Sample records for nasa eos aqua

  1. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  2. NASA's Aqua Satellite Celebrates 10th Annivesary

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua Satellite Celebrates 10th Anniversary The Aqua satellite mission has proved to be a major component of the Earth Observing System (EOS) for its ability to gather unprecedented amounts of information on Earth’s water cycle, including measurements on water vapor, clouds, precipitation, ice, and snow. Aqua data has helped improve weather prediction, detection of forest fires, volcanic ash, and sandstorms. In addition, Aqua data have been used to detect and monitor such greenhouse gases as carbon dioxide, water vapor, and methane, and to examine the energy imbalance at the top of the Earth's atmosphere and the various components of it. With these uses of Aqua data, scientists have been able to better understand our Earth over the course of the past ten years. Aqua is a major international Earth Science satellite mission centered at NASA. Launched on May 4, 2002, the satellite has six different Earth-observing instruments on board and is named for the large amount of information being obtained about water in the Earth system from its stream of approximately 89 Gigabytes of data a day. The water variables being measured include almost all elements of the water cycle and involve water in its liquid, solid, and vapor forms. Additional variables being measured include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures. For more information about NASA's Aqua satellite, visit: aqua.nasa.gov ------------ Caption: Artist rendition of the NASA's Aqua satellite, which carries the MODIS and AIRS instruments. Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on

  3. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  4. Ultraspectral Infrared Measurements from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas

    2003-01-01

    Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.

  5. EOS Aqua: Mission Status at Earth Science Constellation

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2016-01-01

    This is an EOS Aqua Mission Status presentation to be given at the MOWG meeting in Albuquerque NM. The topics to discus are: mission summary, spacecraft subsystems summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, and mission summary.

  6. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus,T.

    2003-01-01

    In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.

  7. Earth Observing System (EOS) Aqua and Aura Space Weather Effects on Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2017-01-01

    This presentation will describe recent EOS Aqua and Aura operational collision avoidance experience during periods of solar and geomagnetic storm activity. It will highlight challenges faced by the operations team during short-notice, high-risk predicted close approaches. The presentation will highlight the evolution of the operational collision avoidance process for the EOS Aqua and Aura missions. The presentation will highlight operational challenges that have occurred, process improvements that have been implemented and identify potential future challenges.

  8. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.

    2010-01-01

    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  9. The NASA Earth Observing System (EOS) Terra and Aqua Mission Moderate Resolution Imaging Spectroradiometer (MODIS: Science and Applications

    NASA Technical Reports Server (NTRS)

    Salomnson, Vincent V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.

  10. Aqua Satellite Orbiting Earth Artist Concept

    NASA Image and Video Library

    2002-05-08

    NASA Aqua satellite carries six state-of-the-art instruments in a near-polar low-Earth orbit. Aqua is seen in this artist concept orbiting Earth. The six instruments are the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Each has unique characteristics and capabilities, and all six serve together to form a powerful package for Earth observations. http://photojournal.jpl.nasa.gov/catalog/PIA18156

  11. EOS Aqua Mission Status at Earth Science Constellation MOWG Meeting @ LASP April 13, 2016

    NASA Technical Reports Server (NTRS)

    Guit, William J.

    2016-01-01

    This presentation reflects the EOS Aqua mission status, spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, orbital maintenance maneuvers, conjunction assessment high interest events, ground track error, spacecraft orbital parameters trends and predictions.

  12. An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.

    2004-01-01

    The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.

  13. Interactively Browsing NASA's EOS Imagery in Full Resolution

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Joshi, T.; Schmaltz, J. E.; Ilavajhala, S.; Davies, D.; Murphy, K. J.

    2012-12-01

    Worldview is a new tool designed to interactively browse full-resolution imagery from NASA's fleet of Earth Observing System (EOS) satellites. It is web-based and developed using open standards (JavaScript, CSS, HTML) for cross-platform compatibility. It addresses growing user demands for access to full-resolution imagery by providing a responsive, interactive interface with global coverage, no artificial boundaries, and views in geographic and polar projections. Currently tailored to the near real-time community, Worldview enables the rapid evaluation and comparison of imagery related to such application areas as fires, floods, and air quality. It is supported by the Global Imagery Browse Services (GIBS), a system that continuously ingests, mosaics, and serves approximately 21GB of imagery daily. This imagery spans over 50 data products that are available within three hours of observation from instruments aboard Terra, Aqua, and Aura. The GIBS image archive began in May 2012 and will have published approximately 4.4TB of imagery as of December 2012. Worldview facilitates rapid access to this archive and is supplemented by socioeconomic data layers from the Socioeconomic Data and Applications Center (SEDAC), including products such as population density and economic risk from cyclones. Future plans include the accessibility of additional products that cover the entire Terra/MODIS and Aqua/MODIS missions (>150TB) and the ability to download the underlying science data of the onscreen imagery.

  14. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  15. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  16. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near

  17. Four Years of Absolutely Calibrated Hyperspectral Data from the Atmospheric Infrared Sounder (AIRS) on the Eos Aqua

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Broberg, Steve; Elliott, Denis; Gregorich, Dave

    2006-01-01

    This viewgraph presentation reviews four years of absolute calibration of hyperspectral data from the AIRS instrument located on the EOS AQUA spacecraft. The following topics are discussed: 1) A quick overview of AIRS; 2) What absolute calibration accuracy and stability are required for climate applications?; 3) Validating of radiance accuracy and stability: Results from four years of AIRS data; and 4) Conclusions.

  18. Moisture Fluxes Derived from EOS Aqua Satellite Data for the North Water Polynya Over 2003-2009

    NASA Technical Reports Server (NTRS)

    Boisvert, Linette N.; Markus, Thorsten; Parkinson, Claire L.; Vihma, Timo

    2012-01-01

    Satellite data were applied to calculate the moisture flux from the North Water polynya during a series of events spanning 2003-2009. The fluxes were calculated using bulk aerodynamic formulas with the stability effects according to the Monin-Obukhov similarity theory. Input parameters were taken from three sources: air relative humidity, air temperature, and surface temperature from the Atmospheric Infrared Sounder (AIRS) onboard NASA's Earth Observing System (EOS) Aqua satellite, sea ice concentration from the Advanced Microwave Scanning Radiometer (AMSR-E, also onboard Aqua), and wind speed from the ECMWF ERA-Interim reanalysis. Our results show the progression of the moisture fluxes from the polynya during each event, as well as their atmospheric effects after the polynya has closed up. These results were compared to results from studies on other polynyas, and fall within one standard deviation of the moisture flux estimates from these studies. Although the estimated moisture fluxes over the entire study region from AIRS are smaller in magnitude than ERA-Interim, they are more accurate due to improved temperature and relative humidity profiles and ice concentration estimates over the polynya. Error estimates were calculated to be 5.56 x10(exp -3) g/sq. m/ s, only 25% of the total moisture flux, thus suggesting that AIRS and AMSR-E can be used with confidence to study smaller scale features in the Arctic sea ice pack and can capture their atmospheric effects. These findings bode well for larger-scale studies of moisture fluxes over the entire Arctic Ocean and the thinning ice pack.

  19. NASA SNPP SIPS - Following in the Path of EOS

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Hall, Alfreda; Ho, Evelyn

    2016-01-01

    NASA's Earth Science Data Information System (ESDIS) Project has been operating NASA's Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. At launch, the SDS focused primarily on the evaluation of Sensor Data Records (SDRs) and Environmental Data Records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program, as to their suitability for Earth system science. During the summer of 2014, NASA transitioned to the production of standard Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean, Atmosphere, Ozone, and Sounder were established to produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products developed by the SNPP Science Teams and to provide the products to NASA's Distributed Active Archive Centers (DAACs) for archive and distribution to the user community. The processing, archiving and distribution of data from NASA's Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments will continue. With the implementation of the JPSS Block 2 architecture and the launch of JPSS-1, the SDS will receive SNPP data in near real-time via the JPSS Stored Mission Data Hub (JSH), as well as JPSS-1 and future JPSS-2 data. The SNPP SIPS will ingest EOS compatible Level 0 data from the EOS Data Operations System (EDOS) element for their data processing, enabling the continuous EOS-SNPP-JPSS Satellite Data Record.

  20. Typhoon Chan-Hom "Eyes" NASA's Aqua Satellite

    NASA Image and Video Library

    2017-12-08

    Typhoon Chan-Hom's eye was visible from space when NASA's Aqua satellite passed overhead early on July 8, 2015. The MODIS instrument, known as the Moderate Resolution Imaging Spectrometer, flies aboard NASA's Aqua satellite. When Aqua passed over Typhoon Chan-Hom on July 8 at 04:25 UTC (12:25 a.m. EDT), MODIS captured a visible-light image of the storm that clearly showed its eye. The MODIS image also a ring of powerful thunderstorms surrounding the eye of the storm, and the bulk of thunderstorms wrapping around the system from west to east, along the southern side. At 0900 UTC (5 a.m. EDT), Typhoon Chan-Hom's maximum sustained winds were near 85 knots (97.8 mph/157.4 kph). Tropical-storm-force winds extended 145 nautical miles (166.9 miles/268.5 km) from the center, making the storm almost 300 nautical miles (345 miles/555 km) in diameter. Typhoon-force winds extended out to 35 nautical miles (40 miles/64.8 km) from the center. Chan-Hom's eye was centered near 20.5 North latitude and 132.7 East longitude, about 450 nautical miles (517.9 miles/833.4 km) southeast of Kadena Air Base, Iwo To, Japan. Chan-Hom was moving to the northwest at 11 knots (12.6 mph/20.3 kph). The typhoon was generating very rough seas with wave heights to 28 feet (8.5 meters). The Joint Typhoon Warning Center expects Chan-Hom to continue tracking northwestward over the next three days under the steering influence of a sub-tropical ridge (elongated area of high pressure). Chan-Hom is expected to intensify steadily peaking at 120 knots (138.1 mph/222.2 kph) on July 10. The JTWC forecast predicts that Chan-Hom will make landfall near Wenzhou, Zhejiang, China and begin decaying due to land interaction. For updated warnings and watches from China's National Meteorological Centre, visit: www.cma.gov.cn/en/WeatherWarnings/. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team b>NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific

  1. EOS Aqua: Mission Status at the Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) Meeting at the Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2017-01-01

    This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  2. NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Alaska

    NASA Image and Video Library

    2017-12-08

    This image shows how the partial solar eclipse darkened clouds over Alaska. It was taken on Oct. 23 at 21:10 UTC (5:10 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Aqua Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Graham, S. M.; Parkinson, C. L.; Chambers, L. H.; Ray, S. E.

    2011-12-01

    NASA's Aqua satellite was launched on May 4, 2002, with six instruments designed to collect data about the Earth's atmosphere, biosphere, hydrosphere, and cryosphere. Since the late 1990s, the Aqua mission has involved considerable education and public outreach (EPO) activities, including printed products, formal education, an engineering competition, webcasts, and high-profile multimedia efforts. The printed products include Aqua and instrument brochures, an Aqua lithograph, Aqua trading cards, NASA Fact Sheets on Aqua, the water cycle, and weather forecasting, and an Aqua science writers' guide. On-going formal education efforts include the Students' Cloud Observations On-Line (S'COOL) Project, the MY NASA DATA Project, the Earth System Science Education Alliance, and, in partnership with university professors, undergraduate student research modules. Each of these projects incorporates Aqua data into its inquiry-based framework. Additionally, high school and undergraduate students have participated in summer internship programs. An earlier formal education activity was the Aqua Engineering Competition, which was a high school program sponsored by the NASA Goddard Space Flight Center, Morgan State University, and the Baltimore Museum of Industry. The competition began with the posting of a Round 1 Aqua-related engineering problem in December 2002 and concluded in April 2003 with a final round of competition among the five finalist teams. The Aqua EPO efforts have also included a wide range of multimedia products. Prior to launch, the Aqua team worked closely with the Special Projects Initiative (SPI) Office to produce a series of live webcasts on Aqua science and the Cool Science website aqua.nasa.gov/coolscience, which displays short video clips of Aqua scientists and engineers explaining the many aspects of the Aqua mission. These video clips, the Aqua website, and numerous presentations have benefited from dynamic visualizations showing the Aqua launch

  4. Informing future NRT satellite distribution capabilities: Lessons learned from NASA's Land Atmosphere NRT capability for EOS (LANCE)

    NASA Astrophysics Data System (ADS)

    Davies, D.; Murphy, K. J.; Michael, K.

    2013-12-01

    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes the architecture of the LANCE and outlines the modifications made to achieve the 3-hour latency requirement with a view to informing future NRT satellite distribution capabilities. It also describes how latency is determined. LANCE is a distributed system that builds on the existing EOS Data and Information System (EOSDIS) capabilities. To achieve the NRT latency requirement, many components of the EOS satellite operations, ground and science processing systems have been made more efficient without compromising the quality of science data processing. The EOS Data and Operations System (EDOS) processes the NRT stream with higher priority than the science data stream in order to minimize latency. In addition to expediting transfer times, the key difference between the NRT Level 0 products and those for standard science processing is the data used to determine the precise location and tilt of the satellite. Standard products use definitive geo-location (attitude and ephemeris) data provided daily, whereas NRT products use predicted geo-location provided by the instrument Global Positioning System (GPS) or approximation of navigational data (depending on platform). Level 0 data are processed in to higher-level products at designated Science Investigator-led Processing Systems (SIPS). The processes used by LANCE have been streamlined and adapted to work with datasets as soon as they are downlinked from satellites or transmitted from ground stations. Level 2 products that require ancillary data have modified production rules to relax the requirements for ancillary data so reducing processing times. Looking to the future, experience gained from LANCE can provide valuable lessons on

  5. NASA Aqua Spacecraft Captures Start of West Coast Atmospheric River Event

    NASA Image and Video Library

    2012-11-29

    NASA Aqua spacecraft captured this infrared image of the first of a series of storms approaching the Pacific Northwest at 2141 UTC 1:41 p.m. PST on Nov. 28, 2012, marking the beginning of an atmospheric river event.

  6. NASA EO-1 Spacecraft Images Chile Volcanic Eruption

    NASA Image and Video Library

    2011-06-17

    On June 14, 2011, NASA Earth Observing-1 EO-1 spacecraft obtained this image showing ash-rich volcanic plume billowing out of the vent, punching through a low cloud layer. The plume grey color is a reflection of its ash content.

  7. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  8. Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell

    NASA Technical Reports Server (NTRS)

    Keys, Denney; Rao, Gopalakrishna M.; Sullivan, David; Wannemacher, Harry

    2001-01-01

    The nominal performance of AEA CBPD under simulated EOS-Aqua/Aura flight hardware configuration has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). Inadvertent CBPD switch activation with a charged cell (low impedance path) intermittently closes and opens up the switch, therefore the device may or may not provide protection against future open-circuit cell failure. Further testing with switches F01 and F02 may provide clarification. The formation of a continuous low impedance path (a homogeneous low melting point alloy), has been confirmed - which is the expected mode of operation.

  9. An Algorithm For Climate-Quality Atmospheric Profiling Continuity From EOS Aqua To Suomi-NPP

    NASA Astrophysics Data System (ADS)

    Moncet, J. L.

    2015-12-01

    We will present results from an algorithm that is being developed to produce climate-quality atmospheric profiling earth system data records (ESDRs) for application to hyperspectral sounding instrument data from Suomi-NPP, EOS Aqua, and other spacecraft. The current focus is on data from the S-NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) instruments as well as the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua. The algorithm development at Atmospheric and Environmental Research (AER) has common heritage with the optimal estimation (OE) algorithm operationally processing S-NPP data in the Interface Data Processing Segment (IDPS), but the ESDR algorithm has a flexible, modular software structure to support experimentation and collaboration and has several features adapted to the climate orientation of ESDRs. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. The radiative transfer component uses an enhanced version of optimal spectral sampling (OSS) with updated spectroscopy, treatment of emission that is not in local thermodynamic equilibrium (non-LTE), efficiency gains with "global" optimal sampling over all channels, and support for channel selection. The algorithm is designed for adaptive treatment of clouds, with capability to apply "cloud clearing" or simultaneous cloud parameter retrieval, depending on conditions. We will present retrieval results demonstrating the impact of a new capability to perform the retrievals on sigma or hybrid vertical grid (as opposed to a fixed pressure grid), which particularly affects profile accuracy over land with variable terrain height and with sharp vertical structure near the surface. In addition, we will show impacts of alternative treatments of regularization of the inversion. While OE algorithms typically implement regularization by using background estimates from

  10. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; hide

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  11. NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Western Canada

    NASA Image and Video Library

    2017-12-08

    This image shows how a partial solar eclipse darkened clouds over the Yukon and British Columbia in western Canada. It was taken on Oct. 23 at 21:20 UTC (5:20 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team Unlabeled image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Remer, Lorraine A.; Levy, Robert C.; Mattoo, Shana

    2018-05-01

    In addition to the standard resolution product (10 km), the MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6 (C006) data release included a higher resolution (3 km). Other than accommodations for the two different resolutions, the 10 and 3 km Dark Target (DT) algorithms are basically the same. In this study, we perform global validation of the higher-resolution aerosol optical depth (AOD) over global land by comparing against AErosol RObotic NETwork (AERONET) measurements. The MODIS-AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error bounds of ±(0.05 + 0.2 × AOD), with a high correlation (R = 0.87). The scatter is not random, but exhibits a mean positive bias of ˜ 0.06 for Terra and ˜ 0.03 for Aqua. These biases for the 3 km product are approximately 0.03 larger than the biases found in similar validations of the 10 km product. The validation results for the 3 km product did not have a relationship to aerosol loading (i.e., true AOD), but did exhibit dependence on quality flags, region, viewing geometry, and aerosol spatial variability. Time series of global MODIS-AERONET differences show that validation is not static, but has changed over the course of both sensors' lifetimes, with Terra MODIS showing more change over time. The likely cause of the change of validation over time is sensor degradation, but changes in the distribution of AERONET stations and differences in the global aerosol system itself could be contributing to the temporal variability of validation.

  13. Cross comparison of the Collection 6 and Collection 6.1 Terra and Aqua MODIS Bands 1 and 2 using AVHRR N15 and N19

    NASA Astrophysics Data System (ADS)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong J.; Chen, Na

    2017-09-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key scientific instrument that was launched into Earth orbit by NASA in 1999 on board the Terra (EOS AM) satellite and in 2002 on board the Aqua (EOS PM) satellite. Terra and Aqua MODIS collect the entire Earth's images every 1 to 2 days in 36 spectral bands. MODIS band 1 (0.620- 0.670 μm) and band 2 (0.841-0.876 μm) have nadir spatial resolution of 250 m and their measurements are crucial to derive key land surface products. This study evaluates the performance of the Collection 6 (C6, and C6.1) L1B of both Terra and Aqua MODIS bands 1 and 2 using Simultaneous Nadir Overpass (SNO) data to compare with AVHRR/3 sensors. We examine the relative stability between Terra and Aqua MODIS in reference to NOAA N15 and N19 the Advanced Very High Resolution Radiometer (AVHRR/3). The comparisons for MODIS to AVHRR/3 are over a fifteenyear period from 2002 to 2017. Results from this study provide a quantitative assessment of Terra and Aqua MODIS band 1 and band 2 calibration stability and the relative differences through the NOAA N15 and N19 AVHRR/3 sensors.

  14. Aqua Satellite Mission Educational Outreach

    NASA Astrophysics Data System (ADS)

    Parkinson, C. L.; Graham, S. M.

    2003-12-01

    An important component of the Aqua mission, launched into space on May 4, 2002 with a suite of six instruments from the U.S., Japan, and Brazil, is the effort to educate the public about the mission and the science topics that it addresses. This educational outreach includes printed products, web casts, other web-based materials, animations, presentations, and a student contest. The printed products include brochures for the mission as a whole and for the instruments, NASA Fact Sheets on the mission, the water cycle, and weather forecasting, an Aqua Science Writers' Guide, an Aqua lithograph, posters, and trading cards. Animations include animations of the launch, the orbit, instrument deployments, instrument sensing, and several of the data products. Each of these materials is available on the Aqua web site at http://aqua.nasa.gov, as are archived versions of the eight Aqua web casts. The web casts were done live on the internet and focused on the spacecraft, the science, the launch, and the validation efforts. All web casts had key Aqua personnel as live guests and had a web-based chat session allowing viewers to ask questions. Other web-based materials include a "Cool Science" section of the aqua.nasa.gov website, with videos of Aqua scientists and engineers speaking about Aqua and the science and engineering behind it, arranged in a framework organized for the convenience of teachers dealing with core curriculum requirements. The web casts and "Cool Science" site were produced by the Special Project Initiatives Office at NASA's Goddard Space Flight Center. Outreach presentations about Aqua have been given at schools, universities, and public forums at many locations around the world, especially in the U.S. A competition was held for high school students during the 2002-03 school year, culminating in April 2003, with five finalist teams competing for the top slots, followed by an awards ceremony. The competition had all the student teams analyzing an anomalous

  15. Nicaragua Eruption Lava Threat Closely Monitored by NASA EO-1 Spacecraft

    NASA Image and Video Library

    2015-12-07

    Momotombo volcano, Nicaragua, began erupting on Dec. 1, 2015, after more than a century of inactivity. On Dec. 4, 2015, the Advanced Land Imager (ALI) on NASA's Earth Observing 1 (EO-1) spacecraft observed the new eruption. This image is created from infrared data, and shows the incandescent active vent at the summit of the volcano and lava flowing down the side of the volcano. These data are being examined by scientists to determine where lava will flow, allowing assessment of possible threats to local infrastructure. The EO-1 data were obtained at an altitude of 438 miles (705 kilometers) and at a resolution of 98 feet (30 meters) per pixel at different visible and infrared wavelengths. The ALI image is 23 miles (37 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA20203

  16. Example MODIS Global Cloud Optical and Microphysical Properties: Comparisons between Terra and Aqua

    NASA Technical Reports Server (NTRS)

    Hubanks, P. A.; Platnick, S.; King, M. D.; Ackerman, S. A.; Frey, R. A.

    2003-01-01

    MODIS observations from the NASA EOS Terra spacecraft (launched in December 1999, 1030 local time equatorial crossing) have provided a unique data set of Earth observations. With the launch of the NASA Aqua spacecraft in May 2002 (1330 local time), two MODIS daytime (sunlit) and nighttime observations are now available in a 24 hour period, allowing for some measure of diurnal variability. We report on an initial analysis of several operational global (Level-3) cloud products from the two platforms. The MODIS atmosphere Level-3 products, which include clear-sky and aerosol products in addition to cloud products, are available as three separate files providing daily, eight-day, and monthly aggregations; each temporal aggregation is spatially aggregated to a 1 degree grid. The files contain approximately 600 statisitical datasets (from simple means and standard deviations to 1 - and 2-dimensional histograms). Operational cloud products include detection (cloud fraction), cloud-top properties, and daytimeonly cloud optical thickness and particle effective radius for both water and ice clouds. We will compare example global Terra and Aqua cloud fraction, optical thickness, and effective radius aggregations.

  17. Expanding NASA's Land, Atmosphere Near real-time Capability for EOS

    NASA Astrophysics Data System (ADS)

    Davies, D.; Michael, K.; Masuoka, E.; Ye, G.; Schmaltz, J. E.; Harrison, S.; Ziskin, D.; Durbin, P. B.; Protack, S.; Rinsland, P. L.; Slayback, D. A.; Policelli, F. S.; Olsina, O.; Fu, G.; Ederer, G. A.; Ding, F.; Braun, J.; Gumley, L.; Prins, E. M.; Davidson, C. C.; Wong, M. M.

    2017-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time products and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere) have been added; the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood product. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year. For more information visit: https://earthdata.nasa.gov/lance

  18. Progress of Icelandic Lava Flows Charted by NASA EO-1 Spacecraft

    NASA Image and Video Library

    2014-09-09

    On the night of Sept. 6, 2014 NASA Earth Observing 1 EO-1 spacecraft observed the ongoing eruption at Holuhraun, Iceland. Partially covered by clouds, this scene shows the extent of the lava flows that have been erupting.

  19. NASA's Aqua Satellite Tracking Super Typhoon Vongfong

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument aboard NASA's Aqua satellite captured this visible image of Super Typhoon Vongfong on Oct. 9 at 04:25 UTC (12:25 a.m. EDT as it moved north through the Philippine Sea. Credit: NASA Goddard MODIS Rapid Response Team --- Vongfong weakened to a Category 4 typhoon on the Saffir-Simpson scale on Thursday, October 9, with maximum sustained winds near 130 knots (149.6 mph/240.8 kph), down from a Category 5 typhoon on Oct. 8. Forecasters at the Joint Typhoon Warning Center predict slow weakening over the next several days. Vongfong was centered near 20.6 north and 129.5 east, about 384 nautical miles south-southeast of Kadena Air Base, Okinawa, Japan. It is moving to the north-northwest at 7 knots (8 mph/12.9 kph) and generating 44 foot (13.4 meter) high seas. For warnings and watches, visit the Japan Meteorological Agency website at: www.jma.go.jp/en/typh/. Vongfong is forecast to continue moving north through the Philippine Sea and is expected to pass just to the east of Kadena Air Base, then track over Amami Oshima before making landfall in Kyushu and moving over the other three big islands of Japan. Residents of all of these islands should prepare for typhoon conditions beginning on October 10. Read more: 1.usa.gov/1s0CCQy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Scaling the Pipe: NASA EOS Terra Data Systems at 10

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Ramapriyan, Hampapuram K.

    2010-01-01

    Standard products from the five sensors on NASA's Earth Observing System's (EOS) Terra satellite are being used world-wide for earth science research and applications. This paper describes the evolution of the Terra data systems over the last decade in which the distributed systems that produce, archive and distribute high quality Terra data products were scaled by two orders of magnitude.

  1. NASA's Aqua Satellite Sees Extra-Tropical Storm Vongfong Pulling Away from Hokkaido, Japan

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite passed over Extra-Tropical Storm Vongfong on Oct. 4 as it was moving away from Hokkaido, Japan, the northernmost of the big islands. Vongfong transitioned into an extra-tropical storm early on Oct. 4 as its core changed from warm to cold. The MODIS or Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Aqua satellite captured a visible image of Tropical Storm Vongfong over Japan on Oct. 14 at 03:15 UTC as it was southeast of the island of Hokkaido, Japan. The image showed that south of the center of circulation was almost devoid of clouds and showers, which were all pushed to the north and east of the center as a result of southwesterly wind shear. At 0300 UTC on Oct. 14, the Joint Typhoon Warning Center issued its final advisory on Tropical storm Vongfong. At that time Vongfong's center was located near 29.1 north latitude and 142.9 east longitude, about 111 nautical miles (127.7 miles/205.6 km) southeast of Misawa, Japan. Vongfong was moving to the northeast at a speedy 36 knots (41.4 mph/66.67 kph). Vongfong's maximum sustained winds were near 35 knots (40.2 mph/64.8 kph). Vongfong had transitioned into an extra-tropical system and will continue to move away from northern Japan and over the northwestern Pacific Ocean. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  3. Design of a solar array simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Butler, Steve J.; Sable, Dan M.; Lee, Fred C.; Cho, Bo H.

    1992-01-01

    The present spacecraft solar array simulator addresses both dc and ac characteristics as well as changes in illumination and temperature and performance degradation over the course of array service life. The computerized control system used allows simulation of a complete orbit cycle, in addition to automated diagnostics. The simulator is currently interfaced with the NASA EOS testbed.

  4. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  5. Southern Africa Validation of NASA's Earth Observing System (SAVE EOS)

    NASA Technical Reports Server (NTRS)

    Privette, Jeffrey L.

    2000-01-01

    Southern Africa Validation of EOS (SAVE) is 4-year, multidisciplinary effort to validate operational and experimental products from Terra-the flagship satellite of NASA's Earth Observing System (EOS). At test sites from Zambia to South Africa, we are measuring soil, vegetation and atmospheric parameters over a range of ecosystems for comparison with products from Terra, Landsat 7, AVHRR and SeaWiFS. The data are also employed to parameterize and improve vegetation process models. Fixed-point and mobile "transect" sampling are used to collect the ground data. These are extrapolated over larger areas with fine-resolution multispectral imagery. We describe the sites, infrastructure, and measurement strategies developed underSAVE, as well as initial results from our participation in the first Intensive Field Campaign of SAFARI 2000. We also describe SAVE's role in the Kalahari Transect Campaign (February/March 2000) in Zambia and Botswana.

  6. Earth System Science Research Using Datra and Products from Terra, Aqua, and ACRIM Satellites

    NASA Technical Reports Server (NTRS)

    Hutchison, Keith D.

    2007-01-01

    The report describes the research conducted at CSR to extend MODIS data and products to the applications required by users in the State of Texas. This research presented in this report was completed during the timeframe of August 2004 - December 31, 2007. However, since annual reports were filed in December 2005 and 2006, results obtained during calendar year 2007 are emphasized in the report. The stated goals of the project were to complete the fundamental research needed to create two types of new, Level 3 products for the air quality community in Texas from data collected by NASA s EOS Terra and Aqua missions.

  7. EOS Aqua AMSR-E Sea Ice Validation Program: Meltpond2000 Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.

    2000-01-01

    This flight report describes the field component of Meltpond2000, the first in a series of Arctic and Antarctic aircraft campaigns planned as part of NASA's Earth Observing System Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E). This prelaunch Arctic field campaign was carried out between June 25 and July 6, 2000 from Thule, Greenland, with the objective of quantifying the errors incurred by the AMSR-E sea ice algorithms resulting from the presence of melt ponds. A secondary objective of the mission was to develop a microwave capability to discriminate between melt ponds and seawater using low-frequency microwave radiometers. Meltpond2000 was a multiagency effort involving personnel from the Navy, NOAA, and NASA. The field component of the mission consisted of making five 8-hour flights from Thule Air Base with a Naval Air Warfare Center P-3 aircraft over portions of Baffin Bay and the Canadian Arctic. The aircraft sensors were provided and operated by the Microwave Radiometry Group of NOAA's Environmental TechnologyLaboratory. A Navy ice observer from the National Ice Center provided visual documentation of surface ice conditions during each of the flights. Two of the five flights were coordinated with Canadian scientists making surface measurements of melt ponds at an ice camp located near Resolute Bay, Canada. Coordination with the Canadians will provide additional information on surface characteristics and will be of great value in the interpretation of the aircraft and high-resolution satellite data sets.

  8. The Transition of NASA EOS Datasets to WFO Operations: A Model for Future Technology Transfer

    NASA Technical Reports Server (NTRS)

    Darden, C.; Burks, J.; Jedlovec, G.; Haines, S.

    2007-01-01

    The collocation of a National Weather Service (NWS) Forecast Office with atmospheric scientists from NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama has afforded a unique opportunity for science sharing and technology transfer. Specifically, the NWS office in Huntsville has interacted closely with research scientists within the SPORT (Short-term Prediction and Research and Transition) Center at MSFC. One significant technology transfer that has reaped dividends is the transition of unique NASA EOS polar orbiting datasets into NWS field operations. NWS forecasters primarily rely on the AWIPS (Advanced Weather Information and Processing System) decision support system for their day to day forecast and warning decision making. Unfortunately, the transition of data from operational polar orbiters or low inclination orbiting satellites into AWIPS has been relatively slow due to a variety of reasons. The ability to integrate these high resolution NASA datasets into operations has yielded several benefits. The MODIS (MODerate-resolution Imaging Spectrometer ) instrument flying on the Aqua and Terra satellites provides a broad spectrum of multispectral observations at resolutions as fine as 250m. Forecasters routinely utilize these datasets to locate fine lines, boundaries, smoke plumes, locations of fog or haze fields, and other mesoscale features. In addition, these important datasets have been transitioned to other WFOs for a variety of local uses. For instance, WFO Great Falls Montana utilizes the MODIS snow cover product for hydrologic planning purposes while several coastal offices utilize the output from the MODIS and AMSR-E instruments to supplement observations in the data sparse regions of the Gulf of Mexico and western Atlantic. In the short term, these datasets have benefited local WFOs in a variety of ways. In the longer term, the process by which these unique datasets were successfully transitioned to operations will benefit the planning and

  9. Multi-Sensor Approach to Mapping Snow Cover Using Data From NASA's EOS Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M. J.

    2003-12-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Over the past several decades both optical and passive microwave satellite data have been utilized for snow mapping at the regional to global scale. For the period 1978 to 2002, we have shown earlier that both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are, depending on season, less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Snow mapping using optical data is based on the magnitude of the surface reflectance while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Our previous work has defined the respective advantages and disadvantages of these two types of satellite data for snow cover mapping and it is clear that a blended product is optimal. We present a multi-sensor approach to snow mapping based both on historical data as well as data from current NASA EOS sensors. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets. An example of validation at the brightness temperature level is provided through the comparison of AMSR-E with data from the well-calibrated heritage SSM/I sensor over a large homogeneous snow-covered surface (Dome C, Antarctica). Prototype snow cover maps from AMSR-E compare well with maps derived from SSM/I. Our current blended product is being developed in the 25 km EASE-Grid while the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km

  10. Aqua's First 10 Years: An Overview

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2012-01-01

    NASA's Aqua spacecraft was launched at 2:55 a.m. on May 4, 2002, from Vandenberg Air Force Base in California, into a near-polar, sun-synchronous orbit at an altitude of 705 km. Aqua carries six Earth-observing instruments to collect data on water in all its forms (liquid, vapor, and solid) and on a wide variety of additional Earth system variables (Parkinson 2003). The design lifetime for Aqua's prime mission was 6 years, and Aqua is now well into its extended mission, approaching 10 years of successful operations. The Aqua data have been used for hundreds of scientific studies and continue to be used for scientific discovery and numerous practical applications.

  11. Operational Experiences in Planning and Reconstructing Aqua Inclination Maneuvers

    NASA Technical Reports Server (NTRS)

    Rand, David; Reilly, Jacqueline; Schiff, Conrad

    2004-01-01

    As the lead satellite in NASA's growing Earth Observing System (EOS) PM constellation, it is increasingly critical that Aqua maintain its various orbit requirements. The two of interest for this paper are maintaining an orbit inclination that provides for a consistent mean local time and a semi-major Axis (SMA) that allows for ground track repeatability. Maneuvers to adjust the orbit inclination involve several flight dynamics constraints and complexities which make planning such maneuvers challenging. In particular, coupling between the orbital and attitude degrees of freedom lead to changes in SMA when changes in inclination are effected. A long term mission mean local time trend analysis was performed in order to determine the size and placement of the required inclination maneuvers. Following this analysis, detailed modeling of each burn and its Various segments was performed to determine its effects on the immediate orbit state. Data gathered from an inclination slew test of the spacecraft and first inclination maneuver uncovered discrepancies in the modeling method that were investigated and resolved. The new modeling techniques were applied and validated during the second spacecraft inclination maneuver. These improvements should position Aqua to successfully complete a series of inclination maneuvers in the fall of 2004. The following paper presents the events and results related

  12. EOS Aqua AMSR-E Sea Ice Validation Program: Meltpond 2000 Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.

    2000-01-01

    This flight report describes the field component of Meltpond2000, the first in a series of Arctic and Antarctic aircraft campaigns planned as part of NASA's Earth Observing System Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E). This prelaunch Arctic field campaign was carried out between June 25 and July 6, 2000 from Thule, Greenland, with the objective of quantifying the errors incurred by the AMSR-E sea ice algorithms resulting from the presence of melt ponds. A secondary objective of the mission was to develop a microwave capability to discriminate between melt ponds and seawater using low-frequency microwave radiometers. Meltpond2000 was a multiagency effort involving personnel from the Navy, National Oceanic and Atmospheric Administration (NOAA), and NASA. The field component of the mission consisted of making five eight-hour flights from Thule Air Base with a Naval Air Warfare Center P-3 aircraft over portions of Baffin Bay and the Canadian Arctic. The aircraft sensors were provided and operated by the Microwave Radiometry Group of NOAA's Environmental Technology Laboratory. A Navy ice observer from the National Ice Center provided visual documentation of surface ice conditions during each of the flights. Two of the five flights were coordinated with Canadian scientists making surface measurements of melt ponds at an ice camp located near Resolute Bay, Canada. Coordination with the Canadians will provide additional information on surface characteristics and will be of great value in the interpretation of the aircraft and high-resolution satellite data sets.

  13. Experiences with Testing the Largest Ground System NASA Has Ever Built

    NASA Technical Reports Server (NTRS)

    Lehtonen, Ken; Messerly, Robert

    2003-01-01

    In the 1980s, the National Aeronautics and Space Administration (NASA) embarked upon a major Earth-focused program called Mission to Planet Earth. The Goddard Space Flight Center (GSFC) was selected to manage and develop a key component - the Earth Observing System (EOS). The EOS consisted of four major missions designed to monitor the Earth. The missions included 4 spacecraft. Terra (launched December 1999), Aqua (launched May 2002), ICESat (Ice, Cloud, and Land Elevation Satellite, launched January 2003), and Aura (scheduled for launch January 2004). The purpose of these missions was to provide support for NASA s long-term research effort for determining how human-induced and natural changes affect our global environment. The EOS Data and Information System (EOSDIS), a globally distributed, large-scale scientific system, was built to support EOS. Its primary function is to capture, collect, process, and distribute the most voluminous set of remotely sensed scientific data to date estimated to be 350 Gbytes per day. The EOSDIS is composed of a diverse set of elements with functional capabilities that require the implementation of a complex set of computers, high-speed networks, mission-unique equipment, and associated Information Technology (IT) software along with mission-specific software. All missions are constrained by schedule, budget, and staffing resources, and rigorous testing has been shown to be critical to the success of each mission. This paper addresses the challenges associated with the planning, test definition. resource scheduling, execution, and discrepancy reporting involved in the mission readiness testing of a ground system on the scale of EOSDIS. The size and complexity of the mission systems supporting the Aqua flight operations, for example, combined with the limited resources available, prompted the project to challenge the prevailing testing culture. The resulting success of the Aqua Mission Readiness Testing (MRT) program was due in no

  14. Expanding NASA's Land, Atmosphere Near Real-Time Capability for EOS (LANCE)

    NASA Technical Reports Server (NTRS)

    Davies, Diane; Michael, Karen; Masuoka, Ed; Ye, Gang; Schmaltz, Jeffrey; Harrison, Sherry; Ziskin, Daniel; Durbin, Phil B; Protack, Steve; Rinsland, Pamela Livingstone; hide

    2017-01-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena in near real-time. Over the last year: near real-time data and imagery from MOPITT, MISR, OMPS and VIIRS (Land and Atmosphere), the Fire Information for Resource Management System (FIRMS) has been updated and LANCE has begun the process of integrating the Global NRT flood, and Black Marble products. In addition, following the AMSU-A2 instrument anomaly in September 2016, AIRS-only products have replaced the NRT level 2 AIRS+AMSU products. This presentation provides a brief overview of LANCE, describes the new products that are recently available and contains a preview of what to expect in LANCE over the coming year.

  15. Terra, Aqua, and Aura Direct Broadcast - Providing Earth Science Data for Realtime Applications

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Coronado, Patrick L.; Case, Warren F.; Franklin, Ameilia

    2010-01-01

    The need for realtime data to aid in disaster management and monitoring has been clearly demonstrated for the past several years, e.g., during the tsunami in Indonesia in 2004, the hurricane Katrina in 2005, fires, etc. Users want (and often require) the means to get earth observation data for operational regional use as soon as they are generated by satellites. This is especially true for events that can cause loss of human life and/or property. To meet this need, NASA's Earth Observing System (EOS) satellites, Terra and Aqua, provide realtime data useful to disaster management teams. This paper describes the satellites, their Direct Broadcast (DB) capabilities, the data uses, what it takes to deploy a DB ground station, and the future of the DB.

  16. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  17. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  18. Earth Observing System (EOS) Snow and Ice Products for Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Hall, D.; Kaminski, M.; Cavalieri, D.; Dickinson, R.; Marquis, M.; Riggs, G.; Robinson, D.; VanWoert, M.; Wolfe, R.

    2005-01-01

    Snow and ice are the key components of the Earth's cryosphere, and their influence on the Earth's energy balance is very significant due at least in part to the large areal extent and high albedo characterizing these features. Large changes in the cryosphere have been measured over the last century and especially over the past decade, and remote sensing plays a pivotal role in documenting these changes. Many of NASA's Earth Observing System (EOS) products derived from instruments on the Terra, Aqua, and Ice, Cloud and land Elevation Satellite (ICESat) satellites are useful for measuring changes in features that are associated with climate change. The utility of the products is continually enhanced as the length of the time series increases. To gain a more coherent view of the cryosphere and its historical and recent changes, the EOS products may be employed together, in conjunction with other sources of data, and in models. To further this goal, the first EOS Snow and Ice Products Workshop was convened. The specific goals of the workshop were to provide current and prospective users of EOS snow and ice products up-to-date information on the products, their validation status and future enhancements, to help users utilize the data products through hands-on demonstrations, and to facilitate the integration of EOS products into models. Oral and poster sessions representing a wide variety of snow and ice topics were held; three panels were also convened to discuss workshop themes. Panel discussions focused on data fusion and assimilation of the products into models. Approximately 110 people attended, representing a wide array of interests and organizations in the cryospheric community.

  19. Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua

    2017-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.

  20. Assessment of the Collection 6 Terra and Aqua MODIS bands 1 and 2 calibration performance

    NASA Astrophysics Data System (ADS)

    Wu, A.; Chen, X.; Angal, A.; Li, Y.; Xiong, X.

    2015-09-01

    MODIS (Moderate Resolution Imaging Spectroradiometer) is a key sensor aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. MODIS collects data in 36 spectral bands and generates over 40 data products for land, atmosphere, cryosphere and oceans. MODIS bands 1 and 2 have nadir spatial resolution of 250 m, compared with 500 m for bands 3 to 7 and 1000 m for all the remaining bands, and their measurements are crucial to derive key land surface products. This study evaluates the calibration performance of the Collection-6 L1B for both Terra and Aqua MODIS bands 1 and 2 using three vicarious approaches. The first and second approaches focus on stability assessment using data collected from two pseudo-invariant sites, Libya 4 desert and Antarctic Dome C snow surface. The third approach examines the relative stability between Terra and Aqua in reference to a third sensor from a series of NOAA 15-19 Advanced Very High Resolution Radiometer (AVHRR). The comparison is based on measurements from MODIS and AVHRR Simultaneous Nadir Overpasses (SNO) over a thirteen-year period from 2002 to 2015. Results from this study provide a quantitative assessment of Terra and Aqua MODIS bands 1 and 2 calibration stability and the relative calibration differences between the two sensors.

  1. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  2. Vector Data Model: A New Model of HDF-EOS to Support GIS Applications in EOS

    NASA Astrophysics Data System (ADS)

    Chi, E.; Edmonds, R d

    2001-05-01

    NASA's Earth Science Data Information System (ESDIS) project has an active program of research and development of systems for the storage and management of Earth science data for Earth Observation System (EOS) mission, a key program of NASA Earth Science Enterprise. EOS has adopted an extension of the Hierarchical Data Format (HDF) as the format of choice for standard product distribution. Three new EOS specific datatypes - point, swath and grid - have been defined within the HDF framework. The enhanced data format is named HDF-EOS. Geographic Information Systems (GIS) are used by Earth scientists in EOS data product generation, visualization, and analysis. There are two major data types in GIS applications, raster and vector. The current HDF-EOS handles only raster type in the swath data model. The vector data model is identified and developed as a new HDFEOS format to meet the requirements of scientists working with EOS data products in vector format. The vector model is designed using a topological data structure, which defines the spatial relationships among points, lines, and polygons. The three major topological concepts that the vector model adopts are: a) lines connect to each other at nodes (connectivity), b) lines that connect to surround an area define a polygon (area definition), and c) lines have direction and left and right sides (contiguity). The vector model is implemented in HDF by mapping the conceptual model to HDF internal data models and structures, viz. Vdata, Vgroup, and their associated attribute structures. The point, line, and polygon geometry and attribute data are stored in similar tables. Further, the vector model utilizes the structure and product metadata, which characterize the HDF-EOS. Both types of metadata are stored as attributes in HDF-EOS files, and are encoded in text format by using Object Description Language (ODL) and stored as global attributes in HDF-EOS files. EOS has developed a series of routines for storing

  3. EOS Data Products Handbook. Volume 2

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L. (Editor); Greenstone, Reynold (Editor); Closs, James (Technical Monitor)

    2000-01-01

    The EOS Data Products Handbook provides brief descriptions of the data products that will be produced from a range of missions of the Earth Observing System (EOS) and associated projects. Volume 1, originally published in 1997, covers the Tropical Rainfall Measuring Mission (TRMM), the Terra mission (formerly named EOS AM-1), and the Data Assimilation System, while this volume, Volume 2, covers the Active Cavity Radiometer Irradiance Monitor Satellite (ACRIMSAT), Aqua, Jason-1, Landsat 7, Meteor 3M/Stratospheric Aerosol and Gas Experiment III (SAGE III). the Quick Scatterometer (QuikScat), the Quick Total Ozone Mapping Spectrometer (Quik-TOMS), and the Vegetation Canopy Lidar (VCL) missions. Volume 2 follows closely the format of Volume 1, providing a list of products and an introduction and overview descriptions of the instruments and data processing, all introductory to the core of the book, which presents the individual data product descriptions, organized into 11 topical chapters. The product descriptions are followed by five appendices, which provide contact information for the EOS data centers that will be archiving and distributing the data sets, contact information for the science points of contact for the data products, references, acronyms and abbreviations, and a data products index.

