Sample records for nasa glenn research

  1. NASA-OAI Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center at Lewis Field

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    During the summer of 2002, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA- ASEE Summer Faculty Fellowship Program, that operated for 38 years at Glenn. This year s program began officially on June 3, 2002 and continued through August 9, 2002. This report is intended primarily to summarize the research activities comprising the 2002 CFP Program at Glenn. Fifteen research summaries are included.

  2. Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2004-01-01

    During the summer of 2004, a 10-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA-ASEE Summer Faculty Fellowship Program that operated for 38 years at Glenn. The objectives of CFP parallel those of its companion, viz., (1) to further the professional knowledge of qualified engineering and science faculty,(2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants institutions, and (4) to contribute to the research objectives of Glenn. However, CFP, unlike the NASA program, permits faculty to be in residence for more than two summers and does not limit participation to United States citizens. Selected fellows spend 10 weeks at Glenn working on research problems in collaboration with NASA colleagues and participating in related activities of the NASA-ASEE program. This year's program began officially on June 1, 2004 and continued through August 7, 2004. Several fellows had program dates that differed from the official dates because university schedules vary and because some of the summer research projects warranted a time extension beyond the 10 weeks for satisfactory completion of the work. The stipend paid to the fellows was $1200 per week and a relocation allowance of $1000 was paid to those living outside a 50-mile radius of the Center. In post-program surveys from this and previous years, the faculty cited numerous instances where participation in the program has led to new courses, new research projects, new laboratory experiments, and grants from NASA to continue the work initiated during the summer. Many of the fellows mentioned amplifying material, both in

  3. NASA Glenn Research Center Overview

    NASA Technical Reports Server (NTRS)

    Sehra, Arun K.

    2002-01-01

    This viewgraph presentation provides information on the NASA Glenn Research Center. The presentation is a broad overview, including the chain of command at the center, its aeronautics facilities, and the factors which shape aerospace product line integration at the center. Special attention is given to the future development of high fidelity probabilistic methods, and NPSS (Numerical Propulsion System Simulation).

  4. Overview of CMC Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2011-01-01

    CMC technology development in the Ceramics Branch at NASA Glenn Research Center addresses Aeronautics propulsion goals across subsonic, supersonic and hypersonic flight regimes. Combustor, turbine and exhaust nozzle applications of CMC materials will enable NASA to demonstrate reduced fuel consumption, emissions, and noise in advanced gas turbine engines. Applications ranging from basic Fundamental Aeronautics research activities to technology demonstrations in the new Integrated Systems Research Program will be discussed.

  5. Aerospace Communications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    The Communications Division at the NASA Glenn Research Center in Cleveland Ohio has as its charter to provide NASA and the Nation with our expertise and services in innovative communications technologies that address future missions in Aerospace Technology, Spaceflight, Space Science, Earth Science, Life Science and Exploration.

  6. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  7. An Overview of Aerospace Propulsion Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    2007-01-01

    NASA Glenn Research center is the recognized leader in aerospace propulsion research, advanced technology development and revolutionary system concepts committed to meeting the increasing demand for low noise, low emission, high performance, and light weight propulsion systems for affordable and safe aviation and space transportation needs. The technologies span a broad range of areas including air breathing, as well as rocket propulsion systems, for commercial and military aerospace applications and for space launch, as well as in-space propulsion applications. The scope of work includes fundamentals, components, processes, and system interactions. Technologies developed use both experimental and analytical approaches. The presentation provides an overview of the current research and technology development activities at NASA Glenn Research Center .

  8. NDE Software Developed at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Rauser, Richard W.; Nichols, Charles; Bonacuse, Peter J.

    2014-01-01

    NASA Glenn Research Center has developed several important Nondestructive Evaluation (NDE) related software packages for different projects in the last 10 years. Three of the software packages have been created with commercial-grade user interfaces and are available to United States entities for download on the NASA Technology Transfer and Partnership Office server (https://sr.grc.nasa.gov/). This article provides brief overviews of the software packages.

  9. SBIR Success Stories at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Howe, Meghan R.; Novak, George D.

    1999-01-01

    This booklet of success stories summarizes the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. These success stories are the results of selecting projects that best support NASA missions and also have commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. The company name and the NASA contact person are identified to encourage further interest and communication to occur.

  10. NASA Glenn Research Center Electrochemistry Branch Battery Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2010-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Specific areas of focus are Li-ion batteries and their development for future Exploration missions. Current component development efforts for high energy and ultra high energy Li-ion batteries are addressed. Electrochemical systems are critical to the success of Exploration, Science and Space Operations missions. NASA Glenn has a long, successful heritage with batteries and fuel cells for aerospace applications. GRC Battery capabilities and expertise span basic research through flight hardware development and implementation. There is a great deal of synergy between energy storage system needs for aerospace and terrestrial applications.

