Sample records for nasa exceptional achievement

  1. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  2. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  3. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  4. 14 CFR 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  5. The Bangladesh paradox: exceptional health achievement despite economic poverty.

    PubMed

    Chowdhury, A Mushtaque R; Bhuiya, Abbas; Chowdhury, Mahbub Elahi; Rasheed, Sabrina; Hussain, Zakir; Chen, Lincoln C

    2013-11-23

    Bangladesh, the eighth most populous country in the world with about 153 million people, has recently been applauded as an exceptional health performer. In the first paper in this Series, we present evidence to show that Bangladesh has achieved substantial health advances, but the country's success cannot be captured simplistically because health in Bangladesh has the paradox of steep and sustained reductions in birth rate and mortality alongside continued burdens of morbidity. Exceptional performance might be attributed to a pluralistic health system that has many stakeholders pursuing women-centred, gender-equity-oriented, highly focused health programmes in family planning, immunisation, oral rehydration therapy, maternal and child health, tuberculosis, vitamin A supplementation, and other activities, through the work of widely deployed community health workers reaching all households. Government and non-governmental organisations have pioneered many innovations that have been scaled up nationally. However, these remarkable achievements in equity and coverage are counterbalanced by the persistence of child and maternal malnutrition and the low use of maternity-related services. The Bangladesh paradox shows the net outcome of successful direct health action in both positive and negative social determinants of health--ie, positives such as women's empowerment, widespread education, and mitigation of the effect of natural disasters; and negatives such as low gross domestic product, pervasive poverty, and the persistence of income inequality. Bangladesh offers lessons such as how gender equity can improve health outcomes, how health innovations can be scaled up, and how direct health interventions can partly overcome socioeconomic constraints. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. 14 CFR § 1214.807 - Exceptional payloads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Spacelab Services § 1214.807 Exceptional payloads. Customers whose payloads qualify under the NASA Exceptional Program Selection Process shall reimburse NASA for Spacelab and Shuttle services on the basis indicated in the Shuttle policy. ...

  7. Modeling the Time-Varying Nature of Student Exceptionality Classification on Achievement Growth

    ERIC Educational Resources Information Center

    Nese, Joseph F. T.; Stevens, Joseph J.; Schulte, Ann C.; Tindal, Gerald; Elliott, Stephen N.

    2017-01-01

    Our purpose was to examine different approaches to modeling the time-varying nature of exceptionality classification. Using longitudinal data from one state's mathematics achievement test for 28,829 students in Grades 3 to 8, we describe the reclassification rate within special education and between general and special education, and compare four…

  8. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  9. Probability of Loss of Crew Achievability Studies for NASA's Exploration Systems Development

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.; Bigler, Mark A.; Rogers, James H.

    2015-01-01

    Over the last few years, NASA has been evaluating various vehicle designs for multiple proposed design reference missions (DRM) beyond low Earth orbit in support of its Exploration Systems Development (ESD) programs. This paper addresses several of the proposed missions and the analysis techniques used to assess the key risk metric, probability of loss of crew (LOC). Probability of LOC is a metric used to assess the safety risk as well as a design requirement. These assessments or studies were categorized as LOC achievability studies to help inform NASA management as to what "ball park" estimates of probability of LOC could be achieved for each DRM and were eventually used to establish the corresponding LOC requirements. Given that details of the vehicles and mission are not well known at this time, the ground rules, assumptions, and consistency across the programs become the important basis of the assessments as well as for the decision makers to understand.

  10. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx.10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders, if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating

  11. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating

  12. Probability of Loss of Crew Achievability Studies for NASA's Exploration Systems Development

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.; Bigler, Mark; Rogers, James H.

    2014-01-01

    Over the last few years, NASA has been evaluating various vehicle designs for multiple proposed design reference missions (DRM) beyond low Earth orbit in support of its Exploration Systems Development (ESD) programs. This paper addresses several of the proposed missions and the analysis techniques used to assess the key risk metric, probability of loss of crew (LOC). Probability of LOC is a metric used to assess the safety risk as well as a design requirement. These risk assessments typically cover the concept phase of a DRM, i.e. when little more than a general idea of the mission is known and are used to help establish "best estimates" for proposed program and agency level risk requirements. These assessments or studies were categorized as LOC achievability studies to help inform NASA management as to what "ball park" estimates of probability of LOC could be achieved for each DRM and were eventually used to establish the corresponding LOC requirements. Given that details of the vehicles and mission are not well known at this time, the ground rules, assumptions, and consistency across the programs become the important basis of the assessments as well as for the decision makers to understand.

  13. Probability of Loss of Crew Achievability Studies for NASA's Exploration Systems Development

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.; Bigler, Mark; Rogers, James H.

    2015-01-01

    Over the last few years, NASA has been evaluating various vehicle designs for multiple proposed design reference missions (DRM) beyond low Earth orbit in support of its Exploration Systems Development (ESD) programs. This paper addresses several of the proposed missions and the analysis techniques used to assess the key risk metric, probability of loss of crew (LOC). Probability of LOC is a metric used to assess the safety risk as well as a design requirement. These risk assessments typically cover the concept phase of a DRM, i.e. when little more than a general idea of the mission is known and are used to help establish "best estimates" for proposed program and agency level risk requirements. These assessments or studies were categorized as LOC achievability studies to help inform NASA management as to what "ball park" estimates of probability of LOC could be achieved for each DRM and were eventually used to establish the corresponding LOC requirements. Given that details of the vehicles and mission are not well known at this time, the ground rules, assumptions, and consistency across the programs become the important basis of the assessments as well as for the decision makers to understand.

  14. The New Approach to Self-Achievement (N.A.S.A.) Project 2004

    NASA Technical Reports Server (NTRS)

    Thomas, Candace J.

    2004-01-01

    The New Approach to Self-Achievement Program is designed to target rising seventh, eighth, and ninth grade students who require assistance in refining their mathematical skills, science awareness and knowledge, and test taking strategies. During the six week duration of the program, students are challenged in these areas through the application of robotic and aeronautic projects which encourage the students to practically apply their mathematical and science awareness accordingly. The first three weeks of my tenure were designated to assisting Mrs. Tammy Allen in the preparation of the 2004 NASA Project. As her assistant, I was held accountable for organizing, filing, preparing, analyzing, and completing the applications for the NASA Project. Additionally, I constructed the apposite databases which contained imperative information which aided in the selection of our participants. During the latter portion of those three weeks, Mrs. Allen, various staff members, and I, interviewed the numerous first-time applicants of the NASA Project. Furthermore, I was assigned to contact the accepted applicants of the program and provide all necessary information for the initiation of the child into the NASA Project. During the six week duration of the program, I will be working as a Project Leader at the Lorain Middle School site located in Lorain, Oh, with Mr. Fondriest Fountain. Mr. Fountain and I Will work with the eighth and ninth grade students in constructing robots, in which the students are told are made for NASA research which is being conducted on the surface of planet Mars. The robots, which are built from LEGOS and programmed through RoboLab computer software, are prepared to complete assigned Missions such as running obstacle courses; plowing and retrieving LEGOS; and scanning surfaces for intense regions of light.

  15. Gender Differences in Academic Achievement: Is Writing an Exception to the Gender Similarities Hypothesis?

    PubMed

    Reynolds, Matthew R; Scheiber, Caroline; Hajovsky, Daniel B; Schwartz, Bryanna; Kaufman, Alan S

    2015-01-01

    The gender similarities hypothesis by J. S. Hyde ( 2005 ), based on large-scale reviews of studies, concludes that boys and girls are more alike than different on most psychological variables, including academic skills such as reading and math (J. S. Hyde, 2005 ). Writing is an academic skill that may be an exception. The authors investigated gender differences in academic achievement using a large, nationally stratified sample of children and adolescents ranging from ages 7-19 years (N = 2,027). Achievement data were from the conormed sample for the Kaufman intelligence and achievement tests. Multiple-indicator, multiple-cause, and multigroup mean and covariance structure models were used to test for mean differences. Girls had higher latent reading ability and higher scores on a test of math computation, but the effect sizes were consistent with the gender similarities hypothesis. Conversely, girls scored higher on spelling and written expression, with effect sizes inconsistent with the gender similarities hypothesis. The findings remained the same after controlling for cognitive ability. Girls outperform boys on tasks of writing.

  16. Records of Achievement. NASA Special Publications.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    When Congress created the National Aeronautics and Space Administration (NASA) 25 years ago, it directed that information derived from the agency's pursuit of knowledge through space exploration and aeronautical research be made available to all Americans. This has been accomplished through a series of scientific and technical publications. One…

  17. 14 CFR 1206.503 - NASA Headquarters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA Headquarters. 1206.503 Section 1206... TO MEMBERS OF THE PUBLIC Responsibilities § 1206.503 NASA Headquarters. (a) Except as otherwise... throughout NASA to facilitate the preparation of such reports; (2) After consultation with the Office of...

  18. 14 CFR 1206.503 - NASA Headquarters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false NASA Headquarters. 1206.503 Section 1206... TO MEMBERS OF THE PUBLIC Responsibilities § 1206.503 NASA Headquarters. (a) Except as otherwise... throughout NASA to facilitate the preparation of such reports; (2) After consultation with the Office of...

  19. 14 CFR 1206.503 - NASA Headquarters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false NASA Headquarters. 1206.503 Section 1206... TO MEMBERS OF THE PUBLIC Responsibilities § 1206.503 NASA Headquarters. (a) Except as otherwise... throughout NASA to facilitate the preparation of such reports; (2) After consultation with the Office of...

  20. 14 CFR 1203.409 - Exceptional cases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Original Classification § 1203.409 Exceptional cases. (a) In those cases where a person not authorized to classify information orginates or develops information which is believed to require classification, that... decision made by an appropriate classifying authority. For NASA employees the classifying authority is...

  1. 14 CFR 1206.503 - NASA Headquarters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true NASA Headquarters. 1206.503 Section 1206.503... OF THE PUBLIC Responsibilities § 1206.503 NASA Headquarters. (a) Except as otherwise provided in... NASA to facilitate the preparation of such reports; (2) After consultation with the Office of General...

  2. NASA - Beyond Boundaries

    NASA Technical Reports Server (NTRS)

    McMillan, Courtenay

    2016-01-01

    NASA is able to achieve human spaceflight goals in partnership with international and commercial teams by establishing common goals and building connections. Presentation includes photographs from NASA missions - on orbit, in Mission Control, and at other NASA facilities.

  3. 14 CFR 1212.205 - Exceptions to individual's rights of access.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Exceptions to individual's rights of access. 1212.205 Section 1212.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS Access to Records § 1212.205 Exceptions to individual's rights of access. (a) The...

  4. 14 CFR 1212.205 - Exceptions to individual's rights of access.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Exceptions to individual's rights of access. 1212.205 Section 1212.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS Access to Records § 1212.205 Exceptions to individual's rights of access. (a) The...

  5. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  6. 14 CFR § 1206.503 - NASA Headquarters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA Headquarters. § 1206.503 Section Â... RECORDS TO MEMBERS OF THE PUBLIC Responsibilities § 1206.503 NASA Headquarters. (a) Except as otherwise... throughout NASA to facilitate the preparation of such reports; (2) After consultation with the Office of...

  7. Curating NASA's Future Extraterrestrial Sample Collections: How Do We Achieve Maximum Proficiency?

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Evans, Cynthia; Zeigler, Ryan; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "... documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working towards a state of maximum proficiency.

  8. Achieving a Risk-Informed Decision-Making Environment at NASA: The Emphasis of NASA's Risk Management Policy

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon

    2010-01-01

    This slide presentation reviews the evolution of risk management (RM) at NASA. The aim of the RM approach at NASA is to promote an approach that is heuristic, proactive, and coherent across all of NASA. Risk Informed Decision Making (RIDM) is a decision making process that uses a diverse set of performance measures along with other considerations within a deliberative process to inform decision making. RIDM is invoked for key decisions such as architecture and design decisions, make-buy decisions, and budget reallocation. The RIDM process and how it relates to the continuous Risk Management (CRM) process is reviewed.

  9. When nursing takes ownership of financial outcomes: achieving exceptional financial performance through leadership, strategy, and execution.

    PubMed

    Goetz, Kristopher; Janney, Michelle; Ramsey, Kristin

    2011-01-01

    With nurses and unlicensed supportive personnel composing the greatest percentage of the workforce at any hospital, it is not surprising nursing leadership plays an increasing role in the attainment of financial goals. The nursing leadership team at one academic medical center reduced costs by more than $10 million over 4 years while outperforming national benchmarks on nurse-sensitive quality indicators. The most critical success factor in attaining exceptional financial performance is a personal and collective accountability to achieving outcomes. Whether it is financial improvement, advancing patient safety, or ensuring a highly engaged workforce, success will not be attained without thoughtful, focused leadership. The accountability model ensures there is a culture built around financial performance where nurses and leaders think and act, on a daily basis, in a manner necessary to understand opportunities, find answers, and overcome obstacles. While structures, processes, and tools may serve as the means to achieve a target, it is leadership's responsibility to set the right goal and motivate others.

  10. NASA Geodynamics Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Activities and achievements for the period of May 1983 to May 1984 for the NASA geodynamics program are summarized. Abstracts of papers presented at the Conference are inlcuded. Current publications associated with the NASA Geodynamics Program are listed.

  11. Lightfoot Visits Michoud on This Week @NASA – February 18, 2017

    NASA Image and Video Library

    2017-02-18

    NASA’s Acting Administrator Robert Lightfoot visited the agency’s Michoud Assembly Facility in New Orleans Feb. 13 to view damage from the Feb. 7 tornado strike, and to speak with employees about ongoing recovery efforts at the facility. The work at Michoud is critical to supporting the production, testing and final integration of the core stage of NASA’s Space Launch System deep space rocket, the largest rocket stage ever built. Also, Flight Control Technology Evaluated, Ochoa, Foale to be Inducted into Hall of Fame, NASA Employees Honored, and Exceptional Public Achievement Award!

  12. NASA metric transition plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA science publications have used the metric system of measurement since 1970. Although NASA has maintained a metric use policy since 1979, practical constraints have restricted actual use of metric units. In 1988, an amendment to the Metric Conversion Act of 1975 required the Federal Government to adopt the metric system except where impractical. In response to Public Law 100-418 and Executive Order 12770, NASA revised its metric use policy and developed this Metric Transition Plan. NASA's goal is to use the metric system for program development and functional support activities to the greatest practical extent by the end of 1995. The introduction of the metric system into new flight programs will determine the pace of the metric transition. Transition of institutional capabilities and support functions will be phased to enable use of the metric system in flight program development and operations. Externally oriented elements of this plan will introduce and actively support use of the metric system in education, public information, and small business programs. The plan also establishes a procedure for evaluating and approving waivers and exceptions to the required use of the metric system for new programs. Coordination with other Federal agencies and departments (through the Interagency Council on Metric Policy) and industry (directly and through professional societies and interest groups) will identify sources of external support and minimize duplication of effort.

  13. Does the NASA Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Daniel

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.

  14. NASA's Astro-Venture Engages Exceptional Students in Earth System Science Using Inquiry

    NASA Astrophysics Data System (ADS)

    Oguinn, C.

    2003-12-01

    Astro-Venture is an educational, interactive, multimedia Web environment highlighting NASA careers and astrobiology research in the areas of Astronomy, Geology, Biology and Atmospheric Sciences. Students in grades 5-8 role-play NASA careers, as they search for and design a planet with the necessary characteristics for human habitation. Astro-Venture uses online multimedia activities and off-line inquiry explorations to engage students in guided inquiry aligned with the 5 E inquiry model. This model has proven to be effective with exceptional students. Students are presented with the intellectual confrontation of how to design a planet and star system that would be able to meet their biological survival needs. This provides a purpose for the online and off-line explorations used throughout the site. Students first explore "what" conditions are necessary to support human habitability by engaging in multimedia training modules, which allow them to change astronomical, atmospheric, geological and biological aspects of the Earth and our star system and to view the effects of these changes on Earth. By focusing on Earth, students draw on their prior knowledge, which helps them to connect their new knowledge to their existing schema. Cause and effect relationships of Earth provide a concrete model from which students can observe patterns and generalize abstract results to an imagined planet. From these observations, students draw conclusions about what aspects allowed Earth to remain habitable. Once students have generalized needed conditions of "what" we need for a habitable planet, they conduct further research in off-line, standards-based classroom activities that also follow the inquiry model and help students to understand "why" we need these conditions. These lessons focus on standards-based concepts such as states of matter and the structure and movement of the Earth's interior. These lessons follow the inquiry structure commonly referred to as the five E's as

  15. NASA Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1999-01-01

    Managed for NASA by the California Institute of Technology, the Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system. JPL spacecraft have visited all known planets except Pluto (a Pluto mission is currently under study). In addition to its work for NASA, JPL conducts tasks for a variety of other federal agencies. In addition, JPL manages the worldwide Deep Space Network, which communicates with spacecraft and conducts scientific investigations from its complexes in California's Mojave Desert near Goldstone; near Madrid, Spain; and near Canberra, Australia. JPL employs about 6000 people.

  16. Rotary wing aircraft and technical publications of NASA, 1970 - 1982

    NASA Technical Reports Server (NTRS)

    Hiemstra, J. D. (Compiler)

    1982-01-01

    This bibliography cites 933 documents in the NASA RECON data base which pertain to rotary wing aircraft. The entries are arranged in descending order by publication data except for the NASA-supported documents which are arranged in descending order by accession date.

  17. NASA Education Implementation Plan 2015-2017

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, 2015

    2015-01-01

    The NASA Education Implementation Plan (NEIP) provides an understanding of the role of NASA in advancing the nation's STEM education and workforce pipeline. The document outlines the roles and responsibilities that NASA Education has in approaching and achieving the agency's and administration's strategic goals in STEM Education. The specific…

  18. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Nechnical producer for NASA's Eyes at JPL, Jason Craig discusses the Cassini mission as seen through the NASA Eyes program during a NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Fifteen Years of Collaborative Innovation and Achievement: NASA Nebraska Space Grant Consortium 15-Year Program Performance and Results Report

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M. (Editor); Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.; Avery Shelly; Calamaio, Caprice; Carstenson, Larry; Dugan, James; Farr, Lynne; Farritor, Shane

    2003-01-01

    This 15-year evaluation serves as a summary document highlighting the numerous and complete successes of the Nebraska Space Grant Program. Innovation has been highlighted through significant new endeavors during this 5-year period, such as placement of students and faculty at NASA Centers and the expansion of NSGC Native American Outreach Programs. While the last national program evaluation resulted in Nebraska s ranking as the top Capability Enhancement Consortium, and 5th best overall, Nebraska felt there was room for significant growth and development. This has been validated through the recent competitive attainment of Designated Grant status and has allowed for the exploration of new initiatives, as well as the expansion of already successful programs. A comprehensive strategic planning effort has involved all Nebraska representative entities and has guided Nebraska Space Grant through the evaluation period, providing a basis for continual advancement. Nebraska rigorously employs evaluation techniques to ensure that stated outcomes and metrics are achieved and that weaknesses are identified and corrected. With this coordinated approach, Nebraska expects that the next 5 years will yield new opportunities for significant achievement. Nebraska Space Grant will embrace new national endeavors, including the integration of Pender Public Schools -Nebraska s NASA Explorer School, geospatial initiatives, and the National Student Satellite Program.

  20. 2006 NASA Strategic Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On January 14, 2004, President George W. Bush announced A Renewed Spirit of Discovery: The President's Vision for U.S. Space Exploration, a new directive for the Nation's space program. The fundamental goal of this directive is "to advance U.S. scientific, security, and economic interests through a robust space exploration program." In issuing it, the President committed the Nation to a journey of exploring the solar system and beyond: returning to the Moon in the next decade, then venturing further into the solar system, ultimately sending humans to Mars and beyond. He challenged NASA to establish new and innovative programs to enhance understanding of the planets, to ask new questions, and to answer questions that are as old as humankind. NASA enthusiastically embraced the challenge of extending a human presence throughout the solar system as the Agency's Vision, and in the NASA Authorization Act of 2005, Congress endorsed the Vision for Space Exploration and provided additional guidance for implementation. NASA is committed to achieving this Vision and to making all changes necessary to ensure success and a smooth transition. These changes will include increasing internal collaboration, leveraging personnel and facilities, developing strong, healthy NASA Centers,a nd fostering a safe environment of respect and open communication for employees at all levels. NASA also will ensure clear accountability and solid program management and reporting practices. Over the next 10 years, NASA will focus on six Strategic Goals to move forward in achieving the Vision for Space Exploration. Each of the six Strategic Goals is clearly defined and supported by multi-year outcomes that will enhance NASA's ability to measure and report Agency accomplishments in this quest.

  1. NASA's Radio Frequency Bolt Monitor: A Lifetime of Spinoffs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This story begins in the 1970s, when Dr. Joseph Heyman, a young scientist at NASA s Langley Research Center, was asked to support the investigation of a wind tunnel accident at a sister center. Although the work was outside of his physics background, it sparked a research focus that guided his lengthy NASA career and would earn him a slew of accolades, including NASA s highest award medals for Exceptional Leadership, Exceptional Achievement, and Exceptional Service; the coveted Silver Snoopy Astronaut Award for Space Shuttle Return to Flight; and the Arthur Fleming Award for being one of the Top Ten Federal Scientists in Government Service. He won 30 additional NASA awards, including the Agency s Invention of the Year and the Agency s highest award for technology transfer, and was the only person to ever win 4 R&D 100 Awards. Back in 1973, though, Heyman was a young civil servant with a background in physics who was asked to sit on an accident review panel. The panel met at Ames Research Center, in Moffet Field, California, and after considerable investigation, concluded that a high-pressure pebble heater used for heating gas had failed, due to improperly tightened bolts in a 1,000-pound gate valve control section. The accident showered the facility with incendiary ceramic spheres and nearly a ton of metal, but, luckily, caused no injuries. Heyman returned to Langley and began work on a solution. He developed an ultrasonic device that would measure bolt elongation, as opposed to torque, the factor typically measured in testing bolt preload or tension. Torque measurement can lead to load errors, with miscalculations as high as 80 percent that can be passed over during installation. Bolt stretch, however, is nearly always accurate to 1 percent or better. Within 1 month, he had an acoustic resonance solution that accurately determined bolt elongation. He assumed his work on this project had ended, but it was actually the start of nearly 15 years of work perfecting

  2. Curating NASA's future extraterrestrial sample collections: How do we achieve maximum proficiency?

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis; Evans, Cynthia; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael; Zeigler, Ryan

    2016-07-01

    Introduction: The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "…documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working to-wards a state of maximum proficiency. Founding Principle: Curatorial activities began at JSC (Manned Spacecraft Center before 1973) as soon as design and construction planning for the Lunar Receiving Laboratory (LRL) began in 1964 [1], not with the return of the Apollo samples in 1969, nor with the completion of the LRL in 1967. This practice has since proven that curation begins as soon as a sample return mission is conceived, and this founding principle continues to return dividends today [e.g., 2]. The Next Decade: Part of the curation process is planning for the future, and we refer to these planning efforts as "advanced curation" [3]. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. We are (and have been) planning for future curation, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, curation of organically- and biologically-sensitive samples, and the use of minimally invasive analytical techniques (e.g., micro-CT, [4]) to characterize samples. These efforts will be useful for Mars Sample Return

  3. NASA and General Aviation. NASA SP-485.

    ERIC Educational Resources Information Center

    Ethell, Jeffrey L.

