysics Data System (ADS)

    Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.

    2017-12-01

    The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.

  9. 3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Kempler, Steven; Leptoukh, Gregory; Smith, Peter

    2010-01-01

    This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independently

  10. Langley's DEVELOP Team Applies NASA's Earth Observations to Address Environmental Issues Across the Country and Around the Globe

    NASA Technical Reports Server (NTRS)

    Childs, Lauren M.; Miller, Joseph E.

    2011-01-01

    The DEVELOP National Program was established over a decade ago to provide students with experience in the practical application of NASA Earth science research results. As part of NASA's Applied Sciences Program, DEVELOP focuses on bridging the gap between NASA technology and the public through projects that innovatively use NASA Earth science resources to address environmental issues. Cultivating a diverse and dynamic group of students and young professionals, the program conducts applied science research projects during three terms each year (spring, summer, and fall) that focus on topics ranging from water resource management to natural disasters.

  11. Online Analysis Enhances Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Leptoukh, Gregory

    2007-01-01

    Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites. In the past 5-10 years, examining geophysical events and processes with remote-sensing data required a multistep process of data discovery, data acquisition, data management, and ultimately data analysis. Giovanni accelerates this process by enabling basic visualization and analysis directly on the World Wide Web. In the last two years, Giovanni has added new data acquisition functions and expanded analysis options to increase its usefulness to the Earth science research community.

  12. NASDA's earth observation satellite data archive policy for the earth observation data and information system (EOIS)

    NASA Technical Reports Server (NTRS)

    Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu

    1996-01-01

    NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.

  13. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  14. Toward a Climate OSSE for NASA Earth Sciences

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Collins, W. D.; Feldman, D.; Field, R. D.; Ming, Y.; Pawson, S.; Sanderson, B.; Schmidt, G. A.

    2016-12-01

    In the Continuity Study, the National Academy of Sciences advised that future space missions be rated according to five categories: the importance of a well-defined scientific objective, the utility of the observation in addressing the scientific objective, the quality with which the observation can be made, the probability of the mission's success, and the mission's affordability. The importance, probability, and affordability are evaluated subjectively by scientific consensus, by engineering review panels, and by cost models; however, the utility and quality can be evaluated objectively by a climate observation system simulation experiment (COSSE). A discussion of the philosophical underpinnings of a COSSE for NASA Earth Sciences will be presented. A COSSE is built upon a perturbed physics ensemble of a sophisticated climate model that can simulate a mission's prospective observations and its well-defined quantitative scientific objective and that can capture the uncertainty associated with each. A strong correlation between observation and scientific objective after consideration of physical uncertainty leads to a high quality. Persistence of a high correlation after inclusion of the proposed measurement error leads to a high utility. There are five criteria that govern that nature of a particular COSSE: (1) whether the mission's scientific objective is one of hypothesis testing or climate prediction, (2) whether the mission is empirical or inferential, (3) whether the core climate model captures essential physical uncertainties, (4) the level of detail of the simulated observations, and (5) whether complementarity or redundancy of information is to be valued. Computation of the quality and utility is done using Bayesian statistics, as has been done previously for multi-decadal climate prediction conditioned on existing data. We advocate for a new program within NASA Earth Sciences to establish a COSSE capability. Creation of a COSSE program within NASA Earth

  15. What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Schollaert Uz, S.; Ward, K.

    2017-12-01

    Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.

  16. Digital Object Identifiers for NASA's Earth Observing System Products

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; James, N.

    2012-12-01

    The science community has long recognized the importance of citing data in published literature to encourage replication of experiments and verification of results. Authors that try to cite their data often find that publishers will not accept Internet addresses because they are viewed as transient references, frequently changed by the data provider after the paper is published. Digital Object Identifiers (DOIs) and the DOI® System were created to avoid this problem by providing a unique and persistent identifier scheme and an online resolution service. DOIs and the Internet service provided by the DOI System have emerged as the most acceptable scheme for publishers. NASA's Earth Science Data and Information System (ESDIS) Project, in cooperation with several Earth Observing System (EOS) instrument teams and data providers, has developed methods for assigning DOIs to EOS products. By assigning DOIs we are enabling authors and publishers to find it easier and more compelling to cite EOS data products. DOIs are unique alphanumeric strings that consist of a prefix and suffix. The prefix is assigned by a registration agency for the DOI System. The suffix must be unique, but is otherwise free to be constructed by the publisher, in this case NASA ESDIS Project. A strategy was needed for constructing DOI suffix names that corresponds to each EOS product. Since the onset of the DOI System, publishers have developed conventions to suit their own purposes. These range from random generation to complex, formally controlled vocabularies. An overarching ESDIS goal has been for the DOI names to be attractive for researchers to use in publication applications. Keeping them short and simple is paramount. When adding meaning to the string, it is also important that the name only refer to the data and not to the publisher, so that the DOI can be accepted as persistent even if the data is moved to a new publisher. Most users download EOS product files to their local facilities when

  17. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  18. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  19. NASA's Big Earth Data Initiative Accomplishments

    NASA Technical Reports Server (NTRS)

    Klene, Stephan A.; Pauli, Elisheva; Pressley, Natalie N.; Cechini, Matthew F.; McInerney, Mark

    2017-01-01

    The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Services (GIBS).

  20. NASA's Big Earth Data Initiative Accomplishments

    NASA Astrophysics Data System (ADS)

    Klene, S. A.; Pauli, E.; Pressley, N. N.; Cechini, M. F.; McInerney, M.

    2017-12-01

    The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Service(GIBS)

  1. International Space Station Earth Observations Working Group

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  2. Web Coverage Service Challenges for NASA's Earth Science Data

    NASA Technical Reports Server (NTRS)

    Cantrell, Simon; Khan, Abdul; Lynnes, Christopher

    2017-01-01

    In an effort to ensure that data in NASA's Earth Observing System Data and Information System (EOSDIS) is available to a wide variety of users through the tools of their choice, NASA continues to focus on exposing data and services using standards based protocols. Specifically, this work has focused recently on the Web Coverage Service (WCS). Experience has been gained in data delivery via GetCoverage requests, starting out with WCS v1.1.1. The pros and cons of both the version itself and different implementation approaches will be shared during this session. Additionally, due to limitations with WCS v1.1.1 ability to work with NASA's Earth science data, this session will also discuss the benefit of migrating to WCS 2.0.1 with EO-x to enrich this capability to meet a wide range of anticipated user's needs This will enable subsetting and various types of data transformations to be performed on a variety of EOS data sets.

  3. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  4. New NASA 3D Animation Shows Seven Days of Simulated Earth Weather

    NASA Image and Video Library

    2014-08-11

    This visualization shows early test renderings of a global computational model of Earth's atmosphere based on data from NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5). This particular run, called Nature Run 2, was run on a supercomputer, spanned 2 years of simulation time at 30 minute intervals, and produced Petabytes of output. The visualization spans a little more than 7 days of simulation time which is 354 time steps. The time period was chosen because a simulated category-4 typhoon developed off the coast of China. The 7 day period is repeated several times during the course of the visualization. Credit: NASA's Scientific Visualization Studio Read more or download here: svs.gsfc.nasa.gov/goto?4180 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Establishing Esri ArcGIS Enterprise Platform Capabilities to Support Response Activities of the NASA Earth Science Disasters Program

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Seepersad, J.; Shute, J.; Carriere, L.; Duffy, D.; Tisdale, B.; Kirschbaum, D.; Green, D. S.; Schwizer, L.

    2017-12-01

    NASA's Earth Science Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. NASA Earth observations and those of domestic and international partners are combined with in situ observations and models by NASA scientists and partners to develop products supporting disaster mitigation, response, and recovery activities among several end-user partners. These products are accompanied by training to ensure proper integration and use of these materials in their organizations. Many products are integrated along with other observations available from other sources in GIS-capable formats to improve situational awareness and response efforts before, during and after a disaster. Large volumes of NASA observations support the generation of disaster response products by NASA field center scientists, partners in academia, and other institutions. For example, a prediction of high streamflows and inundation from a NASA-supported model may provide spatial detail of flood extent that can be combined with GIS information on population density, infrastructure, and land value to facilitate a prediction of who will be affected, and the economic impact. To facilitate the sharing of these outputs in a common framework that can be easily ingested by downstream partners, the NASA Earth Science Disasters Program partnered with Esri and the NASA Center for Climate Simulation (NCCS) to establish a suite of Esri/ArcGIS services to support the dissemination of routine and event-specific products to end users. This capability has been demonstrated to key partners including the Federal Emergency Management Agency using a case-study example of Hurricane Matthew, and will also help to support future domestic and international disaster events. The Earth Science Disasters Program has also established a longer-term vision to leverage scientists' expertise in the development and delivery of

  6. Earth Observing Data System Data and Information System (EOSDIS) Overview

    NASA Technical Reports Server (NTRS)

    Klene, Stephan

    2016-01-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. The NASA Big Earth Data Initiative (BEDI) is an effort to make the acquired science data more discoverable, accessible, and usable. This presentation will provide a brief introduction to the Earth Observing System Data and Information System (EOSDIS) project and the nature of advances that have been made by BEDI to other Federal Users.

  7. NASA Earthdata Webinar: Improving Accessibility and Use of NASA Earth Science Data

    Atmospheric Science Data Center

    2015-05-08

    ... Webinar: Improving Accessibility and Use of NASA Earth Science Data Friday, May 8, 2015 Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) ...

  8. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  9. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    A combination of many (but not all) of the datasets which observed this flare. -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  11. NASA's SDO Observes an X-class Solar Flare

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 1:01 a.m. EDT on Oct. 19, 2014. NASA's Solar Dynamics Observatory, which is always observing the sun, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  13. Realizing NASA's Goal of Societal Benefits From Earth Observations in Mesoamerica Through the SERVIR Project

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Irwin, D.; Sever, T.; Graves, S.

    2006-12-01

    One of the goals of NASA's Applied Sciences Program is to manifest societal benefits from the vast store of Earth Observations through partnerships with public, private and academic organizations. The SERVIR project represents an early success toward this goal. By combining Earth Observations from NASA missions, results from environmental models and decision support tools from its partners the SERVIR project has produced an integrated systems solution that is yielding societal benefits for the region of Mesoamerica. The architecture of the SERVIR system consists of an operational facility in Panama with regional nodes in Costa Rica, Nicaragua, Honduras, Guatemala, El Salvador and Belize plus a Rapid Prototyping Center (RPC), located in Huntsville, Alabama. The RPC, funded by NASA's Applied Sciences Division, and developed by the Information Technology and Systems Center at the University of Alabama in Huntsville, and NASA Marshall Space Flight Center, produces scientifically strong decision support products and applications. When mature, the products and applications migrate to the operational center in Panama. There, they are available to environmental ministers and decision makers in Mesoamerica. In June 2004, the SERVIR project was contacted by the environmental ministry of El Salvador, which urgently requested remote sensing imagery of the location, direction, and extent of a HAB event off the coast of El Salvador and Guatemala. Using MODIS data the SERVIR team developed a value added product that predicts the location, direction, and extent of HABs. The products are produced twice daily and are used by the El Salvadoran and Guatemalan governments to alert their tourism and fishing industries of potential red tide events. This has enabled these countries to save millions of dollars for their industries as well as improve the health of harvested fish. In the area of short term weather forecasting the SERVIR team, in collaboration with the NASA Short

  14. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18086 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18087 and 18088 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are just out of frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  15. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18087 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18088 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Silverwood Lake is visible at the bottom of the image. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  16. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18088 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18087 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are left and right, respectively, at bottom frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/] .

  17. Arecibo Radar Observations of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Virkki, Anne; Saran Bhiravarasu, Sriram; Venditti, Flaviane; Zambrano-Marin, Luisa Fernanda; Aponte-Hernandez, Betzaida

    2017-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm; 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active, most powerful, and most sensitive planetary radar facility in the world. As such, Arecibo is vital for post-discovery characterization and orbital refinement of near-Earth asteroids. Since August 2016, the program has observed 100 near-Earth asteroids (NEAs), of which 38 are classified as potentially hazardous to Earth and 31 are compliant with the NASA Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). Arecibo observations are critical for identifying NEAs that may be on a collision course with Earth in addition to providing detailed physical characterization of the objects themselves in terms of size, shape, spin, and surface properties, which are valuable for assessing impact mitigation strategies. Here, we will present a sampling of the asteroid zoo observed by Arecibo, including press-noted asteroids 2014 JO25 and the (163693) Atira binary system.

  18. Landsat Celebrates 40 Years of Observing Earth

    NASA Image and Video Library

    2017-12-08

    An artist's rendition of the next Landsat satellite, the Landsat Data Continuity Mission (LDCM) that will launch in Feb. 2013. Credit: NASA The Landsat program is the longest continuous global record of Earth observations from space – ever. Since its first satellite went up in the summer of 1972, Landsat has been looking at our planet. The view of Earth that this 40-year satellite program has recorded allows scientists to see, in ways they never imagined, how the Earth's surface has transformed, over time. In the 1970s Landsat captured the first views from space of the Amazonian rainforest and continued to track the area year after year after year, giving the world an unprecedented view of systemic and rapid deforestation. This view from space let us see an activity that was taking place in an exceptionally remote part of our world. These now iconic-images of tropical deforestation spurred the global environmental community to rally in an unprecedented way, and resulted in worldwide attention and action. To read more go to: www.nasa.gov/mission_pages/landsat/news/landsat-history.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. ISO 19115 Experiences in NASA's Earth Observing System (EOS) ClearingHOuse (ECHO)

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Mitchell, A.

    2011-12-01

    Metadata is an important entity in the process of cataloging, discovering, and describing earth science data. As science research and the gathered data increases in complexity, so does the complexity and importance of descriptive metadata. To meet these growing needs, the metadata models required utilize richer and more mature metadata attributes. Categorizing, standardizing, and promulgating these metadata models to a politically, geographically, and scientifically diverse community is a difficult process. An integral component of metadata management within NASA's Earth Observing System Data and Information System (EOSDIS) is the Earth Observing System (EOS) ClearingHOuse (ECHO). ECHO is the core metadata repository for the EOSDIS data centers providing a centralized mechanism for metadata and data discovery and retrieval. ECHO has undertaken an internal restructuring to meet the changing needs of scientists, the consistent advancement in technology, and the advent of new standards such as ISO 19115. These improvements were based on the following tenets for data discovery and retrieval: + There exists a set of 'core' metadata fields recommended for data discovery. + There exists a set of users who will require the entire metadata record for advanced analysis. + There exists a set of users who will require a 'core' set metadata fields for discovery only. + There will never be a cessation of new formats or a total retirement of all old formats. + Users should be presented metadata in a consistent format of their choosing. In order to address the previously listed items, ECHO's new metadata processing paradigm utilizes the following approach: + Identify a cross-format set of 'core' metadata fields necessary for discovery. + Implement format-specific indexers to extract the 'core' metadata fields into an optimized query capability. + Archive the original metadata in its entirety for presentation to users requiring the full record. + Provide on-demand translation of

  20. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  1. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  2. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  3. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  4. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  5. Patterns in Crew-Initiated Photography of Earth from ISS - Is Earth Observation a Salutogenic Experience?

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Slack, Kelley; Olson, V.; Trenchard, M.; Willis, K.; Baskin, P.

    2006-01-01

    This viewgraph presentation asks the question "Is the observation of earth from the ISS a positive (salutogenic) experience for crew members?"All images are distributed to the public via the "Gateway to Astronaut Photography of Earth at http://eol.jsc.nasa.gov. The objectives of the study are (1) Mine the dataset of Earth Observation photography--What can it tell us about the importance of viewing the Earth as a positive experience for the crewmembers? (2) Quantify extent to which photography was self-initiated (not requested by scientists) (3) Identify patterns photography activities versus scientific requested photography.

  6. NASA/NOAA: Earth Science Electronic Theater 1999. Earth Science Observations, Analysis and Visualization: Roots in the 60s - Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966, to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA''s visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science ETheater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites, Hyper

  7. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-26

    ISS043E142265 (04/26/2015) --- NASA astronaut Scott Kelly on the International Space Station Apr.26, 2015 tweeted this image out of an Earth observation as part of his Space Geo contest "name this location" with this remark and clue: "This frozen body of water is the world's oldest (25 million years) and deepest basin on Earth. Name it!"

  8. Global Reach: A View of International Cooperation in NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Improving life on Earth and understanding and protecting our home planet are foremost in the Vision and Mission of the National Aeronautics and Space Administration (NASA). NASA's Earth Science Enterprise end eavors to use the unique vantage point of space to study the Earth sy stem and improve the prediction of Earth system change. NASA and its international partners study Earth's land, atmosphere, ice, oceans, a nd biota and seek to provide objective scientific knowledge to decisi onmakers and scientists worldwide. This book describes NASA's extensi ve cooperation with its international partners.

  9. Earth Observation

    NASA Image and Video Library

    2011-06-27

    ISS028-E-009979 (27 June 2011) --- The Massachusetts coastline is featured in this image photographed by an Expedition 28 crew member on the International Space Station. The Crew Earth Observations team at NASA Johnson Space Center sends specific ground targets for photography up to the station crew on a daily basis, but sometimes the crew takes imagery on their own of striking displays visible from orbit. One such display, often visible to the ISS crew due to their ability to look outwards at angles between 0 and 90 degrees, is sunglint on the waters of Earth. Sunglint is caused by sunlight reflecting off of a water surface?much as light reflects from a mirror?directly towards the observer. Roughness variations of the water surface scatter the light, blurring the reflection and producing the typical silvery sheen of the sunglint area. The point of maximum sunglint is centered within Cape Cod Bay, the body of water partially enclosed by the ?hook? of Cape Cod in Massachusetts (bottom). Cape Cod was formally designated a National Seashore in 1966. Sunglint off the water provides sharp contrast with the coastline and the nearby islands of Martha?s Vineyard and Nantucket (lower left), both popular destinations for tourists and summer residents. To the north, rocky Cape Ann extends out into the Atlantic Ocean; the border with New Hampshire is located approximately 30 kilometers up the coast. Further to the west, the eastern half of Long Island, New York is visible emerging from extensive cloud cover over the mid-Atlantic and Midwestern States. Persistent storm tracks had been contributing to record flooding along rivers in the Midwest at the time this image was taken in late June 2011. Thin blue layers of the atmosphere, contrasted against the darkness of space, are visible extending along the Earth?s curvature at top.

  10. NASA's Future Active Remote Sensing Missing for Earth Science

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan B.

    2000-01-01

    Since the beginning of space remote sensing of the earth, there has been a natural progression widening the range of electromagnetic radiation used to sense the earth, and slowly, steadily increasing the spatial, spectral, and radiometric resolution of the measurements. There has also been a somewhat slower trend toward active measurements across the electromagnetic spectrum, motivated in part by increased resolution, but also by the ability to make new measurements. Active microwave instruments have been used to measure ocean topography, to study the land surface. and to study rainfall from space. Future NASA active microwave missions may add detail to the topographical studies, sense soil moisture, and better characterize the cryosphere. Only recently have active optical instruments been flown in space by NASA; however, there are currently several missions in development which will sense the earth with lasers and many more conceptual active optical missions which address the priorities of NASA's earth science program. Missions are under development to investigate the structure of the terrestrial vegetation canopy, to characterize the earth's ice caps, and to study clouds and aerosols. Future NASA missions may measure tropospheric vector winds and make vastly improved measurements of the chemical components of the earth's atmosphere.

  11. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  12. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  14. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most

  15. Plan for Living on a Restless Planet Sets NASA's Solid Earth Agenda

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.; Baker, Victor R.; Bloxham, Jeremy; Booth, Jeffrey; Donnellan, Andrea; Elachi, Charles; Evans, Diane; Rignot, Eric; Burbank, Douglas; Chao, Benjamin F.; Chave, Alan; Gillespie, Alan; Herring, Thomas; Jeanloz, Raymond; LaBrecque, John; Minster, Bernard; Pittman, Walter C., III; Simons, Mark; Turcotte, Donald L.; Zoback, Mary Lou C.

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address those challenges? A new report, Living on a Restless Planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid Earth science over the next 5 years, according to this report, is a satellite dedicated to Interferometric Synthetic Aperture Radar (InSAR). At the request of NASA, the Solid Earth Science Working Group (SESWG) developed a strategy for the highest priority objectives in solid Earth science for the space agency over the next 25 years. The strategy addresses six challenges that are of fundamental scientific importance, have strong implications for society, and are amenable to substantial progress through a concerted series of scientific observations from space.

  16. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18082 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when these images were taken from the International Space Station at roughly 11 a.m. (PST). Thick yellow smoke blows south, blanketing the valley below. This image and ISS007-E-18078, looking southeast, capture the smoke pall as the ISS approached and passed over the region. Image numbers 18078 and 18082 were taken roughly a minute apart. A small break in the smoke marks Cajon pass. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help crew members take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  17. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18078 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when these images were taken from the International Space Station at roughly 11 a.m. (PST). Thick yellow smoke blows south, blanketing the valley below. This image and ISS007-E-18082, looking southeast, capture the smoke pall as the ISS approached and passed over the region. Image numbers 18078 and 18082 were taken roughly a minute apart. A small break in the smoke marks Cajon pass. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help crew members take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/].

  18. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Little, Mike; Huang, Thomas; Jacob, Joseph; Yang, Phil; Kuo, Kwo-Sen

    2016-01-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based file systems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  19. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Little, M. M.; Huang, T.; Jacob, J. C.; Yang, C. P.; Kuo, K. S.

    2016-12-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based filesystems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  20. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  1. C3: A Collaborative Web Framework for NASA Earth Exchange

    NASA Astrophysics Data System (ADS)

    Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.

    2010-12-01

    The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.

  2. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  3. ASTER, a multinational Earth observing concept

    NASA Technical Reports Server (NTRS)

    Bothwell, Graham W.; Geller, Gary N.; Larson, Steven A.; Morrison, Andrew D.; Nichols, David A.

    1993-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed.

  4. Earth observations satellite data policy: Process and outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, L.R.

    1994-12-31

    The National Aeronautics and Space Administration (NASA) develops, launches, and operates satellites to observe and monitor the Earth and its environment. This study categorizes each program based on the relationship between NASA and external organizations. A program can be an autonomous mission undertaken for NASA`s own constituency, or it can involve a client agency or a partner. These relationships affect how data policy decisions are made and implemented, and how the valuable output of NASA`s Earth observations satellites is managed. The process in NASA for determining which programs will be approved is very informal. Ideas and concepts surface and reachmore » the consciousness of NASA management; if sufficient support is achieved, a proposal can move to the feasibility study phase and from there become an approved and funded mission. The handling of data can be an important consideration in generating political support for program approval. Autonomous programs tend to have decisions made at lower levels and documented informally or not at all. Data policy is part of routine implementation of programs and does not generally rise to the visibility of the agency head or congressional staff or the Executive Office of the President. Responsibility for data management for autonomous missions is retained at NASA centers. Client programs involve higher level decision makers, and are the subject of political interest because they cross agency boundaries. The data policy process includes presidential statements on data access. As part of the client relationship, NASA often provides resources to the client for data handling and analysis, and shares these responsibilities. Data policy for partner programs is the result of bargaining between the partners, either foreign government agencies or private companies.« less

  5. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-15

    ISS043E194350 (05/15/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this image out of an Earth observation image as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo Four international borders in one photo from the International @Space_Station. Name them"! Two winners! Congrats to @TeacherWithTuba & @PC101!. The correct answer is :#SpaceGeo A: #Denmark #Norway #Sweden #Germany & #Poland. The winners will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: www.nasa.gov/feature/where-over-the-world-is-astronaut-sc...

  6. New Earth Observation Capabilities For The Commercial Sector

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2017-01-01

    Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.

  7. NASA Captures 'EPIC' Earth Image

    NASA Image and Video Library

    2017-12-08

    A NASA camera on the Deep Space Climate Observatory satellite has returned its first view of the entire sunlit side of Earth from one million miles away. This color image of Earth was taken by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope. The image was generated by combining three separate images to create a photographic-quality image. The camera takes a series of 10 images using different narrowband filters -- from ultraviolet to near infrared -- to produce a variety of science products. The red, green and blue channel images are used in these color images. The image was taken July 6, 2015, showing North and Central America. The central turquoise areas are shallow seas around the Caribbean islands. This Earth image shows the effects of sunlight scattered by air molecules, giving the image a characteristic bluish tint. The EPIC team is working to remove this atmospheric effect from subsequent images. Once the instrument begins regular data acquisition, EPIC will provide a daily series of Earth images allowing for the first time study of daily variations over the entire globe. These images, available 12 to 36 hours after they are acquired, will be posted to a dedicated web page by September 2015. The primary objective of DSCOVR, a partnership between NASA, the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Air Force, is to maintain the nation’s real-time solar wind monitoring capabilities, which are critical to the accuracy and lead time of space weather alerts and forecasts from NOAA. For more information about DSCOVR, visit: www.nesdis.noaa.gov/DSCOVR/

  8. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    Zoom in on the flare in ultraviolet (SDO/AIA), X-rays (Hinode) and gamma-rays (RHESSI) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Earth Observation

    NASA Image and Video Library

    2014-05-29

    ISS040-E-005979 (29 May 2014) --- One of the Expedition 40 crew members aboard the International Space Station used a 200mm lens to photograph this image from 222 nautical miles above Earth showing Harris County and Galveston County, Texas plus several other surrounding counties, including a long stretch along the Gulf of Mexico (bottom left). The entirety of Galveston Bay is visible at bottom center. Just below center lies the 1625-acre site of NASA's Johnson Space Center, one of the training venues for all space station crew members and the nearby long-time area of residence for NASA astronauts.

  10. NASA Overview

    NASA Technical Reports Server (NTRS)

    Sheffner, Edwin J.

    2007-01-01

    The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.