  11. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  12. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  13. Successes of Small Business Innovation Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Ganss, Meghan

    2002-01-01

    This booklet of success stories highlights the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. These success stories are the results of selecting projects that support NASA missions and also have high commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. This booklet emphasizes the integration and incorporation of technologies into NASA missions and other government projects. The company name and the NASA contact person are identified to encourage further usage and application of the SBIR developed technologies and also to promote further commercialization of these products.

  14. Sixth NASA Glenn Research Center Propulsion Control and Diagnostics (PCD) Workshop

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S. (Compiler)

    2018-01-01

    The Intelligent Control and Autonomy Branch at NASA Glenn Research Center hosted the Sixth Propulsion Control and Diagnostics Workshop on August 22-24, 2017. The objectives of this workshop were to disseminate information about research being performed in support of NASA Aeronautics programs; get feedback from peers on the research; and identify opportunities for collaboration. There were presentations and posters by NASA researchers, Department of Defense representatives, and engine manufacturers on aspects of turbine engine modeling, control, and diagnostics.

  15. CMC Research at NASA Glenn in 2015: Recent Progress and Plans

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    An overview of recent research in Ceramic Matrix Composite materials at NASA Glenn Research Center. For presentation at the July 16, 2015 GRC Dialogue Day with Ohio Academia, as part of the establishment of the Ohio Federal Research Network.

  16. Fuel Cell Activities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Fuel cells have a long history in space applications and may have potential application in aeronautics as well. A fuel cell is an electrochemical energy conversion device that directly transforms the chemical energy of a fuel and oxidant into electrical energy. Alkaline fuel cells have been the mainstay of the U.S. space program, providing power for the Apollo missions and the Space Shuttle. However, Proton Exchange Membrane (PEM) fuel cells offer potential benefits over alkaline systems and are currently under development for the next generation Reusable Launch Vehicle (RLV). Furthermore, primary and regenerative systems utilizing PEM technology are also being considered for future space applications such as surface power and planetary aircraft. In addition to these applications, the NASA Glenn Research Center is currently studying the feasibility of the use of both PEM and solid oxide fuel cells for low- or zero-emission electric aircraft propulsion. These types of systems have potential applications for high altitude environmental aircraft, general aviation and commercial aircraft, and high attitude airships. NASA Glenn has a unique set of capabilities and expertise essential to the successful development of advanced fuel cell power systems for space and aeronautics applications. NASA Glenn's role in past fuel cell development programs as well as current activities to meet these new challenges will be presented

  17. Bringing the Future Within Reach: Celebrating 75 Years of the NASA John H. Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Arrighi, Robert S.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center in Cleveland, Ohio, has been making the future for 75 years. The center's work with aircraft engines, high-energy fuels, communications technology, electric propulsion, energy conversion and storage, and materials and structures has been, and continues to be, crucial to both the Agency and the region. Glenn has partnered with industry, universities, and other agencies to continually advance technologies that are propelling the nation's aerospace community into the future. Nonetheless these continued accomplishments would not be possible without the legacy of our first three decades of research, which led to over one hundred R&D 100 Awards, three Robert J. Collier Trophies, and an Emmy. Glenn, which is located in Cleveland, Ohio, is 1 of 10 NASA field centers, and 1 of only 3 that stem from an earlier research organization-the National Advisory Committee for Aeronautics (NACA). Glenn began operation in 1942 as the NACA Aircraft Engine Research Laboratory (AERL). In 1947 the NACA renamed the lab the Flight Propulsion Laboratory to reflect the expansion of the research. In September 1948, following the death of the NACA's Director of Aeronautics, George Lewis, the NACA rededicated the lab as the Lewis Flight Propulsion Laboratory. On 1 October 1958, the lab was incorporated into the new NASA space agency and was renamed the NASA Lewis Research Center. Following John Glenn's return to space on the space shuttle, on 1 March 1999 the center name was changed once again, becoming the NASA John H. Glenn Research Center.

  18. Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.

  19. Overview of Low Emission Combustion Research At NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  20. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  1. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  2. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  3. PNT Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sands, Obed

    2017-01-01

    This presentation provides a review of Position Navigation and Timing activities at the Glenn Research Center. Topics include 1) contributions to simulation studies for the Space Service Volume of the Global Navigation Satellite System, 2) development and integration efforts for a Software Defined Radio (SDR) waveform for the Space Communications and Navigation (SCaN) testbed, currently onboard the International Space Station and 3) a GPS L5 testbed intended to explore terrain mapping capabilities with communications signals. Future directions are included and a brief discussion of NASA, GRC and the SCAN office.