    A detailed examination of the nature and function of general aviation and a discussion of how the National Aeronautics and Space Administration (NASA) helps keep it on the cutting edge of technology are offered in this publication. The intricacies of aerodynamics, energy, and safety as well as the achievements in aeronautical experimentation are…

  4. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA JPL digital and social media lead Stephanie Smith, introduces technical producer for NASA's Eyes at JPL, Jason Craig, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Director of NASA's Planetary Science Division, Jim Green, speaks to NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees film director of NASA's Planetary Science Division, Jim Green as he discusses the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. NASA thesaurus combined file postings statistics

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA Thesaurus Combined File Postings Statistics is published semiannually (January and July). This alphabetical listing of postable subject terms contained in the NASA Thesaurus is used to display the number of postings (documents) indexed by each subject term from 1968 to date. The postings totals per item are separated by announcement of other media into STAR, IAA, COSMIC, and OTHER, columnar entries covering the NASA document collection (1968 to date). This is a cumulative publication, and except for special cases, no reference is needed to previous issuances. Retention of the January 1992 issue could be helpful for book information. With the July 1992 issue, NALNET book statistics have been replaced by COSMIC statistics for NASA funded software. File postings statistics for the Alternate Data Base covering NASA collection from 1962 through 1967 were published on a one-time basis in September 1975. Subject terms for the Alternate Data Base are derived from the subject Authority List, reprinted 1985, which is available upon request. The distribution of 19,697,748 postings among the 17,446 NASA Thesaurus terms is tabulated on the last page of the NASA Thesaurus Combined File Postings Statistics.

  9. 48 CFR 1834.203-70 - NASA solicitation provision and contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false NASA solicitation provision and contract clause. 1834.203-70 Section 1834.203-70 Federal Acquisition Regulations System... Earned Value Management System 1834.203-70 NASA solicitation provision and contract clause. Except for...

  10. 48 CFR 1834.203-70 - NASA solicitation provision and contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false NASA solicitation provision and contract clause. 1834.203-70 Section 1834.203-70 Federal Acquisition Regulations System... Earned Value Management System 1834.203-70 NASA solicitation provision and contract clause. Except for...

  11. 48 CFR 1834.203-70 - NASA solicitation provision and contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false NASA solicitation provision and contract clause. 1834.203-70 Section 1834.203-70 Federal Acquisition Regulations System... Earned Value Management System 1834.203-70 NASA solicitation provision and contract clause. Except for...

  12. 48 CFR 1834.203-70 - NASA solicitation provision and contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false NASA solicitation provision and contract clause. 1834.203-70 Section 1834.203-70 Federal Acquisition Regulations System... Earned Value Management System 1834.203-70 NASA solicitation provision and contract clause. Except for...

  13. Achievements of the DOT-NASA Joint Program on Remote Sensing and Spatial Information Technologies: Application to Multimodal Transportation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents three-year accomplishments from the national program on Commercial Remote Sensing and Geospatial Technology (CRSGT) application to transportation, administered by the U.S. Department of Transportation (U.S. DOT) in collaboration with the National Aeronautics and Space Administration (NASA). The joint program was authorized under Section 5113 of the Transportation Equity Act for the 21st Century (TEA-21). This is the first national program of its type focusing on transportation applications of emerging commercial remote sensing technologies. U.S. DOT's Research and Special Programs Administration manages the program in coordination with NASA's Earth Science Enterprise's application programs. The program focuses on applications of CRSGT products and systems for providing smarter and more efficient transportation operations and services. The program is performed in partnership with four major National Consortia for Remote Sensing in Transportation (NCRST). Each consortium focuses on research and development of products in one of the four priority areas for transportation application, and includes technical application and demonstration projects carried out in partnership with industries and service providers in their respective areas. The report identifies products and accomplishments from each of the four consortia in meeting the goal of providing smarter and more efficient transportation services. The products and results emerging from the program are being implemented in transportation operations and services through state and local agencies. The Environmental Assessment and Application Consortium (NCRST-E) provides leadership for developing and deploying cost effective environmental and transportation planning services, and integrates CRSGT advances for achieving smarter and cost effective corridor planning. The Infrastructure Management Consortium (NCRST-I) provides leadership in technologies that achieve smarter and cheaper ways of managing

  14. 48 CFR 1834.203-70 - NASA solicitation provision and contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA solicitation provision and contract clause. 1834.203-70 Section 1834.203-70 Federal Acquisition Regulations System NATIONAL... Management System 1834.203-70 NASA solicitation provision and contract clause. Except for the contracts...

  15. Improving Mathematics Achievement of Exceptional Learners through Differentiated and Peer-Mediated Instruction

    ERIC Educational Resources Information Center

    Ivory, Tontaleya S.

    2007-01-01

    The purpose of this study was to implement differentiated and peer-mediated instruction to determine if these instructional interventions were successful in preparing students with disabilities for state standardized tests. In addition, this study identified how exceptional needs learners responded to techniques utilized during differentiated and…

  16. NASA supported research programs

    NASA Technical Reports Server (NTRS)

    Libby, W. F.

    1975-01-01

    A summary of the scientific NASA grants and achievements accomplished by the University of California, Los Angles, is presented. The development of planetary and space sciences as a major curriculum of the University, and statistical data on graduate programs in aerospace sciences are discussed. An interdisciplinary approach to aerospace science education is emphasized. Various research programs and scientific publications that are a direct result of NASA grants are listed.

  17. Achieving equal opportunity in NASA: An assessment of needs and recommendations for action

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measures designed by NASA to improve its equal opportunity program are reported. Attempts made to increase the ratios and level of placement of women and minority men in the work force were emphasized, upward mobility for those employees already in the work force was also studied. Ways for improving the track record for NASA's equal opportunity profile are recommended.

  18. Vision Forward for NASA's Astrophysics Education Program

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Sheth, Kartik J.

    2016-01-01

    NASA has recently re-structured its Science Education program with the competitive selection of twenty-seven programs. Of these, ~60% are relevant to Astrophysics, and three have primarily Astrophysics content. A brief overview of the rationale for re-structuring will be presented. We have taken a strategic approach, building on our science-discipline based legacy and looking at new approaches given Stakeholder priorities. We plan to achieve our education goals with the selection of organizations that utilize NASA data, products, or processes to meet NASA's education objectives; and by enabling our scientists and engineers with education professionals, tools, and processes to better meet user needs. Highlights of the selected programs will be presented, and how they enable the vision going forward of achieving the goal of enabling NASA scientists and engineers to engage more effectively with learners of all ages.

  19. NASA UAS Update

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey Ervin; Mulac, Brenda Lynn

    2010-01-01

    Last year may prove to be a pivotal year for the National Aeronautics and Space Administration (NASA) in the Unmanned Aircraft Systems (UAS) arena, especially in relation to routine UAS access to airspace as NASA accepted an invitation to join the UAS Executive Committee (UAS ExCom). The UAS ExCom is a multi-agency, Federal executive-level committee comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA with the goals to: 1) Coordinate and align efforts between key Federal Government agencies to achieve routine safe federal public UAS operations in the National Airspace System (NAS); 2) Coordinate and prioritize technical, procedural, regulatory, and policy solutions needed to deliver incremental capabilities; 3) Develop a plan to accommodate the larger stakeholder community at the appropriate time; and 4) Resolve conflicts between Federal Government agencies (FAA, DoD, DHS, and NASA), related to the above goals. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. In order to meet that need, technical, procedural, regulatory, and policy solutions are required to deliver incremental capabilities leading to routine access. The formation of the UAS ExCom is significant in that it represents a tangible commitment by FAA senior leadership to address the UAS access challenge. While the focus of the ExCom is government owned and operated UAS, civil UAS operations are bound to benefit by the progress made in achieving routine access for government UAS. As the UAS ExCom was forming, NASA's Aeronautics Research Mission Directorate began to show renewed interest in UAS, particularly in relation to the future state of the air transportation system under the Next Generation Air Transportation System (NextGen). NASA made funding from the American

  20. Standards of conduct for NASA employees

    NASA Technical Reports Server (NTRS)

    1987-01-01

    'Standards of Conduct' for employees (14 CFR Part 1207) is set forth in this handbook and is hereby incorporated in the NASA Directives System. This handbook incorporates, for the convenience of NASA employees, the regulations now in effect prescribing standards of conduct for NASA employees. These regulations set forth the high ethical standards of conduct required of NASA employees in carrying out their duties and responsibilities. These regulations have been approved by the Office of Government Ethics, Office of Personnel Management. The regulations incorporated in this handbook were first published in the Federal Register on October 21, 1967 (32 FR 14648-14659); Part B concerning the acceptance of gifts, gratuities, or entertainment was extensively revised on January 19, 1976 (41 FR 2631-2633) to clarify and generally to restrict the exceptions to the general rule against the acceptance by a NASA employee from persons or firms doing or seeking business with NASA. Those regulations were updated on January 29, 1985 (50 FR 3887) to ensure conformity to the Ethics in Government Act of 1978 regarding the public financial disclosure statement. These regulations were published in the Federal Register on June 16, 1987 (52 FR 22755-764) and a correction was printed on Sept. 28, 1987 (52 FR 36234).

  1. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans speaks with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. NASA geodynamics program: Bibliography

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Seventh Geodynamics Program report summarizes program activities and achievements during 1988 and 1989. Included is a 115 page bibliography of the publications associated with the NASA Geodynamics Program since its initiation in 1979.

  4. NASA's Education Program Inventory FY 91

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In 1988, the Education Division produced an inventory of NASA-supported education programs. Since then, mathematics, science, and technology education has taken on a more visible role, not only as part of NASA's mission, but as part of the National Education Goals and other Federal initiatives. Therefore, it became important to update the 1988 inventory in order to achieve a more accurate and comprehensive look at NASA's educational programs. The data collected is summarized and descriptions of each program are provided.

  5. Achieving Quality in Occupational Health

    NASA Technical Reports Server (NTRS)

    O'Donnell, Michele (Editor); Hoffler, G. Wyckliffe (Editor)

    1997-01-01

    The conference convened approximately 100 registered participants of invited guest speakers, NASA presenters, and a broad spectrum of the Occupational Health disciplines representing NASA Headquarters and all NASA Field Centers. Centered on the theme, "Achieving Quality in Occupational Health," conferees heard presentations from award winning occupational health program professionals within the Agency and from private industry; updates on ISO 9000 status, quality assurance, and information technologies; workshops on ergonomics and respiratory protection; an overview from the newly commissioned NASA Occupational Health Assessment Team; and a keynote speech on improving women's health. In addition, NASA occupational health specialists presented 24 poster sessions and oral deliveries on various aspects of current practice at their field centers.

  6. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans discusses an image of Saturn's moon Daphnis with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini NASA Social attendees speak with members of the Cassini mission team in the Charles Elachi Mission Control Center in the Space Flight Operation Center, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Management of government quality assurance functions for NASA contracts

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  9. Management of government quality assurance functions for NASA contracts

    NASA Astrophysics Data System (ADS)

    1993-04-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  10. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    NASA Technical Reports Server (NTRS)

    Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis; hide

    2011-01-01

    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was

  11. NASA's Radioisotope Power Systems - Plans

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  12. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees are seen during a science panel discussion with Cassini project scientist at JPL, Linda Spilker, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, and Cassini assistant project science systems engineer Morgan Cable, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. NASA Hispanic Profile Interview with Evan Pineda

    NASA Image and Video Library

    2017-10-20

    Evan Pineda received his Ph.D. at the University of Michigan which was funded by a NASA project. After receiving a co-op position, he became a full-time employee at NASA Glenn Research Center. He talks about his project involvement with Space Launch System (SLS) and receiving the Hispanic Engineer National Achievement Awards Conference (HENAAC).

  14. Architectural Implementation of NASA Space Telecommunications Radio System Specification

    NASA Technical Reports Server (NTRS)

    Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.

    2012-01-01

    This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.

  15. NASA FY 2000 Accountability Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This Accountability Report consolidates reports required by various statutes and summarizes NASA's program accomplishments and its stewardship over budget and financial resources. It is a culmination of NASA's management process, which begins with mission definition and program planning, continues with the formulation and justification of budgets for the President and Congress, and ends with scientific and engineering program accomplishments. The report covers activities from October 1, 1999, through September 30, 2000. Achievements are highlighted in the Statement of the Administrator and summarized in the Report.

  16. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  17. NASA tech brief evaluations

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1994-01-01

    A major step in transferring technology is to disseminate information about new developments to the appropriate sector(s). A useful vehicle for transferring technology from the government sector to industry has been demonstrated with the use of periodical and journal announcements to highlight technological achievements which may meet the needs of industries other than the one who developed the innovation. To meet this end, NASA has very successfully pursued the goal of identifying technical innovations through the national circulation publication; NASA Tech Briefs. At one time the Technology Utilization Offices of the various centers coordinated the selection of appropriate technologies through a common channel. In recent years, each NASA field center has undertaken the task of evaluating submittals for Tech Brief publication independently of the others. The University of Alabama in Huntsville was selected to assist MSFC in evaluating technology developed under the various programs managed by the NASA center for publication in the NASA Tech Briefs journal. The primary motivation for the NASA Tech Briefs publication is to bring to the attention of industry the various NASA technologies which, in general, have been developed for a specific aerospace requirement, but has application in other areas. Since there are a number of applications outside of NASA that can benefit from innovative concepts developed within the MSPC programs, the ability to transfer technology to other sectors is very high. In most cases, the innovator(s) are not always knowledgeable about other industries which might potentially benefit from their innovation. The evaluation process can therefore contribute to the list of potential users through a knowledgeable evaluator.

  18. The NASA Geodynamics Program report, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the NASA Geodynamics Program in 1981 both in achieving improved measurement precision and in establishing the foundation for the acquisition and analysis of scientific data are discussed.

  19. Early Results from NASA's Assessment of Satellite Servicing

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Reed, Benjamin B.; Townsend, Jacqueline A.; Ahmed, Mansoor; Whipple, Arthur O.; Oegerle, William R.

    2010-01-01

    Following recommendations by the NRC, NASA's FY 2008 Authorization Act and the FY 2009 and 2010 Appropriations bills directed NASA to assess the use of the human spaceflight architecture to service existing/future observatory-class scientific spacecraft. This interest in satellite servicing, with astronauts and/or with robots, reflects the success that NASA achieved with the Shuttle program and HST on behalf of the astronomical community as well as the successful construction of ISS. This study, led by NASA GSFC, will last about a year, leading to a final report to NASA and Congress in autumn 2010. We will report on its status, results from our March satellite servicing workshop, and recent concepts for serviceable scientific missions.

  20. NASA Uniform Files Index

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This handbook is a guide for the use of all personnel engaged in handling NASA files. It is issued in accordance with the regulations of the National Archives and Records Administration, in the Code of Federal Regulations Title 36, Part 1224, Files Management; and the Federal Information Resources Management Regulation, Subpart 201-45.108, Files Management. It is intended to provide a standardized classification and filing scheme to achieve maximum uniformity and ease in maintaining and using agency records. It is a framework for consistent organization of information in an arrangement that will be useful to current and future researchers. The NASA Uniform Files Index coding structure is composed of the subject classification table used for NASA management directives and the subject groups in the NASA scientific and technical information system. It is designed to correlate files throughout NASA and it is anticipated that it may be useful with automated filing systems. It is expected that in the conversion of current files to this arrangement it will be necessary to add tertiary subjects and make further subdivisions under the existing categories. Established primary and secondary subject categories may not be changed arbitrarily. Proposals for additional subject categories of NASA-wide applicability, and suggestions for improvement in this handbook, should be addressed to the Records Program Manager at the pertinent installation who will forward it to the NASA Records Management Office, Code NTR, for approval. This handbook is issued in loose-leaf form and will be revised by page changes.

  1. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan R. (Editor); Henderson, Robin N. (Technical Monitor)

    2000-01-01

    The Fiscal Year 1999 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1999 and highlights of the ground-and-flight research are provided.

  2. The AEC-NASA Nuclear Rocket Program

    NASA Astrophysics Data System (ADS)

    Finger, Harold B.

    2002-01-01

    The early days and years of the National Aeronautics and Space Administration (NASA), its assigned missions its organization and program development, provided major opportunities for still young technical people to participate in and contribute to making major technological advances and to broaden and grow their technical, management, and leadership capabilities for their and our country's and the world's benefit. Being one of those fortunate beneficiaries while I worked at NASA's predecessor, the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland and then when I was transferred to the NASA Headquarters on October 1, 1958, the day NASA was formally activated, this paper will describe some of my experiences and their significant results, including the personal benefits I derived from that fabulous period of our major national accomplishments. Although I had a broad range of responsibility in NASA which changed and grew over time, I concentrate my discussion in this paper on those activities conducted by NASA and the Atomic Energy Committee (AEC) in the development of the technology of nuclear rocket propulsion to enable the performance of deep space missions. There are two very related but distinct elements of this memoir. One relates to NASA's and the U.S. missions in those very early years and some of the technical and administrative elements as well as the political influences and interagency activities, including primarily the AEC and NASA, as well as diverse industrial and governmental capabilities and activities required to permit the new NASA to accomplish its assigned mission responsibilities. The other concerns the more specific technical and management assignments used to achieve the program's major technological successes. I will discuss first, how and why I was assigned to manage those nuclear rocket propulsion program activities and, then, how we achieved our very significant and successful program

  3. NASA total quality management 1990 accomplishments report

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's efforts in Total Quality Management are based on continuous improvement and serve as a foundation for NASA's present and future endeavors. Given here are numerous examples of quality strategies that have proven effective and efficient in a time when cost reduction is critical. These accomplishment benefit our Agency and help to achieve our primary goal, keeping American in the forefront of the aerospace industry.

  4. Organizational Risk and Opportunity Management: Concepts and Processes for NASA's Consideration

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher

    2016-01-01

    The focus of this report is on the development of a framework and overall approach that serves the interests of nonprofit and Government organizations like NASA that focus on developing and/or applying new technology (henceforth referred to as organizations like NASA). These interests tend to place emphasis on performing services and achieving scientific and technical gains more than on achieving financial investment goals, which is the province of commercial enterprises. In addition, the objectives of organizations like NASA extend to institutional development and maintenance, financial health, legal and reputational protection, education and partnerships, and mandated milestone achievements. This report discusses the philosophical underpinnings of OROM for organizations like NASA, the integration of OROM with existing management processes, and the nature of the activities that are performed to implement OROM within this context. The proposed framework includes a set of core principles that would be essential to any successful OROM approach, along with some features that are currently under development and are continuing to evolve. The report is intended to foster discussion of OROM at NASA in order to reach a consensus on the optimum approach for the agency.

  5. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, second from right, talks about her experiences with Cassini during the Cassini NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the engineering panel was Cassini program manager at JPL, Earl Maize, right, guidance and control engineer for the Cassini mission at Saturn, Luis Andrade, second from left, and mission planner for the Cassini mission at Saturn, Molly Bittner, left. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini project scientist at JPL, Linda Spilker, left, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, second from left, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, second from right, and Cassini assistant project science systems engineer Morgan Cable, right, participate in a Cassini science panel discussion during the Cassini NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. F-18 chase craft with NASA test pilots Schneider and Fulton

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ed Schneider, (left), is the project pilot for the F-18 High Angle of Attack program at NASA's Dryden Flight Research Center, Edwards, California. He has been a NASA research pilot at Dryden since 1983. In addition to his assignment with the F-18 High Angle of Attack program, Schneider is a project pilot for the F-15B aeronautical research aircraft, the NASA NB-52B launch aircraft, and the SR-71 'Blackbird' aircraft. He is a Fellow and was the 1994 President of the Society of Experimental Test Pilots. In 1996 he was awarded the NASA Exceptional Service Medal. Schneider is seen here with Fitzhugh L. Fulton Jr., (right), who was a civilian research pilot at Dryden. from August 1, 1966, until July 3, 1986, following 23 years of service as a pilot in the U.S. Air Force. Fulton was the project pilot on all early tests of the 747 Shuttle Carrier Aircraft (SCA) used to air launch the Space Shuttle prototype Enterprise in the Approach and Landing Tests (ALT) at Dryden in l977. For his work in the ALT program, Fulton received NASA's Exceptional Service Medal. He also received the Exceptional Service Medal again in 1983 for flying the 747 SCA during the European tour of the Space Shuttle Enterprise. During his career at Dryden, Fulton was project pilot on NASA's NB-52B launch aircraft used to air launch a variety of piloted and unpiloted research aircraft, including the X-15s and lifting bodies. He flew the XB-70 prototype supersonic bomber on both NASA-USAF tests and NASA research flights during the late 1960s, attaining speeds exceeding Mach 3. He was also a project pilot on the YF-12A and YF-12C research program from April 14, 1969, until September 25, 1978. The F/A-18 Hornet seen behind them is used primarily as a safety chase and support aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. As support aircraft, the F-18's are used for safety chase, pilot proficiency and aerial photography. As a safety chase aircraft, F-18's, flown by research pilots

  8. NASA Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1999-01-01

    The Fiscal Year 1998 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1998 and highlights of the ground- and-flight-based research are provided.

  9. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  10. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  11. Standards of conduct for NASA special government employees

    NASA Technical Reports Server (NTRS)

    1967-01-01

    NASA regulations prescribing standards of conduct for all NASA employees, including special government employees, were approved by the Civil Service Commission on September 19, 1967, and by the Administrator on October 12, 1967, and were published in the Federal Register (32 F.R. 14648-14659) on October 21, 1967. The standards of conduct regulations are issued under Executive Order 11222 of May 11, 1965 (30 F.R. 6469, 3 C.F.R. 1965 Supp.; 5 C.F.R. 735.104), and Chapter 735 of the Federal Personnel Manual. For the convenience of special government employees, those portions of the NASA standards of conduct regulations which are applicable only to special government employees, Part F and Appendixes E, F, and G, are reissued in this handbook. Except for references to 'parts,' 'subparts,' 'sections,' etc., the text is identical to that published in the Federal Register.