  11. From Soup to Nuts: How Terra has enabled the growth of NASA Earth science communication

    NASA Astrophysics Data System (ADS)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.

    2014-12-01

    The birth of NASA's Earth Observatory website in 1999 closely mirrored the launch of Terra and over the years its growth has paralleled that of the Earth Observing System (EOS) program. With the launch of Terra, NASA gained an extraordinary platform that not only promised new science capabilities but gave us the data and imagery for telling the stories behind the science. The Earth Observatory Group was founded to communicate these stories to the public. We will present how we have used the capabilities of all the Terra instruments over the past 15 years to expand the public's knowledge of NASA Earth science. The ever-increasing quantity and quality of Terra data, combined with technological improvements to data availability and services has allowed the Earth Observatory and, as a result, the greater science-aware media, to greatly expand the visibility of NASA data and imagery. We will offer thoughts on best practices in using these multi-faceted instruments for public communication and we will share how we have worked with Terra science teams and affiliated systems to see the potential stories in their data and the value of providing the data in a timely fashion. Terra has allowed us to tell the stories of our Earth today like never before.

  12. How NASA Sees the Earth and Its Climate

    NASA Technical Reports Server (NTRS)

    BrowndeColstoun, Eric

    2012-01-01

    NASA Research Addresses Broad Questions: (1) How are global ecosystems changing? (2) What changes are occurring in global land cover and land use and what are their causes? (3) How is the Earth s surface being transformed and how can such information be used to predict future changes? (4) What are the consequences of land cover and land use change for the sustainability of ecosystems and economic productivity? NASA uses the view from above to monitor our changing home. Different satellites help us study the various systems of the Earth. No one system can do it all. NASA tools and science helps us to understand how the planet is changing and what the changes mean for us.

  13. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  14. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  15. NASA/NOAA/AMS Earth Science Electronic Theatre

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  16. NASA's Earth Observing System Data and Information System - Many Mechanisms for On-Going Evolution

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.

    2012-12-01

    NASA's Earth Observing System Data and Information System has been serving a broad user community since August 1994. As a long-lived multi-mission system serving multiple scientific disciplines and a diverse user community, EOSDIS has been evolving continuously. It has had and continues to have many forms of community input to help with this evolution. Early in its history, it had inputs from the EOSDIS Advisory Panel, benefited from the reviews by various external committees and evolved into the present distributed architecture with discipline-based Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems and a cross-DAAC search and data access capability. EOSDIS evolution has been helped by advances in computer technology, moving from an initially planned supercomputing environment to SGI workstations to Linux Clusters for computation and from near-line archives of robotic silos with tape cassettes to RAID-disk-based on-line archives for storage. The network capacities have increased steadily over the years making delivery of data on media almost obsolete. The advances in information systems technologies have been having an even greater impact on the evolution of EOSDIS. In the early days, the advent of the World Wide Web came as a game-changer in the operation of EOSDIS. The metadata model developed for the EOSDIS Core System for representing metadata from EOS standard data products has had an influence on the Federal Geographic Data Committee's metadata content standard and the ISO metadata standards. The influence works both ways. As ISO 19115 metadata standard has developed in recent years, EOSDIS is reviewing its metadata to ensure compliance with the standard. Improvements have been made in the cross-DAAC search and access of data using the centralized metadata clearing house (EOS Clearing House - ECHO) and the client Reverb. Given the diversity of the Earth science disciplines served by the DAACs, the DAACs have developed a

  17. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  18. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    NASA Astrophysics Data System (ADS)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  19. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-10

    ISS043E184521 (05/10/2015) --- NASA astronaut Terry Virts Expedition 43 Commander on the International Space Station tweeted this Earth observation image of South America with the following comment: "Salar de Uyuni in the #Bolivia desert #SouthAmerica. The world's largest salt flat".

  20. Earth Observing System. Science and Mission Requirements, Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth Observing System (EOS) is a planned NASA program, which will carry the multidisciplinary Earth science studies employing a variety of remote sensing techniques in the 1990's, as a prime mission, using the Space Station polar platform. The scientific rationale, recommended observational needs, the broad system configuration and a recommended implementation strategy to achieve the stated mission goals are provided.

  1. Utilizing NASA Earth Observations to investigate habitat suitability of the Cape Vulture in the Western Cape Province of South Africa

    NASA Astrophysics Data System (ADS)

    Gray, D.; Estes, M. G., Jr.; Griffin, R.; Estes, S. M.

    2017-12-01

    As the global urban population rapidly increases, many wild species lose habitat to human development. The Western Cape of South Africa contains one of Earth's 35 biodiversity hotspots, with remarkably high levels of species richness and endemism. Understanding the relationship between anthropogenic changes and key species in this region is crucial for conservation of its threatened ecosystems. The objective of this research was to investigate the effect that climate change and urbanization each have on habitat suitability of the Cape Vulture. This research utilized NASA satellite data and crowdsourced species sightings to model past, current, and future habitat suitability for this key species in the Western Cape. Data used from NASA Earth Observations included: Landsat 8- derived Land Cover, Modis Land Surface Temperature, Digital Elevation Models from the Shuttle Radar Topography Mission, and precipitation data which integrated in-situ stations with Infrared data. Species observations were sourced from the Global Biodiversity Information Facility online database. A geospatial modelling framework was used to generate maps of present, past and future suitable habitats for analysis and comparison. Changes in precipitation and temperature may be a factor in the extreme loss of habitat since 1995, and predict even more drastic loss in the future. This research provides insights on anthropogenic effects on a species' range which may be used to inform discussions of conservation as an element of environmentally sustainable development.

  2. Continuity of Earth Radiation Budget Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  3. Automating the Processing of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin; Nemani, Ramakrishna; Votava, Petr

    2003-01-01

    NASA s vision for Earth science is to build a "sensor web": an adaptive array of heterogeneous satellites and other sensors that will track important events, such as storms, and provide real-time information about the state of the Earth to a wide variety of customers. Achieving this vision will require automation not only in the scheduling of the observations but also in the processing of the resulting data. To address this need, we are developing a planner-based agent to automatically generate and execute data-flow programs to produce the requested data products.

  4. Building Knowledge Graphs for NASA's Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of

  5. Enabling Earth Science Measurements with NASA UAS Capabilites

    NASA Technical Reports Server (NTRS)

    Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce

    2015-01-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.

  6. Embracing Open Source for NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Baynes, Katie; Pilone, Dan; Boller, Ryan; Meyer, David; Murphy, Kevin

    2017-01-01

    The overarching purpose of NASAs Earth Science program is to develop a scientific understanding of Earth as a system. Scientific knowledge is most robust and actionable when resulting from transparent, traceable, and reproducible methods. Reproducibility includes open access to the data as well as the software used to arrive at results. Additionally, software that is custom-developed for NASA should be open to the greatest degree possible, to enable re-use across Federal agencies, reduce overall costs to the government, remove barriers to innovation, and promote consistency through the use of uniform standards. Finally, Open Source Software (OSS) practices facilitate collaboration between agencies and the private sector. To best meet these ends, NASAs Earth Science Division promotes the full and open sharing of not only all data, metadata, products, information, documentation, models, images, and research results but also the source code used to generate, manipulate and analyze them. This talk focuses on the challenges to open sourcing NASA developed software within ESD and the growing pains associated with establishing policies running the gamut of tracking issues, properly documenting build processes, engaging the open source community, maintaining internal compliance, and accepting contributions from external sources. This talk also covers the adoption of existing open source technologies and standards to enhance our custom solutions and our contributions back to the community. Finally, we will be introducing the most recent OSS contributions from NASA Earth Science program and promoting these projects for wider community review and adoption.

  7. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  8. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  9. Recovering Nimbus Era Observations at the NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Meyer, D.; Johnson, J.; Esfandiari, A.; Zamkoff, E.; Al-Jazrawi, A.; Gerasimov, I.; Alcott, G.

    2017-01-01

    Between 1964 and 1978, NASA launched a series of seven Nimbus meteorological satellites which provided Earth observations for 30 years. These satellites, carrying a total of 33 instruments to observe the Earth at visible, infrared, ultraviolet, and microwave wavelengths, revolutionized weather forecasting, provided early observations of ocean color and atmospheric ozone, and prototyped location-based search and rescue capabilities. The Nimbus series paved the way for a number of currently operational systems such as the EOS (Earth Observation System) Terra, Aqua, and Aura platforms. The original data archive includes both magnetic tapes and film media. These media are well past their expected end of life, placing at risk valuable data that are critical to extending the history of Earth observations back in time. GES DISC (Goddard Earth Sciences Data and Information Services Center) has been incorporating these data into a modern online archive by recovering the digital data files from the tapes, and scanning images of the data from film strips. The digital data products were written on obsolete hardware systems in outdated file formats, and in the absence of metadata standards at that time, were often written in proprietary file structures. Through a tedious and laborious process, oft-corrupted data are recovered, and incomplete metadata and documentation are reconstructed.

  10. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  11. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  12. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  13. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-21

    ISS043E128768 (04/21/2015) --- NASA astronaut Scott Kelly on the International Space Station May 6, 2015 tweeted this image out of an Earth observation as part of his Space Geo trivia contest. Scott tweeted this comment and clue: "#SpaceGeo! A serpent is known for deceptive traits, but don’t let this snake pull the wool over your eyes. Name it!” Congratulations to @splinesmith for correctly identifying this image first, : #BighornRiver Montana/Wyoming named in 1805 for Bighorn sheep along its banks. He will receive an autographed copy of this image when Scott returns to Earth in March 2016. Learn more about #SpaceGeo and play along every Wednesday for your chance to win: http://www.nasa.gov/feature/where-over-the-world-is-astronaut-scott-kelly

  14. Teaching Inquiry using NASA Earth-System Science: Lessons Learned for Blended, Scaffolded Professional Development

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; TeBockhorst, D.

    2013-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a NASA EPOESS funded program exploring blended professional development for pre- and in-service educators to learn how to conduct meaningful inquiry lessons and projects in the K-12 classroom. This project combines trainings in GLOBE observational protocols and training in the use of NASA Earth Science mission data in a backward-faded scaffolding approach to teaching and learning about scientific inquiry. It also features a unique partnership with the National Science Teachers Association Learning Center to promote cohort building and blended professional development with access to NSTA's collection of resources. In this presentation, we will discuss lessons learned in year one and two of this program and how we plan to further develop this program over the next two years.

  15. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  16. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    IBIS can focus in on different wavelengths of light, and so reveal different layers at different heights in the sun's lower atmosphere, the chromosphere. This image shows a region slightly higher than the former one. Credit: Lucia Kleint (BAER Institute), Paul Higgins (Trinity College Dublin, Ireland) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. This is NASA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The organization, operations, functions, and objectives of NASA are outlined. Data include manned space flights, satellite weather observations, orbiting radio relays, and new views of the earth and beyond the earth as observed by satellites. Details of NASA's work in international programs, educational training programs, and adopting space technology to earth uses are also given.

  18. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    This close-up of the sunspot underneath the March 29, 2014, flare shows incredible detail. The image was captured by the G-band camera at Sacramento Peak in New Mexico. This instrument can focus on only a small area at once, but provide very high resolution. Ground-based telescope data can be hindered by Earth's atmosphere, which blocks much of the sun's ultraviolet and X-ray light, and causes twinkling even in the light it does allow through. As it happens, the March 29 flare occurred at a time of day in New Mexico that often results in the best viewing times from the ground. Credit: Kevin Reardon (National Solar Observatory), Lucia Kleint (BAER Institute) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. NASA Facts, Observing Earth from Skylab.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    The process of high-altitude photography and its uses are the topics of this publication. The advantages of color infrared photography over black and white images are discussed, using as evidence a series of skylab photographs. The major portion of this work is devoted to the detection of natural resources of the earth from the analysis of…

  20. Customizing NASA's Earth Science Research Products for addressing MENA Water Challenges

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2012-01-01

    As projected by IPCC 2007 report, by the end of this century the Middle East North Mrica (MENA) region is projected to experience an increase of 3 C to 5 C rise in mean temperatures and a 20% decline in precipitation. This poses a serious problem for this geographic zone especially when majority of the hydrological consumption is for the agriculture sector and the remaining amount is for domestic consumption. In late 2011, the World Bank, USAID and NASA have joined hands to establishing integrated, modem, up to date NASA developed capabilities for various countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making for societal benefits. The main focus of this undertaking is to address the most pressing societal issues which can be modeled and solved by utilizing NASA Earth Science remote sensing data products and hydrological models. The remote sensing data from space is one of the best ways to study such complex issues and further feed into the decision support systems. NASA's fleet of Earth Observing satellites offer a great vantage point from space to look at the globe and provide vital signs necessary to maintain healthy and sustainable ecosystem. NASA has over fifteen satellites and thirty instruments operating on these space borne platforms and generating over 2000 different science products on a daily basis. Some of these products are soil moisture, global precipitation, aerosols, cloud cover, normalized difference vegetation index, land cover/use, ocean altimetry, ocean salinity, sea surface winds, sea surface temperature, ozone and atmospheric gasses, ice and snow measurements, and many more. All of the data products, models and research results are distributed via the Internet freely through out the world. This project will utilize several NASA models such as global Land Data Assimilation System (LDAS) to generate hydrological states and fluxes in near real time. These LDAS products

  1. Earth Observations from the International Space Station: Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2015-01-01

    The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.

  2. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  3. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  4. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  5. NASA/NOAA Earth Science Electronic Theater 1999. Earth Science Observations, Analysis and Visualization: Roots in the 60s: Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape in standard and HDTV that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  6. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    Like almost all solar observatories, NASA's IRIS can provide images of different layers of the sun's atmosphere, which together create a whole picture of what's happening. This image shows light at a wavelength of 1400 Angstrom, which highlights material some 650 miles above the sun's surface. The vertical line in the middle shows the slit for IRIS's spectrograph, which can separate light into its many wavelengths to provide even more information about the temperature and velocity of material during a flare. Credit: NASA/IRIS/Goddard Space Flight Center -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  8. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  9. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  10. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  11. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  12. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  13. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  14. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  15. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  16. NASA Earth Science Partnerships - The Role and Value of Commercial and Non-Profit Partnerships with Government in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Favors, J.; Cauffman, S.; Ianson, E.; Kaye, J. A.; Friedl, L.; Green, D. S.; Lee, T. J.; Murphy, K. J.; Turner, W.

    2017-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, and technology development. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations with technical and non-technical expertise. This presentation will focus on a new commercial and non-profit partnership effort being undertaken by ESD to integrate expertise unique to these sectors with expertise at NASA to jointly achieve what neither group could alone. Highlights will include case study examples of joint work with perspectives from both NASA and the partner, building interdisciplinary teams with diverse backgrounds but common goals (e.g., economics and Earth observations for valuing natural capital), partnership successes and challenges in the co-production of science and applications, utilizing partner networks to amplify project outcomes, and how involving partners in defining the project scope drives novel and unique scientific and decision-making questions to arise.

  17. Impact of Radiatively Interactive Dust Aerosols on Dust Transport and Mobilization in the NASA Goddard Earth Observing System (GEOS-5) Earth Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.

    2017-12-01

    Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.

  18. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  19. On the development of earth observation satellite systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.

  20. NASA's Earth Science Gateway: A Platform for Interoperable Services in Support of the GEOSS Architecture

    NASA Astrophysics Data System (ADS)

    Alameh, N.; Bambacus, M.; Cole, M.

    2006-12-01

    Nasa's Earth Science as well as interdisciplinary research and applications activities require access to earth observations, analytical models and specialized tools and services, from diverse distributed sources. Interoperability and open standards for geospatial data access and processing greatly facilitate such access among the information and processing compo¬nents related to space¬craft, airborne, and in situ sensors; predictive models; and decision support tools. To support this mission, NASA's Geosciences Interoperability Office (GIO) has been developing the Earth Science Gateway (ESG; online at http://esg.gsfc.nasa.gov) by adapting and deploying a standards-based commercial product. Thanks to extensive use of open standards, ESG can tap into a wide array of online data services, serve a variety of audiences and purposes, and adapt to technology and business changes. Most importantly, the use of open standards allow ESG to function as a platform within a larger context of distributed geoscience processing, such as the Global Earth Observing System of Systems (GEOSS). ESG shares the goals of GEOSS to ensure that observations and products shared by users will be accessible, comparable, and understandable by relying on common standards and adaptation to user needs. By maximizing interoperability, modularity, extensibility and scalability, ESG's architecture fully supports the stated goals of GEOSS. As such, ESG's role extends beyond that of a gateway to NASA science data to become a shared platform that can be leveraged by GEOSS via: A modular and extensible architecture Consensus and community-based standards (e.g. ISO and OGC standards) A variety of clients and visualization techniques, including WorldWind and Google Earth A variety of services (including catalogs) with standard interfaces Data integration and interoperability Mechanisms for user involvement and collaboration Mechanisms for supporting interdisciplinary and domain-specific applications ESG

  1. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2017-12-08

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.

    2013-01-01

    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.

  4. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    This combined image shows the March 29, 2014, X-class flare as seen through the eyes of different observatories. SDO is on the bottom/left, which helps show the position of the flare on the sun. The darker orange square is IRIS data. The red rectangular inset is from Sacramento Peak. The violet spots show the flare's footpoints from RHESSI. -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    NASA Technical Reports Server (NTRS)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  6. Utilizing NASA Earth Observations to detect factors contributing to hypoxic events in the southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Chapman, R.; Johansen, A.; Mitchell, Å. R.; Caraballo Álvarez, I. O.; Taggart, M.; Smith, B.

    2015-12-01

    Monitoring and analyzing harmful algal blooms (HABs) and hypoxic events in the southern coastal areas of the Gulf of Mexico (GoM) is important for watershed management and mitigation of environmental degradation. This study uncovered trends and dynamic characteristics of chlorophyll-a (Chl) concentration, sea surface temperature (SST), colored dissolved organic matter index (CDOM), and photosynthetically available radiation (PAR); as evident in 8-day standard mapped image (SMI) products from the MODIS instrument on the Aqua platform from 2002-2015 using Clark Labs TerrSet Earth Trends Modeler (ETM). Predicted dissolved oxygen images were classified using a Multi-Layer Perceptron regression approach with in-situ data from the northern GoM. Additionally, sediment and nutrient loading values of the Grijalva-Usumacinta watershed were modeled using the ArcGIS Soil and Water Assessment Tool (SWAT). Lastly, A Turbidity Index was generated using Landsat 8 Operational Land Imager (OLI) scenes for 2014-2015. Results, tools, and products will assist local environmental and health authorities in revising water quality standards and mitigating the impacts of future HABs and hypoxic events in the region. This project uses NASA's earth observations as a viable alternative to studying a region with no in-situ data.

  7. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  8. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  9. Reuse of Software Assets for the NASA Earth Science Decadal Survey Missions

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Downs, Robert R.; Marshall, James J.; Most, Neal F.; Samadi, Shahin

    2010-01-01

    Software assets from existing Earth science missions can be reused for the new decadal survey missions that are being planned by NASA in response to the 2007 Earth Science National Research Council (NRC) Study. The new missions will require the development of software to curate, process, and disseminate the data to science users of interest and to the broader NASA mission community. In this paper, we discuss new tools and a blossoming community that are being developed by the Earth Science Data System (ESDS) Software Reuse Working Group (SRWG) to improve capabilities for reusing NASA software assets.

  10. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  11. Building Capacity to Use Earth Observations in Decision Making: A Case Study of NASA's DEVELOP National Program Methods and Best Practices

    NASA Astrophysics Data System (ADS)

    Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Miller, T. N.; Favors, J. E.; Rogers, L.; Allsbrook, K. N.; Bender, M. R.; Ruiz, M. L.

    2015-12-01

    NASA's DEVELOP National Program fosters an immersive research environment for dual capacity building. Through rapid feasibility Earth science projects, the future workforce and current decision makers are engaged in research projects to build skills and capabilities to use Earth observation in environmental management and policy making. DEVELOP conducts over 80 projects annually, successfully building skills through partnerships with over 150 organizations and providing over 350 opportunities for project participants each year. Filling a void between short-term training courses and long-term research projects, the DEVELOP model has been successful in supporting state, local, federal and international government organizations to adopt methodologies and enhance decision making processes. This presentation will highlight programmatic best practices, feedback from participants and partner organizations, and three sample case studies of successful adoption of methods in the decision making process.

  12. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  13. Take off with NASA's Kepler Mission!: The Search for Other "Earths"

    ERIC Educational Resources Information Center

    Koch, David; DeVore, Edna K.; Gould, Alan; Harman, Pamela

    2009-01-01

    Humans have long wondered about life in the universe. Are we alone? Is Earth unique? What is it that makes our planet a habitable one, and are there others like Earth? NASA's Kepler Mission seeks the answers to these questions. Kepler is a space-based, specially designed 0.95 m aperture telescope. Launching in 2009, Kepler is NASA's first mission…

  14. A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul

    2015-01-01

    A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.

  15. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  16. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  17. Earth Observation System Flight Dynamics System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  18. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-14

    ISS043E120523 (04/14/2015) --- NASA astronaut Scott Kelly on the International Space Station tweeted this earth observation image out on Apr. 14, 2015 as part of his Space Geo contest of "name this location": Scott tweeted this comment and clue: "#SpaceGeo! In 1962, former Astronaut John Glenn's Friendship 7 Mercury landed in this vicinity. Name it!"

  19. Earth observation taken by the Expedition 46 crew

    NASA Image and Video Library

    2016-01-23

    ISS046e021993 (01/23/2016) --- Earth observation of the coast of Oman taken during a night pass by the Expedition 46 crew aboard the International Space Station. NASA astronaut Tim Kopra tweeted this image out with this message: "Passing over the Gulf of #Oman at night -- city lights of #Muscat #Dubai #AbuDhabi and #Doha in the distance".

  20. Earth Science Observations from the International Space Station: An Overview (Invited)

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2013-12-01

    The International Space Station (ISS) provides a unique and valuable platform for observing the Earth. With its mid-inclination (~51 degree) orbit, it provides the opportunity to view most of the Earth, with data acquisition possible over a full range of local times, in an orbit that nicely complements the polar sun-synchronous orbits used for much of space-based Earth observation, and can draw on a heritage of mid-inclination observations from both free flying satellites and the Space Shuttle program. The ISS, including its component observing modules supplied by NASA's international partners, can provide needed resources and viewing opportunities by a broad range of Earth-viewing scientific instruments. In this talk, the overall picture of Earth viewing from ISS will be presented, with examples from a range of past, current, and projected sensors being shared; talks on the ISS implementation for a subset of current and projected payload will be presented in individual talks presented by their their respective teams.

  1. Who uses NASA Earth Science Data? Connecting with Users through the Earthdata website and Social Media

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Brennan, J.; Bagwell, R.; Behnke, J.

    2015-12-01

    This poster will introduce and explore the various social media efforts, monthly webinar series and a redesigned website (https://earthdata.nasa.gov) established by National Aeronautics and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.

  2. Building Capacity for Earth Observations in Support of the United Nations Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Blevins, B.; Prados, A. I.; Hook, E.

    2017-12-01

    The Group on Earth Observations (GEO) looks to build a future where the international community uses Earth observations to make better, informed decisions. This includes application in international agreements such as the UN Sustainable Development Goals (SDGs), the Sendai Framework for Disaster Risk Reduction, and the Convention on Biological Diversity. To do this, decision makers first need to build the necessary skills. NASA's Applied Remote Sensing Training program (ARSET) seeks to build capacity through remote sensing training. In-person and online trainings raise awareness, enable data access, and demonstrate applications of Earth observations. Starting in 2017, ARSET began offering training focused on applying Earth data to the UN SDGs. These trainings offer insight into applications of satellite data in support of implementing, monitoring, and evaluating the SDGs. This presentation will provide an overview of the use of NASA satellite data to track progress towards increased food security, disaster risk reduction, and conservation of natural resources for societal benefit. It will also include a discussion on capacity building best practices and lessons learned for using Earth observations to meet SDG targets, based on feedback from engaging over 800 participants from 89 nations and 580 organizations in ARSET SDG trainings.

  3. EarthObserver: Bringing the world to your fingertips

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for

  4. From LACIE to GEOGLAM: Integrating Earth Observations into Operational Agricultural Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.

    2012-12-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted

  5. NASA's Earth Observing System: The Transition from Climate Monitoring to Climate Change Prediction

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Herring, David D.

    1998-01-01

    Earth's 4.5 billion year history is a study in change. Natural geological forces have been rearranging the surface features and climatic conditions of our planet since its beginning. There is scientific evidence that some of these natural changes have not only led to mass extinctions of species (e.g., dinosaurs), but have also severely impacted human civilizations. For instance, there is evidence that a relatively sudden climate change caused a 300-year drought that contributed to the downfall of Akkadia, one of the most powerful empires in the Middle-East region around 2200 BC. More recently, the "little ice age" from 1200-1400 AD forced the Vikings to abandon Greenland when temperatures there dropped by about 1.5 C, rendering it too difficult to grow enough crops to sustain the population. Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rate of global change. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. We don't understand the cause-and-effect relationships among Earth's land, ocean, and atmosphere well enough to predict what, if any, impacts these rapid changes will have on future climate conditions. We need to make many measurements all over the world, over a long period of time, in order to assemble the information needed to construct accurate computer models that will enable us to forecast climate change. In 1988, the Earth System Sciences Committee, sponsored by NASA, issued a report calling for an integrated, long-term strategy for measuring the vital signs of Earth's climate system. The report urged that the measurements must all be intimately coupled with focused process studies, they must facilitate development of Earth system models, and they must be stored in an information system that ensures open access to consistent, long-term data

  6. Improved Lower Mekong River Basin Hydrological Decision Making Using NASA Satellite-based Earth Observation Systems

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.

    2017-12-01

    Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning

  7. Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H.; Behnke, J.