  4. Global Space-Based Inter-Calibration System Reflective Solar Calibration Reference: From Aqua MODIS to S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Angal, Amit; Butler, James; Cao, Changyong; Doelling, Daivd; Wu, Aisheng; Wu, Xiangqian

    2016-01-01

    The MODIS has successfully operated on-board the NASA's EOS Terra and Aqua spacecraft for more than 16 and 14 years, respectively. MODIS instrument was designed with stringent calibration requirements and comprehensive on-board calibration capability. In the reflective solar spectral region, Aqua MODIS has performed better than Terra MODIS and, therefore, has been chosen by the Global Space-based Inter-Calibration System (GSICS) operational community as the calibration reference sensor in cross-sensor calibration and calibration inter-comparisons. For the same reason, it has also been used by a number of earth observing sensors as their calibration reference. Considering that Aqua MODIS has already operated for nearly 14 years, it is essential to transfer its calibration to a follow-on reference sensor with a similar calibration capability and stable performance. The VIIRS is a follow-on instrument to MODIS and has many similar design features as MODIS, including their on-board calibrators (OBC). As a result, VIIRS is an ideal candidate to replace MODIS to serve as the future GSICS reference sensor. Since launch, the S-NPP VIIRS has already operated for more than 4 years and its overall performance has been extensively characterized and demonstrated to meet its overall design requirements. This paper provides an overview of Aqua MODIS and S-NPP VIIRS reflective solar bands (RSB) calibration methodologies and strategies, traceability, and their on-orbit performance. It describes and illustrates different methods and approaches that can be used to facilitate the calibration reference transfer, including the use of desert and Antarctic sites, deep convective clouds (DCC), and the lunar observations.

  5. Aqua 10 Years After Launch

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2013-01-01

    A little over ten years ago, in the early morning hours of May 4, 2002, crowds of spectators stood anxiously watching as the Delta II rocket carrying NASA's Aqua spacecraft lifted off from its launch pad at Vandenberg Air Force Base in California at 2:55 a.m. The rocket quickly went through a low-lying cloud cover, after which the main portion of the rocket fell to the waters below and the rockets second stage proceeded to carry Aqua south across the Pacific, onward over Antarctica, and north to Africa, where the spacecraft separated from the rocket 59.5 minutes after launch. Then, 12.5 minutes later, the solar array unfurled over Europe, and Aqua was on its way in the first of what by now have become over 50,000 successful orbits of the Earth.

  6. Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission

    NASA Technical Reports Server (NTRS)

    Anselm, William

    2003-01-01

    Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.

  7. Summary of EOS flight dynamics analysis

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.

    1995-01-01

    From a flight dynamics perspective, the Earth Observing System (EOS) spacecraft present a number of challenges to mission designers. The Flight Dynamics Support Branch of NASA GSFC has examined a number of these challenges, including managing the EOS constellation, disposing of the spacecraft at the end-of-life (EOL), and achieving the appropriate mission orbit given launch vehicle and ascent propulsion constraints. The EOS program consists of a number of spacecraft including EOS-AM, an ascending node spacecraft, EOS-PM, a descending node spacecraft, the EOS Chemistry mission (EOS-CHEM), the EOS Altimetry Laser (EOS-LALT), and the EOS-Altimetry Radar (EOS-RALT). The orbit characteristics of these missions are presented. In order to assure that downlinking data from each spacecraft will be possible without interference between any two spacecraft, a careful examination of the relationships between spacecraft and how to maintain the spacecraft in a configuration which would minimize these communications problems must be made. The FDSB has performed various analyses to determine whether the spacecraft will be in a position to interfere with each other, how the orbit dynamics will change the relative positioning of the spacecraft over their lifetimes, and how maintenance maneuvers could be performed, if needed, to minimize communications problems. Prompted by an activity at NASA HQ to set guidelines for spacecraft regarding their end-of-life dispositions, much analysis has also been performed to determine the spacecraft lifetime of EOS-AM1 under various conditions, and to make suggestions regarding the spacecraft disposal. In performing this analysis, some general trends have been observed in lifetime calculations. The paper will present the EOS-AM1 lifetime results, comment on general reentry conclusions, and discuss how these analyses reflect on the HQ NMI. Placing the EOS spacecraft into their respective mission orbits involves some intricate maneuver planning to

  8. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    NASA Technical Reports Server (NTRS)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  9. AquaSimian Poster Artist Concept

    NASA Image and Video Library

    2015-03-11

    This artist's rendering shows a concept for a robot called AquaSimian that would assist with hazardous situations underwater. The concept is derived from RoboSimian, a land-based robot designed and built at the Jet Propulsion Laboratory in Pasadena, California. RoboSimian is shown in PIA19313. http://photojournal.jpl.nasa.gov/catalog/PIA19315

  10. Enabling data access and interoperability at the EOS Land Processes Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Gallo, K. P.

    2009-12-01

    The NASA Earth Observation System (EOS) is a long-term, interdisciplinary research mission to study global-scale processes that drive Earth systems. This includes a comprehensive data and information system to provide Earth science researchers with easy, affordable, and reliable access to the EOS and other Earth science data through the EOS Data and Information System (EOSDIS). Data products from EOS and other NASA Earth science missions are stored at Distributed Active Archive Centers (DAACs) to support interactive and interoperable retrieval and distribution of data products. ¶ The Land Processes DAAC (LP DAAC), located at the US Geological Survey’s (USGS) Earth Resources Observation and Science (EROS) Center is one of the twelve EOSDIS data centers, providing both Earth science data and expertise, as well as a mechanism for interaction between EOS data investigators, data center specialists, and other EOS-related researchers. The primary mission of the LP DAAC is stewardship for land data products from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua observation platforms. The co-location of the LP DAAC at EROS strengthens the relationship between the EOSDIS and USGS Earth science activities, linking the basic research and technology development mission of NASA to the operational mission requirements of the USGS. This linkage, along with the USGS’ role as steward of land science data such as the Landsat archive, will prove to be especially beneficial when extending both USGS and EOSDIS data records into the Decadal Survey era. ¶ This presentation provides an overview of the evolution of LP DAAC efforts over the years to improve data discovery, retrieval and preparation services, toward a future of integrated data interoperability between EOSDIS data centers and data holdings of the USGS and its partner agencies. Historical developmental

  11. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  12. Eos Chasma - False Color

    NASA Image and Video Library

    2014-12-16

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Eos Chasma.

  13. HDF-EOS 5 Validator

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A computer program partly automates the task of determining whether an HDF-EOS 5 file is valid in that it conforms to specifications for such characteristics as attribute names, dimensionality of data products, and ranges of legal data values. ["HDF-EOS" and variants thereof are defined in "Converting EOS Data From HDF-EOS to netCDF" (GSC-15007-1), which is the first of several preceding articles in this issue of NASA Tech Briefs.] Previously, validity of a file was determined in a tedious and error-prone process in which a person examined human-readable dumps of data-file-format information. The present software helps a user to encode the specifications for an HDFEOS 5 file, and then inspects the file for conformity with the specifications: First, the user writes the specifications in Extensible Markup Language (XML) by use of a document type definition (DTD) that is part of the program. Next, the portion of the program (denoted the validator) that performs the inspection is executed, using, as inputs, the specifications in XML and the HDF-EOS 5 file to be validated. Finally, the user examines the output of the validator.

  14. HDF-EOS Dump Tools

    NASA Astrophysics Data System (ADS)

    Prasad, U.; Rahabi, A.

    2001-05-01

    The following utilities developed for HDF-EOS format data dump are of special use for Earth science data for NASA's Earth Observation System (EOS). This poster demonstrates their use and application. The first four tools take HDF-EOS data files as input. HDF-EOS Metadata Dumper - metadmp Metadata dumper extracts metadata from EOS data granules. It operates by simply copying blocks of metadata from the file to the standard output. It does not process the metadata in any way. Since all metadata in EOS granules is encoded in the Object Description Language (ODL), the output of metadmp will be in the form of complete ODL statements. EOS data granules may contain up to three different sets of metadata (Core, Archive, and Structural Metadata). HDF-EOS Contents Dumper - heosls Heosls dumper displays the contents of HDF-EOS files. This utility provides detailed information on the POINT, SWATH, and GRID data sets. in the files. For example: it will list, the Geo-location fields, Data fields and objects. HDF-EOS ASCII Dumper - asciidmp The ASCII dump utility extracts fields from EOS data granules into plain ASCII text. The output from asciidmp should be easily human readable. With minor editing, asciidmp's output can be made ingestible by any application with ASCII import capabilities. HDF-EOS Binary Dumper - bindmp The binary dumper utility dumps HDF-EOS objects in binary format. This is useful for feeding the output of it into existing program, which does not understand HDF, for example: custom software and COTS products. HDF-EOS User Friendly Metadata - UFM The UFM utility tool is useful for viewing ECS metadata. UFM takes an EOSDIS ODL metadata file and produces an HTML report of the metadata for display using a web browser. HDF-EOS METCHECK - METCHECK METCHECK can be invoked from either Unix or Dos environment with a set of command line options that a user might use to direct the tool inputs and output . METCHECK validates the inventory metadata in (.met file) using The

  15. Radiometric Measurement Comparisons Using Transfer Radiometers in Support of the Calibration of NASA's Earth Observing System (EOS) Sensors

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Brown, Steven W.; Yoon, Howard W.; Barnes, Robert A.; Markham, Brian L.; Biggar, Stuart F.; Zalewski, Edward F.; Spyak, Paul R.; Cooper, John W.; hide

    1999-01-01

    EOS satellite instruments operating in the visible through the shortwave infrared wavelength regions (from 0.4 micrometers to 2.5 micrometers) are calibrated prior to flight for radiance response using integrating spheres at a number of instrument builder facilities. The traceability of the radiance produced by these spheres with respect to international standards is the responsibility of the instrument builder, and different calibration techniques are employed by those builders. The National Aeronautics and Space Administration's (NASA's) Earth Observing System (EOS) Project Science Office, realizing the importance of preflight calibration and cross-calibration, has sponsored a number of radiometric measurement comparisons, the main purpose of which is to validate the radiometric scale assigned to the integrating spheres by the instrument builders. This paper describes the radiometric measurement comparisons, the use of stable transfer radiometers to perform the measurements, and the measurement approaches and protocols used to validate integrating sphere radiances. Stable transfer radiometers from the National Institute of Standards and Technology, the University of Arizona Optical Sciences Center Remote Sensing Group, NASA's Goddard Space Flight Center, and the National Research Laboratory of Metrology in Japan, have participated in these comparisons. The approaches used in the comparisons include the measurement of multiple integrating sphere lamp levels, repeat measurements of select lamp levels, the use of the stable radiometers as external sphere monitors, and the rapid reporting of measurement results. Results from several comparisons are presented. The absolute radiometric calibration standard uncertainties required by the EOS satellite instruments are typically in the +/- 3% to +/- 5% range. Preliminary results reported during eleven radiometric measurement comparisons held between February 1995 and May 1998 have shown the radiance of integrating spheres

  16. On-Orbit Performance and Calibration Improvements For the Reflective Solar Bands of Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper

  17. NASA Satellite Image of Japan Captured March 11, 2011

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite passed over Japan one hour and 41 minutes before the quake hit. At the time Aqua passed overhead, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible of Japan covered by clouds. The image was taken at 0405 UTC on March 11 (1:05 p.m. local time Japan /11:05 p.m. EST March 10). The quake hit at 2:46 p.m. local time/Japan. Satellite: Aqua Credit: NASA/GSFC/Aqua NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  18. MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.

  19. Enhancements to NASA's Land Atmosphere Near Real-Time Capability for EOS (LANCE)

    NASA Technical Reports Server (NTRS)

    Davies, Diane; Michael, Karen; Schmaltz, Jeffrey; Boller, Ryan A.; Masuoka, Ed; Ye, Gang; Roman, Miguel; Vermote, Eric; Harrison, Sherry; Rinsland, Pamela; hide

    2016-01-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) supports application users interested in monitoring a wide variety of natural and man-made phenomena. Near Real- Time (NRT) data and imagery from the AIRS, AMSR2, MISR, MLS, MODIS, OMPS, OMI and VIIRS instruments are available much quicker than routine processing allows. Most data products are available within 3 hours from satellite observation. NRT imagery are generally available 3-5 hours after observation. This article describes the LANCE and the enhancements made to the LANCE over the last year. These enhancements include the addition of NRT products from AMSR2, MISR, OMPS and VIIRS. In addition, the selection of LANCE NRT imagery that can be interactively viewed through Worldview and the Global Imagery Browse Services (GIBS) has been expanded. Next year, data from the MOPITT will be added to the LANCE.

  20. Fractional Snowcover Estimates from Earth Observing System (EOS) Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System (EOS) Terra and Aqua missions has shown considerable capability for mapping snowcover. The typical approach that has used, along with other criteria, the Normalized Snow Difference Index (NDSI) that takes the difference between 500 meter observations at 1.64 micrometers (MODIS band 6) and 0.555 micrometers (MODIS band 4) over the sum of these observations to determine whether MODIS pixels are snowcovered or not in mapping the extent of snowcover. For many hydrological and climate studies using remote sensing of snowcover, it is desirable to assess if the MODIS snowcover observations could not be enhanced by providing the fraction of snowcover in each MODIS observation (pixel). Pursuant to this objective studies have been conducted to assess whether there is sufficient "signal%o in the NDSI parameter to provide useful estimates of fractional snowcover in each MODIS 500 meter pixel. To accomplish this objective high spatial resolution (30 meter) Landsat snowcover observations were used and co-registered with MODIS 500 meter pixels. The NDSI approach was used to assess whether a Landsat pixel was or was not snowcovered. Then the number of snowcovered Landsat pixels within a MODIS pixel was used to determine the fraction of snowcover within each MODIS pixel. The e results were then used to develop statistical relationships between the NDSI value for each 500 meter MODIS pixel and the fraction of snowcover in the MODIS pixel. Such studies were conducted for three widely different areas covered by Landsat scenes in Alaska, Russia, and the Quebec Province in Canada. The statistical relationships indicate that a 10 percent accuracy can be attained. The variability in the statistical relationship for the three areas was found to be remarkably similar (-0.02 for mean error and less than 0.01 for mean absolute error and standard deviation). Independent tests of the relationships were

  1. Synergism of MODIS Aerosol Remote Sensing from Terra and Aqua

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.

    2003-01-01

    The MODerate-resolution Imaging Spectro-radiometer (MODIS) sensors, aboard the Earth Observing System (EOS) Terra and Aqua satellites, are showing excellent competence at measuring the global distribution and properties of aerosols. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution from MODIS daytime data over land and ocean surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 microns over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. Since the beginning of its operation, the quality of Terra-MODIS aerosol products (especially AOT) have been evaluated periodically by cross-correlation with equivalent data sets acquired by ground-based (and occasionally also airborne) sunphotometers, particularly those coordinated within the framework of the AErosol Robotic NETwork (AERONET). Terra-MODIS AOT data have been found to meet or exceed pre-launch accuracy expectations, and have been applied to various studies dealing with local, regional, and global aerosol monitoring. The results of these Terra-MODIS aerosol data validation efforts and studies have been reported in several scientific papers and conferences. Although Aqua-MODIS is still young, it is already yielding formidable aerosol data products, which are also subjected to careful periodic evaluation similar to that implemented for the Terra-MODIS products. This paper presents results of validation of Aqua-MODIS aerosol products with AERONET, as well as comparative evaluation against corresponding Terra-MODIS data. In addition, we show interesting independent and synergistic applications of MODIS aerosol data from

  2. The Development of Two Science Investigator-led Processing Systems (SIPS) for NASA's Earth Observation System (EOS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2004-01-01

    In 2001, NASA Goddard Space Flight Center's Laboratory for Terrestrial Physics started the construction of a science Investigator-led Processing System (SIPS) for processing data from the Ozone Monitoring Instrument (OMI) which will launch on the Aura platform in mid 2004. The Ozone Monitoring Instrument (OMI) is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura mission. It will continue the Total Ozone Monitoring System (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry and climate. OMI measurements will be highly synergistic with the other instruments on the EOS Aura platform. The LTP previously developed the Moderate Resolution Imaging Spectrometer (MODIS) Data Processing System (MODAPS), which has been in full operations since the launches of the Terra and Aqua spacecrafts in December, 1999 and May, 2002 respectively. During that time, it has continually evolved to better support the needs of the MODIS team. We now run multiple instances of the system managing faster than real time reprocessings of the data as well as continuing forward processing. The new OMI Data Processing System (OMIDAPS) was adapted from the MODAPS. It will ingest raw data from the satellite ground station and process it to produce calibrated, geolocated higher level data products. These data products will be transmitted to the Goddard Distributed Active Archive Center (GDAAC) instance of the Earth Observing System (EOS) Data and Information System (EOSDIS) for long term archive and distribution to the public. The OMIDAPS will also provide data distribution to the OMI Science Team for quality assessment, algorithm improvement, calibration, etc. We have taken advantage of lessons learned from the MODIS experience and software already developed for MODIS. We made some changes in the hardware system organization, database and

  3. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  4. Enhancement to Hitran to Support the NASA EOS Program

    NASA Technical Reports Server (NTRS)

    Kirby, Kate P.; Rothman, Laurence S.

    1998-01-01

    The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.

  5. Enhancement to HITRAN to Support the NASA EOS Program

    NASA Technical Reports Server (NTRS)

    Kirby, Kate P.; Rothman, Laurence S.

    1999-01-01

    The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.

  6. Follow That Satellite: EO-1 Maneuvers Into Close Formation With Landsat-7

    NASA Technical Reports Server (NTRS)

    DeFazio, Robert L.; Owens, Skip; Good, Susan; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    As the Landsat-7 (LS-7) spacecraft continued NASA's historic program of earth imaging begun over three decades ago, NASA launched the Earth Observing-1 (EO-1) spacecraft carrying examples of the next generation of LS instruments. The validation method for these instruments was to have EO-1 fly in a close formation behind LS-7 on the same World Reference System (WRS) path. From that formation hundreds of near-coincident images would be taken by each spacecraft and compared to evaluate improvements in the EO-1 instruments. This paper will address the mission analysis required to launch and maneuver EO-1 into the formation with LS-7 where instrument validation was to occur plus a summary of completing the formation acquisition. Each EO-1 launch opportunity that occurred on a different day of a LS-7 16-day repeat cycle required a separate and distinct maneuver profile.

  7. An Overview of the EOS Data Dissemination Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H.K.; Pfister, Robin; Weinstein, Beth

    2008-01-01

    The Earth Observing System Data and Information System (EOSDIS) is the primary data system serving the broad-scope of NASA s Earth Observing System (EOS) program and a significant portion of the "heritage" Earth science data. EOSDIS was designed to support the Earth sciences within NASA s Science Mission Directorate (previously the Earth Science Enterprise (ESE) and Mission to Planet Earth). The EOS Program was NASA s contribution to the United States Global Change Research Program (USGCRP) enacted by Congress in 1990 as part of the Global Change Act. ESE s objective was to launch a series of missions to help answer fundamental global change questions such as "How is Earth changing?" and "What are the consequences for life on Earth?" resulting support of this objective, EOSDIS distributes a wide variety of data to a diverse community.

  8. KSC-02pd0406

    NASA Image and Video Library

    2002-03-01

    VANDENBERG AFB, CALIF. - On the SLC-2 launch pad, the first half of the Delta II fairing for the Aqua-EOS satellite arrives at the gantry. The Delta II will launch the Aqua-EOS satellite. Aqua is one of a series of spacebased platforms that are central to NASA's Earth Science Enterprise (ESE), a long-term study of the scope, dynamics and implications of global change. The Aqua program is composed of Aqua and other spacecraft (including Terra and Aura) and a data distribution system (ESDIS, and Mission Operations Center Implementation Team). Flying in an orbit that covers the globe every 16 days, Aqua will provide a six-year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow multidisciplinary teams of scientists and researchers from North and South America, Asia, Australia and Europe to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. Launch is scheduled for April 26 from Vandenberg

  9. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    NASA Technical Reports Server (NTRS)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  10. MODIS Land Data Products: Generation, Quality Assurance and Validation

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Wolfe, Robert; Morisette, Jeffery; Sinno, Scott; Teague, Michael; Saleous, Nazmi; Devadiga, Sadashiva; Justice, Christopher; Nickeson, Jaime

    2008-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described.

  11. Description of the CERES Ocean Validation Experiment (COVE), A Dedicated EOS Validation Test Site

    NASA Astrophysics Data System (ADS)

    Rutledge, K.; Charlock, T.; Smith, B.; Jin, Z.; Rose, F.; Denn, F.; Rutan, D.; Haeffelin, M.; Su, W.; Xhang, T.; Jay, M.

    2001-12-01

    Meteorological Organization, NASA's robotic aerosol measurement program - AERONET, NOAA's GPS Water Vapor Demonstration Network, NOAA's National Buoy Data Center and GEWEX's Global Aerosol Climate Program. Other EOS projects have utilized the COVE platform for validation measurements (short term: MODIS, MISR intermediate term: SEAWIFS). A longer term measurement program for the AIRS instrument to be deployed on the AQUA satellite is underway. The poster will detail the unique measurement and infrastructure assets of the COVE site and present example 1.5 year time series of the major radiometric parameters. Lastly, the near term measurement augmentations that are anticipated at COVE will be discussed.

  12. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  13. Enhancements to NASA's Land Atmosphere Near real-time Capability for EOS (LANCE)

    NASA Astrophysics Data System (ADS)

    Michael, K.; Davies, D. K.; Schmaltz, J. E.; Boller, R. A.; Mauoka, E.; Ye, G.; Vermote, E.; Harrison, S.; Rinsland, P. L.; Protack, S.; Durbin, P. B.; Justice, C. O.

    2016-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) supports application users interested in monitoring a wide variety of natural and man-made phenomena. Near Real-Time (NRT) data and imagery from the AIRS, AMSR2, MISR, MLS, MODIS, OMI and VIIRS instruments are available much quicker than routine processing allows. Most data products are available within 3 hours from satellite observation. NRT imagery are generally available 3-5 hours after observation. This article describes LANCE and enhancements made to LANCE over the last year. These enhancements include: the addition of MISR L1 Georeferenced Radiance and L2 Cloud Motion Vector products, AMSR2 Unified L2B Half-Orbit 25 km EASE-Grid Surface Soil Moisture products and VIIRS VIIRS Day/Night Band, Land Surface Reflectance and Corrected Surface reflectance products. In addition, the selection of LANCE NRT imagery that can be interactively viewed through Worldview and the Global Imagery Browse Services (GIBS) has been expanded. LANCE is also working to ingest and process data from OMPS.

  14. Towards a Comprehensive Dynamic-chemistry Assimilation for Eos-Chem: Plans and Status in NASA's Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.

  15. EOS Laser Atmosphere Wind Sounder (LAWS) investigation

    NASA Technical Reports Server (NTRS)

    Emmitt, George D.

    1991-01-01

    The related activities of the contract are outlined for the first year. These include: (1) attend team member meetings; (2) support EOS Project with science related activities; (3) prepare and Execution Phase plan; and (4) support LAWS and EOSDIS related work. Attached to the report is an appendix, 'LAWS Algorithm Development and Evaluation Laboratory (LADEL)'. Also attached is a copy of a proposal to the NASA EOS for 'LAWS Sampling Strategies and Wind Computation Algorithms -- Storm-Top Divergence Studies. Volume I: Investigation and Technical Plan, Data Plan, Computer Facilities Plan, Management Plan.'

  16. KSC-02pd0408

    NASA Image and Video Library

    2002-03-01

    VANDENBERG AFB, CALIF. - On the SLC-2 launch pad, the first half of the Delta II fairing for the Aqua-EOS satellite nears the top of the gantry. The Delta II will launch the Aqua-EOS satellite, one of a series of spacebased platforms that are central to NASA's Earth Science Enterprise (ESE), a long-term study of the scope, dynamics and implications of global change. The Aqua program is composed of Aqua and other spacecraft (including Terra and Aura) and a data distribution system (ESDIS, and Mission Operations Center Implementation Team). Flying in an orbit that covers the globe every 16 days, Aqua will provide a six-year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow multidisciplinary teams of scientists and researchers from North and South America, Asia, Australia and Europe to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. Launch is scheduled for April 26 from Vandenberg

  17. HDF-EOS 2 and HDF-EOS 5 Compatibility Library

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    The HDF-EOS 2 and HDF-EOS 5 Compatibility Library contains C-language functions that provide uniform access to HDF-EOS 2 and HDF-EOS 5 files through one set of application programming interface (API) calls. ("HDFEOS 2" and "HDF-EOS 5" are defined in the immediately preceding article.) Without this library, differences between the APIs of HDF-EOS 2 and HDF-EOS 5 would necessitate writing of different programs to cover HDF-EOS 2 and HDF-EOS 5. The API associated with this library is denoted "he25." For nearly every HDF-EOS 5 API call, there is a corresponding he25 API call. If a file in question is in the HDF-EOS 5 format, the code reverts to the corresponding HDF-EOS 5 call; if the file is in the HDF-EOS 2 format, the code translates the arguments to HDF-EOS 2 equivalents (if necessary), calls the HDFEOS 2 call, and retranslates the results back to HDF-EOS 5 (if necessary).

  18. Enabling the Continuous EOS-SNPP Satellite Data Record thru EOSDIS Services

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Ho, E. L.

    2015-12-01

    Following Suomi National Polar-Orbiting Partnership (SNPP) launch of October 2011, the role of the NASA Science Data Segment (SDS) focused primarily on evaluation of the sensor data records (SDRs) and environmental data records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program as to their suitability for Earth system science. The evaluation has been completed for Visible Infrared Imager Radiometer Suite (VIIRS), Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), and Ozone Mapper/Profiler Suite (OMPS) Nadir instruments. Since launch, the SDS has also been processing, archiving and distributing data from the Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments and this work is planned to continue through the life of the mission. As NASA transitions to the production of standard, Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP, the Suomi NPP Science Team (ST) will need data processing and production facilities to produce the new science products they develop. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean. Atmosphere, Ozone, and Sounder will produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products and provide the products to the NASA's Distributed Active Archive Centers (DAACs) for distribution to the user community. The SIPS will ingest EOS compatible Level 0 data from EOS Data Operations System (EDOS) for their data processing. A key feature is the use of Earth Observing System Data and Information System (EOSDIS) services for the continuous EOS-SNPP satellite data record. This allows users to use the same tools and interfaces on SNPP as they would on the entire NASA Earth Science data collection in EOSDIS.

  19. Applications of the EOS SAR to monitoring global change

    NASA Technical Reports Server (NTRS)

    Schier, Marguerite; Way, Jobea; Holt, Benjamin

    1991-01-01

    The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.

  20. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  1. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    1999-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program

  2. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  3. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  4. Production and Distribution of NASA MODIS Remote Sensing Products

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert

    2007-01-01

    The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board NASA's Earth Observing System (EOS) Terra and Aqua satellites make key measurements for understanding the Earth's terrestrial ecosystems. Global time-series of terrestrial geophysical parameters have been produced from MODIS/Terra for over 7 years and for MODIS/Aqua for more than 4 1/2 years. These well calibrated instruments, a team of scientists and a large data production, archive and distribution systems have allowed for the development of a new suite of high quality product variables at spatial resolutions as fine as 250m in support of global change research and natural resource applications. This talk describes the MODIS Science team's products, with a focus on the terrestrial (land) products, the data processing approach and the process for monitoring and improving the product quality. The original MODIS science team was formed in 1989. The team's primary role is the development and implementation of the geophysical algorithms. In addition, the team provided feedback on the design and pre-launch testing of the instrument and helped guide the development of the data processing system. The key challenges the science team dealt with before launch were the development of algorithms for a new instrument and provide guidance of the large and complex multi-discipline processing system. Land, Ocean and Atmosphere discipline teams drove the processing system requirements, particularly in the area of the processing loads and volumes needed to daily produce geophysical maps of the Earth at resolutions as fine as 250 m. The processing system had to handle a large number of data products, large data volumes and processing loads, and complex processing requirements. Prior to MODIS, daily global maps from heritage instruments, such as Advanced Very High Resolution Radiometer (AVHRR), were not produced at resolutions finer than 5 km. The processing solution evolved into a combination of

  5. Topographic data requirements for EOS global change research

    USGS Publications Warehouse

    Gesch, Dean B.

    1994-01-01

    This document is a result of Earth Observing System Data and Information System (EOSDIS) Version 0 activities of the Land Processes Distributed Active Archive Center at the U.S. Geological Survey's EROS Data Center. A relatively small part of the Version 0 funding provided by NASA is used to address topographic data issues related to EOS. These issues include identifying and improving access to existing sources of topographic data, data generation, facilitating the use of topographic data in global change research by demonstrating derivative products, and inventorying the specific topographic data requirements of EOS investigators. There is a clear need for global topographic data in EOSDIS. Only 10 percent of the global land surface is covered by high-resolution data that are available to the global change science community. Alternative sources for new data exist or have been proposed; however, none of them alone can fulfill the data requirements by the launch of the first EOS platform in 4 years. There is no operational provider of all the source data that are required. Even if appropriate global source data existed, a concerted production effort would be necessary to ensure the existence of the requisite topographic data before EOS launch. Additionally, no funding from NASA or any other agency has been appropriated for a new mapping mission or for other means of data acquisition. This effort to document requirements is an initial step toward understanding the severity of the data shortage. It is well beyond the scope of Version 0 funding and capabilities to provide the required data in the proper timeframe. The shortage of data and the lack of a plan for providing the necessary topographic data through EOSDIS in time for launch are issues that must be addressed by the EOS program.

  6. Middle East Health and Air Quality Utilizing NASA EOS in the Saharan and Arabian Deserts to Examine Dust Particle Size and Mineralogy of Aerosols

    NASA Technical Reports Server (NTRS)

    Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew

    2012-01-01

    Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.

  7. A Summary of NASA Summer Faculty Fellowship Work in the E.O. Office and in the Educator Resources Center

    NASA Technical Reports Server (NTRS)

    Thompson, H. Wendell, Sr.

    2005-01-01

    The Office of Equal Opportunity supports a number of summer programs which are designed to: 1.) Increase the number of elementary and secondary students and teachers who are involved in NASA-related education opportunities; and 2.) Support higher education research capability and opportunities that attract and prepare increasing numbers of students and faculty for NASA-related careers. A part of my work in the E.O. office involved the evaluation of several of the programs in order to determine their level of success and to make recommendations for the improvement of those programs where necessary. As a part of the involvement with one of the programs, the PSTI, I had the great opportunity to interact with the students in a number of their sessions which involved problem-based learning in science, mathematics and technology. A summary of the evaluation of those programs is included in this report. The second part of my work involved assisting the coordinator of the Educator Resource Center at the Space and Rocket Center. I participated in space science workshops for in-service and pre-service teachers. There educational resources were made available to the participants including many hands-on activities that hey could take back to their classes. I participated in the three hour workshops that were offered on Tuesdays and Thursdays of each week, although there were workshops on other days. On Mondays, Wednesdays, and Fridays, I worked in the E.O. office. As a result of my work in the ERC, I developed a Directed Reading PowerPoint Lesson Plan Guide involving remote sensing entitled, Echo the Bat. This was based on a NASA published children's book entitled Echo The Bat, written by Ginger Butcher. I have included a description of the lesson in this report. A summary of the evaluations of several of the summer programs supported by the Equal Opportunity office are included in this report.

  8. EoC Study Update to Examine the Cost, Schedule and Technical Changes to NASA Projects

    NASA Technical Reports Server (NTRS)

    Bitten, Bob; Emmons, Debra; Shinn, Stephen; Scolese, Chris

    2018-01-01

    The original National Aeronautics and Space Administration (NASA) Explanation of Change (EoC) study was conducted in 2010 to understand the underlying causes of cost and schedule growth. The first study consisted of 25 missions launched from 2000 to 2010 and looked at the events that led to growth. These events were categorized into different bins that were rolled up to quantify whether the growth was due to internal planning, or internal execution, or from external forces and found that the growth was evenly distributed among those three categories. The result of the study presented nine considerations focused at reducing growth due to project external events and internal planning events. Although no one 'magic bullet' consideration was discovered in the previous work, the nine considerations taken as a whole were postulated to help reduce cost and schedule change in future NASA missions. A recent update was conducted that included investigating 8 missions developed since the previous study to determine if the results were different. Cost, schedule, and mass increases were analyzed from the start of Phase B through Preliminary Design Review and Critical Design Review to Launch. As shown in this paper, the results are better with overall cost and schedule growth being reduced. The paper will show a comparison of the previous results to the updated results to show specific reductions and provide an explanation of which recommendations were followed.

  9. GDAL Enhancements for Interoperability with EOS Data

    NASA Astrophysics Data System (ADS)

    Tisdale, M.; Mathews, T. J.; Tisdale, B.; Sun, M.; Yang, C. P.; Lee, H.; Habermann, T.

    2015-12-01

    Historically, Earth Observing Satellite (EOS) data products have been difficult to consume by GIS tools, weather commercial or open-source. This has resulted in a reduced acceptance of these data products by GIS and general user communities. Common problems and challenges experienced by these data users include difficulty when: Consuming data products from NASA Distributed Active Archive Centers (DAACs) that pre-date modern application software with commercial and open-source geospatial tools; Identifying an initial approach for developing a framework and plug-ins that interpret non-compliant data; Defining a methodology that is extensible across NASA Earth Observing System Data and Information System (EOSDIS), scientific communities, and GIS communities by enabling other data centers to construct their own plug-ins and adjust specific data products; and Promoting greater use of NASA Data and new analysis utilizing GIS tools. To address these challenges and to make EOS data products more accessible and interpretable by GIS applications, a collaborative approach has been taken that includes the NASA Langley Atmospheric Science Data Center (ASDC), Esri, George Mason University (GMU), and the Hierarchical Data Format (HDF) Group to create a framework and plugins to be applied to Geospatial Data Abstraction Library (GDAL). This framework and its plugins offer advantages of extensibility within NASA EOSDIS, permitting other data centers to construct their own plugins necessary to adjust their data products. In this session findings related to the framework and the development of GDAL plugins will be reviewed. Specifically, this session will offer a workshop to review documentation and training materials that have been generated for the purpose of guiding other NASA DAACs through the process of constructing plug-ins consistent with the framework as well as a review of the certification process by which the plugins can be independently verified as properly converting the

  10. EOS MLS Lessons Learned: Design Ideas for Safer and Lower Cost Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dominick

    2012-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) is a complex instrument with a front end computer and 32 subsystem computers. MLS is one of four instruments on NASA's EOS Aura spacecraft With almost 8 years in orbit, MLS has a few lessons learned which can be applied during the design phase of future instruments to effect better longevity, more robust operations and a significant cost benefit during operations phase.

  11. Quantifying the Bering Strait Oceanic Fluxes and their Impacts on Sea-Ice and Water Properties in the Chukchi and Beaufort Seas and Western Arctic Ocean for 2013-2014

    DTIC Science & Technology

    2013-09-30

    Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard Space...of Arctic bathymetry aids scientists and map makers, Eos Trans., 81(9), 89, 93, 96. Weingartner, T. J., S. Danielson, Y. Sasaki, V. Pavlov , and M

  12. Utilizing NASA EOS to Assist in Determining Suitable Planting Locations for Bottomland Hardwood Trees in St. Bernard Parish, Louisiana

    NASA Astrophysics Data System (ADS)

    Reahard, R. R.; Arguelles, M.; Ewing, M.; Kelly, C.; Strong, E.

    2012-12-01

    St. Bernard Parish, located in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a variety of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have focused not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for restoring coastal forests. Using NASA Earth Observing Systems (EOS), Natural Resource Conservation Service (NRCS) soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of bottomland hardwood trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using Digital Elevation Models derived from LIDAR data, and determining existing land cover in the study area from classified Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from a single low-altitude swath was used to assess the health of vegetation over an area near the Mississippi River Gulf Outlet Canal (MRGO) and Bayou La Loutre. Historic extent of coastal forests was also mapped using aerial photos collected between 1952 and 1956. The final products demonstrated yet another application of NASA EOS in the rebuilding and monitoring of coastal ecosystems in

  13. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  14. The Earth Observing System. [instrument investigations for flight on EOS-A satellite

    NASA Technical Reports Server (NTRS)

    Wilson, Stan; Dozier, Jeff

    1991-01-01

    The Earth Observing System (EOS), the centerpiece of NASA's Mission to Planet Earth, is to study the interactions of the atmosphere, land, oceans, and living organisms, using the perspective of space to observe the earth as a global environmental system. To better understand the role of clouds in global change, EOS will measure incoming and emitted radiation at the top of the atmosphere. Then, to study characteristics of the atmosphere that influence radiation transfer between the top of the atmosphere and the surface, EOS wil observe clouds, water vapor and cloud water, aerosols, temperature and humidity, and directional effects. To elucidate the role of anthropogenic greenhouse gas and terrestrial and marine plants as a source or sink for carbon, EOS will observe the biological productivity of lands and oceans. EOS will also study surface properties that affect biological productivity at high resolution spatially and spectrally.

  15. Observing the Earth from Afar with NASA's Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Boller, Ryan; Baynes, Kathleen; King, Benjamin; Rice, Zachary

    2017-01-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land, Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  16. Observing the Earth from afar with NASA's Worldview

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.

    2017-12-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  17. Consistency of two global MODIS aerosol products over ocean on Terra and Aqua CERES SSF datasets

    NASA Astrophysics Data System (ADS)

    Ignatov, Alexander; Minnis, Patrick; Wielicki, Bruce; Loeb, Norman G.; Remer, Lorraine A.; Kaufman, Yoram J.; Miller, Walter F.; Sun-Mack, Sunny; Laszlo, Istvan; Geier, Erika B.

    2004-12-01

    MODIS aerosol retrievals over ocean from Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side by side. The primary M product is generated by subsetting and remapping the multi-spectral (0.44 - 2.1 μm) MOD04 aerosols onto CERES footprints. MOD04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary (AVHRR-like) A product is generated in only two MODIS bands: 1 and 6 on Terra, and ` and 7 on Aqua. The A processing uses NASA/LaRC cloud-screening and NOAA/NESDIS single channel aerosol algorthm. The M and A products have been documented elsewhere and preliminarily compared using two weeks of global Terra CERES SSF (Edition 1A) data in December 2000 and June 2001. In this study, the M and A aerosol optical depths (AOD) in MODIS band 1 and (0.64 μm), τ1M and τ1A, are further checked for cross-platform consistency using 9 days of global Terra CERES SSF (Edition 2A) and Aqua CERES SSF (Edition 1A) data from 13 - 21 October 2002.

  18. Transformation of HDF-EOS metadata from the ECS model to ISO 19115-based XML

    NASA Astrophysics Data System (ADS)

    Wei, Yaxing; Di, Liping; Zhao, Baohua; Liao, Guangxuan; Chen, Aijun

    2007-02-01

    Nowadays, geographic data, such as NASA's Earth Observation System (EOS) data, are playing an increasing role in many areas, including academic research, government decisions and even in people's every lives. As the quantity of geographic data becomes increasingly large, a major problem is how to fully make use of such data in a distributed, heterogeneous network environment. In order for a user to effectively discover and retrieve the specific information that is useful, the geographic metadata should be described and managed properly. Fortunately, the emergence of XML and Web Services technologies greatly promotes information distribution across the Internet. The research effort discussed in this paper presents a method and its implementation for transforming Hierarchical Data Format (HDF)-EOS metadata from the NASA ECS model to ISO 19115-based XML, which will be managed by the Open Geospatial Consortium (OGC) Catalogue Services—Web Profile (CSW). Using XML and international standards rather than domain-specific models to describe the metadata of those HDF-EOS data, and further using CSW to manage the metadata, can allow metadata information to be searched and interchanged more widely and easily, thus promoting the sharing of HDF-EOS data.

  19. Validation of EOS Aqua AMSR Sea Ice Products for East Antarctica

    NASA Technical Reports Server (NTRS)

    Massom, Rob; Lytle, Vicky; Allison, Ian; Worby, Tony; Markus, Thorsten; Scambos, Ted; Haran, Terry; Enomoto, Hiro; Tateyama, Kazu; Pfaffling, Andi

    2004-01-01

    This paper presents results from AMSR-E validation activities during a collaborative international cruise onboard the RV Aurora Australis to the East Antarctic sea ice zone (64-65 deg.S, 110-120 deg.E) in the early Austral spring of 2003. The validation strategy entailed an IS-day survey of the statistical characteristics of sea ice and snowcover over a Lagrangian grid 100 x 50 km in size (demarcated by 9 drifting ice beacons) i.e. at a scale representative of Ah4SR pixels. Ice conditions ranged h m consolidated first-year ice to a large polynya offshore from Casey Base. Data sets collected include: snow depth and snow-ice interface temperatures on 24 (?) randomly-selected floes in grid cells within a 10 x 50 km area (using helicopters); detailed snow and ice measurements at 13 dedicated ice stations, one of which lasted for 4 days; time-series measurements of snow temperature and thickness at selected sites; 8 aerial photography and thermal-IR radiometer flights; other satellite products (SAR, AVHRR, MODIS, MISR, ASTER and Envisat MERIS); ice drift data; and ancillary meteorological (ship-based, meteorological buoys, twice-daily radiosondes). These data are applied to a validation of standard AMSR-E ice concentration, snowcover thickness and ice-temperature products. In addition, a validation is carried out of ice-surface skin temperature products h m the NOAA AVHRR and EOS MODIS datasets.

  20. Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Ichoku, Charles; Randles, Cynthia; Yuan, Tianle; Da Silva, Arlindo M.; Colarco, Peter R.; Kim, Dongchul; Levy, Robert; Sayer, Andrew; Chin, Mian; hide

    2014-01-01

    Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.

  1. CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua

    NASA Astrophysics Data System (ADS)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Heck, Patrick W.; Doelling, David R.; Trepte, Qing Z.

    2004-02-01

    The micro- and macrophysical properties of clouds play a crucial role in Earth"s radiation budget. The NASA Clouds and Earth"s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  2. Terrestrial remote sensing science and algorithms planned for EOS/MODIS

    USGS Publications Warehouse

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen

    1994-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  3. On-orbit stability and performance of the Clouds and Earth's Radiant Energy System (CERES) instrument sensors onboard the Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Shankar, Mohan; Priestley, Kory; Smith, Nitchie; Thomas, Susan; Walikainen, Dale

    2014-09-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments onboard the Terra and Aqua spacecraft are part of the NASA Earth Observing System (EOS) constellation to make long-term observations of the earth. CERES measures the earth-reflected shortwave energy as well as the earth-emitted thermal energy, which are two components of the earth's radiation energy budget. These measurements are made by five instruments- Flight Models (FM) 1 and 2 onboard Terra, FMs 3 and 4 onboard Aqua and FM5 onboard Suomi NPP. Each instrument comprises three sensors that measure the radiances in different wavelength bands- a shortwave sensor that measures in the 0.3 to 5 micron band, a total sensor that measures all the incident energy (0.3-200 microns) and a window sensor that measures the water-vapor window region of 8 to 12 microns. The stability of the sensors is monitored through on-orbit calibration and validation activities. On-orbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for FM1-FM4 incorporate the latest corrections to the sensor responses using the calibration techniques. In this paper, we present the on-orbit performance stability as well as some validation studies used in deriving the CERES Edition-4 data products from all four instruments.

  4. NASA Catches Tropical Storm Leslie and Hurricane Michael in the Atlantic

    NASA Image and Video Library

    2017-12-08

    This visible image of Tropical Storm Leslie and Hurricane Michael was taken by the MODIS instrument aboard both NASA's Aqua and Terra satellites on Sept. 9 at 12:50 p.m. EDT. Credit: NASA Goddard/MODIS Rapid Response Team -- Satellite images from two NASA satellites were combined to create a full picture of Tropical Storm Leslie and Hurricane Michael spinning in the Atlantic Ocean. Imagery from NASA's Aqua and Terra satellites showed Leslie now past Bermuda and Michael in the north central Atlantic, and Leslie is much larger than the smaller, more powerful Michael. Images of each storm were taken by the Moderate Resolution Imaging Spectroradiometer, or MODIS instrument that flies onboard both the Aqua and Terra satellites. Both satellites captured images of both storms on Sept. 7 and Sept. 10. The image from Sept. 7 showed a much more compact Michael with a visible eye. By Sept. 10, the eye was no longer visible in Michael and the storm appeared more elongated from south to north. To continue reading go to: 1.usa.gov/NkUPqn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. What We Have Learned with 16 Years of EO-1 Hyperion

    NASA Astrophysics Data System (ADS)

    Ungar, S.