  12. Bibliography of NASA published reports on general aviation, 1975 to 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography lists 478 documents which relate to all heavier-than-air fixed wing aircraft exclusive of military types and those used for commercial air transport. An exception is the inclusion of commuter transport aircraft types within the general aviation category. NASA publications included in this bibliography are: conference publications (CP), reference publications (RP), technical memorandums (TM, TMX), technical notes (TN), technical papers (TP), and contractor reports (CR). In addition, papers and articles on NASA general aviation programs published by technical societies (AIAA, SAE, etc.) are included, as well as those listed in NASA's Scientific and Technical Aerospace Reports (STAR) Journal. Author and subject indexes are also provided to facilitate use of the bibliography.

  13. NASA cancels carbon monitoring research program

    NASA Astrophysics Data System (ADS)

    Voosen, Paul

    2018-05-01

    The administration of President Donald Trump has waged a broad attack on climate science conducted by NASA, including proposals to cut the budget of earth science research and kill off the Orbiting Carbon Observatory 3 mission. Congress has fended these attacks off—with one exception. NASA has moved ahead with plans to end the Carbon Monitoring System, a $10-million-a-year research line that has helped stitch together observations of sources and sinks of methane and carbon dioxide into high-resolution models of the planet's flows of carbon, the agency confirmed to Science. The program, begun in 2010, has developed tools to improve estimates of carbon stocks in forests, especially, from Alaska to Indonesia. Ending it, researchers say, will complicate future efforts to monitor and verify national emission cuts stemming from the Paris climate deal.

  14. NASA Space Engineering Research Center for VLSI System Design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This annual report outlines the activities of the past year at the NASA SERC on VLSI Design. Highlights for this year include the following: a significant breakthrough was achieved in utilizing commercial IC foundries for producing flight electronics; the first two flight qualified chips were designed, fabricated, and tested and are now being delivered into NASA flight systems; and a new technology transfer mechanism has been established to transfer VLSI advances into NASA and commercial systems.

  15. State of NASA: How Cool Is That?

    NASA Image and Video Library

    2018-02-13

    On Feb. 12, NASA centers across the country hosted “State of NASA” events, following President Trump’s Fiscal Year 2019 budget proposal delivery to the U.S. Congress. The events included an address, by acting NASA Administrator Robert Lightfoot, to the agency’s workforce, from NASA’s Marshall Space Flight Center, in Huntsville, Alabama. During his speech, Lightfoot highlighted how the budget would help the agency achieve its goals for space exploration.

  16. Overhauling, updating and augmenting NASA spacelink electronic information system

    NASA Technical Reports Server (NTRS)

    Blake, Jean A.

    1991-01-01

    NASA/Spacelink is a collection of NASA information and educational materials stored on a computer at the MSFC. It is provided by the NASA Educational Affairs Division and is operated by the Education Branch of the Marshall Center Public Affairs Office. It is designed to communicate with a wide variety of computers and modems, especially those most commonly found in classrooms and homes. It was made available to the public in February, 1988. The system may be accessed by educators and the public over regular telephone lines. NASA/Spacelink is free except for the cost of long distance calls. Overhauling and updating Spacelink was done to refurbish NASA/Spacelink, a very valuable resource medium. Several new classroom activities and miscellaneous topics were edited and entered into Spacelink. One of the areas that received a major overhaul (under the guidance of Amos Crisp) was the SPINOFFS BENEFITS, the great benefits resulting from America's space explorations. The Spinoff Benefits include information on a variety of topics including agriculture, communication, the computer, consumer, energy, equipment and materials, food, health, home, industry, medicine, natural resources, public services, recreation, safety, sports, and transportation. In addition to the Space Program Spinoff Benefits, the following is a partial list of some of the material updated and introduced: Astronaut Biographies, Miscellaneous Aeronautics Classroom Activities, Miscellaneous Astronomy Classroom Activities, Miscellaneous Rocketry Classroom Activities, Miscellaneous Classroom Activities, NASA and Its Center, NASA Areas of Research, NASA Patents, Licensing, NASA Technology Transfer, Pictures from Space Classroom Activities, Status of Current NASA Projects, Using Art to Teach Science, and Word Puzzles for Use in the Classroom.

  17. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  18. How Do Supports from Parents, Teachers, and Peers Influence Academic Achievement of Twice-Exceptional Students

    ERIC Educational Resources Information Center

    Wang, Clare Wen; Neihart, Maureen

    2015-01-01

    This study investigated how perceived external factors such as supports from parents and teachers, and influences from peers contributed to the academic successes and failures of Singaporean twice-exceptional (2e) students. A total of six 2e participants from one secondary school in Singapore voluntarily participated in the study. This study used…

  19. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    High magnification of view of tumor cells aggregate on microcarrier beads, illustrting breast cells with intercellular boundaires on bead surface and aggregates of cells achieving 3-deminstional growth outward from bead after 56 days of culture in a NASA Bioreactor. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida.

  20. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    NASA Astrophysics Data System (ADS)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  1. Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties.

    PubMed

    Zhao, Hewei; Yue, Yonghai; Guo, Lin; Wu, Juntao; Zhang, Youwei; Li, Xiaodong; Mao, Shengcheng; Han, Xiaodong

    2016-07-01

    Ceramic/polymer composite equipped with 3D interlocking skeleton (3D IL) is developed through a simple freeze-casting method, exhibiting exceptionally light weight, high strength, toughness, and shock resistance. Long-range crack energy dissipation enabled by 3D interlocking structure is considered as the primary reinforcing mechanism for such superior properties. The smart composite design strategy should hold a place in developing future structural engineering materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-22

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements. NASA Trained Alabama Lead Teachers, (LtoR) Jacquelyn Adams, Arlinda Davis,Timothy Johnson,Laura Crowe demonstrate how rocket boosters work.

  3. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  4. Explore The NASA Safety Center

    NASA Image and Video Library

    2015-07-01

    The NASA Safety Center (NSC) reports to NASA’s Office of Safety and Mission Assurance and supports the Safety and Mission Assurance (SMA) requirements of NASA’s portfolio of programs and projects. The NSC focuses on development of the personnel, processes and tools needed for the safe and successful achievement of NASA’s strategic goals.

  5. NASA total quality management 1989 accomplishments report

    NASA Technical Reports Server (NTRS)

    Tai, Betty P. (Editor); Stewart, Lynne M. (Editor)

    1990-01-01

    NASA and contractor employees achieved many notable improvements in 1989. The highlights of those improvements, described in this seventh annual Accomplishments Report, demonstrate that the people who support NASA's activities are getting more involved in quality and continuous improvement efforts. Their gains solidly support NASA's and this Nation's goal to remain a leader in space exploration and in world-wide market competition, and, when communicated to others through avenues such as this report, foster improvement efforts across government and industry. The principles in practice which led to these process refinements are important cultural elements to any organization's productivity and quality efforts. The categories in this report reflect NASA principles set forth in the 1980's and are more commonly known today as Total Quality Management (TQM): top management leadership and support; strategic planning; focus on the customer; employee training and recognition; employee empowerment and teamwork; measurement and analysis; and quality assurance.

  6. NASA thesaurus. Volume 1: Hierarchical Listing

    NASA Technical Reports Server (NTRS)

    1988-01-01

    There are over 17,000 postable terms and nearly 4,000 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions.

  7. NASA thesaurus. Volume 1: Hierarchical listing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    There are 16,835 postable terms and 3,765 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary.

  8. NASA Thesaurus. Volume 1: Hierarchical listing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    There are 16,713 postable terms and 3,716 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary.

  9. Jessica Watkins/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; Caltech postdoctoral fellow Jessica Watkins talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  10. Warren Hoburg/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; MIT assistant professor Warren Hoburg talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  11. Frank Rubio/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; U.S. Army Major Frank Rubio talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  12. Jasmin Moghbeli/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; U.S. Marine Corps Major Jasmin Moghbeli talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  13. Robb Kulin/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; SpaceX senior manager for flight reliability Robb Kulin talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  14. Zena Cardman/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-21

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; National Science Foundation graduate research fellow Zena Cardman talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  15. Raja Chari/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-21

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; U.S. Air Force Lieutenant Colonel Raja Chari talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  16. Jonny Kim/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; Dr. Jonny Kim talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  17. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-22

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements. Astronaut Tracy Dyson, Alabama Governor Kay Ivey, and MSFC Director pose with proclamation signed by Governor Ivey declaring February 22, 2108, as NASA Day

  18. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

  19. NASA FDL: Accelerating Artificial Intelligence Applications in the Space Sciences.

    NASA Astrophysics Data System (ADS)

    Parr, J.; Navas-Moreno, M.; Dahlstrom, E. L.; Jennings, S. B.

    2017-12-01

    NASA has a long history of using Artificial Intelligence (AI) for exploration purposes, however due to the recent explosion of the Machine Learning (ML) field within AI, there are great opportunities for NASA to find expanded benefit. For over two years now, the NASA Frontier Development Lab (FDL) has been at the nexus of bright academic researchers, private sector expertise in AI/ML and NASA scientific problem solving. The FDL hypothesis of improving science results was predicated on three main ideas, faster results could be achieved through sprint methodologies, better results could be achieved through interdisciplinarity, and public-private partnerships could lower costs We present select results obtained during two summer sessions in 2016 and 2017 where the research was focused on topics in planetary defense, space resources and space weather, and utilized variational auto encoders, bayesian optimization, and deep learning techniques like deep, recurrent and residual neural networks. The FDL results demonstrate the power of bridging research disciplines and the potential that AI/ML has for supporting research goals, improving on current methodologies, enabling new discovery and doing so in accelerated timeframes.

  20. NASA's contributions to patient monitoring, appendix

    NASA Technical Reports Server (NTRS)

    Murray, D. M.; Siemens, W. D.

    1971-01-01

    Health care problems, and markets for patient monitoring equipment are discussed along with contributions to all phases of patient monitoring, and technology transfer to nonaerospace problems. Health care medical requirements, and NASA achievements in patient monitoring are described, and a summary of the technology transfer is included.

  1. NASA's Commercial Communication Technology Program

    NASA Technical Reports Server (NTRS)

    Bagwell, James W.

    1998-01-01

    Various issues associated with "NASA's Commercial Communication Technology Program" are presented in viewgraph form. Specific topics include: 1) Coordination/Integration of government program; 2) Achievement of seamless interoperable satellite and terrestrial networks; 3) Establishment of program to enhance Satcom professional and technical workforce; 4) Precompetitive technology development; and 5) Effective utilization of spectrum and orbit assets.

  2. NASA advanced cryocooler technology development program

    NASA Astrophysics Data System (ADS)

    Coulter, Daniel R.; Ross, Ronald G., Jr.; Boyle, Robert F.; Key, R. W.

    2003-03-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Over the years, NASA has developed new cryocooler technologies for a wide variety of space missions. Recent achievements include the NCS, AIRS, TES and HIRDLS cryocoolers, and miniature pulse tube coolers at TRW and Lockheed Martin. The largest technology push within NASA right now is in the temperature range of 4 to 10 K. Missions such as the Next Generation Space Telescope (NGST) and Terrestrial Planet Finder (TPF) plan to use infrared detectors operating between 6-8 K, typically arsenic-doped silicon arrays, with IR telescopes from 3 to 6 meters in diameter. Similarly, Constellation-X plans to use X-ray microcalorimeters operating at 50 mK and will require ~6 K cooling to precool its multistage 50 mK magnetic refrigerator. To address cryocooler development for these next-generation missions, NASA has initiated a program referred to as the Advanced Cryocooler Technology Development Program (ACTDP). This paper presents an overview of the ACTDP program including programmatic objectives and timelines, and conceptual details of the cooler concepts under development.

  3. Working as an Electronics Engineer at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Chan, Patrick

    2011-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  4. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Image and Video Library

    2009-12-02

    Apollo 13 astronaut and Biloxi native Fred Haise Jr. was honored for a lifetime of achievement with NASA's Ambassador of Exploration Award during a Dec. 2 ceremony at Gorenflo Elementary School in Biloxi. Haise subsequently presented the moon rock award to Gorenflo for display at the school. Participating in the ceremony were (l to r): Gorenflo Principal Tina Thompson, NASA Administrator Charles Bolden, Haise, Biloxi Public School District Superintendent Paul Tisdale and Stennis Director Gene Goldman.

  5. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  6. NASA and Education

    NASA Technical Reports Server (NTRS)

    1990-01-01

    President Bush endorsed a package of six goals developed by the governors of the 50 states, among them making the United States first in the world in mathematics and science achievement. The crux of the technical manpower problem is that too few people in the workforce today have the skills required to function in a technologically advanced society. All over the U.S., government, industry and academic organizations, individually and in concert, at the national, state and local levels, are accelerating efforts to find remedies for the educational and training maladies that threaten America's scientific and technological future. NASA is among the leading education promoting organizations and the agency is expanding its effort. In May 1990, NASA and the Department of Energy concluded an agreement for a cooperative program directed at encouraging more U.S. students to pursue careers in science, engineering and mathematics, and at improving the instructional process in those areas at the precollege and university levels.

  7. Academic Self-Concept and Academic Self-Efficacy: Self-Beliefs Enable Academic Achievement of Twice-Exceptional Students

    ERIC Educational Resources Information Center

    Wang, Clare Wen; Neihart, Maureen

    2015-01-01

    Many studies have reported that twice-exceptional (2e) students were vulnerable in psychological traits and exhibited low-academic self-concept and academic self-efficacy. Such vulnerability may cause their academic failures. This study applied interpretative phenomenological analysis (IPA), a qualitative approach to investigate the perceptions of…

  8. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  9. Shifting Paradigms to Better Serve Twice-Exceptional African-American Learners

    ERIC Educational Resources Information Center

    Owens, Charissa M.; Ford, Donna Y.; Lisbon, April J.; Owens, Michael T.

    2016-01-01

    Existing research on students with twice-exceptional abilities concentrates on strategies to improve the educational experiences of individuals who demonstrate the comorbid presence of a talent for high academic achievement (often considered a strength) and a disability (often considered a weakness). However, this body of work typically excludes…

  10. ICAT and the NASA technology transfer process

    NASA Technical Reports Server (NTRS)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  11. Exploring NASA GES DISC Data with Interoperable Services

    NASA Technical Reports Server (NTRS)

    Zhao, Peisheng; Yang, Wenli; Hegde, Mahabal; Wei, Jennifer C.; Kempler, Steven; Pham, Long; Teng, William; Savtchenko, Andrey

    2015-01-01

    Overview of NASA GES DISC (NASA Goddard Earth Science Data and Information Services Center) data with interoperable services: Open-standard and Interoperable Services Improve data discoverability, accessibility, and usability with metadata, catalogue and portal standards Achieve data, information and knowledge sharing across applications with standardized interfaces and protocols Open Geospatial Consortium (OGC) Data Services and Specifications Web Coverage Service (WCS) -- data Web Map Service (WMS) -- pictures of data Web Map Tile Service (WMTS) --- pictures of data tiles Styled Layer Descriptors (SLD) --- rendered styles.

  12. NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

    NASA Image and Video Library

    2016-12-08

    A series of test firings like this one in late August brought a group of engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, a big step closer to their goal of a 100-percent 3-D printed rocket engine, said Andrew Hanks, test lead for the additively manufactured demonstration engine project. The main combustion chamber, fuel turbopump, fuel injector, valves and other components used in the tests were of the team's new design, and all major engine components except the main combustion chamber were 3-D printed. (NASA/MSFC)

  13. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  14. Overview of NASA MSFC IEC Federated Engineering Collaboration Capability

    NASA Technical Reports Server (NTRS)

    Moushon, Brian; McDuffee, Patrick

    2005-01-01

    The MSFC IEC federated engineering framework is currently developing a single collaborative engineering framework across independent NASA centers. The federated approach allows NASA centers the ability to maintain diversity and uniqueness, while providing interoperability. These systems are integrated together in a federated framework without compromising individual center capabilities. MSFC IEC's Federation Framework will have a direct affect on how engineering data is managed across the Agency. The approach is directly attributed in response to the Columbia Accident Investigation Board (CAB) finding F7.4-11 which states the Space Shuttle Program has a wealth of data sucked away in multiple databases without a convenient way to integrate and use the data for management, engineering, or safety decisions. IEC s federated capability is further supported by OneNASA recommendation 6 that identifies the need to enhance cross-Agency collaboration by putting in place common engineering and collaborative tools and databases, processes, and knowledge-sharing structures. MSFC's IEC Federated Framework is loosely connected to other engineering applications that can provide users with the integration needed to achieve an Agency view of the entire product definition and development process, while allowing work to be distributed across NASA Centers and contractors. The IEC DDMS federation framework eliminates the need to develop a single, enterprise-wide data model, where the goal of having a common data model shared between NASA centers and contractors is very difficult to achieve.

  15. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  16. A systems approach to the management of large projects: Review of NASA experience with societal implications

    NASA Technical Reports Server (NTRS)

    Vaccaro, M. J.

    1973-01-01

    The application of the NASA type management approach to achieve objectives in other fields is considered. The NASA management outlook and the influences of the NASA environment are discussed along with project organization and management, and applications to socio-economic projects.

  17. NASA Update

    NASA Image and Video Library

    2010-04-08

    "NASA Update" program with NASA Administrator Charles Bolden, NASA Deputy Administrator Lori Garver and NASA Acting Asistant Administrator for Public Affairs Bob Jacobs as moderator, NASA Headquarters, Thursday, April 8, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)

  18. The NASA Computational Fluid Dynamics (CFD) program - Building technology to solve future challenges

    NASA Technical Reports Server (NTRS)

    Richardson, Pamela F.; Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1993-01-01

    This paper presents the NASA Computational Fluid Dynamics program in terms of a strategic vision and goals as well as NASA's financial commitment and personnel levels. The paper also identifies the CFD program customers and the support to those customers. In addition, the paper discusses technical emphasis and direction of the program and some recent achievements. NASA's Ames, Langley, and Lewis Research Centers are the research hubs of the CFD program while the NASA Headquarters Office of Aeronautics represents and advocates the program.

  19. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  20. Nasa university program review conference. summary report, mar. 1 - 3, 1965

    NASA Technical Reports Server (NTRS)

    Montgomery, D. J.

    1965-01-01

    The purpose of the NASA University Program Review Conference was to describe the nature of the Program, the manner in which it is being conducted, the results that it is producing, and the impact it may be having. The presentations, except for some expository papers by NASA offi- cials, were made by members of the university and nonprofit community. ference message as it has come to me, a university professor spending a year in making a study of NASA-University relations under a NASA contract with my institution. In preparing the report, my guiding principle has been to try to maximize its usefulness by making it accurate, brief, and prompt. These qualities are largely incompatible, and I am sure that the result of my search for an optimum compromise will please no one. Open editorializing is mainly confined to a brief section constituting my Evaluation of Program. The complete transcript will shortly be available, to stand as the authoritative source for statements that anyone may wish to attribute to the speakers.

  1. Loral O’Hara/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; Woods Hole Oceanographic Institution research engineer Loral O’Hara talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  2. NASA Centers and Universities Collaborate Through Smallsat Technology Partnerships

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2018-01-01

    The Small Spacecraft Technology (SST) Program within the NASA Space Technology Mission Directorate is chartered develop and demonstrate the capabilities that enable small spacecraft to achieve science and exploration missions in "unique" and "more affordable" ways. Specifically, the SST program seeks to enable new mission architectures through the use of small spacecraft, to expand the reach of small spacecraft to new destinations, and to make possible the augmentation existing assets and future missions with supporting small spacecraft. The SST program sponsors smallsat technology development partnerships between universities and NASA Centers in order to engage the unique talents and fresh perspectives of the university community and to share NASA experience and expertise in relevant university projects to develop new technologies and capabilities for small spacecraft. These partnerships also engage NASA personnel in the rapid, agile and cost-conscious small spacecraft approaches that have evolved in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.

  3. Reoptimization of the Ohio State University radio telescope for the NASA SETI program

    NASA Technical Reports Server (NTRS)

    Dixon, R. S.

    1991-01-01

    The Ohio State University radiotelescope is the second largest radio telescope in the United States, equivalent in collecting area (2200 sq m) to a 175-foot diameter dish. For the past 17 years it has been dedicated fulltime to SETI, and it is now being considered by NASA for selection as the NASA dedicated SETI observatory. The telescope was originally designed, optimized, and used as an all-sky survey instrument to create detailed maps and catalogs of the radio astronomical sky. For the SETI Program, some re-optimizations are required. Right ascension tracking for one to two hours (depending on the declination) was achieved by exploiting the exceptionally large f/d ratio of the telescope. The feed horns were mounted on a large moveable, rubber-tired cart which is capable of a total motion of 100 feet. The cart can carry many horns, making possible simultaneous observations at many sky directions and frequency ranges. Rapid declination movement and its automation will be accomplished through simplification of the existing braking system, and replacement of older mechanical sensors by modern electronic inclinometers and proximity detectors. Circular polarization capability will be achieved through an increase in the number of horizontal wires in the reflector mesh, or addition of a finer mesh on top of the existing one. The telescope has great inherent resistance to radio frequency interference, due to its ground-mounted feed horns and shielding by the large reflectors of half the horizon. The resistance was recently increased further by installation of rolled-edges and diffraction-trapping gratings on the feed horns. If further shielding should be required, inexpensive side shields could be added to the telescope, making it a totally closed structure on all four sides.

  4. NASA Schedule Management Handbook

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  5. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and NASA Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  6. A design rationale for NASA TileWorld

    NASA Technical Reports Server (NTRS)

    Philips, Andrew B.; Swanson, Keith J.; Drummond, Mark E.; Bresina, John L.

    1991-01-01

    Automated systems that can operate in unrestricted real-world domains are still well beyond current computational capabilities. This paper argues that isolating essential problem characteristics found in real-world domains allows for a careful study of how particular control systems operate. By isolating essential problem characteristics and studying their impact on autonomous system performance, we should be able to more quickly deliver systems for practical real-world problems. For our research on planning, scheduling, and control, we have selected three particular domain attributes to study: exogenous events, uncertain action outcome, and metric time. We are not suggesting that studies of these attributes in isolation are sufficient to guarantee the obvious goals of good methodology, brilliant architectures, or first-class results; however, we are suggesting that such isolation facilitates the achievement of these goals. To study these attributes, we have developed the NASA TileWorld. We describe the NASA TileWorld simulator in general terms, present an example NASA TileWorld problem, and discuss some of our motivations and concerns for NASA TileWorld.

  7. Support of NASA quality requirements by defense contract administration services regions

    NASA Technical Reports Server (NTRS)

    Farrar, Hiram D.

    1966-01-01

    Defense Contract Administration Services Regions (DCASR) quality assurance personnel performing under NASA Letters of Delegation must work closely with the assigned technical representative of the NASA centers. It is realized that technical personnel from the NASA Centers cannot make on-site visits as frequently as they would like to. However, DCASR quality assurance personnel would know the assigned NASA technical representative and should contact him when problems arise. The technical representative is the expert on the hardware and should be consulted on any problem area. It is important that the DCASR quality assurance personnel recommend to the delegating NASA Center any new or improved methods of which they may be aware which would assist in achieving the desired quality and reliability in NASA hardware. NASA expects assignment of competent personnel in the Quality Assurance functional area and is not only buying the individual's technical skill, but also his experience. Suggestions by field personnel can many times up-grade the quality or the hardware.