    2016-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since 1994. EOSDIS manages data from pre-EOS missions dating back to 1960s, EOS missions that started in 1997, and missions from the post-EOS era. Its data holdings come from many different sources - satellite and airborne instruments, in situ measures, field experiments, science investigations, etc. Since the beginning of the EOS Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and/or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: 1. Data bits with no corruption, 2. Discoverability and access, 3. Readability, 4. Understandability, 5. Usability and 6. Reproducibility of results. NASA's Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are "published" in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing/product information pages.

  8. GLOBE Observer: Earth Science in the Palm of Your Hand

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.; Riebeek Kohl, H.

    2017-12-01

    You can get involved in doing Earth system science research tied to NASA research and data. This demo will introduce GLOBE and GLOBE Observer, a student and citizen science program designed to collect observations of the environment. The GLOBE Observer app, released in September 2016, harnesses smart phone technology to simplify select GLOBE observations to open the program to new audiences and to increase data volume. The end goal is to facilitate new student and scientific research. The demo will provide an overview of the app and show you how to access GLOBE Observer environmental data. The app includes a protocol for observing clouds and sky color (air quality proxy), mosquito habitats, and land cover/land use. The GLOBE Observer observations may be matched to NASA satellite data for a more in-depth analysis.

  9. US data policy for Earth observation from space

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    Distribution of data from U.S. Earth observations satellites is subject to different data policies and regulations depending on whether the systems in question are operational or experimental. Specific laws, regulations, and policies are in place for the distribution of satellite data from the National Oceanic and Atmospheric Administration (NOAA) operational environmental satellites and from NASA experimental systems. There is a government wide policy for exchange of data for global change research. For the Earth Observing System (EOS) and its international partner programs, a set of data exchange principles is nearing completion. The debate over the future of the LANDSAT program in the U.S. will impact policy for the programs, but the outcome of the debate is not yet known.

  10. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    The March 29, 2014, X-class flare appears as a bright light on the upper right in this image from SDO, showing light in the 304 Angstrom wavelength. This wavelength shows material on the sun in what's called the transition region, where the chromosphere transitions into the upper solar atmosphere, the corona. Some light of the flare is clearly visible, but the flare appears brighter in other images that show hotter temperature material. Credit: NASA/SDO/AIA -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This catalog presents a reference guide to NASA Earth science education programs and products. The topics include: 1) Student Support (Elementary and Secondary, Undergraduate and Graduate, Postgraduate, and Postdoctorate); 2) Teacher/Faculty Preparation and Enhancement; 3) Systemic Change; 4) Curriculum Support; and 5) Resources.

  12. Recovering Nimbus era Observations at the NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Johnson, J. E.; Esfandiari, A. E.; Zamkoff, E. B.; Al-Jazrawi, A. F.; Gerasimov, I. V.; Alcott, G. T.

    2017-12-01

    Between 1964 and 1978, NASA launched a series of seven Nimbus meteorological satellites which provided Earth observations for 30 years. These satellites, carrying a total of 33 instruments to observe the Earth at visible, infrared, ultraviolet, and microwave wavelengths, revolutionized weather forecasting, provided early observations of ocean color and atmospheric ozone, and prototyped location-based search and rescue capabilities. The Nimbus series paved the way for a number of currently operational systems such as the EOS Terra, Aqua and Aura platforms.The original data archive included both magnetic tapes and film media. These media are well past their expected end of life, placing at risk valuable data that are critical to extending the history of Earth observations back in time. GES DISC has been incorporating these data into a modern online archive by recovering the digital data files from the tapes, and scanning images of the data from film strips. The original data products were written on obsolete hardware systems in outdated file formats, and in the absence of metadata standards at that time, were often written in proprietary file structures. Through a tedious and laborious process, oft-corrupted data are recovered, and incomplete metadata and documentation are reconstructed.

  13. NASA's Observes Effects of Summer Melt on Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  15. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  16. NASA's IRIS Observed a Gigantic Eruption on the Sun!

    NASA Image and Video Library

    2014-05-30

    A coronal mass ejection, or CME, surged off the side of the sun on May 9, 2014, and NASA's newest solar observatory caught it in extraordinary detail. This was the first CME observed by the Interface Region Imaging Spectrograph, or IRIS, which launched in June 2013 to peer into the lowest levels of the sun's atmosphere with better resolution than ever before. Watch the movie to see how a curtain of solar material erupts outward at speeds of 1.5 million miles per hour. Read more: 1.usa.gov/1kp7O4F Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Improving the Transition of Earth Satellite Observations from Research to Operations

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Lapenta, William M.; Jedlovec, Gary J.

    2004-01-01

    There are significant gaps between the observations, models, and decision support tools that make use of new data. These challenges include: 1) Decreasing the time to incorporate new satellite data into operational forecast assimilation systems, 2) Blending in-situ and satellite observing systems to produce the most accurate and comprehensive data products and assessments, 3) Accelerating the transition from research to applications through national test beds, field campaigns, and pilot demonstrations, and 4) Developing the partnerships and organizational structures to effectively transition new technology into operations. At the Short-term Prediction Research and Transition (SPORT) Center in Huntsville, Alabama, a NASA-NOAA-University collaboration has been developed to accelerate the infusion of NASA Earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The SPoRT Center research focus is to improve forecasts through new observation capability and the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues such as convective initiation and 24-hr quantitative precipitation forecasting. The near real-time availability of high-resolution experimental products of the atmosphere, land, and ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Infrared Spectroradiometer (AIRS), and lightning mapping systems provide an opportunity for science and algorithm risk reduction, and for application assessment prior to planned observations from the next generation of operational low Earth orbiting and geostationary Earth orbiting satellites. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future. The SPoRT Web page is at (http://www.ghcc.msfc.nasa.gov/sport).

  18. The Communication Strategy of NASA's Earth Observatory

    NASA Astrophysics Data System (ADS)

    Simmon, R.; Ward, K.; Riebeek, H.; Allen, J.; Przyborski, P.; Scott, M.; Carlowicz, M. J.

    2010-12-01

    Climate change is a complex, multi-disciplinary subject. Accurately conveying this complexity to general audiences, while still communicating the basic facts, is challenging. Our approach is to combine climate change information with a wide range of Earth system science topics, illustrated by satellite imagery and data visualizations. NASA's Earth Observatory web site (earthobservatory.nasa.gov) uses the broad range of NASA's remote sensing technologies, data, and research to communicate climate change science. We serve two primary audiences: the "attentive public" --people interested in and willing to seek out information about science, technology, and the environment--and media. We cover the breadth of Earth science, with information about climate change integrated with stories about weather, geology, oceanography, and solar flares. Current event-driven imagery is used as a hook to draw readers. We then supply links to supplemental information, either about current research or the scientific basics. We use analogies, carefully explain jargon or acronyms, and build narratives which both attract readers and make information easier to remember. These narratives are accompanied by primers on topics like energy balance or the water cycle. Text is carefully integrated with illustrations and state-of-the-art data visualizations. Other site features include a growing list of climate questions and answers, addressing common misconceptions about global warming and climate change. Maps of global environmental parameters like temperature, rainfall, and vegetation show seasonal change and long-term trends. Blogs from researchers in the field provide a look at the day-to-day process of science. For the media, public domain imagery is supplied at full resolution and links are provided to primary sources.

  19. Earth Observations from Space: The First 50 Years of Scientific Achievements

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  20. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  1. Improvements and Additions to NASA Near Real-Time Earth Imagery

    NASA Technical Reports Server (NTRS)

    Cechini, Matthew; Boller, Ryan; Baynes, Kathleen; Schmaltz, Jeffrey; DeLuca, Alexandar; King, Jerome; Thompson, Charles; Roberts, Joe; Rodriguez, Joshua; Gunnoe, Taylor; hide

    2016-01-01

    For many years, the NASA Global Imagery Browse Services (GIBS) has worked closely with the Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) system to provide near real-time imagery visualizations of AIRS (Atmospheric Infrared Sounder), MLS (Microwave Limb Sounder), MODIS (Moderate Resolution Imaging Spectrometer), OMI (Ozone Monitoring Instrument), and recently VIIRS (Visible Infrared Imaging Radiometer Suite) science parameters. These visualizations are readily available through standard web services and the NASA Worldview client. Access to near real-time imagery provides a critical capability to GIBS and Worldview users. GIBS continues to focus on improving its commitment to providing near real-time imagery for end-user applications. The focus of this presentation will be the following completed or planned GIBS system and imagery enhancements relating to near real-time imagery visualization.

  2. NASA Earth Observing System Data and Information System (EOSDIS): A U.S. Network of Data Centers Serving Earth Science Data: A Network Member of ICSU WDS

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Ramapriyan, H. K. " Rama"

    2016-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, and serving a diverse user community around the world with Earth science data from satellites, aircraft, field campaigns and research investigations. The ESDIS Project, responsible for EOSDIS is a Network Member of the International Council for Sciences (ICSU) World Data System (WDS). Nine of the 12 Distributed Active Archive Centers (DAACs), which are part of EOSDIS, are Regular Members of the ICSUWDS. This poster presents the EOSDIS mission objectives, key characteristics of the DAACs that make them world class Earth science data centers, successes, challenges and best practices of EOSDIS focusing on the years 2014-2016, and illustrates some highlights of accomplishments of EOSDIS. The highlights include: high customer satisfaction, growing archive and distribution volumes, exponential growth in number of products distributed to users around the world, unified metadata model and common metadata repository, flexibility provided to uses by supporting data transformations to suit their applications, near-real-time capabilities to support various operational and research applications, and full resolution image browse capabilities to help users select data of interest. The poster also illustrates how the ESDIS Project is actively involved in several US and international data system organizations.

  3. NASA Spacecraft Images One of Earth Iceberg Incubators

    NASA Image and Video Library

    2012-04-13

    Acquired by NASA Terra spacecraft, this image shows the west coast of Greenland, one of Earth premiere incubators for icebergs -- large blocks of land ice that break off from glaciers or ice shelves and float in the ocean.

  4. 75 FR 8997 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-021)] NASA Advisory Council; Science...: Notice of meeting. SUMMARY: The National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to...

  5. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  6. Exploiting NASA's Cumulus Earth Science Cloud Archive with Services and Computation

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Jazayeri, A.; Schuler, I.; Plofchan, P.; Baynes, K.; Ramachandran, R.

    2017-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has started prototyping with commercial cloud providers to make this data available in elastic cloud compute environments, allowing application developers direct access to the massive EOSDIS holdings. In this talk we'll explain the principles behind the archive architecture and share our experience of dealing with large amounts of data with serverless architectures including AWS Lambda, the Elastic Container Service (ECS) for long running jobs, and why we dropped thousands of lines of code for AWS Step Functions. We'll discuss best practices and patterns for accessing and using data available in a shared object store (S3) and leveraging events and message passing for sophisticated and highly scalable processing and analysis workflows. Finally we'll share capabilities NASA and cloud services are making available on the archives to enable massively scalable analysis and computation in a variety of formats and tools.

  7. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  8. Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data

  9. Open NASA Earth Exchange (OpenNEX): A Public-Private Partnership for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Lee, T. J.; Michaelis, A.; Ganguly, S.; Votava, P.

    2014-12-01

    NASA Earth Exchange (NEX) is a data, computing and knowledge collaborative that houses satellite, climate and ancillary data where a community of researchers can come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform with access to large supercomputing resources. As a part of broadening the community beyond NASA-funded researchers, NASA through an agreement with Amazon Inc. made available to the public a large collection of Climate and Earth Sciences satellite data. The data, available through the Open NASA Earth Exchange (OpenNEX) platform hosted by Amazon Web Services (AWS) public cloud, consists of large amounts of global land surface imaging, vegetation conditions, climate observations and climate projections. In addition to the data, users of OpenNEX platform can also watch lectures from leading experts, learn basic access and use of the available data sets. In order to advance White House initiatives such as Open Data, Big Data and Climate Data and the Climate Action Plan, NASA over the past six months conducted the OpenNEX Challenge. The two-part challenge was designed to engage the public in creating innovative ways to use NASA data and address climate change impacts on economic growth, health and livelihood. Our intention was that the challenges allow citizen scientists to realize the value of NASA data assets and offers NASA new ideas on how to share and use that data. The first "ideation" challenge, closed on July 31st attracted over 450 participants consisting of climate scientists, hobbyists, citizen scientists, IT experts and App developers. Winning ideas from the first challenge will be incorporated into the second "builder" challenge currently targeted to launch mid-August and close by mid-November. The winner(s) will be formally announced at AGU in December of 2014. We will share our experiences and lessons learned over the past year from OpenNEX, a public-private partnership for

  10. NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth

    Science.gov Websites

    and in Space | News | NREL NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space . NREL joined forces with NASA in finding new, more precise ways to trigger internal short circuits

  11. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  12. Earth Observations taken during mission STS-111 UF-2

    NASA Image and Video Library

    2002-06-15

    STS111-367-014 (5-19 June 2002) --- This view featuring Canadian forest fires was photographed by the STS-111 crewmembers aboard the Space Shuttle Endeavour. It represents an oblique view northward of one of the numerous fires observed and reported burning in the dry boreal forests of Saskatchewan and Manitoba during the month of June. The location of this one is roughly between Candle Lake, Saskatchewan and Lake Winnepegosis, Manitoba. The Gateway to Astronaut Photography of Earth (link to http://eol.jsc.nasa.gov/sseop/) provides searchable access to other photographs of Earth taken by astronauts.

  13. NASA's Earth Imagery Service as Open Source Software

    NASA Astrophysics Data System (ADS)

    De Cesare, C.; Alarcon, C.; Huang, T.; Roberts, J. T.; Rodriguez, J.; Cechini, M. F.; Boller, R. A.; Baynes, K.

    2016-12-01

    The NASA Global Imagery Browse Service (GIBS) is a software system that provides access to an archive of historical and near-real-time Earth imagery from NASA-supported satellite instruments. The imagery itself is open data, and is accessible via standards such as the Open Geospatial Consortium (OGC)'s Web Map Tile Service (WMTS) protocol. GIBS includes three core software projects: The Imagery Exchange (TIE), OnEarth, and the Meta Raster Format (MRF) project. These projects are developed using a variety of open source software, including: Apache HTTPD, GDAL, Mapserver, Grails, Zookeeper, Eclipse, Maven, git, and Apache Commons. TIE has recently been released for open source, and is now available on GitHub. OnEarth, MRF, and their sub-projects have been on GitHub since 2014, and the MRF project in particular receives many external contributions from the community. Our software has been successful beyond the scope of GIBS: the PO.DAAC State of the Ocean and COVERAGE visualization projects reuse components from OnEarth. The MRF source code has recently been incorporated into GDAL, which is a core library in many widely-used GIS software such as QGIS and GeoServer. This presentation will describe the challenges faced in incorporating open software and open data into GIBS, and also showcase GIBS as a platform on which scientists and the general public can build their own applications.

  14. NASA's Earth Observatory: Success Story or Work in Progress?

    NASA Astrophysics Data System (ADS)

    Herring, D. D.

    2004-12-01

    After a series of failures and setbacks in a variety of public communications strategies explored, and then despite internal pressure not to build it, a prototype for NASA's Earth Observatory (http://earthobservatory.nasa.gov) was built in the spring of 1998. With no budget and roughly one full-time equivalent (FTE) in personnel, the site was launched in April 1999. Aimed primarily at the "science attentive public," the Earth Observatory is an interactive Web-based magazine focusing on the subjects of climatic and environmental change, with an emphasis on the use of satellite remote sensors to study our planet. Within one year after launch, the site was selected by Popular Science as one of the Web's 50 best, while subscriptions jumped to about 12,000 readers worldwide. Fast forward to 2004, the Earth Observatory core team has grown to 5.5 FTE and enjoys contributions from all across the agency as well as a number of NASA-affiliated agencies and institutions. The site's success hinges on the partnerships that have grown up around it over the years. As a testament to the outstanding content published today in the Earth Observatory, the site was also selected by Scientific American as one of the Web's 50 best, and has twice been nominated by the International Academy of the Digital Arts and Sciences for their annual Webby Awards--in both the "Education" and "Science" categories--winning the Webby once and the People's Voice Award twice. Still, the Earth Observatory is a work in progress as there remain some developmental goals it has yet to attain. In this talk, site founder and Chief Editor David Herring will give a brief tour of the site while elaborating on some of its developmental history, lessons learned along the way, and a brief look ahead at some exciting new developments on its horizon.

  15. NASA's Earth Observatory: 16 Years of Communicating with and for Scientists

    NASA Astrophysics Data System (ADS)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.; Hansen, K.; Stevens, J.

    2015-12-01

    For the past 16 years NASA's Earth Observatory website has featured stories that are driven by strong visualization and in-depth reporting and storytelling. The Earth Observatory Image of the Day is published 365 days a year and is a syndication staple for major news outlets, science-related publications, blogs and social media outlets. The daily publication pace requires that we cover a wide range of topics within NASA's portfolio of Earth science research. To meet our deadlines, and to do so competently and with the authority that a NASA-branded publication warrants, we have developed relationships with scientists from throughout the agency who both provide us with ideas for stories and review our content for accuracy. This symbiotic relationship insures that the Earth Observatory has a quality product that is syndicated, repurposed and sourced throughout popular media, resulting in science content reaching the public that might not otherwise be reported. We will discuss how we have developed our relationships and processes over the years, how we work with scientists to see the potential stories in their data, and how we package and promote these stories and visualizations for maximum exposure and reuse.

  16. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth

  17. NASA/MSFC FY92 Earth Science and Applications Program Research Review

    NASA Technical Reports Server (NTRS)

    Arnold, James E. (Editor); Leslie, Fred W. (Editor)

    1993-01-01

    A large amount of attention has recently been given to global issues such as the ozone hole, tropospheric temperature variability, etc. A scientific challenge is to better understand atmospheric processes on a variety of spatial and temporal scales in order to predict environmental changes. Measurement of geophysical parameters such as wind, temperature, and moisture are needed to validate theories, provide analyzed data sets, and initialize or constrain numerical models. One of NASA's initiatives is the Mission to Planet Earth Program comprised of an Earth Observation System (EOS) and the scientific strategy to analyze these data. This work describes these efforts in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  18. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  19. Mission EarthFusing GLOBE with NASA Assets to Build SystemicInnovation in STEM Education

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Garik, P.; Padgett, D.; Darche, S.; Struble, J.; Adaktilou, N.

    2016-12-01

    Mission Earth is a project funded through the NASA CAN that is developing a systematic embedding of NASA assets that is being implemented by a partnership of organizations across the US. Mission Earth brings together scientists and science educators to develop a K-12 "Earth as a system" curriculum progression following research-based best practices. GLOBE and NASA assets will be infused into the curricula of schools along the K-12 continuum, leveraging existing partnerships and networks and supported through state departments of education and targeting underrepresented groups, as a systemic, effective, and sustainable approach to meeting NASA's science education objectives. This presentation will discuss plans for the Mission Earth project and successes and lessons learned in the first year. Mission Earth is developing curricular materials to support vertically integrated learning progressions. It develops models of professional development utilizing sustainable infrastructures. It will support STEM careers focusing on career technical education (CTE). And, it will engage undergraduate education majors through pre-service courses and engineering students through engineering challenges.

  20. NASA Earth Science Partnerships - A Multi-Level Approach to Effectively Collaborating with Communities and Organizations to Utilize Earth Science Data for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Favors, J.

    2016-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, technology development, and science education. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations that produce substantive benefit to communities - both locally and globally. This presentation will showcase various ways ESD approaches partnering and will highlight best practices, challenges, and provide case studies related to rapid partnerships, co-location of scientists and end-user communities, capacity building, and ESD's new Partnerships Program which is built around taking an innovative approach to partnering that fosters interdisplinary teaming & co-production of knowledge to broaden the applicability of Earth observations and answer new, big questions for partners and NASA, alike.

  1. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution smaller than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have some first images that demonstrate the most innovative capability from EOS Terra: MODIS - 1.37 microns cirrus channel; 250 m daily cover for clouds and vegetation change; 7 solar channels for land and aerosol; new fire channels; Chlorophyll fluorescence; MISR - 9 multi angle views of clouds and vegetation; MOPITT - Global CO maps and CH4 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  2. A Study of the Carbon Cycle Using NASA Observations and the GEOS Model

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gelaro, Ron; Ott, Lesley; Putman, Bill; Chatterjee, Abhishek; Koster, Randy; Lee, Eunjee; Oda, Tom; Weir, Brad; Zeng, Fanwei

    2018-01-01

    The Goddard Earth Observing System (GEOS) model has been developed in the Global Modeling and Assimilation Office (GMAO) at NASA's Goddard Space Flight Center. From its roots in chemical transport and as a General Circulation Model, the GEOS model has been extended to an Earth System Model based on a modular construction using the Earth System Modeling Framework (ESMF), combining elements developed in house in the GMAO with others that are imported through collaborative research. It is used extensively for research and for product generation, both as a free-running model and as the core of the GMAO's data assimilation system. In recent years, the GMAO's modeling and assimilation efforts have been strongly supported by Piers Sellers, building on both his earlier legacy as an observationally oriented model developer and his post-astronaut career as a dynamic leader into new territory. Piers' long-standing interest in the carbon cycle and the combination of models with observations motivates this presentation, which will focus on the representation of the carbon cycle in the GEOS Earth System Model. Examples will include: (i) the progression from specified land-atmosphere surface fluxes to computations with an interactive model component (Catchment-CN), along with constraints on vegetation distributions using satellite observations; (ii) the use of high-resolution satellite observations to constrain human-generated inputs to the atmosphere; (iii) studies of the consistency of the observed atmospheric carbon dioxide concentrations with those in the model simulations. The presentation will focus on year-to-year variations in elements of the carbon cycle, specifically on how the observations can inform the representation of mechanisms in the model and lead to integrity in global carbon dioxide simulations. Further, applications of the GEOS model to the planning of new carbon-climate observations will be addressed, as an example of the work that was strongly supported by

  3. 77 FR 67027 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12- 091] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the [[Page 67028

  4. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    NASA Astrophysics Data System (ADS)

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  5. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  6. Earth observation taken by the Expedition 46 crew

    NASA Image and Video Library

    2016-01-16

    ISS046e009103 (01/16/2016) --- In orbit around the Earth on board the International Space Station NASA astronaut Scott Kelly captured this blue water image in his "Earth Art" series and tweeted it out with this message: " A splash of #EarthArt over the #Bahamas! #YearInSpace ".

  7. NASA ARIA Project Provides New Look at Earth Surface Deformation from Nepal Quake

    NASA Image and Video Library

    2015-05-04

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 70-day interval between two ALOS-2 images, acquired February 21 and May 2, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 4.7 inches (11.9 centimeters) of surface motion. The contours show the land around Kathmandu has moved toward the satellite by up to 4.6 feet (1.4 meter), or 5.2 feet (1.6 meters) if we assume purely vertical motion. Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19383

  8. The NASA earth resources spectral information system: A data compilation, second supplement

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1973-01-01

    The NASA Earth Resources Spectral Information System (ERSIS) and the information contained therein are described. It is intended for use as a second supplement to the NASA Earth Resources Spectral Information System: A Data Compilation, NASA CR-31650-24-T, May 1971. The current supplement includes approximately 100 rock and mineral, and 375 vegetation directional reflectance spectral curves in the optical region from 0.2 to 22.0 microns. The data were categorized by subject and each curve plotted on a single graph. Each graph is fully titled to indicate curve source and indexed by subject to facilitate user retrieval from ERSIS magnetic tape records.

  9. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  10. Sun-Earth Day: Growth and Impact of NASA E/PO Program

    NASA Astrophysics Data System (ADS)

    Hawkins, I.; Thieman, J.

    2004-12-01

    Over the past six years, the NASA Sun-Earth Connection Education Forum has sponsored and coordinated education public outreach events to highlight NASA Sun-Earth Connection research and discoveries. Our strategy involves using celestial phenomena, such as total solar eclipses and the Transit of Venus to celebrate Sun-Earth Day, a popular Education and Public Outreach international program. Sun-Earth Day also focuses attention on Equinoxes and Solstices to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium, Maryland Science Center, NASA Connect, Sun-Earth Connection missions, Ideum, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. We will report lessons learned from several years of experience, and strategies for growth and sustainability. We will also share our plans for "Ancient Observatories - Timeless Knowledge" our theme for Sun-Earth Day 2005, which will feature solar alignments at ancient sites that mark the equinoxes and/or solstices. The video and webcast programming will feature several sites including: Chaco Canyon (New Mexico), Hovenweep (Utah), and Chichen Itza (Mexico). Many of these sites present unique opportunities to develop authentic cultural connections to Native Americans, highlighting the importance of the Sun across the ages.

  11. Images of Earth and Space: The Role of Visualization in NASA Science

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  12. Lidar Past, Present, and Future in NASA's Earth and Space Science Programs

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.

    2004-01-01

    Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.

  13. NASA Observes Super Typhoon Hagupit; Philippines Under Warnings

    NASA Image and Video Library

    2017-12-08

    On Dec. 4 at 02:10 UTC, the MODIS instrument aboard NASA's Terra satellite took this visible image of Super Typhoon Hagupit approaching the Philippines. Image Credit: NASA Goddard's MODIS Rapid Response Team Read more: 1.usa.gov/12q3ssK NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Tools and Data Services from the NASA Earth Satellite Observations for Climate Applications

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.