    2016-12-01

    The Earth Observing-One (EO-1) satellite, launched in November of 2000, will complete its sixteenth and final year of operation at the end of calendar year 2016. Observations from the Hyperion Imaging Spectrometer on board EO-1 have contributed to hundreds of papers in refereed journals, conference proceeds and other presentations. The EO-1 Hyperion imaging spectrometer is the first and longest operating instrument that provides visible to shortwave infrared science-grade data from orbit. Hyperion has been used to study a variety of natural and anthropogenic phenomena including hazards and catastrophes, agricultural health and productivity, ecological disturbance/development, and land use/land cover change. As an example, Hyperion has been used in hazard and catastrophe studies to monitor and assess effects of tsunamis, earthquakes, volcanic eruptions, mudslides, tornadoes, hurricanes, wild-fires (natural and human ignited), oil spills, and the aftermath of world trade center bombing. This presentation summarizes the current status of EO-1 Hyperion in terms of key scientific findings to date and presents future plans for exploiting the upward of 90,000 scenes expected to be archived at USGS EROS by the end of the mission. Hyperion serves as the heritage orbital spectrometer for future global platforms, including the proposed NASA Hyperspectral Infrared Imager (HyspIRI) and the forthcoming German satellite, EnMAP. A key EO-1 mission goal was to evaluate the ability of satellite high spectral resolution imaging to characterize terrestrial surface state and processes at 30 m resolution. Researchers engaged in NASA's Terrestrial Ecology, Carbon Science, Land Use Change and other programs using the EO-1 Hyperion imaging spectrometer have achieved results with accuracies far exceeding those reached with the current spaceborne fleet of multispectral sensors. Hyperion data provide several advantages over data from multispectral satellite systems: they inherently provide

  6. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  7. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  8. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    NASA Astrophysics Data System (ADS)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  9. Statistical Analysis of Deflation in Covariance and Resultant Pc Values for AQUA, AURA and TERRA

    NASA Technical Reports Server (NTRS)

    Hasan, Syed O.

    2016-01-01

    This presentation will display statistical analysis performed for raw conjunction CDMs received for the EOS Aqua, Aura and Terra satellites within the period of February 2015 through July 2016. The analysis performed indicates a discernable deflation in covariance calculated at the JSpOC after the utilization of the dynamic drag consider parameter was implemented operationally in May 2015. As a result, the overall diminution in the conjunction plane intersection of the primary and secondary objects appears to be leading to reduced probability of collision (Pc) values for these conjunction events. This presentation also displays evidence for this theory with analysis of Pc trending plots using data calculated by the SpaceNav CRMS system.

  10. Recovering Nimbus era Observations at the NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Johnson, J. E.; Esfandiari, A. E.; Zamkoff, E. B.; Al-Jazrawi, A. F.; Gerasimov, I. V.; Alcott, G. T.

    2017-12-01

    Between 1964 and 1978, NASA launched a series of seven Nimbus meteorological satellites which provided Earth observations for 30 years. These satellites, carrying a total of 33 instruments to observe the Earth at visible, infrared, ultraviolet, and microwave wavelengths, revolutionized weather forecasting, provided early observations of ocean color and atmospheric ozone, and prototyped location-based search and rescue capabilities. The Nimbus series paved the way for a number of currently operational systems such as the EOS Terra, Aqua and Aura platforms.The original data archive included both magnetic tapes and film media. These media are well past their expected end of life, placing at risk valuable data that are critical to extending the history of Earth observations back in time. GES DISC has been incorporating these data into a modern online archive by recovering the digital data files from the tapes, and scanning images of the data from film strips. The original data products were written on obsolete hardware systems in outdated file formats, and in the absence of metadata standards at that time, were often written in proprietary file structures. Through a tedious and laborious process, oft-corrupted data are recovered, and incomplete metadata and documentation are reconstructed.

  11. Utilizing NASA Earth Observing System (EOS) Data to Determine Ideal Planting Locations for Wetland Tree Species in St. Bernard Parish, Louisiana

    NASA Technical Reports Server (NTRS)

    Reahard, Ross; Arguelles, Maria; Strong, Emma; Ewing, Michael; Kelly, Chelsey

    2012-01-01

    St. Bernard Parish, in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a combination of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have worked not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for coastal forests. Using NASA EOS, NRCS soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of wetland trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using LIDAR data and classifying existing land cover in the study area from ASTER multispectral satellite data. Low altitude AVIRIS hyperspectral imagery was used to assess the health of vegetation over an area near the intersection of the Mississippi River Gulf Outlet Canal (MRGO) and Bayou la Loutre. Historic extent of coastal forests was mapped using aerial photos from USGS collected between 1952 and 1956. The final products demonstrated the utility of combining NASA EOS with other geospatial data in assessing, monitoring, and restoring of coastal ecosystems in Louisiana. This methodology also provides a useful template for other ecological forecasting and coastal restoration applications.

  12. Aqua vs TanSat: A Long-Term Analysis

    NASA Technical Reports Server (NTRS)

    Pharr, James; Patano, Scott

    2017-01-01

    A six-year analysis between Aqua and TanSat was conducted in order to assess whether or not TanSat would be a continued threat to Aqua. It is predicted that TanSat will cross Aqua seven times prior to Aqua's predicted constellation exit and lowering in February 2022. The predicted crossing geometry is generally favorable at any of the crossings due to TanSat's orbit eccentricity.

  13. GDAL Enhancements for Interoperability with EOS Data (GEE)

    NASA Astrophysics Data System (ADS)

    Tisdale, B.

    2015-12-01

    Historically, Earth Observing Satellite (EOS) data products have been difficult to consume by GIS tools, weather commercial or open-source. This has resulted in a reduced acceptance of these data products by GIS and general user communities. Common problems and challenges experienced by these data users include difficulty when: Consuming data products from NASA Distributed Active Archive Centers (DAACs) that pre-date modern application software with commercial and open-source geospatial tools; Identifying[MI1] an initial approach for developing a framework and plug-ins that interpret non-compliant data; Defining a methodology that is extensible across NASA Earth Observing System Data and Information System (EOSDIS), scientific communities, and GIS communities by enabling other data centers to construct their own plug-ins and adjust specific data products; and Promoting greater use of NASA Data and new analysis utilizing GIS tools. To address these challenges and make EOS data products more accessible and interpretable by GIS applications, a collaborative approach has been taken that includes the NASA Langley Atmospheric Science Data Center (ASDC), Esri, George Mason University (GMU), and the Hierarchical Data Format (HDF) Group to create a framework and plugins to be applied to Geospatial Data Abstraction Library (GDAL). This framework and its plugins offer advantages of extensibility within NASA EOSDIS, permitting other data centers to construct their own plugins necessary to adjust their data products. In this session findings related to the framework and the development of GDAL plugins will be reviewed. Specifically, this session will offer a workshop to review documentation and training materials that have been generated for the purpose of guiding other NASA DAACs through the process of constructing plug-ins consistent with the framework as well as a review of the certification process by which the plugins can be independently verified as properly converting

  14. NASA AIRS Detects Extent of Pakistan Flooding

    NASA Image and Video Library

    2010-08-19

    This image from NASA Aqua spacecraft shows how surface emissivity -- how efficiently Earth surface radiates heat -- changed in several regions of Pakistan over a 32-day period between July 11 pre-flood and August 12 post-flood.

  15. NASA Satellite Tracks Severity of African Drought

    NASA Image and Video Library

    2011-07-28

    Surface relative humidity anomalies in percent, during July 2011 compared to the average surface relative humidity over the previous eight years, as measured by NASA Aqua instrument AIRS. The driest areas are shown in oranges and reds.

  16. The Cloudsat Mission and the EOS Constellation: A New Dimension of Space-Based Observation of Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald; Mace, Gerald; Sassen, Kenneth; Wang, Zhien; Illingworth, Anthony; OConnor, Ewan; Rossow, William; Durden, Stephen L.; hide

    2001-01-01

    CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004 and, once launched, CloudSat will orbit in formation as part of a constellation of satellites including NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (P-C) and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the P-C lidar footprint and the other measurements of the EOS constellation. The precision of this overlap creates a unique multi-satellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profile of cloud properties provided by CloudSat fills a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring the vertical profile of cloud properties requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with active and passive data from other sensors of the constellation. This paper describes the underpinning science, and gives an overview of the mission, and provides some idea of the expected products and anticipated application of these products. Notably, the CloudSat mission is expected to provide new knowledge about global cloudiness, stimulating new areas of research on clouds including data assimilation and cloud parameterization. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA/JPL, the Canadian Space Agency, Colorado State University, the US Air Force, and the US Department of Energy.

  17. NASA CloudSat Spots Beginning of Pakistan Floods

    NASA Image and Video Library

    2010-08-19

    In late July 2010, flooding caused by heavy monsoon rains began in several regions of Pakistan. This image from NASA Aqua spacecraft reveals the bright white cloud tops from the cluster of thunderstorms.

  18. Hot super-dense compact object with particular EoS

    NASA Astrophysics Data System (ADS)

    Tito, E. P.; Pavlov, V. I.

    2018-03-01

    We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.

  19. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data

    NASA Technical Reports Server (NTRS)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.

    1994-01-01

    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  20. NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-Comparing Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih

    2012-01-01

    There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data (e.g., precipitation). An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. The latter relationships are particularly important for applications users, for whom the continuity of soil moisture data, from whatever source, is critical. A recent example was provided by the sudden demise of EOS Aqua AMSR-E and the end of its soil moisture data production, as well as the end of other soil moisture products that had used the AMSR-E brightness temperature data. The purpose of the current effort is to create an environment, as part of the NASA Giovanni family of portals, that facilitates inter-comparisons of soil moisture algorithms and their derived data products.

  1. Earth Observation System Flight Dynamics System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  2. NASA Sees a Wider-Eyed Typhoon Soudelor Near Taiwan

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument aboard NASA's Aqua satellite flew over Typhoon Soudelor on Aug. 7, 2015, at 4:40 UTC (12:40 a.m. EDT) as it was approaching Taiwan. Credits: NASA Goddard's MODIS Rapid Response Team Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed overhead. Soudelor is expected to make landfall and cross central Taiwan today and make a second landfall in eastern China. NASA satellite imagery revealed that Soudelor's eye "opened" five more miles since August 4. On Aug. 7 at 4:40 UTC (12:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible-light image of Typhoon Soudelor as its western quadrant began brushing eastern Taiwan. The MODIS image showed Soudelor's 17-nautical-mile-wide eye and thick bands of powerful thunderstorms surrounded the storm and spiraled into the center. Just three days before, the eye was 5 nautical miles smaller when the storm was more intense. On Aug. 4 at 4:10 UTC (12:10 a.m. EDT) Aqua's MODIS image showed the eye was 12-nautical-mile-wide eye. At 1500 UTC (11 a.m. EDT) on August 7, 2015, the Joint Typhoon Warning Center (JTWC) noted that Typhoon Soudelor's maximum sustained winds increased from 90 knots (103.6 mph/166.7 kph) to 105 knots (120.8 mph / 194.5 kph). It was centered near 23.1 North latitude and 123.2 East longitude, about 183 nautical miles (210.6 miles/338.9 km) southeast of Taipei, Taiwan. It was moving to the west-northwest at 10 knots (11.5 mph/18.5 kph). For warnings and watches for Taiwan, visit the Central Weather Bureau website: www.cwb.gov.tw/eng/. For warnings in China, visit the China Meteorological Administration website: www.cma.gov.cn/en. Soudelor's final landfall is expected in eastern China on Saturday, August 8. Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed

  3. Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activiy

    NASA Technical Reports Server (NTRS)

    Desai, Vishal

    1994-01-01

    This paper describes the Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activity performed by Code 540 in support of the Ecom project. Ecom is the ground-to-ground data transport system for operational EOS traffic. The National Aeronautic and Space Administration (NASA) Communications (Nascom) Division, Code 540, is responsible for implementing Ecom. Ecom interfaces with various systems to transport EOS forward link commands, return link telemetry, and science payload data. To understand the complexities surrounding the design and implementation of Ecom, it is necessary that sufficient testbedding, modeling, and analysis be conducted prior to the design phase. These activities, when grouped, are referred to as the EMAT activity. This paper describes work accomplished to date in each of the three major EMAT activities: modeling, analysis, and testbedding.

  4. KSC-02pd0394

    NASA Image and Video Library

    2002-02-26

    VANDENBERG AFB, CALIF. -- On the launch pad, an overhead crane lifts a solid rocket booster to vertical for mating with the Delta II rocket that will launch the Aqua-EOS satellite. Aqua is one of a series of spacebased platforms that are central to NASA's Earth Science Enterprise (ESE), a long-term study of the scope, dynamics and implications of global change. The Aqua program is composed of Aqua and other spacecraft (including Terra and Aura) and a data distribution system (ESDIS, and Mission Operations Center Implementation Team). Flying in an orbit that covers the globe every 16 days, Aqua will provide a six-year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow multidisciplinary teams of scientists and researchers from North and South America, Asia, Australia and Europe to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. Launch is scheduled for April 26 from Vandenberg

  5. NASA Satellite Shows a Mean Irene Fury

    NASA Image and Video Library

    2011-08-28

    This infrared image of Hurricane Irene from the AIRS instrument on NASA Aqua spacecraft, was taken at 2:47 a.m. EDT on Aug. 28. The storm coldest cloud top temperatures and intense rains are shown in purples and blues.

  6. NASA AIRS Examines Hurricane Matthew Cloud Top Temperatures

    NASA Image and Video Library

    2016-10-07

    At 11:29 p.m. PDT on Oct. 6 (2:29 a.m. EDT on Oct. 7), NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite produced this false-color infrared image of Matthew as the storm moved up Florida's central coast. The image shows the temperature of Matthew's cloud tops or the surface of Earth in cloud-free regions, with the most intense thunderstorms shown in purples and blues. http://photojournal.jpl.nasa.gov/catalog/PIA21097

  7. Lessons Learned While Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems

    NASA Technical Reports Server (NTRS)

    Pilone, Dan; Mclaughlin, Brett; Plofchan, Peter

    2017-01-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products. Reviewed and approved by Chris Lynnes.

  8. 2013 Yosemite Fire Assessed by NASA Satellite Data

    NASA Image and Video Library

    2014-09-02

    In this image from NASA Aqua satellite, the red areas seen by the MODIS instrument revealed that live fuel moisture had excessively dried up by more than 50 percent prior to the Rim Fire in August 2013.

  9. Global Imagery Browse Services (GIBS) - Rapidly Serving NASA Imagery for Applications and Science Users

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Ilavajhala, S.; Plesea, L.; Hall, J. R.; Boller, R. A.; Chang, G.; Sadaqathullah, S.; Kim, R.; Murphy, K. J.; Thompson, C. K.

    2012-12-01

    Expedited processing of imagery from NASA satellites for near-real time use by non-science applications users has a long history, especially since the beginning of the Terra and Aqua missions. Several years ago, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near-real time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. The baseline technology chosen for GIBS was a Tiled Web Mapping Service (TWMS) developed at the Jet Propulsion Laboratory. Using this, global images and mosaics are divided into tiles with fixed bounding boxes for a pyramid of fixed resolutions. Initially, the satellite imagery is created at the existing data systems for each sensor, ensuring the oversight of those most knowledgeable about the science. There, the satellite data is geolocated and converted to an image format such as JPEG, TIFF, or PNG. The GIBS ingest server retrieves imagery from the various data systems and converts them into image tiles, which are stored in a highly-optimized raster format named Meta Raster Format (MRF). The image tiles are then served to users via HTTP by means of an Apache module. Services are available for the entire globe (lat-long projection) and for both polar regions (polar stereographic projection). Requests to the services can be made with the non-standard, but widely known, TWMS format or via the well-known OGC Web Map Tile Service (WMTS) standard format. Standard OGC Web Map Service (WMS) access to the GIBS server is also available. In addition, users may request a

  10. NASA Sees Hurricane Arthur's Cloud-Covered Eye

    NASA Image and Video Library

    2014-07-03

    This visible image of Tropical Storm Arthur was taken by the MODIS instrument aboard NASA's Aqua satellite on July 2 at 18:50 UTC (2:50 p.m. EDT). A cloud-covered eye is clearly visible. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/content/goddard/arthur-atlantic/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Plans for the development of EOS SAR systems using the Alaska SAR facility. [Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Weeks, W.

    1988-01-01

    The Alaska SAR Facility (ASF) program for the acquisition and processing of data from the ESA ERS-1, the NASDA ERS-1, and Radarsat and to carry out a program of science investigations using the data is introduced. Agreements for data acquisition and analysis are in place except for the agreement between NASA and Radarsat which is in negotiation. The ASF baseline system, consisting of the Receiving Ground System, the SAR Processor System and the Archive and Operations System, passed critical design review and is fully in implementation phase. Augments to the baseline system for systems to perform geophysical processing and for processing of J-ERS-1 optical data are in the design and implementation phase. The ASF provides a very effective vehicle with which to prepare for the Earth Observing System (EOS) in that it will aid the development of systems and technologies for handling the data volumes produced by the systems of the next decades, and it will also supply some of the data types that will be produced by EOS.

  12. HIF evaluation of In-Situ Aqua TROLL 400

    USGS Publications Warehouse

    Tillman, Evan F.

    2017-10-18

    The In-Situ Aqua TROLL 400 (Aqua TROLL 400) was tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the Aqua TROLL 400’s operating temperature to verify the manufacturer’s stated accuracy specifications and the USGS recommendations for pH, dissolved oxygen (DO), and specific conductance (SC). The Aqua TROLL 400 manufacturer’s specifications are within the USGS recommendations for all parameters tested, except for DO, which is outside the USGS recommendation at DO concentrations of 8.0 milligrams per liter (mg/L) and higher. The Aqua TROLL 400 was compliant with Serial Digital Interface at 1200 baud (SDI-12) version 1.3. During laboratory testing of pH, the Aqua TROLL 400 sonde met the U.S. Geological Survey “National Field Manual for the Collection of Water-Quality Data” (NFM) recommendations for pH at all values tested, except at 4 degrees Celsius (°C) at pH 9.395 and pH 3.998. The Aqua TROLL 400 met the manufacturer specifications for pH at all values tested, except for pH buffers 3.998, 9.395, and 10.245 at 4 °C; pH 2.990 and 3.998 at 15 °C; and pH 3.040 at 40 °C. The Aqua TROLL 400 met the NFM recommendations at 93.7 percent of the SC values tested and met the manufacturer’s accuracy specifications at 56.3 percent of the SC values tested. During the laboratory testing for DO, the Aqua TROLL 400 met the manufacturer specifications, except at 5.55 mg/L, and met the NFM recommendations at all concentrations tested. An Aqua TROLL 400 was field tested at USGS Station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River for 6 weeks and showed good agreement with the well-maintained site sonde data for pH, DO, temperature, and SC.

  13. EOS developments

    NASA Astrophysics Data System (ADS)

    Sindrilaru, Elvin A.; Peters, Andreas J.; Adde, Geoffray M.; Duellmann, Dirk

    2017-10-01

    CERN has been developing and operating EOS as a disk storage solution successfully for over 6 years. The CERN deployment provides 135 PB and stores 1.2 billion replicas distributed over two computer centres. Deployment includes four LHC instances, a shared instance for smaller experiments and since last year an instance for individual user data as well. The user instance represents the backbone of the CERNBOX service for file sharing. New use cases like synchronisation and sharing, the planned migration to reduce AFS usage at CERN and the continuous growth has brought EOS to new challenges. Recent developments include the integration and evaluation of various technologies to do the transition from a single active in-memory namespace to a scale-out implementation distributed over many meta-data servers. The new architecture aims to separate the data from the application logic and user interface code, thus providing flexibility and scalability to the namespace component. Another important goal is to provide EOS as a CERN-wide mounted filesystem with strong authentication making it a single storage repository accessible via various services and front- ends (/eos initiative). This required new developments in the security infrastructure of the EOS FUSE implementation. Furthermore, there were a series of improvements targeting the end-user experience like tighter consistency and latency optimisations. In collaboration with Seagate as Openlab partner, EOS has a complete integration of OpenKinetic object drive cluster as a high-throughput, high-availability, low-cost storage solution. This contribution will discuss these three main development projects and present new performance metrics.

  14. NASA Image Shows a Slightly Stronger Emily

    NASA Image and Video Library

    2011-08-02

    NASA Aqua spacecraft continues to track the gradual organization of Tropical Storm Emily, as seen in this image taken Aug. 2, 2011 at 1:05 p.m. EDT. At that time, the storm was located about 270 miles southeast of San Juan, Puerto Rico.

  15. EOS image data processing system definition study

    NASA Technical Reports Server (NTRS)

    Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.

  16. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  17. Earth observing system. Data and information system. Volume 2A: Report of the EOS Data Panel

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this report is to provide NASA with a rationale and recommendations for planning, implementing, and operating an Earth Observing System data and information system that can evolve to meet the Earth Observing System's needs in the 1990s. The Earth Observing System (Eos), defined by the Eos Science and Mission Requirements Working Group, consists of a suite of instruments in low Earth orbit acquiring measurements of the Earth's atmosphere, surface, and interior; an information system to support scientific research; and a vigorous program of scientific research, stressing study of global-scale processes that shape and influence the Earth as a system. The Eos data and information system is conceived as a complete research information system that would transcend the traditional mission data system, and include additional capabilties such as maintaining long-term, time-series data bases and providing access by Eos researchers to relevant non-Eos data. The Working Group recommends that the Eos data and information system be initiated now, with existing data, and that the system evolve into one that can meet the intensive research and data needs that will exist when Eos spacecraft are returning data in the 1990s.

  18. NASA Overview (K-12, Educators, and General Public)

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2003-01-01

    This viewgraph presentation provides an overview of NASA activities intended for recruitment of employees. It includes NASA's vision statement and mission, images of solar system bodies and the Sojourner rover, as well as information the Aqua satellite and the Stratospheric Aerosol and Gas Experiment III (Sage III). Images of experimental aircraft, a space shuttle, and the Hubble Space Telescope (HST) are shown, and a section on mission planning is included.

  19. NASA Sees Smoke from California’s Long Valley Wildfire

    NASA Image and Video Library

    2017-12-08

    NASA’s Aqua satellite captured a large area of smoke from the Long Valley Wildfire that was affecting Yosemite National Park. This natural-color satellite image was collected by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard the Aqua satellite. The image, taken July 20, showed actively burning areas in red, as detected by MODIS’s thermal bands. According to Inciweb, an interagency all-risk incident information management system that coordinates with federal, state and local agencies to manage wildfires, the fire started on Tuesday July 11, 2017. It is located about two miles north of Doyle, California and about 50 miles north of Reno, Nevada. As of July 21 the fire covered 83,733 acres and was 91 percent contained. NASA image courtesy NASA MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA Sees First Land-falling Tropical Cyclone in Yemen

    NASA Image and Video Library

    2017-12-08

    On Nov. 3, 2015 at 07:20 UTC (2:20 a.m. EDT) the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Chapala over Yemen. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    NASA Astrophysics Data System (ADS)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  2. 78 FR 23199 - NASA FAR Supplement Regulatory Review No. 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... 2700-AE01 NASA FAR Supplement Regulatory Review No. 1 AGENCY: National Aeronautics and Space Administration. ACTION: Proposed rule. SUMMARY: NASA is updating the NASA FAR Supplement (NFS) with the goal of... existing regulations. The revisions to this rule are part of NASA's retrospective plan under EO 13563...

  3. Recovering Nimbus Era Observations at the NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Meyer, D.; Johnson, J.; Esfandiari, A.; Zamkoff, E.; Al-Jazrawi, A.; Gerasimov, I.; Alcott, G.

    2017-01-01

    Between 1964 and 1978, NASA launched a series of seven Nimbus meteorological satellites which provided Earth observations for 30 years. These satellites, carrying a total of 33 instruments to observe the Earth at visible, infrared, ultraviolet, and microwave wavelengths, revolutionized weather forecasting, provided early observations of ocean color and atmospheric ozone, and prototyped location-based search and rescue capabilities. The Nimbus series paved the way for a number of currently operational systems such as the EOS (Earth Observation System) Terra, Aqua, and Aura platforms. The original data archive includes both magnetic tapes and film media. These media are well past their expected end of life, placing at risk valuable data that are critical to extending the history of Earth observations back in time. GES DISC (Goddard Earth Sciences Data and Information Services Center) has been incorporating these data into a modern online archive by recovering the digital data files from the tapes, and scanning images of the data from film strips. The digital data products were written on obsolete hardware systems in outdated file formats, and in the absence of metadata standards at that time, were often written in proprietary file structures. Through a tedious and laborious process, oft-corrupted data are recovered, and incomplete metadata and documentation are reconstructed.

  4. The 1991 EOS reference handbook

    NASA Technical Reports Server (NTRS)

    Dokken, David (Editor)

    1991-01-01

    The following topics are covered: (1) The Global Change Research Program; (2) The Earth Observing System (EOS) goal and objectives; (3) primary EOS mission requirements; (4) EOS science; (5) EOS Data and Information System (EOSDIS) architecture; (6) data policy; (7) international cooperation; (8) plans and status; (9) the role of the National Oceanic and Atmospheric Administration; (10) The Global Fellowship Program; (11) management of EOS; (12) mission elements; (13) EOS instruments; (14) interdisciplinary science investigations; (15) points of contact; and (16) acronyms and abbreviations.

  5. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  6. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  7. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    NASA Technical Reports Server (NTRS)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  8. An Overview of SIMBIOS Program Activities and Accomplishments. Chapter 1

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.

    2003-01-01

    The SIMBIOS Program was conceived in 1994 as a result of a NASA management review of the agency's strategy for monitoring the bio-optical properties of the global ocean through space-based ocean color remote sensing. At that time, the NASA ocean color flight manifest included two data buy missions, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Earth Observing System (EOS) Color, and three sensors, two Moderate Resolution Imaging Spectroradiometers (MODIS) and the Multi-angle Imaging Spectro-Radiometer (MISR), scheduled for flight on the EOS-Terra and EOS-Aqua satellites. The review led to a decision that the international assemblage of ocean color satellite systems provided ample redundancy to assure continuous global coverage, with no need for the EOS Color mission. At the same time, it was noted that non-trivial technical difficulties attended the challenge (and opportunity) of combining ocean color data from this array of independent satellite systems to form consistent and accurate global bio-optical time series products. Thus, it was announced at the October 1994 EOS Interdisciplinary Working Group meeting that some of the resources budgeted for EOS Color should be redirected into an intercalibration and validation program (McClain et al., 2002).

  9. Eosinophilic Esophagitis (EoE)

    MedlinePlus

    ... the main cause of EoE in a large number of patients. Allergists are experts in evaluating and treating EoE related to food allergies. However the relationship between food allergy and EoE is complex. In many types of food allergy, the triggers ...

  10. Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2007-01-01

    Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.

  11. Spatial and Temporal Distribution of Tropospheric Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.

  12. Spatial and Temporal Distribution of Tropospheric Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven

    2005-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24, 2000 for Terra and June 24, 2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various cloud properties being analyzed on a global basis from both Terra and Aqua. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world.

  13. A First: NASA Spots Single Methane Leak from Space

    NASA Image and Video Library

    2016-06-14

    Atmospheric methane is a potent greenhouse gas, but the percentage of it produced through human activities is still poorly understood. Future instruments on orbiting satellites can help address this issue by surveying human-produced methane emissions. Recent data from the Aliso Canyon event, a large accidental methane release near Porter Ranch, California, demonstrates this capability. The Hyperion imaging spectrometer onboard NASA's EO-1 satellite successfully detected this release event on three different overpasses during the winter of 2015-2016. This is the first time the methane plume from a single facility has been observed from space. The orbital observations were consistent with airborne measurements. This image pair shows a comparison of detected methane plumes over Aliso Canyon, California, acquired 11 days apart in Jan. 2016 by: (left) NASA's AVIRIS instrument on a NASA ER-2 aircraft at 4.1 miles (6.6 kilometers) altitude and (right) by the Hyperion instrument on NASA's Earth Observing-1 satellite in low-Earth orbit. The additional red streaks visible in the EO-1 Hyperion image result from measurement noise -- Hyperion was not specifically designed for methane sensing and is not as sensitive as AVIRIS-NG. Additionally, the EO-1 satellite's current orbit provided poor illumination conditions. Future instruments with much greater sensitivity on orbiting satellites can survey the biggest sources of human-produced methane around the world. http://photojournal.jpl.nasa.gov/catalog/PIA20716

  14. KSC-02pd0403

    NASA Image and Video Library

    2002-03-01

    VANDENBERG AFB,CALIF. - On the SLC-2 launch pad, the gantry closes in on the Delta II rocket to enable mating of the second stage. The Delta II will launch the Aqua-EOS satellite. Aqua is one of a series of spacebased platforms that are central to NASA's Earth Science Enterprise (ESE), a long-term study of the scope, dynamics and implications of global change. The Aqua program is composed of Aqua and other spacecraft (including Terra and Aura) and a data distribution system (ESDIS, and Mission Operations Center Implementation Team). Flying in an orbit that covers the globe every 16 days, Aqua will provide a six-year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow multidisciplinary teams of scientists and researchers from North and South America, Asia, Australia and Europe to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. Launch is scheduled for April 26 from Vandenberg

  15. KSC-02pd0402

    NASA Image and Video Library

    2002-03-01

    VANDENBERG AFB,CALIF. - The gantry (left) on SLC-2 moves toward the first stage of the Delta II rocket, for mating with the second stage. The Delta II will launch the Aqua-EOS satellite. Aqua is one of a series of spacebased platforms that are central to NASA's Earth Science Enterprise (ESE), a long-term study of the scope, dynamics and implications of global change. The Aqua program is composed of Aqua and other spacecraft (including Terra and Aura) and a data distribution system (ESDIS, and Mission Operations Center Implementation Team). Flying in an orbit that covers the globe every 16 days, Aqua will provide a six-year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow multidisciplinary teams of scientists and researchers from North and South America, Asia, Australia and Europe to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. Launch is scheduled for April 26 from Vandenberg

  16. Network Performance Measurements for NASA's Earth Observation System

    NASA Technical Reports Server (NTRS)

    Loiacono, Joe; Gormain, Andy; Smith, Jeff

    2004-01-01

    NASA's Earth Observation System (EOS) Project studies all aspects of planet Earth from space, including climate change, and ocean, ice, land, and vegetation characteristics. It consists of about 20 satellite missions over a period of about a decade. Extensive collaboration is used, both with other US. agencies (e.g., National Oceanic and Atmospheric Administration (NOA), United States Geological Survey (USGS), Department of Defense (DoD), and international agencies (e.g., European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA)), to improve cost effectiveness and obtain otherwise unavailable data. Scientific researchers are located at research institutions worldwide, primarily government research facilities and research universities. The EOS project makes extensive use of networks to support data acquisition, data production, and data distribution. Many of these functions impose requirements on the networks, including throughput and availability. In order to verify that these requirements are being met, and be pro-active in recognizing problems, NASA conducts on-going performance measurements. The purpose of this paper is to examine techniques used by NASA to measure the performance of the networks used by EOSDIS (EOS Data and Information System) and to indicate how this performance information is used.

  17. Moderate Resolution Imaging Spectroradiometer (MODIS) Overview

    USGS Publications Warehouse

    ,

    2008-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument that collects remotely sensed data used by scientists for monitoring, modeling, and assessing the effects of natural processes and human actions on the Earth's surface. The continual calibration of the MODIS instruments, the refinement of algorithms used to create higher-level products, and the ongoing product validation make MODIS images a valuable time series (2000-present) of geophysical and biophysical land-surface measurements. Carried on two National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) satellites, MODIS acquires morning (EOS-Terra) and afternoon (EOS-Aqua) views almost daily. Terra data acquisitions began in February 2000 and Aqua data acquisitions began in July 2002. Land data are generated only as higher-level products, removing the burden of common types of data processing from the user community. MODIS-based products describing ecological dynamics, radiation budget, and land cover are projected onto a sinusoidal mapping grid and distributed as 10- by 10-degree tiles at 250-, 500-, or 1,000-meter spatial resolution. Some products are also created on a 0.05-degree geographic grid to support climate modeling studies. All MODIS products are distributed in the Hierarchical Data Format-Earth Observing System (HDF-EOS) file format and are available through file transfer protocol (FTP) or on digital video disc (DVD) media. Versions 4 and 5 of MODIS land data products are currently available and represent 'validated' collections defined in stages of accuracy that are based on the number of field sites and time periods for which the products have been validated. Version 5 collections incorporate the longest time series of both Terra and Aqua MODIS data products.

  18. Vegetation canopy structure from NASA EOS multiangle imaging

    USDA-ARS?s Scientific Manuscript database

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjus...

  19. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  20. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  1. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann

    2008-01-01

    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect

  2. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  3. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  4. NASA AIRS Movies Show Evolution of U.S. 2011 Heat Wave

    NASA Image and Video Library

    2011-07-26

    NASA Aqua spacecraft has illustrated surface air and skin temperature for the period from July 16-24, showing movement of a dome of heat across the eastern two-thirds of the country. See More Details for the movies.

  5. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  6. NASA AIRS Instrument Sees Spread of Pollution from Western Wildfires

    NASA Image and Video Library

    2013-08-27

    This frame from a movie was produced with data from NASA Aqua spacecraft showing the spread of carbon monoxide pollution across North America from fires in the Western U.S., including the Beaver Creek Fire in Idaho and the Rim Fire in California.

  7. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  8. HDF-EOS Web Server

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A shell script has been written as a means of automatically making HDF-EOS-formatted data sets available via the World Wide Web. ("HDF-EOS" and variants thereof are defined in the first of the two immediately preceding articles.) The shell script chains together some software tools developed by the Data Usability Group at Goddard Space Flight Center to perform the following actions: Extract metadata in Object Definition Language (ODL) from an HDF-EOS file, Convert the metadata from ODL to Extensible Markup Language (XML), Reformat the XML metadata into human-readable Hypertext Markup Language (HTML), Publish the HTML metadata and the original HDF-EOS file to a Web server and an Open-source Project for a Network Data Access Protocol (OPeN-DAP) server computer, and Reformat the XML metadata and submit the resulting file to the EOS Clearinghouse, which is a Web-based metadata clearinghouse that facilitates searching for, and exchange of, Earth-Science data.

  9. EO-1 analysis applicable to coastal characterization

    NASA Astrophysics Data System (ADS)

    Burke, Hsiao-hua K.; Misra, Bijoy; Hsu, Su May; Griffin, Michael K.; Upham, Carolyn; Farrar, Kris

    2003-09-01

    The EO-1 satellite is part of NASA's New Millennium Program (NMP). It consists of three imaging sensors: the multi-spectral Advanced Land Imager (ALI), Hyperion and Atmospheric Corrector. Hyperion provides a high-resolution hyperspectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 micron) with a 30 m resolution. The instrument images a 7.5 km by 100 km land area per image. Hyperion is currently the only space-borne HSI data source since the launch of EO-1 in late 2000. The discussion begins with the unique capability of hyperspectral sensing to coastal characterization: (1) most ocean feature algorithms are semi-empirical retrievals and HSI has all spectral bands to provide legacy with previous sensors and to explore new information, (2) coastal features are more complex than those of deep ocean that coupled effects are best resolved with HSI, and (3) with contiguous spectral coverage, atmospheric compensation can be done with more accuracy and confidence, especially since atmospheric aerosol effects are the most pronounced in the visible region where coastal feature lie. EO-1 data from Chesapeake Bay from 19 February 2002 are analyzed. In this presentation, it is first illustrated that hyperspectral data inherently provide more information for feature extraction than multispectral data despite Hyperion has lower SNR than ALI. Chlorophyll retrievals are also shown. The results compare favorably with data from other sources. The analysis illustrates the potential value of Hyperion (and HSI in general) data to coastal characterization. Future measurement requirements (air borne and space borne) are also discussed.

  10. Eos Chasma Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows several landslides within Eos Chasma. Many very large landslides have occurred within different portions of Valles Marineris. Note where the northern wall has failed in a upside-down bowl shape, releasing the material that formed the landslide deposit.

    Image information: VIS instrument. Latitude -8, Longitude 318.6 East (41.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. WCS Challenges for NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cantrell, S.; Swentek, L.; Khan, A.

    2017-12-01

    In an effort to ensure that data in NASA's Earth Observing System Data and Information System (EOSDIS) is available to a wide variety of users through the tools of their choice, NASA continues to focus on exposing data and services using standards based protocols. Specifically, this work has focused recently on the Web Coverage Service (WCS). Experience has been gained in data delivery via GetCoverage requests, starting out with WCS v1.1.1. The pros and cons of both the version itself and different implementation approaches will be shared during this session. Additionally, due to limitations with WCS v1.1.1's ability to work with NASA's Earth science data, this session will also discuss the benefit of migrating to WCS 2.0.1 with EO-x to enrich this capability to meet a wide range of anticipated user needs This will enable subsetting and various types of data transformations to be performed on a variety of EOS data sets.

  12. Supporting the planning for the evolution of the EOSDIS through an in-depth understanding of user requirements for NASA's world-class Earth science data system

    NASA Astrophysics Data System (ADS)

    Griffin, V. L.; Behnke, J.; Maiden, M.; Fontaine, K.

    2004-12-01

    NASA is planning for the evolution of the Earth Observation System Data and Information System (EOSDIS), a large, complex data system currently supporting over 18 operational NASA satellite missions including the flagship EOS missions: Terra, Aqua, and Aura. A critical underpinning for the evolution planning is developing thorough knowledge of the EOSDIS users and how they use the EOSDIS products in their research and or applications endeavors. This paper provides charts and tables of results from NASA studies that characterized our users, data and techniques. Using these metrics, other projects can apply NASA's 'lessons learned' to the development and operations of their data systems. In 2004, NASA undertook an intensive study of the users and usage of EOSDIS data. The study considered trends in the types and levels of EOS data products being ordered, the expanding number of users requesting products, and the "domains" of those users. The study showed that increasing numbers of users are using the validated, geophysical products produced from the radiance measurements recorded by the EOS instruments; while there remains a steady demand for the radiance products themselves. In 2003, over 2.1 million individuals contacted EOSDIS (as identified by unique email and/or URL) with just over 10% requesting a product or service. The users came from all sectors including 40% from more than 125 countries outside the U.S. University researchers and students (.edu) received over 40% of the some 29 million data and information products disseminated by EOSDIS. The trend in method of delivery for EOSDIS data has been away from receiving data on hard media (tapes, CD-ROM, etc.) to receiving the data over the network. Over 75% of the EOSDIS data products were disseminated via electronic means in 2003 contrasted with just under 30% in 2000. To plan for system-wide evolution you need to know whether the system is meeting the users' needs and expectations. Thus, in 2004 NASA

  13. Earth Observing System (EOS) Terra Spacecraft 120 Volt Power Subsystem: Requirements, Development and Implementation

    NASA Technical Reports Server (NTRS)

    Keys, Denney J.

    2000-01-01

    Built by the Lockheed-Martin Corporation, the Earth Observing System (EOS) TERRA spacecraft represents the first orbiting application of a 120 Vdc high voltage spacecraft electrical power system implemented by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The EOS TERRA spacecraft's launch provided a major contribution to the NASA Mission to Planet Earth program while incorporating many state of the art electrical power system technologies to achieve its mission goals. The EOS TERRA spacecraft was designed around five state-of-the-art scientific instrument packages designed to monitor key parameters associated with the earth's climate. The development focus of the TERRA electrical power system (EPS) resulted from a need for high power distribution to the EOS TERRA spacecraft subsystems and instruments and minimizing mass and parasitic losses. Also important as a design goal of the EPS was maintaining tight regulation on voltage and achieving low conducted bus noise characteristics. This paper outlines the major requirements for the EPS as well as the resulting hardware implementation approach adopted to meet the demands of the EOS TERRA low earth orbit mission. The selected orbit, based on scientific needs, to achieve the EOS TERRA mission goals is a sun-synchronous circular 98.2degree inclination Low Earth Orbit (LEO) with a near circular average altitude of 705 kilometers. The nominal spacecraft orbit is approximately 99 minutes with an average eclipse period of about 34 minutes. The scientific goal of the selected orbit is to maintain a repeated 10:30 a.m. +/- 15 minute descending equatorial crossing which provides a fairly clear view of the earth's surface and relatively low cloud interference for the instrument observation measurements. The major EOS TERRA EPS design requirements are single fault tolerant, average orbit power delivery of 2, 530 watts with a defined minimum lifetime of five years (EOL). To meet

  14. NASA Spacecraft Eyes Iceland Volcanic Eruption

    NASA Image and Video Library

    2014-09-03

    On the night of Sept. 1, 2014, NASA Earth Observing 1 EO-1 spacecraft observed the ongoing eruption at Holuhraun, Iceland. This false-color image that emphasizes the hottest areas of the vent and resulting lava flows.

  15. Aqua splint suture technique in isolated zygomatic arch fractures.

    PubMed

    Kim, Dong-Kyu; Kim, Seung Kyun; Lee, Jun Ho; Park, Chan Hum

    2014-04-01

    Various methods have been used to treat zygomatic arch fractures, but no optimal modality exists for reducing these fractures and supporting the depressed bone fragments without causing esthetic problems and discomfort for life. We developed a novel aqua splint and suture technique for stabilizing isolated zygomatic arch fractures. The objective of this study is to evaluate the effect of novel aqua splint and suture technique in isolated zygomatic arch fractures. Patients with isolated zygomatic arch fractures were treated by a single surgeon in a single center from January 2000 through December 2012. Classic Gillies approach without external fixation was performed from January 2000 to December 2003, while the novel technique has been performed since 2004. 67 consecutive patients were included (Classic method, n = 32 and Novel method, n = 35). An informed consent was obtained from all patients. The novel aqua splint and suture technique was performed by the following fashion: first, we evaluated intraoperatively the bony alignment by ultrasonography and then, reduced the depressed fracture surgically using the Gillies approach. Thereafter, to stabilize the fracture and obtain the smooth facial figure, we made an aqua splint that fit the facial contour and placed monofilament nonabsorbable sutures around the fractured zygomatic arch. The novel aqua splint and suture technique showed significantly correlated with better cosmetic and functional results. In conclusion, the aqua splint suture technique is very simple, quick, safe, and effective for stabilizing repositioned zygomatic arch fractures. The aqua splint suture technique can be a good alternative procedure in isolated zygomatic arch fractures.

  16. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to

  17. NASA AIRS Instrument Captures Data on Monster Winter Storm Affecting 30 States

    NASA Image and Video Library

    2011-02-02

    This visible image from NASA Aqua satellite Jan. 31 shows thickening clouds along a developing intense front in the plains and Midwestern states that will produce excessive snow, freezing rain, sleet, and wind in those areas.

  18. Probing a steep EoS for dark energy with latest observations

    NASA Astrophysics Data System (ADS)

    Jaber, Mariana; Macorra, Axel de la

    2018-01-01

    We present a parametrization for the Dark Energy Equation of State "EoS" which has a rich structure, performing a transition at pivotal redshift zT between the present day value w0 to an early time wi =wa +w0 ≡ w(z ≫ 0) with a steepness given in terms of q parameter. The proposed parametrization is w =w0 +wa(z /zT) q /(1 +(z /zT)) q , with w0, wi, q and zT constant parameters. It reduces to the widely used EoS w =w0 +wa(1 - a) for zT = q = 1 . This transition is motivated by scalar field dynamics such as for example quintessence models. We study if a late time transition is favored by BAO measurements combined with local determination of H0 and information from the CMB. We find that our dynamical DE model allows to simultaneously fit H0 from local determinations and Planck CMB measurements, alleviating the tension obtained in a ΛCDM model. We obtain a smaller χ2 in our DE model than in ΛCDM showing that a dynamical DE is preferred with a reduction of 4.8%, 20.2% and 42.8% using BAO + H0, BAO + CMB and BAO + CMB + H0 datasets, respectively. However due to the increased number of free parameters in the EoS information criteria favors ΛCDM over our DE model at this stage. Nevertheless it is crucial to obtain the dynamics of DE from the observational data to show the path for theoretical DE models based on fundamental physics.

  19. AquaSMART: Water & Boating Safety, Grades 3-5. Teacher's Guide.

    ERIC Educational Resources Information Center

    Texas State Dept. of Parks and Wildlife, Austin.

    This teacher's guide accompanies a program designed to teach water and boating safety to students in grades 3-5. The written curriculum accompanies a video, AquaSMART 3-5. The theme of the curriculum is AquaSMART. To become AquaSMART, students must learn 10 basic lessons for water and boating safety. The written curriculum begins with an overview…

  20. Visual Modeling for Aqua Ventus I off Monhegan Island, ME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, Luke A.; Whiting, Jonathan M.; Copping, Andrea E.

    2013-11-27

    To assist the University of Maine in demonstrating a clear pathway to project completion, PNNL has developed visualization models of the Aqua Ventus I project that accurately depict the Aqua Ventus I turbines from various points on Monhegain Island, ME and the surrounding area. With a hub height of 100 meters, the Aqua Ventus I turbines are large and may be seen from many areas on Monhegan Island, potentially disrupting important viewsheds. By developing these visualization models, which consist of actual photographs taken from Monhegan Island and the surrounding area with the Aqua Ventus I turbines superimposed within each photograph,more » PNNL intends to support the project’s siting and permitting process by providing the Monhegan Island community and various other stakeholders with a probable glimpse of how the Aqua Ventus I project will appear.« less

  1. Evaluation of Incremental Releases of ECS User Interfaces and the Development of HDF/HDF-EOS Tutorials

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Greco, S.

    2001-01-01

    During the reporting period, the PI has continued to serve on numerous review panels, task forces, and committees with the goal of providing input and guidance for the Earth Observing System Data and Information System (EOSDIS) program at NASA Headquarters and NASA Goddard Space Flight Center (GSFC). In addition, the PI has worked together with personnel at Simpson Weather Associates (SWA) to help create an on-line HDF/HDF-EOS tutorial for beginning and non-expert users of both the Hierarchical Data Format (HDF) and HDF-EOS data format and software libraries. Finally, the PI has worked together with personnel at SWA and the Information Technology and Systems Center (ITSC) at the University of Alabama in Huntsville (UAH) on a feasibility study regarding the use of data mining software to ascertain features from the gridded output from numerical meteorological forecast models. A summary of these activities is provided.