  8. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George R.

    1996-01-01

    It is widely known that the average American citizen has either no idea or the wrong impression of what NASA is doing. The most common impression is that NASA's sole mission is to build and launch spacecraft and that the everyday experience of the common citizen would be impacted very little if NASA failed to exist altogether. Some feel that most of NASA's efforts are much too expensive and that the money would be better used on other efforts. Others feel that most of NASA's efforts either fail altogether or fail to meet their original objectives. Yet others feel that NASA is so mired in bureaucracy that it is no longer able to function. The goal of the NASA Ambassadors Program (NAP) is to educate the general populace as to what NASA's mission and goals actually are, to re-excite the "man on the street" with NASA's discoveries and technologies, and to convince him that NASA really does impact his everyday experience and that the economy of the U.S. is very dependent on NASA-type research. Each of the NASA centers currently run a speakers bureau through its Public Affairs Office (PAO). The speakers, NASA employees, are scheduled on an "as available" status and their travel is paid by NASA. However, there are only a limited number of them and their message may be regarded as being somewhat biased as they are paid by NASA. On the other hand, there are many members of NASA's summer programs which come from all areas of the country. Most of them not only believe that NASA's mission is important but are willing and able to articulate it to others. Furthermore, in the eyes of the public, they are probably more effective as ambassadors for NASA than are the NASA employees, as they do not derive their primary funding from it. Therefore it was decided to organize materials for them to use in presentations to general audiences in their home areas. Each person who accepted these materials was to be called a "NASA Ambassador".

  9. NASA Science Served Family Style

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Mitchell, S.; Drobnes, E.

    2010-01-01

    Family oriented innovative programs extend the reach of many traditional out-of-school venues to involve the entire family in learning in comfortable and fun environments. Research shows that parental involvement is key to increasing student achievement outcomes, and family-oriented programs have a direct impact on student performance. Because families have the greatest influence on children's attitudes towards education and career choices, we have developed a Family Science program that provides families a venue where they can explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science. NASA Family Science Night strives to change the way that students and their families participate in science, within the program and beyond. After three years of pilot implementation and assessment, our evaluation data shows that Family Science Night participants have positive change in their attitudes and involvement in science.  Even after a single session, families are more likely to engage in external science-related activities and are increasingly excited about science in their everyday lives.  As we enter our dissemination phase, NASA Family Science Night will be compiling and releasing initial evaluation results, and providing facilitator training and online support resources. Support for NASA Family Science Nights is provided in part through NASA ROSES grant NNH06ZDA001N.

  10. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  11. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, right, looks on as NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  12. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, second right on stage, speaks as NASA Administrator Charles F. Bolden Jr. looks on during a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  13. NASA's Microgravity Fluid Physics Strategic Research Roadmap

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Singh, Bhim S.

    2004-01-01

    The Microgravity Fluid Physics Program at NASA has developed a substantial investigator base engaging a broad crosssection of the U.S. scientific community. As a result, it enjoys a rich history of many significant scientific achievements. The research supported by the program has produced many important findings that have been published in prestigious journals such as Science, Nature, Journal of Fluid Mechanics, Physics of Fluids, and many others. The focus of the program so far has primarily been on fundamental scientific studies. However, a recent shift in emphasis at NASA to develop advanced technologies to enable future exploration of space has provided motivation to add a strategic research component to the program. This has set into motion a year of intense planning within NASA including three workshops to solicit inputs from the external scientific community. The planning activities and the workshops have resulted in a prioritized list of strategic research issues along with a corresponding detailed roadmap specific to fluid physics. The results of these activities were provided to NASA s Office of Biological and Physical Research (OBPR) to support the development of the Enterprise Strategy document. This paper summarizes these results while showing how the planned research supports NASA s overall vision through OBPR s organizing questions.

  14. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  15. The NASA Scientific and Technical Information Program: Prologue to the Future

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA STI Program offers researchers an infrastructure of people and systems that facilitates access to STI; worldwide. The Program is also NASA's institutional mechanism for disseminating the results of its research and developing activities. Through discussions in 1991, the STI Program formulated its Strategic Plan. The plan gives the Program a renewed sense of direction by focusing on future opportunities, customer requirements and Program goals, along with the changes needed to achieve those goals. The Program provides users access to a massive flow of STI which, in fact, represents the largest collection of aeronautical and space science information in the world. The STI Program products and services are outlined, along with the NASA centers, international operations, and the fact that total quality management drives NASA wide program developments. As is detailed, the NASA STI Program is using its resources as effectively as possible to meet the missing needs of NASA.

  16. Exceptional responders in conservation.

    PubMed

    Post, Gerald; Geldmann, Jonas

    2017-08-30

    Conservation operates within complex systems with incomplete knowledge of the system and the interventions utilized. This frequently results in the inability to find generally applicable methods to alleviate threats to Earth's vanishing wildlife. One approach used in medicine and the social sciences has been to develop a deeper understanding of positive outliers. Where such outliers share similar characteristics, they may be considered exceptional responders. We devised a 4-step framework for identifying exceptional responders in conservation: identification of the study system, identification of the response structure, identification of the threshold for exceptionalism, and identification of commonalities among outliers. Evaluation of exceptional responders provides additional information that is often ignored in randomized controlled trials and before-after control-intervention experiments. Interrogating the contextual factors that contribute to an exceptional outcome allow exceptional responders to become valuable pieces of information leading to unexpected discoveries and novel hypotheses. © 2017 Society for Conservation Biology.

  17. NASA Update.

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Garver and NASA Administrator Charles Bolden took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  18. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, senior advisor to the NASA Administator, far left, makes a point as he introduces NASA Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  19. Desktop Access to Full-Text NACA and NASA Reports: Systems Developed by NASA Langley Technical Library

    NASA Technical Reports Server (NTRS)

    Ambur, Manjula Y.; Adams, David L.; Trinidad, P. Paul

    1997-01-01

    NASA Langley Technical Library has been involved in developing systems for full-text information delivery of NACA/NASA technical reports since 1991. This paper will describe the two prototypes it has developed and the present production system configuration. The prototype systems are a NACA CD-ROM of thirty-three classic paper NACA reports and a network-based Full-text Electronic Reports Documents System (FEDS) constructed from both paper and electronic formats of NACA and NASA reports. The production system is the DigiDoc System (DIGItal Documents) presently being developed based on the experiences gained from the two prototypes. DigiDoc configuration integrates the on-line catalog database World Wide Web interface and PDF technology to provide a powerful and flexible search and retrieval system. It describes in detail significant achievements and lessons learned in terms of data conversion, storage technologies, full-text searching and retrieval, and image databases. The conclusions from the experiences of digitization and full- text access and future plans for DigiDoc system implementation are discussed.

  20. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  1. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., and Deputy Administrator Lori Garver deliver a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver listens as NASA Administrator Charles Bolden answers a question during a NASA Update on Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Associate Administrator for the Office of Communications Bob Jacobs moderates the NASA Update program, Tuesday, Feb. 15, 2011 at NASA Headquarters in Washington. NASA's 12th Administrator Charles Bolden and Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  4. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hasbrook, Pete

    2016-01-01

    systems mounted on ISS as well as other orbiting spacecraft to improve our understanding of the Earth and its climate. NASA and Roscosmos continue to encourage international scientific cooperation and expanded use of the ISS Laboratory. "Long-term", larger collaborations will achieve scientific objectives that no single national science team or agency can achieve on its own. The joint accomplishments achieved so far have paved the way for a stronger international scientific community and improved results and benefits from ISS.

  5. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  6. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, and Deputy Administrator Lori Garver are seen during their first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  7. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  8. NASA Participates in 5th Annual California Aerospace Week

    NASA Image and Video Library

    2016-03-03

    The fifth annual California Aerospace Days event was recently held at the Capitol in Sacramento. It was an opportunity for NASA's Ames Research Center to showcase some of its key achievements and innovations in the Golden State.

  9. From Ethical Exceptionalism to Ethical Exceptions: The Rule and exception Model and the Changing Meaning of Ethics In German Bioregulation.

    PubMed

    Braun, Kathrin

    2017-12-01

    Germany is an interesting case with respect to the governance of reprogenetics. It has a strong profile in the technosciences and high aims regarding the global bioeconomy, yet her regulation of human genetics, reproductive medicine and embryo research has for a long time been rather restrictive. German biopolitical exceptionalism has often been explained by reference to Catholicism and the legacy of the Nazi past. The Germans, so goes the common story, have learnt the lessons of history and translated them into unconditional respect for human dignity, which in turn translates into unconditional protection of human life, including the human embryo, and the firm repudiation of any eugenic distinction between 'life worth to live' and 'life not worth to live'. This, however, is not the whole story. Alongside deontological strictness we find another strand of governing body politics and reprogenetics in Germany, the rule-and-exception model, running from the mid-1970s abortion law via the 2002 Stem Cell Act to the 2011 regulation of pre-implantation genetic diagnosis. In contrast to the former, that strongly draws on Kant and his concept of human dignity, the latter bears resemblances to Carl Schmitt's concept of state of exception. The article will show that the rule-and-exception model builds the exception into the rule and transforms the meaning and mandate of ethics, namely from safeguarding ethical standards to deciding about the exception. Given that the exception has now tended to become the rule, the question is whether the lessons of history will govern German reprogenetics for much longer. © 2016 John Wiley & Sons Ltd.

  10. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    NASA Technical Reports Server (NTRS)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  11. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  12. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr., left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  13. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver makes a point as she speaks during a NASA Update with Administrator Charles F. Bolden Jr.,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  14. 77 FR 20614 - Petition Requesting Exception from Lead Content Limits; Notice Granting Exception

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Lead Content Limits; Notice Granting Exception AGENCY: U.S. Consumer Product Safety Commission. ACTION... received a petition requesting an exception from the 100 ppm lead content limit under section 101(b) of the... granting an exception to the 100 ppm lead content limit for certain aluminum alloy components of children's...

  15. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  16. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen through a television camera monitor during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  17. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen on a television camera monitor while speaking at his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  18. NASA's Support to Flood Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Murray, J. J.; Stough, T.

    2016-12-01

    The extent of flood and inundation, the impacts on people and infrastructure, and generally the situational awareness on all scales for decision making are areas where NASA is mobilizing scientific results, advanced sensing and technologies, experts and partnerships to support response. NASA has targeted mature application science and ready technology for flood and inundation monitoring and assessment. This includes supporting timely data management and product dissemination with users and partners. Requirements are captured in the form of science-area questions, while solutions measure readiness for use by considering standard tools and approaches that make information more accessible, interoperable, understandable and reliable. The program collaborates with capacity building and areas of education and outreach needed to create and leverage non-traditional partnerships in transdisciplinary areas including socio-economic practice, preparedness and resilience assessment, early warning and forecast response, and emergency management, relief and recovery. The program outcomes also seek alignment with and support to global and community priorities related to water resources and food security. This presentation will examine the achievements of individual projects and the challenges and opportunities of more comprehensive and collaborative teams behind NASA's response to global flooding. Examples from recent event mobilization will be reviewed including to the serious of domestic floods across the south and Midwest United States throughout 2015 and 2016. Progress on the combined use of optical, microwave and SAR remote sensing measurements, topographic and geodetic data and mapping, data sharing practices will be reviewed. Other response case studies will examine global flood events monitored, characterized and supported in various boundary regions and nations. Achievements and future plans will be described for capabilities including global flood modeling, near real

  19. A Status of NASA Rotorcraft Research

    DTIC Science & Technology

    2009-09-01

    approximate threefold range in the values of CP. It has been found useful in many cases to include additional independent variables and group...and improved rotorcraft. These needs include better analysis and better data. Many plans proposed for NASA rotorcraft research are discussed here, to...a successful active noise- control system include : obtaining a clean reference signal with minimal phase jitter; achieving a global reduction of

  20. Assessment of the NASA Astrobiology Institute

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astrobiology is a scientific discipline devoted to the study of life in the universe--its origins, evolution, distribution, and future. It brings together the physical and biological sciences to address some of the most fundamental questions of the natural world: How do living systems emerge? How do habitable worlds form and how do they evolve? Does life exist on worlds other than Earth? As an endeavor of tremendous breadth and depth, astrobiology requires interdisciplinary investigation in order to be fully appreciated and examined. As part of a concerted effort to undertake such a challenge, the NASA Astrobiology Institute (NAI) was established in 1998 as an innovative way to develop the field of astrobiology and provide a scientific framework for flight missions. Now that the NAI has been in existence for almost a decade, the time is ripe to assess its achievements. At the request of NASA's Associate Administrator for the Science Mission Directorate (SMD), the Committee on the Review of the NASA Astrobiology Institute undertook the assignment to determine the progress made by the NAI in developing the field of astrobiology. It must be emphasized that the purpose of this study was not to undertake a review of the scientific accomplishments of NASA's Astrobiology program, in general, or of the NAI, in particular. Rather, the objective of the study is to evaluate the success of the NAI in achieving its stated goals of: 1. Conducting, supporting, and catalyzing collaborative interdisciplinary research; 2. Training the next generation of astrobiology researchers; 3. Providing scientific and technical leadership on astrobiology investigations for current and future space missions; 4. Exploring new approaches, using modern information technology, to conduct interdisciplinary and collaborative research among widely distributed investigators; and 5. Supporting outreach by providing scientific content for use in K-12 education programs, teaching undergraduate classes, and

  1. Analysis of Potential Alternatives to Reduce NASA's Cost of Human Access to Space

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this report is to analyze NASA's potential options for significantly reducing the cost of human access to space. The opinions expressed in this report are based on Hawthorne, Krauss & Associates' ("HKA") interaction with NASA and several of its key contractors over the past nine months. This report is not intended to be an exhaustive quantitative analysis of the various options available to NASA. Instead, its purpose is to outline key decision-related issues that the agency should consider prior to making a decision as to which option to pursue. This report attempts to bring a private-sector perspective to bear on the issue of reducing the cost of human access to space. HKA believes that the key to the NASA's success in reducing those costs over the long-term is the involvement of the private-sector incentives and disciplines--which is achieved only through the assumption of risk by the private sector, not through a traditional contractor relationship--is essential to achieve significant long-term cost reductions.

  2. Accelerating NASA GN&C Flight Software Development

    NASA Technical Reports Server (NTRS)

    Tamblyn, Scott; Henry, Joel; Rapp, John

    2010-01-01

    When the guidance, navigation, and control (GN&C) system for the Orion crew vehicle undergoes Critical Design Review (CDR), more than 90% of the flight software will already be developed - a first for NASA on a project of this scope and complexity. This achievement is due in large part to a new development approach using Model-Based Design.

  3. NASA Releases 'NASA App HD' for iPad

    NASA Image and Video Library

    2012-07-06

    The NASA App HD invites you to discover a wealth of NASA information right on your iPad. The application collects, customizes and delivers an extensive selection of dynamically updated mission information, images, videos and Twitter feeds from various online NASA sources in a convenient mobile package. Come explore with NASA, now on your iPad. 2012 Updated Version - HD Resolution and new features. Original version published on Sept. 1, 2010.

  4. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  5. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  6. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  7. Achieving Supportability on Exploration Missions with In-Space Servicing

    NASA Technical Reports Server (NTRS)

    Bacon, Charles; Pellegrino, Joseph F.; McGuire, Jill; Henry, Ross; DeWeese, Keith; Reed, Benjamin; Aranyos, Thomas

    2015-01-01

    One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface sample to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, reuse and/or repurpose flight hardware, and minimize resources needed for refurbishment. In-space servicing is a means to achieving these goals. By designing a mission architecture that utilizes the concept of in-space servicing (robotic and manned), maximum supportability can be achieved.

  8. NASA Social

    NASA Image and Video Library

    2012-05-19

    A NASA Social follower holds up a mobile device as NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  9. NASA-STD 3001 and the Human Integration Design Handbook (HIDH): Evolution of NASA-STD-3000

    NASA Technical Reports Server (NTRS)

    Pickett, Lynn; Connolly, Janis; Arch, M.; Tillman, Barry; Russo, Dane

    2007-01-01

    The Habitability & Environmental Factors and Space Medicine Divisions have developed the Space Flight Human System Standard (SFHSS) (NASA-STD-3001) to replace NASA-STD-3000 as a new NASA standard for all human spaceflight programs. The SFHSS is composed of 2 volumes. Volume 1, Crew Health, contains medical levels of care, permissible exposure limits, and fitness for duty criteria, and permissible outcome limits as a means of defining successful operating criteria for the human system. Volume 2, Habitability and Environmental Health, contains environmental, habitability and human factors standards. Development of the Human Integration Design Handbook (HIDH), a companion to the standard, is currently under construction and entails the update and revision of NASA-STD-3000 data. This new handbook will, in the fashion of NASA STD-3000, assist engineers and designers in appropriately applying habitability, environmental and human factors principles to spacecraft design. Organized in a chapter-module-element structure, the HIDH will provide the guidance for the development of requirements, design considerations, lessons learned, example solutions, background research, and assist in the identification of gaps and research needs in the disciplines. Subject matter experts have been and continue to be solicited to participate in the update of the chapters. The purpose is to build the HIDH with the best and latest data, and provide a broad representation from experts in industry, academia, the military and the space program. The handbook and the two standards volumes work together in a unique way to achieve the required level of human-system interface. All new NASA programs will be required to meet Volumes 1 and 2. Volume 2 presents human interface goals in broad, non-verifiable standards. Volume 2 also requires that each new development program prepare a set of program-specific human factors requirements. These program-specific human and environmental factors requirements

  10. The NASA Aviation Safety Program: Overview

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  11. NASA Historical Data Book. Volume 5; NASA Launch Systems, Space Transportation, Human Spaceflight and Space Science, 1979-1988

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A. (Compiler)

    1999-01-01

    exploring flight both within and outside the atmosphere. By the 1980s, NASA had established itself as an agency with considerable achievements on record. The decade was marked by the inauguration of the Space Shuttle flights and haunted by the 1986 Challenger accident that temporarily halted the program. The agency also enjoyed the strong support of President Ronald Reagan, who enthusiastically announced the start of both the Space Station program and the National Aerospace Plane program.

  12. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  13. A Path Analysis of Basic Need Support, Self-Efficacy, Achievement Goals, Life Satisfaction and Academic Achievement Level among Secondary School Students

    ERIC Educational Resources Information Center

    Diseth, Age; Danielsen, Anne G.; Samdal, Oddrun

    2012-01-01

    Teachers' support of basic psychological needs, self-efficacy, achievement goals, life satisfaction and academic achievement level was measured in a sample of 240 secondary school students (8th and 10th grades). Correlation analysis showed significant positive relations between all of the variables, except for the relation between need support of…

  14. NASA grievance system: Employee handbook

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This revised handbook updates the minimum provisions of the agency-wide Grievance System and applies to NASA Headquarters and field installations. All grievances initiated on or after June 15, 1981, will be processed under these provisions. NASA recognizes and endorses the importance of bringing to light and adjusting grievances promptly and of treating all employees reasonably and fairly. Achieving these objectives requires great competence, mature judgment, and true willingness to reach a satisfactory solution. Provisions of the NASA Grievance System are directed to this purpose. Grievances and misunderstandings can arise in almost any working situation. It follows then that an employee's initiation of a grievance in good faith should not cast any reflection on the employee's standing with his or her supervisor or loyalty and importance to the organization. At the same time, the initiation of a grievance should not automatically be considered as a reflection on the employee's supervisor or on the general management of the activity. This handbook should be used in conjunction with Office of Personnel Management regulations in 5 CFR Part 771 and Chapter 771 of the Federal Personnel Manual. Installations may issue implementing instructions, e.g. specifying when fact-finding is required or when an unresolved grievance must be referred to a higher level of authority.

  15. George M. Low Trophy: NASA's quality and excellence award

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's major goal is the preservation of America's position as a leader in the aerospace industry. To maintain that status, it is crucial that the products and services we depend upon from NASA contractors, subcontractors, and suppliers meet the highest quality standards to ensure the space program's success. The George M. Low Trophy: NASA's Quality and Excellence Award is the result of NASA's desire to encourage continuous improvement and Total Quality Management (TQM) in the aerospace industry and is awarded to members of NASA's contractor community that have demonstrated sustained excellence, customer orientation, and outstanding achievements in a Total Quality Management (TQM) environment. The purpose in presenting this award is to increase public awareness of the importance of quality and productivity to the nation's aerospace industry and the nation's leadership position overall; encourage domestic business to continuously pursue efforts that enhance quality and increase productivity which will strengthen the nation's competitiveness in the international arena; and provide a forum for sharing the successful techniques and strategies used by applicants with other American organizations. Awards to Rockwell International and Marotta Scientific Controls, Inc. are announced and discussed.

  16. NASA's Aero-Space Technology

    NASA Technical Reports Server (NTRS)

    Milstead, Phil

    2000-01-01

    This presentation reviews the three pillars and the associated goals of NASA's Aero-Space Technology Enterprise. The three pillars for success are: (1) Global Civil Aviation, (2) Revolutionary Technology Leaps, (3) Advanced Space Transportation. The associated goals of the first pillar are to reduce accidents, emissions, and cost, and to increase the aviation system capacity. The goals of the second pillar are to reduce transoceanic travel time, revolutionize general aviation aircraft, and improve development capacity. The goals associated with the third pillar are to reduce the launch cost for low earth orbit and to reduce travel time for planetary missions. In order to meet these goals NASA must provide next-generation design capability for new and or experimental craft which enable a balance between reducing components of the design cycle by up to 50% and or increasing the confidence in design by 50%. These next-generation design tools, concepts, and processes will revolutionize vehicle development. The presentation finally reviews the importance of modeling and simulation in achieving the goals.

  17. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  18. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.

    2006-01-01

    Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.

  19. Fission Power System Technology for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  20. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-21

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements.

  1. NASA Excellence Award for Quality and Productivity 1989 highlights. The 1989 recipient: Lockheed Engineering and Sciences Company

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA Excellence Award for Productivity and Quality is the result of NASA's desire to encourage superior quality and the continuous improvement philosophy in the aerospace industry. It is awarded to NASA contractors, subcontractors, and suppliers who have demonstrated sustained excellence, customer orientation, and outstanding achievements in a total quality management (TQM) environment. The 'highlights' booklet is intended to transfer successful techniques demonstrated by the performance and quality of major NASA contractors.

  2. NASA Education: Yesterday's Dream...Today's Vision...Tomorrow's Hope

    NASA Technical Reports Server (NTRS)

    Winterton, Joyce L.