    2005-01-01

    Climate science and applications require access to vast amounts of archived high quality data, software tools and services for data manipulation and information extraction. These on the other hand require gaining detailed understanding of the data's internal structure and physical implementation to data reduction, combination and data product production. This time-consuming task must be undertaken before the core investigation can begin and is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets of different formats, structures, and resolutions. In order to address these issues the Goddard Space Flight Center (GSFC) Earth Sciences (GES), Data and Information Service Center (DISC) Distributed Active Archive Center (DAAC) has made great progress in facilitating science and applications research by developing innovative tools and data services applied to the Earth sciences atmospheric and climate data. The GES/DISC/DAAC has successfully implemented and maintained a long-term climate satellite data archive and developed tools and services to a variety of atmospheric science missions including AIRS, AVHRR, MODIS, SeaWiFS, SORCE, TOMS, TOVS, TRMM, and UARS and Aura instruments providing researchers with excellent opportunities to acquire accurate and continuous atmospheric measurements. Since the number of climate science products from these various missions is steadily increasing as a result of more sophisticated sensors and new science algorithms, the main challenge for data centers like the GES/DISC/DAAC is to guide users through the variety of data sets and products, provide tools to visualize and reduce the volume of the data and secure uninterrupted and reliable access to data and related products. This presentation will describe the effort at the GES/DISC/DAAC to build a bridge between multi-sensor data and the effective scientific use of the data, with an emphasis on the heritage satellite observations

  15. Earth Observation taken by the Expedition 25 crew

    NASA Image and Video Library

    2010-10-03

    ISS025-E-005950 (3 Oct. 2010) ---This is a view from Earth orbit showing Galveston, Texas, as seen on a cloudless day October 3, 2010. The photograph was taken by one of three Expedition 25 crew members aboard the International Space Station, approximately 220 miles above Earth. The crew of three will double in size after a NASA astronaut and two Russian cosmonauts arrive following a launch Oct. 8 (Kazakhstan time)from the Baikonur Cosmodrome via a Soyuz. Photo credit: NASA and its International Partners

  16. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).

  17. Earth observations taken during STS-1 mission

    NASA Image and Video Library

    2009-06-24

    STS001-13-443 (12-14 April 1981) --- This photograph showing much of Italy was taken with a hand-held 70mm camera from 276 kilometers above Earth as the NASA space shuttle Columbia and its crew were marking their last few hours in space on the historic first space mission utilizing a reusable vehicle. Included in the area of the frame are Golfo de Napoli, Napoli (Naples), Castellammare, Amalfi, Capri, Sorrento, Mt. Vesuvius and the ruins of Pompei. Astronauts John W. Young and Robert L. Crippen exposed eight magazines of color 70mm film during their two-and-one-third days in Earth orbit. Photo credit: NASA

  18. Leveraging Web Services in Providing Efficient Discovery, Retrieval, and Integration of NASA-Sponsored Observations and Predictions

    NASA Astrophysics Data System (ADS)

    Bambacus, M.; Alameh, N.; Cole, M.

    2006-12-01

    The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online

  19. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-10

    ISS043E185040 (05/10/2015) --- Earth observation taken by the Expedition 43 crew of the International Space Station. These islands have often been referred to as the "jewel of the Atlantic" and are only 2 two hours by commercial plane from the USA. NASA astronaut Scott Kelly tweeted this image on May 10, 2015 with this comment: "Bermuda, your clouds and remoteness have shielded you for a long time, but I finally got my eye on you.#YearInSpace".

  20. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  1. Spatial Analysis of Environmental Factors Related to Lyme Disease in Alabama by Means of NASA Earth Observation Systems

    NASA Technical Reports Server (NTRS)

    Renneboog, Nathan; Capilouto, Emily G.; Firsing, Stephen L., III; Levy, Kyle; McAllister, Marilyn; Roa, Kathryn; Setia,Shveta; Xie, Lili; Burnett, Donna; Luvall, Jeffrey C.

    2009-01-01

    This slide presentation reviews the epidemiology of Lyme Disease that accounts for more than 95% or vector borne diseases in the United States. The history, symptoms and the life cycle of the tick, the transmitting agent of Lyme Disease, a map that shows the cases reported to the CDC between1990 and 2006 and the number of cases in Alabama by year from 1986 to 2007. A NASA project is described, the goals of which are to (1) Demonstrate the presence of the chain of infection of Lyme disease in Alabama (2) Identify areas with environmental factors that support tick population using NASA Earth Observation Systems data in selected areas of Alabama and (3) Increase community awareness of Lyme disease and recommend primary and secondary prevention strategies. The remote sensing methods included: Analyzed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and DigitalGlobe Quickbird satellite imagery from summer months and Performed image analyses in ER Mapper 7.1. Views from the ASTER and Quickbird land cover are shown, the Normalized Difference Vegetation Index (NDVI) algorithm was applied to all ASTER and Quickbird imagery. The use of the images to obtain the level of soil moisture is reviewed, and this analysis was used along with the NDVI, was used to identify the areas that support the tick population.

  2. Teaching Inquiry using NASA Earth-System Science: Preparing Pre- and Inservice K-12 Educators to Use Authentic Inquiry in the Classroom

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Tebockhorst, D.

    2012-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a comprehensive program to train and support pre-service and in-service K-12 teachers, and to provide them with an opportunity to use NASA Earth Science mission data and Global Learning and Observations to Benefit the Environment (GLOBE) observations to incorporate scientific inquiry-based learning in the classroom. It uses an innovative blended-learning professional development approach that combines a peer-reviewed pedagogical technique called backward-faded scaffolding (BFS), which provides a more natural entry path to understanding the scientific process, with pre-workshop online content learning and in-situ and online data resources from NASA and GLOBE. This presentation will describe efforts to date, share our impressions and evaluations, and discuss the effectiveness of the BFS approach to both professional development and classroom pedagogy.

  3. Building Professional and Technical Skills in the Use of Earth Observations through the NASA DEVELOP National Program: Best Practices & Lessons Learned

    NASA Astrophysics Data System (ADS)

    Crepps, G.; Ross, K. W.; Childs-Gleason, L. M.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.; Clayton, A.

    2017-12-01

    The NASA DEVELOP National Program offers 10-week research opportunities to participants to work on rapid feasibility projects utilizing NASA Earth observations in a variety of applications, including ecological forecasting, water resources, disasters, and health and air quality. DEVELOP offers a unique collaborative environment in which students, recent graduates, and transitioning career professionals are placed on interdisciplinary teams to conduct projects. DEVELOP offers a variety of opportunities and resources to build participants technical skills in remote sensing and GIS, as well as interpersonal and leadership skills. As a capacity building program, DEVELOP assesses participants' growth by using entrance and exit personal growth assessments, as well as gathering general program feedback through an exit survey. All of this information is fed back into the program for continual improvement. DEVELOP also offers a progression of opportunities through which participants can advance through the program, allowing participants to build a diverse set of technical and leadership skills. This presentation will explore best practices including the use of pre- and post-growth assessments, offering advanced leadership opportunities, and overall capacity building impacts on participants.

  4. TC4 Observing Campaign: An Operational Test of NASA Planetary Defense Network

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Kelley, M. S.; Landis, R. R.

    Impacts due to near-Earth objects ( 90% near-Earth asteroids, or NEAs, and 10% comets) are one of the natural hazards that can pose a great risk to life on Earth, but one that can potentially be mitigated, if the threat is detected with sufficient lead-time. While the probability of such an event is low, the outcome is so catastrophic that we are well justified in investing a modest effort to minimize this threat. Historically, asteroid impacts have altered the course of evolution on the Earth. In 2013 the Chelyabinsk meteor over Russia, which injured over 1600 people and caused $30M in damages, reinforced the importance of detecting and characterizing small NEAs that pose a greater threat than most large NEAs discovered so far. The NASA Planetary Defense Coordination Office (PDCO) was established to ensure the early detection, tracking and characterization of potentially hazardous objects (PHOs) and is the lead office for providing timely and accurate communications and coordination of U.S. Government planning for response to an actual impact threat. In an effort to test the operational readiness of all entities critical to planetary defense, the NASA PDCO is supporting a community-led exercise. The target of this exercise is 2012 TC4, a 20- meter diameter asteroid that is currently expected to pass by the Earth over Antarctica on Oct. 12, 2017 at a distance of only 2.3 Earth radii. The goal of the TC4 Observing Campaign is to recover, track, and characterize 2012 TC4 as a potential impactor in order to exercise the entire Planetary Defense system from observations, modeling, prediction, and communication. The paper will present an overview of the campaign and summarize early results from the exercise.

  5. Tunable Light-Guide Image Processing Snapshot Spectrometer (TuLIPSS) for Earth and Moon Observations

    NASA Astrophysics Data System (ADS)

    Tkaczyk, T. S.; Alexander, D.; Luvall, J. C.; Wang, Y.; Dwight, J. G.; Pawlowsk, M. E.; Howell, B.; Tatum, P. F.; Stoian, R.-I.; Cheng, S.; Daou, A.

    2018-02-01

    A tunable light-guide image processing snapshot spectrometer (TuLIPSS) for Earth science research and observation is being developed through a NASA instrument incubator project with Rice University and Marshall Space Flight Center.

  6. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  7. NASA's EOSDIS Cumulus: Ingesting, Archiving, Managing, and Distributing Earth Science Data from the Commercial Cloud

    NASA Technical Reports Server (NTRS)

    Baynes, Katie; Ramachandran, Rahul; Pilone, Dan; Quinn, Patrick; Gilman, Jason; Schuler, Ian; Jazayeri, Alireza

    2017-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been working towards a vision of a cloud-based, highly-flexible, ingest, archive, management, and distribution system for its ever-growing and evolving data holdings. This system, Cumulus, is emerging from its prototyping stages and is poised to make a huge impact on how NASA manages and disseminates its Earth science data. This talk will outline the motivation for this work, present the achievements and hurdles of the past 18 months and will chart a course for the future expansion of the Cumulus expansion. We will explore on not just the technical, but also the socio-technical challenges that we face in evolving a system of this magnitude into the cloud and how we are rising to meet those challenges through open collaboration and intentional stakeholder engagement.

  8. The Earth Observing System. [instrument investigations for flight on EOS-A satellite

    NASA Technical Reports Server (NTRS)

    Wilson, Stan; Dozier, Jeff

    1991-01-01

    The Earth Observing System (EOS), the centerpiece of NASA's Mission to Planet Earth, is to study the interactions of the atmosphere, land, oceans, and living organisms, using the perspective of space to observe the earth as a global environmental system. To better understand the role of clouds in global change, EOS will measure incoming and emitted radiation at the top of the atmosphere. Then, to study characteristics of the atmosphere that influence radiation transfer between the top of the atmosphere and the surface, EOS wil observe clouds, water vapor and cloud water, aerosols, temperature and humidity, and directional effects. To elucidate the role of anthropogenic greenhouse gas and terrestrial and marine plants as a source or sink for carbon, EOS will observe the biological productivity of lands and oceans. EOS will also study surface properties that affect biological productivity at high resolution spatially and spectrally.

  9. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2006-01-01

    The presentation describes the recently awarded ACCESS project to provide data management of NASA remote sensing data for the Northern Eurasia Earth Science Partnership Initiative (NEESPI). The project targets integration of remote sensing data from MODIS, and other NASA instruments on board US-satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEP/NCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  10. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  11. Sensor requirements for Earth and planetary observations

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1990-01-01

    Future generations of Earth and planetary remote sensing instruments will require extensive developments of new long-wave and very long-wave infrared detectors. The upcoming NASA Earth Observing System (EOS) will carry a suite of instruments to monitor a wide range of atmospheric and surface parameters with an unprecedented degree of accuracy for a period of 10 to 15 years. These instruments will observe Earth over a wide spectral range extending from the visible to nearly 17 micrometers with a moderate to high spectral and spacial resolution. In addition to expected improvements in communication bandwidth and both ground and on-board computing power, these new sensor systems will need large two-dimensional detector arrays. Such arrays exist for visible wavelengths and, to a lesser extent, for short wavelength infrared systems. The most dramatic need is for new Long Wavelength Infrared (LWIR) and Very Long Wavelength Infrared (VLWIR) detector technologies that are compatible with area array readout devices and can operate in the temperature range supported by long life, low power refrigerators. A scientific need for radiometric and calibration accuracies approaching 1 percent translates into a requirement for detectors with excellent linearity, stability and insensitivity to operating conditions and space radiation. Current examples of the kind of scientific missions these new thermal IR detectors would enhance in the future include instruments for Earth science such as Orbital Volcanological Observations (OVO), Atmospheric Infrared Sounder (AIRS), Moderate Resolution Imaging Spectrometer (MODIS), and Spectroscopy in the Atmosphere using Far Infrared Emission (SAFIRE). Planetary exploration missions such as Cassini also provide examples of instrument concepts that could be enhanced by new IR detector technologies.

  12. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  13. Science and Observation Recommendations for Future NASA Carbon Cycle Research

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.

    2002-01-01

    Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.

  14. Radiometer requirements for Earth-observation systems using large space antennas

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Harrington, R. F.

    1983-01-01

    Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.

  15. Recent Results From The Nasa Earth Science Terra Mission and Future Possibilities

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    2000-01-01

    The NASA Earth Sciences Enterprise has made some remarkable strides in recent times in using developing, implementing, and utilizing spaceborne observations to better understand how the Earth works as a coupled, interactive system of the land, ocean, and atmosphere. Notable examples include the Upper Atmosphere Research (UARS) Satellite, the Topology Ocean Experiment (TOPEX) mission, Landsat-7, SeaWiFS, the Tropical Rainfall Monitoring Mission (TRMM), Quickscatt, the Shuttle Radar Topography Mission (SRTM), and, quite recently, the Terra'/Earth Observing System-1 mission. The Terra mission, for example, represents a major step forward in providing sensors that offer considerable advantages and progress over heritage instruments. The Moderate Resolution Imaging Spectrometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Measurements of Pollution in the Troposphere (MOPITT), the Advanced Spaceborne Thermal Emissions and Reflections (ASTER) radiometer, and the Clouds and Earth's Radiant Energy System (CERES) radiometer are the instruments involved. Early indications in March indicate that each of these instruments are working well and will be augmenting data bases from heritage instruments as well as producing new, unprecedented observations of land, ocean, and atmosphere features. Several missions will follow the Terra mission as the Earth Observing mission systems complete development and go into operation. These missions include EOS PM-1/'Aqua', Icesat, Vegetation Canopy Lidar (VCL), Jason/TOPEX Follow-on, the Chemistry mission, etc. As the Earth Observing systems completes its first phase in about 2004 a wealth of data enabling better understanding of the Earth and the management of its resources will have been provided. Considerable thought is beginning to be placed on what advances in technology can be implemented that will enable further advances in the early part of the 21st century; e.g., in the time from of 2020. Concepts such as

  16. High-Resolution Spectroscopic Database for the NASA Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence

    2003-01-01

    The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.

  17. High Resolution Spectroscopic Database for the NASA Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence

    2004-01-01

    The purpose of this project has been to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). Emphasis has been on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.

  18. High-Resolution Spectroscopic Database for the NASA Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.

    2004-01-01

    The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated - software to support the observational programs of the Earth observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use HITRAN functional to the EOS program.

  19. Ablative Heat Shield Studies for NASA Mars/Earth Return Entry Vehicles

    DTIC Science & Technology

    1990-09-01

    RETURN ENTRY VEHICLES by Michael K. Hamm September, 1990 NASA Thesis Advisor: William D. Henline Thesis Co-Advisor: Max F. Platzer Approved for public...STUDIES FOR NASA MARS/EARTH RETURN ENTRY VEHICLES (UNCLASSIFIED) 12. PERSONAL AUTHOR(S) Harm, Michael, K. 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...theoretical values. The tests were performed to ascertain if RSI type materials could be used for entry vehicles proposed in NASA Mars missions. 20

  20. Mission to Planet Earth. The living ocean: Observing ocean color from space

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.

  1. Earth Observations

    NASA Image and Video Library

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  2. NASA Laser Remote Sensing Technology Needs for Earth Science in the Next Decade and Beyond

    NASA Technical Reports Server (NTRS)

    Trait, David M.; Neff, Jon M.; Valinia, Azita

    2007-01-01

    In late 2005 the NASA Earth Science Technology Office convened a working group to review decadal-term technology needs for Earth science active optical remote sensing objectives. The outcome from this effort is intended to guide future NASA investments in laser remote sensing technologies. This paper summarizes the working group findings and places them in context with the conclusions of the National Research Council assessment of Earth science needs, completed in 2007.

  3. Leveraging Open Standard Interfaces in Providing Efficient Discovery, Retrieval, and Information of NASA-Sponsored Observations and Predictions

    NASA Astrophysics Data System (ADS)

    Cole, M.; Alameh, N.; Bambacus, M.

    2006-05-01

    The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online

  4. NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin P.; Stocklin, Frank J.; Geldzahler, Barry J.; Friedman, Daniel E.; Celeste, Peter B.

    2010-01-01

    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs

  5. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2017-12-08

    NASA image release April 6, 2011 NASA's Chandra X-ray Observatory completed this four-hour exposure of GRB 110328A on April 4. The center of the X-ray source corresponds to the very center of the host galaxy imaged by Hubble (red cross). Credit: NASA/CXC/ Warwick/A. Levan NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  6. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    NASA Technical Reports Server (NTRS)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  7. Personal, Informal and Relatable: Engaging Wide Audiences in Climate Science with Nasa's Earth Right Now Blog

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Shaftel, H.; Jackson, R.

    2014-12-01

    There is no such thing as a non-scientist, but there are some who have yet to acknowledge their inner science spark. Aiming to ignite and fan the flame of curiosity, promote dialogue and attempt to make climate science personal and relevant to everyday life, NASA's Global Climate Change website http://climate.nasa.gov/ and Earth Right Now campaign http://www.nasa.gov/content/earth-right-now/ partnered together this year to launch the Earth Right Now blog http://climate.nasa.gov/blog. It quickly became one of the most popular blogs in all of NASA social media, receiving thousands of likes per week, and frequent comments as well as thoughtful and respectful discussions about climate change. Social media platforms such as blogs have become popular vehicles for engaging large swaths of the public in new exciting ways. NASA's Earth Right Now blog has become a powerful platform for engaging both scientists and the science-curious in constructive, fruitful conversations about the complex topic of climate science. We continue to interact and have ongoing dialogue with our readers by making the scientific content both accessible and engaging for diverse populations.

  8. High-Resolution Spectroscopic Database for the NASA Earth Observing System Program

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.; Starr, David (Technical Monitor)

    2002-01-01

    The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The data requirements of these programs in terms of spectroscopy are varied, but usually call for additional spectral parameters or improvements to existing molecular bands. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.

  9. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  10. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2011-04-06

    NASA image releaes April 6, 2011 This is a visible-light image of GRB 110328A's host galaxy (arrow) taken on April 4 by the Hubble Space Telescope's Wide Field Camera 3. The galaxy is 3.8 billion light-years away. Credit: NASA/ESA/A. Fruchter (STScI) NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  11. A NASA Space Sleuth Hunts the Trail of Earth Water

    NASA Image and Video Library

    2009-08-13

    This vertical profile view from the Tropospheric Emission Spectrometer TES instrument on NASA Aura satellite depicts the distribution of water vapor molecules over Earth tropics across one transect of the satellite orbit on January 6, 2006.

  12. Utilizing Earth Observations for Societal Issues

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2010-01-01

    Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the

  13. Management Approach for NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Denkins, Todd C.; Allen, B. Danette

    2013-01-01

    The Earth System Science Pathfinder (ESSP) Program Office (PO) is responsible for programmatic management of National Aeronautics and Space Administration's (NASA) Science Mission Directorate's (SMD) Earth Venture (EV) missions. EV is composed of both orbital and suborbital Earth science missions. The first of the Earth Venture missions is EV-1, which are Principal Investigator-led, temporally-sustained, suborbital (airborne) science investigations costcapped at $30M each over five years. Traditional orbital procedures, processes and standards used to manage previous ESSP missions, while effective, are disproportionally comprehensive for suborbital missions. Conversely, existing airborne practices are primarily intended for smaller, temporally shorter investigations, and traditionally managed directly by a program scientist as opposed to a program office such as ESSP. In 2010, ESSP crafted a management approach for the successful implementation of the EV-1 missions within the constructs of current governance models. NASA Research and Technology Program and Project Management Requirements form the foundation of the approach for EV-1. Additionally, requirements from other existing NASA Procedural Requirements (NPRs), systems engineering guidance and management handbooks were adapted to manage programmatic, technical, schedule, cost elements and risk. As the EV-1 missions are nearly at the end of their successful execution and project lifecycle and the submission deadline of the next mission proposals near, the ESSP PO is taking the lessons learned and updated the programmatic management approach for all future Earth Venture Suborbital (EVS) missions for an even more flexible and streamlined management approach.

  14. NASA Wavelength: A Full Spectrum of NASA Resources for Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Schwerin, T. G.; Peticolas, L. M.; Porcello, D.; Kansa, E.; Shipp, S. S.; Bartolone, L.

    2013-12-01

    The NASA Science Education and Public Outreach Forums have developed a digital library--NASAWavelength.org--that enables easy discovery and retrieval of thousands of resources from the NASA Earth and space science education portfolio. The system has been developed based on best practices in the architecture and design of web-based information systems. The design style and philosophy emphasize simple, reusable data and services that facilitate the free flow of data across systems. The primary audiences for NASA Wavelength are STEM educators (K-12, higher education and informal education) as well as scientists, education and public outreach professionals who work with K-12, higher education, and informal education. A NASA Wavelength strandmap service features the 19 AAAS strandmaps that are most relevant to NASA science; the service also generates all of the 103 AAAS strandmaps with content from the Wavelength collection. These maps graphically and interactively provide connections between concepts as well as illustrate how concepts build upon one another across grade levels. New features have been developed for this site based on user feedback, including list-building so that users can create and share individual collections within Wavelength. We will also discuss potential methods for integrating the Next Generation Science Standards (NGSS) into the search and discovery tools on NASA Wavelength.

  15. Earth Observing-1 Extended Mission

    USGS Publications Warehouse

    ,

    2005-01-01

    Since November 2000, the National Aeronautics and Space Administration (NASA) Earth Observing-1 (EO-1) mission has demonstrated the capabilities of a dozen spacecraft sensor and communication innovations. Onboard the EO-1 spacecraft are two land remote sensing instruments. The Advanced Land Imager (ALI) acquires data in spectral bands and at resolutions similar to Landsat. The Hyperion instrument, which is the first civilian spaceborne hyperspectral imager, acquires data in 220 10-nanometer bands covering the visible, near, and shortwave-infrared bands. The initial one-year technology demonstration phase of the mission included a detailed comparison of ALI with the Landsat Enhanced Thematic Mapper Plus (ETM+) instrument. Specifications for the Operational Land Imager (OLI), the planned successor to ETM+, were formulated in part from performance characteristics of ALI. Recognizing the remarkable performance of the satellite's instruments and the exceptional value of the data, the U.S. Geological Survey (USGS) and NASA agreed in December 2001 to share responsibility for operating EO-1. The extended mission continues, on a cost-reimbursable basis, as long as customer sales fully recover flight and ground operations costs. As of May 2005, more than 17,800 scenes from each instrument have been acquired, indexed, archived, and made available to the public.

  16. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  17. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Dr. Thomas Wagner, NASA Program Scientist for the cryosphere, gives a presentation on observing the Earth's Poles in front of the Hyperwall at at a NASA-sponsored Earth Day event at Union Station, Monday April 22, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  18. Landsat: Sustaining earth observations beyond Landsat 8

    USGS Publications Warehouse

    Kelly, Francis P.; Holm, Thomas M.

    2014-01-01

    The Landsat series of Earth-observing satellites began 41-years ago as a partnership between the U.S. Geological Survey (USGS) of the Department of the Interior (DOI) and The National Aeronautics and Space Administration (NASA). For the past 41 years, Landsat satellites and associated U.S. Government ground processing, distribution, and archiving systems have acquired and made available global, moderate-resolution, multispectral measurements of land and coastal regions, providing humankind’s longest record of our planet from space. Landsat information is truly a national asset, providing an important and unique capability that benefits abroad community, including Federal, state, and local governments; globalchange science; academia, and the private sector.

  19. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  20. Evaluation of a Potential for Enhancing the Decision Support System of the Interagency Modeling and Atmospheric Assessment Center with NASA Earth Science Research Results

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Berglund, Judith; Spruce, Joseph P.; McKellip, Rodney; Jasinski, Michael; Borak, Jordan; Lundquist, Julie

    2007-01-01

    NASA's objective for the Applied Sciences Program of the Science Mission Directorate is to expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology. This objective is accomplished by using a systems approach to facilitate the incorporation of Earth observations and predictions into the decision-support tools used by partner organizations to provide essential services to society. The services include management of forest fires, coastal zones, agriculture, weather prediction, hazard mitigation, aviation safety, and homeland security. In this way, NASA's long-term research programs yield near-term, practical benefits to society. The Applied Sciences Program relies heavily on forging partnerships with other Federal agencies to accomplish its objectives. NASA chooses to partner with agencies that have existing connections with end-users, information infrastructure already in place, and decision support systems that can be enhanced by the Earth science information that NASA is uniquely poised to provide (NASA, 2004).

  1. NASA ARIA Project Maps Deformation of Earth Surface from Nepal Quake

    NASA Image and Video Library

    2015-05-02

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the European Union's Copernicus Sentinel-1A satellite, operated by the European Space Agency and also available from the Alaska Satellite Facility (https://www.asf.alaska.edu), to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 12-day interval between two Sentinel-1 images acquired on April 17 and April 29, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 8 inches (20 centimeters) of surface motion. The contours show the land around Kathmandu has moved upward by more than 40 inches (1 meter). Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The background image is from Google Earth. The map contains Copernicus data (2015). http://photojournal.jpl.nasa.gov/catalog/PIA19535

  2. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  3. Overview of Japanese Earth observation programs

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa; Honda, Yoshiaki

    2017-09-01

    Five programs, i.e. ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012 with slow rotation speed. It finally stopped on December 2015. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Superconducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2017 and GOSAT-2 will be launched on fiscal 2018. Another project

  4. NASA Radar Captures Earth Deformation from 2010 Baja Calif. Quake

    NASA Image and Video Library

    2011-03-04

    This radar image from NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar UAVSAR shows the deformed Earth caused by a 7.2 earthquake in Mexico state of Baja California and parts of the American Southwest on April 4, 2010.