  2. NASA Satellite Eyes Iceland Volcano Cauldron

    NASA Image and Video Library

    2010-04-18

    On Saturday, April 17, 2010, NASA Earth Observing-1 EO-1 spacecraft obtained this pair of images of the continuing eruption of Iceland Eyjafjallajökull volcano. On the left, new black ash deposits are visible on the ground.

  3. AquaSMART: Water & Boating Safety, Grades K-2. Teacher's Guide.

    ERIC Educational Resources Information Center

    Texas State Dept. of Parks and Wildlife, Austin.

    This teacher's guide accompanies a program designed to teach water and boating safety to students in grades K-2. The written curriculum accompanies a video, AquaSMART K-2. The theme of the curriculum is AquaSMART. To become AquaSMART, students must learn 10 basic lessons for water and boating safety. The teacher's guide begins with an overview of…

  4. Use of EOS Data in AWIPS for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.

  5. EOS Directory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Earth Observing System (EOS) directory is divided into two main sections: white and yellow pages. The white pages list alphabetically the names and addresses -- including e-mail, phone, and fax when available -- of all individuals involved with EOS, from graduate students to panel members to program management and more. The yellow pages list the names, affiliation, and phone number of participants divided by project management, program management, individual project participants, interdisciplinary investigations (listed alphabetically by PI), the Science Executive Committee, various panels, platforms, working groups, fellowships, and contractors.

  6. Transitioning NPOESS Data to Weather Offices: The SPoRT Paradigm with EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2009-01-01

    Real-time satellite information provides one of many data sources used by NWS weather forecast offices (WFOs) to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting imagery has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. Additionally, polar orbiting sounding data can provide additional information on the thermodynamic structure of the atmosphere in data sparse regions of at asynoptic observation times. The NASA Short-term Prediction Research and Transition (SPoRT) project has demonstrated the utility of polar orbiting MODIS and AIRS data on the Terra and Aqua satellites to improve weather diagnostics and short-term forecasting on the regional and local scales. SPoRT scientists work directly forecasters at selected WFOS in the Southern Region (SR) to help them ingest these unique data streams into their AWIPS system, understand how to use the data (through on-site and distance learn techniques), and demonstrate the utility of these products to address significant forecast problems. This process also prepares forecasters for the use of similar observational capabilities from NPOESS operational sensors. NPOESS environmental data records (EDRs) from the Visible 1 Infrared Imager I Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrlS) and Advanced Technology Microwave Sounder (ATMS) instruments and additional value-added products produced by NESDIS will be available in near real-time and made available to WFOs to extend their use of NASA EOS data into the NPOESS era. These new data streams will be integrated into the NWs's new AWIPS II decision support tools. The AWIPS I1 system to be unveiled in WFOs in 2009 will be a JAVA-based decision support system which preserves the functionality of the existing systems and

  7. First Day of Winter Obvious on NASA Satellite Image of the U.S. Plains States

    NASA Image and Video Library

    2017-12-08

    Winter arrived officially on Dec. 22 at 12:35 a.m. EST, but the U.S. Plains states received an early and cool welcome on Dec. 19 from heavy snowfall that was seen by a NASA satellite. NASA's Aqua satellite passed overhead on Dec. 21 at 20:05 UTC (3:05 p.m. EST) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Aqua satellite captured a visible image of snow blanketing the ground through west and central Kansas, eastern and central Colorado, much of New Mexico, northern Texas and the panhandle of Oklahoma. According to CBS News, blizzard conditions were reported in northern New Mexico, the Texas Panhandle, Oklahoma and northwestern Kansas. The Associated Press reported snow drifts as high as 10 feet in southeast Colorado. Six people lost their lives in traffic accidents from this storm. Heavy snow is expected again today, Dec. 22 in New Mexico and Colorado. Snow is also expected to stretch across the plains into the upper Midwest today, according to the National Weather Service. Portions of many states are expecting some snow today, including the four corners states, north Texas, Kansas, southern Nebraska, western Oklahoma, northern Missouri, Iowa, northern Illinois and southern Wisconsin stretching east into northern New England. The first day of the winter season occurs when the sun is farthest south, either Dec. 21 or 22. The day is also known as the winter solstice. By the second day of winter, NASA's Aqua satellite is going to have a lot more snowfall to observe. Image Credit: NASA Goddard MODIS Rapid Response Team Caption: NASA, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Opacplot2: Enabling tabulated EoS and opacity compatibility for HEDLP simulations with the FLASH code

    NASA Astrophysics Data System (ADS)

    Laune, Jordan; Tzeferacos, Petros; Feister, Scott; Fatenejad, Milad; Yurchak, Roman; Flocke, Norbert; Weide, Klaus; Lamb, Donald

    2017-10-01

    Thermodynamic and opacity properties of materials are necessary to accurately simulate laser-driven laboratory experiments. Such data are compiled in tabular format since the thermodynamic range that needs to be covered cannot be described with one single theoretical model. Moreover, tabulated data can be made available prior to runtime, reducing both compute cost and code complexity. This approach is employed by the FLASH code. Equation of state (EoS) and opacity data comes in various formats, matrix-layouts, and file-structures. We discuss recent developments on opacplot2, an open-source Python module that manipulates tabulated EoS and opacity data. We present software that builds upon opacplot2 and enables easy-to-use conversion of different table formats into the IONMIX format, the native tabular input used by FLASH. Our work enables FLASH users to take advantage of a wider range of accurate EoS and opacity tables in simulating HELP experiments at the National Laser User Facilities.

  9. ISO 19115 Experiences in NASA's Earth Observing System (EOS) ClearingHOuse (ECHO)

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Mitchell, A.

    2011-12-01

    Metadata is an important entity in the process of cataloging, discovering, and describing earth science data. As science research and the gathered data increases in complexity, so does the complexity and importance of descriptive metadata. To meet these growing needs, the metadata models required utilize richer and more mature metadata attributes. Categorizing, standardizing, and promulgating these metadata models to a politically, geographically, and scientifically diverse community is a difficult process. An integral component of metadata management within NASA's Earth Observing System Data and Information System (EOSDIS) is the Earth Observing System (EOS) ClearingHOuse (ECHO). ECHO is the core metadata repository for the EOSDIS data centers providing a centralized mechanism for metadata and data discovery and retrieval. ECHO has undertaken an internal restructuring to meet the changing needs of scientists, the consistent advancement in technology, and the advent of new standards such as ISO 19115. These improvements were based on the following tenets for data discovery and retrieval: + There exists a set of 'core' metadata fields recommended for data discovery. + There exists a set of users who will require the entire metadata record for advanced analysis. + There exists a set of users who will require a 'core' set metadata fields for discovery only. + There will never be a cessation of new formats or a total retirement of all old formats. + Users should be presented metadata in a consistent format of their choosing. In order to address the previously listed items, ECHO's new metadata processing paradigm utilizes the following approach: + Identify a cross-format set of 'core' metadata fields necessary for discovery. + Implement format-specific indexers to extract the 'core' metadata fields into an optimized query capability. + Archive the original metadata in its entirety for presentation to users requiring the full record. + Provide on-demand translation of

  10. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    NASA Technical Reports Server (NTRS)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  11. Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H.; Behnke, J.

    2016-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since 1994. EOSDIS manages data from pre-EOS missions dating back to 1960s, EOS missions that started in 1997, and missions from the post-EOS era. Its data holdings come from many different sources - satellite and airborne instruments, in situ measures, field experiments, science investigations, etc. Since the beginning of the EOS Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and/or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: 1. Data bits with no corruption, 2. Discoverability and access, 3. Readability, 4. Understandability, 5. Usability and 6. Reproducibility of results. NASA's Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are "published" in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing/product information pages.

  12. NASA Watching Issac's Approach to U.S. Gulf Coast

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument on NASA's Aqua satellite captured this visible image of Tropical Storm Isaac on Aug. 27 at 3:00 p.m. EDT is it was moving northwest through the Gulf of Mexico. Issac's large reach is seen by its eastern cloud cover over the entire state of Florida. To read more go to: www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012... Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Workshop on Using NASA Data for Time-Sensitive Applications

    NASA Technical Reports Server (NTRS)

    Davies, Diane K.; Brown, Molly E.; Murphy, Kevin J.; Michael, Karen A.; Zavodsky, Bradley T.; Stavros, E. Natasha; Carroll, Mark L.

    2017-01-01

    Over the past decade, there has been an increase in the use of NASA's Earth Observing System (EOS) data and imagery for time-sensitive applications such as monitoring wildfires, floods, and extreme weather events. In September 2016, NASA sponsored a workshop for data users, producers, and scientists to discuss the needs of time-sensitive science applications.

  14. 78 FR 5116 - NASA Information Security Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... 2700-AD61 NASA Information Security Protection AGENCY: National Aeronautics and Space Administration... implement the provisions of Executive Order (E.O.) 13526, Classified National Security Information, and... Information, that establishes the Agency's requirements for the proper implementation and management of a...

  15. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSRE Microwave Brightness Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Peterson, Craig

    2006-01-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC

  16. Calibration Adjustments to the MODIS Aqua Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard

    2012-01-01

    After the end of the SeaWiFS mission in 2010 and the MERIS mission in 2012, the ocean color products of the MODIS on Aqua are the only remaining source to continue the ocean color climate data record until the VIIRS ocean color products become operational (expected for summer 2013). The MODIS on Aqua is well beyond its expected lifetime, and the calibration accuracy of the short wavelengths (412nm and 443nm) has deteriorated in recent years_ Initially, SeaWiFS data were used to improve the MODIS Aqua calibration, but this solution was not applicable after the end of the SeaWiFS mission_ In 2012, a new calibration methodology was applied by the MODIS calibration and support team using desert sites to improve the degradation trending_ This presentation presents further improvements to this new approach. The 2012 reprocessing of the MODIS Aqua ocean color products is based on the new methodology.

  17. Data Information for Global Change Studies: NASA's Distributed Active Archive Centers and Cooperating Data Centers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Earth Observing System (EOS) is an integral part of the National Aeronautics and Space Administration's (NASA's) Earth Science Enterprise (ESE). ESE is a long-term global change research program designed to improve our understanding of the Earth's interrelated processes involving the atmosphere, oceans, land surfaces, and polar regions. Data from EOS instruments and other Earth science measurement systems are useful in understanding the causes and processes of global climate change and the consequences of human activities. The EOS Data and Information System (EOSDIS) provides a structure for data management and user services for products derived from EOS satellite instruments and other NASA Earth science data. Within the EOSDIS framework, the Distributed Active Archive Centers (DAACs) have been established to provide expertise in one or more Earth science disciplines. The DAACs and cooperating data centers provide data and information services to support the global change research community. Much of the development of the DAACs has been in anticipation of the enormous amount of data expected from EOS instruments to be launched within the next two decades. Terra, the EOS flagship launched in December 1999, is the first of a series of EOS satellites to carry several instruments with multispectral capabilities. Some data products from these instruments are now available from several of the DAACs. These and other data products can be ordered through the EOS Data Gateway (EDG) and DAAC-specific online ordering systems.

  18. Spatial and Temporal Distribution of Clouds as Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, Paul; Ackerman, Steven A.

    2006-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24,2000 for Terra and June 24,2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, and fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Over the last year, extensive improvements and enhancements in the global cloud products have been implemented, and reprocessing of all MODIS data on Terra has commenced since first light in February 2000. In the cloud mask algorithm, the most extensive improvements were in distinguishing clouds at nighttime, including the challenging polar darkness regions of the world. Additional improvements have been made to properly distinguish sunglint from clouds in the tropical ocean regions, and to improve the identification of clouds from snow during daytime in Polar Regions. We will show global monthly mean cloud fraction for both Terra and Aqua, and show how similar the global daytime cloud fraction is from these morning and afternoon orbits, respectively. We will also show the zonal distribution of cloud fraction over land and ocean regions for both Terra and Aqua, and show the time series of global cloud fraction from July 2002 through June 2006.

  19. Web Coverage Service Challenges for NASA's Earth Science Data

    NASA Technical Reports Server (NTRS)

    Cantrell, Simon; Khan, Abdul; Lynnes, Christopher

    2017-01-01

    In an effort to ensure that data in NASA's Earth Observing System Data and Information System (EOSDIS) is available to a wide variety of users through the tools of their choice, NASA continues to focus on exposing data and services using standards based protocols. Specifically, this work has focused recently on the Web Coverage Service (WCS). Experience has been gained in data delivery via GetCoverage requests, starting out with WCS v1.1.1. The pros and cons of both the version itself and different implementation approaches will be shared during this session. Additionally, due to limitations with WCS v1.1.1 ability to work with NASA's Earth science data, this session will also discuss the benefit of migrating to WCS 2.0.1 with EO-x to enrich this capability to meet a wide range of anticipated user's needs This will enable subsetting and various types of data transformations to be performed on a variety of EOS data sets.

  20. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2017-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASAs Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASAs EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

  1. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis.

    PubMed

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2017-04-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA's Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA's EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

  2. NASA GIBS & Worldview - Lesson Ready Visualizations

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Gunnoe, T.; Wong, M. M.; Schmaltz, J. E.; De Luca, A. P.; King, J.; Roberts, J. T.; Rodriguez, J.; Thompson, C. K.; Alarcon, C.; De Cesare, C.; Pressley, N. N.

    2016-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has operated dozens of remote sensing satellites collecting 14 Petabytes of data that span thousands of science parameters. Within these observations are keys the Earth Scientists have used to unlock many things that we understand about our planet. Also contained within these observations are a myriad of opportunities for learning and education. The trick is making them accessible to educators and students in convenient and simple ways so that effort can be spent on lesson enrichment and not overcoming technical hurdles. The NASA Global Imagery Browse Services (GIBS) system and NASA Worldview website provide a unique view into EOS data through daily full resolution visualizations of hundreds of earth science parameters. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. Accompanying the visualizations are visual aids such as color legends, place names, and orbit tracks. By using these visualizations, educators and students can observe natural phenomena that enrich a scientific education. This presentation will provide an overview of the visualizations available in NASA GIBS and Worldview and how they are accessed. We will also provide real-world examples of how the visualizations have been used in educational settings including planetariums, visitor centers, hack-a-thons, and public organizations.

  3. NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The House of Representatives has authorized $161.7 million more than President Ronald Reagan proposed for the fiscal 1984 National Aeronautics and Space Administration (NASA) budget. The House NASA authorization bill (H.R. 2065) passed by voice vote on April 26. Five days earlier, the Senate Commerce, Science, and Technology Committee marked up S. 1096, the Senate's NASA authorization bill, and recommended $171.6 million more than the Reagan proposal. The Senate is expected to vote on the bill in mid May, after which time a conference committee will iron out the differences between the House and Senate versions.President Reagan requested a total NASA budget of $7.1065 billion: $5.7085 billion for research and development, $150.5 million for construction of facilities, and $1.2475 billion for research and program management (Eos, February 15, 1983, p. 65).

  4. Lessons Learned while Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems

    NASA Astrophysics Data System (ADS)

    Pilone, D.

    2016-12-01

    As new, high data rate missions begin collecting data, the NASA's Earth Observing System Data and Information System (EOSDIS) archive is projected to grow roughly 20x to over 300PBs by 2025. To prepare for the dramatic increase in data and enable broad scientific inquiry into larger time series and datasets, NASA has been exploring the impact of applying cloud technologies throughout EOSDIS. In this talk we will provide an overview of NASA's prototyping and lessons learned in applying cloud architectures to: Highly scalable and extensible ingest and archive of EOSDIS data Going "all-in" on cloud based application architectures including "serverless" data processing pipelines and evaluating approaches to vendor-lock in Rethinking data distribution and approaches to analysis in a cloud environment Incorporating and enforcing security controls while minimizing the barrier for research efforts to deploy to NASA compliant, operational environments. NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products.

  5. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  6. Starck Ta PTW strength model recommendation for use with SESAME 93524 EoS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjue, Sky K.; Prime, Michael Bruce

    2017-02-27

    The purpose of this document is to provide a calibration of the Preston-Tonks- Wallace (PTW) strength model for use with the new SESAME equation of state (EoS) 93524. The calibration data included in this t spans temperatures from 198 K to 673 K and strain rates from 0.001/s to 3200/s.

  7. Limited Range Sesame EOS for Ta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greeff, Carl William; Crockett, Scott; Rudin, Sven Peter

    2017-03-30

    A new Sesame EOS table for Ta has been released for testing. It is a limited range table covering T ≤ 26, 000 K and ρ ≤ 37.53 g/cc. The EOS is based on earlier analysis using DFT phonon calculations to infer the cold pressure from the Hugoniot. The cold curve has been extended into compression using new DFT calculations. The present EOS covers expansion into the gas phase. It is a multi-phase EOS with distinct liquid and solid phases. A cold shear modulus table (431) is included. This is based on an analytic interpolation of DFT calculations.

  8. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.

  9. The EducEO project

    NASA Astrophysics Data System (ADS)

    Fritz, Steffen; Dias, Eduardo; Zeug, Guenther; Vescovi, Fabio; See, Linda; Sturn, Tobias; McCallum, Ian; Stammes, Piet; Snik, Frans; Hendriks, Elise

    2015-04-01

    The ESA funded EducEO project is aimed at demonstrating the potential of citizen science and crowdsourcing for Earth Observation (EO), where citizen science and crowdsourcing refer to the involvement of citizens in tasks such as data collection. The potential for using citizens in the calibration and validation of satellite imagery through in-situ measurements and image recognition is largely untapped. The EducEO project will aim to achieve good integration with networks such as GLOBE (primary and secondary education) and COST (higher education) to involve students in four different applications that will be piloted as part of the EducEO project. The presentation will provide a brief overview and initial results of these applications, which include: the iSpex tool for measuring air pollution using an iPhone; a game to classify cropland and deforested areas from high resolution satellite imagery; an application to monitor areas of forest change using radar data from Sentinel-1; and the collection of in-situ yield and production data from both farmers (using high-tech farming equipment) and students. In particular initial results and future potential of the serious game on land cover and forest change monitoring will be discussed.

  10. EOS workstation

    NASA Technical Reports Server (NTRS)

    Leberl, Franz; Karspeck, Milan; Millot, Michel; Maurice, Kelly; Jackson, Matt

    1992-01-01

    This final report summarizes the work done from mid-1989 until January 1992 to develop a prototype set of tools for the analysis of EOS-type images. Such images are characterized by great multiplicity and quantity. A single 'snapshot' of EOS-type imagery may contain several hundred component images so that on a particular pixel, one finds multiple gray values. A prototype EOS-sensor, AVIRIS, has 224 gray values at each pixel. The work focused on the ability to utilize very large images and continuously roam through those images, zoom and be able to hold more than one black and white or color image, for example for stereo viewing or for image comparisons. A second focus was the utilization of so-called 'image cubes', where multiple images need to be co-registered and then jointly analyzed, viewed, and manipulated. The target computer platform that was selected was a high-performance graphics superworkstation, Stardent 3000. This particular platform offered many particular graphics tools such as the Application Visualization System (AVS) or Dore, but it missed availability of commercial third-party software for relational data bases, image processing, etc. The project was able to cope with these limitations and a phase-3 activity is currently being negotiated to port the software and enhance it for use with a novel graphics superworkstation to be introduced into the market in the Spring of 1993.

  11. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is built with strong heritage from EOS MODIS, and has very similar thermal emissive bands (TEB) calibration algorithm and on-board calibrating source - a V-grooved blackbody. The calibration of the two instruments can be assessed by comparing the brightness temperatures retrieved from VIIRS and Aqua MODIS simultaneous nadir observations (SNO) from their spectrally matched TEB. However, even though the VIIRS and MODIS bands are similar there are still relative spectral response (RSR) differences and thus some differences in the retrieved brightness temperatures are expected. The differences depend on both the type and the temperature of the observed scene, and contribute to the bias and the scatter of the comparison. In this paper we use S-NPP Cross-track Infrared Sounder (CrIS) data taken simultaneously with the VIIRS data to derive a correction for the slightly different spectral coverage of VIIRS and MODIS TEB bands. An attempt to correct for RSR differences is also made using MODTRAN models, computed with physical parameters appropriate for each scene, and compared to the value derived from actual CrIS spectra. After applying the CrIS-based correction for RSR differences we see an excellent agreement between the VIIRS and Aqua MODIS measurements in the studied band pairs M13-B23, M15-B31, and M16- B32. The agreement is better than the VIIRS uncertainty at cold scenes, and improves with increasing scene temperature up to about 290K.

  12. Web Monitoring of EOS Front-End Ground Operations, Science Downlinks and Level 0 Processing

    NASA Technical Reports Server (NTRS)

    Cordier, Guy R.; Wilkinson, Chris; McLemore, Bruce

    2008-01-01

    This paper addresses the efforts undertaken and the technology deployed to aggregate and distribute the metadata characterizing the real-time operations associated with NASA Earth Observing Systems (EOS) high-rate front-end systems and the science data collected at multiple ground stations and forwarded to the Goddard Space Flight Center for level 0 processing. Station operators, mission project management personnel, spacecraft flight operations personnel and data end-users for various EOS missions can retrieve the information at any time from any location having access to the internet. The users are distributed and the EOS systems are distributed but the centralized metadata accessed via an external web server provide an effective global and detailed view of the enterprise-wide events as they are happening. The data-driven architecture and the implementation of applied middleware technology, open source database, open source monitoring tools, and external web server converge nicely to fulfill the various needs of the enterprise. The timeliness and content of the information provided are key to making timely and correct decisions which reduce project risk and enhance overall customer satisfaction. The authors discuss security measures employed to limit access of data to authorized users only.

  13. Exploring New Methods of Displaying Bit-Level Quality and Other Flags for MODIS Data

    NASA Technical Reports Server (NTRS)

    Khalsa, Siri Jodha Singh; Weaver, Ron

    2003-01-01

    The NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC) archives and distributes snow and sea ice products derived from the MODerate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. All MODIS standard products are in the Earth Observing System version of the Hierarchal Data Format (HDF-EOS). The MODIS science team has packed a wealth of information into each HDF-EOS file. In addition to the science data arrays containing the geophysical product, there are often pixel-level Quality Assurance arrays which are important for understanding and interpreting the science data. Currently, researchers are limited in their ability to access and decode information stored as individual bits in many of the MODIS science products. Commercial and public domain utilities give users access, in varying degrees, to the elements inside MODIS HDF-EOS files. However, when attempting to visualize the data, users are confronted with the fact that many of the elements actually represent eight different 1-bit arrays packed into a single byte array. This project addressed the need for researchers to access bit-level information inside MODIS data files. In an previous NASA-funded project (ESDIS Prototype ID 50.0) we developed a visualization tool tailored to polar gridded HDF-EOS data set. This tool,called the Polar researchers to access, geolocate, visualize, and subset data that originate from different sources and have different spatial resolutions but which are placed on a common polar grid. The bit-level visualization function developed under this project was added to PHDIS, resulting in a versatile tool that serves a variety of needs. We call this the EOS Imaging Tool.

  14. Enhancement and evaluation of an algorithm for atmospheric profiling continuity from Aqua to Suomi-NPP

    NASA Astrophysics Data System (ADS)

    Lipton, A.; Moncet, J. L.; Payne, V.; Lynch, R.; Polonsky, I. N.

    2017-12-01

    We will present recent results from an algorithm for producing climate-quality atmospheric profiling earth system data records (ESDRs) for application to data from hyperspectral sounding instruments, including the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua and the Cross-track Infrared Sounder (CrIS) on Suomi-NPP, along with their companion microwave sounders, AMSU and ATMS, respectively. The ESDR algorithm uses an optimal estimation approach and the implementation has a flexible, modular software structure to support experimentation and collaboration. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. Developments to be presented include the impact of a radiance-based pre-classification method for the atmospheric background. In addition to improving retrieval performance, pre-classification has the potential to reduce the sensitivity of the retrievals to the climatological data from which the background estimate and its error covariance are derived. We will also discuss evaluation of a method for mitigating the effect of clouds on the radiances, and enhancements of the radiative transfer forward model.

  15. VIIRS Data and Data Access at the NASA National Snow and Ice Data Center Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Moth, P.; Johnston, T.; Fowler, D. K.

    2017-12-01

    Working collaboratively, NASA and NOAA are producing data from the Visible Infrared Imaging Radiometer Suite (VIIRS). The National Snow and Ice Data Center (NSIDC), a NASA Distributed Active Archive Center (DAAC), is distributing VIIRS snow cover, ice surface temperature, and sea ice cover products. Data is available in .nc and HDF5 formats with a temporal coverage of 1 January 2012 and onward. VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite on October 28, 2011. The instrument comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. One distinct advantage of VIIRS is to ensure continuity that will lead to the development of snow and sea ice climate data records with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Combined with the Advanced Very-High-resolution Radiometer (AVHRR), the AVHRR-MODIS-VIIRS timeline will start in the early 1980s and span at least four decades-and perhaps beyond-enabling researchers to produce and gain valuable insight from long, high-quality Earth System Data Records (ESDRs). Several options are available to view and download VIIRS data: Direct download from NSIDC via HTTPS. Using NASA Earthdata Search, users can explore and download VIIRS data with temporal and/or spatial filters, re-format, re-project, and subset by spatial extent and parameter. API access is also available for all these options; Using NASA Worldview, users can view Global Imagery Browse Services (GIBS) from VIIRS data; Users can join a VIIRS subscription list to have new VIIRS data automatically ftp'd or staged on a local server as it is archived at NSIDC.

  16. EOS: A project to investigate the design and construction of real-time distributed Embedded Operating Systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince

    1987-01-01

    Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.

  17. NASA Sees Cyclone Chapala Approaching Landfall in Yemen

    NASA Image and Video Library

    2017-12-08

    On Nov. 2, 2015 at 09:40 UTC (4:40 p.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured an image of Tropical Cyclone Chapala as the eye of the storm was approaching the Yemen coast. Chapala maintained an eye, although it appeared cloud-covered. Animated multispectral satellite imagery shows the system has maintained a 15-nautical-mile-wide eye and structure. The image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center, Greenbelt, Maryland. Chapala weakened from category four intensity a couple days ago while maintaining a course that steers it toward Yemen. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/f…/goddard/chapala-northern-indian-ocean NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Retrieval of Aerosol Properties from MODIS Terra, MODIS Aqua, and VIIRS SNPP: Calibration Focus

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Mattoo, Shana; Sawyer, Virginia; Kleidman, Richard; Patadia, Falguni; Zhou, Yaping; Gupta, Pawan; Shi, Yingxi; Remer, Lorraine; Holz, Robert

    2016-01-01

    MODIS-DT Collection 6 - Aqua/Terra level 2, 3; entire record processed - "Trending" issues reduced - Still a 15% or 0.02 Terra vs Aqua offset. - Terra/Aqua convergence improved with C6+, but bias remains. - Other calibration efforts yield mixed results. VIIRS-­-DT in development - VIIRS is similar, yet different then MODIS - With 50% wider swath, VIIRS has daily coverage - Ensures algorithm consistency with MODIS. - Currently: 20% NPP vs Aqua offset over ocean. - Only small bias (%) over land (2012-­-2016) - Can VIIRS/MODIS create aerosol CDR? Calibration for MODIS - VIIRS continues to fundamentally important. It's not just Terra, or just Aqua, or just NPP-­-VIIRS, I really want to push synergistic calibration.

  19. In Brief: NASA issues media rules

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-04-01

    NASA issues media rules NASA scientists will be able to speak freely about their work to the media and the public, under a newly revised policy announced 30 March by NASA Administrator Michael Griffin. Earlier in the year, the agency had been widely criticized after allegations were published that scientists had been prevented from speaking about controversial topics, such as climate change (see Eos 97(9) 2006). The policy is intended to establish a `culture of openness,' in which scientists may communicate the results and conclusions of their scientific research to the public without hindrance. However, NASA scientists will be required to distinguish personal views from those of the agency. The revised policy also outlines the responsibilities other public affairs staff, who will be prohibited from altering or editing scientific information.

  20. Science Requirements Document for OMI-EOS. 2

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Chance, K.; Isaksen, I.; Levelt, P. F.; Boersma, F.; Brinksma, E.; Carpay, J.; vanderA, R.; deHaan, J.; Hilsenrath, E.

    2000-01-01

    A Dutch-Finnish scientific and industrial consortium is supplying the Ozone Monitoring Instrument (OMI) for Earth Observing System-Aura (EOS-Aura). EOS-Aura is the next NASA mission to study the Earth's atmosphere extensively, and successor to the highly successful UARS (Upper Atmospheric Research Satellite) mission. The 'Science Requirements Document for OMI-EOS' presents an overview of the Aura and OMI mission objectives. It describes how OMI fits into the Aura mission and it reviews the synergy with the other instruments onboard Aura to fulfill the mission. This evolves in the Scientific Requirements for OMI (Chapter 3), stating which trace gases have to be measured with what necessary accuracy, in order for OMI to meet Aura's objectives. The most important data product of OMI, the ozone vertical column, densities shall have a better accuracy and an improved global coverage than the predecessor instruments TOMS (Total Ozone Monitoring Spectrometer) and GOME (Global Ozone Monitoring Experiment), which is a.o. achieved by a better signal to noise ratio, improved calibration and a wide field-of-view. Moreover, in order to meet its role on Aura, OMI shall measure trace gases, such as NO2, OClO, BrO, HCHO and SO2, aerosols, cloud top height and cloud coverage. Improved accuracy, better coverage, and finer ground grid than has been done in the past are goals for OMI. After the scientific requirements are defined, three sets of subordinate requirements are derived. These are: the algorithm requirements, i.e. what do the algorithms need in order to meet the scientific requirements; the instrument and calibration requirements, i.e. what has to be measured and how accurately in order to provide the quality of data necessary for deriving the data products; and the validation requirements, i.e. a strategy of how the OMI program will assure that its data products are valid in the atmosphere, at least to the required accuracy.

  1. Inter-Comparison of S-NPP VIIRS and Aqua MODIS Thermal Emissive Bands Using Hyperspectral Infrared Sounder Measurements as a Transfer Reference

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    This paper compares the calibration consistency of the spectrally-matched thermal emissive bands (TEB) between the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), using observations from their simultaneous nadir overpasses (SNO). Nearly-simultaneous hyperspectral measurements from the Aqua Atmospheric Infrared Sounder(AIRS) and the S-NPP Cross-track Infrared Sounder (CrIS) are used to account for existing spectral response differences between MODIS and VIIRS TEB. The comparison uses VIIRS Sensor Data Records (SDR) in MODIS five-minute granule format provided by the NASA Land Product and Evaluation and Test Element (PEATE) and Aqua MODIS Collection 6 Level 1 B (L1B) products. Each AIRS footprint of 13.5 km (or CrIS field of view of 14 km) is co-located with multiple MODIS (or VIIRS) pixels. The corresponding AIRS- and CrIS-simulated MODIS and VIIRS radiances are derived by convolutions based on sensor-dependent relative spectral response (RSR) functions. The VIIRS and MODIS TEB calibration consistency is evaluated and the two sensors agreed within 0.2 K in brightness temperature.Additional factors affecting the comparison such as geolocation and atmospheric water vapor content are also discussed in this paper.

  2. ES9 Aqua-Xtrk Ed3

    Atmospheric Science Data Center

    2018-05-16

    ... Instantaneous (Hourly Gridded), Monthly, Daily, Monthly Hourly File Format:  HDF Tools:  ... Aqua; Edition1 for NPP; Edition2 for TRMM) are approved for science publications. SCAR-B Block:  ...

  3. EOS MLS Level 1B Data Processing Software. Version 3

    NASA Technical Reports Server (NTRS)

    Perun, Vincent S.; Jarnot, Robert F.; Wagner, Paul A.; Cofield, Richard E., IV; Nguyen, Honghanh T.; Vuu, Christina

    2011-01-01

    This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.

  4. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  5. A Full Snow Season in Yellowstone: A Database of Restored Aqua Band 6

    NASA Technical Reports Server (NTRS)

    Gladkova, Irina; Grossberg, Michael; Bonev, George; Romanov, Peter; Riggs, George; Hall, Dorothy

    2013-01-01

    The algorithms for estimating snow extent for the Moderate Resolution Imaging Spectroradiometer (MODIS) optimally use the 1.6- m channel which is unavailable for MODIS on Aqua due to detector damage. As a test bed to demonstrate that Aqua band 6 can be restored, we chose the area surrounding Yellowstone and Grand Teton national parks. In such rugged and difficult-to-access terrain, satellite images are particularly important for providing an estimation of snow-cover extent. For the full 2010-2011 snow season covering the Yellowstone region, we have used quantitative image restoration to create a database of restored Aqua band 6. The database includes restored radiances, normalized vegetation index, normalized snow index, thermal data, and band-6-based snow-map products. The restored Aqua-band-6 data have also been regridded and combined with Terra data to produce a snow-cover map that utilizes both Terra and Aqua snow maps. Using this database, we show that the restored Aqua-band-6-based snow-cover extent has a comparable performance with respect to ground stations to the one based on Terra. The result of a restored band 6 from Aqua is that we have an additional band-6 image of the Yellowstone region each day. This image can be used to mitigate cloud occlusion, using the same algorithms used for band 6 on Terra. We show an application of this database of restored band-6 images to illustrate the value of creating a cloud gap filling using the National Aeronautics and Space Administration s operational cloud masks and data from both Aqua and Terra.

  6. Mands for Information Using "How" Under EO-Absent and EO-Present Conditions.

    PubMed

    Shillingsburg, M Alice; Bowen, Crystal N; Valentino, Amber L

    2014-06-01

    The present study replicates and extends previous research on teaching "How?" mands for information to children with autism. The experimental preparation involved mand training in the context of completing preferred activities and included training and testing under conditions when the establishing operation (EO) was present and absent. Results show that two children with autism acquired mands for information using How? only in situations where information was valuable (i.e., the EO was present); they then consistently made use of the information provided in activity completion. Generalization to novel, untaught situations was assessed.

  7. The Aqua-Planet Experiment (APE): CONTROL SST Simulation

    NASA Technical Reports Server (NTRS)

    Blackburn, Michael; Williamson, David L.; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an

  8. Lakshmi joins Eos Team

    NASA Astrophysics Data System (ADS)

    Grant, Shermonta L.

    Venkat Lakshmi, an assistant professor in the Department of Geological Sciences at the University of South Carolina, has begun his 3-year term with Eos as the hydrology section editor. Among his goals as editor, Lakshmi will seek to portray hydrology as an integrative science. “Hydrology is not a stand-alone science,” he said. “I will encourage interdisciplinary articles in Eos that deal with water issues and the role of hydrology within a broad spectrum of problems and disciplines.”

  9. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the

  10. Sizing the science data processing requirements for EOS

    NASA Technical Reports Server (NTRS)

    Wharton, Stephen W.; Chang, Hyo D.; Krupp, Brian; Lu, Yun-Chi

    1991-01-01

    The methodology used in the compilation and synthesis of baseline science requirements associated with the 30 + EOS (Earth Observing System) instruments and over 2,400 EOS data products (both output and required input) proposed by EOS investigators is discussed. A brief background on EOS and the EOS Data and Information System (EOSDIS) is presented, and the approach is outlined in terms of a multilayer model. The methodology used to compile, synthesize, and tabulate requirements within the model is described. The principal benefit of this approach is the reduction of effort needed to update the analysis and maintain the accuracy of the science data processing requirements in response to changes in EOS platforms, instruments, data products, processing center allocations, or other model input parameters. The spreadsheets used in the model provide a compact representation, thereby facilitating review and presentation of the information content.

  11. NASA Soil Moisture Data Products and Their Incorporation in DREAM

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette

    2005-01-01

    NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.

  12. Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)

    DOE Data Explorer

    Trishchenko, Alexander

    2008-01-15

    Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting (LBF) algorithm is developed to derive the BRDF model parameters and albedo product (Luo et al., 2004a). The approach employs a landcover map and multi-day clearsky composites of directional surface reflectance. The landcover map is derived from the Landsat TM 30-meter data set (Trishchenko et al., 2004a), and the surface reflectances are from MODIS 500m-resolution 8-day composite products (MOD09/MYD09). The MOD09/MYD09 data are re-arranged into 10-day intervals for compatibility with other satellite products, such as those from the NOVA/AVHRR and SPOT/VGT sensors. The LBF method increases the success rate of the BRDF fitting process and enables more accurate monitoring of surface temporal changes during periods of rapid spring vegetation green-up and autumn leaf-fall, as well as changes due to agricultural practices and snowcover variations (Luo et al., 2004b, Trishchenko et al., 2004b). Albedo/BRDF products for MODIS on Terra and MODIS on Aqua, as well as for Terra/Aqua combined dataset, are generated at 500m spatial resolution and every 10-day since March 2000 (Terra) and July 2002 (Aqua and combined), respectively. The purpose for the latter product is to obtain a more comprehensive dataset that takes advantages of multi-sensor observations (Trishchenko et al., 2002). To fill data gaps due to cloud presence, various interpolation procedures are applied based on a multi-year observation database and referring to results from other locations with similar landcover property. Special seasonal smoothing procedure is also applied to further remove outliers and artifacts in data series.

  13. KSC-02pd0328

    NASA Image and Video Library

    2002-02-26

    VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite rests on a stand in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002

  14. KSC-02pd0331

    NASA Image and Video Library

    2002-02-27

    VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite is lifted to vertical in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002

  15. KSC-02pd0329

    NASA Image and Video Library

    2002-02-27

    VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite is lifted by an overhead crane in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002

  16. KSC-02pd0332

    NASA Image and Video Library

    2002-02-28

    VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite is again horizontal for instrument deployment while in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002

  17. KSC-02pd0333

    NASA Image and Video Library

    2002-02-28

    VANDENBERG AFB, CALIF. -- Workers in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB work on instrument deployment of the Aqua-EOS satellite. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002

  18. KSC-02pd0327

    NASA Image and Video Library

    2002-02-26

    VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite is uncovered in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002

  19. Viirs Land Science Investigator-Led Processing System

    NASA Astrophysics Data System (ADS)

    Devadiga, S.; Mauoka, E.; Roman, M. O.; Wolfe, R. E.; Kalb, V.; Davidson, C. C.; Ye, G.

    2015-12-01

    The objective of the NASA's Suomi National Polar Orbiting Partnership (S-NPP) Land Science Investigator-led Processing System (Land SIPS), housed at the NASA Goddard Space Flight Center (GSFC), is to produce high quality land products from the Visible Infrared Imaging Radiometer Suite (VIIRS) to extend the Earth System Data Records (ESDRs) developed from NASA's heritage Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the EOS Terra and Aqua satellites. In this paper we will present the functional description and capabilities of the S-NPP Land SIPS, including system development phases and production schedules, timeline for processing, and delivery of land science products based on coordination with the S-NPP Land science team members. The Land SIPS processing stream is expected to be operational by December 2016, generating land products either using the NASA science team delivered algorithms, or the "best-of" science algorithms currently in operation at NASA's Land Product Evaluation and Algorithm Testing Element (PEATE). In addition to generating the standard land science products through processing of the NASA's VIIRS Level 0 data record, the Land SIPS processing system is also used to produce a suite of near-real time products for NASA's application community. Land SIPS will also deliver the standard products, ancillary data sets, software and supporting documentation (ATBDs) to the assigned Distributed Active Archive Centers (DAACs) for archival and distribution. Quality assessment and validation will be an integral part of the Land SIPS processing system; the former being performed at Land Data Operational Product Evaluation (LDOPE) facility, while the latter under the auspices of the CEOS Working Group on Calibration & Validation (WGCV) Land Product Validation (LPV) Subgroup; adopting the best-practices and tools used to assess the quality of heritage EOS-MODIS products generated at the MODIS Adaptive Processing

  20. Implementing the HDF-EOS5 software library for data products in the UNAVCO InSAR archive

    NASA Astrophysics Data System (ADS)

    Baker, Scott; Meertens, Charles; Crosby, Christopher

    2017-04-01

    UNAVCO is a non-profit university-governed consortium that operates the U.S. National Science Foundation (NSF) Geodesy Advancing Geosciences and EarthScope (GAGE) facility and provides operational support to the Western North America InSAR Consortium (WInSAR). The seamless synthetic aperture radar archive (SSARA) is a seamless distributed access system for SAR data and higher-level data products. Under the NASA-funded SSARA project, a user-contributed InSAR archive for interferograms, time series, and other derived data products was developed at UNAVCO. The InSAR archive development has led to the adoption of the HDF-EOS5 data model, file format, and library. The HDF-EOS software library was designed to support NASA Earth Observation System (EOS) science data products and provides data structures for radar geometry (Swath) and geocoded (Grid) data based on the HDF5 data model and file format provided by the HDF Group. HDF-EOS5 inherits the benefits of HDF5 (open-source software support, internal compression, portability, support for structural data, self-describing file metadata enhanced performance, and xml support) and provides a way to standardize InSAR data products. Instrument- and datatype-independent services, such as subsetting, can be applied to files across a wide variety of data products through the same library interface. The library allows integration with GIS software packages such as ArcGIS and GDAL, conversion to other data formats like NetCDF and GeoTIFF, and is extensible with new data structures to support future requirements. UNAVCO maintains a GitHub repository that provides example software for creating data products from popular InSAR processing software packages like GMT5SAR and ISCE as well as examples for reading and converting the data products into other formats. Digital object identifiers (DOI) have been incorporated into the InSAR archive allowing users to assign a permanent location for their processed result and easily reference the

  1. Supporting Research at NASA's Goddard Space Flight Center Through Focused Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Closs, J.

    2003-12-01

    NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide

  2. Accessing Earth Science Data Visualizations through NASA GIBS & Worldview

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Wong, M. M.; King, B. A.; Schmaltz, J. E.; De Luca, A. P.; King, J.; Roberts, J. T.; Rodriguez, J.; Thompson, C. K.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has operated dozens of remote sensing satellites collecting nearly 15 Petabytes of data that span thousands of science parameters. Within these observations are keys the Earth Scientists have used to unlock many things that we understand about our planet. Also contained within these observations are a myriad of opportunities for learning and education. The trick is making them accessible to educators and students in convenient and simple ways so that effort can be spent on lesson enrichment and not overcoming technical hurdles. The NASA Global Imagery Browse Services (GIBS) system and NASA Worldview website provide a unique view into EOS data through daily full resolution visualizations of hundreds of earth science parameters. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. Accompanying the visualizations are visual aids such as color legends, place names, and orbit tracks. By using these visualizations, educators and students can observe natural phenomena that enrich a scientific education. This poster will provide an overview of the visualizations available in NASA GIBS and Worldview and how they are accessed. We invite discussion on how the visualizations can be used or improved for educational purposes.

  3. A Collaboration in Support of LBA Science and Data Exchange: Beija-flor and EOS-WEBSTER

    NASA Astrophysics Data System (ADS)

    Schloss, A. L.; Gentry, M. J.; Keller, M.; Rhyne, T.; Moore, B.

    2001-12-01

    The University of New Hampshire (UNH) has developed a Web-based tool that makes data, information, products, and services concerning terrestrial ecological and hydrological processes available to the Earth Science community. Our WEB-based System for Terrestrial Ecosystem Research (EOS-WEBSTER) provides a GIS-oriented interface to select, subset, reformat and download three main types of data: selected NASA Earth Observing System (EOS) remotely sensed data products, results from a suite of ecosystem and hydrological models, and geographic reference data. The Large Scale Biosphere-Atmosphere Experiment in Amazonia Project (LBA) has implemented a search engine, Beija-flor, that provides a centralized access point to data sets acquired for and produced by LBA researchers. The metadata in the Beija-flor index describe the content of the data sets and contain links to data distributed around the world. The query system returns a list of data sets that meet the search criteria of the user. A common problem when a user of a system like Beija-flor wants data products located within another system is that users are required to re-specify information, such as spatial coordinates, in the other system. This poster describes methodology by which Beija-flor generates a unique URL containing the requested search parameters and passes the information to EOS-WEBSTER, thus making the interactive services and large diverse data holdings in EOS-WEBSTER directly available to Beija-flor users. This "Calling Card" is used by EOS-WEBSTER to generate on-demand custom products tailored to each Beija-flor request. Through a collaborative effort, we have demonstrated the ability to integrate project-specific search engines such as Beija-flor with the products and services of large data systems such as EOS-WEBSTER, to provide very specific information products with a minimal amount of additional programming. This methodology has the potential to greatly facilitate research data exchange by

  4. On-orbit test results from the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Evans, Jenifer B.; Digenis, Constantine J.; Gibbs, Margaret D.; Hearn, David R.; Lencioni, Donald E.; Mendenhall, Jeffrey A.; Welsh, Ralph D.

    2002-01-01

    The Advanced Land Imager (ALI) is the primary instrument flown on the first Earth Observing mission (EO-1), launched on November 21, 2000. It was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture which employs a push-broom data collection mode, a wide field of view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. During the first ninety days on orbit, the instrument performance was evaluated by collecting several Earth scenes and comparing them to identical scenes obtained by Landsat7. In addition, various on-orbit calibration techniques were exercised. This paper will present an overview of the EO-1 mission activities during the first ninety days on-orbit, details of the ALI instrument performance and a comparison with the ground calibration measurements.

  5. Yarkovsky footprints in the Eos family

    NASA Astrophysics Data System (ADS)

    Vokrouhlický, D.; Brož, M.; Morbidelli, A.; Bottke, W. F.; Nesvorný, D.; Lazzaro, D.; Rivkin, A. S.