    2010-01-01

    For 50 years, NASA's journeys into air and space have developed humankind's understanding of the universe, advanced technology breakthroughs, enhanced air travel safety and security, and expanded the frontiers of scientific research. These accomplishments share a common genesis: education. Education is a fundamental element of NASA's activities, reflecting a balanced and diverse portfolio of: Elementary and Secondary Education, Higher Education, e-Education, Informal Education, and Minority University Research and Education Programs (MUREP). Previous experience has shown that implementing exciting and compelling NASA missions are critical to inspiring the next generation of explorers, innovators, and leaders. Through partnerships with the Agency's Mission Directorates, other federal agencies, private industries, scientific research, and education/academic organizations, NASA's unique mission and education initiatives (content, people, and facilities) are helping to spark student interest and to guide them toward careers in science, technology, engineering, and mathematics (STEM). NASA continues to inspire the next generation of explorers, innovators, and future leaders through its educational investments, which are designed to: (1) Strengthen NASA and the Nation's future workforce -- NASA will identify and develop the critical skills and capabilities needed to ensure achievement of exploration, science, and aeronautics. (2) Attract and retain students in STEM disciplines through a progression of educational opportunities for students, teachers, and faculty -- To compete effectively for the minds, imaginations, and career ambitions of America's young people, NASA will focus on engaging and retaining students in STEM education programs to encourage their pursuit of educational disciplines critical to NASA's future engineering, scientific, and technical missions. 3. Engage Americans in NASA's mission -- NASA will build strategic partnerships and links between formal

  3. Exploring Gains in Reading and Mathematics Achievement among Regular and Exceptional Students Using Growth Curve Modeling

    ERIC Educational Resources Information Center

    Shin, Tacksoo; Davison, Mark L.; Long, Jeffrey D.; Chan, Chi-Keung; Heistad, David

    2013-01-01

    Using four-wave longitudinal reading and mathematics data (4th to 7th grades) from a large urban school district, growth curve modeling was used as a tool for examining three research questions: Are achievement gaps closing in reading and mathematics? What are the associations between prior-achievement and growth across the reading and mathematics…

  4. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, Senior Advisor to the NASA Administrator, introduces Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, the agency's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  5. NASA Social

    NASA Image and Video Library

    2011-05-18

    Ed Mango, of the NASA Commercial Crew Office, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  6. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This handbook is designed to promote a better understanding of NASA's interests and the process of doing business with NASA. The document is divided into the following sections: (1) this is NASA; (2) the procurement process; (3) marketing your capabilities; (4) special assistance programs; (5) NASA field installations; (6) sources of additional help; (7) listing of NASA small/minority business personnel; and (8) NASA organization chart.

  7. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  8. The Scientific and Engineering Student Internship (SESI) Program at NASA's GSFC

    NASA Astrophysics Data System (ADS)

    Bruhweiler, F.; Verner, E.; Rabin, D. M.

    2011-12-01

    Through our Scientific and Engineering Student Internship (SESI) program we have provided exceptional research opportunities for undergraduate and graduate students in one of the world's premier research centers dedicated to the Sun and its heliosphere, the Heliophysics Science Division at NASA/Goddard Space Flight Center. NASA/GSFC and the NSF/REU program have funded this activity jointly. These opportunities combine the advantages of the stimulating, multi-disciplinary, environment of a NASA laboratory with the guidance provided by researchers who are, in addition, committed to education and the encouragement of women, under-represented minorities, and students with disabilities. Opportunities also exist for non-U.S. citizens as well. Moreover, the surrounding Washington, DC area provides a variety of social and educational activities for our participating students. Our 19 years of experience has served as an effective catalyst, enabling us to establish a formal program for students interested in Solar and Space Physics at NASA and to develop more NASA-funded opportunities for students, in addition to those funded by NSF/REU awards. This has allowed us to present a combined NSF/REU and NASA-funded program for undergraduates at NASA/GSFC. This synergistic program exposes our student interns to a very wide range of projects and ideas, normally unavailable in other programs. We have had roughly 300 students (about 1/2 being supported by NSF) actively participate in over 200 different research opportunities. These research projects have spanned the spectrum, ranging from theoretical modeling associated with space weather, developing instrumentation for space missions, analysis of spacecraft data, including 'hands-on' experience with sounding rockets and working in the clean environs of GSFC's Detector Development Laboratory. Although SESI is largely a summer program, a number of students, often through other funding sources, continue their research projects during

  9. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Dr. Laurie Leshin, NASA Deputy Associate Administrator Exploration Systems Mission Directortorate, second from right, speaks as Dr. Waleed Abdalati, NASA Chief Scientist, right, Dr. Robert Braun, NASA Chief Technologist, and Leland Melvin, Assoicate Administrator for NASA Education, far left, at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  10. NASA Social

    NASA Image and Video Library

    2012-05-19

    NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  11. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba speaks at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  12. NASA Social

    NASA Image and Video Library

    2012-12-04

    A NASA Social participant tweets during as astronaut Joe Acaba answers questions from the audience at NASA Headquaters, Tuesday, Dec. 4, 2012 in Washington. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  13. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  14. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba, center, greets participants at a behind-the-scenes NASA Social in Washington, Tuesday, Dec. 4, 2012 at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  15. 7th Annual NASA/Contractors Conference on Quality and Productivity: "Total Quality Leadership"

    NASA Technical Reports Server (NTRS)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity on October 12-13, 1990, in Grenelefe, Florida. The panel presentations and keynote speeches revolving around the theme of 'Total Quality Leadership' provided a solid base of understanding of the importance, benefits, and principles of total quality management. The implementation of these strategies is critical if we are to effectively pursue our mission of continuous quality improvement and reliability in our products, processess, and services. The annual NASA/contractors conferences serve as catalysts for achieving success in this mission. The conference was highlighted by the announcement of the first recipients of the George M. Low Trophy: NASA's Quality and Excellence Award. My congratulations go out to all nine finalist organizations and to the two recipients of this prestigious honor: Rockwell Space Systems Division and Marotta Scientific Controls, Inc. (the first small business to achieve this honor). These organizations have demonstrated a commitment to quality that is unsurpassed in the aerospace industry. This report summarizes the presentations and is not intended to be a verbatim proceedings document. You are encouraged to contact the speakers with any requests for further information.

  16. NASA human factors programmatic overview

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.

    1992-01-01

    Human factors addresses humans in their active and interactive capacities, i.e., in the mental and physical activities that they perform and in the contributions they make to achieving the goals of the mission. The overall goal of space human factors in NASA is to support the safety, productivity, and reliability of both the on-board crew and the ground support staff. Safety and reliability are fundamental requirements that human factors shares with other disciplines, while productivity represents the defining contribution of the human factors discipline.

  17. NASA Performance Plan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Government Performance and Results Act (GPRA) passed by Congress and signed by the President in 1993 provides a new tool to improve the efficiency of all Federal agencies. The goals of GPRA are to: Improve citizen confidence in Government performance; Improve Federal program management, effectiveness, and public accountability; and Improve congressional decisionmaking on where to commit the Nation's financial and human resources. The Act directs Executive Branch agencies to develop a customer-focused strategic plan that aligns activities with concrete missions and goals. The first plans were submitted in September 1998 as part of the Fiscal Year 1999 (FY99) budget process. These budget submissions were expected to support the goals expressed in the agency strategic plans. The Act also directs agencies to manage and measure results to justify congressional appropriations and authorizations. Six months after the completion of the fiscal year, agencies will report on the degree of success in achieving the goals and evaluation measures defined in the strategic and performance plans. The plans required by GPRA have been submitted to the Office of Management and Budget (OMB) and to Congress. Copies of NASA plans are available from the Office of Policy and Plans at NASA Headquarters and can be accessed on the i nterinet web sites identified in the Appendix.

  18. NASA Classroom Bioreactor

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  19. The NASA research and technology program on batteries

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1990-01-01

    The NASA research and technology program on batteries is being carried out within the Propulsion, Power and Energy Division (Code RP) of NASA's Office of Aeronautics, Exploration and Technology (OAET). The program includes development of high-performance, long-life, cost-effective primary and secondary (rechargeable) batteries. The NASA OAET battery program is being carried out at Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). LeRC is focusing primarily on nickel-hydrogen batteries (both individual pressure vessel or IPV and bipolar). LeRC is also involved in a planned flight experiment to test a sodium-sulfur battery design. JPL is focusing primarily on lithium rechargeable batteries, having successfully transferred its lithium primary battery technology to the U.S. Air Force for use on the Centaur upper stage. Both LeRC and JPL are studying advanced battery concepts that offer even higher specific energies. The long-term goal is to achieve 100 Wh/kg.

  20. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Dr. Robert Braun, NASA Chief Technologist, second from left, makes a point, as panelists Leland Melvin, Assoicate Administrator for NASA Education, left, Dr. Laurie Leshin, NASA Deputy Associate Administrator Exploration Systems Mission Directortorate, and Dr. Waleed Abdalati, NASA Chief Scientist, right, look on during a panel discussion at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  1. 7 CFR 773.23 - Exception.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Exception. 773.23 Section 773.23 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS SPECIAL APPLE LOAN PROGRAM § 773.23 Exception. The Agency may grant an exception to the...

  2. 7 CFR 773.23 - Exception.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Exception. 773.23 Section 773.23 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS SPECIAL APPLE LOAN PROGRAM § 773.23 Exception. The Agency may grant an exception to the...

  3. 7 CFR 773.23 - Exception.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Exception. 773.23 Section 773.23 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS SPECIAL APPLE LOAN PROGRAM § 773.23 Exception. The Agency may grant an exception to the...

  4. 7 CFR 773.23 - Exception.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Exception. 773.23 Section 773.23 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS SPECIAL APPLE LOAN PROGRAM § 773.23 Exception. The Agency may grant an exception to the...

  5. 7 CFR 773.23 - Exception.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Exception. 773.23 Section 773.23 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS SPECIAL APPLE LOAN PROGRAM § 773.23 Exception. The Agency may grant an exception to the...

  6. 32 CFR 631.4 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Exceptions. 631.4 Section 631.4 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL....4 Exceptions. Requests for exceptions to policies contained in this part will be forwarded to HQDA...

  7. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington engages in social media as he listens to astronaut Joe Acaba answer questions, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  8. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  9. Goal Setting to Achieve Results

    ERIC Educational Resources Information Center

    Newman, Rich

    2012-01-01

    Both districts and individual schools have a very clear set of goals and skills for their students to achieve and master. In fact, except in rare cases, districts and schools develop very detailed goals they wish to pursue. In most cases, unfortunately, only the teachers and staff at a particular school or district-level office are aware of the…

  10. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    NASA Astronaut Don Pettit, speaks about his experience onboard the International Space Station at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  11. 22 CFR 506.7 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Exceptions. 506.7 Section 506.7 Foreign Relations BROADCASTING BOARD OF GOVERNORS PART-TIME CAREER EMPLOYMENT PROGRAM § 506.7 Exceptions. The Director of the Board and the Associate Director for Management may except positions from inclusion in this...

  12. 22 CFR 506.7 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Exceptions. 506.7 Section 506.7 Foreign Relations BROADCASTING BOARD OF GOVERNORS PART-TIME CAREER EMPLOYMENT PROGRAM § 506.7 Exceptions. The Director of the Board and the Associate Director for Management may except positions from inclusion in this...

  13. 22 CFR 506.7 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Exceptions. 506.7 Section 506.7 Foreign Relations BROADCASTING BOARD OF GOVERNORS PART-TIME CAREER EMPLOYMENT PROGRAM § 506.7 Exceptions. The Director of the Board and the Associate Director for Management may except positions from inclusion in this...

  14. 22 CFR 506.7 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Exceptions. 506.7 Section 506.7 Foreign Relations BROADCASTING BOARD OF GOVERNORS PART-TIME CAREER EMPLOYMENT PROGRAM § 506.7 Exceptions. The Director of the Board and the Associate Director for Management may except positions from inclusion in this...

  15. Students' Strategies for Exception Handling

    ERIC Educational Resources Information Center

    Rashkovits, Rami; Lavy, Ilana

    2011-01-01

    This study discusses and presents various strategies employed by novice programmers concerning exception handling. The main contributions of this paper are as follows: we provide an analysis tool to measure the level of assimilation of exception handling mechanism; we present and analyse strategies to handle exceptions; we present and analyse…

  16. 22 CFR 506.7 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Exceptions. 506.7 Section 506.7 Foreign Relations BROADCASTING BOARD OF GOVERNORS PART-TIME CAREER EMPLOYMENT PROGRAM § 506.7 Exceptions. The Director of the Board and the Associate Director for Management may except positions from inclusion in this...

  17. 22 CFR 126.3 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Exceptions. 126.3 Section 126.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS GENERAL POLICIES AND PROVISIONS § 126.3 Exceptions. In a case of exceptional or undue hardship, or when it is otherwise in the interest...

  18. 22 CFR 126.3 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Exceptions. 126.3 Section 126.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS GENERAL POLICIES AND PROVISIONS § 126.3 Exceptions. In a case of exceptional or undue hardship, or when it is otherwise in the interest...

  19. 22 CFR 126.3 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Exceptions. 126.3 Section 126.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS GENERAL POLICIES AND PROVISIONS § 126.3 Exceptions. In a case of exceptional or undue hardship, or when it is otherwise in the interest...

  20. 22 CFR 126.3 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Exceptions. 126.3 Section 126.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS GENERAL POLICIES AND PROVISIONS § 126.3 Exceptions. In a case of exceptional or undue hardship, or when it is otherwise in the interest...

  1. 8 CFR 258.2 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... longshore work at any United States port under the exceptions provided for in paragraphs (a)(2), (b), or (c... hazardous dry bulk cargo. (i) All tankers qualify for the hazardous cargo exception, including parcel tankers, except for a tanker that has been gas-freed to transport non-hazardous dry bulk commodities. (ii...

  2. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington tweets as he listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  3. Stirling Technology Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  4. NASA historical data book. Volume 4: NASA resources 1969-1978

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y.; Fedor, Helen

    1994-01-01

    This is Volume 4, NASA Resources 1969-1978, of a series providing a 20-year statistical summary of NASA programs. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies. This volume combines statistical data of the component facilities with the data of the parent installation.

  5. NASA historical data book. Volume 1: NASA resources 1958-1968

    NASA Technical Reports Server (NTRS)

    Vannimmen, Jane; Bruno, Leonard C.; Rosholt, Robert L.

    1988-01-01

    This is Volume 1, NASA Resources 1958-1968, of a multi-volume series providing a 20-year compilation of summary statistical and other data descriptive of NASA's programs in aeronautics and manned and unmanned spaceflight. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies.

  6. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  7. NASA/industry advanced turboprop technology program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemianski, J.A.; Whitlow, J.B. Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, andmore » a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.« less

  8. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  9. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  10. An Infrared Solution to a National Priority NASA Ice Detection and Measurement Problem

    NASA Technical Reports Server (NTRS)

    Meitzler, Thomas; Bryk, Darryl; Sohn, Euijung; Bienkowski, Mary; Lane, Kimberly; Smith, Gregory; Charbeneau, Michelle; Moss, Thomas; Speece, Robert; Stevenson, Charles; hide

    2007-01-01

    NASA has a serious problem with ice that forms on the cryogenic-filled Space Shuttle External Tank (ET) that could endanger the crew and vehicle. This problem has defied resolution in the past. To find a solution, a cooperative agreement was developed between NASA-Kennedy Space Center (KSC) and the U.S. Army-Tank-Automotive, armaments Research, Development & Engineering Center (TARDEC). This paper describes the need, initial investigation, solution methodology, and some results for a mobile near-IR ice detection and measurement system developed by MDA of Canada and jointly tested by the U.S. Army TARDEC and NASA. Performance results achieved demonstrate that the pre-launch inspection system has the potential to become a critical tool in addressing NASA's ice problem.

  11. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  12. NASA's Education Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

  13. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  14. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    A NASA Social participant asks a question to the astronauts onboard the International Space Station in a live downlink from the ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  15. History Detectives Visit NASA Goddard Space Flight Center

    NASA Image and Video Library

    2017-12-08

    The name of the instrument is X-Ray Photoelecton Spectrometer (acronymed XPS); the lab is in the Materials Engineering Branch and aptly titled the X-Ray Photoelectron Spectrometry Lab. XPS is a non-destructive surface analysis technique that provides an elemental composition of the surface. It is capable of detecting any element with the exception of hydrogen and helium. In the picture, I am analyzing a piece of the film that the History Detectives believed was from the Echo II Project. I was looking for the presence of chromium, which would help confirm that the exterior of the film had a chromium conversion coating. PHOTO CREDIT: NASA/Debbie Mccallum

  16. NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration

    NASA Technical Reports Server (NTRS)

    Erickson, R. E.; Kufeld, R. M.; Cross, J. L.; Hodge, R. W.; Ericson, W. F.; Carter, R. D. G.

    1984-01-01

    The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg.

  17. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  18. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld talks during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  19. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) Program Scientist Sarah Noble talks during a NASA Social about the LADEE mission at NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  20. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Bob Barber, Lunar Atmosphere and Dust Environment Explorer (LADEE) Spacecraft Systems Engineer at NASA Ames Research Center, points to a model of the LADEE spacecraft a NASA Social, Thursday, Sept. 5, 2013 at NASA Wallops Flight Facility in Virginia. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  1. NASA Integrated Space Communications Network

    NASA Technical Reports Server (NTRS)

    Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

    2012-01-01

    The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

  2. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs, left, and present NASA Administrator Charles Bolden conduct a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. Bolden took over the post as NASA's 12th administrator in July 2009. The dialogue is part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  3. 14 CFR 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  4. Acting Administrator Robert Lightfoot Discusses NASAs FY2018 NASA Budget Request

    NASA Image and Video Library

    2017-05-23

    Acting NASA Administrator Robert Lightfoot discussed the agency’s Fiscal Year 2018 budget request on May 23, during an agencywide town hall State of NASA address at NASA Headquarters in Washington. The address also was broadcast on NASA Television and streamed on the agency’s homepage and mobile apps.

  5. Research in NASA history: A guide to the NASA history program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes the research opportunities and accomplishments of NASA's agency wide history program. It also offers a concise guide to the historical documentary resources available at NASA Headquarters in Washington D.C., at NASA facilities located around the country, and through the federal records system. In addition, this report contains expanded contributions by Lee D. Saegessor and other members of the NASA Headquarters History Division and by those responsible for historical documents and records at some NASA centers.

  6. NASA, Building Tomorrow's Future

    NASA Technical Reports Server (NTRS)

    Mango, Edward

    2011-01-01

    We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight

  7. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld is seen in a video monitor during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  8. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-148)] NASA Advisory Council; NASA... Committee of the NASA Advisory Council. DATES: Tuesday, December 14, 2010, 1:30 p.m.-4:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center Room 1Q39, Washington, DC 20546...

  9. The history of AIDS exceptionalism.

    PubMed

    Smith, Julia H; Whiteside, Alan

    2010-12-03

    In the history of public health, HIV/AIDS is unique; it has widespread and long-lasting demographic, social, economic and political impacts. The global response has been unprecedented. AIDS exceptionalism--the idea that the disease requires a response above and beyond "normal" health interventions--began as a Western response to the originally terrifying and lethal nature of the virus. More recently, AIDS exceptionalism came to refer to the disease-specific global response and the resources dedicated to addressing the epidemic. There has been a backlash against this exceptionalism, with critics claiming that HIV/AIDS receives a disproportionate amount of international aid and health funding.This paper situations this debate in historical perspective. By reviewing histories of the disease, policy developments and funding patterns, it charts how the meaning of AIDS exceptionalism has shifted over three decades. It argues that while the connotation of the term has changed, the epidemic has maintained its course, and therefore some of the justifications for exceptionalism remain.

  10. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Expedition 33/34 astronauts onboard the International Space Station answer questions in a live downlink at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Seen from left to right are NASA astronauts Tom Marshburn, Kevin Ford and Canadian Space Agency (CSA) astronaut Chris Hadfield. Photo Credit: (NASA/Carla Cioffi)

  11. The NASA Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Beck, G. A.

    1984-10-01

    Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.

  12. NASA Heavy Lift Rotorcraft Systems Investigation

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2005-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  13. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  14. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  15. NASA Social

    NASA Image and Video Library

    2011-05-18

    Gwynne Shotwell, President of SpaceX, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  16. NASA Social

    NASA Image and Video Library

    2012-05-18

    Models of various rockets line a table at a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  17. NASA / GE Aviation Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Zeug, Theresa

    2008-01-01

    Current collaborative research with General Electric Aviation on Open Rotor propulsion as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. The current Open Rotor propulsion research activity at NASA and GE are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. GE Open Rotor propulsion technology and business plans currently and toward the future are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  18. Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.

  19. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-22

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements. Astronaut Tracy Dyson speaks to legislators in Alabama House of Representatives

  20. NASA Nationwide and the Year of the Solar System (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2010-12-01

    NASA depends on the efforts of several volunteer networks to help implement its formal and informal education goals, to disseminate its key messages related to space and Earth science missions and to support broad public initiatives such as the upcoming Year of the Solar System (YSS), sponsored by the Planetary Science Education and Public Outreach Forum (SEPOF). These highly leveraged networks include programs such as Solar System Ambassadors, Solar System Educators, Night Sky Network, and NASA Explorer Schools. Founded in June 2008, NASA Nationwide: A Consortium of Formal and Informal Education Networks is a program that brings together these volunteer networks by creating an online community and shared resources which broadens the member networks’ base of support and provides opportunities to coordinate, cooperate, and collaborate with each other. Since its inception, NASA Nationwide has grown to include twelve NASA-funded volunteer networks as members and collaborates with three other NASA networks as affiliates. NASA Nationwide’s support for the Year of the Solar System includes management of several recently completed Solar System Nights kits, which will be made available regionally to collaborative teams of volunteers and affiliates for use in connecting with students in underserved, underrepresented and rural populations. In the latter part of 2010, the program will be further enhanced by the debut of the public NASA Nationwide website to showcase the successful efforts of these volunteers, provide information about member organizations and advertise their upcoming events in support of the Year of the Solar System. Through its broad reach and the dedicated enthusiasm of its members, NASA Nationwide will be an essential factor utilized to help achieve Year of the Solar System goals and ensure the ultimate success of the initiative.

  1. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs is seen during a dialogue with present NASA Administrator Charles Bolden on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  2. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. In the foreground is pictured Veggie, a container used for growing plants on the ISS. Photo Credit: (NASA/Carla Cioffi)

  3. NASA Science Leaders: Webb Telescope Complex and Unprecedented

    NASA Image and Video Library

    2018-06-27

    Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate, and John Mather, senior project scientist, comment on an independent review board’s findings on the agency’s James Webb Space Telescope. Webb is now targeting March 2021 as a new launch date, after the board assessed delays in integration and testing. NASA and the board unanimously agree that Webb can still achieve mission success.