  5. A remote sensing applications update: Results of interviews with Earth Observations Commercialization Program (EOCAP) participants

    NASA Technical Reports Server (NTRS)

    Mcvey, Sally

    1991-01-01

    Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.

  6. Value of Earth Observations: Key principles and techniques of socioeconomic benefits analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Macauley, M.; Bernknopf, R.

    2013-12-01

    Internationally, multiple organizations are placing greater emphasis on the societal benefits that governments, businesses, and NGOs can derive from applications of Earth-observing satellite observations, research, and models. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services by companies, agencies, and civil society. There are, however, significant efforts needed to bridge the Earth sciences and social and economic sciences fields to build capacity, develop case studies, and refine analytic techniques in quantifying socioeconomic benefits from the use of Earth observations. Some government programs, such as the NASA Earth Science Division's Applied Sciences Program have initiated activities in recent years to quantify the socioeconomic benefits from applications of Earth observations research, and to develop multidisciplinary models for organizations' decision-making activities. A community of practice has conducted workshops, developed impact analysis reports, published a book, developed a primer, and pursued other activities to advance analytic methodologies and build capacity. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to pursue a research agenda on analytic techniques, develop a body of knowledge, and promote broader skills and capabilities.

  7. Enhancing Pre- and Post-Wildfire Vegetation Recovery and Understanding Feedbacks of Cheatgrass invasion Using NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Olsen, N.; Counts, A.; Quistorff, C.; Ohr, C. A.; Toner, C.

    2017-12-01

    Increasing wildfire frequency and severity has emphasized the importance of post-wildfire recovery efforts in southern Idaho's sagebrush ecosystems. These changing fire regimes favor invasive grass species while hindering native sagebrush habitat regeneration, causing a positive feedback cycle of invasive growth - wildfires - invasive growth. Due to this undesirable process and anthropogenic influences, the sagebrush ecosystem is one of the most endangered in the US. In this project the NASA DEVELOP group of Pocatello, Idaho partnered with the Bureau of Land Management, Idaho Department of Fish and Game, and the US Department of Agriculture to characterize ecosystem recovery following the Crystal (2006), Henry Creek (2016), Jefferson (2010), and Soda (2015) wildfires. Determining vegetation cover heterogeneity and density can be time consuming and the factors affecting ecosystem recovery can be complex. In addition, restoration success is difficult to determine as vegetation composition is not often known prior to wildfire events and monitoring vegetation composition after restoration efforts can be resource intensive. These wildfires temporal monitoring consisted of 2001 to 2017 using NASA Earth observations such as Landsat 5 Thermal Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography Mission (SRTM) to determine the most significant factors of wildfire recovery and the influence targeted grazing could have for recovery. In addition, this project will include monitoring of invasive species propagation and whether spatial patterns or extents of the wildfire contribute to propagation. Understanding the key variables that made reseeding and natural recovery work in some areas, assessing why they failed in others, and identifying factors that made non-native propagation ideal are important issues for land managers in this region.

  8. The I4 Online Query Tool for Earth Observations Data

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Vanderbloemen, Lisa A.; Lawrence, Samuel J.

    2015-01-01

    The NASA Earth Observation System Data and Information System (EOSDIS) delivers an average of 22 terabytes per day of data collected by orbital and airborne sensor systems to end users through an integrated online search environment (the Reverb/ECHO system). Earth observations data collected by sensors on the International Space Station (ISS) are not currently included in the EOSDIS system, and are only accessible through various individual online locations. This increases the effort required by end users to query multiple datasets, and limits the opportunity for data discovery and innovations in analysis. The Earth Science and Remote Sensing Unit of the Exploration Integration and Science Directorate at NASA Johnson Space Center has collaborated with the School of Earth and Space Exploration at Arizona State University (ASU) to develop the ISS Instrument Integration Implementation (I4) data query tool to provide end users a clean, simple online interface for querying both current and historical ISS Earth Observations data. The I4 interface is based on the Lunaserv and Lunaserv Global Explorer (LGE) open-source software packages developed at ASU for query of lunar datasets. In order to avoid mirroring existing databases - and the need to continually sync/update those mirrors - our design philosophy is for the I4 tool to be a pure query engine only. Once an end user identifies a specific scene or scenes of interest, I4 transparently takes the user to the appropriate online location to download the data. The tool consists of two public-facing web interfaces. The Map Tool provides a graphic geobrowser environment where the end user can navigate to an area of interest and select single or multiple datasets to query. The Map Tool displays active image footprints for the selected datasets (Figure 1). Selecting a footprint will open a pop-up window that includes a browse image and a link to available image metadata, along with a link to the online location to order or

  9. Caribbean Oceans: Utilizing NASA Earth Observations to Detect, Monitor, and Respond to Unprecedented Levels of Sargassum in the Caribbean Sea

    NASA Technical Reports Server (NTRS)

    Ped, Jordan; Scaduto, Erica; Accorsi, Emma; Torres-Perez, Juan (Editor)

    2016-01-01

    In 2011 and 2015, the nations of the Caribbean Sea were overwhelmed by the unprecedented quantity of Sargassum that washed ashore. This issue prompted international discussion to better understand the origins, distribution, and movement of Sargassum, a free-floating brown macro alga with ecological, environmental, and commercial importance. In the open ocean, Sargassum mats serve a vital ecological function. However, when large quantities appear onshore without warning, Sargassum threatens local tourist industries and nearshore ecosystems within the Caribbean. As part of the international response, this project investigated the proliferation of this macro alga within the Caribbean Sea from 2003-2015, and used NASA Earth observations to detect and model Sargassum growth across the region. The Caribbean Oceans team calculated the Floating Algal Index (FAI) using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data, and compared the FAI to various oceanic variables to determine the ideal pelagic environment for Sargassum growth. The project also examined the annual spread of Sargassum throughout the region by using Earth Trends Modeler (ETM) in Clark Labs' TerrSet software. As part of the international effort to better understand the life cycle of Sargassum in the Caribbean, the results of this project will help local economies promote sustainable management practices in the region.

  10. Earth Observation

    NASA Technical Reports Server (NTRS)

    1994-01-01

    For pipeline companies, mapping, facilities inventory, pipe inspections, environmental reporting, etc. is a monumental task. An Automated Mapping/Facilities Management/Geographic Information Systems (AM/FM/GIS) is the solution. However, this is costly and time consuming. James W. Sewall Company, an AM/FM/GIS consulting firm proposed an EOCAP project to Stennis Space Center (SSC) to develop a computerized system for storage and retrieval of digital aerial photography. This would provide its customer, Algonquin Gas Transmission Company, with an accurate inventory of rights-of-way locations and pipeline surroundings. The project took four years to complete and an important byproduct was SSC's Digital Aerial Rights-of-Way Monitoring System (DARMS). DARMS saves substantial time and money. EOCAP enabled Sewall to develop new products and expand its customer base. Algonquin now manages regulatory requirements more efficiently and accurately. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology. Because changes on Earth's surface are accelerating, planners and resource managers must assess the consequences of change as quickly and accurately as possible. Pacific Meridian Resources and NASA's Stennis Space Center (SSC) developed a system for monitoring changes in land cover and use, which incorporated the latest change detection technologies. The goal of this EOCAP project was to tailor existing technologies to a system that could be commercialized. Landsat imagery enabled Pacific Meridian to identify areas that had sustained substantial vegetation loss. The project was successful and Pacific Meridian's annual revenues have substantially increased. EOCAP provides government co-funding to encourage private investment in and broader use of NASA remote sensing technology.

  11. Earth Observations taken by Expedition 47 Crewmember

    NASA Image and Video Library

    2016-03-17

    ISS047e010211 (03/17/2016) --- NASA astronaut Tim Kopra sent this interesting image out via Twitter with the comment " Lake in #Brazil - looks like something from #MiddleEarth. @Space_Station #TheShire #Explore".

  12. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  13. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA's Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. Scientists from the Image Science and Analysis

  14. Evolution of NASA's Earth Science Digital Object Identifier Registration System

    NASA Technical Reports Server (NTRS)

    Wanchoo, Lalit; James, Nathan

    2017-01-01

    NASA's Earth Science Data and Information System (ESDIS) Project has implemented a fully automated system for assigning Digital Object Identifiers (DOIs) to Earth Science data products being managed by its network of 12 distributed active archive centers (DAACs). A key factor in the successful evolution of the DOI registration system over last 7 years has been the incorporation of community input from three focus groups under the NASA's Earth Science Data System Working Group (ESDSWG). These groups were largely composed of DOI submitters and data curators from the 12 data centers serving the user communities of various science disciplines. The suggestions from these groups were formulated into recommendations for ESDIS consideration and implementation. The ESDIS DOI registration system has evolved to be fully functional with over 5,000 publicly accessible DOIs and over 200 DOIs being held in reserve status until the information required for registration is obtained. The goal is to assign DOIs to the entire 8000+ data collections under ESDIS management via its network of discipline-oriented data centers. DOIs make it easier for researchers to discover and use earth science data and they enable users to provide valid citations for the data they use in research. Also for the researcher wishing to reproduce the results presented in science publications, the DOI can be used to locate the exact data or data products being cited.

  15. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2017-12-08

    NASA image release April 6, 2011 Images from Swift's Ultraviolet/Optical (white, purple) and X-ray telescopes (yellow and red) were combined in this view of GRB 110328A. The blast was detected only in X-rays, which were collected over a 3.4-hour period on March 28. Credit: NASA/Swift/Stefan Immler NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  16. Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Owens, A.; Steffen, P. L.

    2004-12-01

    Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.

  17. NASA's Earth Observatory and Visible Earth: Imagery and Science on the Internet

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Simmon, Robert B.; Herring, David D.

    2003-01-01

    The purpose of NASA s Earth Observatory and Visible Earth Web sites is to provide freely-accessible locations on the Internet where the public can obtain new satellite imagery (at resolutions up to a given sensor's maximum) and scientific information about our home planet. Climatic and environmental change are the sites main foci. As such, they both contain ample data visualizations and time-series animations that demonstrate geophysical parameters of particular scientific interest, with emphasis on how and why they vary over time. An Image Composite Editor (ICE) tool will be added to the Earth Observatory in October 2002 that will allow visitors to conduct basic analyses of available image data. For example, users may produce scatter plots to correlate images; or they may probe images to find the precise unit values per pixel of a given data product; or they may build their own true-color and false-color images using multi- spectral data. In particular, the sites are designed to be useful to the science community, public media, educators, and students.

  18. Using Earth Observations to Assess the Socioeconomic Impact of Human Decision Making during the Suppression of a Wildland Fire

    NASA Astrophysics Data System (ADS)

    Miller, V. V.; Kochanski, A.; Mandel, J.; Herr, V.; Schranz, S.

    2016-12-01

    This presentation will discuss the fire simulation system based on WRF-SFIRE and assimilation of satellite Active Fires detection to estimate the socio-economic impact of Earth observations and fire behavior modeling for the 2011 Las Conchas fire in New Mexico. Multiple scenarios will be developed with the WRF-SFIRE simulation based on value of information (VOI) provided by retired incident commanders, whose decision inputs will steer scenario development and simulation. The scenarios will differ according to the Earth observations available through NASA and then deemed useful to incident commanders. Each scenario will be evaluated in terms of its socio-economic impact as specified by NASA (2012) for its wildland fire program. This presentation is a proposed supplement to NASA grant NNX13AH59G Wildland Fire Behavior and Risk Forecasting, Sher Schranz, PI.

  19. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2005-01-01

    The presentation describes data management of NASA remote sensing data for Northern Eurasia Earth Science Partnership Initiative (NEESPI). Many types of ground and integrative (e.g., satellite, GIs) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of Northern Eurasia cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential. The proposed project targets integration of remote sensing data from AVHRR, MODIS, and other NASA instruments on board US- satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEPNCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  20. Earth Observations taken by the STS-135 Crew

    NASA Image and Video Library

    2011-07-09

    S135-E-006265 (9 July 2011) --- A nadir view from the Earth-orbiting space shuttle Atlantis, photographed by one of four STS-135 crewmembers, shows the southernmost part of Italy, referred to as the "boot." The astronauts were on the mission's second day of activity in Earth orbit, and the eve of docking day with the International Space Station. Photo credit: NASA

  1. Tools to Support the Reuse of Software Assets for the NASA Earth Science Decadal Survey Missions

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Downs, Robert R.; Marshall, James J.; Most, Neal F.; Samadi, Shahin

    2011-01-01

    The NASA Earth Science Data Systems (ESDS) Software Reuse Working Group (SRWG) is chartered with the investigation, production, and dissemination of information related to the reuse of NASA Earth science software assets. One major current objective is to engage the NASA decadal missions in areas relevant to software reuse. In this paper we report on the current status of these activities. First, we provide some background on the SRWG in general and then discuss the group s flagship recommendation, the NASA Reuse Readiness Levels (RRLs). We continue by describing areas in which mission software may be reused in the context of NASA decadal missions. We conclude the paper with pointers to future directions.

  2. Applications of NASA Earth Observation Imagery in Google Earth Engine to Estimate Glacier Trends and Water Availability in Chile's Aconcagua Watershed

    NASA Astrophysics Data System (ADS)

    Webb, M. J.; Babis, B.; Deland, S.; McGurk, G.

    2017-12-01

    The Aconcagua basin of Central Chile, just north of the capital city of Santiago, is characterized by the glaciated Andes to the east, which supply meltwater runoff to the lower fertile river valleys. Known for the production of fruit and vegetable crops, the region is experiencing stressed hydrologic resources as a result of anomalous climate conditions and anthropogenic water consumption. Traditionally, the wet and cool winter months account for 80 percent of Aconcagua's total annual precipitation, while dry and warm conditions prevail during the summer months. Consequently, the basin depends on seasonal glacial accumulation to provide water storage for the dry season when up to 67 percent of water is derived from glacial runoff. Overall, 70 percent of regional water is consumed by agricultural practices, specifically the fruit and vegetable farming that thrives in Aconcagua's Mediterranean-type climate. Globally, weather intensification and the rising zero-degree isotherm are poised to threaten the stability and longevity of glacial water resources. In recent years, Chile has experienced periods of prolonged drought as well as glacier shrinkage. The Aconcagua basin is especially vulnerable to these changes as a consequence of its agricultural economies and reliance on sub-tropical glaciers for water resources. Aconcagua is among the top three regions contributing to Chile's gross domestic product (GDP). Furthermore, in 2011 the Chilean government announced plans to increase the national land under irrigation by 57 percent by 2022. In partnership with the Chilean Ministry of Agriculture, the objective of this research was to integrate NASA Earth observations in conjunction with in situ river discharge measurements into Google Earth Engine to enhance regional understanding of current and future climate conditions in Chile. The remotely-sensed datasets included Landsat TM/OLI derived glacial extent, Terra MODIS snow cover and surface temperature, and Aqua AMSR

  3. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  4. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  5. Defining the Application Readiness of Products when Developing Earth Observing Remote Sensing Data Products

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.

    2017-12-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in Earth Science. With new satellite missions being launched every year, new types of Earth Science data are being incorporated into science models and decision-making systems in a broad array of organizations. These applications help hazard mitigation and decision-making in government, private, and civic institutions working to reduce its impact on human wellbeing. Policy guidance and knowledge of product maturity can influence mission design as well as development of product applications in user organizations. Ensuring that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive is a critical outcome from engagement of user communities. Tracking the applications and product maturity help improve the use of data. NASA's Applications Readiness Levels reduce cost and increase the confidence in applications. ARLs help identify areas where NASA products are most useful while allowing the user to leverage products in early development as well as those ready for operational uses. By considering the needs of the user community early on in the mission-design process, agencies can use ARLs to ensure that satellites meet the needs of multiple constituencies and the development of products are integrated into user organizations organically. ARLs and user integration provide a perspective on the maturity and readiness of a products ability to influence policy and decision-making. This paper describes the mission application development process at NASA and within the Earth Science Directorate. We present the successes and challenges faced by NASA data users and explain how ARLs helps link NASA science to the appropriate policies and decision frameworks. The methods presented here can be adapted to other programs and institutions seeking to rapidly move

  6. Big Data in the Earth Observing System Data and Information System

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Baynes, Katie; McInerney, Mark

    2016-01-01

    Approaches that are being pursued for the Earth Observing System Data and Information System (EOSDIS) data system to address the challenges of Big Data were presented to the NASA Big Data Task Force. Cloud prototypes are underway to tackle the volume challenge of Big Data. However, advances in computer hardware or cloud won't help (much) with variety. Rather, interoperability standards, conventions, and community engagement are the key to addressing variety.

  7. Earth Observing-1 Extended Mission

    USGS Publications Warehouse

    ,

    2003-01-01

    From its beginning in November 2000, the NASA Earth Observing-1 (EO-1) mission demonstrated the feasibility and performance of a dozen innovative sensor, spacecraft, and operational technologies. The 1-year mission tested a variety of technologies, some of which may be included on the planned 2007 Landsat Data Continuity Mission. Onboard the spacecraft are two land remote sensing instruments: the Advanced Land Imager (ALI), which acquires data in spectral bands and at resolutions similar to Landsat, and Hyperion, which acquires data in 220 10-nanometer-wide bands covering the visible, near-, and shortwave-infrared bands. Recognizing the remarkable performance of the satellite's instruments and the exceptional value of the data, the U.S. Geological Survey (USGS) and NASA agreed in December 2001 to share responsibility for operating EO-1 on a cost-reimbursable basis as long as customer sales are sufficient to recover flight and ground operations costs. The EO-1 extended mission operates within constraints imposed by its technology-pioneering origins, but it also provides unique and valuable capabilities. The spacecraft can acquire a target scene three times in a 16-day period. The ALI instrument has additional spectral coverage and greater radiometric dynamic range compared with the sensors on Landsat 7. Hyperion is the first civilian spaceborne hyperspectral imager. As of January 2003, more than 5,000 scenes had been acquired, indexed, and archived.

  8. NASA's Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Les; McNutt, Leslie; Castillo-Rogez, Julie

    2017-01-01

    NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission and laying the groundwork for their future use in deep space science and exploration missions. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m2 solar sail and will weigh less than 14 kilograms. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 3 microns thick. NEA Scout will launch on the Space Launch System (SLS) first mission in 2018 and deploy from the SLS after the Orion spacecraft is separated from the SLS upper stage. The NEA Scout spacecraft will stabilize its orientation after ejection using an onboard cold-gas thruster system. The same system provides the vehicle Delta-V sufficient for a lunar flyby. After its first encounter with the moon, the 86 m2 sail will deploy, and the sail characterization phase will begin. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. Once the system is checked out, the spacecraft will perform a series of lunar flybys until it achieves optimum departure trajectory to the target asteroid. The spacecraft will then begin its two year-long cruise. About one month before the asteroid flyby, NEA Scout will pause to search for the target and start its approach phase using a combination of radio tracking and optical navigation. The solar sail will provide

  9. Earth Observation

    NASA Image and Video Library

    2013-08-20

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Looking southwest over northern Africa. Libya, Algeria, Niger.

  10. User Metrics in NASA Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2018-01-01

    This presentation the collection and use of user metrics in NASA's Earth Science data systems. A variety of collection methods is discussed, with particular emphasis given to the American Customer Satisfaction Index (ASCI). User sentiment on potential use of cloud computing is presented, with generally positive responses. The presentation also discusses various forms of automatically collected metrics, including an example of the relative usage of different functions within the Giovanni analysis system.

  11. Preliminary Results From Observing The Fast Stardust Sample Return Capsule Entry In Earth's Atmosphere On January 15, 2006.

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Jordan, D.; Kontinos, D.; Wright, M.; Olejniczak, J.; Raiche, G.; Wercinski, P.; Schilling, E.; Taylor, M.; Rairden, R.; Stenbaek-Nielsen, H.; McHarg, M. G.; Abe, S.; Winter, M.

    2006-08-01

    In order for NASA's Stardust mission to return a comet sample to Earth, the probe was put in an orbit similar to that of Near Earth Asteroids. As a result, the reentry in Earth's atmosphere on January 15, 2006, was the fastest entry ever for a NASA spacecraft, with a speed of 12.8 km/s, similar to that of natural fireballs. A new thermal protection material, PICA, was used to protect the sample, a material that may have a future as thermal protection for the Crew Return Vehicle or for future planetary missions. An airborne and ground-based observing campaign, the "Stardust Hyperseed MAC", was organized to observe the reentry under good observing conditions, with spectroscopic and imaging techniques commonly used for meteor observations (http:// reentry.arc.nasa.gov). A spectacular video of the reentry was obtained. The spectroscopic observations measure how much light was generated in the shock wave, how that radiation added to heating the surface, how the PICA ablated as a function of altitude, and how the carbon reacted with the shock wave to form CN, a possible marker of prebiotic chemistry in natural meteors. In addition, the observations measured a transient signal of zinc and potassium early in the trajectory, from the ablation of a white paint layer that had been applied to the heat shield for thermal control. Implications for sample return and the exploration of atmospheres in future planetary missions will be discussed.

  12. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  13. Earth Observation

    NASA Image and Video Library

    2013-06-17

    ISS036-E-009405 (17 June 2013) --- One of the Expedition 36 crew members aboard the International Space Station, some 240 miles above Earth, used a 50mm lens to record this oblique nighttime image of a large part of the nation’s second largest state in area, including the four largest metropolitan areas in population. The extent of the metropolitan areas is easily visible at night due to city and highway lights. The largest metro area, Dallas-Fort Worth, often referred to informally as the Metroplex, is the heavily cloud-covered area at the top center of the photo. Neighboring Oklahoma, on the north side of the Red River, less than 100 miles to the north of the Metroplex, appears to be experiencing thunderstorms. The Houston metropolitan area, including the coastal city of Galveston, is at lower right. To the east near the Texas border with Louisiana, the metropolitan area of Beaumont-Port Arthur appears as a smaller blotch of light, also hugging the coast of the Texas Gulf. Moving inland to the left side of the picture one can delineate the San Antonio metro area. The capital city of Austin can be seen to the northeast of San Antonio. This and hundreds of thousands of other Earth photos taken by astronauts and cosmonauts over the past 50 years are available on http://eol.jsc.nasa.gov

  14. Earth Observation

    NASA Image and Video Library

    2011-08-02

    ISS028-E-020276 (2 Aug. 2011) --- This photograph of polar mesospheric clouds was acquired at an altitude of just over 202 nautical miles (about 322 kilometers) in the evening hours (03:19:54 Greenwich Mean Time) on Aug. 2, 2011, as the International Space Station was passing over the English Channel. The nadir coordinates of the station were 49.1 degrees north latitude and 5.5 degrees west longitude. Polar mesospheric clouds (also known as noctilucent, or ?night-shining? clouds) are transient, upper atmospheric phenomena that are usually observed in the summer months at high latitudes (greater than 50 degrees) of both the Northern and Southern Hemispheres. They appear bright and cloudlike while in deep twilight. They are illuminated by sunlight when the lower layers of the atmosphere are in the darkness of Earth?s shadow. The horizon of Earth appears at the bottom of the image, with some layers of the lower atmosphere already illuminated by the rising sun. The higher, bluish-colored clouds look much like wispy cirrus clouds, which can be found as high as 60,000 feet (18 kilometers) in the atmosphere. However noctilucent clouds, as seen here, are observed in the mesosphere at altitudes of 250,000 to 280,000 feet (about 76 to 85 kilometers). Astronaut observations of polar mesospheric clouds over northern Europe in the summer are not uncommon.

  15. Utilizing NASA Earth Observations to Monitor Land Management Practices and the Development of Marshlands to Rice Fields in Rwanda

    NASA Astrophysics Data System (ADS)

    Dusabimana, M. R.; Blach, D.; Mwiza, F.; Muzungu, E.; Swaminathan, R.; Tate, Z.

    2014-12-01

    Rwanda, a small country with the highest population density in Sub-Saharan Africa, is one of the world's poorest countries. Although agriculture is the backbone of Rwandan economy, agricultural productivity is extremely low. Over 90 % of the population is engaged in subsistence farming and only 52 % of the total land surface area is arable. Of this land, approximately 165,000 hectares are marshlands, of which only 57 % has been cultivated. Rwandan government has invested in the advancement of agriculture with activities such as irrigation, marshland reclamation, and crop regionalization. In 2001, Ministry of Agriculture and Animal Resources (MINAGRI) released the Rural Sector Support Program (RSSP), which aimed at converting marshlands into rice fields at various development sites across the country. The focus of this project was to monitor rice fields in Rwanda utilizing NASA Earth observations such as Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager. Modified Normalized Difference Water Index (MNDWI) was used to depict the progress of marshland to rice field conversion as it highlights the presence of irrigated rice fields from the surrounding area. Additionally, Decision Support System for Agrotechnology Transfer (DSSAT) was used to estimate rice yield at RSSP sites. Various simulations were run to find perfect conditions for cultivating the highest yield for a given farm. Furthermore, soil erosion susceptibility masks were created by combining factors derived from ASTER, MERRA, and ground truth data using Revised Universal Soil Loss Equation (RUSLE). The end results, maps, and tutorials were delivered to the partners and policy makers in Rwanda to help make informed decisions. It can be clearly seen that Earth observations can be successfully used to monitor agricultural and land management practices as a cost effective method that will enable farmers to improve crop yield production and food security.