    2006-05-01

    The Eos asteroid family is the third most populous, after Themis and Koronis, and one of the largest non-random groups of asteroids in the main belt. It has been known and studied for decades, but its structure and history still presented difficulties to understand. We first revise the Eos family identification as a statistical cluster in the space of proper elements. Using the most to-date catalogue of proper elements we determine a nominal Eos family, defined by us using the hierarchical-clustering method with the cut-off velocity of 55 m/s, contains some 4400 members. This unforeseen increase in known Eos asteroids allows us to perform a much more detailed study than was possible so far. We show, in particular, that most of the previously thought peculiar features are explained within the following model: (i) collisional disruption of the parent body leads to formation of a compact family in the proper element space (with characteristic escape velocities of the observed asteroids of tens of meters per second, compatible with hydrocode simulations), and (ii) as time goes, the family dynamically evolves due to a combination of the thermal effects and planetary perturbations. This model allows us to explain sharp termination of the family at the J7/3 mean motion resonance with Jupiter, uneven distribution of family members about the J9/4 mean motion resonance with Jupiter, semimajor axis distribution of large vs small members in the family and anomalous residence of Eos members inside the high-order secular resonance z. Our dynamical method also allows us to estimate Eos family age to 1.3-0.2+0.15 Gyr. Several formal members of the Eos family are in conflict with our model and these are suspected interlopers. We use spectroscopic observations, whose results are also reported here, and results of 5-color wide-band Sloan Digital Sky Survey photometry to prove some of them are indeed spectrally incompatible with the family.

  6. New NASA Satellite Zooms in on Tornado Swath

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A number of severe thunder storms swept through the mid-Atlantic states on April 28, bringing high winds, hailstones, and heavy rains to many areas. The intense storms spawned at least two tornadoes, one of which was classified as an F4 twister. The powerful tornado touched down in southern Maryland and ripped through the town of La Plata, destroying most of the historic downtown. The twister-the strongest ever recorded to hit the state and perhaps the strongest ever recorded in the eastern U.S.-flattened everything in its path along a 24-mile (39 km) swath running west to east through the state. The tornado's path can be seen clearly in this band-sharpened color image acquired on May 1 by the Advanced Land Imager (ALI), flying aboard NASA's EO-1 satellite. La Plata is situated toward the lefthand side of this scene and the twister's swath is the bright stripe passing through the town and running eastward 6 miles (10 km) toward the Patuxent River beyond the righthand side of the image. This stripe is the result of the vegetation flattened by the storm. The flattened vegetation reflects more light than untouched vegetation. EO-1 is the first Earth observing satellite launched as part of NASA's New Millennium Program. This program is designed to spearhead development and testing of a new generation of satellite remote sensing technologies for future Earth and space science missions. The ALI is designed to improve upon and extend the measurement heritage begun by the Landsat series of satellites well into the 21st Century. For more images of the tornado's path, including Landsat, visit Tornado Hits La Plata, Maryland in the Natural Hazards section of the Earth Observatory. Image courtesy Lawrence Ong, EO-1 Mission Science Office, NASA GSFC

  7. Lidar instruments proposed for Eos

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    1990-01-01

    Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.

  8. Surface retrievals from Hyperion EO1 using a new, fast, 1D-Var based retrieval code

    NASA Astrophysics Data System (ADS)

    Thelen, Jean-Claude; Havemann, Stephan; Wong, Gerald

    2015-05-01

    We have developed a new algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as Hyperion EO-1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using hyperspectral images taken by Hyperion EO-1, an experimental pushbroom imaging spectrometer operated by NASA.

  9. Building EOS capability for Malaysia - the options

    NASA Astrophysics Data System (ADS)

    Subari, M. D.; Hassan, A.

    2014-06-01

    Earth observation satellite (EOS) is currently a major tool to monitor earth dynamics and increase human understanding of earth surface process. Since the early 80s, Malaysia has been using EOS images for various applications, such as weather forecasting, land use mapping, agriculture, environment monitoring and others. Until now, all EOS images were obtained from foreign satellite systems. Realising on the strategic need of having its own capability, Malaysia embarked into EOS development programs in the early 90s. Starting with TiungSAT-1, a micro-satellite carrying small camera, then followed by RazakSAT, a small satellite carrying 2.5 m panchromatic (PAN) medium-aperture-camera, the current satellite program development, the RazakSAT-2, designed to carry a 1.0 m high resolution PAN and 4.0m multi-spectral camera, would become a strategic initiative of the government in developing and accelerating the nation's capability in the area of satellite technology and its application. Would this effort continue until all needs of the remote sensing community being fulfilled by its own EOS? This paper will analyze the intention of the Malaysian government through its National Space Policy and other related policy documents, and proposes some policy options on this. Key factors to be considered are specific data need of the EOS community, data availability and the more subjective political motivations such as national pride.

  10. Calibration and Validation of Aqua AIRS and AMSU Measurements using COSMIC Global Positioning System Radio Occultation Observations

    NASA Astrophysics Data System (ADS)

    Ho, S. P.; Peng, L.

    2015-12-01

    On board NASA Aqua satellite, the hyper-spectral infrared sounding from Atmospheric Infrared Sounder (AIRS) is the first of a new generation of operational remote sensors for upwelling atmospheric emission that provide excellent temperature and water vapor retrievals at middle atmosphere, which has significant impacts on short-term numerical weather forecasts. Also on board NASA Aqua satellite, Advanced Microwave Sounding Unit (AMSU) measurements provide the all weather temperature and water vapor profiles which are used as the first guess for AIRS inversion algorithm. However, due to lack of absolute on orbit calibration, both AIRS and AMSU also exhibit biases in retrieving atmospheric temperatures and moistures when compared with in situ measurements. These retrieval biases have diverse and complex dependencies on the temperature/moisture being measured, the season and geographical location, surface conditions, and sensor temperature, which is difficult to quantify. The purpose of this study is to demonstrate the usefulness of Global Positioning System (GPS) Radio Occultation (RO) data to serve as a climate calibration observatory in orbit to calibrate and validate AIRS and AMSU measurements. In this study, we use COSMIC RO data to simulate AMSU and AIRS brightness temperatures for the lower stratosphere (TLS) and compare them to AMSU TLS and those of AIRS brightness temperatures at the same height. Our analysis shows that because RO data do not contain mission-dependent biases and orbit drift errors, and are not affected by on-orbit heating and cooling of the satellite component, they are very useful to identify the AMSU time/location dependent biases for different NOAA missions and possible long term drift of the AIRS retrieved temperatures.

  11. Global Gridded Data from the Goddard Earth Observing System Data Assimilation System (GEOS-DAS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Goddard Earth Observing System Data Assimilation System (GEOS-DAS) timeseries is a globally gridded atmospheric data set for use in climate research. This near real-time data set is produced by the Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center in direct support of the operational EOS instrument product generation from the Terra (12/1999 launch), Aqua (05/2002 launch) and Aura (01/2004 launch) spacecrafts. The data is archived in the EOS Core System (ECS) at the Goddard Earth Sciences Data and Information Services Center/Distributed Active Archive Center (GES DISC DAAC). The data is only a selection of the products available from the GEOS-DAS. The data is organized chronologically in timeseries format to facilitate the computation of statistics. GEOS-DAS data will be available for the time period January 1, 2000, through present.

  12. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    NASA Astrophysics Data System (ADS)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  13. Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets

    NASA Technical Reports Server (NTRS)

    Ignatov, Alexander; Minnis, Patrick; Miller, Walter F.; Wielicki, Bruce A.; Remer, Lorraine

    2006-01-01

    Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for

  14. Converting from XML to HDF-EOS

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A computer program recreates an HDF-EOS file from an Extensible Markup Language (XML) representation of the contents of that file. This program is one of two programs written to enable testing of the schemas described in the immediately preceding article to determine whether the schemas capture all details of HDF-EOS files.

  15. The Afternoon Constellation: A Formation of Earth Observing Systems for the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2002-01-01

    Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.

  16. EO-1 Prototyping for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Campbell, P. K.; Middleton, E.; Ungar, S.; Zhang, Q.; Ong, L.; Huemmrich, K. F.

    2009-12-01

    The Earth Observing One (EO-1) Mission, launched in November, 2000 as part of NASA’s New Millennium Program, is in it’s eight year of operation. From the start it was recognized that a key criteria for evaluating the EO-1 technology and outlining future Earth science mission needs is the ability of the technology to characterize terrestrial surface state and processes. EO-1 is participating in a broad range of investigations, demonstrating the utility of imaging spectroscopy in applications relating to forestry, agriculture, species discrimination, invasive species, desertification, land-use, vulcanization, fire management, homeland security, natural and anthropogenic hazards and disaster assessments and has provided characterization for a variety of instruments on EOS platforms. By generating a high spectral and spatial resolution data set for the corral reefs and islands, it is contributing for realizing the goals of the National Decadal survey and providing an excellent platform for testing strategies to be employed in the HyspIRI mission. The EO1 Mission Science Office (MSO) is developing tools and prototypes for new science products, addressing the HyspIRI goals to assess vegetation status and health and provide vegetation spectral bio-indicators and biophysical parameters such as LAI and fAPAR at <100 m spatial resolution. These are being used to resolve variability in heterogeneous areas (e.g. agriculture, narrow shapes, urban and developed lands) and for managed ecosystems less than 10 km2. A set of invariable reference targets (e.g. sun, moon, deserts, Antarctica) are being characterised to allow cross-calibration of current and future EO sensors, comparison of land products generated by multiple sensors and retroactive processing of time series data. Such products are needed to develop Science Requirements for the next generation of hyperspectral satellite sensors and to address global societal needs.

  17. Making Debris Avoidance Decisions for ESMO's EOS Mission Set

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    The presentation will cover the aspects of making debris risk decisions from the NASA Mission Director's perspective, specifically for NASA Earth Science Mission Operations (ESMO) Earth Observing System (EOS) mission set. ESMO has been involved in analyzing potential debris risk conjunctions with secondary objects since the inception of this discipline. Through the cumulated years of experience and continued exposure to various debris scenarios, ESMO's understanding of the problem and process to deal with this issue has evolved. The presentation will describe the evolution of the ESMO process, specifically as it relates to the maneuver execution and spacecraft risk management decision process. It will briefly cover the original Drag Make-Up Maneuver, several day, methodical manually intensive, ramp up waive off approach, to the present day more automated, pre-canned onboard command, tools based approach. The presentation will also cover the key information needed to make debris decisions and challenges in doing so while still trying to meet science goals, constellation constraints and manage resources. A slide or two at the end of the presentation, will be devoted to discussing what further improvements could be helpful to improve decision making and future process improvement plans challenges.

  18. Creating a AIRS/AMSU and CrIS/ATMS continuity sounding product

    NASA Astrophysics Data System (ADS)

    Barnet, C. D.; Gambacorta, A.; Smith, N.; Wheeler, A. A.

    2017-12-01

    The AIRS/AMSU (Atmospheric Infrared Sounder; Advanced Microwave Sounding Unit) onboard the EOS/Aqua was launched in 2002. CrIS/ATMS (CrossTrack Infrared Sounder; Advanced Technology Microwave Sounder) onboard Suomi NPP was launched in 2011 and will also be launched on the Joint Polar Sounding System (JPSS) series of satellites beginning in 2017. Suomi NPP and EOS/Aqua now have more than five years of overlap. Demonstrating data continuity between these two platforms has become a priority especially since EOS/Aqua is well past its design lifetime. Additionally, with JPSS, this record of soundings will be extended into future decades and will enable critically important scientific research on large scale (long term) atmospheric processes. The AIRS/AMSU and CrIS/ATMS have many differences in instrument design, spatial sampling, spectral coverage and resolution. Instruments also degrade with time. It is only with careful, deliberate and transparent error characterization and propagation that systematic effects can be accounted for, and preferably minimized, in retrieved sounding products. We have developed the Community Long-term Infrared Microwave Coupled Product System (CLIMCAPS) to achieve a seamless record of satellite soundings. A CLIMCAPS sounding is comprised of a set of parameters that characterizes the full atmospheric state and includes profiles of temperature, moisture, cloud and surface products, and trace gas species (O3, CH4, CO, SO2, HNO3, N2O and CO2). The trace gases are by-products necessary to remove biases in temperature and moisture retrievals; however, they can also be readily ingested into science applications. The information content of an IR sounder such as AIRS and CrIS is a function of lapse rate, the quantity of absorbers such as clouds, moisture and trace gases, as well as the instrument's sensitivity. Information content can vary vertically, spatially, and temporally. CLIMCAPS uses the NASA Modern-Era Retrospective Analysis for Research

  19. EO Information Center - Naval Oceanography Portal

    Science.gov Websites

    are here: Home › USNO › Earth Orientation › EO Information Center USNO Logo USNO Navigation Earth Orientation Products GPS-based Products VLBI-based Products EO Information Center General Information GPS User Information Frequently Asked Questions Read Me Files Publications about Products Software

  20. Aqua and Terra MODIS RSB Calibration Comparison Using BRDF Modeled Reflectance

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong; Angal, Amit; Wu, Aisheng; Geng, Xu

    2017-01-01

    The inter-comparison of MODIS reflective solar bands onboard Aqua and Terra is very important for assessment of each instrument's calibration. One of the limitations is the lack of simultaneous nadir overpasses. Their measurements over a selected Earth view target have significant differences in solar and view angles, which magnify the effects of atmospheric scattering and Bidirectional Reflectance Distribution Function (BRDF). In this work, an intercomparison technique is formulated after correction for site's BRDF and atmospheric effects. The reflectance measurements over Libya desert sites 1, 2, and 4 from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for calibration difference. The ratio between Aqua and Terra reflectance measurements are derived for bands 1 to 9 and the results from different sites show good agreement. For year 2003, the ratios are in the range of 0.985 to1.010 for band 1 to 9. Band 3 shows the lowest ratio 0.985 and band 1 shows the highest ratio 1.010. For the year 2014, the ratio ranges from approximately 0.983 for bands 2 and 1.012 for band 8. The BRDF corrected reflectance for the two instruments are also derived for every year from 2003 to 2014 for stability assessment. Bands 1 and 2 show greater than 1 differences between the two instruments. Aqua bands 1 and 2 show downward trends while Terra bands 1 and 2 show upward trends. Bands 8 and 9 of both Aqua and Terra show large variations of reflectance measurement over time.

  1. NASA Earth Observing-1 Keeps Watchful Eye on South American Volcano Copahue

    NASA Image and Video Library

    2013-06-07

    NASA Earth Observing-1 EO-1 spacecraft observed Copahue volcano, a 2965 meter high volcano on the Chile-Argentina border, on Jun. 4, 2013. Having recently displayed signs of unrest, the volcano is under close scrutiny by local volcanologists.

  2. Effect of aqua exercise on recovery of lower limb muscles after downhill running.

    PubMed

    Takahashi, Junichiro; Ishihara, Keiji; Aoki, Junichiro

    2006-08-01

    The aim of the present study was to examine how the recovery of physiological functioning of the leg muscles after high-intensity eccentric exercise such as downhill running could be promoted by aqua exercise for a period until the damaged muscle had recovered almost completely. Ten male long-distance runners were divided equally into an aqua exercise group and a control group. From the first day (Day 0) to the fourth day (Day 3), the participants completed a questionnaire on muscle soreness, and serum creatine kinase activity, muscle power, flexibility, whole-body reaction time and muscle stiffness were measured. After measurements on Day 0, the participants performed downhill running (three 5 min runs with a 5 min rest interval at -10%, 335.7 +/- 6.1 m . min-1). The aqua exercise group performed walking, jogging and jumping in water on three successive days following the downhill running on Day 0 for 30 min each day. Muscle power was reduced on Day 1 in the control group (P < 0.05). Muscle soreness in the calf on Day 3 was greater in the control group than that in the aqua exercise group (P < 0.05). In the aqua exercise group, muscle stiffness in the calf was less than that in the control group over 4 days (time main effect: P < 0.05; group x time interaction: P < 0.05). We conclude that aqua exercise promoted physiological functioning of the muscles in the legs after high-intensity downhill running for a period until the damaged muscles had recovered almost completely.

  3. Global EOS: exploring the 300-ms-latency region

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Jericho, D.; Hsu, C.-Y.

    2017-10-01

    EOS, the CERN open-source distributed disk storage system, provides the highperformance storage solution for HEP analysis and the back-end for various work-flows. Recently EOS became the back-end of CERNBox, the cloud synchronisation service for CERN users. EOS can be used to take advantage of wide-area distributed installations: for the last few years CERN EOS uses a common deployment across two computer centres (Geneva-Meyrin and Budapest-Wigner) about 1,000 km apart (∼20-ms latency) with about 200 PB of disk (JBOD). In late 2015, the CERN-IT Storage group and AARNET (Australia) set-up a challenging R&D project: a single EOS instance between CERN and AARNET with more than 300ms latency (16,500 km apart). This paper will report about the success in deploy and run a distributed storage system between Europe (Geneva, Budapest), Australia (Melbourne) and later in Asia (ASGC Taipei), allowing different type of data placement and data access across these four sites.

  4. Cryogenic radiometers and intensity-stabilized lasers for Eos radiometric calibrations

    NASA Technical Reports Server (NTRS)

    Foukal, P.; Hoyt, C.; Jauniskis, L.

    1991-01-01

    Liquid helium-cooled electrical substitution radiometers (ESRs) provide irradiance standards with demonstrated absolute accuracy at the 0.01 percent level, spectrally flat response between the UV and IR, and sensitivity down to 0.1 nW/sq cm. We describe an automated system developed for NASA - Goddard Space Flight Center, consisting of a cryogenic ESR illuminated by servocontrolled laser beams. This system is designed to provide calibration of single-element and array detectors over the spectral range between 257nm in the UV to 10.6 microns in the IR. We also describe a cryogenic ESR optimized for black body calibrations that has been installed at NIST, and another that is under construction for calibrations of the CERES scanners planned for Eos.

  5. Use of the Earth Observing One (EO-1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Handy, Matthew; Policelli, Fritz; Katjizeu, McCloud; Van Langenhove, Guido; Aube, Guy; Saulnier, Jean-Francois; Sohlberg, Rob; hide

    2012-01-01

    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. Disasters are the perfect arena to use SensorWebs. One SensorWeb pilot project that has been active since 2009 is the Namibia Early Flood Warning SensorWeb pilot project. The Pilot Project was established under the auspices of the Namibian Ministry of Agriculture Water and Forestry (MAWF)/Department of Water Affairs, the Committee on Earth Observing Satellites (CEOS)/Working Group on Information Systems and Services (WGISS) and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort began by identifying and prototyping technologies which enabled the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management. This was followed by an international collaboration to build small portions of the identified system which was prototyped during that past few years during the flood seasons which occurred in the February through May timeframe of 2010 and 2011 with further prototyping to occur in 2012. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team also began to examine the socioeconomic component to determine the impact of the SensorWeb technology and how best to assist in the infusion of this technology in lesser affluent areas with low levels of basic

  6. Implementation of the Land, Atmosphere Near Real-Time Capability for EOS (LANCE)

    NASA Technical Reports Server (NTRS)

    Michael, Karen; Murphy, Kevin; Lowe, Dawn; Masuoka, Edward; Vollmer, Bruce; Tilmes, Curt; Teague, Michael; Ye, Gang; Maiden, Martha; Goodman, H. Michael; hide

    2010-01-01

    The past decade has seen a rapid increase in availability and usage of near real-time data from satellite sensors. Applications have demonstrated the utility of timely data in a number of areas ranging from numerical weather prediction and forecasting, to monitoring of natural hazards, disaster relief, agriculture and homeland security. As applications mature, the need to transition from prototypes to operational capabilities presents an opportunity to improve current near real-time systems and inform future capabilities. This paper presents NASA s effort to implement a near real-time capability for land and atmosphere data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), Atmospheric Infrared Sounder (AIRS), Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) instruments on the Terra, Aqua, and Aura satellites. Index Terms- Real time systems, Satellite applications

  7. Global Climate Monitoring with the Eos Pm-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2000-01-01

    The Advanced Microwave Scanning Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called "Aqua") in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-11 satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM[l and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-11 AMSR). The ADEOS-11 AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The U.S. Team's products will be archived at the National Snow and Ice Data Center (NSIDC). Further information about AMSR-E can be obtained at http://www.jzhcc.msfc.nasa.Vov/AMSR.

  8. Archive Management of NASA Earth Observation Data to Support Cloud Analysis

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark A.

    2017-01-01

    NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly.

  9. Archive Management of NASA Earth Observation Data to Support Cloud Analysis

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark

    2017-01-01

    NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly. Reviewed by Mark McInerney ESDIS Deputy Project Manager.

  10. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  11. Exponential 6 parameterization for the JCZ3-EOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, B.C.; Hobbs, M.L.; Baer, M.R.

    1998-07-01

    A database has been created for use with the Jacobs-Cowperthwaite-Zwisler-3 equation-of-state (JCZ3-EOS) to determine thermochemical equilibrium for detonation and expansion states of energetic materials. The JCZ3-EOS uses the exponential 6 intermolecular potential function to describe interactions between molecules. All product species are characterized by r*, the radius of the minimum pair potential energy, and {var_epsilon}/k, the well depth energy normalized by Boltzmann`s constant. These parameters constitute the JCZS (S for Sandia) EOS database describing 750 gases (including all the gases in the JANNAF tables), and have been obtained by using Lennard-Jones potential parameters, a corresponding states theory, pure liquid shockmore » Hugoniot data, and fit values using an empirical EOS. This database can be used with the CHEETAH 1.40 or CHEETAH 2.0 interface to the TIGER computer program that predicts the equilibrium state of gas- and condensed-phase product species. The large JCZS-EOS database permits intermolecular potential based equilibrium calculations of energetic materials with complex elemental composition.« less

  12. (abstract) The EOS SAR Mission: A New Approach

    NASA Technical Reports Server (NTRS)

    Way, JoBea

    1993-01-01

    The goal of the Earth Orbiting System Synthetic Aperture Radar (EOS SAR) program is to help develop the modeling and observational capabilities to predict and monitor terrestrial and oceanic processes that are either causing global change or resulting from global change. Specifically, the EOS SAR will provide important geophysical products to the EOS data set to improve our understanding of the state and functioning of the Earth system. The strategy for the EOS SAR program is to define the instrument requirements based on required input to geophysical algorithms, provide the processing capability and algorithms to generate such products on the required spatial (global) and temporal (3-5 days) scales, and to provide the spaceborne instrumentation with international partnerships. Initially this partnership has been with Germany; currently we are exploring broader international partnerships. A MultiSAR approach to the EOS SAR which includes a number of SARs provided by Japan, ESA, Germany, Canada, and the US in synergistic orbits could be used to attain a truly global monitoring capability using multifrequency polarimetric signatures. These concepts and several options for mission scenarios will be presented.

  13. NASA Satellite View of Tropical Storm Isaac

    NASA Image and Video Library

    2017-12-08

    NASA's Terra satellite passed over Tropical Storm Isaac on Aug. 24 at 15:20 UTC (11:20 a.m. EDT) as it continued moving through the eastern Caribbean Sea. The MODIS instrument onboard Aqua captured this visible image. At 2 p.m. EDT on Aug. 24, Isaac's maximum sustained winds were near 60 mph (95 kmh). The National Hurricane Center noted that Isaac could strengthen later before reaching the coast of Hispaniola tonight, Aug. 24. Hispaniola is an island that contains the Dominican Republic and Haiti. Isaac is located about 135 miles (215 km) south-southeast of Port au Prince, Haiti, near latitude 16.8 north and longitude 71.4 west. Isaac is now moving toward the northwest near 14 mph (22 kmh). Isaac is expected to reach hurricane status over the weekend of Aug. 25-26 and NASA satellites will continue providing valuable temperature, rainfall, visible and infrared data. Text Credit: Rob Gutro NASA's Goddard Space Flight Center, Greenbelt, Md. To read more go to: www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012... Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Sun, Junqiang; Xie, Xiaobo; Barnes, William; Salomonson, Vincent

    2009-01-01

    Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra

  15. Evaluation of NASA's end-to-end data systems using DSDS+

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Davenport, William; Message, Philip

    1994-01-01

    The Data Systems Dynamic Simulator (DSDS+) is a software tool being developed by the authors to evaluate candidate architectures for NASA's end-to-end data systems. Via modeling and simulation, we are able to quickly predict the performance characteristics of each architecture, to evaluate 'what-if' scenarios, and to perform sensitivity analyses. As such, we are using modeling and simulation to help NASA select the optimal system configuration, and to quantify the performance characteristics of this system prior to its delivery. This paper is divided into the following six sections: (1) The role of modeling and simulation in the systems engineering process. In this section, we briefly describe the different types of results obtained by modeling each phase of the systems engineering life cycle, from concept definition through operations and maintenance; (2) Recent applications of DSDS+. In this section, we describe ongoing applications of DSDS+ in support of the Earth Observing System (EOS), and we present some of the simulation results generated of candidate system designs. So far, we have modeled individual EOS subsystems (e.g. the Solid State Recorders used onboard the spacecraft), and we have also developed an integrated model of the EOS end-to-end data processing and data communications systems (from the payloads onboard to the principle investigator facilities on the ground); (3) Overview of DSDS+. In this section we define what a discrete-event model is, and how it works. The discussion is presented relative to the DSDS+ simulation tool that we have developed, including it's run-time optimization algorithms that enables DSDS+ to execute substantially faster than comparable discrete-event simulation tools; (4) Summary. In this section, we summarize our findings and 'lessons learned' during the development and application of DSDS+ to model NASA's data systems; (5) Further Information; and (6) Acknowledgements.

  16. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Baynes, K.; Pressley, N. N.; Thompson, C. K.; Schmaltz, J. E.; King, B. A.; Wong, M. M.; Rice, Z.; Gunnoe, T.; Roberts, J. T.; Rodriguez, J.; De Luca, A. P.; King, J.

    2017-12-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real-time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  17. Exposing NASA's Earth Observations to the Applications Community and Public

    NASA Technical Reports Server (NTRS)

    Boller, R.; Baynes, K.; Pressley, N.; Thompson, C.; Cechini, M.; Schmaltz, J.; Wong, M.; King, B.; Rice, Z.; Sprague, J.; hide

    2017-01-01

    NASA's Earth Observing System (EOS) generates a wealth of data products which are generally intended for scientific research. In recent years, however, this data has also become more accessible to the applications community and public through the Worldview app and Global Imagery Browse Services (GIBS). These mapping interfaces provide historical and near real time access to NASA's Earth observations for a wide range of uses. This presentation will focus on how the applications community, public, and media use these interfaces for decision-making, leisure, and anything in between.

  18. Analytic EoS and PTW strength model recommendation for Starck Ta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjue, Sky K.; Prime, Michael B.

    2016-09-01

    The purpose of this document is to provide an analytic EoS and PTW strength model for Starck Ta that can be consistently used between different platforms and simulations at three labs. This should provide a consistent basis for comparison of the results of calculations, but not the best implementation for matching a wide variety of experimental data. Another version using SESAME tables should follow, which will provide a better physical representation over a broader range of conditions. The data sets available at the time only include one Hopkinson bar at a strain rate of 1800/s; a broader range of high-ratemore » calibration data would be preferred. The resulting fit gives the PTW parameter p = 0. To avoid numerical issues, p = 0:001 has been used in FLAG. The PTW parameters that apply above the maximum strain rate in the data use the values from the original publication.« less

  19. Global Climate Monitoring with the EOS PM-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2002-01-01

    The Advanced Microwave Scanning 2 Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called Aqua) in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-II satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM/I and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-II AMSR). The ADEOS-II AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team 3 activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The US Team's products will be archived at the National Snow and Ice Data Center (NSIDC).

  20. Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A): Developer derating policy

    NASA Technical Reports Server (NTRS)

    Maciel, Roberto M.

    1994-01-01

    The derating requirements/factors tabulated in Appendix B of the Goddard Space Flight Center Preferred Parts List (GSFC PPL) and Appendix A of MIL-STD-975 (NASA Standard Electrical, Electronic and Electromechanical (EEE) Parts List) should be used. Where differences occur, the PPL derating factors should have precedence over the derating factors of MIL-STD-975. When a derating factor is not provided in either the PPL or MIL-STD-975, the GSFC EOS Parts Branch Specialist should be consulted. In addition, the Performance Assurance Requirement (PAR) stipulates that all piece parts shall function at or above twice the expected ionizing radiation dose.

  1. New Earth Science Data and Access Methods

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Weinstein, Beth E.; Farnham, Jennifer

    2004-01-01

    NASA's Earth Science Enterprise, working with its domestic and international partners, provides scientific data and analysis to improve life here on Earth. NASA provides science data products that cover a wide range of physical, geophysical, biochemical and other parameters, as well as services for interdisciplinary Earth science studies. Management and distribution of these products is administered through the Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs), which all hold data within a different Earth science discipline. This paper will highlight selected EOS datasets and will focus on how these observations contribute to the improvement of essential services such as weather forecasting, climate prediction, air quality, and agricultural efficiency. Emphasis will be placed on new data products derived from instruments on board Terra, Aqua and ICESat as well as new regional data products and field campaigns. A variety of data tools and services are available to the user community. This paper will introduce primary and specialized DAAC-specific methods for finding, ordering and using these data products. Special sections will focus on orienting users unfamiliar with DAAC resources, HDF-EOS formatted data and the use of desktop research and application tools.

  2. Detection Of Tornado Damage Tracks With EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.

    2005-01-01

    The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (path length and width) and an estimation of the tornado intensity. This study explored the possibility of using near real-time medium and high-resolution satellite imagery from the NASA EOS satellites to provide additional information for the surveys. MODIS and ASTER data were used to study the damage tracks from three tornadic storms; the La Plata, Maryland storm of 28 April 2002 and the Carter-Butler Counties and Madison County Missouri storms of 24 April 2002. These storms varied in intensity (from F0-F4) and occurred over regions with different land use. It was found that, depending on the nature of land use, tornado damage tracks from intense storms (F2 or greater) may be evident in both ASTER and MODIS satellite imagery. In areas of dense vegetation the scar patterns show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not at all obvious in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2004 Madison County, Missouri tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery appears to be as much dependent on the nature of the underlying surface and land use as on the severity of the tornadic storm. The imaging sensors on the NPOESS operational satellites to be launched in 2006 will continue the unique observing capabilities of the EOS instruments.

  3. AquaLase versus NeoSoniX--a comparison study.

    PubMed

    Jiraskova, Nada; Rozsival, Pavel; Kadlecova, Jana; Nekolova, Jana; Pozlerova, Jana; Dubravska, Zlatica

    2007-12-01

    To compare the metrics and surgical outcome when using Infiniti AquaLase and NeoSoniX cataract removal modalities. This prospective clinical study involved 50 patients with bilateral cataracts and lens removal using AquaLase in the right eye and NeoSoniX in the left eye. Best corrected visual acuity (BCVA), endothelial cell density and pachymetry were evaluted pre- and postoperatively. Statistical analysis was performed using the Wilcoxon Signed- Rank Test. Preoperative mean pachymetry was 569 +/- 31 mu in the right eye (RE) and 560 +/- 37 mu in the left eye (LE), mean endothelial cell density 2744 +/- 418 cells/mm(2) (RE) and 2730 +/- 472 cells/mm(2) (LE). One week after operation pachymetry was 576 +/- 52 mu (RE) and 583 +/- 72 mu (LE) and endothelial cell density 2388 +/- 586 cells/mm(2) (RE) and 2463 +/- 615 cells/mm(2) (LE). One month after surgery pachymetry was 556 +/- 43 mu (RE) and 559 +/- 44 mu (LE) and endothelial cell density 2368 +/- 52 cells/mm(2) (RE) and 2495 +/- 548 cells/mm(2) (LE). BCVA improved in all eyes and was 0.8 or better on the first postoperative day. Both the NeosoniX and AquaLase minimize intraoperative damage to ocular structures.

  4. NASA Sees Storms Affecting the Western U.S.

    NASA Image and Video Library

    2017-12-08

    Extreme rain events have been affecting California and snow has blanketed the Pacific Northwest. This visible image from NASA's Aqua satellite on Jan. 6, 2017, at 3:35 p.m. EST (20:35 UTC) shows snow cover in the U.S. Pacific Northwest in Washington, Idaho, Oregon, northern California and Nevada. On Jan. 9, another area of low pressure moved over Oregon, where the National Weather Service is forecasting heavy snows. It was the same week last year that the West Coast endured a similar bout of very wet weather. Heavy rain affected the Pacific coast in 2016 during the same week from Jan. 5 through Jan. 7, as a progression of storm systems in the Eastern Pacific Ocean hit southern California and generated flooding and mudslides. For updated forecasts, visit the National Weather Service website at: www.weather.gov Learn more about NASA's view of the storm: go.nasa.gov/2j0xpvW Credits: NASA Goddard MODIS Rapid Response NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Remote sensing of tropospheric constituents by OMI on the EOS Aura satellite

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) was launched on NASA's EOS Aura satellite in July 2004. This instrument was built in the Netherlands with collaboration with Finland. The science data products are being developed jointly by scientists from the three countries. OMI is the first instrument to combine the high spatial resolution daily global mapping capability of TOMS with high spectral resolution measurements necessary for retrieving a number of trace gases of relevance to atmospheric chemistry, using techniques pioneered by GOME. In this talk I will show what our planet looks like at UV wavelengths and what these data can tell us about the effects of human activities on global air quality and climate.

  6. Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes

    NASA Astrophysics Data System (ADS)

    Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo

    2017-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.

  7. Initial Scientific Assessment of the EOS Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Crucial to the success of the Earth Observing System (Eos) is the Eos Data and Information System (EosDIS). The goals of Eos depend not only on its instruments and science investigations, but also on how well EosDlS helps scientists integrate reliable, large-scale data sets of geophysical and biological measurements made from Eos data, and on how successfully Eos scientists interact with other investigations in Earth System Science. Current progress in the use of remote sensing for science is hampered by requirements that the scientist understand in detail the instrument, the electromagnetic properties of the surface, and a suite of arcane tape formats, and by the immaturity of some of the techniques for estimating geophysical and biological variables from remote sensing data. These shortcomings must be transcended if remote sensing data are to be used by a much wider population of scientists who study environmental change at regional and global scales.

  8. A Look at Hurricane Matthew from NASA AIRS

    NASA Image and Video Library

    2016-10-06

    Hurricane Matthew, currently an extremely dangerous Category 4 storm on the Saffir-Simpson Hurricane Wind Scale, continues to bear down on the southeastern United States. At 11:27 a.m. PDT (2:27 p.m. EDT and 18:23 UT) today, NASA's Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite observed the storm as its eye was passing over the Bahamas. An AIRS false-color infrared image shows that the northeast and southwest quadrants of the storm had the coldest cloud tops, denoting the regions of the storm where the strongest precipitation was occurring at the time. Data from the Advanced Microwave Sounding Unit (AMSU), another of AIRS' suite of instruments, indicate that the northeast quadrant, which appears smaller in the infrared image, likely had the most intense rain bands at the time. The AIRS infrared image shows that at the time of the image the storm had full circulation, with a small eye surrounded by a thick eye wall and can be seen at http://photojournal.jpl.nasa.gov/catalog/PIA21092.

  9. Energy Referencing in LANL HE-EOS Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiding, Jeffery Allen; Coe, Joshua Damon

    2017-10-19

    Here, We briefly describe the choice of energy referencing in LANL's HE-EOS codes, HEOS and MAGPIE. Understanding this is essential to comparing energies produced by different EOS codes, as well as to the correct calculation of shock Hugoniots of HEs and other materials. In all equations after (3) throughout this report, all energies, enthalpies and volumes are assumed to be molar quantities.

  10. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix A: EOS program WBS dictionary. Appendix B: EOS mission functional analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.

  11. Results from the MWA EoR Experiment

    NASA Astrophysics Data System (ADS)

    Webster, Rachel L.; MWA EoR Collaboration

    2018-05-01

    The MWA EoR is one of a small handful of experiments designed to detect the statistical signal from the Epoch of Reionisation. Each of these experiments has reached a level of maturity, where the challenges, in particular of foreground removal, are being more fully understood. Over the past decade, the MWA EoR Collaboration has developed expertise and an understanding of the elements of the telescope array, the end-to-end pipelines, ionospheric conditions, and and the foreground emissions. Sufficient data has been collected to detect the theoretically predicted EoR signal. Limits have been published regularly, however we still several orders of magnitude from a possible detection. This paper outlines recent progress and indicates directions for future efforts.

  12. EOS-AM precision pointing verification

    NASA Technical Reports Server (NTRS)

    Throckmorton, A.; Braknis, E.; Bolek, J.

    1993-01-01

    The Earth Observing System (EOS) AM mission requires tight pointing knowledge to meet scientific objectives, in a spacecraft with low frequency flexible appendage modes. As the spacecraft controller reacts to various disturbance sources and as the inherent appendage modes are excited by this control action, verification of precision pointing knowledge becomes particularly challenging for the EOS-AM mission. As presently conceived, this verification includes a complementary set of multi-disciplinary analyses, hardware tests and real-time computer in the loop simulations, followed by collection and analysis of hardware test and flight data and supported by a comprehensive data base repository for validated program values.

  13. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. Combining the recent experimental constraints on θ13 with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  14. Eosinophilic Esophagitis (EoE)

    MedlinePlus

    ... the AAAAI Foundation Donate Utility navigation Español Journals Pollen Counts Annual Meeting Member Login / My Membership Search ... allergies to substances such as dust mites, animals, pollen and molds can play a role in EoE. ...

  15. SenSyF Experience on Integration of EO Services in a Generic, Cloud-Based EO Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Catarino, Nuno; Gutierrez, Antonio; Grosso, Nuno; Andrade, Joao; Caumont, Herve; Goncalves, Pedro; Villa, Guillermo; Mangin, Antoine; Serra, Romain; Johnsen, Harald; Grydeland, Tom; Emsley, Stephen; Jauch, Eduardo; Moreno, Jose; Ruiz, Antonio

    2016-08-01

    SenSyF is a cloud-based data processing framework for EO- based services. It has been pioneer in addressing Big Data issues from the Earth Observation point of view, and is a precursor of several of the technologies and methodologies that will be deployed in ESA's Thematic Exploitation Platforms and other related systems.The SenSyF system focuses on developing fully automated data management, together with access to a processing and exploitation framework, including Earth Observation specific tools. SenSyF is both a development and validation platform for data intensive applications using Earth Observation data. With SenSyF, scientific, institutional or commercial institutions developing EO- based applications and services can take advantage of distributed computational and storage resources, tailored for applications dependent on big Earth Observation data, and without resorting to deep infrastructure and technological investments.This paper describes the integration process and the experience gathered from different EO Service providers during the project.

  16. 3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Kempler, Steven; Leptoukh, Gregory; Smith, Peter

    2010-01-01

    This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independently

  17. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM4_Edition1)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-04-02] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  18. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM3_Edition1)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-11-02] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  19. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM4_Edition2)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  20. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_Aqua-FM3_Edition2)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2006-01-01] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  1. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our methodmore » suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.« less

  2. Sensor On-orbit Calibration and Characterization Using Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Butler, Jim; Barnes, W. L.; Guenther, B.

    2007-01-01

    Spacecraft flight operations often require activities that involve different kinds of maneuvers for orbital adjustments (pitch, yaw, and roll). Different maneuvers, when properly planned and scheduled, can also be applied to support and/or to perform on-board sensor calibration and characterization. This paper uses MODIS (Moderate Resolution Imaging Spectroradiometer) as an example to illustrate applications of spacecraft maneuvers for Earth-observing sensors on-orbit calibration and characterization. MODIS is one of the key instruments for NASA's Earth Observing System (EOS) currently operated on-board the EOS Terra and Aqua spacecraft launched in December 1999 and May 2002, respectively. Since their launch, both Terra and Aqua spacecraft have made a number of maneuvers, specially the yaw and roll maneuvers, to support the MODIS on-orbit calibration and characterization. For both Terra and Aqua MODIS, near-monthly spacecraft roll maneuvers are executed for lunar observations. These maneuvers are carefully scheduled so that the lunar phase angles are nearly identical for each sensor's lunar observations. The lunar observations are used to track MODIS reflective solar bands (RSB) calibration stability and to inter-compare Terra and Aqua MODIS RSB calibration consistency. To date, two sets of yaw maneuvers (each consists of two series of 8 consecutive yaws) by the Terra spacecraft and one set by the Aqua spacecraft have been performed to validate MODIS solar diffuser (SD) bi-directional reflectance factor (BRF) and to derive SD screen transmission. Terra spacecraft pitch maneuvers, first made on March 26, 2003 and the second on April 14, 2003 (with the Moon in the spacecraft nadir view), have been applied to characterize MODIS thermal emissive bands (TEB) response versus scan angle (RVS). This is particularly important since the pre-launch TEB RSV measurements made by the sensor vendor were not successful. Terra MODIS TEB RVS obtained from pitch maneuvers have been

  3. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  4. Novel EO/IR sensor technologies

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2011-10-01

    The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.

  5. SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Kleidman, Richard G.; King, Michael D.

    1998-12-01

    Two moderate resolution imaging spectroradiometer (MODIS) instruments are planned for launch in 1999 and 2000 on the NASA Earth Observing System (EOS) AM-1 and EOS PM-1 satellites. The MODIS instrument will sense fires with designated 3.9 and 11 μm channels that saturate at high temperatures (450 and 400 K, respectively). MODIS data will be used to detect fires, to estimate the rate of emission of radiative energy from the fire, and to estimate the fraction of biomass burned in the smoldering phase. The rate of emission of radiative energy is a measure of the rate of combustion of biomass in the fires. In the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment the NASA ER-2 aircraft flew the MODIS airborne simulator (MAS) to measure the fire thermal and mid-IR signature with a 50 m spatial resolution. These data are used to observe the thermal properties and sizes of fires in the cerrado grassland and Amazon forests of Brazil and to simulate the performance of the MODIS 1 km resolution fire observations. Although some fires saturated the MAS 3.9 μm channel, all the fires were well within the MODIS instrument saturation levels. Analysis of MAS data over different ecosystems, shows that the fire size varied from single MAS pixels (50×50 m) to over 1 km2. The 1×1 km resolution MODIS instrument can observe only 30-40% of these fires, but the observed fires are responsible for 80 to nearly 100% of the emitted radiative energy and therefore for 80 to 100% of the rate of biomass burning in the region. The rate of emission of radiative energy from the fires correlated very well with the formation of fire burn scars (correlation coefficient = 0.97). This new remotely sensed quantity should be useful in regional estimates of biomass consumption.

  6. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  7. Eos Negatively Regulates Human γ-globin Gene Transcription during Erythroid Differentiation

    PubMed Central

    Yu, Hai-Chuan; Zhao, Hua-Lu; Wu, Zhi-Kui; Zhang, Jun-Wu

    2011-01-01

    Background Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. Methodology/Principal Findings Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the β-globin locus control region (LCR), the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. Conclusions/Significance Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation. PMID:21829552

  8. Land, Atmosphere Near Real-time Capability for EOS (LANCE) AMSR2 Data System

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Harrison, S.; Lin, H.; Flynn, S.; Nair, M.; Conover, H.; Graves, S. J.

    2016-12-01

    The Land, Atmosphere Near real-time Capability for EOS (LANCE) system was initiated to ensure the availability of NASA satellite data products to those partners who have grown to rely upon near real-time (NRT) data for their decision support systems. The LANCE Advanced Microwave Scanning Radiometer-EOS (AMSR-E) system was able to address the needs of the NRT community in areas such as weather prediction and forecasting, monitoring of natural hazards, disaster relief, agriculture, and homeland security for nearly one year before the instrument failed in 2011. The timely launch of Global Change Observation Mission -Water 1 (GCOM-W1) and the AMSR2 instrument by the Japanese Aerospace Exploration Agency (JAXA) in 2012 was very important to continue the time series of AMSR instruments. The LANCE element for AMSR2 was able to leverage the LANCE AMSR-E system architecture, using modified AMSR-E standard product algorithms in order to make preliminary data products available to NRT users before US AMSR2 standard product algorithms were available. This presentation will describe the five AMSR2 NRT product suites available from LANCE - Sea Ice, Snow, Rain/Ocean, and Soil Moisture. We will also discuss future plans for LANCE AMSR2.

  9. CERNBox + EOS: end-user storage for science

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Gonzalez Labrador, H.; Lamanna, M.; Mościcki, JT; Peters, AJ

    2015-12-01

    CERNBox is a cloud synchronisation service for end-users: it allows syncing and sharing files on all major mobile and desktop platforms (Linux, Windows, MacOSX, Android, iOS) aiming to provide offline availability to any data stored in the CERN EOS infrastructure. The successful beta phase of the service confirmed the high demand in the community for an easily accessible cloud storage solution such as CERNBox. Integration of the CERNBox service with the EOS storage back-end is the next step towards providing “sync and share” capabilities for scientific and engineering use-cases. In this report we will present lessons learnt in offering the CERNBox service, key technical aspects of CERNBox/EOS integration and new, emerging usage possibilities. The latter includes the ongoing integration of “sync and share” capabilities with the LHC data analysis tools and transfer services.

  10. EOS situational data shared service mechanism

    NASA Astrophysics Data System (ADS)

    Lv, L.; Xu, Q.; Lan, C. Z.; Shi, Q. S.; Lu, W. J.; Wu, W. Q.