  4. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  5. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington asks astronaut Joe Acaba a question, Tuesday, Dec. 4, 2012, at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  6. NASA Social

    NASA Image and Video Library

    2012-05-18

    Participants with the NASA Social stand together, Friday, May 18, 2012, in front of the Vehicle Assembly Building (VAB) at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  7. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Jason Townsend, NASA's Deputy Social Media Manager, kicks off the Lunar Atmosphere and Dust Environment Explorer (LADEE) NASA Social at Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  8. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    William Gerstenmaier, Associate Administrator Human Exploration and Operations, speaks at a NASA Social on Science on the International Space Station at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  9. NASA Video Catalog

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  10. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  11. NASA Satellite Gives a Clear View for NASA's LADEE Launch

    NASA Image and Video Library

    2013-09-06

    NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new

  12. NASA Social

    NASA Image and Video Library

    2012-05-18

    NASA Social participants are reflected in the sunglasses of former NASA astronaut Garrett Reisman, now a senior engineer working on astronaut safety and mission assurance for Space Exploration Technologies, or SpaceX, as he speaks with them, Friday, May 18, 2012, at the launch complex where the company's Falcon 9 rocket is set to launch early Friday morning at Cape Canaveral Air Force Station in Cape Canaveral, Fla. Photo Credit: (NASA/Paul E. Alers)

  13. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs smiles during a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  14. NASA's Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Les; McNutt, Leslie; Castillo-Rogez, Julie

    2017-01-01

    NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission and laying the groundwork for their future use in deep space science and exploration missions. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m2 solar sail and will weigh less than 14 kilograms. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 3 microns thick. NEA Scout will launch on the Space Launch System (SLS) first mission in 2018 and deploy from the SLS after the Orion spacecraft is separated from the SLS upper stage. The NEA Scout spacecraft will stabilize its orientation after ejection using an onboard cold-gas thruster system. The same system provides the vehicle Delta-V sufficient for a lunar flyby. After its first encounter with the moon, the 86 m2 sail will deploy, and the sail characterization phase will begin. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. Once the system is checked out, the spacecraft will perform a series of lunar flybys until it achieves optimum departure trajectory to the target asteroid. The spacecraft will then begin its two year-long cruise. About one month before the asteroid flyby, NEA Scout will pause to search for the target and start its approach phase using a combination of radio tracking and optical navigation. The solar sail will provide

  15. @NASA Wins Shorty Award

    NASA Image and Video Library

    2013-04-10

    A Shorty Award is seen Wednesday, April 10, 2013 at NASA Headquarters in Washington. NASA's official Twitter feed, @NASA, has won its second consecutive Shorty award for the best government use of social media. The Shorty Award honors the best of social media across sites such as Twitter, Facebook, Tumblr, YouTube, Foursquare and others. NASA took the prize Monday, April 8, at the fifth Shorty Awards ceremony in New York. The @NASA acceptance tweet was, "We're sharing the universe 1 tweet at a time. Be inspired! Follow @NASA & RT if you love science & space. #ShortyAwards." Photo Credit: (NASA/Carla Cioffi)

  16. Working at NASA

    NASA Technical Reports Server (NTRS)

    Harding, Adam

    2010-01-01

    This slide presentation reviews the author's educational and work background prior to working at NASA. It then presents an overview of NASA Dryden, a brief review of the author's projects while working at NASA, and some closing thoughts.

  17. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  18. Light Stops at Exceptional Points

    NASA Astrophysics Data System (ADS)

    Goldzak, Tamar; Mailybaev, Alexei A.; Moiseyev, Nimrod

    2018-01-01

    Almost twenty years ago, light was slowed down to less than 10-7 of its vacuum speed in a cloud of ultracold atoms of sodium. Upon a sudden turn-off of the coupling laser, a slow light pulse can be imprinted on cold atoms such that it can be read out and converted into a photon again. In this process, the light is stopped by absorbing it and storing its shape within the atomic ensemble. Alternatively, the light can be stopped at the band edge in photonic-crystal waveguides, where the group speed vanishes. Here, we extend the phenomenon of stopped light to the new field of parity-time (P T ) symmetric systems. We show that zero group speed in P T symmetric optical waveguides can be achieved if the system is prepared at an exceptional point, where two optical modes coalesce. This effect can be tuned for optical pulses in a wide range of frequencies and bandwidths, as we demonstrate in a system of coupled waveguides with gain and loss.

  19. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  20. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks NASA Associate Administrator for the Science Mission Directorate John Grunsfeld a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  1. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  2. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael (Editor); Shaw, Tianna

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve

  3. Stirling Technology Development at NASA GRC. Revised

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  4. 40 CFR 450.22 - Effluent limitations reflecting the best available technology economically achievable (BAT).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... limitations reflecting the best available technology economically achievable (BAT). Except as provided in 40... the best available technology economically achievable (BAT). (a) Beginning no later than August 1...

  5. 40 CFR 450.22 - Effluent limitations reflecting the best available technology economically achievable (BAT).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... Effluent limitations reflecting the best available technology economically achievable (BAT). Except as... application of the best available technology economically achievable (BAT). (a) Beginning no later than August...

  6. 40 CFR 450.22 - Effluent limitations reflecting the best available technology economically achievable (BAT).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... Effluent limitations reflecting the best available technology economically achievable (BAT). Except as... application of the best available technology economically achievable (BAT). (a) Beginning no later than August...

  7. 40 CFR 450.22 - Effluent limitations reflecting the best available technology economically achievable (BAT).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... limitations reflecting the best available technology economically achievable (BAT). Except as provided in 40... the best available technology economically achievable (BAT). (a) Beginning no later than August 1...

  8. 40 CFR 450.22 - Effluent limitations reflecting the best available technology economically achievable (BAT).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... best available technology economically achievable (BAT). 450.22 Section 450.22 Protection of... Effluent limitations reflecting the best available technology economically achievable (BAT). Except as... application of the best available technology economically achievable (BAT). (a) Beginning no later than August...

  9. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-22

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements. MSFC Director Todd May and Astronaut Tracy Dyson chat with Alabama Governor Kay Ivey.

  10. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-22

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements. MSFC Director Todd May and Astronaut Tracy Dyson speak to the Alabama State Senate.

  11. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Chief Technologist Mason Peck talks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  12. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Deputy Administrator Lori Garver speaks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  13. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA Social participants listen as astronaut Joe Acaba answers questions about his time living aboard the International Space Station at NASA Headquarters, Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  14. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Tara Ruttley, International Space Station Program Scientist, talks about the benefits of conducting science experiments on ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  15. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    NASA Administrator Charles Bolden delivers opening remarks at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  16. 14 CFR § 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  17. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  18. 48 CFR 8.706 - Purchase exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Purchase exceptions. 8.706... Blind or Severely Disabled 8.706 Purchase exceptions. (a) Ordering offices may acquire supplies or... in a purchase exception granted by the designated central nonprofit agency. (b) The central nonprofit...

  19. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Law, E.; Day, B

    2017-01-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  20. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B.

    2017-09-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  4. Status of Solar Sail Technology Within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2010-01-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced and they successfully completed functional vacuum testing in NASA Glenn Research Center's (GRC's) Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and were scalable to much larger solar sails perhaps as large as 150 m on a side. Computation modeling and analytical simulations were also performed to assess the scalability of the technology to the large sizes required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials were also conducted. NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30M investment made in solar sail technology to that point, NASA Marshall Space Flight Center (MSFC) funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon-1 Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare will be flown in the Fall of 2010. This paper will summarize NASA's investment in solar sail technology to-date and discuss future opportunities

  5. Status of solar sail technology within NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2011-12-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.

  6. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  7. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Public Affairs Officer Lauren Worley kicks off the second day of the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  8. DOE/NASA Automotive Stirling Engine Project overview '83

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.

    1982-01-01

    An overview of the DOE/NASA Automotive Stirling Engine Project is presented. The background and objectives of the project are reviewed. Project activities are described and technical progress and status are presented and assessed. Prospects for achieving the objective 30% fuel economy improvement are considered good. The key remaining technology issues are primarily related to life, reliability and cost, such as piston rod seals, and low cost heat exchanges.

  9. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  10. Rational Emotive Approaches to the Problems of Parents with Exceptional Children: A Brief Overview.

    ERIC Educational Resources Information Center

    McInerney, John F.

    Parents of exceptional children face numerous challenges in their efforts to meet the needs of their child. Reaction to the realization that a problem exists in the child's development or educational achievement may lead to emotional distress which can be self-defeating. Such parents often benefit from a direct approach to addressing these issues…

  11. NASA IYA Programs

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2009-05-01

    NASA's Science Mission Directorate (SMD) launched a variety of programs to celebrate the International Year of Astronomy (IYA) 2009. A few examples will be presented to demonstrate how the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics has been given an IYA2009 flavor and made available to students, educators and the public worldwide. NASA participated in the official kickoff of US IYA activities by giving a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions that are now traveling to 40 public libraries around the country. NASA IYA Student Ambassadors represented the USA at the international Opening Ceremony in Paris, and have made strides in connecting with local communities throughout the USA. NASA's Object of the Month activities have generated great interest in the public through IYA Discovery Guides. Images from NASA's Great Observatories are included in the From Earth to the Universe (FETTU) exhibition, which was inaugurated both in the US and internationally. The Hubble Space Telescope Project had a tremendous response to its 100 Days of Astronomy "You Decide” competition. NASA's IYA programs have started a journey into the world of astronomy by the uninitiated and cultivated the continuation of a quest by those already enraptured by the wonders of the sky.

  12. 7 CFR 1782.22 - Exception authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE (CONTINUED) SERVICING OF WATER AND WASTE PROGRAMS § 1782.22 Exception authority. The Administrator may, in individual cases, make an exception to any requirement or provision of this part which is not... action, and show how the adverse affect will be eliminated or minimized if the exception is granted. The...

  13. 7 CFR 1782.22 - Exception authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE (CONTINUED) SERVICING OF WATER AND WASTE PROGRAMS § 1782.22 Exception authority. The Administrator may, in individual cases, make an exception to any requirement or provision of this part which is not... action, and show how the adverse affect will be eliminated or minimized if the exception is granted. The...

  14. 45 CFR 148.220 - Excepted benefits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Excepted benefits. 148.220 Section 148.220 Public... FOR THE INDIVIDUAL HEALTH INSURANCE MARKET Preemption; Excepted Benefits § 148.220 Excepted benefits... provision of the benefits described in paragraphs (a) and (b) of this section (or any combination of the...

  15. 45 CFR 148.220 - Excepted benefits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Excepted benefits. 148.220 Section 148.220 Public... FOR THE INDIVIDUAL HEALTH INSURANCE MARKET Preemption; Excepted Benefits § 148.220 Excepted benefits... provision of the benefits described in paragraphs (a) and (b) of this section (or any combination of the...

  16. 45 CFR 148.220 - Excepted benefits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Excepted benefits. 148.220 Section 148.220 Public... FOR THE INDIVIDUAL HEALTH INSURANCE MARKET Preemption; Excepted Benefits § 148.220 Excepted benefits... provision of the benefits described in paragraphs (a) and (b) of this section (or any combination of the...

  17. 45 CFR 148.220 - Excepted benefits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Excepted benefits. 148.220 Section 148.220 Public... FOR THE INDIVIDUAL HEALTH INSURANCE MARKET Preemption; Excepted Benefits § 148.220 Excepted benefits... in relation to its provision of the benefits described in paragraphs (a) and (b) of this section (or...

  18. NASA's Bioreactor: Growing Cells in a Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Richardson, Denise

    2003-01-01

    National Science Education Standards (NSES), Science for All Americans, the Secretary's Commission on Achieving Necessary Skills (SCANS) as well as the National Aeronautics and Space Administration (NASA) are all making an effort to promote scientific literacy in America. Unfortunately, major evaluation programs such as the National Assessment of Educational Progress (NAEP) and the Third International Mathematics and Science Study (TIMSS) have provided information that suggested our students are not able to compete with peers from comparable countries. Although results indicated that American students are recalling memorized, factual knowledge well enough, the real problem is the ability to apply what they know. Concerned with these reports, the National Science Teacher's Association (NSTA) has developed a mission to support innovation and high quality in science teaching and learning for every student. NSTA recommends less emphasis on factual knowledge (memorization) and information and more understanding of the concepts. Science process skills are considered imperative to prepare America's students for the 21st century. The National Aeronautics and Space Administration (NASA) supports this mission and adds that NASA strives to help prepare and encourage the next generation of researchers and explorers. One method that NASA supports educators and its mission is to publish educational briefs. NASA describes a brief as a publication that ranges from one-to-thirty pages. The focus is on mission discoveries and results. The brief provides curriculum to educators that supports their objectives and NASA's interest. Educational Briefs are specific to the grade level and course so that educators may have choices that fit their methods and students level. Sometimes, the brief includes lessons and activities teachers may use. For example, NASA's Microgravity Division has designed a student bioreactor. Consequently, an Educational Brief is being written that focuses on how

  19. Garver NASA Social

    NASA Image and Video Library

    2011-05-18

    NASA Deputy Administrator Lori Garver, in yellow jacket, stands with participants from the NASA Social underneath the engines of the Saturn V rocket at the Apollo Saturn V visitor center, Thursday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  20. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  1. 7 CFR 1956.99 - Exception authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Exception authority. 1956.99 Section 1956.99... Housing § 1956.99 Exception authority. The Administrator may, in individual cases, make an exception to... successor agency under Public Law 103-354 1956-1 and returned to the State Office for submission to the...

  2. Fostering Visions for the Future: A Review of the NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  3. Research in NASA History: A Guide to the NASA History Program

    NASA Technical Reports Server (NTRS)

    Garber, Stephen J. (Compiler)

    1997-01-01

    This monograph details the archival and other related resources held by the NASA History Office at Headquarters, and at NASA's Field Centers and other related government agencies. It also gives information on the NASA History publications, World Wide Web pages and the like.

  4. NASA Overview

    NASA Technical Reports Server (NTRS)

    Sheffner, Edwin J.

    2007-01-01

    The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.

  5. 7 CFR 501.15 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.15 Exceptions. The Administrator, Agricultural Research Service, may in individual cases make prior, written exceptions to the...

  6. 7 CFR 501.15 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.15 Exceptions. The Administrator, Agricultural Research Service, may in individual cases make prior, written exceptions to the...

  7. 7 CFR 501.15 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.15 Exceptions. The Administrator, Agricultural Research Service, may in individual cases make prior, written exceptions to the...

  8. 7 CFR 501.15 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.15 Exceptions. The Administrator, Agricultural Research Service, may in individual cases make prior, written exceptions to the...

  9. 48 CFR 39.204 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Exceptions. 39.204 Section 39.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY Electronic and Information Technology 39.204 Exceptions. The...

  10. 48 CFR 39.204 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Exceptions. 39.204 Section 39.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY Electronic and Information Technology 39.204 Exceptions. The...

  11. 48 CFR 39.204 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Exceptions. 39.204 Section 39.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY Electronic and Information Technology 39.204 Exceptions. The...

  12. 48 CFR 39.204 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Exceptions. 39.204 Section 39.204 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING ACQUISITION OF INFORMATION TECHNOLOGY Electronic and Information Technology 39.204 Exceptions. The...

  13. 48 CFR 9.304 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Exceptions. 9.304 Section 9.304 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.304 Exceptions. Normally, testing and approval...

  14. Cost efficient operations: Challenge from NASA administrator and lessons learned from hunting sacred cows

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Casasanta, Ralph; Hei, Donald J., Jr.; Hawkins, Frederick J.; Burke, Eugene S., Jr.; Todd, Jacqueline E.; Bell, Jerome A.; Miller, Raymond E.; Willoughby, John K.; Gardner, Jo Anne

    1996-01-01

    The conclusions and recommendations that resulted from NASA's Hunting Sacred Cows Workshop are summarized, where a sacred cow is a belief or assumption that is so well established that it appears to be unreasonably immune to criticism. A link was identified between increased complexity and increased costs, especially in relation to automation and autonomy. An identical link was identified for outsourcing and commercialization. The work of NASA's Cost Less team is reviewed. The following conclusions were stated by the Cost Less team and considered at the workshop: the way Nasa conducts business must change; NASA makes its best contributions to the public areas not addressed by other government organizations; the management tool used for the last 30 years is no longer suitable; the most important work on any program or project is carried out before the development or operations stages; automation should only be used to achieve autonomy if the reasons for automation are well understood, and NASA's most critical resources are its personnel.

  15. NASA SMAP Images Show Texas Soil Moisture Conditions Before/After Hurricane Harvey's Landfall

    NASA Image and Video Library

    2017-08-29

    Images of soil moisture conditions in Texas near Houston, generated by NASA's Soil Moisture Active Passive (SMAP) satellite before and after the landfall of Hurricane Harvey can be used to monitor changing ground conditions due to Harvey's rainfall. As seen in the left panel, SMAP observations show that soil surface conditions were already very wet a few days before the hurricane made landfall (August 21/22), with moisture levels in the 20 to 40 percent range. Such saturated soil surfaces contributed to the inability of water to infiltrate more deeply into soils, thereby increasing the likelihood of flooding. After Harvey made landfall, the southwest portion of Houston became exceptionally wet, as seen in the right panel image from August 25/26, signaling the arrival of heavy rains and widespread flooding. https://photojournal.jpl.nasa.gov/catalog/PIA21926

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. 45 CFR 670.7 - Food exception.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Food exception. 670.7 Section 670.7 Public Welfare... ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.7 Food exception. Paragraph (e) of § 670.4 shall not apply to the introduction of animals and plants into Antarctica for use as food as long as animals and...

  2. 45 CFR 670.7 - Food exception.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Food exception. 670.7 Section 670.7 Public Welfare... ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.7 Food exception. Paragraph (e) of § 670.4 shall not apply to the introduction of animals and plants into Antarctica for use as food as long as animals and...

  3. 45 CFR 670.7 - Food exception.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Food exception. 670.7 Section 670.7 Public Welfare... ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.7 Food exception. Paragraph (e) of § 670.4 shall not apply to the introduction of animals and plants into Antarctica for use as food as long as animals and...

  4. 45 CFR 670.7 - Food exception.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Food exception. 670.7 Section 670.7 Public Welfare... ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.7 Food exception. Paragraph (e) of § 670.4 shall not apply to the introduction of animals and plants into Antarctica for use as food as long as animals and...

  5. 14 CFR 34.9 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exceptions. 34.9 Section 34.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES General Provisions § 34.9 Exceptions...

  6. 14 CFR 34.9 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exceptions. 34.9 Section 34.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES General Provisions § 34.9 Exceptions...

  7. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Leland Melvin, NASA Associate Administrator for Education, speaks during a panel discussion on inspiration in education at the 2011 NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011, in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  8. The exceptional sigma model

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Alex S.; Blair, Chris D. A.

    2018-04-01

    We detail the construction of the exceptional sigma model, which describes a string propagating in the "extended spacetime" of exceptional field theory. This is to U-duality as the doubled sigma model is to T-duality. Symmetry specifies the Weylinvariant Lagrangian uniquely and we show how it reduces to the correct 10-dimensional string Lagrangians. We also consider the inclusion of a Fradkin-Tseytlin (or generalised dilaton) coupling as well as a reformulation with dynamical tension.

  9. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edger A., Jr.

    1996-01-01

    This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.

  10. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  11. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  12. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Prospective contractors are acquainted with the organizational structure of NASA, and the major technical program offices and selected staff offices at the Headquarters level are briefly described. The basic procedures for Federal procurement are covered. A primer is presented on how to market to NASA. While the information is specific to NASA, many of the principles are applicable to other agencies as well. Some of the major programs are introduced which are available to small and disadvantaged businesses. The major research programs and fields of interest at individual NASA centers are summarized.

  13. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Fayette Collier, Aeronautics Research Mission Directorate, NASA Headquarters talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  14. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Technology Transfer Program Executive Daniel Lockney moderates the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  15. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  16. 46 CFR 565.5 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Exceptions. 565.5 Section 565.5 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AND ACTIONS TO ADDRESS RESTRICTIVE FOREIGN MARITIME PRACTICES CONTROLLED CARRIERS § 565.5 Exceptions. All controlled carriers shall be subject to provisions of this part and...

  17. 7 CFR 503.15 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Exceptions. 503.15 Section 503.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.15 Exceptions. The Director, PIADC, may, in...

  18. 7 CFR 503.15 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Exceptions. 503.15 Section 503.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.15 Exceptions. The Director, PIADC, may, in...

  19. 7 CFR 503.15 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Exceptions. 503.15 Section 503.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.15 Exceptions. The Director, PIADC, may, in...

  20. 7 CFR 503.15 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Exceptions. 503.15 Section 503.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.15 Exceptions. The Director, PIADC, may, in...

  1. 7 CFR 503.15 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Exceptions. 503.15 Section 503.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON PLUM ISLAND ANIMAL DISEASE CENTER § 503.15 Exceptions. The Director, PIADC, may, in...

  2. Parental Attitudes toward Exceptional Children.

    ERIC Educational Resources Information Center

    Love, Harold D.

    Written to aid the professional in understanding parental attitudes toward their exceptional children in counseling, the text could also be used by parents to better understand their children. Described are types of exceptionalities, incidence, psychological assessment and evaluation, and the intelligence range from mentally handicapped to the…

  3. 48 CFR 305.202 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... acquisition channels, including the HCA, to Associate DAS for Acquisition requesting an exception to synopsizing. The Associate DAS for Acquisition shall review the request and decide whether an exception is appropriate and reasonable. If it is, the Associate DAS for Acquisition shall take the necessary coordinating...

  4. 7 CFR 501.15 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Exceptions. 501.15 Section 501.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF AGRICULTURE CONDUCT ON U.S. MEAT ANIMAL RESEARCH CENTER, CLAY CENTER, NEBRASKA § 501.15 Exceptions. The...

  5. Overview of NASA Power Technologies for Space and Aero Applications

    NASA Technical Reports Server (NTRS)

    Beach, Raymond F.

    2014-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both the space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development.

  6. The savant syndrome: intellectual impairment and exceptional skill.

    PubMed

    Miller, L K

    1999-01-01

    Occasionally, people with developmental disability display skills at a level inconsistent with their general intellectual functioning, so-called "savant" behavior. Studies of savant behavior are reviewed to determine their relevance to notions about the importance of general intellective functions in the development of exceptional skill. It is concluded that (a) the skill exhibited by savants shares many characteristics with that in people without disability, (b) the skill is usually accompanied by normative levels of performance on at least some subtests of standardized measures of cognitive achievement, and (c) it is unclear whether savants have distinctive cognitive strengths or motivational dispositions, though their relative prevalence among people with certain kinds of disability suggests predisposing constraints. The author proposes that these skills typically reflect highly elaborated preconceptual representational systems.