  16. STS-44 Earth observation shows purplish twilight over the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, shows twilight over the Atlantic Ocean. OV-104 was at a point in the north Atlantic located at 28 degrees north latitude and 37 degrees west longitude. The spacecraft has just passed sundown on the Earth's surface, but it was still daylight at an altitude of 195 nautical miles. During the mission, the astronauts noted that the limb of the Earth displayed a more purplish tint instead of its normal blue. This effect, according to NASA scientists, is attributed to the high altitude residue (mostly sulfuric acid particles) from the Mount Pinatubo eruptions of mid June 1991. Note the broad band of twilight in the center of the image. This band is another indicator of the upper atmospheric scattering of sunlight caused by this layer of haze that exists between 20 and 30 kilometers above Earth. Sunlight highlights the empty payload bay (PLB), the vertical tail, and orbital maneuvering system (OMS) pods against the black

  17. Earth Observation

    NASA Image and Video Library

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Perhaps a dandelion losing its seeds in the wind? Love clouds!

  18. Vegetation Earth System Data Record from DSCOVR EPIC Observations

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Song, W.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.

    2017-12-01

    The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168° and 176° at ten ultraviolet to near infrared (NIR) narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (2.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (3.0) nm, 687.8 (0.8) nm, 764.0 (1.0) nm and 779.5 (2.0) nm. This poster presents current status of the Vegetation Earth System Data Record of global Leaf Area Index (LAI), solar zenith angle dependent Sunlit Leaf Area Index (SLAI), Fraction vegetation absorbed Photosynthetically Active Radiation (FPAR) and Normalized Difference Vegetation Index (NDVI) derived from the DSCOVR EPIC observations. Whereas LAI is a standard product of many satellite missions, the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. FPAR, LAI and SLAI are key state parameters in most ecosystem productivity models and carbon/nitrogen cycle. The product at 10 km sinusoidal grid and 65 to 110 min temporal frequency as well as accompanying Quality Assessment (QA) variables will be publicly available from the NASA Langley Atmospheric Science Data Center. The Algorithm Theoretical Basis (ATBD) and product validation strategy are also discussed in this poster.

  19. Earth observations from space: History, promise, and reality. Executive summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  20. Evaluating the Potential of NASA's Earth Science Research Results for Improving Future Operational Systems

    NASA Astrophysics Data System (ADS)

    Frederick, M. E.; Cox, E. L.; Friedl, L. A.

    2006-12-01

    NASA's Earth Science Theme is charged with implementing NASA Strategic Goal 3A to "study Earth from space to advance scientific understanding and meet societal needs." In the course of meeting this objective, NASA produces research results, such as scientific observatories, research models, advanced sensor and space system technology, data active archives and interoperability technology, high performance computing systems, and knowledge products. These research results have the potential to serve society beyond their intended purpose of answering pressing Earth system science questions. NASA's Applied Sciences Program systematically evaluates the potential of the portfolio of research results to serve society by conducting projects in partnership with regional/national scale operational partners with the statutory responsibility to inform decision makers. These projects address NASA's National Applications and the societal benefit areas under the IEOS and GEOSS. Prototyping methods are used in two ways in NASA's Applied Sciences Program. The first is part of the National Applications program element, referred to as Integrated Systems Solutions (ISS) projects. The approach for these projects is to use high fidelity prototypes to benchmark the assimilation of NASA research results into our partners' decision support systems. The outcome from ISS projects is a prototype system that has been rigorously tested with the partner to understand the scientific uncertainty and improved value of their modified system. In many cases, these completed prototypes are adopted or adapted for use by the operational partners. The second falls under the Crosscutting Solutions program element, referred to as Rapid Prototyping (RP) experiments. The approach for RP experiments is to use low fidelity prototypes that are low cost and quickly produced to evaluate the potential of the breadth of NASA research results to serve society. The outcome from the set of RP experiments is an

  1. NASA Reverb: Standards-Driven Earth Science Data and Service Discovery

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Mitchell, A.; Pilone, D.

    2011-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) is a core capability in NASA's Earth Science Data Systems Program. NASA's EOS ClearingHOuse (ECHO) is a metadata catalog for the EOSDIS, providing a centralized catalog of data products and registry of related data services. Working closely with the EOSDIS community, the ECHO team identified a need to develop the next generation EOS data and service discovery tool. This development effort relied on the following principles: + Metadata Driven User Interface - Users should be presented with data and service discovery capabilities based on dynamic processing of metadata describing the targeted data. + Integrated Data & Service Discovery - Users should be able to discovery data and associated data services that facilitate their research objectives. + Leverage Common Standards - Users should be able to discover and invoke services that utilize common interface standards. Metadata plays a vital role facilitating data discovery and access. As data providers enhance their metadata, more advanced search capabilities become available enriching a user's search experience. Maturing metadata formats such as ISO 19115 provide the necessary depth of metadata that facilitates advanced data discovery capabilities. Data discovery and access is not limited to simply the retrieval of data granules, but is growing into the more complex discovery of data services. These services include, but are not limited to, services facilitating additional data discovery, subsetting, reformatting, and re-projecting. The discovery and invocation of these data services is made significantly simpler through the use of consistent and interoperable standards. By utilizing an adopted standard, developing standard-specific adapters can be utilized to communicate with multiple services implementing a specific protocol. The emergence of metadata standards such as ISO 19119 plays a similarly important role in discovery as the 19115 standard

  2. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  3. Earth Observation Services (Forest Imaging)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Two university professors used EOCAP funding to demonstrate that satellite data can generate forest classifications with equal or better accuracy than traditional aerial photography techniques. This comparison had not been previously available. CALFIRST, the resulting processing package, will be marketed to forest companies and government agencies. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of, NASA- developed technology for analyzing information about Earth and ocean resources.

  4. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  5. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  6. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  7. Korea Earth Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  8. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, GIOVANNI

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Acker, J. G.; Kempler, S. J.

    2016-12-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to research scientists, applications scientists, applications users, and students around the world. The GES DISC is the home (archive) of NASA Precipitation and Hydrology, as well as Atmospheric Composition and Dynamics remote sensing data and information. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI, http://giovanni.gsfc.nasa.gov/) allows users to explore satellite-based data using sophisticated analyses and visualizations without downloading data and software, which is particularly suitable for novices to use NASA datasets in STEM activities. In this presentation, we will briefly introduce GIOVANNI and recommend datasets for STEM. Examples of using these datasets in STEM activities will be presented as well.

  9. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  10. Experiences in Bridging the Gap Between Science and Decision Making at NASAs GSFC Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Kempler, S.; Teng, W.; Friedl, L.; Lynnes, C.

    2008-12-01

    In recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA has implemented the 'Decision Support Through Earth Science Research Results' program to solicit "proposals that develop and demonstrate innovative and practicable applications of NASA Earth science observations and research"that focus on improving decision making activities", as stated in the NASA ROSES-2008, A.18 solicitation. This very successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations in the areas of agriculture, air quality, disaster management, ecosystems, public health, water resources, and aviation weather. The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. Coupling this experience with the GES DISC's total understanding and vast experience regarding Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, the GES DISC is in the unique position to more readily identify challenges that come with bringing science data to decision makers. These challenges consist of those that can be met within typical science data usage frameworks, as well as those challenges that arise when utilizing science data for previously unplanned applications, such as decision support systems. The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding how

  11. NASA Earth Science Disasters Program Response Activities During Hurricanes Harvey, Irma, and Maria in 2017

    NASA Astrophysics Data System (ADS)

    Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.

    2017-12-01

    The 2017 Atlantic hurricane season included a series of storms that impacted the United States, and the Caribbean breaking a 12-year drought of landfalls in the mainland United States (Harvey and Irma), with additional impacts from the combination of Irma and Maria felt in the Caribbean. These storms caused widespread devastation resulting in a significant need to support federal partners in response to these destructive weather events. The NASA Earth Science Disasters Program provided support to federal partners including the Federal Emergency Management Agency (FEMA) and the National Guard Bureau (NGB) by leveraging remote sensing and other expertise through NASA Centers and partners in academia throughout the country. The NASA Earth Science Disasters Program leveraged NASA mission products from the GPM mission to monitor cyclone intensity, assist with cyclone center tracking, and quantifying precipitation. Multispectral imagery from the NASA-NOAA Suomi-NPP mission and the VIIRS Day-Night Band proved useful for monitoring power outages and recovery. Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 satellites operated by the European Space Agency were used to create flood inundation and damage assessment maps that were useful for damage density mapping. Using additional datasets made available through the USGS Hazards Data Distribution System and the activation of the International Charter: Space and Major Disasters, the NASA Earth Science Disasters Program created additional flood products from optical and radar remote sensing platforms, along with PI-led efforts to derive products from other international partner assets such as the COSMO-SkyMed system. Given the significant flooding impacts from Harvey in the Houston area, NASA provided airborne L-band SAR collections from the UAVSAR system which captured the daily evolution of record flooding, helping to guide response and mitigation decisions for critical infrastructure and public safety. We

  12. Realtime Data to Enable Earth-Observing Sensor Web Capabilities

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.

    2015-12-01

    Over the past decade NASA's Earth Science Technology Office (ESTO) has invested in new technologies for information systems to enhance the Earth-observing capabilities of satellites, aircraft, and ground-based in situ observations. One focus area has been to create a common infrastructure for coordinated measurements from multiple vantage points which could be commanded either manually or through autonomous means, such as from a numerical model. This paradigm became known as the sensor web, formally defined to be "a coherent set of heterogeneous, loosely-coupled, distributed observing nodes interconnected by a communications fabric that can collectively behave as a single dynamically adaptive and reconfigurable observing system". This would allow for adaptive targeting of rapidly evolving, transient, or variable meteorological features to improve our ability to monitor, understand, and predict their evolution. It would also enable measurements earmarked at critical regions of the atmosphere that are highly sensitive to data analysis errors, thus offering the potential for significant improvements in the predictive skill of numerical weather forecasts. ESTO's investment strategy was twofold. Recognizing that implementation of an operational sensor web would not only involve technical cost and risk but also would require changes to the culture of how flight missions were designed and operated, ESTO funded the development of a mission-planning simulator that would quantitatively assess the added value of coordinated observations. The simulator was designed to provide the capability to perform low-cost engineering and design trade studies using synthetic data generated by observing system simulation experiments (OSSEs). The second part of the investment strategy was to invest in prototype applications that implemented key features of a sensor web, with the dual goals of developing a sensor web reference architecture as well as supporting useful science activities that

  13. Earth Observations taken by the STS-135 Crew

    NASA Image and Video Library

    2011-07-09

    S135-E-006268 (9 July 2011) --- A nadir view from the Earth-orbiting space shuttle Atlantis, photographed by one of four STS-135 crewmembers, shows the area of Italy referred to as the "boot." Part of Sicily is at frame's bottom center. The astronauts were on the mission's second day of activity in Earth orbit, and the eve of docking day with the International Space Station. Photo credit: NASA

  14. Earth Observation

    NASA Image and Video Library

    2014-06-27

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Part of Space Station Remote Manipulator System (SSRMS) is visible. Folder lists this as: the Middle East, Israel.

  15. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    NASA Technical Reports Server (NTRS)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  16. Earth Observation

    NASA Image and Video Library

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. On crewmember's Flickr page - Look straight down into an aurora.

  17. Earth Observation

    NASA Image and Video Library

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of a solar array is also visible.

  18. Optimal Reorganization of NASA Earth Science Data for Enhanced Accessibility and Usability for the Hydrology Community

    NASA Technical Reports Server (NTRS)

    Teng, William; Rui, Hualan; Strub, Richard; Vollmer, Bruce

    2016-01-01

    A long-standing "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community and the common way of data archival by earth science data centers. Typically, in hydrology, earth surface features are expressed as discrete spatial objects (e.g., watersheds), and time-varying data are contained in associated time series. Data in earth science archives, although stored as discrete values (of satellite swath pixels or geographical grids), represent continuous spatial fields, one file per time step. This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. and NASA earth science data systems. In essence, the way data are archived is conceptually orthogonal to the desired method of access. Our recent work has shown an optimal method of bridging the Divide, by enabling operational access to long-time series (e.g., 36 years of hourly data) of selected NASA datasets. These time series, which we have termed "data rods," are pre-generated or generated on-the-fly. This optimal solution was arrived at after extensive investigations of various approaches, including one based on "data curtains." The on-the-fly generation of data rods uses "data cubes," NASA Giovanni, and parallel processing. The optimal reorganization of NASA earth science data has significantly enhanced the access to and use of the data for the hydrology user community.

  19. Decision-making contexts involving Earth observations in federal and state government agencies

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Thompson, A.

    2017-12-01

    National and international organizations are placing greater emphasis on the societal and economic benefits that can be derived from applications of Earth observations, yet improvements are needed to connect to the decision processes that produce actions with direct societal benefits. The Consortium for the Valuation of Applications Benefits Linked with Earth Science (VALUABLES), a cooperative agreement between Resources for the Future (RFF) and the National Aeronautics and Space Administration (NASA), has the goal of advancing methods for the valuation and communication of the applied benefits linked with Earth observations. One of the Consortium's activities is a set of Policy Briefs that document the use of Earth observations for decision making in federal and state government agencies. In developing these Policy Briefs, we pay special attention to documenting the entire information value chain associated with the use of Earth observations in government decision making, namely (a) the specific data product, modeling capability, or information system used by the agency, (b) the decision context that employs the Earth observation information and translates it into an agency action, (c) the outcomes that are realized as a result of the action, and (d) the beneficiaries associated with the outcomes of the decision. Two key examples include the use of satellite data for informing the US Drought Monitor (USDM), which is used to determine the eligibility of agricultural communities for drought disaster assistance programs housed at the US Department of Agriculture (USDA), and the use of satellite data by the Florida Department of Environmental Protection to develop numeric nutrient water quality standards and monitoring methods for chlorophyll-a, which is codified in Florida state code (62-302.532).

  20. A First for NASA's IRIS: Observing a Gigantic Eruption of Solar Material

    NASA Image and Video Library

    2014-05-30

    Watch a video from this event here: www.flickr.com/photos/gsfc/14118958800/ A coronal mass ejection, or CME, surged off the side of the sun on May 9, 2014, and NASA's newest solar observatory caught it in extraordinary detail. This was the first CME observed by the Interface Region Imaging Spectrograph, or IRIS, which launched in June 2013 to peer into the lowest levels of the sun's atmosphere with better resolution than ever before. Watch the movie to see how a curtain of solar material erupts outward at speeds of 1.5 million miles per hour. Read more: 1.usa.gov/1kp7O4F NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Earth Observation

    NASA Image and Video Library

    2013-07-26

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: Never tire of finding shapes in the clouds! These look very botanical to me. Simply perfect.

  2. Coordinating an Autonomous Earth-Observing Sensorweb

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Cichy, Benjamin; Tran, Daniel; Chien, Steve; Rabideau, Gregg; Davies, Ashley; Castano, Rebecca; frye, Stuart; Mandl, Dan; Shulman, Seth; hide

    2006-01-01

    A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The soft8 NASA Tech Briefs, July 2006 ware facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.

  3. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  4. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time

  5. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  6. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratorymore » three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.« less

  7. Earth Observation

    NASA Image and Video Library

    2013-08-03

    Earth observation taken during day pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: From southernmost point of orbit over the South Pacific- all clouds seemed to be leading to the South Pole.

  8. Earth Observation

    NASA Image and Video Library

    2013-07-21

    Earth observation taken during night pass by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message this is labeled as : Tehran, Iran. Lights along the coast of the Caspian Sea visible through clouds. July 21.

  9. Earth Observation

    NASA Image and Video Library

    2014-06-12

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: Moon, Japan, Kamchatka with a wild cloud. Part of the U.S. Lab and PMM are also visible.

  10. Earth Observation

    NASA Image and Video Library

    2014-05-31

    Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: CEO - Arena de Sao Paolo. View used for Twitter message: Cloudy skies over São Paulo Brazil

  11. NASA World Wind Near Real Time Data for Earth

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2013-12-01

    Innovation requires open standards for data exchange, not to mention ^access to data^ so that value-added, the information intelligence, can be continually created and advanced by the larger community. Likewise, innovation by academia and entrepreneurial enterprise alike, are greatly benefited by an open platform that provides the basic technology for access and visualization of that data. NASA World Wind Java, and now NASA World Wind iOS for the iPhone and iPad, provides that technology. Whether the interest is weather science or climate science, emergency response or supply chain, seeing spatial data in its native context of Earth accelerates understanding and improves decision-making. NASA World Wind open source technology provides the basic elements for 4D visualization, using Open Geospatial Consortium (OGC) protocols, while allowing for customized access to any data, big or small, including support for NetCDF. NASA World Wind includes access to a suite of US Government WMS servers with near real time data. The larger community can readily capitalize on this technology, building their own value-added applications, either open or proprietary. Night lights heat map Glacier National Park

  12. Commercial potential of remote sensing data from the Earth observing system

    NASA Technical Reports Server (NTRS)

    Merry, Carolyn J.; Tomlin, Sandra M.

    1992-01-01

    The purpose was to assess the market potential of remote sensing value-added products from the Earth Observing System (EOS) platform. Sensors on the EOS platform were evaluated to determine which qualities and capabilities could be useful to the commercial user. The approach was to investigate past and future satellite data distribution programs. A questionnaire was developed for use in a telephone survey. Based on the results of the survey of companies that add value to remotely sensed data, conversations with the principal investigators in charge of each EOS sensor, a study of past commercial satellite data ventures, and reading from the commercial remote sensing industry literature, three recommendations were developed: develop a strategic plan for commercialization of EOS data, define a procedure for commercial users within the EOS data stream, and develop an Earth Observations Commercial Applications Program-like demonstration program within NASA using EOS simulated data.

  13. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    For the past 5 years, the MY NASA DATA (MND) project at NASA Langley has developed and adapted tools and materials aimed at enabling student access to real NASA Earth science satellite data. These include web visualization tools including Google Earth capabilities, but also GPS and graphing calculator exercises, Excel spreadsheet analyses, and more. The project team, NASA scientists, and over 80 classroom science teachers from around the country, have created over 85 lesson plans and science fair project ideas that demonstrate NASA satellite data use in the classroom. With over 150 Earth science parameters to choose from, the MND Live Access Server enables scientific inquiry on numerous interconnected Earth and environmental science topics about the Earth system. Teachers involved in the project report a number of benefits, including networking with other teachers nationwide who emphasize data collection and analysis in the classroom, as well as learning about other NASA resources and programs for educators. They also indicate that the MND website enhances the inquiry process and facilitates the formation of testable questions by students (a task that is typically difficult for students to do). MND makes science come alive for students because it allows them to develop their own questions using the same data scientists use. MND also provides educators with a rich venue for science practice skills, which are often overlooked in traditional curricula as teachers concentrate on state and national standards. A teacher in a disadvantaged school reports that her students are not exposed to many educational experiences outside the classroom. MND allows inner city students to be a part of NASA directly. They are able to use the same information that scientists are using and this gives them inspiration. In all classrooms, the MND microsets move students out of their local area to explore global data and then zoom back into their homes realizing that they are a part of the

  14. Engaging and Empowering the National Park Service to apply Earth Observations to Management Decisions

    NASA Astrophysics Data System (ADS)

    Clayton, A.; Ross, K. W.; Crepps, G.; Childs-Gleason, L. M.; Ruiz, M. L.; Rogers, L.; Allsbrook, K. N.

    2017-12-01

    Since 2015, the NASA DEVELOP National Program has partnered with the National Park Service (NPS) engaging more than 120 program participants, working on over 22 projects across approximately 27 unique park units. These projects examined a variety of cultural and environmental concerns facing the NPS including landscape disturbance, invasive species mapping, archaeological site preservation, and water resources monitoring. DEVELOP, part of NASA's Applied Sciences' Capacity Building program, conducts 10-week feasibility projects which demonstrate the utility of NASA's Earth observations as an additional tool for decision-making processes. This presentation will highlight several of these projects and discuss the progress of capacity building working with individual, regional, and institutional elements within the National Park Service.

  15. The Nasa earth resources spectral information system: A data compilation, first supplement

    NASA Technical Reports Server (NTRS)

    Leeman, V.

    1972-01-01

    The NASA Earth Resources Spectral Information System and the information contained therein are described. It is intended to be used as a supplement to the NASA Earth Resources Spectral Information System: A Data Compilation, N72-28366. This supplement includes approximately 500 rock and mineral, 100 soil, and 30 vegetation bidirectional and directional reflectance, transmittance, emittance, and degree-of-polarization curves in the optical region from 0.2 to 22.0 microns. The data have been categorized by subject and each curve plotted on a single graph. For some rocks and minerals, all curves of the same type, differing only in particle size, have been plotted on one grid as a composite plot. Each graph, composite or single, is fully titled to indicate curve source and is indexed by subject to facilitate user retrieval.

  16. NASA's Solar Observing Fleet Watch Comet ISON's Journey Around the Sun

    NASA Image and Video Library

    2013-11-22

    Comet ISON makes its appearance into the higher-resolution HI-1 camera on the STEREO-A spacecraft. The dark "clouds" coming from the right are density enhancements in the solar wind, causing all the ripples in comet Encke's tail. These kinds of solar wind interactions give us valuable information about solar wind conditions near the sun. Note: the STEREO-A spacecraft is currently located on the other side of the Sun, so it sees a totally different geometry to what we see from Earth. Credit: Karl Battams/NASA/STEREO/CIOC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. New Earth-Observing Instrument Installed on the International Space Station

    NASA Image and Video Library

    2017-12-08

    In January 2013, a new Earth-observing instrument was installed on the International Space Station (ISS). ISERV Pathfinder consists of a commercial camera, a telescope, and a pointing system, all positioned to look through the Earth-facing window of ISS’s Destiny module. ISERV Pathfinder is intended as an engineering exercise, with the long-term goal of developing a system for providing imagery to developing nations as they monitor natural disasters and environmental concerns. The image above is the “first light” from the new ISERV camera system, taken at 1:44 p.m. local time on February 16, 2013. It shows the Rio San Pablo as it empties into the Golfo de Montijo in Veraguas, Panama. It is an ecological transition zone, changing from agriculture and pastures to mangrove forests, swamps, and estuary systems. The area has been designated a protected area by the National Environmental Authority (ANAM) of Panama and is listed as a “wetland of international importance” under the Ramsar Convention. (Note that the image is rotated so that north is to the upper right.) “ISERV’s full potential is yet to be seen, but we hope it will really make a difference in people’s lives,” said principal investigator Burgess Howell of NASA’s Marshall Space Flight Center. “For example, if an earthen dam gives way in Bhutan, we want to be able to show officials where the bridge is out or where a road is washed out or a power substation is inundated. This kind of information is critical to focus and speed rescue efforts.” The instrument will be controlled from NASA Marshall in Huntsville, Alabama, in collaboration with researchers at hubs in Central America, East Africa, and the Hindu Kush–Himalaya region. They will rely on positioning software to know where the space station is at each moment and to calculate the next chance to view a particular area on the ground. If there's a good viewing opportunity, the SERVIR team will instruct the camera to take high

  18. Observing the 2010 Eyjafjallajökull, Iceland, Eruptions with NASA's Earth Observing-1 Spacecraft - Improving Data Flow In a Volcanic Crisis Through Use of Autonomy

    NASA Astrophysics Data System (ADS)

    Chien, S.; Davies, A. G.; Doubleday, J.; Tran, D. Q.; Gudmundsson, M. T.; Jónsdóttir, I.; Hoskuldsson, A.; Thordarson, T.; Jakobsdottir, S.; Wright, R.

    2010-12-01

    Eyjafjallajökull volcano, Iceland, erupted from 20 March to 12 April 2010 (a flank eruption) and again from 14 April to 23 May 2010. The latter eruption heavily impacted air travel across much of northern Europe, and highlighted the need to monitor and quickly react to new eruptions. The NASA Earth Observing 1 spacecraft (EO-1), which is managed by the NASA Goddard Space Flight Center, obtained over 50 observation pairs with the Hyperion hyperspectral imager and ALI (Advanced Land Imager) multispectral camera. EO-1 is the remote-sensing asset of a globe-spanning Volcano Sensor Web [1], where low spatial resolution data (e.g., MODIS) or alerts of ongoing or possible volcanic activity are used to trigger requests for high resolution EO-1 data. Advanced resource management software, developed in part for flight onboard EO-1 as part of the Autonomous Sciencecraft [2, 3] is now used to task EO-1. This system allowed rapid re-tasking of EO-1 to obtain both day and night data at high temporal resolution (on average every 2 days), unusual for such high spatial resolution imagers (Hyperion and ALI at 30 m/pixel, with an ALI panchromatic band at 10 m/pixel). About 50% of the data were impacted by cloud. Advances in data handling and communications during the last two years means that Hyperion and ALI data are typically on the ground and ready for analysis within a few hours of data acquisition. Automatic data processing systems at the NASA’s Jet Propulsion Laboratory process Hyperion data to (1) correct for atmospheric adsorption; (2) remove the sunlight component in daytime data; (3) identify hot pixels; (4) fit unsaturated data to determine temperature and area of sub-pixel thermal sources; (5) calculate total thermal emission and, from this, an effusion rate; (6) generate geo-located data products. The entire process is autonomous. Data products, as well as images generated, were sent to volcanologists in the field to aid in eruption assessment. The JPL group is now

  19. Lessons Learned While Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems

    NASA Technical Reports Server (NTRS)

    Pilone, Dan; Mclaughlin, Brett; Plofchan, Peter

    2017-01-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products. Reviewed and approved by Chris Lynnes.

  20. Earth Observations

    NASA Image and Video Library

    2014-11-18

    ISS042E006751 (11/08/2014) --- Earth observation taken from the International Space Station of the coastline of the United Arab Emirates. The large wheel along the coast center left is "Jumeirah" Palm Island, with a conference center, hotels, recreation areas and a large marine zoo.