    2016-11-01

    With the rapid development of aerospace and remote sensing technology, various high-resolution Earth Observation Systems (EOS) are widely used in economic, social, military and other fields and playing an increasingly prominent role in the construction of Digital Earth and national strategic planning. The normal operation of the system is the premise of high quality data acquisition. Compared with the ground observation mode, EOS itself and the surrounding environment are more complex, and its operation control mainly depends on all kinds of Space Situational Awareness (SSA) data acquisition and analysis. SSA data has more extensive sources, larger volume, stronger time-effectiveness and more complicated structure than traditional geographical spatial data. For effective data sharing and utilization, combined with the analysis of data types and structures, a SSA data sharing identity language SSDSML is designed based on the extensible mark-up language XML, which realizes a comprehensive description of satellites and their attributes, space environment, ground stations, etc. Then EOS situational data shared service mechanism is established and provides a powerful data support for the normal operation of the system.

  11. 77 FR 63801 - Aqua-Leisure Industries, Inc., Provisional Acceptance of a Settlement Agreement and Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... filed a Supplemental Full Report in which it reported that the Firm had received at least 28 consumer... millions of units sold, Aqua Leisure received only 6 consumer reports (including suspect reports) in 2004... CONSUMER PRODUCT SAFETY COMMISSION [CPSC Docket No. 13-C0001] Aqua-Leisure Industries, Inc...

  12. The V1V2 EOS for Detonation Products

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2010-10-01

    Many equations of state (EOS) for detonation products have been proposed and used. Some of them are in analytical form and some in tabular form. The most popular is the Jones-Wilkins-Lee (JWL) EOS. One of the main parameters of a product's EOS is the so-called adiabatic gamma along its main isentrope (γs). For JWL EOSs γs(V) varies in a nonmonotonic way. Going down from the CJ point along the main isentrope, it first increases to create a hump, and then, as V goes to infinity, gamma decreases to perfect gas-like behavior with gamma around 1.3. But according to Davis [1], γs(V) should decrease monotonically with V. Accordingly, in this article we investigate the following: (1) Is the hump in γs(V) necessary? and (2) Is it possible to construct a product's EOS with a monotonic γs(V) that is consistent with experimental data? We find that (1) it is possible to construct a product's EOS without a hump in γs(V); and (2) without a hump in γs(V) there are not enough degrees of freedom to reproduce cylinder test data.

  13. Intramolecular Hydrogen Bonding Restricts Gd-Aqua-Ligand Dynamics [The Day the Water Stood Still: Intramolecular Hydrogen Bonding to Restrict Gd-Aqua Ligand Dynamics

    DOE PAGES

    Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung; ...

    2017-04-11

    Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less

  14. Potential commercial uses of EOS remote sensing products

    NASA Technical Reports Server (NTRS)

    Thompson, Leslie L.

    1991-01-01

    The instrument complement of the Earth Observing System (EOS) satellite system will generate data sets with potential interest to a variety of users who are now just beginning to develop geographic information systems tailored to their special applications and/or jurisdictions. Other users may be looking for a unique product that enhances competitive position. The generally distributed products from EOS will require additional value added processing to derive the unique products desired by specific users. Entrepreneurs have an opportunity to create these proprietary level 4 products from the EOS data sets. Specific instruments or collections of instruments could provide information for crop futures trading, mineral exploration, television and printed medium news products, regional and local government land management and planning, digital map directories, products for third world users, ocean fishing fleet probability of harvest forecasts, and other areas not even imagined at this time. The projected level 3 product are examined that will be available at launch from EOS instruments and commercial uses of the data after value added processing is estimated.

  15. Improved OMI Nitrogen Dioxide Retrievals Aided by NASA's A-Train High-Resolution Data

    NASA Astrophysics Data System (ADS)

    Lamsal, L. N.; Krotkov, N. A.; Vasilkov, A. P.; Marchenko, S. V.; Qin, W.; Yang, E. S.; Fasnacht, Z.; Haffner, D. P.; Swartz, W. H.; Spurr, R. J. D.; Joiner, J.

    2017-12-01

    Space-based global observation of nitrogen dioxide (NO2) is among the main objectives of the NASA Aura Ozone Monitoring Instrument (OMI) mission, aimed at advancing our understanding of the sources and trends of nitrogen oxides (NOx). These applications benefit from improved retrieval techniques and enhancement in data quality. Here, we describe our recent and planned updates to the NASA OMI standard NO2 products. The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The major changes include (1) improvements in spectral fitting algorithms for NO2 and cloud, (2) improved information in the vertical distribution of NO2, and (3) use of geometry-dependent surface reflectivity information derived from NASA's Aqua MODIS over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. These algorithm updates, which lead to more accurate tropospheric NO2 retrievals from OMI, are relevant for other past, contemporary, and future satellite instruments.

  16. Rigorous theoretical constraint on constant negative EoS parameter [Formula: see text] and its effect for the late Universe.

    PubMed

    Burgazli, Alvina; Eingorn, Maxim; Zhuk, Alexander

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter [Formula: see text] (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the Friedmann-Robertson-Walker metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the EoS parameter [Formula: see text]. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with [Formula: see text] is ruled out. A perfect fluid with [Formula: see text] neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with [Formula: see text], the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.

  17. One-year outcomes of AquaLase cataract surgery.

    PubMed

    Yoo, Sonia H; Bhatt, Anand B

    2007-01-01

    The authors report surgical experience and clinical outcomes up to 1 year postoperatively in patients who underwent cataract surgery with the AquaLase liquefaction device (Alcon Laboratories, Fort Worth, TX). The device is a handpiece option for use with Alcon's Infiniti Vision System that uses heated balanced saline solution micropulses to liquefy lenticular material. Twenty-seven eyes of 23 patients underwent cataract extraction with the use of the AquaLase liquefaction device. The average age of participants was 68 years, and the average nuclear sclerotic grade was 1.96 on a 4-point scale. Outcomes were judged by metrics such as visual acuity, inflammation, endothelial cell count, and postoperative posterior capsule opacification. At 30 days postoperatively, 78% of eyes had a best-corrected visual acuity of 20/20. Visual acuity was 20/25 or better 1 year postoperatively in 88% of patients without complications except conversion to ultrasound phacoemulsification for two dense cataracts.

  18. Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.

  19. Effects of Aqua Exercises Towards Improving The Quality of Life (QoL) of Obese Women in Malaysia

    NASA Astrophysics Data System (ADS)

    Karim, Noor Liyana Binti; Jalil, Asma Diyana binti Abd; Hasri, Noor Haninah Binti; Rahman, Hezlin Aryani Binti Abd; Shari, Maisarah Binti; Idris, Nur Izzati Binti

    2018-05-01

    Aqua exercise is a form of water exercise, done in the water which is beneficial for weight loss as well as improving the quality of life. It is suitable for all age group and fitness levels whereby due to the water buoyancy makes it easier to perform exercises especially for obese and knee-injured people. However, there was not much study done to measure the effectiveness of the aqua exercises in improving the quality life. Thus, this study aims to investigate and compare the effectiveness of aqua exercises towards obese women within eight domains of the Quality of Life (QoL). This study uses the 36-Items Short Form Health Survey (SF-36) questionnaire and a purposive sample of 61 participants to measure the effectiveness of the aqua exercise before and after 36 days of aqua workout. As the nature of the data collected was not normally distributed, hence the Wilcoxon signed rank test was used as the statistical method of analysis. The findings of this study showed that there was a significant difference between the overall QoL pre and post since the p-value < 0.05. In addition, it was also found that five out of the eight domains of QoL; the physical functioning, general health, social functioning, mental health, and health transition were the domains showing significant difference between the pre and post-test (p-value < 0.05), and where majority of the participants showed a significant improvement after the aqua workouts. Thus, it can be concluded that aqua exercises is effective in improving the general QoL of obese women.

  20. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPo

  1. International Earth Science Constellation Mission Operations Working Group September 27-29, 2016 Aqua Spring 2017 IAM Series

    NASA Technical Reports Server (NTRS)

    Good, Susan M.

    2016-01-01

    This Aqua Spring 2017 IAM Series powerpoint presentation will be presented at the MOWG meeting in Albuquerque, NM. Topics to be discussed are: recap Aqua 2016 IAM campaign maneuver results and post 2016 IAM MLT evolution; current DMU strategy; 2017 IAM campaign dates and planning; Aqua latest lifetime MLT team predictions. Susan Good is a contractor who supports David Tracewell in code 595 therefore this is being routed through 595. Eric Moyer, ESMO Deputy Project Manager-Technical has reviewed and approved this presentation.

  2. EosFit-Pinc: a GUI program to calculate pressures in host-inclusion systems

    NASA Astrophysics Data System (ADS)

    Angel, Ross; Alvaro, Matteo; Mazzucchelli, Mattia; Nestola, Fabrizio

    2017-04-01

    A remnant pressure in an inclusion trapped inside a host mineral is developed because the inclusion and the host have different thermal expansion and compressibilities, and the inclusion does not expand in response to P and T as would a free crystal. Instead it is restricted to expand only as much as the cavity of the host mineral, and this constriction in volume can result in inclusions exhibiting over-pressures when the host is studied at room conditions. The remnant pressure of the inclusion, measured by X-ray diffractometry, birefringence analysis or Raman spectroscopy, can then be used with the equations of state (EoS) of the host and inclusion to constrain the P and T at entrapment. This concept has been known for a long time, but satisfactory quantitative modelling of inclusion-host systems based on non-linear elasticity theory and precise EoS has only recently come available (Angel et al., 2014, 2015), even though calculations still assume isotropic elastic properties. The elasticity calculations to determine entrapment conditions involving the EoSs for both the host and the inclusion are complex if thermodynamically-realistic EoS are employed. We have therefore developed a simple GUI program, EosFit-Pinc that performs all of the necessary calculations under the assumptions of isotropic elasticity. Equations of state of the host and the inclusion can be loaded as files created by other software in the EosFit7 program suite, or imported directly from thermodynamic databases such as Thermocalc. The complete range of EoS types supported by EosFit-7 are available in EosFit-Pinc. Fluid EoS can be provided in the form of PVT tables, which allows fluid inclusions to be modelled. Once loaded, the EoS of the host and inclusion can be used to calculate the entrapment isomeke from the measured remnant pressure of the inclusion. Or the final pressure can be calculated if the entrapment conditions are known or estimated. Calculations of the isochors of both the host and

  3. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  4. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.

    2015-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.

  5. SPoRT - An End-to-End R2O Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2009-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral observational data applications from EOS satellites to improve short-term weather forecasts on a regional and local scale. SPoRT currently partners with several universities and other government agencies for access to real-time data and products, and works collaboratively with them and operational end users at 13 WFOs to develop and test the new products and capabilities in a "test-bed" mode. The test-bed simulates key aspects of the operational environment without putting constraints on the forecaster workload. Products and capabilities which show utility in the test-bed environment are then transitioned experimentally into the operational environment for further evaluation and assessment. SPoRT focuses on a suite of data and products from MODIS, AMSR-E, and AIRS on the NASA Terra and Aqua satellites, and total lightning measurements from ground-based networks. Some of the observations are assimilated into or used with various versions of the WRF model to provide supplemental forecast guidance to operational end users. SPoRT is enhancing partnerships with NOAA / NESDIS for new product development and data access to exploit the remote sensing capabilities of instruments on the NPOESS satellites to address short term weather forecasting problems. The VIIRS and CrIS instruments on the NPP and follow-on NPOESS satellites provide similar observing capabilities to the MODIS and AIRS instruments on Terra and Aqua. SPoRT will be transitioning existing and new capabilities into the AWIIPS II environment to continue the continuity of its activities.

  6. Overview of EO polymers and polymer modulator stability

    NASA Astrophysics Data System (ADS)

    Lindsay, Geoffrey A.; Ashley, Paul R.; Guenther, Andrew P.; Sanghadasa, Mohan

    2005-09-01

    This is a brief overview of the technology of nonlinear optical polymers (NLOP) and their use in electro-optic (EO) modulators. This paper also covers preliminary results from the authors' laboratories on highly active CLD- and FTC-type chromophores in guest-host films of APC amorphous polycarbonate. Emphasis will be given to thermal stability and long-term EO modulator aging.

  7. Cross-calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-05-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  8. Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-01-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  9. EOS production on the Space Station. [Electrophoresis Operations/Space

    NASA Technical Reports Server (NTRS)

    Runge, F. C.; Gleason, M.

    1986-01-01

    The paper discusses a conceptual integration of the equipment for EOS (Electrophoresis Operations/Space) on the Space Station in the early 1990s. Electrophoresis is a fluid-constituent separation technique which uses forces created by an electrical field. Aspects covered include EOS equipment and operations, and Space Station installations involving a pressurized module, a resupply module, utility provisions and umbilicals and crew involvement. Accommodation feasibility is generally established, and interfaces are defined. Space Station production of EOS-derived pharmaceuticals will constitute a significant increase in capability compared to precursor flights on the Shuttle in the 1980s.

  10. Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2015-01-01

    This presentation will describe the early days of the EOS Aqua and Aura operational collision avoidance process. It will highlight EOS debris avoidance maneuvers, EOS high interest event statistic and A-Train systematic conjunctions and conclude with future challenges. This is related to earlier e-DAA (tracking number 21692) that an abstract was submitted to a different conference. Eric Moyer, ESMO Deputy Project Manager has reviewed and approved this presentation on May 6, 2015

  11. From Physics to industry: EOS outside HEP

    NASA Astrophysics Data System (ADS)

    Espinal, X.; Lamanna, M.

    2017-10-01

    In the competitive market for large-scale storage solutions the current main disk storage system at CERN EOS has been showing its excellence in the multi-Petabyte high-concurrency regime. It has also shown a disruptive potential in powering the service in providing sync and share capabilities and in supporting innovative analysis environments along the storage of LHC data. EOS has also generated interest as generic storage solution ranging from university systems to very large installations for non-HEP applications.

  12. EOS ODL Metadata On-line Viewer

    NASA Astrophysics Data System (ADS)

    Yang, J.; Rabi, M.; Bane, B.; Ullman, R.

    2002-12-01

    We have recently developed and deployed an EOS ODL metadata on-line viewer. The EOS ODL metadata viewer is a web server that takes: 1) an EOS metadata file in Object Description Language (ODL), 2) parameters, such as which metadata to view and what style of display to use, and returns an HTML or XML document displaying the requested metadata in the requested style. This tool is developed to address widespread complaints by science community that the EOS Data and Information System (EOSDIS) metadata files in ODL are difficult to read by allowing users to upload and view an ODL metadata file in different styles using a web browser. Users have the selection to view all the metadata or part of the metadata, such as Collection metadata, Granule metadata, or Unsupported Metadata. Choices of display styles include 1) Web: a mouseable display with tabs and turn-down menus, 2) Outline: Formatted and colored text, suitable for printing, 3) Generic: Simple indented text, a direct representation of the underlying ODL metadata, and 4) None: No stylesheet is applied and the XML generated by the converter is returned directly. Not all display styles are implemented for all the metadata choices. For example, Web style is only implemented for Collection and Granule metadata groups with known attribute fields, but not for Unsupported, Other, and All metadata. The overall strategy of the ODL viewer is to transform an ODL metadata file to a viewable HTML in two steps. The first step is to convert the ODL metadata file to an XML using a Java-based parser/translator called ODL2XML. The second step is to transform the XML to an HTML using stylesheets. Both operations are done on the server side. This allows a lot of flexibility in the final result, and is very portable cross-platform. Perl CGI behind the Apache web server is used to run the Java ODL2XML, and then run the results through an XSLT processor. The EOS ODL viewer can be accessed from either a PC or a Mac using Internet

  13. Realtime Decision Making on EO-1 Using Onboard Science Analysis

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Chien, Steve; Davies, Ashley; Mandl, Dan; Frye, Stu

    2004-01-01

    Recent autonomy experiments conducted on Earth Observing 1 (EO-1) using the Autonomous Sciencecraft Experiment (ASE) flight software has been used to classify key features in hyperspectral images captured by EO-1. Furthermore, analysis is performed by this software onboard EO-1 and then used to modify the operational plan without interaction from the ground. This paper will outline the overall operations concept and provide some details and examples of the onboard science processing, science analysis, and replanning.

  14. Perceived benefits, motives, and barriers to aqua-based exercise among older adults with and without osteoarthritis.

    PubMed

    Fisken, Alison; Keogh, Justin W L; Waters, Debra L; Hing, Wayne A

    2015-04-01

    This study aimed to (a) identify factors that motivate older adults to participate in aqua-based exercise; (b) identify potential barriers; and (c) compare perceptions between older adults with and without osteoarthritis (OA). Fifteen adults above 60 years of age participated in one of three focus groups during which they discussed perceived benefits, motives, and barriers to aqua exercise. Pain reduction was considered a major benefit among those with OA, improved health and fitness was a principal benefit for those without OA. All participants felt that the instructor could act as both a motivator and barrier; the most significant barrier was cold changing facilities in winter. With the exception of pain reduction, perceived benefits, motivators, and barriers to aqua-based exercise are similar among older adults with and without OA. A greater understanding of these factors may help us to facilitate older adults with OA to initiate and adhere to aqua-based exercise. © The Author(s) 2012.

  15. What A Long Strange Trip It's Been: Lessons Learned From NASA EOS, LTER, NEON, CZO And On To The Future With Sustainable Research Networks

    NASA Astrophysics Data System (ADS)

    Williams, M. W.

    2014-12-01

    The traditional, small-scale, incremental approach to environmental science is changing as researchers embrace a more integrated and multi-disciplinary approach to understanding how our natural systems work today and how they may respond in the future to forcings such as climate change. In situ networks are evolving in response to these challenges so as to provide the appropriate measurements to develop high-resolution spatial and temporal data sets across a wide range of platforms from microbial measurements to remote sensing. These large programs provide a unique set of challenges when compared to more traditional programs. Here I provide insights learned from my participation in a number of large programs, including NASA EOS, LTER, CZO, NEON, and WSC and how those experiences in environmental science can help us move forward towards more applied applications of environmental science, including sustainability initiatives. I'll chat about the importance of managerial and management skills, which most of us scientists prefer to avoid. I'll also chat about making decisions about what long-term measurements to make and when to stop. Data management is still the weakest part of environmental networks; what needs to be done. We have learned that these networks provide an important knowledge base that can lead to informed decisions leading to environmental, energy, social and cultural sustainability.

  16. A watershed model to integrate EO data

    NASA Astrophysics Data System (ADS)

    Jauch, Eduardo; Chambel-Leitao, Pedro; Carina, Almeida; Brito, David; Cherif, Ines; Alexandridis, Thomas; Neves, Ramiro

    2013-04-01

    MOHID LAND is a open source watershed model developed by MARETEC and is part of the MOHID Framework. It integrates four mediums (or compartments): porous media, surface, rivers and atmosphere. The movement of water between these mediums are based on mass and momentum balance equations. The atmosphere medium is not explicity simulated. Instead, it's used as boundary condition to the model through meteorological properties: precipitation, solar radiation, wind speed/direction, relative humidity and air temperature. The surface medium includes the overland runoff and vegetation growth processes and is simulated using a 2D grid. The porous media includes both the unsaturated (soil) and saturated zones (aquifer) and is simulated using a 3D grid. The river flow is simulated through a 1D drainage network. All these mediums are linked through evapotranspiration and flow exchanges (infiltration, river-soil growndwater flow, surface-river overland flow). Besides the water movement, it is also possible to simulate water quality processes and solute/sediment transport. Model setup include the definition of the geometry and the properties of each one of its compartments. After the setup of the model, the only continuous input data that MOHID LAND requires are the atmosphere properties (boundary conditions) that can be provided as timeseries or spacial data. MOHID LAND has been adapted the last 4 years under FP7 and ESA projects to integrate Earth Observation (EO) data, both variable in time and in space. EO data can be used to calibrate/validate or as input/assimilation data to the model. The currently EO data used include LULC (Land Use Land Cover) maps, LAI (Leaf Area Index) maps, EVTP (Evapotranspiration) maps and SWC (Soil Water Content) maps. Model results are improved by the EO data, but the advantage of this integration is that the model can still run without the EO data. This means that model do not stop due to unavailability of EO data and can run on a forecast mode

  17. 2016 Mission Operations Working Group: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Frye, Stuart

    2016-01-01

    EO-1 Mission Status for the Constellation Mission Operations Working Group to discuss the EO-1 flight systems, mission enhancements, debris avoidance maneuver, orbital information, 5-year outlook, and new ground stations.

  18. Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)

    NASA Technical Reports Server (NTRS)

    Williams, B. G.

    1988-01-01

    An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.

  19. Telecommunications issues of intelligent database management for ground processing systems in the EOS era

    NASA Technical Reports Server (NTRS)

    Touch, Joseph D.

    1994-01-01

    Future NASA earth science missions, including the Earth Observing System (EOS), will be generating vast amounts of data that must be processed and stored at various locations around the world. Here we present a stepwise-refinement of the intelligent database management (IDM) of the distributed active archive center (DAAC - one of seven regionally-located EOSDIS archive sites) architecture, to showcase the telecommunications issues involved. We develop this architecture into a general overall design. We show that the current evolution of protocols is sufficient to support IDM at Gbps rates over large distances. We also show that network design can accommodate a flexible data ingestion storage pipeline and a user extraction and visualization engine, without interference between the two.

  20. Building No. 905, showing typical aqua medias or rain hoods ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building No. 905, showing typical aqua medias or rain hoods - Presidio of San Francisco, Enlisted Men's Barracks Type, West end of Crissy Field, between Pearce & Maudlin Streets, San Francisco, San Francisco County, CA

  1. Eos and the Youth: A Case of Inverted Roles in Rape

    NASA Astrophysics Data System (ADS)

    Dipla, Anthi

    This article examines scenes of Eos pursuing/abducting youths on 5th-century Athenian vases. Eos, the personification of Dawn, is the only woman assuming the role of a pursuer in rape. The theme strangely becomes very popular with vase painters to a degree comparable to ephebes pursuing a woman. The iconography of the scenes is systematically analysed and evaluated. All theories explaining the popularity of the theme from its presumable use as a parable for death are considered. Eos is moreover compared to other winged figures in pursuit that are popular in the same period, especially Sphinx and Eros. Conversely, it is illustrated how Eos' pursuits of youths are thoroughly coined on the same model as ephebe rape scenes. These may have been so popular because they expressed prevalent social notions about how women, like animals,would need subduing/taming by the ephebe, future citizen hunters, before they could assume their appropriate place in society. With Eos the hunter becomes the prey of a wild woman, who has transgressed the control limits set by the social system. Eos is promoted as the ultimate model of what a woman should not be.

  2. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed

  3. Summary of Terra and Aqua MODIS Long-Term Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong (Jack); Wenny, Brian N.; Angal, Amit; Barnes, William; Salomonson, Vincent

    2011-01-01

    Since launch in December 1999, the MODIS ProtoFlight Model (PFM) onboard the Terra spacecraft has successfully operated for more than 11 years. Its Flight Model (FM) onboard the Aqua spacecraft, launched in May 2002, has also successfully operated for over 9 years. MODIS observations are made in 36 spectral bands at three nadir spatial resolutions and are calibrated and characterized regularly by a set of on-board calibrators (OBC). Nearly 40 science products, supporting a variety of land, ocean, and atmospheric applications, are continuously derived from the calibrated reflectances and radiances of each MODIS instrument and widely distributed to the world-wide user community. Following an overview of MODIS instrument operation and calibration activities, this paper provides a summary of both Terra and Aqua MODIS long-term performance. Special considerations that are critical to maintaining MODIS data quality and beneficial for future missions are also discussed.

  4. AQuA: An Automated Quantification Algorithm for High-Throughput NMR-Based Metabolomics and Its Application in Human Plasma.

    PubMed

    Röhnisch, Hanna E; Eriksson, Jan; Müllner, Elisabeth; Agback, Peter; Sandström, Corine; Moazzami, Ali A

    2018-02-06

    A key limiting step for high-throughput NMR-based metabolomics is the lack of rapid and accurate tools for absolute quantification of many metabolites. We developed, implemented, and evaluated an algorithm, AQuA (Automated Quantification Algorithm), for targeted metabolite quantification from complex 1 H NMR spectra. AQuA operates based on spectral data extracted from a library consisting of one standard calibration spectrum for each metabolite. It uses one preselected NMR signal per metabolite for determining absolute concentrations and does so by effectively accounting for interferences caused by other metabolites. AQuA was implemented and evaluated using experimental NMR spectra from human plasma. The accuracy of AQuA was tested and confirmed in comparison with a manual spectral fitting approach using the ChenomX software, in which 61 out of 67 metabolites quantified in 30 human plasma spectra showed a goodness-of-fit (r 2 ) close to or exceeding 0.9 between the two approaches. In addition, three quality indicators generated by AQuA, namely, occurrence, interference, and positional deviation, were studied. These quality indicators permit evaluation of the results each time the algorithm is operated. The efficiency was tested and confirmed by implementing AQuA for quantification of 67 metabolites in a large data set comprising 1342 experimental spectra from human plasma, in which the whole computation took less than 1 s.

  5. Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Platnick, Steven

    2004-01-01

    MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.

  6. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  7. Multispectral Cloud Retrievals from MODIS on Terra and Aqua

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  8. Early on-orbit calibration results from Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Barnes, William L.

    2003-04-01

    Aqua MODIS, also known as the MODIS Flight Model 1 (FM1), was launched on May 4, 2002. It opened its nadir aperture door (NAD) on June 24, 2002, beginning its Earth observing mission. In this paper, we present early results from Aqua MODIS on-orbit calibration and characterization and assess the instrument's overall performance. MODIS has 36 spectral bands located on four focal plane assemblies (FPAs). Bands 1-19, and 26 with wavelengths from 0.412 to 2.1 microns are the reflective solar bands (RSB) that are calibrated on-orbit by a solar diffuser (SD). The degradation of the SD is tracked using a solar diffuser stability monitor (SDSM). The bands 20-25, and 27-36 with wavelengths from 3.75 to 14.5 microns are the thermal emissive bands (TEB) that are calibrated on-orbit by a blackbody (BB). Early results indicate that the on-orbit performance has been in good agreement with the predications determined from pre-launch measurements. Except for band 21, the low gain fire band, band 6, known to have some inoperable detectors from pre-launch characterization, and one noisy detector in band 36, all of the detectors' noise characterizations are within their specifications. Examples of the sensor's short-term and limited long-term responses in both TEB and RSB will be provided to illustrate the sensor's on-orbit stability. In addition, we will show some of the improvements that Aqua MODIS made over its predecessor, Terra MODIS (Protoflight Model - PFM), such as removal of the optical leak into the long-wave infrared (LWIR) photoconductive (PC) bands and reduction of electronic crosstalk and out-of-band (OOB) thermal leak into the short-wave infrared (SWIR) bands.

  9. AQUA-USERS: AQUAculture USEr Driven Operational Remote Sensing Information Services

    NASA Astrophysics Data System (ADS)

    Laanen, Marnix; Poser, Kathrin; Peters, Steef; de Reus, Nils; Ghebrehiwot, Semhar; Eleveld, Marieke; Miller, Peter; Groom, Steve; Clements, Oliver; Kurekin, Andrey; Martinez Vicente, Victor; Brotas, Vanda; Sa, Carolina; Couto, Andre; Brito, Ana; Amorim, Ana; Dale, Trine; Sorensen, Kai; Boye Hansen, Lars; Huber, Silvia; Kaas, Hanne; Andersson, Henrik; Icely, John; Fragoso, Bruno

    2015-12-01

    The FP7 project AQUA-USERS provides the aquaculture industry with user-relevant and timely information based on the most up-to-date satellite data and innovative optical in-situ measurements. Its key purpose is to develop an application that brings together satellite information on water quality and temperature with in-situ observations as well as relevant weather prediction and met-ocean data. The application and its underlying database are linked to a decision support system that includes a set of (user-determined) management options. Specific focus is on the development of indicators for aquaculture management including indicators for harmful algae bloom (HAB) events. The methods and services developed within AQUA-USERS are tested by the members of the user board, who represent different geographic areas and aquaculture production systems.

  10. The EOS CERES Global Cloud Mask

    NASA Technical Reports Server (NTRS)

    Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.

    1996-01-01

    To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.

  11. Expanding Access and Usage of NASA Near Real-Time Imagery and Data

    NASA Astrophysics Data System (ADS)

    Cechini, M.; Murphy, K. J.; Boller, R. A.; Schmaltz, J. E.; Thompson, C. K.; Huang, T.; McGann, J. M.; Ilavajhala, S.; Alarcon, C.; Roberts, J. T.

    2013-12-01

    In late 2009, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. Since that time, NASA's Earth Observing System Data and Information System (EOSDIS) developed the Global Imagery Browse Services (GIBS) to provide highly responsive, scalable, and expandable imagery services that distribute near real-time imagery in an intuitive and geo-referenced format. The GIBS imagery services provide access through standards-based protocols such as the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) and standard mapping file formats such as the Keyhole Markup Language (KML). Leveraging these standard mechanisms opens NASA near real-time imagery to a broad landscape of mapping libraries supporting mobile applications. By easily integrating with mobile application development libraries, GIBS makes it possible for NASA imagery to become a reliable and valuable source for end-user applications. Recently, EOSDIS has taken steps to integrate near real-time metadata products into the EOS ClearingHOuse (ECHO) metadata repository. Registration of near real-time metadata allows for near real-time data discovery through ECHO clients. In kind with the near real-time data processing requirements, the ECHO ingest model allows for low-latency metadata insertion and updates. Combining with the ECHO repository, the fast visual access of GIBS imagery can now be linked directly back to the source data file(s). Through the use of discovery standards such as OpenSearch, desktop and mobile applications can connect users to more than just an image. As data services, such as OGC Web Coverage Service, become more prevalent within the EOSDIS system, applications may even be able to connect users from imagery to data values. In addition, the full resolution GIBS imagery provides visual context to other GIS data and tools. The NASA near real-time imagery

  12. The Integration, Testing and Flight of the EO-1 GPS

    NASA Technical Reports Server (NTRS)

    Quinn, David A.; Sanneman, Paul A.; Shulman, Seth E.; Sager, Jennifer A.

    2001-01-01

    The Global Positioning System has long been hailed as the wave of the future for autonomous on-board navigation of low Earth orbiting spacecraft despite the fact that relatively few spacecraft have actually employed it for this purpose. While several missions operated out of the Goddard Space Flight Center have flown GPS receivers on board, the New Millenium Program (NMP) Earth Orbiting-1 (EO-1) spacecraft is the first to employ GPS for active, autonomous on-board navigation. Since EO-1 was designed to employ GPS as its primary source of the navigation ephemeris, special care had to be taken during the integration phase of spacecraft construction to assure proper performance. This paper is a discussion of that process: a brief overview of how the GPS works, how it fits into the design of the EO-1 Attitude Control System (ACS), the steps taken to integrate the system into the EO-1 spacecraft, the ultimate on-orbit performance during launch and early operations of the EO-1 mission and the performance of the on-board GPS ephemeris versus the ground based ephemeris. Conclusions will include a discussion of the lessons learned.

  13. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Pawson, Steven; Labow, Gordon; Frith, Stacey M.; Livesey, Nathaniel; Partyka, Gary

    2017-01-01

    The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), produced at NASAs Global Modeling and Assimilation Office (GMAO) is summarized. The reanalysis begins in 1980 with the use of retrieved partial-column ozone concentrations from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft. Beginning in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument (OMI) on NASAs EOS Aura satellite are assimilated. While this change in data streams does lead to a discontinuity in the assimilated ozone fields in MERRA-2, making it not useful for studies in decadal (secular) trends in ozone, this choice was made to prioritize demonstrating the value NASAs high-quality research data in the reanalysis context. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above. This is indicative of a realistic representation of the UTLS ozone variability in MERRA-2. After 2004, the upper tropospheric ozone in MERRA-2 shows a low bias compared to the sondes, but the covariance with independent observations is improved compared to earlier years. Case studies demonstrate the integrity of MERRA-2 analyses in representing important features such as tropopause folds.

  14. Using Existing NASA Satellites as Orbiting Testbeds to Accelerate Technology Infusion into Future Missions

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Ly, Vuong; Frye, Stuart

    2006-01-01

    One of the shared problems for new space mission developers is that it is extremely difficult to infuse new technology into new missions unless that technology has been flight validated. Therefore, the issue is that new technology is required to fly on a successful mission for flight validation. We have been experimenting with new technology on existing satellites by retrofitting primarily the flight software while the missions are on-orbit to experiment with new operations concepts. Experiments have been using Earth Observing 1 (EO-1), which is part of the New Millennium Program at NASA. EO-1 finished its prime mission one year after its launch on November 21,2000. From November 21,2001 until the present, EO-1 has been used in parallel with additional science data gathering to test out various sensor web concepts. Similarly, the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) satellite was also a one year mission flown by the University of Berkeley, sponsored by NASA and whose prime mission ended August 30,2005. Presently, CHIPS is being used to experiment with a seamless space to ground interface by installing Core Flight System (cFS), a "plug-and-play" architecture developed by the Flight Software Branch at NASA/GSFC on top of the existing space-to-ground Internet Protocol (IP) interface that CHIPS implemented. For example, one targeted experiment is to connect CHIPS to a rover via this interface and the Internet, and trigger autonomous actions on CHIPS, the rover or both. Thus far, having satellites to experiment with new concepts has turned out to be an inexpensive way to infuse new technology for future missions. Relevant experiences thus far and future plans will be discussed in this presentation.

  15. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  16. Recent disruption of an asteroid from the Eos family

    NASA Astrophysics Data System (ADS)

    Novaković, B.; Tsirvoulis, G.

    2014-07-01

    A key difficulty with searching for partially differentiated asteroids arises from the fact that a crust covers the exterior of the body, and, consequently, should hide the melted interior. This motivates an alternative approach of examining members of asteroid families, i.e., fragments of single large bodies, many of which were in the size regime capable of igneous differentiation, that have been disrupted by catastrophic collisions. Such families could provide a stratigraphic cross section across the interior of the parent asteroid [1]. With more than 10,000 known members, the Eos dynamical family is one of the most numerous and earliest recognized asteroid families [2]. Interestingly, the estimated ˜220-km-diameter parent body [3] is well within the size range capable of differentiation. Thus, existing family members should contain fragments of the deep interior. The Eos family has the highest diversity of taxonomic classes than any other known family [4]. Many members are of K spectral type, which is uncommon outside the family, and is similar to the spectra of CV, CK, CO, and CR carbonaceous chondrites [5]. This diversity leads to the suggestion that the Eos parent body was partially differentiated [4,6]. Thus, the Eos family may not only be a remnant of a partially differentiated parent body, but it could be the source of the CV-CK meteorite group. Here we report the discovery of a young subfamily of the Eos asteroid family. It may help understanding the mineralogical nature of the Eos asteroid family and of its parent body. By applying the hierarchical clustering method [7], we find an extremely compact 16-body cluster within the borders of the Eos family. We name the cluster (6733) 1992 EF, after its largest member. The statistical significance of this new cluster is estimated to be above 99%, indicating that its members share a common origin. All members of the cluster are found to be dynamically stable over long timescales. Backward numerical orbital

  17. Eosinophilic Esophagitis in Children and Adolescents with Abdominal Pain: Comparison with EoE-Dysphagia and Functional Abdominal Pain.

    PubMed

    Gunasekaran, Thirumazhisai; Prabhakar, Gautham; Schwartz, Alan; Gorla, Kiranmai; Gupta, Sandeep; Berman, James

    2016-01-01

    Aim. Compare EoE-AP with EoE-D for clinical, endoscopy (EGD), histology and outcomes and also with FAP-N. Method. Symptoms, physical findings, EGD, histology, symptom scores, and treatments were recorded for the three groups. Cluster analysis was done. Results. Dysphagia and abdominal pain were different in numbers but not statistically significant between EoE-AP and EoE-D. EGD, linear furrows, white exudates were more in the EoE-D and both combined were significant (p < 0.05). EoE-D, peak and mean eosinophils (p  0.06) and eosinophilic micro abscesses (p  0.001) were higher. Follow-Up. Based on single symptom, EoE-AP had 30% (p  0.25) improvement, EoE-D 86% (p < 0.001) and similar with composite score (p  0.57 and <0.001, resp.). Patients who had follow-up, EGD: 42.8% with EoE-AP and 77.8% with EoE-D, showed single symptom improvement and the eosinophil count fell from 38.5/34.6 (peak and mean) to 31.2/30.4 (p  0.70) and from 43.6/40.8 to 25.2/22.8 (p < 0.001), respectively. FAP-N patients had similar symptom improvement like EoE-D. Cluster Analysis. EoE-AP and FAP-N were similar in clinical features and response to treatment, but EoE-D was distinctly different from EoE-AP and FAP-N. Conclusion. Our study demonstrates that EoE-AP and EoE-D have different histology and outcomes. In addition, EoE-AP has clinical features similar to the FAP-N group.

  18. Eosinophilic Esophagitis in Children and Adolescents with Abdominal Pain: Comparison with EoE-Dysphagia and Functional Abdominal Pain

    PubMed Central

    Gorla, Kiranmai; Gupta, Sandeep

    2016-01-01

    Aim. Compare EoE-AP with EoE-D for clinical, endoscopy (EGD), histology and outcomes and also with FAP-N. Method. Symptoms, physical findings, EGD, histology, symptom scores, and treatments were recorded for the three groups. Cluster analysis was done. Results. Dysphagia and abdominal pain were different in numbers but not statistically significant between EoE-AP and EoE-D. EGD, linear furrows, white exudates were more in the EoE-D and both combined were significant (p < 0.05). EoE-D, peak and mean eosinophils (p  0.06) and eosinophilic micro abscesses (p  0.001) were higher. Follow-Up. Based on single symptom, EoE-AP had 30% (p  0.25) improvement, EoE-D 86% (p < 0.001) and similar with composite score (p  0.57 and <0.001, resp.). Patients who had follow-up, EGD: 42.8% with EoE-AP and 77.8% with EoE-D, showed single symptom improvement and the eosinophil count fell from 38.5/34.6 (peak and mean) to 31.2/30.4 (p  0.70) and from 43.6/40.8 to 25.2/22.8 (p < 0.001), respectively. FAP-N patients had similar symptom improvement like EoE-D. Cluster Analysis. EoE-AP and FAP-N were similar in clinical features and response to treatment, but EoE-D was distinctly different from EoE-AP and FAP-N. Conclusion. Our study demonstrates that EoE-AP and EoE-D have different histology and outcomes. In addition, EoE-AP has clinical features similar to the FAP-N group. PMID:27610357

  19. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  20. Learning from LANCE: Developing a Web Portal Infrastructure for NASA Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, K. J.

    2013-12-01

    NASA developed the Land Atmosphere Near real-time Capability for EOS (LANCE) in response to a growing need for timely satellite observations by applications users, operational agencies and researchers. EOS capabilities originally intended for long-term Earth science research were modified to deliver satellite data products with sufficient latencies to meet the needs of the NRT user communities. LANCE products are primarily distributed as HDF data files for analysis, however novel capabilities for distribution of NRT imagery for visualization have been added which have expanded the user base. Additionally systems to convert data to information such as the MODIS hotspot/active fire data are also provided through the Fire Information for Resource Management System (FIRMS). LANCE services include: FTP/HTTP file distribution, Rapid Response (RR), Worldview, Global Imagery Browse Services (GIBS) and FIRMS. This paper discusses how NASA has developed services specifically for LANCE and is taking the lessons learned through these activities to develop an Earthdata Web Infrastructure. This infrastructure is being used as a platform to support development of data portals that address specific science issues for much of EOSDIS data.

  1. 78 FR 28704 - Proposed Collection; Comment Request for Form 8453-EO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Form 8453-EO, Exempt Organization Declaration and Signature for Electronic Filing. DATES: Written... and Signature for Electronic Filing. OMB Number: 1545-1879. Form Number: 8453-EO. Abstract: Form 8453...

  2. 75 FR 36478 - Proposed Collection; Comment Request for Form 8453-EO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Form 8453-EO, Exempt Organization Declaration and Signature for Electronic Filing. DATES: Written... Declaration and Signature for Electronic Filing. OMB Number: 1545-1879. Form Number: 8453-EO. Abstract: Form...

  3. Earth Observation Training and Education with ESA LearnEO!

    NASA Astrophysics Data System (ADS)

    Byfield, Valborg; Mathieu, Pierre-Philippe; Dobson, Malcolm; Rosmorduc, Vinca; Del Frate, Fabio; Banks, Chris; Picchiani, Matteo

    2013-04-01

    For society to benefit fully from its investment in Earth observation, EO data must be accessible and familiar to a global community of users who have the skills, knowledge and understanding to use the observations appropriately in their work. Achieving this requires considerable education effort. LearnEO! (www.learn-eo.org) is a new ESA education project that contributes towards making this a reality. LearnEO! has two main aims: to develop new training resources that use data from sensors on ESA satellites to explore a variety of environmental topics, and to stimulate and support members of the EO and education communities who may be willing to develop and share new education resources in the future. The project builds on the UNESCO Bilko project, which currently supplies free software, tutorials, and example data to users in 175 countries. Most of these users are in academic education or research, but the training resources are also of interest to a growing number of professionals in government, NGOs and private enterprise. Typical users are not remote sensing experts, but see satellite data as one of many observational tools. They want an easy, low-cost means to process, display and analyse data from different satellite sensors as part of their work in environmental research, monitoring and policy development. Many of the software improvements and training materials developed in LearnEO! are in response to requests from this user community. The LearnEO! tutorial and peer-reviewed lessons are designed to teach satellite data processing and analysis skills at different levels, from beginner to advanced - where advanced lessons requires some previous experience with Earth observation techniques. The materials are aimed at students and professionals in various branches of Earth sciences who have not yet specialised in specific EO technologies. The lessons are suitable for self-study, university courses at undergraduate to MSc level, or for continued professional

  4. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  5. Utilizing NASA EOS Data for Fire Management in el Departmento del Valle del Cauco, Colombia

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Bledsoe, N.; Alabdouli, K.

    2012-12-01

    In the last few years, fire incidence in Colombian wild areas has increased, damaging pristine forests into savannas and sterile lands. Fire poses a significant threat to biodiversity, rural communities and established infrastructure. These events issue an urgent need to address this problem. NASA Earth Observing System (EOS) can play a significant role in the monitoring fires and natural disasters. SERVIR, the Regional Visualization and Monitoring Network, constitutes a platform for the observation, forecasting and modeling of environmental processes in Central America. A project called "The GIS for fire management in Guatemala (SIGMA-I)" has been already conducted to address the same problem in another Latin American country, Guatemala. SIGMA-I was developed by the Inter-agency work among the National protected areas council (CONAP), National Forestry Institution (INAB), the National Coordinator for Disaster Reduction / National Forest Fire Prevention and Control System (CONRED/SIPECIF), and the Ministry of the Environment and National Resources (MARN) in Guatemala under the guidance and assistance of SERVIR. With SIGMA-I as an example, we proposed to conduct a similar project for the country of Colombia. First, a pilot study in the area of the watershed of the Cali River, Colombia was conducted to ensure that the data was available and that the maps and models were accurate. The proposed study will investigate the technical resources required: 1.) A fire map with a compilation of ignition data (hot spots) utilizing Fire Information for Resource Management System (FIRMS) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD14 and MYD14 2.) A map of fire scars derived from medium resolution satellite data (ASTER) during the period 2003-2011 for the entire country, and a map of fire scar recurrence and statistics derived from the datasets produced. 3.) A pattern analysis and ignition cause model derived from a matrix of variables

  6. Aqua/Aura Inclination Adjust Maneuver Series Spring 2018 Planning

    NASA Technical Reports Server (NTRS)

    Trenholme, Elena; Boone, Spencer

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting on December 6-8, 2017 to discuss the Aqua/Aura Spring 2018 Inclination Adjust Maneuver series planning. Presentation has been reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  7. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  8. EOS imaging versus current radiography: A health technology assessment study

    PubMed Central

    Mahboub-Ahari, Alireza; Hajebrahimi, Sakineh; Yusefi, Mahmoud; Velayati, Ashraf

    2016-01-01

    Background: EOS is a 2D/3D muscle skeletal diagnostic imaging system. The device has been developed to produce a high quality 2D, full body radiographs in standing, sitting and squatting positions. Three dimensional images can be reconstructed via sterEOS software. This Health Technology Assessment study aimed to investigate efficacy, effectiveness and cost-effectiveness of new emerged EOS imaging system in comparison with conventional x-ray radiographic techniques. Methods: All cost and outcome data were assessed from Iran's Ministry of Health Perspective. Data for clinical effectiveness was extracted using a rigorous systematic review. As clinical outcomes the rate of x-ray emission and related quality of life were compared with Computed Radiography (CR) and Digital Radiography (DR). Standard costing method was conducted to find related direct medical costs. In order to examine robustness of the calculated Incremental Cost Effectiveness Ratios (ICERs) we used two-way sensitivity analysis. GDP Per capita of Islamic Republic of Iran (2012) adopted as cost-effectiveness threshold. Results: Review of related literature highlighted the lack of rigorous evidence for clinical outcomes. Ultra low dose EOS imaging device is known as a safe intervention because of FDA, CE and CSA certificates. The rate of emitted X-ray was 2 to 18 fold lower for EOS compared to the conventional techniques (p<0.001). The Incremental Cost Effectiveness Ratio for EOS relative to CR calculated $50706 in baseline analysis (the first scenario) and $50714, $9446 respectively for the second and third scenarios. Considering the value of neither $42146 as upper limit, nor the first neither the second scenario could pass the cost-effectiveness threshold for Iran. Conclusion: EOS imaging technique might not be considered as a cost-effective intervention in routine practice of health system, especially within in-patient wards. Scenario analysis shows that, only in an optimum condition such as lower

  9. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  10. Lateral Diffusion in a DMPC:DMPE-EO Binary Monolayer at the Air/Water Interface

    NASA Astrophysics Data System (ADS)

    Adalsteinsson, Thorsteinn; Porter, Ryan; Yu, Hyuk

    2002-03-01

    Polyethylene glycol tethered phospholipids (lipo-polymers) have recently attracted attention for improving the stability of liposomes and other bilayer delivery systems. Here, we report a study of surface pressure measurement and diffusion measurements of a probe lipid (NBD-DMPC) in a binary monolayer of DMPC and DMPE-EO at the Air/Water interface. Our findings are that the DMPE-EO lipo-polymer desorbs from the interface at intermediate surface pressures if the EO tail is sufficiently large (i.e. EO_45) and does not interfere with the diffusion of the probe thereafter. In the case where the EO tail is short (i.e. EO_17) the lipo-polymer retards the diffusion of the probe, but as the surface pressure increases, the diffusion behavior approaches that of pure DMPC monolayer independent of lipo-polymer. Thus, we conclude that the surface pressure and EO molar mass dependent desorption of the lipo-polymer modulates the probe diffusion retardation.