  7. NASA Webb Telescope

    NASA Image and Video Library

    2017-12-08

    NASA image release September 17, 2010 In preparation for a cryogenic test NASA Goddard technicians install instrument mass simulators onto the James Webb Space Telescope ISIM structure. The ISIM Structure supports and holds the four Webb telescope science instruments : the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec) and the Fine Guidance Sensor (FGS). Credit: NASA/GSFC/Chris Gunn To learn more about the James Webb Space Telescope go to: www.jwst.nasa.gov/ NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. NASA SAVE Award Winner

    NASA Image and Video Library

    2012-01-09

    NASA Goddard Space Flight Center Financial Manager and White House 2011 SAVE award winner Matthew Ritsko is seen during a television interview at NASA Headquarters shortly after meeting with President Obama at the White House on Monday, Jan. 9, 2011, in Washington. The Presidential Securing Americans' Value and Efficiency (SAVE) program gives front-line federal workers the chance to submit their ideas on how their agencies can save money and work more efficiently. Matthew's proposal calls for NASA to create a "lending library" where specialized space tools and hardware purchased by one NASA organization will be made available to other NASA programs and projects. Photo Credit: (NASA/Bill Ingalls)

  9. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George

    1998-01-01

    The NASA Ambassadors Program is designed to present the excitement and importance of NASA's programs to its customers, the general public. Those customers, which are identified in the "Science Communications Strategy" developed by the Space Sciences Laboratory at the MSFC, are divided into three categories: (1) Not interested and not knowledgeable; (2) Interested but not knowledgeable; and (3) Science attentive. In it they recognize that it makes the most sense to attempt to communicate with those described in the last two categories. However, their plan suggests that the media and the educational institutions are the only means of outreach. The NASA Ambassadors Program allows NASA to reach its target audience directly. Steps to be taken in order for the program to commence: (1) MSFC chooses to support the NASA Ambassadors Program - decision point; (2) Designate an "Office In Charge". (3) Assign the "Operation" phase to in-house MSFC personnel or to a contractor - decision point; (4) Name a point of contact; (5) Identify partners in the program and enlist their assistance; (6) Process an unsolicited proposal from an outside source to accomplish those tasks which MSFC chooses to out-source.

  10. NASA specification for manufacturing and performance requirements of NASA standard aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On November 25, 1985, the NASA Chief Engineer established a NASA-wide policy to maintain and to require the use of the NASA standard for aerospace nickel-cadmium cells and batteries. The Associate Administrator for Safety, Reliability, Maintainability, and Quality Assurance stated on December 29, 1986, the intent to retain the NASA standard cell usage policy established by the Office of the Chief Engineer. The current NASA policy is also to incorporate technological advances as they are tested and proven for spaceflight applications. This policy will be implemented by modifying the existing standard cells or by developing new NASA standards and their specifications in accordance with the NASA's Aerospace Battery Systems Program Plan. This NASA Specification for Manufacturing and Performance Requirements of NASA Standard Aerospace Nickel-Cadmium Cells is prepared to provide requirements for the NASA standard nickel-cadmium cell. It is an interim specification pending resolution of the separator material availability. This specification has evolved from over 15 years of nickel-cadmium cell experience by NASA. Consequently, considerable experience has been collected and cell performance has been well characterized from many years of ground testing and from in-flight operations in both geosynchronous (GEO) and low earth orbit (LEO) applications. NASA has developed and successfully used two standard flight qualified cell designs.

  11. NASA Low-Speed Centrifugal Compressor for Fundamental Research

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Adam, P. W.; Buggele, A. E.

    1983-01-01

    A centrifugal compressor facility being built by the NASA Lewis Research Center is described; its purpose is to obtain benchmark experimental data for internal flow code verification and modeling. The facility will be heavily instrumented with standard pressure and temperature probes and have provisions for flow visualization and laser Doppler velocimetry. The facility will accommodate rotational speeds to 2400 rpm and will be rated at pressures to 1.25 atm. The initial compressor stage for testing is geometrically and dynamically representative of modern high-performance stages with the exception of Mach number levels. Design exit tip speed for the initial stage is 500 ft/sec with a pressure ratio of 1.17. The rotor exit backsweep is 55 deg from radial.

  12. BEHAVIORAL RESEARCH ON EXCEPTIONAL CHILDREN.

    ERIC Educational Resources Information Center

    KIRK, SAMUEL A.; WEINER, BLUMA B.

    THIS MONOGRAPH PROVIDES REVIEWS OF BEHAVIORAL RESEARCH STUDIES WHICH INCLUDE AUTHOR, TITLE, PURPOSE, SUBJECTS, METHODS OR PROCEDURES, AND RESULTS. REVIEWS ARE GROUPED BY 11 EXCEPTIONALITY AREAS AND ADMINISTRATION OF SPECIAL EDUCATION. THE AREAS OF EXCEPTIONALITY ARE (1) GIFTED, (2) EDUCABLE MENTALLY RETARDED, (3) TRAINABLE MENTALLY RETARDED, (4)…

  13. 21 CFR 1316.66 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exceptions. 1316.66 Section 1316.66 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE ADMINISTRATIVE FUNCTIONS, PRACTICES, AND PROCEDURES Administrative Hearings § 1316.66 Exceptions. (a) Within twenty days after the date upon which a...

  14. 24 CFR 91.20 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Exceptions. 91.20 Section 91.20 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development CONSOLIDATED SUBMISSIONS FOR COMMUNITY PLANNING AND DEVELOPMENT PROGRAMS General § 91.20 Exceptions. The HUD...

  15. 48 CFR 1325.103 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOREIGN ACQUISITION Buy American Act-Supplies 1325.103 Exceptions. (a) The designee authorized to make a... has an agreement with a foreign government providing a blanket exception to the Buy America Act is set... documentation supporting a determination that nonavailabilty of an article is likely to affect future...

  16. 38 CFR 1.897 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Exceptions. 1.897 Section 1.897 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS GENERAL PROVISIONS Part-Time Career Employment Program § 1.897 Exceptions. The Secretary of Veterans Affairs, or designees, may...

  17. Memorising Milton's Paradise lost: a study of a septuagenarian exceptional memoriser.

    PubMed

    Seamon, John G; Punjabi, Paawan V; Busch, Emily A

    2010-07-01

    At age 58, JB began memorising Milton's epic poem Paradise Lost. Nine years and thousands of study hours later, he completed this process in 2001 and recalled from memory all 12 books of this 10,565-line poem over a 3-day period. Now 74, JB continues to recite this work. We tested his memory accuracy by cueing his recall with two lines from the beginning or middle of each book and asking JB to recall the next 10 lines. JB is an exceptional memoriser of Milton, both in our laboratory tests in which he did not know the specific tests or procedures in advance, and in our analysis of a videotaped, prepared performance. Consistent with deliberate practice theory, JB achieved this remarkable ability by deeply analysing the poem's structure and meaning over lengthy repetitions. Our findings suggest that exceptional memorisers such as JB are made, not born, and that cognitive expertise can be demonstrated even in later adulthood.

  18. Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Bohn, A. J.; Shovlin, M. D.

    1980-01-01

    An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.

  19. NASA reports

    NASA Technical Reports Server (NTRS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  20. NASA reports

    NASA Astrophysics Data System (ADS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  1. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden speaks to students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA sponsored the Earth Day event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. Photo Credit: (NASA/Aubrey Gemignani)

  2. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Leland Melvin, NASA Associate Administrator for Education and NASA Astronaut, moderates the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  3. NASA's Next Generation Space Geodesy Network

    NASA Technical Reports Server (NTRS)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  4. NASA's strategy for Mars exploration in the 1990s and beyond

    NASA Astrophysics Data System (ADS)

    Huntress, W. T.; Feeley, T. J.; Boyce, J. M.

    NASA's Office of Space Science is changing its approach to all its missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at NASA's role in the U.S. Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less U.S. resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs. Our Mars exploration plans, especially the Mars Surveyor program, are a key feature of this new NASA approach to space science. The Mars Surveyor program will be affordable, engaging to the public with global and close-up images of Mars, have high scientific value, employ a distributed risk strategy (two launches per opportunity), and will use significant advanced technologies.

  5. Performance evaluation of NASA/KSC CAD/CAE graphics local area network

    NASA Technical Reports Server (NTRS)

    Zobrist, George

    1988-01-01

    This study had as an objective the performance evaluation of the existing CAD/CAE graphics network at NASA/KSC. This evaluation will also aid in projecting planned expansions, such as the Space Station project on the existing CAD/CAE network. The objectives were achieved by collecting packet traffic on the various integrated sub-networks. This included items, such as total number of packets on the various subnetworks, source/destination of packets, percent utilization of network capacity, peak traffic rates, and packet size distribution. The NASA/KSC LAN was stressed to determine the useable bandwidth of the Ethernet network and an average design station workload was used to project the increased traffic on the existing network and the planned T1 link. This performance evaluation of the network will aid the NASA/KSC network managers in planning for the integration of future workload requirements into the existing network.

  6. 7 CFR 774.24 - Exception.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SPECIAL PROGRAMS EMERGENCY LOAN FOR SEED PRODUCERS PROGRAM § 774.24 Exception. The Agency may grant an exception to any of the requirements of this section, if the proposed change is in the best financial interest of the Government and not inconsistent with the authorizing statute or other applicable law. ...

  7. 45 CFR 1176.8 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Exceptions. 1176.8 Section 1176.8 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES NATIONAL ENDOWMENT FOR THE HUMANITIES PART-TIME CAREER EMPLOYMENT § 1176.8 Exceptions. (a) The Personnel Officer may...

  8. 29 CFR 1905.28 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 Hearings § 1905.28 Exceptions. Within 20 days after service of a... 29 Labor 5 2010-07-01 2010-07-01 false Exceptions. 1905.28 Section 1905.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR RULES OF...

  9. 48 CFR 225.103 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Buy American Act-Supplies 225.103 Exceptions... apply the Buy American Act to end products that are substantially transformed in the United States. (ii... interest exception if the purposes of the Buy American Act are not served, or in order to meet a need set...

  10. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  11. 7 CFR 760.613 - De minimis exception.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....613 De minimis exception. (a) Participants seeking the de minimis exception to the risk management... exception to the risk management purchase requirement in § 760.104, the participant must elect such...

  12. Human Rating Requirements for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Berdich, Debbie

    2008-01-01

    NASA s Constellation Program (CxP) will conduct a series of human space expeditions of increasing scope, starting with missions supporting the International Space Station and expanding to encompass the Moon and Mars. Although human-rating is an integral part of all CxP activities throughout their life cycle, NASA Procedural Requirements document NPR 8705.2B, Human-Rating Requirements (HRR) for Space Flight Systems, defines the additional processes, procedures, and requirements necessary to produce human-rated space systems that protect the safety of crew members and passengers on these NASA missions. In order to be in compliance with 8705.2B the CxP must show appropriate implementation or progression toward the HRR, or justification for an exception. Compliance includes an explanation of how the CxP intends to meet the HRR, analyses to be performed to determine implementation; and a matrix to trace the HRR to CxP requirements. The HRR requires the CxP to establish a human system integration team (HSIT), consisting of astronauts, mission operations personnel, training personnel, ground processing personnel, human factors personnel, and human engineering experts, with clearly defined authority, responsibility, and accountability to lead the human-system integration. For example, per the HRR the HSIT is involved in the evaluation of crew workload, human-in-the-loop usability evaluations, determining associated criteria, and in assessment of how these activities influenced system design. In essence, the HSIT is invaluable in CxP s ability to meet the three fundamental tenets of human rating: the process of designing, evaluating, and assuring that the total system can safely conduct the required human missions; the incorporation of design features and capabilities that accommodate human interaction with the system to enhance overall safety and mission success; and the incorporation of design features and capabilities to enable safe recovery of the crew from hazardous

  13. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  14. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Social media gather in Kennedy Space Center’s Press Site auditorium for a briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18. NASA Social Media Team includes: Emily Furfaro and Amber Jacobson. Guest speakers include: Badri Younes, Deputy Associate Administrator for Space Communications and Navigation at NASA Headquarters in Washington; Dave Littmann, Project Manager for TDRS-M at NASA’s Goddard Space Flight Center; Neil Mallik, NASA Deputy Network Director for Human Spaceflight; Nicole Mann, NASA Astronaut; Steve Bowen, NASA Astronaut; Skip Owen, NASA Launch Services; Scott Messer, United Launch Alliance Program Manager for NASA Missions.

  15. Centennial Challenges Program Overview: How NASA Successfully Involves the General Public in the Solving of Current Technology Gaps

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Kim, Tony; Sudnik, Janet; Sivak, Amy; Porter, Molly; Cylar, Rosaling; Cavanaugh, Dominique; Krome, Kim

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Centennial Challenges Program, part of the Space Technology Mission Directorate (STMD), addresses key technology needs of NASA and the nation, while facilitating new sources of innovation outside the traditional community. This is done by the direct engagement of the public at large, through the offering of Congressional authorized prize purses and associated challenges developed by NASA and the aerospace community and set up as a competition awarding the prize money for achieving the specified technology goal.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    William Kelly, PhD, PE, Manager, Public Affairs, American Society for Engineering Education speaks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Seated are NASA Administrator Charles Bolden, left, and NASA Acting Associate Administrator for Education, James Stofan. (Photo Credit: NASA/Carla Cioffi)

  18. The Potential for Hosted Payloads at NASA

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark; Antol, Jeffrey; Baize, Rosemary; Horan, Stephen; Neil, Doreen; Rinsland, Pamela; Zaiceva, Rita

    2012-01-01

    The 2010 National Space Policy encourages federal agencies to actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including...hosting government capabilities on commercial spacecraft. NASA's Science Mission Directorate has taken an important step towards this goal by adding an option for hosted payload responses to its recent Announcement of Opportunity (AO) for Earth Venture-2 missions. Since NASA selects a significant portion of its science missions through a competitive process, it is useful to understand the implications that this process has on the feasibility of successfully proposing a commercially hosted payload mission. This paper describes some of the impediments associated with proposing a hosted payload mission to NASA, and offers suggestions on how these impediments might be addressed. Commercially hosted payloads provide a novel way to serve the needs of the science and technology demonstration communities at a fraction of the cost of a traditional Geostationary Earth Orbit (GEO) mission. The commercial communications industry launches over 20 satellites to GEO each year. By exercising this repeatable commercial paradigm of privately financed access to space with proven vendors, NASA can achieve science goals at a significantly lower cost than the current dedicated spacecraft and launch vehicle approach affords. Commercial hosting could open up a new realm of opportunities for NASA science missions to make measurements from GEO. This paper also briefly describes two GEO missions recommended by the National Academies of Science Earth Science Decadal Survey, the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Precipitation and All-weather Temperature and Humidity (PATH) mission. Hosted payload missions recently selected for implementation by the Office of the Chief Technologist are also discussed. Finally, there are

  19. History at NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The efforts of the National Aeronautics and Space Administration to capture and record the events of the past are described, particularly the research accomplishments of NASA's agency-wide history program. A concise guide to the historical research resources available at NASA Headquarters in Washington, D.C., at NASA facilities around the country, and through the federal records systems is given.

  20. NASA Ames Hosts 2017 Breakthrough Prize

    NASA Image and Video Library

    2016-12-08

    NASA's Ames Research Center in Silicon Valley was the location of the 5th annual Breakthrough Prize ceremony, honoring scientific achievement. Researchers and engineers rubbed shoulders with Hollywood actors, Top-40 musicians, astronauts, sports heroes and Silicon Valley luminaries on the red carpet. Winners were honored with $3 million dollar prizes in the categories of physics, life sciences and mathematics with more than $25 million dollars awarded during the ceremony. The prizes were created by Sergey Brin, co-founder of Google and Anne Wojcicki, founder of 23 and Me; Mark Zuckerberg and Priscilla Chan of Facebook, and Yuri and Julia Milner.

  1. Initial Results of Interdisciplinary Science Enabled by Eclipse 2017: NASA Perspective

    NASA Astrophysics Data System (ADS)

    Guhathakurta, M.

    2017-12-01

    The exceptionally long path over land of the August 21st total and partial solar eclipse provided an unprecedented opportunity for cross disciplinary studies of the sun, moon, Earth, and their interactions. NASA supported research using ground-based measurements, balloons and planes that "chased" the eclipse as well as data taken from a vast array of orbiting spacecraft, all of which helped scientists take continuous measurements of the sun and the effects of the eclipse on the ionosphere and Earth for relatively long periods of time. This talk will summarize some of the initial findings from these research.

  2. Summary Report of the Seventh Annual NASA/Contractors Conference on Quality and Productivity: "Total Quality Leadership"

    NASA Technical Reports Server (NTRS)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity on October 12-13, 1990, in Grenelefe, Florida. The panel presentations and keynote speeches revolving around the theme of 'Total Quality Leadership" provided a solid base of understanding of the importance, benefits, and principles of total quality management. The implementation of these strategies is critical if we are to effectively pursue our mission of continuous quality improvement and reliability in our products, processes, and services. The annual NASA/contractors conferences serve as catalysts for achieving success in this mission.

  3. NASA Technologies that Benefit Society

    NASA Technical Reports Server (NTRS)

    Griffin, Amanda

    2012-01-01

    Applications developed on Earth of technology needed for space flight have produced thousands of spinoffs that contribute to improving national security, the economy, productivity and lifestyle. Over the course of it s history, NASA has nurtured partnerships with the private sector to facilitate the transfer of NASA-developed technology. For every dollar spent on research and development in the space program, it receives back $7 back in the form of corporate and personal income taxes from increased jobs and economic growth. A new technology, known as Liquid-metal alloy, is the result of a project funded by NASA s Jet Propulsion Lab. The unique technology is a blend of titanium, zirconium, nickel, copper and beryllium that achieves a strength greater than titanium. NASA plans to use this metal in the construction of a drill that will help for the search of water beneath the surface of Mars. Many other applications include opportunities in aerospace, defense, military, automotive, medical instrumentation and sporting goods.Developed in the 1980 s, the original Sun Tigers Inc sunlight-filtering lens has withstood the test of time. This technology was first reported in 1987 by NASA s JPL. Two scientists from JPL were later tasked with studying the harmful effects of radiation produced during laser and welding work. They came up with a transparent welding curtain that absorbs, filters and scatters light to maximize protection of human eyes. The two scientists then began doing business as Eagle Eye Optics. Each pair of sunglasses comes complete with ultraviolet protection, dual layer scratch resistant coating, polarized filters for maximum protection against glare and high visual clarity. Sufficient evidence shows that damage to the eye, especially to the retina, starts much earlier than most people realize. Sun filtering sunglasses are important. Winglets seen at the tips of airplane wings are among aviations most visible fuel-saving, performance enhancing technology

  4. Grading NASA's Solar System Exploration Program: A Midterm Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Committee on Assessing the Solar System Exploration Program has reviewed NASA's progress to date in implementing the recommendations made in the National Research Council's (NRC's) solar system exploration decadal survey covering the period 2003-2013, New Frontiers in the Solar System, and in its Mars Architecture report, Assessment of NASA s Mars Architecture 2007-2016. The committee assessed NASA's progress with respect to each individual recommendation in these two reports, assigning an academic-style grade, explaining the rationale for the grade and trend, and offering recommendations for improvement. The committee generally sought to develop recommendations in cases where it determined that the grade, the trend, or both were worrisome and that the achievement of a decadal survey recommendation would require some kind of corrective action on NASA's part. This usually meant that the committee sought to offer a recommendation when the grade was a "C" or lower. However, the committee did offer recommendations in connection with some higher grades when it believed that minor corrective action was possible and desirable. More importantly, the committee did not offer recommendations for some of the activities given lower grades, particularly in the enabling technologies area (Chapter 6), because the committee determined that only the restoration of funding and the development of a strategic technology development program would solve these problems.

  5. Energy Exchange NASA Opening Plenary

    NASA Technical Reports Server (NTRS)

    Marrs, Rick

    2017-01-01

    Rick Marrs, Deputy Assistant Administrator Office of Strategic Infrastructure NASA Headquarters will be speaking during the 2017 Energy Exchange opening plenary. His presentation showcases the NASA mission, sustainability at NASA, NASA's strategic Sustainability Performance Plan, Existing PV Partnerships, and NASA funded Solar Initiatives at KSC.

  6. 42 CFR 1001.952 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Exceptions. 1001.952 Section 1001.952 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES PROGRAM INTEGRITY-MEDICARE AND STATE HEALTH CARE PROGRAMS Permissive Exclusions § 1001.952 Exceptions. The following payment practices shall not be...

  7. 42 CFR 1001.952 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Exceptions. 1001.952 Section 1001.952 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES PROGRAM INTEGRITY-MEDICARE AND STATE HEALTH CARE PROGRAMS Permissive Exclusions § 1001.952 Exceptions. The following payment practices shall not be...

  8. 42 CFR 1001.952 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Exceptions. 1001.952 Section 1001.952 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES PROGRAM INTEGRITY-MEDICARE AND STATE HEALTH CARE PROGRAMS Permissive Exclusions § 1001.952 Exceptions. The following payment practices shall not be...

  9. The Science@NASA Websites

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Phillips. Tony; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Science@NASA websites represent a significant stride forward in communicating NASA science to the general public via the Internet. Using a family of websites aimed at science-attentive adults, high school students, middle school students and educators, the Science@NASA activity presents selected stories of on-going NASA science, giving context to otherwise dry press releases and scientific reports.

  10. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  11. Linear Actuator System for the NASA Docking System

    NASA Technical Reports Server (NTRS)

    Dick, Brandon N.; Oesch, Christopher; Rupp, Timothy W.

    2017-01-01

    The Linear Actuator System (LAS) is a major sub-system within the NASA Docking System (NDS). The NDS Block 1 will be used on the Boeing Crew Space Transportation (CST-100) system to achieve docking with the International Space Station. Critical functions in the Soft Capture aspect of docking are performed by the LAS. This paper describes the general function of the LAS, the system's key requirements and technical challenges, and the development and qualification approach for the system.

  12. DOE/NASA Automotive Stirling Engine Project Overview 83

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.