  1. Earth observations taken during the STS-71 mission

    NASA Image and Video Library

    1995-07-06

    STS071-705-055 (27 June-7 July 1995) --- This vertical view over the central Andes Mountains was photographed from the Earth-orbiting space shuttle Atlantis during the ten-day STS-71 mission. It is one of many still visuals shown by the returning crew during its post-flight press briefing on July 18, 1995. Views of Earth from orbit often make landscapes seem flat, but this view taken with the Sun near the horizon and with a 250mm lens able to pick up detail reveals the conical peaks of numerous volcanoes. The dusting of snow makes the view more vivid as the peaks cast black shadows. The snow is a few days old in this view since several roads can be seen crossing dry lake beds (smooth white areas between mountains, top right), indicating that vehicles have crushed and melted the thin snow. According to NASA scientists observing the STS-71 photography, some volcanoes are not yet mapped. They believe that most of the snow-covered peaks reach more than 16,000 feet in altitude.

  2. MFE/Magnolia - A joint CNES/NASA mission for the earth magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Runavot, Josette; Ousley, Gilbert W.

    1988-01-01

    The joint phase B study in the CNES/NASA MFE/Magnolia mission to study the earth's magnetic field are reported. The scientific objectives are summarized and the respective responsibilities of NASA and CNES are outlined. The MFE/Magnolia structure and power systems, mass and power budgets, attitude control system, instrument platform and boom, tape recorders, rf system, propellant system, and scientific instruments are described.

  3. Validation of Radiometric Standards for the Laboratory Calibration of Reflected-Solar Earth Observing Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.

    2007-01-01

    Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.

  4. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  5. STS-61A earth observations

    NASA Image and Video Library

    1985-11-02

    61A-52-049 (30 Oct-6 Nov 1985) --- A 70mm image of the Strait of Dover area showing southeast England as photographed from the Earth-orbiting Space Shuttle Challenger by the astronaut crew members of the STS-61A mission. Center point coordinates in the handheld Hasselblad scene are 45.5 degrees north latitude and 0.5 degrees east longitude. Five NASA astronauts were joined by three European scientists for the week-long space flight, marking the largest roster on any Shuttle mission to date.

  6. MY NASA DATA: Making Earth Science Data Accessible to the K-12 Community

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-12-01

    In 2004, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project began. The goal of this project is to enable K-12 and citizen science communities to make use of the large volume of Earth System Science data that NASA has collected and archived. One major outcome is to allow students to select a problem of real-life importance, and to explore it using high quality data sources without spending months looking for and then learning how to use a dataset. The key element of the MY NASA DATA project is the implementation of a Live Access Server (LAS). The LAS is an open source software tool, developed by NOAA, that provides access to a variety of data sources through a single, fairly simple, point- and- click interface. This tool truly enables use of the available data - more than 100 parameters are offered so far - in an inquiry-based educational setting. It readily gives students the opportunity to browse images for times and places they define, and also provides direct access to the underlying data values - a key feature of this educational effort. The team quickly discovered, however, that even a simple and fairly intuitive tool is not enough to make most teachers comfortable with data exploration. User feedback has led us to create a friendly LAS Introduction page, which uses the analogy of a restaurant to explain to our audience the basic concept of an LAS. In addition, we have created a "Time Coverage at a Glance" chart to show what data are available when. This keeps our audience from being too confused by the patchwork of data availability caused by the start and end of individual missions. Finally, we have found it necessary to develop a substantial amount of age appropriate documentation, including topical pages and a science glossary, to help our audience understand the parameters they are exploring and how these parameters fit into the larger picture of Earth System Science. MY NASA DATA

  7. Earth Observation Services (Oil Spill Mapping)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An EOCAP project led Research Planning, Inc. to the development of advanced techniques for "environmental sensitivity" oil spill mapping. The new method incorporates satellite remote sensing and GIS technologies and was utilized to assess the damage potential of the Gulf war oil spill. EOCAP provides government co-funding to encourage private investment in, and to broaden the, use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  8. Near-Earth Asteroid Physical Observations: 1993-1995

    NASA Astrophysics Data System (ADS)

    Skiff, B. A.; Buie, M. W.; Bowell, E.

    1996-09-01

    In September 1993, we initiated a regular program of photometric observations of Near-Earth objects. Since that time we have been allocated 5-7 nights per month at the 42'' Hall telescope at Anderson Mesa. There are three goals of our observing program for each asteroid: (1) to obtain an accurate rotation period and characterization of the lightcurve, (2) to obtain the surface color, and (3) to measure the photometric parameters, H and G. All of the lightcurve observations are made in Kron-Cousins R and we always obtain a V-R color. Limited ECAS colors are also obtained when the objects are bright enough. We have secured periods for 9 asteroids, 1864 Daedalus, 1866 Sisyphus, 3200 Phaethon, 4954 Eric, 5693 (1993 EA), 5836 (1993 MF), 6489 (1991 JX), 1993 QP, and 1993 WD. Some of these periods are a confimation of an earlier result but most are new. We obtained colors for all these objects as well as four additional asteroids, 5407 (1992 AX), 1993 UC, 1993 VW, and 1994 LW. We have additional (as yet unreduced) observations of 2062 Aten, 2212 Hephaistos, 3752 Camillo, 5143 Heracles, 5863 (1983 RB), 6053 (1993 BW3), 7025 (1993 QA), 7092 (1992 LC), 1989 VA, 1992 TC, 1994 RC, and 1995 YA3. The fastest rotation period we find is 2.402 hours for 1866 Sisyphus and the slowest is 93QP at ~ 24 hours. The colors for these objects range from V-R=0.34 for 3200 Phaethon to V-R=0.49 for 1866 Sisyphus and 4954 Eric. Most colors fall near V-R=0.43. These observations should help to provide a more complete understanding of the surface properties and rotational states of the Near-Earth asteroids. This work was supported by NASA Grant NAGW-1470.

  9. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  10. Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne

    2016-01-01

    Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: (1) Data bits with no corruption, (2) Discoverability and access, (3) Readability, (4) Understandability, (5) Usability' and (6). Reproducibility of results. NASAs Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are published in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing product information pages.

  11. Capacity Building for the Access and Application of NASA Earth Science Data

    NASA Astrophysics Data System (ADS)

    Blevins, B.; Prados, A. I.; Hook, E.

    2016-12-01

    Since 2008, NASA's Applied Remote Sensing Training (ARSET) program has built capacity in applied remote sensing by building awareness, and enabling access and use of NASA Earth science data. To reach decision and policy makers from all sectors, ARSET hosts hands-on workshops and online webinars. With over 70 trainings, reaching more than 6,000 people from 130 countries and 1,600 organizations, ARSET has ample experience with assessing and meeting end-user needs. To meet the spectrum of needs and levels of attendee expertise, ARSET holds trainings for both the novice and experienced end-user. Trainings employ exercises, assignments, and live demonstrations of data access tools to reinforce remote sensing concepts and to facilitate data use and analysis techniques. This program is in a unique position to collect important feedback from thousands of participants each year through formal surveys and informal methods on NASA tools, portals, data formats, and the applications of Earth science data for end-user decision making activities. This information is shared with NASA data centers and program managers to help inform data portal development and to help prioritize the production of new satellite derived data products. This presentation will discuss the challenges that arise in capacity building trainings, the integration of community feedback into the training development cycle, and lessons learned throughout the process.

  12. NASA Earth Resources Survey Symposium. Volume 2-A: Special session presentations. Plenary summaries

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Practical application of earth resources survey data is considered. The utilization and results of data from NASA programs involving LANDSAT, the Skylab Earth Resources Experiment Package, and aircraft, as well as other data acquisition programs are included. User services and requirements and applications in land use, agriculture, coastal zone management, and geology are among the topics covered. For Vol. 1A, see N76-17469.

  13. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Lockett, Tiffany

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.

  14. NASA Earth Resources Survey Symposium. Volume 1-C: Land use, marine resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles are presented on the utilization of remote sensing data from NASA programs involving LANDSAT, the Skylab Earth resources experiment package, and aircraft, as well as from other data acquisition programs. Emphasis is placed on land use and marine resources.

  15. Earth observation taken by the Expedition 46 crew

    NASA Image and Video Library

    2016-01-20

    ISS046e015697 (01/20/2016) --- NASA astronaut Scott Kelly took this majestic image of the Earth at night highlighting the green and red hues of an Aurora. He tweeted this message along with the image: “The dance of #aurora. #YearInSpace"

  16. Siberian Earth System Science Cluster - A web-based Geoportal to provide user-friendly Earth Observation Products for supporting NEESPI scientists

    NASA Astrophysics Data System (ADS)

    Eberle, J.; Gerlach, R.; Hese, S.; Schmullius, C.

    2012-04-01

    To provide earth observation products in the area of Siberia, the Siberian Earth System Science Cluster (SIB-ESS-C) was established as a spatial data infrastructure at the University of Jena (Germany), Department for Earth Observation. This spatial data infrastructure implements standards published by the Open Geospatial Consortium (OGC) and the International Organizsation for Standardization (ISO) for data discovery, data access, data processing and data analysis. The objective of SIB-ESS-C is to faciliate environmental research and Earth system science in Siberia. The region for this project covers the entire Asian part of the Russian Federation approximately between 58°E - 170°W and 48°N - 80°N. To provide discovery, access and analysis services a webportal was published for searching and visualisation of available data. This webportal is based on current web technologies like AJAX, Drupal Content Management System as backend software and a user-friendly surface with Drag-n-Drop and further mouse events. To have a wide range of regular updated earth observation products, some products from sensor MODIS at the satellites Aqua and Terra were processed. A direct connection to NASA archive servers makes it possible to download MODIS Level 3 and 4 products and integrate it in the SIB-ESS-C infrastructure. These data can be downloaded in a file format called Hierarchical Data Format (HDF). For visualisation and further analysis, this data is reprojected, converted to GeoTIFF and global products clipped to the project area. All these steps are implemented as an automatic process chain. If new MODIS data is available within the infrastructure this process chain is executed. With the link to a MODIS catalogue system, the system gets new data daily. With the implemented analysis processes, timeseries data can be analysed, for example to plot a trend or different time series against one another. Scientists working in this area and working with MODIS data can make use

  17. Earth observing system. Data and information system. Volume 2A: Report of the EOS Data Panel

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this report is to provide NASA with a rationale and recommendations for planning, implementing, and operating an Earth Observing System data and information system that can evolve to meet the Earth Observing System's needs in the 1990s. The Earth Observing System (Eos), defined by the Eos Science and Mission Requirements Working Group, consists of a suite of instruments in low Earth orbit acquiring measurements of the Earth's atmosphere, surface, and interior; an information system to support scientific research; and a vigorous program of scientific research, stressing study of global-scale processes that shape and influence the Earth as a system. The Eos data and information system is conceived as a complete research information system that would transcend the traditional mission data system, and include additional capabilties such as maintaining long-term, time-series data bases and providing access by Eos researchers to relevant non-Eos data. The Working Group recommends that the Eos data and information system be initiated now, with existing data, and that the system evolve into one that can meet the intensive research and data needs that will exist when Eos spacecraft are returning data in the 1990s.

  18. USGEO Common Framework For Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  19. UrtheCast Second-Generation Earth Observation Sensors

    NASA Astrophysics Data System (ADS)

    Beckett, K.

    2015-04-01

    UrtheCast's Second-Generation state-of-the-art Earth Observation (EO) remote sensing platform will be hosted on the NASA segment of International Space Station (ISS). This platform comprises a high-resolution dual-mode (pushbroom and video) optical camera and a dual-band (X and L) Synthetic Aperture RADAR (SAR) instrument. These new sensors will complement the firstgeneration medium-resolution pushbroom and high-definition video cameras that were mounted on the Russian segment of the ISS in early 2014. The new cameras are expected to be launched to the ISS in late 2017 via the Space Exploration Technologies Corporation Dragon spacecraft. The Canadarm will then be used to install the remote sensing platform onto a CBM (Common Berthing Mechanism) hatch on Node 3, allowing the sensor electronics to be accessible from the inside of the station, thus limiting their exposure to the space environment and allowing for future capability upgrades. The UrtheCast second-generation system will be able to take full advantage of the strengths that each of the individual sensors offers, such that the data exploitation capabilities of the combined sensors is significantly greater than from either sensor alone. This represents a truly novel platform that will lead to significant advances in many other Earth Observation applications such as environmental monitoring, energy and natural resources management, and humanitarian response, with data availability anticipated to begin after commissioning is completed in early 2018.

  20. NASA Earth Resources Survey Symposium. Volume 3: Summary reports

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This document contains the proceedings and summaries of the earth resources survey symposium, sponsored by the NASA Headquarters Office of Applications and held in Houston, Texas, June 9 to 12, 1975. Topics include the use of remote sensing techniques in agriculture, in geology, for environmental monitoring, for land use planning, and for management of water resources and coastal zones. Details are provided about services available to various users. Significant applications, conclusions, and future needs are also discussed.

  1. NASA Newest SeaWinds Instrument Breezes Into Operation

    NASA Image and Video Library

    2003-02-24

    One of NASA newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan Advanced Earth Observing Satellite Adeos 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet.

  2. NASA's Aqua Satellite Celebrates 10th Annivesary

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua Satellite Celebrates 10th Anniversary The Aqua satellite mission has proved to be a major component of the Earth Observing System (EOS) for its ability to gather unprecedented amounts of information on Earth’s water cycle, including measurements on water vapor, clouds, precipitation, ice, and snow. Aqua data has helped improve weather prediction, detection of forest fires, volcanic ash, and sandstorms. In addition, Aqua data have been used to detect and monitor such greenhouse gases as carbon dioxide, water vapor, and methane, and to examine the energy imbalance at the top of the Earth's atmosphere and the various components of it. With these uses of Aqua data, scientists have been able to better understand our Earth over the course of the past ten years. Aqua is a major international Earth Science satellite mission centered at NASA. Launched on May 4, 2002, the satellite has six different Earth-observing instruments on board and is named for the large amount of information being obtained about water in the Earth system from its stream of approximately 89 Gigabytes of data a day. The water variables being measured include almost all elements of the water cycle and involve water in its liquid, solid, and vapor forms. Additional variables being measured include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures. For more information about NASA's Aqua satellite, visit: aqua.nasa.gov ------------ Caption: Artist rendition of the NASA's Aqua satellite, which carries the MODIS and AIRS instruments. Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on

  3. Earth Observation

    NASA Image and Video Library

    2014-09-01

    Earth Observation taken during a night pass by the Expedition 40 crew aboard the International Space Station (ISS). Folder lists this as: New Zealand Aurora night pass. Docked Soyuz and Progress spacecraft are visible. On crewmember's Flickr page - The Moon, about to dive into a glowing ocean of green᥿9.

  4. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    NASA Astrophysics Data System (ADS)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  5. Preliminary Results from NASA/GSFC Ka-Band High Rate Demonstration for Near-Earth Communications

    NASA Technical Reports Server (NTRS)

    Wong, Yen; Gioannini, Bryan; Bundick, Steven N.; Miller, David T.

    2004-01-01

    In early 2000, the National Aeronautics and Space Administration (NASA) commenced the Ka-Band Transition Project (KaTP) as another step towards satisfying wideband communication requirements of the space research and earth exploration-satellite services. The KaTP team upgraded the ground segment portion of NASA's Space Network (SN) in order to enable high data rate space science and earth science services communications. The SN ground segment is located at the White Sands Complex (WSC) in New Mexico. NASA conducted the SN ground segment upgrades in conjunction with space segment upgrades implemented via the Tracking and Data Relay Satellite (TDRS)-HIJ project. The three new geostationary data relay satellites developed under the TDRS-HIJ project support the use of the inter-satellite service (ISS) allocation in the 25.25-27.5 GHz band (the 26 GHz band) to receive high speed data from low earth-orbiting customer spacecraft. The TDRS H spacecraft (designated TDRS-8) is currently operational at a 171 degrees west longitude. TDRS I and J spacecraft on-orbit testing has been completed. These spacecraft support 650 MHz-wide Ka-band telemetry links that are referred to as return links. The 650 MHz-wide Ka-band telemetry links have the capability to support data rates up to at least 1.2 Gbps. Therefore, the TDRS-HIJ spacecraft will significantly enhance the existing data rate elements of the NASA Space Network that operate at S-band and Ku-band.

  6. Application of NASA management approach to solve complex problems on earth

    NASA Technical Reports Server (NTRS)

    Potate, J. S.

    1972-01-01

    The application of NASA management approach to solving complex problems on earth is discussed. The management of the Apollo program is presented as an example of effective management techniques. Four key elements of effective management are analyzed. Photographs of the Cape Kennedy launch sites and supporting equipment are included to support the discussions.

  7. STS-55 Earth observation shows a sunset over South America

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows a spectacular sunset view over South America and the cleanest atmosphere since before the volcanic eruptions of 1991, according to NASA scientists studying the STS-55 photography. A dark cloud layer is evident at an altitude of 7 to 9 kilometers. Five kilometers higher, a pink layer of sulfuric acid droplets and ammonium sulfate particles begins at the tropopause and extends upward into the stratosphere to 19 kilometers. Above that, blue scattering by the atmosphere diminishes until, at an altitude of 60 kilometers, the blackness of space is predominant.

  8. Earth Radiation Budget Research at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  9. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  10. U.S. Earth Observation Programs May Still Be at Risk

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2005-10-01

    A recent interim report from a committee of the National Research Council (NRC) of the U.S. National Academies warned that the U.S. system of environmental satellites was ``at risk of collapse'' (see Eos, 10 May 2005, p. 186). Nearly six months later, despite assurances from NASA that the agency would work to address in its fiscal year (FY) 2007 budget some of the imbalances that have led to mission delays and cancellations, these satellite programs may still be at risk. NASA funding for Earth science has suffered in recent years due to several pressures on the budget: deficit reduction, efforts to restore the space shuttle program, and plans for missions to the Moon and Mars. The NRC report, which was released as a draft in April and in its final form on 8 September, noted that six planned missions with implications for Earth science research were delayed, descoped, or canceled in the proposed FY2006 NASA budget.

  11. NASA's Kepler Mission Discovers First Earth-size Planet in Habitable Zone of Another Star (Reporter Package)

    NASA Image and Video Library

    2014-04-17

    NASA's Kepler mission has discovered the first Earth-size planet orbiting in the habitable zone of a star outside our solar system. The newly discovered planet is called Kepler-186f and is about 10 percent larger than Earth.

  12. Earth observation taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-04-01

    ISS043E080914 (04/01/2015) --- This Earth view from the International Space Station Apr. 1, 2015 (bottom left corner) is Soyuz TMA-15M which carried NASA astronaut Terry Virts, ESA (European Space Agency) astronaut Samantha Cristoforetti and Russian cosmonaut Anton Shkaplerov to the ISS back in No. 2014 and will remain until May 2015. The further one (top left corner) is Progress 57 a Russian supply spaceship which launched and docked in October last year and will undock at the end of April to return to Earth.

  13. Chandra Looks Back At The Earth

    NASA Astrophysics Data System (ADS)

    2005-12-01

    In an unusual observation, a team of scientists has scanned the northern polar region of Earth with NASA's Chandra X-ray Observatory. The results show that the aurora borealis, or "northern lights," also dance in X-ray light, creating changing bright arcs of X-ray energy above the Earth's surface. While other satellite observations had previously detected high-energy X-rays from the Earth auroras, the latest Chandra observations reveal low-energy X-rays generated during auroral activity for the first time. The researchers, led by Dr. Ron Elsner of NASA's Marshall Space Flight Center in Huntsville, Ala., used Chandra to observe the Earth 10 times over a four-month period in 2004. The images were created from approximately 20-minute scans during which Chandra was aimed at a fixed point in the sky and the Earth's motion carried the auroral regions through Chandra's field of view. From the ground, the aurora are well known to change dramatically over time and this is the case in X-ray light as well. The X-rays in this sample of the Chandra observations, which have been superimposed on a simulated image of the Earth, are seen here at four different epochs. Illlustration of Earth's Magnetosphere and Auroras Illlustration of Earth's Magnetosphere and Auroras Auroras are produced by solar storms that eject clouds of energetic charged particles. These particles are deflected when they encounter the Earth�s magnetic field, but in the process large electric voltages are created. Electrons trapped in the Earth�s magnetic field are accelerated by these voltages and spiral along the magnetic field into the polar regions. There they collide with atoms high in the atmosphere and emit X-rays. Chandra has also observed dramatic auroral activity on Jupiter. Dr. Anil Bhardwaj of Vikram Sarabhai Space Center in Trivandrum, India, is the lead author on a paper describing these results in the Journal of Atmospheric and Solar-Terrestrial Physics. Dr. Bhardwaj was a co

  14. International Observe the Moon Night: A Worldwide Public Observing Event that Annually Engages Scientists, Educators, and Citizen Enthusiasts in NASA Science

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Jones, A. P.; Bleacher, L.; Wasser, M. L.; Day, B. H.; Shaner, A. J.; Bakerman, M. N.; Joseph, E.

    2017-12-01

    International Observe the Moon Night (InOMN) is an annual worldwide event, held in the fall, that celebrates lunar and planetary science and exploration. InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter (LRO) in collaboration with NASA's Solar System Exploration Research Virtual Institute (SSERVI), the NASA's Heliophysics Education Consortium, CosmoQuest, Night Sky Network, and Science Festival Alliance. Other key partners include the NASA Museum Alliance, Night Sky Network, and NASA Solar System Ambassadors. In 2017, InOMN will bring together thousands of people across the globe to observe and learn about the Moon and its connection to planetary science. We are partnering with the NASA Science Mission Directorate total solar eclipse team to highlight InOMN as an opportunity to harness and sustain the interest and momentum in space science and observation following the August 21st eclipse. This is part of a new partnership with the Sun-Earth Day team, through the Heliophysics Education Consortium, to better connect the two largest NASA-sponsored public engagement events, increase participation in both events, and share best practices in implementation and evaluation between the teams. Over 3,800 InOMN events have been registered between 2010 and 2016, engaging over 550,000 visitors worldwide. Most InOMN events are held in the United States, with strong representation from many other countries. InOMN events are evaluated to determine the value of the events and to allow us to improve the experience for event hosts and visitors. Our results show that InOMN events are hosted by scientists, educators, and citizen enthusiasts around the world who leverage InOMN to bring communities together, get visitors excited and learn about the Moon - and beyond, and share resources to extend engagement in lunar and planetary science and observation. Through InOMN, we annually provide resources such as event-specific Moon maps, presentations, advertising materials, and

  15. Utilizing NASA Earth Observations to Assess Landslide Characteristics and Devlelop Susceptibility and Exposure Maps in Malawi

    NASA Astrophysics Data System (ADS)

    Klug, M.; Cissell, J.; Grossman, M.

    2017-12-01

    Malawi has become increasingly prone to landslides in the past few decades. This can be attributed to the terrain, types of soil and vegetation, increased human interference, and heavy flooding after long periods of drought. In addition to the floods and droughts, landslides cause extra stress to farmlands, thus exacerbating the current food security crisis in the country. It can be difficult to pinpoint just how many people are affected by landslides in Malawi because landslides often occur in rural areas or are grouped with other disasters, such as floods or earthquakes. This project created a Landslide Susceptibility Map to assess landslide-prone areas in Malawi using variables such as slope, distance to roads, distance to streams, soil type, and precipitation. These variables were derived using imagery from Landsat 8 Operational Land Imager (OLI), Shuttle Radar Topography Mission Version 3 (SRTM-v3), Global Precipitation Measurement (GPM), and Tropical Rainfall Measuring Mission (TRMM) satellites. Furthermore, this project created a Landslide Exposure Map to estimate how much of the local population lives in susceptible areas by intersecting population data with the Landslide Susceptibility Map. Additionally, an assessment of GPM and TRMM precipitation measurements was generated to better understand the reliability of both measurements for landslide monitoring. Finally, this project updated NASA SERVIR's Global Landslide Catalog (GLC) for Malawi by using WorldView data from Google Earth and Landsat 8 OLI. These end products were used by NASA SERVIR and the Regional Centre for Mapping of Resources for Development (RCMRD) for aiding in disaster management throughout Malawi.

  16. Earth Observation Services (Image Processing Software)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  17. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  18. Plans for living on a restless planet sets NASA's solid Earth agenda

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Baker, V. R.; Bloxham, J.; Booth, J.; Donnellan, A.; Elachi, C.; Evans, D.; Rignot, E.; Burbank, D.; Chao, B. F.; hide

    2003-01-01

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address these challenges? A new report, living on a restless planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid earth science over the next 5 years, according to this report, is a satellite dedicated to interferometric synthetic aperture radar(inSAR).

  19. Deploying the ODISEES Ontology-guided Search in the NASA Earth Exchange (NEX)

    NASA Astrophysics Data System (ADS)

    Huffer, E.; Gleason, J. L.; Cotnoir, M.; Spaulding, R.; Deardorff, G.

    2016-12-01

    Robust, semantically rich metadata can support data discovery and access, and facilitate machine-to-machine transactions with services such as data subsetting, regridding, and reformatting. Despite this, for users not already familiar with the data in a given archive, most metadata is insufficient to help them find appropriate data for their projects. With this in mind, the Ontology-driven Interactive Search Environment (ODISEES) Data Discovery Portal was developed to enable users to find and download data variables that satisfy precise, parameter-level criteria, even when they know little or nothing about the naming conventions employed by data providers, or where suitable data might be archived. ODISEES relies on an Earth science ontology and metadata repository that provide an ontological framework for describing NASA data holdings with enough detail and fidelity to enable researchers to find, compare and evaluate individual data variables. Users can search for data by indicating the specific parameters desired, and comparing the results in a table that lets them quickly determine which data is most suitable. ODISEES and OLYMPUS, a tool for generating the semantically enhanced metadata used by ODISEES, are being developed in collaboration with the NASA Earth Exchange (NEX) project at the NASA Ames Research Center to prototype a robust data discovery and access service that could be made available to NEX users. NEX is a collaborative platform that provides researchers with access to TB to PB-scale datasets and analysis tools to operate on those data. By integrating ODISEES into the NEX Web Portal we hope to enable NEX users to locate datasets relevant to their research and download them directly into the NAS environment, where they can run applications using those datasets on the NAS supercomputers. This poster will describe the prototype integration of ODISEES into the NEX portal development environment, the mechanism implemented to use NASA APIs to retrieve

  20. Enhancing Earth Observation Capacity in the Himalayan Region

    NASA Astrophysics Data System (ADS)

    Shrestha, B. R.