  11. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  12. NASA Science Data Processing for SNPP

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Lowe, D. R.; Ho, E. L.

    2014-12-01

    NASA's ESDIS Project has been operating the Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. The science data processing system includes a Science Data Depository and Distribution Element (SD3E) and five Product Evaluation and Analysis Tool Elements (PEATEs): Land, Ocean, Atmosphere, Ozone, and Sounder. The SDS has been responsible for assessing Environmental Data Records (EDRs) for climate quality, providing and demonstrating algorithm improvements/enhancements and supporting the calibration/validation activities as well as instrument calibration and sensor table uploads for mission planning. The SNPP also flies two NASA instruments: OMPS Limb and CERES. The SNPP SDS has been responsible for producing, archiving and distributing the standard products for those instruments in close association with their NASA science teams. The PEATEs leveraged existing science data processing techniques developed under the EOSDIS Program. This enabled he PEATEs to do an excellent job in supporting Science Team analysis for SNPP. The SDS acquires data from three sources: NESDIS IDPS (Raw Data Records (RDRs)), GRAVITE (Retained Intermediate Products (RIPs)), and the NOAA/CLASS (higher level products). The SD3E component aggregates the RDRs, and distributes them to each of the PEATEs for further analysis and processing. It provides a ~32 day rolling storage of data, available for pickup by the PEATEs. The current system used by NASA will be presented along with plans for streamlining the system in support of continuing the NASA's EOS measurements.

  13. EOS Terra: Mission Status Constellation MOWG

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    This EOS Terra Mission Status Constellation MOWG will discuss mission summary; spacecraft subsystems summary, recent and planned activities; inclination adjust maneuvers, conjunction history, propellant usage and lifetime estimate; and end of mission plan.

  14. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2010-01-01

    AIRS is a precision state of the art High Spectral Resolution Multi-detector IR grating array spectrometer that was launched into a polar orbit on EOS Aqua in 2002. AIRS measures most of the infra-red spectrum with very low noise from 650/cm to 2660/cm with a resolving power of 2400 at a spatial resolution of 13 km. The objectives of AIRS were to perform accurate determination of atmospheric temperature and moisture profiles in up to 90% partial cloud cover conditions for the purpose of improving numerical weather prediction and understanding climate processes. AIRS data has also been used to determine accurate trace gas profiles. A brief overview of the retrieval methodology used to analyze AIRS observations under partial cloud cover will be presented and sample results will be shown from the weather and climate perspectives.

  15. The Closed Aquatic System AquaHab® as part of a CELSS for Exploration, Space and Earth Application

    NASA Astrophysics Data System (ADS)

    Slenzka, Klaus

    AquaHab R is a small, self-sustaining closed microcosm, based on the former space shuttle payload C.E.B.A.S. (Closed Equilibrated Biological Aquatic System). AquaHab R contains on laboratory scale within 8 liters of water volume different groups of organisms (fish, snails, amphipods, plants). During the last years, it was developed to a system for the risk assessment of chemicals as well as an early warning tool for air and water contamination, major concerns during long-term stays in closed habitats for example on Earth's subsurface (deep sea) or later on the Moon or Mars. AquaHab R is now enhanced developed for exploratory missions having implemented an algae reactor system for biomass production etc.. During first tests, the transport of oxygen from the algae reactor into the AquaHab R was demonstrated successfully. In the common AquaHab R - bioreactor system, the different subsystems will serve for several tasks. In the AquaHab R - tank, the removal of waste water (mainly nutrients) as well as the production of some higher plants and fish as food source will be most beneficial; additionally the AquaHab R -tank is supporting astronauts psychological health recovery (home aquaria effect, taking care for pets). The beneficially output of the algae reactors will e.g. be the increased delivery of oxygen and metabolic products with application potential for humans (as e.g. vitamins, drug like acting substances) as well as being a food source in general and also the removal of carbon dioxide. Furthermore, specialized algae can also serve as early warning tool, as all the organisms in the AquaHab R do, or producing energy equivalents. The different subsystems will interact with each other to treat the products of humans being in the closed habitat in the most effective way. This new life support subsystem will be bioregenerative and sustainable in the meaning, that no material transport into the system is needed, and non-usable and maybe toxic end products won‘t be

  16. Wave Energy Prize - 1/50th Testing - AquaHarmonics

    DOE Data Explorer

    Wesley Scharmen

    2016-01-15

    This submission of data includes all the 1/50th scale testing data completed on the Wave Energy Prize for the AquaHarmonics team, and includes: 1/50th test data (raw & processed) 1/50th test data video and pictures 1/50th Test plans and testing documents SSTF_Submission (summarized results)

  17. Report of the EOS oceans panel to the payload panel

    NASA Astrophysics Data System (ADS)

    Abbott, Mark R.; Freilich, Michael H.

    1992-11-01

    The atmosphere and the ocean are the two great fluids of the earth system. Changes in the coupling of these two fluids will have a profound impact on the Earth's climate and biogeochemical systems. Although changes in atmospheric composition and dynamics are the usual focus of global climate models, it is apparent that the ocean plays a critical role in modulating the magnitude and rate of these changes. The ocean is responsible for nearly half of the poleward heat flux as well as for a significant portion of the uptake of atmospheric carbon dioxide. However, the processes governing the flux of materials and energy between the ocean atmosphere are poorly understood. Such processes include not only physical and chemical dynamics, but also biological processes which act to modify the chemical composition of the ocean as well as the trapping of solar energy as heat in the upper water column. Thus it is essential that the ocean be studied as a complete system of physical, chemical, and biological processes. Overlapping measurements must be made for at least 10-15 years to resolve critical low frequency fluctuations. The present EOS plan relies heavily on non-EOS entities to provide critical data sets for ocean studies. Although such partnerships are usually beneficial, there are risks that must be considered in terms of data coverage, quality, resolution, and availability. A simple replacement of an EOS sensor with a non-EOS sensor based on the fact that they both measure the same quantities will not guarantee that critical measurements will be made to address IPCC priorities in the area of ocean processes. EOS must continue to pursue appropriate methods to ensure that such partner — provided measurements meet scientific requirements. Such methods are analogous to contigencies applied in the area of schedules, cost, and performance for instrument projects. EOS must foster strong ties between US scientists and their foreign counterparts, in order to develop

  18. Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2014-01-01

    CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.

  19. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  20. EOS Data Products Latency and Reprocessing Evaluation

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Wanchoo, L.

    2012-12-01

    NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) program has been processing, archiving, and distributing EOS data since the launch of Terra platform in 1999. The EOSDIS Distributed Active Archive Centers (DAACs) and Science-Investigator-led Processing Systems (SIPSs) are generating over 5000 unique products with a daily average volume of 1.7 Petabytes. Initially EOSDIS had requirements to make process data products within 24 hours of receiving all inputs needed for generating them. Thus, generally, the latency would be slightly over 24 and 48 hours after satellite data acquisition, respectively, for Level 1 and Level 2 products. Due to budgetary constraints these requirements were relaxed, with the requirement being to avoid a growing backlog of unprocessed data. However, the data providers have been generating these products in as timely a manner as possible. The reduction in costs of computing hardware has helped considerably. It is of interest to analyze the actual latencies achieved over the past several years in processing and inserting the data products into the EOSDIS archives for the users to support various scientific studies such as land processes, oceanography, hydrology, atmospheric science, cryospheric science, etc. The instrument science teams have continuously evaluated the data products since the launches of EOS satellites and improved the science algorithms to provide high quality products. Data providers have periodically reprocessed the previously acquired data with these improved algorithms. The reprocessing campaigns run for an extended time period in parallel with forward processing, since all data starting from the beginning of the mission need to be reprocessed. Each reprocessing activity involves more data than the previous reprocessing. The historical record of the reprocessing times would be of interest to future missions, especially those involving large volumes of data and/or computational loads due to

  1. Calculation of Hugoniot properties for shocked nitromethane based on the improved Tsien's EOS

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Cui, Ji-Ping; Fan, Jing

    2010-06-01

    We have calculated the Hugoniot properties of shocked nitromethane based on the improved Tsien’s equation of state (EOS) that optimized by “exact” numerical molecular dynamic data at high temperatures and pressures. Comparison of the calculated results of the improved Tsien’s EOS with the existed experimental data and the direct simulations show that the behavior of the improved Tsien’s EOS is very good in many aspects. Because of its simple analytical form, the improved Tsien’s EOS can be prospectively used to study the condensed explosive detonation coupling with chemical reaction.

  2. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra

  3. [Influence AquaLase at corneal endothelial cells].

    PubMed

    Jirásková, N; Rozsíval, P; Ludvíková, M; Burova, M; Nekolová, J

    2009-07-01

    To assess the effect of the cleaning of the posterior capsule using pulses of balanced salt solution (BSS) on the corneal endothelial cells. This pilot study involves 43 patients with bilateral cataracts having lens removal using torsional phacoemulsification (Ozil, Infiniti, Alcon) and bimanul irrigation/aspiration (I/A). Posterior capsule of the right eye of each patient was cleaned using pulses of BSS (AquaLase, Infiniti, Alcon). Surgery was performed by one of 2 surgeons (NJ, PR), both eyes of each patient was operated on by the same surgeon. Best corrected visual acuity (BCVA), endotelial cell count and pachymetry were evaluated pre- and postoperatively as well as occurence af peri- and postoperative complications. Preoperative mean pachymetry (P) was 566 +/- 45 microm in the right eye (RE) and 562 +/- 42 microm in the left eye (LE), mean endotelial cell count (ECC) 2541 +/- 317 cells/mm2 (RE) and 2567 +/- 311 cells/mm2 (LE). Three months after surgery P was 557 +/- 43 microm (RE) and 558 +/- 45 microm (LE) and ECC 2368 +/- 416 cells/mm2 (RE) and 2396 +/- 417 cells/mm2 (LE). There was no statistical difference in postoperative changes of both corneal parameters between right and left eyes. Best corrected visual acuity improved in all eyes and no peri-or postoperative complications occured. Cleaning of the posterior capsule using AquaLase is safe for corneal endothelial cells.

  4. Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.

    2012-12-01

    The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.

  5. Observing the 2010 Eyjafjallajökull, Iceland, Eruptions with NASA's Earth Observing-1 Spacecraft - Improving Data Flow In a Volcanic Crisis Through Use of Autonomy

    NASA Astrophysics Data System (ADS)

    Chien, S.; Davies, A. G.; Doubleday, J.; Tran, D. Q.; Gudmundsson, M. T.; Jónsdóttir, I.; Hoskuldsson, A.; Thordarson, T.; Jakobsdottir, S.; Wright, R.

    2010-12-01

    Eyjafjallajökull volcano, Iceland, erupted from 20 March to 12 April 2010 (a flank eruption) and again from 14 April to 23 May 2010. The latter eruption heavily impacted air travel across much of northern Europe, and highlighted the need to monitor and quickly react to new eruptions. The NASA Earth Observing 1 spacecraft (EO-1), which is managed by the NASA Goddard Space Flight Center, obtained over 50 observation pairs with the Hyperion hyperspectral imager and ALI (Advanced Land Imager) multispectral camera. EO-1 is the remote-sensing asset of a globe-spanning Volcano Sensor Web [1], where low spatial resolution data (e.g., MODIS) or alerts of ongoing or possible volcanic activity are used to trigger requests for high resolution EO-1 data. Advanced resource management software, developed in part for flight onboard EO-1 as part of the Autonomous Sciencecraft [2, 3] is now used to task EO-1. This system allowed rapid re-tasking of EO-1 to obtain both day and night data at high temporal resolution (on average every 2 days), unusual for such high spatial resolution imagers (Hyperion and ALI at 30 m/pixel, with an ALI panchromatic band at 10 m/pixel). About 50% of the data were impacted by cloud. Advances in data handling and communications during the last two years means that Hyperion and ALI data are typically on the ground and ready for analysis within a few hours of data acquisition. Automatic data processing systems at the NASA’s Jet Propulsion Laboratory process Hyperion data to (1) correct for atmospheric adsorption; (2) remove the sunlight component in daytime data; (3) identify hot pixels; (4) fit unsaturated data to determine temperature and area of sub-pixel thermal sources; (5) calculate total thermal emission and, from this, an effusion rate; (6) generate geo-located data products. The entire process is autonomous. Data products, as well as images generated, were sent to volcanologists in the field to aid in eruption assessment. The JPL group is now

  6. EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation.

    PubMed

    McKenna, C; Wade, R; Faria, R; Yang, H; Stirk, L; Gummerson, N; Sculpher, M; Woolacott, N

    2012-01-01

    EOS is a biplane X-ray imaging system manufactured by EOS Imaging (formerly Biospace Med, Paris, France). It uses slot-scanning technology to produce a high-quality image with less irradiation than standard imaging techniques. To determine the clinical effectiveness and cost-effectiveness of EOS two-dimensional (2D)/three-dimensional (3D) X-ray imaging system for the evaluation and monitoring of scoliosis and other relevant orthopaedic conditions. For the systematic review of EOS, electronic databases (MEDLINE, Allied and Complementary Medicine Database, BIOSIS Previews, Cumulative Index to Nursing and Allied Health Literature, The Cochrane Library, EMBASE, Health Management Information Consortium, Inspec, ISI Science Citation Index and PASCAL), clinical trials registries and the manufacturer's website were searched from 1993 to November 2010. A systematic review of studies comparing EOS with standard X-ray [film, computed radiography (CR) or digital radiography] in any orthopaedic condition was performed. A narrative synthesis was undertaken. A decision-analytic model was developed to assess the cost-effectiveness of EOS in the relevant indications compared with standard X-ray and incorporated the clinical effectiveness of EOS and the adverse effects of radiation. The model incorporated a lifetime horizon to estimate outcomes in terms of quality-adjusted life-years (QALYs) and costs from the perspective of the NHS. Three studies met the inclusion criteria for the review. Two studies compared EOS with film X-ray and one study compared EOS with CR. The three included studies were small and of limited quality. One study used an earlier version of the technology, the Charpak system. Both studies comparing EOS with film X-ray found image quality to be comparable or better with EOS overall. Radiation dose was considerably lower with EOS: ratio of means for posteroanterior spine was 5.2 (13.1 for the study using the Charpak system); ratio of means for the lateral spine

  7. An European framework for the long term preservation of EO data

    NASA Astrophysics Data System (ADS)

    Forcada, E.; Albani, M.; Beruti, V.

    2009-04-01

    The need for accessing historical Earth Observation (EO) data series strongly increased in the last ten years, mainly for long term science and environmental monitoring applications. This trend is likely to increase even more in the future in particular for the growing interest on global change monitoring that requires data time-series spanning 20 years and more, and for the need to support the United Nations Framework Convention on Climate Change (UNFCCC). Content of EO data archives is extending from a few years to decades and their scientific value is continuously increasing hence is well recognized the need to preserve them without time limitation and to keep the archived EO data well accessible and exploitable as they constitute a humankind asset. The large amount of new Earth Observation missions upcoming in the next years will moreover lead to a major increase of EO data volumes. This fact, together with the increased demands from the scientific user community, marks a challenge for Earth Observation satellite operators, Space Agencies and EO data providers regarding coherent data preservation and optimum availability and accessibility of the different data products. Traditionally in Europe, there has been poor cooperation in this field with no common approach for long term preservation and access to EO space data even if cooperation and sharing are key aspects to be pursued for the benefit of the user community. Single organizations have difficulties to afford data preservation in the long term that calls for the need of optimising costs and efforts, identifying commonalities. In 2006, the European Space Agency (ESA) initiated a coordination action to share among all the European (and Canadian) stakeholders a common approach to the long term preservation of Earth Observation data. During 2007, the Agency started consultations with its Member States presenting an EO Long Term Data Preservation (LTDP) strategy targeting the preservation of all European

  8. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses

    NASA Astrophysics Data System (ADS)

    Hulley, G. C.; Malakar, N.; Islam, T.

    2017-12-01

    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  9. Enhanced modeling and simulation of EO/IR sensor systems

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Miller, Brian; May, Christopher

    2015-05-01

    The testing and evaluation process developed by the Night Vision and Electronic Sensors Directorate (NVESD) Modeling and Simulation Division (MSD) provides end to end systems evaluation, testing, and training of EO/IR sensors. By combining NV-LabCap, the Night Vision Integrated Performance Model (NV-IPM), One Semi-Automated Forces (OneSAF) input sensor file generation, and the Night Vision Image Generator (NVIG) capabilities, NVESD provides confidence to the M&S community that EO/IR sensor developmental and operational testing and evaluation are accurately represented throughout the lifecycle of an EO/IR system. This new process allows for both theoretical and actual sensor testing. A sensor can be theoretically designed in NV-IPM, modeled in NV-IPM, and then seamlessly input into the wargames for operational analysis. After theoretical design, prototype sensors can be measured by using NV-LabCap, then modeled in NV-IPM and input into wargames for further evaluation. The measurement process to high fidelity modeling and simulation can then be repeated again and again throughout the entire life cycle of an EO/IR sensor as needed, to include LRIP, full rate production, and even after Depot Level Maintenance. This is a prototypical example of how an engineering level model and higher level simulations can share models to mutual benefit.

  10. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae.

    PubMed

    Wan, Jinjin; Guo, Peiyong; Peng, Xiaofang; Wen, Keqi

    2015-01-01

    Erythromycin, a macrolide antibiotic, is commonly used in human life. This compound and its derivatives have been detected in various aquatic compartments and may pose a serious threat to aquatic organisms. This study investigated the effects of erythromycin on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. The results showed that at 0.001-0.1 μg L(-1), erythromycin could stimulate the growth of M. flos-aquae and increase its photosynthetic activity; however, it did not significantly increase the activities of superoxide dismutase (SOD) and catalase (CAT) or the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). In contrast, the growth of M. flos-aquae was significantly inhibited (p<0.01) at high levels of erythromycin, reaching an inhibition rate of 81.6% at 40 μg L(-1) erythromycin. At the same time, the activities of SOD and CAT along with MDA content also increased significantly (p<0.01), indicating that the high concentrations of erythromycin caused a severe oxidative stress on algae. However, the balance between oxidants and antioxidant enzymes were disrupted because ROS content simultaneously increased. In addition, the fluorescence parameters of M. flos-aquae decreased significantly with both exposure time and increasing concentration of erythromycin, indicating that photosynthesis was inhibited. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 76 FR 41854 - Aqua Society, Inc., Centurion Gold Holdings, Inc., and PowerRaise, Inc.; Order of Suspension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Aqua Society, Inc., Centurion Gold Holdings, Inc., and PowerRaise, Inc.; Order of Suspension of Trading July 13, 2011. It appears to the Securities... securities of Aqua Society, Inc. because it has not filed any periodic reports since the period ended June 30...

  12. Do CAS measurements correlate with EOS 3D alignment measurements in primary TKA?

    PubMed

    Meijer, Marrigje F; Boerboom, Alexander L; Bulstra, Sjoerd K; Reininga, Inge H F; Stevens, Martin

    2017-09-01

    Objective of this study was to compare intraoperative computer-assisted surgery (CAS) alignment measurements during total knee arthroplasty (TKA) with pre- and postoperative coronal alignment measurements using EOS 3D reconstructions. In a prospective study, 56 TKAs using imageless CAS were performed and coronal alignment measurements were recorded twice: before bone cuts were made and after implantation of the prosthesis. Pre- and postoperative coronal alignment measurements were performed using EOS 3D reconstructions. Thanks to the EOS radiostereography system, measurement errors due to malpositioning and deformity during acquisition are eliminated. CAS measurements were compared with EOS 3D reconstructions. Varus/valgus angle (VV), mechanical lateral distal femoral angle (mLDFA) and mechanical medial proximal tibial angle (mMPTA) were measured. Significantly different VV angles were measured pre- and postoperatively with CAS compared to EOS. For preoperative measurements, mLDFA did not differ significantly, but a significantly larger mMPTA in valgus was measured with CAS. Results of this study indicate that differences in alignment measurements between CAS measurements and pre- and postoperative EOS 3D are due mainly to the difference between weight-bearing and non-weight-bearing position and potential errors in validity and reliability of the CAS system. EOS 3D measurements overestimate VV angle in lower limbs with substantial mechanical axis deviation. For lower limbs with minor mechanical axis deviation as well as for mMPTA measurements, CAS measures more valgus than EOS. Eventually the results of this study are of clinical relevance, since it raises concerns regarding the validity and reliability of CAS systems in TKA. IIb.

  13. Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator

    DTIC Science & Technology

    2006-01-01

    AFRL-SN-RS-TR-2006-15 Final Technical Report January 2006 STOICHIOMETRIC LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO...LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO) MODULATOR 6. AUTHOR(S) Dr Stuart Kingsley, Dr Sri Sriram 5. FUNDING NUMBERS C...SUBJECT TERMS electro - optic modulator, linearization, directional coupler, variable coupling, optical waveguide, Mach-Zehnder, photonic link, lithium

  14. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS 'Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of OUT planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center.

  15. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  16. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS , SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  17. Capacity Building in Using NASA Remote Sensing for Water Resources and Disasters Management

    NASA Astrophysics Data System (ADS)

    Mehta, A. V.; Podest, E.; Prados, A. I.

    2017-12-01

    The NASA Applied Remote Sensing Training Program (ARSET), a part of NASA's Applied Sciences Capacity Building program, empowers the global community through online and in-person training. The program focuses on helping policy makers, environmental managers, and other professionals, both domestic and international, use remote sensing in decision making. Since 2011, ARSET has provided more than 20 trainings in water resource and disaster management, including floods and droughts. This presentation will include an overview of the ARSET program, best practices for approaching trainings, feedback from participants, and examples of case studies from the trainings showing the application of GPM, SMAP, Landsat, Terra and Aqua (MODIS), and Sentinel (SAR) data. This presentation will also outline how ARSET can serve as a liaison between remote sensing applications developers and users in the areas of water resource and disaster management.

  18. The combined effects of Dolichospermum flos-aquae, light, and temperature on microcystin production by Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Chen, Ruoqi; Li, Fangfang; Liu, Jiadong; Zheng, Hongye; Shen, Fei; Xue, Yarong; Liu, Changhong

    2016-11-01

    The effects of light, temperature, and coculture on the intracellular microcystin-LR (MC-LR) quota of Microcystis aeruginosa were evaluated based on coculture experiments with nontoxic Dolichospermum ( Anabaena) flos-aquae. The MC-LR quota and transcription of mcyB and mcyD genes encoding MC synthetases in M. aeruginosa were evaluated on the basis of cell counts, high-performance liquid chromatography, and reverse-transcription quantitative real-time PCR. The MC-LR quotas of M. aeruginosa in coculture with a 1/1 ratio of inoculum of the two species were significantly lower relative to monocultures 6-d after inoculation. Decreased MC-LR quotas under coculture conditions were enhanced by increasing the D. flos-aquae to M. aeruginosa ratio in the inoculum and by environmental factors, such as temperature and light intensity. Moreover, the transcriptional concentrations of mcyB and mcyD genes in M. aeruginosa were significantly inhibited by D. flos-aquae competition in coculture ( P <0.01), lowered to 20% of initial concentrations within 8 days. These data suggested that coculture eff ects by D. flos-aquae not only reduced M. aeruginosa's intracellular MC-LR quota via inhibition of genes encoding MC synthetases, but also that this eff ect was regulated by environmental factors, including temperature and light intensities.

  19. New NASA Infrared Image of Irma Shows an Angry Eye

    NASA Image and Video Library

    2017-09-05

    Hurricane Irma is the strongest hurricane ever recorded outside the Caribbean Sea and Gulf of Mexico. These two images from the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite show what Hurricane Irma looked like when Aqua passed overhead just before 1 p.m. local time (10 a.m. PDT) on Sept. 5, 2017. Forecasts at the National Hurricane Center have Irma passing near the major islands to its west before turning northward near Florida this weekend. The first image (top) is an infrared snapshot from AIRS (see Figure 1 for larger image). In orange and red areas, the ocean surface shines through, while blue and purple areas represent cold, high clouds that obscure what lies below. Typical of well-developed hurricanes, Irma is nearly circular with a well-defined eye at its center. The eye is about 25 miles (40 kilometers) in diameter. Careful scrutiny shows a red pixel in the center of the eye, which means that AIRS achieved a bulls-eye with one of its "looks" and was able to see to the ocean between the dense clouds in the eye wall. The second image (bottom) shows the view through AIRS' microwave-colored "lenses" (see Figure 2 for larger image). Here the ocean surface looks yellow, while green represents various degrees of cloudiness. Blue shows areas where it is raining heavily. The eye is not apparent in this image because the "pixel size" of the microwave sounder, about 30 miles (50 kilometers), is larger than the eye and therefore cannot "thread the needle." The infrared sounder, on the other hand, has a pixel size of only 10 miles (16.5 kilometers) and can distinguish the small eye. https://photojournal.jpl.nasa.gov/catalog/PIA21941

  20. Extending MODIS Cloud Top and Infrared Phase Climate Records with VIIRS and CrIS

    NASA Astrophysics Data System (ADS)

    Heidinger, A. K.; Platnick, S. E.; Ackerman, S. A.; Holz, R.; Meyer, K.; Frey, R.; Wind, G.; Li, Y.; Botambekov, D.

    2015-12-01

    The MODIS imagers on the NASA EOS Terra and Aqua satellites have generated accurate and well-used cloud climate data records for 15 years. Both missions are expected to continue until the end of this decade and perhaps beyond. The Visible and Infrared Imaging Radiometer Suite (VIIRS) imagers on the Suomi-NPP (SNPP) mission (launched in October 2011) and future NOAA Joint Polar Satellite System (JPSS) platforms are the successors for imager-based cloud climate records from polar orbiting satellites after MODIS. To ensure product continuity across a broad suite of EOS products, NASA has funded a SNPP science team to develop EOS-like algorithms that can be use with SNPP and JPSS observations, including two teams to work on cloud products. Cloud data record continuity between MODIS and VIIRS is particularly challenging due to the lack of VIIRS CO2-slicing channels, which reduces information content for cloud detection and cloud-top property products, as well as down-stream cloud optical products that rely on both. Here we report on our approach to providing continuity specifically for the MODIS/VIIRS cloud-top and infrared-derived thermodynamic phase products by combining elements of the NASA MODIS science team (MOD) and the NOAA Algorithm Working Group (AWG) algorithms. The combined approach is referred to as the MODAWG processing package. In collaboration with the NASA Atmospheric SIPS located at the University of Wisconsin Space Science and Engineering Center, the MODAWG code has been exercised on one year of SNPP VIIRS data. In addition to cloud-top and phase, MODAWG provides a full suite of cloud products that are physically consistent with MODIS and have a similar data format. Further, the SIPS has developed tools to allow use of Cross-track Infrared Sounder (CrIS) observations in the MODAWG processing that can ameliorate the loss of the CO2 absorption channels on VIIRS. Examples will be given that demonstrate the positive impact that the CrIS data can provide

  1. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  2. Space-shuttle interfaces/utilization. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The economic aspects of space shuttle application to a representative Earth Observatory Satellite (EOS) operational mission in the various candidate Shuttle modes of launch, retrieval, and resupply are discussed. System maintenance of the same mission capability using a conventional launch vehicle is also considered. The studies are based on application of sophisticated Monte Carlo mission simulation program developed originally for studies of in-space servicing of a military satellite system. The program has been modified to permit evaluation of space shuttle application to low altitude EOS missions in all three modes. The conclusions generated by the EOS system study are developed.

  3. NASA Sees Tropical Storm Linfa Between Taiwan and Northern Philippines

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite captured a picture of Tropical Storm Linfa in the South China Sea on July 7 when it was between southern Taiwan and the northern Philippines. Aqua passed over Linfa on July 7 at 05:25 UTC (1:25 a.m. EDT) and the Moderate Resolution Imaging Spectroradiometer or MODIS instrument captured a visible image of the storm. Bands of thunderstorms wrapping into the center of circulation from the south, draped over western Luzon. The MODIS image showed the tight concentration of thunderstorms around Linfa's center were located over the South China Sea. Fragmented bands of thunderstorms north of the center were brushing over Southern Taiwan while clouds from another band of fragmented thunderstorms stretched northwest through the Taiwan Strait. On July 7 at 1500 UTC (11 a.m. EDT), Tropical Storm Linfa's maximum sustained winds had increased to 50 knots (57.5 mph/92.6 kph), up from 45 knots (51.7 mph/83.3 kph) six hours before. Linfa strengthened in the warm waters of the South China Sea now that its center has moved away from the northern Philippines and was no longer over land. Linfa was centered near 21.0 North latitude and 118.8 East longitude, about 277 nautical miles (319 miles/513.3 km) east-southeast of Hong Kong, China. Linfa has tracked northward at 3 knots (3.5 mph/5.5 kph). China's National Meteorological Centre has (CNMC) issued a yellow category warning of typhoon at 6:00 a.m. July 7, Beijing Time. CNMC noted that Linfa is the tenth typhoon this year and at that time it was centered about 430 km (267.2 miles) southeast of border between Fujian and Guangdong For updated warnings and watches from the China Meteorological Service, visit: www.cma.gov.cn/en/WeatherWarnings/. Linfa is moving north between Luzon and Taiwan. The Joint Typhoon Warning Center expects Linfa to strengthen to 60 knots (69 mph/111 kph) by mid-day on July 9, before weakening and then making landfall in mainland China. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid

  4. The Proposal for the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies(SIMBIOS) Program, 1995

    NASA Technical Reports Server (NTRS)

    McClain, Charles; Esaias, Wayne; Feldman, Gene; Gregg, Watson; Hooker, Stanford; Frouin, Robert

    2002-01-01

    As a result of the Earth Observing System (EOS) restructuring exercise during the last half of fiscal year 1994, the EOS Color mission, which was scheduled to be a data-buy with a 1998 launch was dropped from the EOS mission manifest primarily because of the number of international ocean color missions scheduled for launch in the 1998 time frame. In lieu of a new mission, NASA Goddard Space Flight Center (GSFC) was tasked by NASA Headquarters to develop an ocean color satellite calibration and validation plan for multiple sensors. The objective of the activity was to develop a methodology and operational capability to combine data products from the various ocean color missions in a manner that ensures the best possible global coverage and data quality. The program was called the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project coined from the biological term "symbiosis." This document is the original proposal that was developed and submitted in May 1995. SIMBIOS was approved in 1996 and initiated in 1997 with a project office and technical staff at GSFC and a science team to assist in the development of validation data sets, sensor calibration, atmospheric correction, and bio-optical and data merger algorithms. Since its inception, the SIMBIOS program has resulted in a broad-based international collaboration on the calibration and validation of a number of ocean color satellites.

  5. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Aqua-FM3_Edition2)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  6. Biospheric Monitoring and Ecological Forecasting using EOS/MODIS data, ecosystem modeling, planning and scheduling technologies

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Votava, P.; Golden, K.; Hashimoto, H.; Jolly, M.; White, M.; Running, S.; Coughlan, J.

    2003-12-01

    The latest generation of NASA Earth Observing System satellites has brought a new dimension to continuous monitoring of the living part of the Earth System, the Biosphere. EOS data can now provide weekly global measures of vegetation productivity and ocean chlorophyll, and many related biophysical factors such as land cover changes or snowmelt rates. However, information with the highest economic value would be forecasting impending conditions of the biosphere that would allow advanced decision-making to mitigate dangers, or exploit positive trends. We have developed a software system called the Terrestrial Observation and Prediction System (TOPS) to facilitate rapid analysis of ecosystem states/functions by integrating EOS data with ecosystem models, surface weather observations and weather/climate forecasts. Land products from MODIS (Moderate Resolution Imaging Spectroradiometer) including land cover, albedo, snow, surface temperature, leaf area index are ingested into TOPS for parameterization of models and for verifying model outputs such as snow cover and vegetation phenology. TOPS is programmed to gather data from observing networks such as USDA soil moisture, AMERIFLUX, SNOWTEL to further enhance model predictions. Key technologies enabling TOPS implementation include the ability to understand and process heterogeneous-distributed data sets, automated planning and execution of ecosystem models, causation analysis for understanding model outputs. Current TOPS implementations at local (vineyard) to global scales (global net primary production) can be found at http://www.ntsg.umt.edu/tops.

  7. Aqua-Aura QuickDAM (QDAM) 2.0 Ops Concept

    NASA Technical Reports Server (NTRS)

    Nidhiry, John

    2015-01-01

    The presentation describes the Quick Debris Avoidance Maneuver (QDAM) 2.0 process used the Aqua and Aura flight teams to (a) reduce the work load and dependency on staff and systems; (b) reduce turn-around time and provide emergency last minute capabilities; and (c) increase burn parameter flexibility. The presentation also compares the QDAM 2.0 process to previous approaches.

  8. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    NASA Technical Reports Server (NTRS)

    Boone, Spencer

    2017-01-01

    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  9. Aqua-vanadyl ion interaction with Nafion® membranes

    DOE PAGES

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; ...

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  10. Canadian Vehicle Protection Program (EO considerations)

    DTIC Science & Technology

    2012-10-09

    HFI); EO and Acoustic Sensing. – Situational Awareness Technologies Evaluation (SITUATE). – Urban Gated Laser Retro -reflection Scanner (UGLARES...llery Rockets Terminal Defeat of VSRBM 1 Destroy Soft Destroy Soft UAVs Destroy In-Flight Artillery Shells UAVs at at Long Range Short Range

  11. A European Collaborative EO Summer School for the Education of Undergraduate and Masters Level Students- FORMAT-EO

    NASA Astrophysics Data System (ADS)

    Graves, Rosemarie; Remedios, John; Tramutoli, Valerio; Gil, Artur; Cuca, Branka

    2014-05-01

    An Erasmus intensive programme has been successfully funded to run a Europe-lead summer school in Earth Observation for the years 2013 and 2014. The summer school, FORMAT-EO (FORmation of Multi-disciplinary Approaches to Training in Earth Observation) has been proposed and implemented by a consortium of eight partner institutions from five European countries. The consortium was facilitated through the NEREUS network. In the summer of 2013, 21 students from seven European institutions took part in the two week intensive course which involved a total of 28 teachers from six institutions. Students were from a variety of backgrounds including aeronautical engineering MSc students and PhD students in the areas of marine biology, earthquake engineering and measurement of trace gases in the atmosphere. The aims of FORMAT-EO were: To give students exposure to the wider applications of Earth Observation To highlight the interdisciplinary, collaborative and international nature of Earth Observation To offer an intensive course to better equip students with specialist skills required for a career in this field To provide expert advice on the development of careers in the EO market Partners were invited not only to recruit students for the course but to also teach at the school based on their specific area of expertise. This approach to the teaching provided a timetable which was wide-ranging and covered topics from EU policies for Earth Observation to fire detection from space and an introduction to interaction between radiation and matter. An important aspect of the course was the interactive nature of much of the teaching. A topic was introduced to the students through a lecture followed by an interactive tutorial providing students with hands-on experience of working with EO data and specialist software. The final days of the summer school were spent on group project work which required students to use all of the skills that they acquired during the course to challenge a

  12. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the

  13. On Orbit Commissioning of the Earth Observing System Microwave Limb Sounder (EOS MLS) On the Aura Spacecraft

    NASA Technical Reports Server (NTRS)

    Lay, Richard R.; Lee, Karen A.; Holden, James R.; Oswald, John E.; Jarnot, Robert F.; Pickett, Herbert M.; Stek, Paul C.; Cofield, Richard E., III; Flower, Dennis A.; Schwartz, Michael J.; hide

    2005-01-01

    The Microwave Limb Sounder instrument was launched aboard NASA's EOS AURA satellite in July, 2004. The overall scientific objectives for MLS are to measure temperature, pressure, and several important chemical species in the upper troposphere and stratosphere relevant to ozone processes and climate change. MLS consists of a suite of radiometers designed to operate from 11 8 GHz to 2.5 THz, with two antennas (one for 2.5 THz, the other for the lower frequencies) that scan vertically through the atmospheric limb, and spectrometers with spectral resolution of 6 MHz at spectral line centers. This paper describes the on-orbit commissioning the MLS instrument which includes activation and engineering functional verifications and calibrations.

  14. Successful Detection of Floods in Real Time Onboard EO1 Through NASA's ST6 Autonomous Sciencecraft Experiment (ASE)

    NASA Astrophysics Data System (ADS)

    Ip, F.; Dohm, J. M.; Baker, V. R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Doggett, T.; Greeley, R.

    2004-12-01

    For the first time, a spacecraft has the ability to autonomously detect and react to flood events. Flood detection and the investigation of flooding dynamics in real time from space have never been done before at least not until now. Part of the challenge for the hydrological community has been the difficulty of obtaining cloud-free scenes from orbit at sufficient temporal and spatial resolutions to accurately assess flooding. In addition, the large spatial extent of drainage networks coupled with the size of the data sets necessary to be downlinked from satellites add to the difficulty of monitoring flooding from space. Technology developed as part of the Autonomous Sciencecraft Experiment (ASE) creates the new capability to autonomously detect, assess, and react to dynamic events, thereby enabling the monitoring of transient processes such as flooding in real time. In addition to being able to autonomously process the imaged data onboard the spacecraft for the first time and search the data for specific spectral features, the ASE Science Team has developed and tested change detection algorithms for the Hyperion spectrometer on EO-1. For flood events, if a change is detected in the onboard processed image (i.e. an increase in the number of ¡wet¡" pixels relative to a baseline image where the system is in normal flow condition or relatively dry), the spacecraft is autonomously retasked to obtain additional scenes. For instance, in February 2004 a rare flooding of the Australian Diamantina River was captured by EO-1. In addition, in August during ASE onboard testing a Zambezi River scene in Central Africa was successfully triggered by the classifier to autonomously take another observation. Yet another successful trigger-response flooding test scenario of the Yellow River in China was captured by ASE on 8/18/04. These exciting results pave the way for future smart reconnaissance missions of transient processes on Earth and beyond. Acknowledgments: We are grateful

  15. Improvements and Additions to NASA Near Real-Time Earth Imagery

    NASA Technical Reports Server (NTRS)

    Cechini, Matthew; Boller, Ryan; Baynes, Kathleen; Schmaltz, Jeffrey; DeLuca, Alexandar; King, Jerome; Thompson, Charles; Roberts, Joe; Rodriguez, Joshua; Gunnoe, Taylor; hide

    2016-01-01

    For many years, the NASA Global Imagery Browse Services (GIBS) has worked closely with the Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) system to provide near real-time imagery visualizations of AIRS (Atmospheric Infrared Sounder), MLS (Microwave Limb Sounder), MODIS (Moderate Resolution Imaging Spectrometer), OMI (Ozone Monitoring Instrument), and recently VIIRS (Visible Infrared Imaging Radiometer Suite) science parameters. These visualizations are readily available through standard web services and the NASA Worldview client. Access to near real-time imagery provides a critical capability to GIBS and Worldview users. GIBS continues to focus on improving its commitment to providing near real-time imagery for end-user applications. The focus of this presentation will be the following completed or planned GIBS system and imagery enhancements relating to near real-time imagery visualization.

  16. Electrically charged: An effective mechanism for soft EOS supporting massive neutron star

    NASA Astrophysics Data System (ADS)

    Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong

    2015-10-01

    The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.

  17. EOS-AM1 Nickel Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Bennett, Charles W.; Keys, Denney J.; Rao, Gopalakrishna M.; Wannemacher, Hari E.; Vaidyanathan, Harry

    1997-01-01

    This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missile and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of die tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18,202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operating at +30 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements through the first 18

  18. Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hull, Scott; Shelton, Amanda; Richardson, David

    2017-01-01

    Differential drag is a technique for altering the semi-major axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecrafts cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASAs EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.

  19. Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hull, Scott; Shelton, Amanda; Richardson, David

    2017-01-01

    Differential drag is a technique for altering the semimajor axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecraft's cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASA's EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.

  20. Remote Sensing of Aerosol Over the Land from the Earth Observing System MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On Dec 18, 1999, NASA launched the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Earth Observing System (EOS) Terra mission, in a spectacular launch. The mission will provide morning (10:30 AM) global observations of aerosol and other related parameters. It will be followed a year later by a MODIS instrument on EOS Aqua for afternoon observations (1:30 PM). MODIS will measure aerosol over land and ocean with its eight 500 m and 250 m channels in the solar spectrum (0-41 to 2.2 micrometers). Over the land MODIS will measure the total column aerosol loading, and distinguish between submicron pollution particles and large soil particles. Standard daily products of resolution of ten kilometers and global mapped eight day and monthly products on a 1x1 degree global scale will be produced routinely and make available for no or small reproduction charge to the international community. Though the aerosol products will not be available everywhere over the land, it is expected that they will be useful for assessments of the presence, sources and transport of urban pollution, biomass burning aerosol, and desert dust. Other measurements from MODIS will supplement the aerosol information, e.g., land use change, urbanization, presence and magnitude of biomass burning fires, and effect of aerosol on cloud microphysics. Other instruments on Terra, e.g. Multi-angle Imaging SpectroRadiometer (MISR) and the Clouds and the Earth's Radiant Energy System (CERES), will also measure aerosol, its properties and radiative forcing in tandem with the MODIS measurements. During the Aqua period, there are plans to launch in 2003 the Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission for global measurements of the aerosol vertical structure, and the PARASOL mission for aerosol characterization. Aqua-MODIS, PICASSO and PARASOL will fly in formation for detailed simultaneous characterization of the aerosol three-dimensional field, which

  1. NASA Spots Typhoon Phanfone Affecting Japan

    NASA Image and Video Library

    2017-12-08

    Over the weekend of Oct. 5 and 6, Typhoon Phanfone's center made landfall just south of Tokyo and passed over the city before exiting back into the Northwestern Pacific Ocean. NASA's Aqua satellite captured a picture of the typhoon as Tokyo braced for its large eye. On its way to mainland Japan, Phanfone struck Kadena Air Base on the island of Okinawa. According to the website for U.S. Air Force Kadena Air Base (www.kadena.af.mil), "One Airman is confirmed deceased and two more are missing after they were washed out to sea from the northwest coast of Okinawa at about 3:45 p.m. Oct. 5. An Airman that was found by the Japanese Coast Guard and pulled from the sea was later pronounced dead at a local hospital. HH-60s from Kadena Air Base and Japanese Coast Guard are continuing to search for the remaining two Airmen. Rough seas are complicating rescue efforts." Typhoon Phanfone's large eye made landfall near the city of Hamamatsu on Oct. 5 around 8 a.m. local time and then tracked north before turning eastward into the Pacific Ocean north of Tokyo. The MODIS instrument known as the Moderate Resolution Imaging Spectroradiometer captures amazing pictures from its orbit aboard NASA's Aqua satellite. MODIS snapped a picture of Typhoon Phanfone approaching Japan on Oct. 5 at 12:55 a.m. EDT. At that time, the Typhoon had already passed north of Okinawa, and was just south of the large island of Kyushu. The MODIS image revealed a large eye with powerful bands of thunderstorms spiraling into the center. On Oct. 6 by 0900 UTC (5 a.m. EDT), Phanfone had weakened from a typhoon to a tropical storm back over open waters of the Northwestern Pacific Ocean. Maximum sustained winds were near 60 knots (69.0 mph/111.1 kph). Phanfone was located near 38.0 north longitude and 145.0 east latitude. That's about 201 nautical miles (271 miles/372 km) south-southeast of Misawa Air Base, Japan. Phanfone was moving to the northeast at 40 knots (46 mph/74 kph). Forecasters at the Joint Typhoon

  2. Mission operations concepts for Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  3. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through

  4. XML DTD and Schemas for HDF-EOS

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Yang, Jingli

    2008-01-01

    An Extensible Markup Language (XML) document type definition (DTD) standard for the structure and contents of HDF-EOS files and their contents, and an equivalent standard in the form of schemas, have been developed.