    1983-01-01

    An overview of the DOE/NASA Automotive Stirling Engine Project is presented. The background and objectives of the project are reviewed. Project activities are described and technical progress and status are presented and assessed. Prospects for achieving the objective 30 percent fuel economy improvement are considered good. The key remaining technology issues are primarily related to life, reliability and cost, such as piston rod seals, and low cost heat exchanges. Previously announced in STAR as N83-27924

  13. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  14. NASA Extends Chandra Science and Operations Support Contract

    NASA Astrophysics Data System (ADS)

    2010-01-01

    NASA has extended a contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, a powerful tool used to better understand the structure and evolution of the universe. The contract extension with the Smithsonian Astrophysical Observatory provides continued science and operations support to Chandra. This approximately 172 million modification brings the total value of the contract to approximately 545 million for the base effort. The base effort period of performance will continue through Sept. 30, 2013, except for the work associated with the administration of scientific research grants, which will extend through Feb. 28, 2016. The contract type is cost reimbursement with no fee. In addition to the base effort, the contract includes two options for three years each to extend the period of performance for an additional six years. Option 1 is priced at approximately 177 million and Option 2 at approximately 191 million, for a total possible contract value of about $913 million. The contract covers mission operations and data analysis, which includes observatory operations, science data processing and astronomer support. The operations tasks include monitoring the health and status of the observatory and developing and uplinking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning and coordination of science observations and processing and delivery of the resulting scientific data. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations. For more information about the Chandra X-ray Observatory visit: http://chandra.nasa.gov

  15. NASA New England Outreach Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA New England Outreach Center in Nashua, New Hampshire was established to serve as a catalyst for heightening regional business awareness of NASA procurement, technology and commercialization opportunities. Emphasis is placed on small business participation, with the highest priority given to small disadvantaged businesses, women-owned businesses, HUBZone businesses, service disabled veteran owned businesses, and historically black colleges and universities and minority institutions. The Center assists firms and organizations to understand NASA requirements and to develop strategies to capture NASA related procurement and technology opportunities. The establishment of the NASA Outreach Center serves to stimulate business in a historically underserved area. NASA direct business awards have traditionally been highly present in the West, Midwest, South, and Southeast areas of the United States. The Center guides and assists businesses and organizations in the northeast to target opportunities within NASA and its prime contractors and capture business and technology opportunities. The Center employs an array of technology access, one-on-one meetings, seminars, site visits, and targeted conferences to acquaint Northeast firms and organizations with representatives from NASA and its prime contractors to learn about and discuss opportunities to do business and access the inventory of NASA technology. This stimulus of interaction also provides firms and organizations the opportunity to propose the use of their developed technology and ideas for current and future requirements at NASA. The Center provides a complement to the NASA Northeast Regional Technology Transfer Center in developing prospects for commercialization of NASA technology. In addition, the Center responds to local requests for assistance and NASA material and documents, and is available to address immediate concerns and needs in assessing opportunities, timely support to interact with NASA Centers on

  16. NASA's educational programs

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1990-01-01

    The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.

  17. 2 CFR 176.80 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Exceptions. 176.80 Section 176.80 Grants and... manufactured goods needed in the project. (2) Unreasonable cost. The head of the Federal department or agency... manufactured goods may be used— (1) The award official shall list the excepted materials in the award; and (2...

  18. 2 CFR 176.80 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Exceptions. 176.80 Section 176.80 Grants and... manufactured goods needed in the project. (2) Unreasonable cost. The head of the Federal department or agency... manufactured goods may be used— (1) The award official shall list the excepted materials in the award; and (2...

  19. 2 CFR 176.80 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Exceptions. 176.80 Section 176.80 Grants and... project. (2) Unreasonable cost. The head of the Federal department or agency may determine that the cost... manufactured goods may be used— (1) The award official shall list the excepted materials in the award; and (2...

  20. 2 CFR 176.80 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2 Grants and Agreements 1 2012-01-01 2012-01-01 false Exceptions. 176.80 Section 176.80 Grants and... manufactured goods needed in the project. (2) Unreasonable cost. The head of the Federal department or agency... manufactured goods may be used— (1) The award official shall list the excepted materials in the award; and (2...

  1. 2 CFR 176.80 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Exceptions. 176.80 Section 176.80 Grants and... project. (2) Unreasonable cost. The head of the Federal department or agency may determine that the cost... manufactured goods may be used— (1) The award official shall list the excepted materials in the award; and (2...

  2. 22 CFR 53.2 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORT REQUIREMENT AND EXCEPTIONS § 53.2 Exceptions. (a) U.S. citizens, as defined in § 41.0 of this chapter, are not required to bear U.S. passports when traveling... required to bear a valid U.S. passport to enter or depart the United States: (1) When traveling as a member...

  3. 22 CFR 53.2 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORT REQUIREMENT AND EXCEPTIONS § 53.2 Exceptions. (a) U.S. citizens, as defined in § 41.0 of this chapter, are not required to bear U.S. passports when traveling... required to bear a valid U.S. passport to enter or depart the United States: (1) When traveling as a member...

  4. 22 CFR 53.2 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORT REQUIREMENT AND EXCEPTIONS § 53.2 Exceptions. (a) U.S. citizens, as defined in § 41.0 of this chapter, are not required to bear U.S. passports when traveling... required to bear a valid U.S. passport to enter or depart the United States: (1) When traveling as a member...

  5. 22 CFR 53.2 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORT REQUIREMENT AND EXCEPTIONS § 53.2 Exceptions. (a) U.S. citizens, as defined in § 41.0 of this chapter, are not required to bear U.S. passports when traveling... required to bear a valid U.S. passport to enter or depart the United States: (1) When traveling as a member...

  6. 22 CFR 53.2 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORT REQUIREMENT AND EXCEPTIONS § 53.2 Exceptions. (a) U.S. citizens, as defined in § 41.0 of this chapter, are not required to bear U.S. passports when traveling... required to bear a valid U.S. passport to enter or depart the United States: (1) When traveling as a member...

  7. 24 CFR 51.105 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Exceptions. 51.105 Section 51.105... ENVIRONMENTAL CRITERIA AND STANDARDS Noise Abatement and Control § 51.105 Exceptions. (a) Flexibility for non... acceptability standard of 65 decibels, the Acceptable Zone may be shifted to Ldn 70 on a case-by-case basis if...

  8. 24 CFR 51.105 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Exceptions. 51.105 Section 51.105... ENVIRONMENTAL CRITERIA AND STANDARDS Noise Abatement and Control § 51.105 Exceptions. (a) Flexibility for non... acceptability standard of 65 decibels, the Acceptable Zone may be shifted to Ldn 70 on a case-by-case basis if...

  9. 24 CFR 51.105 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Exceptions. 51.105 Section 51.105... ENVIRONMENTAL CRITERIA AND STANDARDS Noise Abatement and Control § 51.105 Exceptions. (a) Flexibility for non... acceptability standard of 65 decibels, the Acceptable Zone may be shifted to Ldn 70 on a case-by-case basis if...

  10. 24 CFR 51.105 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Exceptions. 51.105 Section 51.105... ENVIRONMENTAL CRITERIA AND STANDARDS Noise Abatement and Control § 51.105 Exceptions. (a) Flexibility for non... acceptability standard of 65 decibels, the Acceptable Zone may be shifted to Ldn 70 on a case-by-case basis if...

  11. 24 CFR 51.105 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Exceptions. 51.105 Section 51.105... ENVIRONMENTAL CRITERIA AND STANDARDS Noise Abatement and Control § 51.105 Exceptions. (a) Flexibility for non... acceptability standard of 65 decibels, the Acceptable Zone may be shifted to Ldn 70 on a case-by-case basis if...

  12. 8 CFR 286.3 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Exceptions. 286.3 Section 286.3 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRATION USER FEE § 286.3 Exceptions. The fees set forth in §§ 286.2(a) and 286.2(b) shall not be charged or collected from passengers who...

  13. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA's Administrator, Charles Bolden, conducts an experiment using circuits at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  14. Unidirectional reflectionless light propagation at exceptional points

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Shen, Yuecheng; Min, Changjun; Fan, Shanhui; Veronis, Georgios

    2017-05-01

    In this paper, we provide a comprehensive review of unidirectional reflectionless light propagation in photonic devices at exceptional points (EPs). EPs, which are branch point singularities of the spectrum, associated with the coalescence of both eigenvalues and corresponding eigenstates, lead to interesting phenomena, such as level repulsion and crossing, bifurcation, chaos, and phase transitions in open quantum systems described by non-Hermitian Hamiltonians. Recently, it was shown that judiciously designed photonic synthetic matters could mimic the complex non-Hermitian Hamiltonians in quantum mechanics and realize unidirectional reflection at optical EPs. Unidirectional reflectionlessness is of great interest for optical invisibility. Achieving unidirectional reflectionless light propagation could also be potentially important for developing optical devices, such as optical network analyzers. Here, we discuss unidirectional reflectionlessness at EPs in both parity-time (PT)-symmetric and non-PT-symmetric optical systems. We also provide an outlook on possible future directions in this field.

  15. Exceptional Events Submissions Table (2016 Rule)

    EPA Pesticide Factsheets

    This table contains examples of air agency submitted exceptional events demonstrations and responsive EPA decision documents that have been prepared and/or acted upon under the 2016 Exceptional Events Rule

  16. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    The Ohio State University Vice President for Research Dr. Caroline Whitacre, standing right, moderates the first panel discussion during NASA's Future Forum with NASA Associate Administrator for Science Mission Directorate John Grunsfeld, left, Ohio State University Graduate Research Associate Vijay Gadepally, Sen. John Glenn, NASA Administrator Charles Bolden, and NASA 2009 Astronaut Candidate and Flight Surgeon Serena Auñón, seated right, at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  17. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Administrator Charles Bolden, far right, gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Administrator Bolden is joined on the panel from left to right by Leland Melvin, Education Design Team Co-Chair and NASA Astronaut; William Kelly, Manager, Public Affairs, American Society for Engineering Education; Michael Lach, Special Assistant for STEM Education, U.S. Department of Education; Cora Marrett, Acting Director, National Science Foundation; and James Stofan, NASA Acting Associate Administrator for Education. (Photo Credit: NASA/Carla Cioffi)

  18. NASA Thesaurus Data File

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Aeronautics and Space Database (NA&SD) and NASA Technical Reports Server (NTRS). The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and the biological sciences. The NASA Thesaurus Data File contains all valid terms and hierarchical relationships, USE references, and related terms in machine-readable form. The Data File is available in the following formats: RDF/SKOS, RDF/OWL, ZThes-1.0, and CSV/TXT.

  19. NASA Aeropropulsion Research: Looking Forward

    NASA Technical Reports Server (NTRS)

    Seidel, Jonathan A.; Sehra, Arun K.; Colantonio, Renato O.

    2001-01-01

    NASA has been researching new technology and system concepts to meet the requirements of aeropropulsion for 21st Century aircraft. The air transportation for the new millennium will require revolutionary solutions to meet public demand for improving safety, reliability, environmental compatibility, and affordability. Whereas the turbine engine revolution will continue during the next two decades, several new revolutions are required to achieve the dream of an affordable, emissionless, and silent aircraft. This paper reviews the continuing turbine engine revolution and explores the propulsion system impact of future revolutions in propulsion configuration, fuel infrastructure, and alternate energy systems. A number of promising concepts, ranging from the ultrahigh to fuel cell-powered distributed propulsion are also reviewed.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. 1-,2-,3-e - Engaging All Exceptional Students in Science, Technology, Engineering and Mathematics (STEM)

    NASA Astrophysics Data System (ADS)

    Runyon, C. R.; Hall, C.; Baber, M.

    2013-12-01

    There are more than 50 million Americans with disabilities, approximately half of whom are students in a mainstreamed classroom. The National Association for Gifted Children estimates that approximately 3 million of those, 6% of the student population, are academically gifted, and 150,000 - 300,000 students of those are twice or triple exceptional (2e and 3e, respectively). The 2e and 3e refers to intellectually gifted children who also have some form(s) of disability. Unfortunately most schools in the US identify children by their giftedness or by their disability, but rarely by both. An apparent trend with 2e children, particularly when autism is paired with gifted, is that students identify with their disability instead of their strengths. 2e students have shown a propensity for interests in the science and technology fields. Few specialized programs and/or resources in STEM exist to engage and involve these exceptional students and fewer still is the number of faculty and staff trained to work with the twice and triple exceptionalities. Palmetto Scholars Academy (PSA), Charleston, SC a school for gifted and talented, provides a differentiated program to meet the educational needs of gifted learners, while also addressing the students' social/emotional needs. The Brown/MIT NASA Lunar Science Institute, in conjunction with the NASA South Carolina Space Grant Consortium, is working directly with educators from the PSA to identify what kinds of materials they need and what mediums work best for the different student (cap)abilities. This partnership will provide a means of 'consciousness raising' for teachers to help students develop their strengths and educators will gain a new understanding of 2e and 3e that will transfer into better instruction. One technique being implemented is the use of STEM-oriented engineering and technology design challenges and problem solving. These tasks allow students to use a variety of integrative and multi-disciplinary skills for

  2. Are Television Commercials Still Achievement Scripts for Women?

    ERIC Educational Resources Information Center

    Yoder, Janice D.; Christopher, Jessica; Holmes, Jeffrey D.

    2008-01-01

    Content analyses of television advertising document the ubiquity of traditional images of women, yet few studies have explored their impact. One noteworthy exception is the experiment by Geis, Brown, Jennings, and Porter (1984). These researchers found that the achievement aspirations of controls and women exposed to traditional images were lower…

  3. NASA-STD-4005 and NASA-HDBK-4006, LEO Spacecraft Solar Array Charging Design Standard

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    Two new NASA Standards are now official. They are the NASA LEO Spacecraft Charging Design Standard (NASA-STD-4005) and the NASA LEO Spacecraft Charging Design Handbook (NASA-HDBK-4006). They give the background and techniques for controlling solar array-induced charging and arcing in LEO. In this paper, a brief overview of the new standards is given, along with where they can be obtained and who should be using them.

  4. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-22

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements. Dr. Quentin T. Ross, Jr., President, Alabama State University, Astronaut Tracy Dyson, and MSFC Director Todd May talk to members of the media at Alabama State University.

  5. NASA@Work

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2014-01-01

    NASA@work is an agency-wide website designed to increase innovation and access to ideas and knowledge from within the NASA community. Individuals (challenge owners) post their specific problem or "challenge." Anyone in the community (solvers) can contribute to the interactive discussions and submit proposed solutions with the opportunity to win an award.

  6. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Administrator Charles Bolden gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  7. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while NASA's Director, Earth Science Division, Mike Freilich, speaks at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  8. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Deputy Administrator Lori Garver, far left at table, answers a students question at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. Garver is joined on the panel by NASA astronaut Tracy Caldwell Dyson, center, and NASA Aerospace Engineer Sabrina Thompson. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Photo Credit: (NASA/Carla Cioffi)

  9. NASA and Industry Benefits of ACTS High Speed Network Interoperability Experiments

    NASA Technical Reports Server (NTRS)

    Zernic, M. J.; Beering, D. R.; Brooks, D. E.

    2000-01-01

    This paper provides synopses of the design. implementation, and results of key high data rate communications experiments utilizing the technologies of NASA's Advanced Communications Technology Satellite (ACTS). Specifically, the network protocol and interoperability performance aspects will be highlighted. The objectives of these key experiments will be discussed in their relevant context to NASA missions, as well as, to the comprehensive communications industry. Discussion of the experiment implementation will highlight the technical aspects of hybrid network connectivity, a variety of high-speed interoperability architectures, a variety of network node platforms, protocol layers, internet-based applications, and new work focused on distinguishing between link errors and congestion. In addition, this paper describes the impact of leveraging government-industry partnerships to achieve technical progress and forge synergistic relationships. These relationships will be the key to success as NASA seeks to combine commercially available technology with its own internal technology developments to realize more robust and cost effective communications for space operations.

  10. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Special Assitant for STEM Education, U. S. Department of Education, Michael Lach, far right, addresses guests at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Seated from right are James Stofan, NASA Acting Associate Administrator for Education; Charles Bolden, NASA Administrator; and Cora B. Marrett, Acting Director, National Science Foundation. (Photo Credit: NASA/Carla Cioffi)

  11. 7 CFR 4274.381 - Exception authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Program (IRP) § 4274.381 Exception authority. The Administrator may, in individual cases, grant an exception to any requirement or provision of this subpart which is not inconsistent with any applicable law...

  12. 44 CFR 13.6 - Additions and exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Additions and exceptions. 13.6 Section 13.6 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT... requirements except in codified regulations published in the Federal Register. (b) Exceptions for classes of...

  13. 47 CFR 1.277 - Exceptions; oral arguments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Exceptions; oral arguments. 1.277 Section 1.277 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Hearing Proceedings Review Proceedings § 1.277 Exceptions; oral arguments. (a) The consolidated supporting brief and exceptions to the...

  14. 28 CFR 551.5 - Restrictions and exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Restrictions and exceptions. 551.5 Section 551.5 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MISCELLANEOUS Grooming § 551.5 Restrictions and exceptions. The Warden may impose restrictions or exceptions for...

  15. 28 CFR 551.5 - Restrictions and exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Restrictions and exceptions. 551.5 Section 551.5 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MISCELLANEOUS Grooming § 551.5 Restrictions and exceptions. The Warden may impose restrictions or exceptions for...

  16. 7 CFR 3565.13 - Exception authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agency official may request and the Administrator or designee may make an exception to any requirement or... program objectives, and provided that such an exception is not inconsistent with any applicable law or...

  17. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA's Administrator, Charles Bolden watches as some students conduct an experiment with a balloon at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  18. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  19. NASA metrication activities

    NASA Technical Reports Server (NTRS)

    Vlannes, P. N.

    1978-01-01

    NASA's organization and policy for metrification, history from 1964, NASA participation in Federal agency activities, interaction with nongovernmental metrication organizations, and the proposed metrication assessment study are reviewed.

  20. High-Speed Jet Noise Reduction NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Handy, J. (Technical Monitor)

    2001-01-01

    History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.

  1. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  2. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Sen. John Glenn delivers the closing remarks for NASA's Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  3. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  4. Exception handling for sensor fusion

    NASA Astrophysics Data System (ADS)

    Chavez, G. T.; Murphy, Robin R.

    1993-08-01

    This paper presents a control scheme for handling sensing failures (sensor malfunctions, significant degradations in performance due to changes in the environment, and errant expectations) in sensor fusion for autonomous mobile robots. The advantages of the exception handling mechanism are that it emphasizes a fast response to sensing failures, is able to use only a partial causal model of sensing failure, and leads to a graceful degradation of sensing if the sensing failure cannot be compensated for. The exception handling mechanism consists of two modules: error classification and error recovery. The error classification module in the exception handler attempts to classify the type and source(s) of the error using a modified generate-and-test procedure. If the source of the error is isolated, the error recovery module examines its cache of recovery schemes, which either repair or replace the current sensing configuration. If the failure is due to an error in expectation or cannot be identified, the planner is alerted. Experiments using actual sensor data collected by the CSM Mobile Robotics/Machine Perception Laboratory's Denning mobile robot demonstrate the operation of the exception handling mechanism.

  5. 21 CFR 1316.61 - Exceptions to rulings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exceptions to rulings. 1316.61 Section 1316.61 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE ADMINISTRATIVE FUNCTIONS, PRACTICES, AND PROCEDURES Administrative Hearings § 1316.61 Exceptions to rulings. Exceptions to rulings of...

  6. 45 CFR 670.6 - Prior possession exception.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Prior possession exception. 670.6 Section 670.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.6 Prior possession exception. (a...

  7. 45 CFR 670.6 - Prior possession exception.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Prior possession exception. 670.6 Section 670.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.6 Prior possession exception. (a...

  8. 45 CFR 670.6 - Prior possession exception.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 3 2014-10-01 2014-10-01 false Prior possession exception. 670.6 Section 670.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.6 Prior possession exception. (a...

  9. 45 CFR 670.6 - Prior possession exception.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Prior possession exception. 670.6 Section 670.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.6 Prior possession exception. (a...

  10. 45 CFR 670.6 - Prior possession exception.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Prior possession exception. 670.6 Section 670.6 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION CONSERVATION OF ANTARCTIC ANIMALS AND PLANTS Prohibited Acts, Exceptions § 670.6 Prior possession exception. (a...

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  13. NASA low-speed centrifugal compressor for fundamental research

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Adam, P. W.; Buggele, A. E.

    1983-01-01

    A new centrifugal compressor facility being built by the NASA Lewis Research Center is described; its purpose is to obtain 'benchmark' experimental data for internal flow code verification and modeling. The facility will be heavily instrumented with standard pressure and temperature probes and have provisions for flow visualization and laser Doppler velocimetry. The facility will accommodate rotational speeds to 2400 rpm and will be rated at pressures to 1.25 atm. The initial compressor stage for testing is geometrically and dynamically representative of modern high-performance stages with the exception of Mach number levels. Design exit tip speed for the initial stage is 500 ft/sec with a pressure ratio of 1.17. The rotor exit backsweep is 55 deg from radial. The facility is expected to be operational in the first half of 1985.

  14. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Leland Melvin, right, Education Design Team Co-Chair and NASA Astronaut, speaks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  15. Medical benefits from the NASA biomedical applications program

    NASA Technical Reports Server (NTRS)

    Sigmon, J. L.

    1974-01-01

    To achieve its goals the NASA Biomedical Applications Program performs four basic tasks: (1) identification of major medical problems which lend themselves to solution by relevant aerospace technology; (2) identification of relevant aerospace technology which can be applied to those problems; (3) application of that technology to demonstrate the feasibility as real solutions to the identified problems; and, (4) motivation of the industrial community to manufacture and market the identified solution to maximize the utilization of aerospace solutions to the biomedical community.

  16. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam

    NASA Astrophysics Data System (ADS)

    Mayo, L.

    2017-12-01

    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  17. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  18. NASA Symposium 76. [opportunities for minorities and women in NASA programs

    NASA Technical Reports Server (NTRS)

    1976-01-01

    New Mexico State University and the National Aeronautics and Space Administration hosted a symposium to promote NASA's efforts to increase the available pool of minority and women scientists and engineers to meet affirmative hiring goals. The conferences also provided an opportunity for key NASA officials to meet with appropriate officials of participating institutions to stimulate greater academic interest (among professors and students) in NASA's research and development programs. Minority aerospace scientists and engineers had opportunity to interact with the minority community, particulary with young people at the junior high, high school, and college levels. One aim was to raise minority community's level of understanding regarding NASA's Regional Distribution System for storage and retrieval of scientific and technical information.

  19. Achieving Global Ocean Color Climate Data Records

    NASA Technical Reports Server (NTRS)

    Franz, Bryan

    2010-01-01

    Ocean color, or the spectral distribution of visible light upwelling from beneath the ocean surface, carries information on the composition and concentration of biological constituents within the water column. The CZCS mission in 1978 demonstrated that quantitative ocean color measurements could be. made from spaceborne sensors, given sufficient corrections for atmospheric effects and a rigorous calibration and validation program. The launch of SeaWiFS in 1997 represents the beginning of NASA's ongoing efforts to develop a continuous ocean color data record with sufficient coverage and fidelity for global change research. Achievements in establishing and maintaining the consistency of the time-series through multiple missions and varying instrument designs will be highlighted in this talk, including measurements from NASA'S MODIS instruments currently flying on the Terra and Aqua platforms, as well as the MERIS sensor flown by ESA and the OCM-2 sensor recently launched by ISRO.

  20. NASA EEE Parts and NASA Electronic Parts and Packaging (NEPP) Program Update 2018

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.; Pellish, Jonathan A.; Majewicz, Peter J.

    2018-01-01

    NASA Electronic Parts and Packaging (NEPP) Program and NASA Electronic Parts Assurance Group (NEPAG) are NASAs point-of-contacts for reliability and radiation tolerance of EEE parts and their packages. This presentation includes an FY18 program overview.