    2012-12-01

    scientists. These courses include relevant theoretical lectures on the specific themes and extensive hands-on exercises using remote sensing and GIS tools and techniques. A one-day policy workshop has been designed to raise awareness among managers and decision-makers. Within the framework of SERVIR-Himalaya, a specialized training and awareness course has been initiated targeting to the youth. This course focuses on utilizing earth observation to sensitize youth and help them better understand climate change in the Himalayas. Furthermore, ICIMOD is strengthening existing partnerships and developing new partnerships to keep pace with rapidly changing technological advancements in order to customize the capacity building needs for the region. ICIMOD is promoting the Himalayan University consortium to extend its capacity building efforts for a longer-term continuity and sustainability. Through the SERVIR-Himalaya initiative, it is aiming to build new capacity building components such as - NASA DEVELOP to engage student research, MYCOE programs for youth, and small grants programs for young researchers and professionals. As a regional center, ICIMOD wants to continue to build regional capacity with the ultimate goal to leverage geospatial information services for the societal benefits to the mountain communities and relevant stakeholders.

  1. NASA Team Looks to Ancient Earth First to Study Hazy Exoplanets

    NASA Image and Video Library

    2017-12-08

    “We like to say that Archean Earth is the most alien planet we have geochemical data for,” For astronomers trying to understand which distant planets might have habitable conditions, the role of atmospheric haze has been hazy. To help sort it out, a team of researchers has been looking to Earth – specifically Earth during the Archean era, an epic 1-1/2-billion-year period early in our planet’s history. Read more: go.nasa.gov/2kTBhPU Caption: When haze built up in the atmosphere of Archean Earth, the young planet might have looked like this artist's interpretation - a pale orange dot. A team led by Goddard scientists thinks the haze was self-limiting, cooling the surface by about 36 degrees Fahrenheit (20 Kelvins) – not enough to cause runaway glaciation. The team’s modeling suggests that atmospheric haze might be helpful for identifying earthlike exoplanets that could be habitable. Credits: NASA’s Goddard Space Flight Center/Francis Reddy

  2. A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville

    2007-01-01

    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.

  3. NASA Tech Helps Better Understand Our Home Planet

    NASA Image and Video Library

    2018-04-20

    NASA’s Earth observations are critical for understanding our home planet and how it is changing. For Earth Day NASA is spotlighting some of the agency’s work with the latest technologies that have the potential to transform how we see our Blue Marble. Join us as we speak with NASA Ames scientist Ved Chirayath, who has developed cameras that can image marine environments below the ocean’s surface; Shayna Skolnik, founder and CEO of Navteca, a company that’s working to bring NASA Earth data to life through virtual reality; and Brian Campbell, senior education and outreach specialist for ICESat-2 satellite, which is set to launch this fall to measure polar ice and other important Earth features.

  4. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  5. Ka-Band Site Characterization of the NASA Near Earth Network in Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Morse, J.; Nessel, J.; Zemba, M.; Tuttle, K.; Caroglanian, A.; Younes, B.; Pedersen, Sten-Chirstian

    2011-01-01

    Critical to NASA s rapid migration toward Ka-Band is the comprehensive characterization of the communication channels at NASA's ground sites to determine the effects of the atmosphere on signal propagation and the network's ability to support various classes of users in different orbits. Accordingly, NASA has initiated a number of studies involving the ground sites of its Near Earth and Deep Space Networks. Recently, NASA concluded a memorandum of agreement (MOA) with the Norwegian Space Centre of the Kingdom of Norway and began a joint site characterization study to determine the atmospheric effects on Ka-Band links at the Svalbard Satellite Station in Norway, which remains a critical component of NASA s Near Earth Communication Network (NEN). System planning and design for Ka-band links at the Svalbard site cannot be optimally achieved unless measured attenuation statistics (e.g. cumulative distribution functions (CDF)) are obtained. In general, the CDF will determine the necessary system margin and overall system availability due to the atmospheric effects. To statistically characterize the attenuation statistics at the Svalbard site, NASA has constructed a ground-based monitoring station consisting of a multi-channel total power radiometer (25.5 - 26.5 GHz) and a weather monitoring station to continuously measure (at 1 second intervals) attenuation and excess noise (brightness temperature). These instruments have been tested in a laboratory environment as well as in an analogous outdoor climate (i.e. winter in Northeast Ohio), and the station was deployed in Svalbard, Norway in May 2011. The measurement campaign is planned to last a minimum of 3 years but not exceeding a maximum of 5 years.

  6. Radiometric Measurement Comparisons Using Transfer Radiometers in Support of the Calibration of NASA's Earth Observing System (EOS) Sensors

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Brown, Steven W.; Yoon, Howard W.; Barnes, Robert A.; Markham, Brian L.; Biggar, Stuart F.; Zalewski, Edward F.; Spyak, Paul R.; Cooper, John W.; hide

    1999-01-01

    EOS satellite instruments operating in the visible through the shortwave infrared wavelength regions (from 0.4 micrometers to 2.5 micrometers) are calibrated prior to flight for radiance response using integrating spheres at a number of instrument builder facilities. The traceability of the radiance produced by these spheres with respect to international standards is the responsibility of the instrument builder, and different calibration techniques are employed by those builders. The National Aeronautics and Space Administration's (NASA's) Earth Observing System (EOS) Project Science Office, realizing the importance of preflight calibration and cross-calibration, has sponsored a number of radiometric measurement comparisons, the main purpose of which is to validate the radiometric scale assigned to the integrating spheres by the instrument builders. This paper describes the radiometric measurement comparisons, the use of stable transfer radiometers to perform the measurements, and the measurement approaches and protocols used to validate integrating sphere radiances. Stable transfer radiometers from the National Institute of Standards and Technology, the University of Arizona Optical Sciences Center Remote Sensing Group, NASA's Goddard Space Flight Center, and the National Research Laboratory of Metrology in Japan, have participated in these comparisons. The approaches used in the comparisons include the measurement of multiple integrating sphere lamp levels, repeat measurements of select lamp levels, the use of the stable radiometers as external sphere monitors, and the rapid reporting of measurement results. Results from several comparisons are presented. The absolute radiometric calibration standard uncertainties required by the EOS satellite instruments are typically in the +/- 3% to +/- 5% range. Preliminary results reported during eleven radiometric measurement comparisons held between February 1995 and May 1998 have shown the radiance of integrating spheres

  7. EPOXI at Earth's Poles: Empirical Test for Observations of an Exoplanet at High Obliquity

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; A'Hearn, M. F.; Deming, D.; Charbonneau, D.; Barry, R. K.; Hewagama, T.; Lisse, C. M.; McFadden, L.; Meadows, V.; Seager, S.; Wellnitz, D.; EPOXI-EPOCh Science Team

    2009-09-01

    Observations of the Earth have been obtained by the EPOXI mission to investigate empirically the visible-to-near infrared spectral distribution and lightcurve variations of the Earth as a model for terrestrial exoplanets. Exoplanetary systems may be at arbitrary inclination to the solar system, and may include planets of arbitrary obliquity. The EPOXI mission has previously observed the Earth from within the ecliptic plane and has now acquired measurements at high northern and southern sub-spacecraft latitude with nearly identical phase angle and range. On 27-28 Mar 2009 UT, the whole disc of the Earth was observed from a sub-spacecraft latitude of 62°N at 87° phase angle (53.5% illumination) and 0.114 AU range. On 27 Sep 2009, Earth will have been observed from a sub-spacecraft latitude of 74°S at 87° phase angle (52.7% illumination) and 0.115 AU range. The Earth was near the spring equinox of each pole as it was observed. The visible-light signal was sampled with 7 filters of approximately 100 nm width at 100 nm spacing over 350-950 nm central wavelength, at 15-minute intervals in 4 selected filters and 1-hour intervals in the remaining 3 filters. Near-IR spectroscopy at 1-4.8 µm was obtained at 2-hour intervals. These polar data, capturing the polar ice caps and high latitude climatic regions, will be compared to similar data previously acquired from over the equator, to investigate distinctions in the ability to discern from the global average the spectroscopic signature of vegetation and biogenic gas species. This work is supported by the NASA Discovery Program.

  8. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  9. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann

    2008-01-01

    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect

  10. All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.; hide

    2010-01-01

    Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.

  11. Earth imaging and scientific observations by SSTI ``Clark'' a NASA technology demonstration spacecraft

    NASA Astrophysics Data System (ADS)

    Hayduk, Robert J.; Scott, Walter S.; Walberg, Gerald D.; Butts, James J.; Starr, Richard D.

    1997-01-01

    The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of ``Clark,'' a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-lb. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.

  12. NASA GIBS & Worldview - Lesson Ready Visualizations

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Gunnoe, T.; Wong, M. M.; Schmaltz, J. E.; De Luca, A. P.; King, J.; Roberts, J. T.; Rodriguez, J.; Thompson, C. K.; Alarcon, C.; De Cesare, C.; Pressley, N. N.

    2016-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has operated dozens of remote sensing satellites collecting 14 Petabytes of data that span thousands of science parameters. Within these observations are keys the Earth Scientists have used to unlock many things that we understand about our planet. Also contained within these observations are a myriad of opportunities for learning and education. The trick is making them accessible to educators and students in convenient and simple ways so that effort can be spent on lesson enrichment and not overcoming technical hurdles. The NASA Global Imagery Browse Services (GIBS) system and NASA Worldview website provide a unique view into EOS data through daily full resolution visualizations of hundreds of earth science parameters. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. Accompanying the visualizations are visual aids such as color legends, place names, and orbit tracks. By using these visualizations, educators and students can observe natural phenomena that enrich a scientific education. This presentation will provide an overview of the visualizations available in NASA GIBS and Worldview and how they are accessed. We will also provide real-world examples of how the visualizations have been used in educational settings including planetariums, visitor centers, hack-a-thons, and public organizations.

  13. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  14. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  15. Earth Observations

    NASA Image and Video Library

    2010-07-31

    ISS024-E-010403 (31 July 2010) --- This detailed image ? photographed by an Expedition 24 crew member on the International Space Station (ISS) ? is centered on the NASA Lyndon B. Johnson Space Center (JSC), located in the southeastern Houston, TX metropolitan area. While initially being represented by a number of temporary locations in Houston, the facility was established in 1961 as the Manned Spacecraft Center and renamed in honor of the late U.S. President Johnson (a Texas native) in 1973. JSC serves as the lead NASA center for both astronaut training and mission control of manned spacecraft - such as the ISS and space shuttle - and has done so throughout the history of the U.S. manned space program. The Center also collaborates with other NASA and international partner facilities in a variety of scientific and engineering programs related to human spaceflight and planetary exploration. JSC is located approximately midway between downtown Houston and Galveston, TX, and is bordered by several smaller municipalities that form a mosaic of urban and suburban land use (grey areas with street grids, and commercial/industrial areas characterized by white rooftops). Large tracts of grassy fields and forests in the area (light to dark green respectively) include nature preserves, grazing lands, and flood control areas. Also visible at upper left is Ellington Field. This airport services a variety of NASA aircraft used for astronaut training, scientific, and cargo transport purposes. Clear Lake, an inlet of Galveston Bay, is located to the immediate southeast of JSC. Both Clear Lake and Galveston Bay appear silver-grey due to sunglint, or light reflected back towards the observer on the ISS that gives the water surface a mirror-like appearance. Several boat wakes are visible in Galveston Bay (right) due to disruption of the water surface that reduces the sunglint effect.

  16. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  17. NASA Global Hawk: A Unique Capability for the Pursuit of Earth Science

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2007-01-01

    For more than 2 years, the NASA Dryden Flight Research Center has been preparing for the receipt of two Advanced Concept Technology Demonstration Global Hawk air vehicles from the United States Air Force. NASA Dryden intends to establish a Global Hawk Project Office, which will be responsible for developing the infrastructure required to operate this unmanned aerial system and establishing a trained maintenance and operations team. The first flight of a NASA Global Hawk air vehicle is expected to occur in 2008. The NASA Global Hawk system can be used by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. Initially, the main focus of the research activities is expected to be Earth science related. A combination of the vehicle s range, endurance, altitude, payload power, payload volume, and payload weight capabilities separates the Global Hawk unmanned aerial system from all other platforms available to the science community. This report describes the NASA Global Hawk system and current plans for the NASA air vehicle concept of operations, and provides examples of potential missions with an emphasis on science missions.

  18. Earth Observations taken by the STS-135 Crew

    NASA Image and Video Library

    2011-07-09

    S135-E-006377 (9 July 2011) --- An almost vertical view from the Earth-orbiting space shuttle Atlantis, photographed by one of four STS-135 crewmembers, shows the southernmost part of Italy, referred to as the "boot." The eastern-most part of Sicily made it into the frame at left. The dark triangle in upper left corner is part of the window frame on the shuttle's flight deck. When the photo was taken, the STS-135 astronauts were on the mission's second day of activity in Earth orbit, and the eve of docking day with the International Space Station. Photo credit: NASA

  19. Earth Observations taken by the Expedition 39 Crew

    NASA Image and Video Library

    2014-04-22

    ISS039-E-014807 (22 April 2014) --- As the International Space Station passed over the Bering Sea on Earth Day, one of the Expedition 39 crew members aboard the orbital outpost shot this panoramic scene looking toward Russia. The Kamchatka Peninsula can be seen in the foreground. Sunglint is visible on the left side of the frame. Only two points of view from Earth orbit were better for taking in this scene than that of the crew member with the camera inside, and those belonged to the two spacewalking astronauts -- Flight Engineers Rick Mastracchio and Steve Swanson of NASA.

  20. The Spaceguard Survey: Report of the NASA International Near-Earth-Object Detection Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, David (Editor)

    1992-01-01

    Impacts by Earth-approaching asteroids and comets pose a significant hazard to life and property. Although the annual probability of the Earth being struck by a large asteroid or comet is extremely small, the consequences of such a collision are so catastrophic that it is prudent to assess the nature of the threat and to prepare to deal with it. The first step in any program for the prevention or mitigation of impact catastrophes must involve a comprehensive search for Earth-crossing asteroids and comets and a detailed analysis of their orbits. At the request of the U.S. Congress, NASA has carried out a preliminary study to define a program for dramatically increasing the detection rate of Earth-crossing objects, as documented in this workshop report.

  1. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.

    2004-01-01

    The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.

  2. Most Amazing High Definition Image of Earth - Blue Marble 2012

    NASA Image and Video Library

    2017-12-08

    January 25, 2012 *Updated February 2, 2012: According to Flickr, "The western hemisphere Blue Marble 2012 image has rocketed up to over 3.1 million views making it one of the all time most viewed images on the site after only one week." A 'Blue Marble' image of the Earth taken from the VIIRS instrument aboard NASA's most recently launched Earth-observing satellite - Suomi NPP. This composite image uses a number of swaths of the Earth's surface taken on January 4, 2012. The NPP satellite was renamed 'Suomi NPP' on January 24, 2012 to honor the late Verner E. Suomi of the University of Wisconsin. Suomi NPP is NASA's next Earth-observing research satellite. It is the first of a new generation of satellites that will observe many facets of our changing Earth. Suomi NPP is carrying five instruments on board. The biggest and most important instrument is The Visible/Infrared Imager Radiometer Suite or VIIRS. To read more about NASA's Suomi NPP go to: www.nasa.gov/npp Credit: NASA/NOAA/GSFC/Suomi NPP/VIIRS/Norman Kuring NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Lessons Learned while Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems

    NASA Astrophysics Data System (ADS)

    Pilone, D.

    2016-12-01

    As new, high data rate missions begin collecting data, the NASA's Earth Observing System Data and Information System (EOSDIS) archive is projected to grow roughly 20x to over 300PBs by 2025. To prepare for the dramatic increase in data and enable broad scientific inquiry into larger time series and datasets, NASA has been exploring the impact of applying cloud technologies throughout EOSDIS. In this talk we will provide an overview of NASA's prototyping and lessons learned in applying cloud architectures to: Highly scalable and extensible ingest and archive of EOSDIS data Going "all-in" on cloud based application architectures including "serverless" data processing pipelines and evaluating approaches to vendor-lock in Rethinking data distribution and approaches to analysis in a cloud environment Incorporating and enforcing security controls while minimizing the barrier for research efforts to deploy to NASA compliant, operational environments. NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products.

  4. Satellite Observations of Annihilation of Positrons Produced at the Sun, the Earth, and Center of our Galaxy

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.; Lin, R. P.

    2007-05-01

    Positrons are created in nuclear interactions that produce β +-unstable nuclei and pi+ mesons. Satellites remotely observe positron production when they annihilate with electrons yielding the characteristic line at 511 keV. Radiation detectors such as the germanium diodes on the Ramaty High-Energy Solar Spectrocopic Imager (RHESSI) observe this line from positrons by nuclei activated in the spacecraft by proton interactions during transit through the Earth's radiation belts and from cosmic radiation. This forms an intense background for solar and astrophysical observations. RHESSI and other satellites have observed positron annihilation in over 50 solar flares. These measurements provide information on the temperature, density, and ionization state of solar atmosphere where the positrons annihilate. The measurements suggest that up to a few kg of positrons are produced in these flares. Detectable annihilation-line radiation is also emitted from the Earth's atmosphere in interactions of cosmic rays and solar energetic particles. An extended annihilation-line source has also been detected within about 10 degrees of the center of the Milky Way that is attributed to positrons released in radioactive decays of nuclei with long half-lives produced in supernovae, novae, and other stellar explosions. From 1980 to 1988 NASA's Solar Maximum Mission satellite also detected belts of positrons emitted by nuclear reactors onboard KOSMOS satellites and trapped temporarily in the Earth's magnetic field. This work was supported by NASA Supporting Research & Technology grants.

  5. Lunar-based Earth observation geometrical characteristics research

    NASA Astrophysics Data System (ADS)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  6. NASA's Astro-Venture Engages Exceptional Students in Earth System Science Using Inquiry

    NASA Astrophysics Data System (ADS)

    Oguinn, C.

    2003-12-01

    Astro-Venture is an educational, interactive, multimedia Web environment highlighting NASA careers and astrobiology research in the areas of Astronomy, Geology, Biology and Atmospheric Sciences. Students in grades 5-8 role-play NASA careers, as they search for and design a planet with the necessary characteristics for human habitation. Astro-Venture uses online multimedia activities and off-line inquiry explorations to engage students in guided inquiry aligned with the 5 E inquiry model. This model has proven to be effective with exceptional students. Students are presented with the intellectual confrontation of how to design a planet and star system that would be able to meet their biological survival needs. This provides a purpose for the online and off-line explorations used throughout the site. Students first explore "what" conditions are necessary to support human habitability by engaging in multimedia training modules, which allow them to change astronomical, atmospheric, geological and biological aspects of the Earth and our star system and to view the effects of these changes on Earth. By focusing on Earth, students draw on their prior knowledge, which helps them to connect their new knowledge to their existing schema. Cause and effect relationships of Earth provide a concrete model from which students can observe patterns and generalize abstract results to an imagined planet. From these observations, students draw conclusions about what aspects allowed Earth to remain habitable. Once students have generalized needed conditions of "what" we need for a habitable planet, they conduct further research in off-line, standards-based classroom activities that also follow the inquiry model and help students to understand "why" we need these conditions. These lessons focus on standards-based concepts such as states of matter and the structure and movement of the Earth's interior. These lessons follow the inquiry structure commonly referred to as the five E's as

  7. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data

  8. Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Volz, Stephen

    2013-01-01

    NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.

  9. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  10. NASA's SDO Observes Largest Sunspot of the Solar Cycle

    NASA Image and Video Library

    2017-12-08

    On Oct. 18, 2014, a sunspot rotated over the left side of the sun, and soon grew to be the largest active region seen in the current solar cycle, which began in 2008. Currently, the sunspot is almost 80,000 miles across -- ten Earth's could be laid across its diameter. Sunspots point to relatively cooler areas on the sun with intense and complex magnetic fields poking out through the sun's surface. Such areas can be the source of solar eruptions such as flares or coronal mass ejections. So far, this active region – labeled AR 12192 -- has produced several significant solar flares: an X-class flare on Oct. 19, an M-class flare on Oct. 21, and an X-class flare on Oct. 22, 2014. The largest sunspot on record occurred in 1947 and was almost three times as large as the current one. Active regions are more common at the moment as we are in what's called solar maximum, which is the peak of the sun's activity, occurring approximately every 11 years. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. An Update of NASA Public Health Applications Projects using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    Satellite earth observations present a unique vantage point of the earth s environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  12. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  13. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  14. Public-Private Partnership: Joint recommendations to improve downloads of large Earth observation data

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Murphy, K. J.; Baynes, K.; Lynnes, C.

    2016-12-01

    With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way Earth observation data is processed, analyzed, and visualized. The cloud infrastructure provides the flexibility to scale up to large volumes of data and handle high velocity data streams efficiently. Having freely available Earth observation data collocated on a cloud infrastructure creates opportunities for innovation and value-added data re-use in ways unforeseen by the original data provider. These innovations spur new industries and applications and spawn new scientific pathways that were previously limited due to data volume and computational infrastructure issues. NASA, in collaboration with Amazon, Google, and Microsoft, have jointly developed a set of recommendations to enable efficient transfer of Earth observation data from existing data systems to a cloud computing infrastructure. The purpose of these recommendations is to provide guidelines against which all data providers can evaluate existing data systems and be used to improve any issues uncovered to enable efficient search, access, and use of large volumes of data. Additionally, these guidelines ensure that all cloud providers utilize a common methodology for bulk-downloading data from data providers thus preventing the data providers from building custom capabilities to meet the needs of individual cloud providers. The intent is to share these recommendations with other Federal agencies and organizations that serve Earth observation to enable efficient search, access, and use of large volumes of data. Additionally, the adoption of these recommendations will benefit data users interested in moving large volumes of data from data systems to any other location. These data users include the cloud providers, cloud users such as scientists, and other users working in a high performance computing environment who need to move large volumes of data.

  15. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  16. Using NASA Space Imaging Technology to Teach Earth and Sun Topics

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Long, T.

    2011-12-01

    We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.

  17. Using NASA's Reference Architecture: Comparing Polar and Geostationary Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Burnett, Michael

    2013-01-01

    The JPSS and GOES-R programs are housed at NASA GSFC and jointly implemented by NASA and NOAA to NOAA requirements. NASA's role in the JPSS Ground System is to develop and deploy the system according to NOAA requirements. NASA's role in the GOES-R ground segment is to provide Systems Engineering expertise and oversight for NOAA's development and deployment of the system. NASA's Earth Science Data Systems Reference Architecture is a document developed by NASA's Earth Science Data Systems Standards Process Group that describes a NASA Earth Observing Mission Ground system as a generic abstraction. The authors work within the respective ground segment projects and are also separately contributors to the Reference Architecture document. Opinions expressed are the author's only and are not NOAA, NASA or the Ground Projects' official positions.

  18. NASA's Swift Mission Observes Mega Flares from a Mini Star

    NASA Image and Video Library

    2017-12-08

    Caption: DG CVn, a binary consisting of two red dwarf stars shown here in an artist's rendering, unleashed a series of powerful flares seen by NASA's Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions. Image Credit: NASA's Goddard Space Flight Center/S. Wiessinger ----- On April 23, NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star. The initial blast from this record-setting series of explosions was as much as 10,000 times more powerful than the largest solar flare ever recorded. Read more: 1.usa.gov/1poKiJ5 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Stop the Bleeding: the Development of a Tool to Streamline NASA Earth Science Metadata Curation Efforts

    NASA Astrophysics Data System (ADS)

    le Roux, J.; Baker, A.; Caltagirone, S.; Bugbee, K.

    2017-12-01

    The Common Metadata Repository (CMR) is a high-performance, high-quality repository for Earth science metadata records, and serves as the primary way to search NASA's growing 17.5 petabytes of Earth science data holdings. Released in 2015, CMR has the capability to support several different metadata standards already being utilized by NASA's combined network of Earth science data providers, or Distributed Active Archive Centers (DAACs). The Analysis and Review of CMR (ARC) Team located at Marshall Space Flight Center is working to improve the quality of records already in CMR with the goal of making records optimal for search and discovery. This effort entails a combination of automated and manual review, where each NASA record in CMR is checked for completeness, accuracy, and consistency. This effort is highly collaborative in nature, requiring communication and transparency of findings amongst NASA personnel, DAACs, the CMR team and other metadata curation teams. Through the evolution of this project it has become apparent that there is a need to document and report findings, as well as track metadata improvements in a more efficient manner. The ARC team has collaborated with Element 84 in order to develop a metadata curation tool to meet these needs. In this presentation, we will provide an overview of this metadata curation tool and its current capabilities. Challenges and future plans for the tool will also be discussed.

  20. Update on NASA Space Shuttle Earth Observations Photography on the laser videodisc for rapid image access

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    1994-01-01

    There have been many significant improvements in the public access to the Space Shuttle Earth Observations Photography Database. New information is provided for the user community on the recently released videodisc of this database. Topics covered included the following: earlier attempts; our first laser videodisc in 1992; the new laser videodisc in 1994; and electronic database access.