  5. An Overview of Future NASA Missions, Concepts, and Technologies Related to Imaging of the World's Land Areas

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1999-01-01

    In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce

  6. Supporting users through integrated retrieval, processing, and distribution systems at the Land Processes Distributed Active Archive Center

    USGS Publications Warehouse

    Kalvelage, Thomas A.; Willems, Jennifer

    2005-01-01

    The US Geological Survey's EROS Data Center (EDC) hosts the Land Processes Distributed Active Archive Center (LP DAAC). The LP DAAC supports NASA's Earth Observing System (EOS), which is a series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. The EOS Data and Information Systems (EOSDIS) was designed to acquire, archive, manage and distribute Earth observation data to the broadest possible user community.The LP DAAC is one of four DAACs that utilize the EOSDIS Core System (ECS) to manage and archive their data. Since the ECS was originally designed, significant changes have taken place in technology, user expectations, and user requirements. Therefore the LP DAAC has implemented additional systems to meet the evolving needs of scientific users, tailored to an integrated working environment. These systems provide a wide variety of services to improve data access and to enhance data usability through subsampling, reformatting, and reprojection. These systems also support the wide breadth of products that are handled by the LP DAAC.The LP DAAC is the primary archive for the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data; it is the only facility in the United States that archives, processes, and distributes data from the Advanced Spaceborne Thermal Emission/Reflection Radiometer (ASTER) on NASA's Terra spacecraft; and it is responsible for the archive and distribution of “land products” generated from data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra and Aqua satellites.

  7. Bridging EO Research, Operations and Collaborative Learning

    NASA Astrophysics Data System (ADS)

    Scarth, Peter

    2016-04-01

    Building flexible and responsive processing and delivery systems is key to getting EO information used by researchers, policy agents and the public. There are typically three distinct processes we tackle to get product uptake: undertake research, operationalise the validated research, and deliver information and garner feedback in an appropriate way. In many cases however, the gaps between these process elements are large and lead to poor outcomes. Good research may be "lost" and not adopted, there may be resistance to uptake by government or NGOs of significantly better operational products based on EO data, and lack of accessibility means that there is no use of interactive science outputs to improve cross disciplinary science or to start a dialog with citizens. So one of the the most important tasks, if we wish to have broad uptake of EO information and accelerate further research, is to link these processes together in a formal but flexible way. One of the ways to operationalize research output is by building a platform that can take research code and scale it across much larger areas. In remote sensing, this is typically a system that has access to current and historical corrected imagery with a processing pipeline built over the top. To reduce the demand on high level scientific programmers and allowing cross disciplinary researchers to hack and play and refine, this pipeline needs to be easy to use, collaborative and link to existing tools to encourage code experimentation and reuse. It is also critical to have efficient, tight integration with information delivery and extension components so that the science relevant to your user is available quickly and efficiently. The rapid expansion of open data licensing has helped this process, but building top-down web portals and tools without flexibility and regard for end user needs has limited the use of EO information in many areas. This research reports on the operalization of a scale independent time series

  8. Capitalizing on Education and Outreach (E/O) Expertise to Broaden Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.; Herren, C.; Decharon, A.

    2010-12-01

    Academic scientists have a number of avenues through which they can participate in education and outreach (E/O) programs to address the mandate for broader impacts. As a principal investigator (PI) at an R1 institution, I (Girguis) have both developed and participated in a variety of E/O programs that span the spectrum from ad hoc groups (e.g. informal high school internships in my laboratory) to regional efforts (e.g. Harvard’s Microbial Science Initiative) and national organizations (e.g. RIDGE 2000; Centers for Ocean Sciences Education Excellence, COSEE). Each of these E/O efforts required varying degrees of preparation and participation by my laboratory members (e.g. graduate students and postdoctoral researchers) and I, and yielded different outcomes and products. Ad hoc programs typically require a higher degree of effort on the part of the PI and have a high, though local, impact on the audience. These programs can be personally rewarding for the PI, who likely has played a major role in developing the program. In contrast, working with regional and national groups requires PIs to understand the nature of each program to successfully integrate within the existing structure. The net time and effort invested by scientists in larger-scale E/O efforts may be equal to that of ad hoc programs. However, interaction with high-quality program facilitators ensures that the outcomes are grounded in best educational practices and that outputs are educator-vetted, well maintained (online or through publications), and broadly disseminated. In addition, program facilitators also collect and analyze evaluation data to provide constructive feedback to PIs, enabling the latter to refine their presentation styles and content levels to improve future E/O efforts. Thus involvement with larger programs can effectively broaden one’s impact. During this presentation, we will present one scientist’s perspective on the advantages and limitations of these different modes of E/O

  9. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_Aqua-FM4_Edition1-CV)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2005-03-29] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  10. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  11. Vegetation Canopy Structure from NASA EOS Multiangle Imaging

    NASA Astrophysics Data System (ADS)

    Chopping, M.; Martonchik, J. V.; Bull, M.; Rango, A.; Schaaf, C. B.; Zhao, F.; Wang, Z.

    2008-12-01

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjustment of the mean radius and mean crown aspect ratio parameters of an hybrid geometric-optical (GO) model. We used a technique to rapidly obtain MISR surface reflectance estimates at 275 m resolution through regression on 1 km MISR land surface estimates previously corrected for atmospheric attenuation using MISR aerosol estimates. MISR data were used to make end of dry season maps from 2000-2007 for parts of southern New Mexico, while MODIS data were used to replicate previous results obtained using MISR for June 2002 over large parts of New Mexico and Arizona. We also examined the applicability of this method in Alaskan tundra and forest by adjusting the GO model against MISR data for winter (March 2000) and summer (August 2008) scenes. We found that the GO model crown aspect ratio from MISR followed dominant shrub species distributions in the USDA, ARS Jornada Experimental Range, enabling differentiation of the more spherical crowns of creosotebush (Larrea tridentata) from the more prolate crowns of honey mesquite (Prosopis glandulosa). The measurement limits determined from 2000-2007 maps for a large part of southern New Mexico are ~0.1 in fractional shrub crown cover and ~3 m in mean canopy height (results obtained using data acquired shortly after precipitation events that radically darkened and altered the structure and angular response of the background). Typical standard deviations over the period for 12 sites covering a range of cover types are on the order of 0.05 in crown cover and 2 m in mean canopy height. We found that the GO model can be inverted to retrieve reasonable distributions of canopy parameters in southwestern environments using MODIS V005 red

  12. Assessment of SNPP VIIRS VIS NIR Radiometric Calibration Stability Using Aqua MODIS and Invariant Surface Targets

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Cao, Changyong; Chiang, Kwo-Fu

    2016-01-01

    The first Visible Infrared Imaging Radiometer Suite (VIIRS) is onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. As a primary sensor, it collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the spectral regions from visible (VIS) to long-wave infrared. NASA's National Polar-orbiting Partnership (NPP) VIIRS Characterization Support Team has been actively involved in the VIIRS radiometric and geometric calibration to support its Science Team Principal Investigators for their independent quality assessment of VIIRS Environmental Data Records. This paper presents the performance assessment of the radiometric calibration stability of the VIIRS VIS and NIR spectral bands using measurements from SNPP VIIRS and Aqua MODIS simultaneous nadir overpasses and over the invariant surface targets at the Libya-4 desert and Antarctic Dome Concordia snow sites. The VIIRS sensor data records (SDRs) used in this paper are reprocessed by the NASA SNPP Land Product Evaluation and Analysis Tool Element. This paper shows that the reprocessed VIIRS SDRs have been consistently calibrated from the beginning of the mission, and the calibration stability is similar to or better than MODIS. Results from different approaches indicate that the calibrations of the VIIRS VIS and NIR spectral bands are maintained to be stable to within 1% over the first three-year mission. The absolute calibration differences between VIIRS and MODIS are within 2%, with an exception for the 0.865-m band, after correction of their spectral response differences.

  13. Accessing, Utilizing and Visualizing NASA Remote Sensing Data for Malaria Modeling and Surveillance

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Adimi, Farida; Kempler, Steven

    2007-01-01

    This poster presentation reviews the use of NASA remote sensing data that can be used to extract environmental information for modeling malaria transmission. The authors discuss the remote sensing data from Landsat, Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Earth Observing One (EO-1), Advanced Land Imager (ALI) and Seasonal to Interannual Earth Science Information Partner (SIESIP) dataset.

  14. Study on C-S and P-R EOS in pseudo-potential lattice Boltzmann model for two-phase flows

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Mao, Yun Fei; Wang, Bo; Xie, Bo

    Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P-R) and Carnahan and Starling (C-S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P-R and C-S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P-R and C-S EOS agree with the analytical solutions although P-R EOS may perform better. The prediction of liquid phase by P-R EOS is more accurate than that of air phase and the contrary is true for C-S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting T. The P-R EOS can achieve larger maximum density ratio than C-S EOS under the same τ. Besides, no matter the C-S EOS or the P-R EOS, if τ tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P-R is larger than that of C-S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.

  15. Attitude Accuracy Study for the Earth Observing System (EOS) AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Lesikar, James D., II; Garrick, Joseph C.

    1996-01-01

    Earth Observing System (EOS) spacecraft will take measurements of the Earth's clouds, oceans, atmosphere, land, and radiation balance. These EOS spacecraft are part of the National Aeronautics and Space Administration's Mission to Planet Earth, and consist of several series of satellites, with each series specializing in a particular class of observations. This paper focuses on the EOS AM-1 spacecraft, which is the first of three satellites constituting the EOS AM series (morning equatorial crossing) and the initial spacecraft of the EOS program. EOS AM-1 has a stringent onboard attitude knowledge requirement, of 36/41/44 arc seconds (3 sigma) in yaw/roll/pitch, respectively. During normal mission operations, attitude is determined onboard using an extended Kalman sequential filter via measurements from two charge coupled device (CCD) star trackers, one Fine Sun Sensor, and an Inertial Rate Unit. The attitude determination error analysis system (ADEAS) was used to model the spacecraft and mission profile, and in a worst case scenario with only one star tracker in operation, the attitude uncertainty was 9.7/ll.5/12.2 arc seconds (3 sigma) in yaw/roll/pitch. The quoted result assumed the spacecraft was in nominal attitude, using only the 1-rotation per orbit motion of the spacecraft about the pitch axis for calibration of the gyro biases. Deviations from the nominal attitude would show greater attitude uncertainties, unless calibration maneuvers which roll and/or yaw the spacecraft have been performed. This permits computation of the gyro misalignments, and the attitude knowledge requirement would remain satisfied.

  16. Corrections to the MODIS Aqua Calibration Derived From MODIS Aqua Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan Alden

    2013-01-01

    Ocean color products such as, e.g., chlorophyll-a concentration, can be derived from the top-of-atmosphere radiances measured by imaging sensors on earth-orbiting satellites. There are currently three National Aeronautics and Space Administration sensors in orbit capable of providing ocean color products. One of these sensors is the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, whose ocean color products are currently the most widely used of the three. A recent improvement to the MODIS calibration methodology has used land targets to improve the calibration accuracy. This study evaluates the new calibration methodology and describes further calibration improvements that are built upon the new methodology by including ocean measurements in the form of global temporally averaged water-leaving reflectance measurements. The calibration improvements presented here mainly modify the calibration at the scan edges, taking advantage of the good performance of the land target trending in the center of the scan.

  17. Volume-translated cubic EoS and PC-SAFT density models and a free volume-based viscosity model for hydrocarbons at extreme temperature and pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.

    2013-12-01

    This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquidmore » density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ~2.0%, ~1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.« less

  18. MODIS Science Algorithms and Data Systems Lessons Learned

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.

    2009-01-01

    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.

  19. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  20. Stratospheric gravity waves at southern hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan

    2017-04-01

    Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify

  1. Evaluating deficit irrigation management strategies for grain sorghum using AquaCrop

    USDA-ARS?s Scientific Manuscript database

    Many wells in the US Central Plains can no longer meet full crop water requirements due to declines in Ogallala aquifer water levels. A study was conducted in Southwest Kansas to determine optimum limited irrigation strategies for grain sorghum. Objectives were to (1) calibrate and validate the Aqua...

  2. Mission leverage education: NSU/NASA innovative undergraduate model

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Shaw, Paula R. D.

    2005-01-01

    The BEST Lab (Center for Excellence in Science Education), the Center for Materials Research (CMR), and the Chemistry, Mathematics, Physics, and Computer Science (CS) Departments at Norfolk State University (NSU) joined forces to implement MiLEN(2) IUM - an innovative approach tu integrate current and emerging research into the undergraduate curricula and train students on NASA-related fields. An Earth Observing System (EOS) mission was simulated where students are educated and trained in many aspects of Remote Sensing: detector physics and spectroscopy; signal processing; data conditioning, analysis, visualization; and atmospheric science. This model and its continued impact is expected to significantly enhance the quality of the Mathematics, Science, Engineering and Technology (MSET or SMET) educational experience and to inspire students from historically underrepresented groups to pursue careers in NASA-related fields. MiLEN(2) IUM will be applicable to other higher education institutions that are willing to make the commitment to this endeavor in terms of faculty interest and space.

  3. Future Perspective and Long-Term Strategy of the Indian EO Programme

    NASA Astrophysics Data System (ADS)

    Rao, Mukund; Jayaraman, V.; Sridhara Murthi, K. R.; Kasturirangan, K.

    EO technology development will continue to have profound effects on spatial information activities, as we are seeing it today - the changing demand of GIS technology to understanding processes around us and its representation as maps. In the longer term, information needs will drive further RS and GIS technological developments - creating stringent demands for technology solutions for spatial data capture, integration and representation. The emergence of Spatial Business from the highly volatile and dynamic synergy of information, technology and access will see a truly Spatial Society. EO will have a major impact on day-to-day life of nations, communities and even an individual. It will become the One-stop source for information - spatial information at that - thus enabling not only development oriented activities but also Business GIS, quality research and Info-savvy communities. Internationally, there will be a mix of Government and Commercial satellites vying to provide information services to a wide variety of users. EO satellites are also becoming smaller, efficient and less costlier. Almost 5-6 commercial systems will orbit around the Earth in the foreseeable future to generate massive, seamless archives of high-resolution panchromatic and multispectral images - almost reducing the need for aerial surveys for photography and mapping. Reaching resolution of cm level and covering narrower and more spectral bands, the trend is to IMAGE the Earth in its entirety and organize Image Infrastructures. The race will be to imaginatively capture the market with the fullest archive of the globe and cater to any imaging demand of users. One will also see efficient satellite operations that will enable imaging any part of the globe with minimum turn-around time - reaching concepts of IMAGING ON DEMAND. The need of the hour is looking forward now towards how the EO technology can adapt itself to the changing scenario and the steps to be taken to sustain use of EO data it in

  4. Development of a PPT for the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Arrington, Lynn A.; Hoskins, W. Andrew; Meckel, Nicole J.

    2000-01-01

    A Pulsed Plasma Thruster (PPT) has been developed for use in a technology demonstration flight experiment on the Earth Observing 1 (EO-1) New Millennium Program mission. The thruster replaces the spacecraft pitch axis momentum wheel for control and momentum management during an experiment of a minimum three-day duration. The EO-1 PPT configuration is a combination of new technology and design heritage from similar systems flown in the 1970's and 1980's. Acceptance testing of the protoflight unit has validated readiness for flight, and integration with the spacecraft, including initial combined testing, has been completed. The thruster provides a range of capability from 90 microN-sec impulse bit at 650 sec specific impulse for 12 W input power, through 860 microN-sec impulse bit at 1400 see specific impulse for 70 W input power. Development of this thruster reinitiates technology research and development and re-establishes an industry base for production of flight hardware. This paper reviews the EO-1 PPT development, including technology selection, design and fabrication, acceptance testing, and initial spacecraft integration and test.

  5. Polystyrene Foam EOS as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2009-06-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.

  6. Radar E-O image fusion

    NASA Technical Reports Server (NTRS)

    Oneil, William F.

    1993-01-01

    The fusion of radar and electro-optic (E-O) sensor images presents unique challenges. The two sensors measure different properties of the real three-dimensional (3-D) world. Forming the sensor outputs into a common format does not mask these differences. In this paper, the conditions under which fusion of the two sensor signals is possible are explored. The program currently planned to investigate this problem is briefly discussed.

  7. Downlink Probability Density Functions for EOS-McMurdo Sound

    NASA Technical Reports Server (NTRS)

    Christopher, P.; Jackson, A. H.

    1996-01-01

    The visibility times and communication link dynamics for the Earth Observations Satellite (EOS)-McMurdo Sound direct downlinks have been studied. The 16 day EOS periodicity may be shown with the Goddard Trajectory Determination System (GTDS) and the entire 16 day period should be simulated for representative link statistics. We desire many attributes of the downlink, however, and a faster orbital determination method is desirable. We use the method of osculating elements for speed and accuracy in simulating the EOS orbit. The accuracy of the method of osculating elements is demonstrated by closely reproducing the observed 16 day Landsat periodicity. An autocorrelation function method is used to show the correlation spike at 16 days. The entire 16 day record of passes over McMurdo Sound is then used to generate statistics for innage time, outage time, elevation angle, antenna angle rates, and propagation loss. The levation angle probability density function is compared with 1967 analytic approximation which has been used for medium to high altitude satellites. One practical result of this comparison is seen to be the rare occurrence of zenith passes. The new result is functionally different than the earlier result, with a heavy emphasis on low elevation angles. EOS is one of a large class of sun synchronous satellites which may be downlinked to McMurdo Sound. We examine delay statistics for an entire group of sun synchronous satellites ranging from 400 km to 1000 km altitude. Outage probability density function results are presented three dimensionally.

  8. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoebert, Mark R.; Douglass, A. R.; Hilsenrath, E.; Bhartia, P. K.; Barnett, J.; Gille, J.; Beer, R.; Gunson, M.; Waters, J.; Levelt, P. F.

    2004-01-01

    The Earth Observing System (EOS) Aura satellite is scheduled to launch in the second quarter of 2004. The Aura mission is designed to attack three science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? (3) What is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols at high vertical and horizontal resolution. Fig. 1 shows the Aura spacecraft and its four instruments.

  9. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    PubMed

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  10. Leveraging community support for Education and Outreach: The IRIS E&O Program

    NASA Astrophysics Data System (ADS)

    Taber, J.; Hubenthal, M.; Wysession, M. E.

    2009-12-01

    The IRIS E&O Program was initiated 10 years ago, some 15 years after the creation of the IRIS Consortium, as IRIS members increasingly recognized the fundamental need to communicate the results of scientific research more effectively and to attract more students to study Earth science. Since then, IRIS E&O has received core funding through successive 5-year cooperative agreements with NSF, based on proposals submitted by IRIS. While a small fraction of the overall Consortium budget, this consistent funding has allowed the development of strong, long-term elements within the E&O Program, including summer internships, IRIS/USGS museum displays, seismographs in schools, IRIS/SSA Distinguished Lecture series, and professional development for middle school and high school teachers. Reliable funding has allowed us to develop expertise in these areas due to the longevity of the programs and the continuous improvement resulting from ongoing evaluations. Support from Consortium members, including volunteering time and expertise, has been critical for the program, as the Consortium has to continually balance the value of E&O products versus equipment and data services for seismology research. The E&O program also provides service to the Consortium, such as PIs being able to count on and leverage IRIS resources when defining the broader impacts of their own research. The reliable base has made it possible to build on the core elements with focused and innovative proposals, allowing, for example, the expansion of our internship program into a full REU site. Developing collaborative proposals with other groups has been a key strategy where IRIS E&O's long-term viability can be combined with expertise from other organizations to develop new products and services. IRIS can offer to continue to reliably deliver and maintain products after the end of a 2-3 year funding cycle, which can greatly increase the reach of the project. Consortium backing has also allowed us to establish an

  11. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  12. Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)

    NASA Astrophysics Data System (ADS)

    Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.

    2015-05-01

    The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.

  13. End-of-life (EoL) mobile phone management in Hong Kong households.

    PubMed

    Deng, Wen-Jing; Giesy, John P; So, C S; Zheng, Hai-Long

    2017-09-15

    A questionnaire survey and interviews were conducted in households and end-of-life (EoL) mobile phone business centres in Hong Kong. Widespread Internet use, combined with the rapid evolution of modern social networks, has resulted in the more rapid obsolescence of mobile phones, and thus a tremendous increase in the number of obsolete phones. In 2013, the volume of EoL mobile phones generated in Hong Kong totalled at least 330 tonnes, and the amount is rising. Approximately 80% of electronic waste is exported to Africa and developing countries such as mainland China or Pakistan for recycling. However, the material flow of the large number of obsolete phones generated by the territory's households remains unclear. Hence, the flow of EoL mobile phones in those households was analysed, with the average lifespan of a mobile phone in Hong Kong found to be just under two years (nearly 23 months). Most EoL mobile phones are transferred to mainland China for disposal. Current recycling methods are neither environmentally friendly nor sustainable, with serious implications for the environment and human health. The results of this analysis provide useful information for planning the collection system and facilities needed in Hong Kong and mainland China to better manage EoL mobile phones in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. It Security and EO Systems

    NASA Astrophysics Data System (ADS)

    Burnett, M.

    2010-12-01

    One topic that is beginning to influence the systems that support these goals is that of Information Technology (IT) Security. Unsecure systems are vulnerable to increasing attacks and other negative consequences; sponsoring agencies are correspondingly responding with more refined policies and more stringent security requirements. These affect how EO systems can meet the goals of data and service interoperability and harmonization through open access, transformation and visualization services. Contemporary systems, including the vision of a system-of-systems (such as GEOSS, the Global Earth Observation System of Systems), utilize technologies that support a distributed, global, net-centric environment. These types of systems have a high reliance on the open systems, web services, shared infrastructure and data standards. The broader IT industry has developed and used these technologies in their business and mission critical systems for many years. Unfortunately, the IT industry, and their customers have learned the importance of protecting their assets and resources (computing and information) as they have been forced to respond to an ever increasing number and more complex illegitimate “attackers”. This presentation will offer an overview of work done by the CEOS WGISS organization in summarizing security threats, the challenges to responding to them and capturing the current state of the practice within the EO community.

  15. Assessment of Consistencies and Uncertainties between the NASA MODIS and VIIRS Snow-Cover Maps

    NASA Astrophysics Data System (ADS)

    Hall, D. K.; Riggs, G. A., Jr.; DiGirolamo, N. E.; Roman, M. O.

    2017-12-01

    Snow cover has great climatic and economic importance in part due to its high albedo and low thermal conductivity and large areal extent in the Northern Hemisphere winter, and its role as a freshwater source for about one-sixth of the world's population. The Rutgers University Global Snow Lab's 50-year climate-data record (CDR) of Northern Hemisphere snow cover is invaluable for climate studies, but, at 25-km resolution, the spatial resolution is too coarse to provide accurate snow information at the basin scale. Since 2000, global snow-cover maps have been produced from the MODerate-resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites at 500-m resolution, and from the Suomi-National Polar Program (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) since 2011 at 375-m resolution. Development of a moderate-resolution (375 - 500 m) earth system data record (ESDR) that utilizes both MODIS and VIIRS snow maps is underway. There is a 6-year overlap between the data records. In late 2017 the second in a series of VIIRS sensors will be launched on the Joint Polar Satellite System-1 (JPSS-1), with the JPSS-2 satellite scheduled for launch in 2021, providing the potential to extend NASA's snow-cover ESDR for decades into the future and to create a CDR. Therefore it is important to investigate the continuity between the MODIS and VIIRS NASA snow-cover data products and evaluate whether there are any inconsistencies and biases that would affect their value as CDR. Time series of daily normalized-difference snow index (NDSI) Terra and Aqua MODIS Collection 6 (C6) and NASA VIIRS Collection 1 (C1) snow-cover tile maps (MOD10A1 and VNP10A1) are studied for North America to identify NDSI differences and possible biases between the datasets. Developing a CDR using the MODIS and VIIRS records is challenging. Though the instruments and orbits are similar, differences in bands, viewing geometry, spatial resolution, and cloud- and snow-mapping algorithms

  16. NASA's upper atmosphere research satellite: A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.

    1992-01-01

    The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.

  17. A Comparison of Patients Absorption Doses with Bone Deformity Due to the EOS Imaging and Digital Radiology

    PubMed Central

    Abrisham, Seyed Mohammad J.; Bouzarjomehri, Fathollah; Nafisi-Moghadam, Reza; Sobhan, Mohammad R.; Gadimi, Mahdie; Omidvar, Fereshte

    2017-01-01

    Background: This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. Methods: EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and precision of the system was confirmed according to the acceptance testing. The same procedure was used for 18 patients referred for lumbar spine digital radiology (overall 36 images). Results: Although radiation fields in the EOS were almost twice of that in digital radiology, and the average peak tube voltage (kVp), current supply to the tube (mA), and the average size and age of the patients referred for EOS imaging were greater than digital radiology, however, the average DAP in EOS was 1/5 of that in digital radiology system. Also, the average dose in the EOS was about 1/20 of that in digital radiology. Conclusion: The patient dose in EOS imaging system was lower in comparison with digital radiology (1/20). PMID:28656161

  18. A Comparison of Patients Absorption Doses with Bone Deformity Due to the EOS Imaging and Digital Radiology.

    PubMed

    Abrisham, Seyed Mohammad J; Bouzarjomehri, Fathollah; Nafisi-Moghadam, Reza; Sobhan, Mohammad R; Gadimi, Mahdie; Omidvar, Fereshte

    2017-05-01

    This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and precision of the system was confirmed according to the acceptance testing. The same procedure was used for 18 patients referred for lumbar spine digital radiology (overall 36 images). Although radiation fields in the EOS were almost twice of that in digital radiology, and the average peak tube voltage (kV p ), current supply to the tube (mA), and the average size and age of the patients referred for EOS imaging were greater than digital radiology, however, the average DAP in EOS was 1/5 of that in digital radiology system. Also, the average dose in the EOS was about 1/20 of that in digital radiology. The patient dose in EOS imaging system was lower in comparison with digital radiology (1/20).

  19. Ocean Data from MODIS at the NASA Goddard DAAC

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Terra satellite carrying the Moderate Resolution Imaging Spectroradiometer (MODIS) was successfully launched on December 18, 1999. Some of the 36 different wavelengths that MODIS samples have never before been measured from space. New ocean data products, which have not been derived on a global scale before, are made available for research to the scientific community. For example, MODIS uses a new split window in the four-micron region for the better measurement of Sea Surface Temperature (SST), and provides the unprecedented ability (683 nm band) to measure chlorophyll fluorescence. At full ocean production, more than a thousand different ocean products in three major categories (ocean color, sea surface temperature, and ocean primary production) are archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) at the rate of approx. 230GB/day. The challenge is to distribute such large volumes of data to the ocean community. It is achieved through a combination of public and restricted EOS Data Gateways, the GES DAAC Search and Order WWW interface, and an FTP site that contains samples of MODIS data. A new Search and Order WWW interface at http://acdisx.gsfc.nasa.gov/data/ developed at the GES DAAC is based on a hierarchical organization of data, will always return non-zero results. It has a very convenient geographical representation of five-minute data granule coverage for each day MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from the Coastal Zone Color Scanner (CZCS) and the Sea Viewing Wide Field-of-View Sensor (SeaWiFS) by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (Hierarchical Data Format-Earth Observing System (HDF-EOS)), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/MODIS/index.html

  20. NASA Communications Augmentation network

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  1. Temporal and Spatial Distribution of Liquid Water and Ice Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.

  2. The 2010 Eyjafjallajokull Eruptions: The NASA Applied Sciences Perspective for Aviation

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Haynes, J. A.; Trepte, C. R.; Krotkov, N. A.; Krueger, A. J.

    2010-12-01

    The volcanic ash from the eruption of the Eyjafjallajokull volcano in Iceland which began on March 17, 2010 was closely monitored by NASA Earth Observing System satellites. A wide variety of applications and techniques developed by the NASA Science Mission Directorate’s Applied Science Program were employed. These included information from imager data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra spacecraft. Horizontal distribution of the ash cloud and column amount of volcanic sufur dioxide gas was accurately mapped by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Highly precise retrievals of the vertical distribution of volcanic aerosols were obtained by the Caliop instrument onboard the Calipso satellite. The Multi-angle Imaging SpectroRadiometer (MISR) satellite also provided stereo-derived plume heights at 1km horizontal and ~0.5km vertical resolutions. All of this information was employed to assist in airspace management during the eruptive period. It will continue to be used to improve dispersion models and procedures for dealing with volcanic ash.

  3. CLONAL INHERITANCE OF A DIPLOID NUCLEAR GENOME BY A HYBRID FRESHWATER MINNOW (PHOXINUS EOS-NEOGAEUS, PISCES: CYPRINIDAE).

    PubMed

    Goddard, Kathryn Ann; Dawley, Robert M

    1990-07-01

    Hybrids between the minnows Phoxinus eos and Phoxinus neogaeus coexist with a population of P. eos in East Inlet Pond, Coos Co., New Hampshire. Chromosome counts and flow cytometric analysis of erythrocyte DNA indicate that these hybrids include diploids, triploids, and diploid-triploid mosaics. The mosaics have both diploid and triploid cells in their bodies, even within the same tissues. All three hybrid types are heterozygous at seven putative loci for which P. eos and P. neogaeus are fixed for different allozymes, indicating that the hybrids carry one eos and one neogaeus haploid genome. The diploid hybrids are therefore P. eos-neogaeus, whereas the triploids and mosaics are derived from P. eos-neogaeus but have an extra eos or neogaeus genome in all or some of their cells. Diploid, triploid, and mosaic hybrids accept tissue grafts from diploid hybrids, indicating that all individuals carry the identical eos-neogaeus diploid genome. Thus, one P. eos-neogaeus clone exists at East Inlet Pond. Grafts among the triploids and mosaics or from these individuals to diploid hybrids are rejected, indicating that the third genome is different in each triploid and mosaic individual. In this study, diploid and mosaic hybrids, carrying the clonal eos-neogaeus genome, were bred in the laboratory with males of P. eos or P. neogaeus. Both diploid and mosaic hybrids produced diploid, triploid, and mosaic offspring, revealing the source of the three hybrid types present at East Inlet Pond. These offspring accepted grafts from P. eos-neogaeus individuals, indicating that they all had inherited the identical eos-neogaeus genome. Most grafts among triploid and mosaic progeny, or from these individuals to their diploid broodmates, were rejected, indicating that the third genome was different in each triploid and mosaic (as was observed in the wild hybrids) and was contributed by sperm from males of P. eos or P. neogaeus. Diploid progeny are produced if sperm serves only to stimulate

  4. LANCE in ECHO - Merging Science and Near Real-Time Data Search and Order

    NASA Astrophysics Data System (ADS)

    Kreisler, S.; Murphy, K. J.; Vollmer, B.; Lighty, L.; Mitchell, A. E.; Devine, N.

    2012-12-01

    NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) Land Atmosphere Near real-time Capability for EOS (LANCE) project provides expedited data products from the Terra, Aqua, and Aura satellites within three hours of observation. In order to satisfy latency requirements, LANCE data are produced with relaxed ancillary data resulting in a product that may have minor differences from its science quality counterpart. LANCE products are used by a number of different groups to support research and applications that require near real-time earth observations, such as disaster relief, hazard and air quality monitoring, and weather forecasting. LANCE elements process raw rate-buffered and/or session-based production datasets into higher-level products, which are freely available to registered users via LANCE FTP sites. The LANCE project also generates near real-time full resolution browse imagery from these products, which can be accessed through the Global Imagery Browse Services (GIBS). In an effort to support applications and services that require timely access to these near real-time products, the project is currently implementing the publication of LANCE product metadata to the EOS ClearingHouse (ECHO), a centralized EOSDIS registry of EOS data. Metadata within ECHO is made available through an Application Program Interface (API), and applications can utilize the API to allow users to efficiently search and order LANCE data. Publishing near real-time data to ECHO will permit applications to access near real-time product metadata prior to the release of its science quality counterpart and to associate imagery from GIBS with its underlying data product.

  5. Solution-Based Electro-Orientation Spectroscopy (EOS) for Contactless Measurement of Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry

    2017-11-01

    Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.

  6. Monitoring Floods with NASA's ST6 Autonomous Sciencecraft Experiment: Implications on Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Ip, Felipe; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R.

    2005-01-01

    NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.

  7. Spin states of asteroids in the Eos collisional family

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Delbo', M.; Alí-Lagoa, V.; Bolin, B.; Jedicke, R.; Ďurech, J.; Cibulková, H.; Pravec, P.; Kušnirák, P.; Behrend, R.; Marchis, F.; Antonini, P.; Arnold, L.; Audejean, M.; Bachschmidt, M.; Bernasconi, L.; Brunetto, L.; Casulli, S.; Dymock, R.; Esseiva, N.; Esteban, M.; Gerteis, O.; de Groot, H.; Gully, H.; Hamanowa, Hiroko; Hamanowa, Hiromi; Krafft, P.; Lehký, M.; Manzini, F.; Michelet, J.; Morelle, E.; Oey, J.; Pilcher, F.; Reignier, F.; Roy, R.; Salom, P. A.; Warner, B. D.

    2018-01-01

    Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ∼ 20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.

  8. A Non-science Major Undergraduate Seminar on the NASA Earth Observing System (EOS): A Student Perspective

    NASA Astrophysics Data System (ADS)

    Weatherford, V. L.; Redemann, J.

    2003-12-01

    Titled "Observing Climate Change From Space-what tools do we have?", this non-science major freshman seminar at UCLA is the culmination of a year-long interdisciplinary program sponsored by the Institute of the Environment and the College Honors programs at the University. Focusing on the anthropogenic and natural causes of climate change, students study climate forcings and learn about satellite and other technological means of monitoring climate and weather. NASA's Terra satellite is highlighted as one of the most recent and comprehensive monitoring systems put into space and the role of future NASA platforms in the "A-train"-constellation of satellites is discussed. Course material is typically presented in a Power-Point presentation by the instructor, with assigned supplementary reading to stimulate class discussion. In addition to preparing lectures for class presentation, students work on a final term paper and oral presentation which constitutes the majority of their grade. Field trips to the San Gabriel mountains to take atmospheric measurements with handheld sunphotometers and to JPL, Pasadena (CA) to listen to a NASA scientist discuss the MISR instrument aboard the Terra satellite help bring a real-world perspective to the science learned in the classroom. In this paper, we will describe the objectives and structure of this class and present measurement results taken during the field trip to the San Gabriel Mountains. In this context we will discuss the potential relevance of hands-on experience to meeting class objectives and give a student perspective of the overall class experience.

  9. Communicating Earth Observation (EO)-based landslide mapping capabilities to practitioners

    NASA Astrophysics Data System (ADS)

    Albrecht, Florian; Hölbling, Daniel; Eisank, Clemens; Weinke, Elisabeth; Vecchiotti, Filippo; Kociu, Arben

    2016-04-01

    Current remote sensing methods and the available Earth Observation (EO) data for landslide mapping already can support practitioners in their processes for gathering and for using landslide information. Information derived from EO data can support emergency services and authorities in rapid mapping after landslide-triggering events, in landslide monitoring and can serve as a relevant basis for hazard and risk mapping. These applications also concern owners, maintainers and insurers of infrastructure. Most often practitioners have a rough overview of the potential and limits of EO-based methods for landslide mapping. However, semi-automated image analysis techniques are still rarely used in practice. This limits the opportunity for user feedback, which would contribute to improve the methods for delivering fully adequate results in terms of accuracy, applicability and reliability. Moreover, practitioners miss information on the best way of integrating the methods in their daily processes. Practitioners require easy-to-grasp interfaces for testing new methods, which in turn would provide researchers with valuable user feedback. We introduce ongoing work towards an innovative web service which will allow for fast and efficient provision of EO-based landslide information products and that supports online processing. We investigate the applicability of various very high resolution (VHR), e.g. WorldView-2/3, Pleiades, and high resolution (HR), e.g. Landsat, Sentinel-2, optical EO data for semi-automated mapping based on object-based image analysis (OBIA). The methods, i.e. knowledge-based and statistical OBIA routines, are evaluated regarding their suitability for inclusion in a web service that is easy to use with the least amount of necessary training. The pre-operational web service will be implemented for selected study areas in the Alps (Austria, Italy), where weather-induced landslides have happened in the past. We will test the service on its usability together

  10. Western Eos Chaos on Mars: A Potential Site for Future Landing and Returning Samples

    NASA Astrophysics Data System (ADS)

    Asif Iqbal Kakkassery; Rajesh, V. J.

    2018-04-01

    Introducing Eos Chaos as a potential area for collecting samples. Eos Chaos contains a number of aqueous minerals. We have detected zoisite — a least reported low-grade metamorphic mineral from this area.

  11. Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design concept and operational aspects of the Earth Observatory Satellite (EOS) are presented. A table of the planned EOS missions is included to show the purpose of the mission, the instruments involved, and the launch date. The subjects considered in the analysis of the EOS development are: (1) system requirements, (2) design/cost trade methodology, (3) observatory design alternatives, (4) the data management system, (5) the design evaluation and preferred approach, (6) program cost compilation, (7) follow-on mission accommodation, and (8) space shuttle interfaces and utilization. Illustrations and block diagrams of the spacecraft configurations are provided.

  12. New insights into the operative network of FaEO, an enone oxidoreductase from Fragaria x ananassa Duch.

    PubMed

    Collu, Gabriella; Farci, Domenica; Esposito, Francesca; Pintus, Francesca; Kirkpatrick, Joanna; Piano, Dario

    2017-05-01

    The 2-methylene-furan-3-one reductase or Fragaria x ananassa Enone Oxidoreductase (FaEO) catalyses the last reductive step in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a major component in the characteristic flavour of strawberries. In the present work, we describe the association between FaEO and the vacuolar membrane of strawberry fruits. Even if FaEO lacks epitopes for stable or transient membrane-interactions, it contains a calmodulin-binding region, suggesting that in vivo FaEO may be associated with the membrane via a peripheral protein complex with calmodulin. Moreover, we also found that FaEO occurs in dimeric form in vivo and, as frequently observed for calmodulin-regulated proteins, it may be expressed in different isoforms by alternative gene splicing. Further mass spectrometry analysis confirmed that the isolated FaEO consists in the already known isoform and that it is the most characteristic during ripening. Finally, a characterization by absorption spectroscopy showed that FaEO has specific flavoprotein features. The relevance of these findings and their possible physiological implications are discussed.

  13. Towards simulating and quantifying the light-cone EoR 21-cm signal

    NASA Astrophysics Data System (ADS)

    Mondal, Rajesh; Bharadwaj, Somnath; Datta, Kanan K.

    2018-02-01

    The light-cone (LC) effect causes the Epoch of Reionization (EoR) 21-cm signal T_b (\\hat{n}, ν ) to evolve significantly along the line-of-sight (LoS) direction ν. In the first part of this paper, we present a method to properly incorporate the LC effect in simulations of the EoR 21-cm signal that includes peculiar velocities. Subsequently, we discuss how to quantify the second-order statistics of the EoR 21-cm signal in the presence of the LC effect. We demonstrate that the 3D power spectrum P(k) fails to quantify the entire information because it assumes the signal to be ergodic and periodic, whereas the LC effect breaks these conditions along the LoS. Considering a LC simulation centred at redshift 8 where the mean neutral fraction drops from 0.65 to 0.35 across the box, we find that P(k) misses out ˜ 40 per cent of the information at the two ends of the 17.41 MHz simulation bandwidth. The multifrequency angular power spectrum (MAPS) C_{ℓ}(ν_1,ν_2) quantifies the statistical properties of T_b (\\hat{n}, ν ) without assuming the signal to be ergodic and periodic along the LoS. We expect this to quantify the entire statistical information of the EoR 21-cm signal. We apply MAPS to our LC simulation and present preliminary results for the EoR 21-cm signal.

  14. Corrosion Behavior of Aqua-Blasted and Laser-Engraved Type 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Krawczyk, B.; Cook, P.; Hobbs, J.; Engelberg, D. L.

    2017-12-01

    The effect of aqua blasting and laser engraving on surface microstructure development, residual stress and corrosion resistance of type 316L stainless steel has been investigated. Aqua blasting resulted in a deformed near-surface microstructure containing compressive residual stresses. Subsequent laser engraving produced a surface layer with tensile residual stresses reaching to a depth of 200 microns. Changes of surface roughness topography were accompanied by the development of a thick oxide/hydroxide film after laser engraving. The atmospheric corrosion behavior of all surfaces with MgCl2-laden droplets was compared to their electrochemical response in 1M NaCl and 0.7 M HCl aqueous solutions. The measured total volume loss after atmospheric corrosion testing was similar for all investigated surface conditions. Laser-engraved surface exhibited the smallest number of corrosion sites, but the largest mean corrosion depth.

  15. Centaurus A galaxy, type EO peculiar elliptical, also radio source

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Centaurus A galaxy, type EO peculiar elliptical, also radio source. CTIO 4-meter telescope, 1975. NGC 5128, a Type EO peculiar elliptical galaxy in the constellation Centaurus. This galaxy is one of the most luminous and massive galaxies known and is a strong source of both radio and X-ray radiation. Current theories suggest that the nucleus is experiencing giant explosions involving millions of stars and that the dark band across the galactic disk is material being ejected outward. Cerro Toloto 4-meter telescope photo. Photo credit: National Optical Astronomy Observatories

  16. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    NASA Technical Reports Server (NTRS)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  17. Science synergism study for EOS on evolution of desert surfaces

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1987-01-01

    The effectiveness of EOS data as a basis for the study of desert surfaces' evolution is presently evaluated for both long and short term geomorphic evolution. Attention is given to the usefulness of such sensor systems planned for EOS as MODIS for regional vegetation distribution/variability monitoring, HIRIS for visible-near IR observations, TIMS for lithological identification, HMMR and SSMI for soil characteristics, LASA for atmospheric profiles, SAR for surface roughness, ALT for two-dimensional topography, ACR for the calibration of imaging sensors, and ERBE for climate modeling and regional surface albedo variation determinations.

  18. EO-Performance relationships in Reverse Internationalization by Chinese Global Startup OEMs: Social Networks and Strategic Flexibility.

    PubMed

    Chin, Tachia; Tsai, Sang-Bing; Fang, Kai; Zhu, Wenzhong; Yang, Dongjin; Liu, Ren-Huai; Tsuei, Richard Ting Chang

    2016-01-01

    Due to the context-sensitive nature of entrepreneurial orientation (EO), it is imperative to in-depth explore the EO-performance mechanism in China at its critical, specific stage of economic reform. Under the context of "reverse internationalization" by Chinese global startup original equipment manufacturers (OEMs), this paper aims to manifest the unique links and complicated interrelationships between the individual EO dimensions and firm performance. Using structural equation modeling, we found that during reverse internationalization, proactiveness is positively related to performance; risk taking is not statistically associated with performance; innovativeness is negatively related to performance. The proactiveness-performance relationship is mediated by Strategic flexibility and moderated by social networking relationships. The dynamic and complex institutional setting, coupled with the issues of overcapacity and rising labor cost in China may explain why our distinctive results occur. This research advances the understanding of how contingent factors (social network relationships and strategic flexibility) facilitate entrepreneurial firms to break down institutional barriers and reap the most from EO. It brings new insights into how Chinese global startup OEMs draw on EO to undertake reverse internationalization, responding the calls for unraveling the heterogeneous characteristics of EO sub-dimensions and for more contextually-embedded treatment of EO-performance associations.

  19. EO-Performance relationships in Reverse Internationalization by Chinese Global Startup OEMs: Social Networks and Strategic Flexibility

    PubMed Central

    Chin, Tachia; Tsai, Sang-Bing; Fang, Kai; Zhu, Wenzhong; Yang, Dongjin; Liu, Ren-huai; Tsuei, Richard Ting Chang

    2016-01-01

    Due to the context-sensitive nature of entrepreneurial orientation (EO), it is imperative to in-depth explore the EO-performance mechanism in China at its critical, specific stage of economic reform. Under the context of “reverse internationalization” by Chinese global startup original equipment manufacturers (OEMs), this paper aims to manifest the unique links and complicated interrelationships between the individual EO dimensions and firm performance. Using structural equation modeling, we found that during reverse internationalization, proactiveness is positively related to performance; risk taking is not statistically associated with performance; innovativeness is negatively related to performance. The proactiveness-performance relationship is mediated by Strategic flexibility and moderated by social networking relationships. The dynamic and complex institutional setting, coupled with the issues of overcapacity and rising labor cost in China may explain why our distinctive results occur. This research advances the understanding of how contingent factors (social network relationships and strategic flexibility) facilitate entrepreneurial firms to break down institutional barriers and reap the most from EO. It brings new insights into how Chinese global startup OEMs draw on EO to undertake reverse internationalization, responding the calls for unraveling the heterogeneous characteristics of EO sub-dimensions and for more contextually-embedded treatment of EO-performance associations. PMID:27631368

  20. EMASS (tm): An expandable solution for NASA space data storage needs

    NASA Technical Reports Server (NTRS)

    Peterson, Anthony L.; Cardwell, P. Larry

    1992-01-01

    The data acquisition, distribution, processing, and archiving requirements of NASA and other U.S. Government data centers present significant data management challenges that must be met in the 1990's. The Earth Observing System (EOS) project alone is expected to generate daily data volumes greater than 2 Terabytes (2(10)(exp 12) Bytes). As the scientific community makes use of this data their work product will result in larger, increasingly complex data sets to be further exploited and managed. The challenge for data storage systems is to satisfy the initial data management requirements with cost effective solutions that provide for planned growth. This paper describes the expandable architecture of the E-Systems Modular Automated Storage System (EMASS (TM)), a mass storage system which is designed to support NASA's data capture, storage, distribution, and management requirements into the 21st century.