  4. NASA Glenn's Kilopower Media Day

    NASA Image and Video Library

    2018-05-03

    NASA announced the results of the demonstration, called the Kilopower Reactor Using Stirling Technology (KRUSTY) experiment, during a news conference Wednesday at its Glenn Research Center in Cleveland. Media toured Glenn’s Stirling Research Lab and other facilities after the press conference.

  5. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick; Proctor, Margaret; Delgado, Irebert; Finkbeiner, Josh; DeMange, Jeff; Daniels, Christopher C.; Taylor, Shawn; Oswald, Jay

    2006-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage through applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. NASA Glenn is developing seal technology and providing technical consultation for the Agency s key aero- and space technology development programs.

  6. An Overview of Low-Emission Combustion Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, Dhanireddy R.; Lee, Chi-Ming

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  7. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  8. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  9. Model Attitude and Deformation Measurements at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    2008-01-01

    The NASA Glenn Research Center is currently participating in an American Institute of Aeronautics and Astronautics (AIAA) sponsored Model Attitude and Deformation Working Group. This working group is chartered to develop a best practices document dealing with the measurement of two primary areas of wind tunnel measurements, 1) model attitude including alpha, beta and roll angle, and 2) model deformation. Model attitude is a principle variable in making aerodynamic and force measurements in a wind tunnel. Model deformation affects measured forces, moments and other measured aerodynamic parameters. The working group comprises of membership from industry, academia, and the Department of Defense (DoD). Each member of the working group gave a presentation on the methods and techniques that they are using to make model attitude and deformation measurements. This presentation covers the NASA Glenn Research Center s approach in making model attitude and deformation measurements.

  10. NASA Glenn Research Center Experience with LENR Phenomenon

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  11. NASA Glenn Research Center Experience with "LENR Phenomenon"

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  12. 70 Years of Aeropropulsion Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, Dhanireddy R.

    2013-01-01

    This paper presents a brief overview of air-breathing propulsion research conducted at the NASA Glenn Research Center (GRC) over the past 70 years. It includes a historical perspective of the center and its various stages of propulsion research in response to the countrys different periods of crises and growth opportunities. GRCs research and technology development covered a broad spectrum, from a short-term focus on improving the energy efficiency of aircraft engines to advancing the frontier technologies of high-speed aviation in the supersonic and hypersonic speed regimes. This paper highlights major research programs, showing their impact on industry and aircraft propulsion, and briefly discusses current research programs and future aeropropulsion technology trends in related areas

  13. Visualization of lunar excavation test in NASA Glenn's GRUVE Lab

    NASA Image and Video Library

    1969-12-31

    Calvin Robinson of NASA Glenn's GVIS Team demonstrates a visualization of an excavation test conducted at NASA Glenn Research Center's SLOPE Lab ( https://rt.grc.nasa.gov/main/rlc/simu... ) . The visualization shows the flow of a lunar soil simulant as it flows in and past a proposed excavation bucket.

  14. NASA Glenn Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Roeder, James W.; Stark, David E.; Linne, Alan A.

    2004-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models that are to be tested in the wind tunnel facilities at the NASA Glenn Research Center. This report presents two methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it defines project procedures to test models in the NASA Glenn aeropropulsion facilities. Both customer-furnished and in-house model systems are discussed. The functions of the facility personnel and customers are defined. The format for the pretest meetings, safety permit process, and model reviews are outlined. The format for the model systems report (a requirement for each model that is to be tested at NASA Glenn) is described, the engineers responsible for developing the model systems report are listed, and the timetable for its delivery to the project engineer is given.

  15. NASA Rotor 37 CFD Code Validation: Glenn-HT Code

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2010-01-01

    In order to advance the goals of NASA aeronautics programs, it is necessary to continuously evaluate and improve the computational tools used for research and design at NASA. One such code is the Glenn-HT code which is used at NASA Glenn Research Center (GRC) for turbomachinery computations. Although the code has been thoroughly validated for turbine heat transfer computations, it has not been utilized for compressors. In this work, Glenn-HT was used to compute the flow in a transonic compressor and comparisons were made to experimental data. The results presented here are in good agreement with this data. Most of the measures of performance are well within the measurement uncertainties and the exit profiles of interest agree with the experimental measurements.

  16. Propulsion Controls and Diagnostics Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the National Aeronautics and Space Administration (NASA) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch (CDB) at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This paper describes the current activities of the CDB under the NASA Aeronautics Research and Exploration Systems Missions. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.

  17. NASA's Human Research Program at The Glenn Research Center: Progress and Opportunities

    NASA Technical Reports Server (NTRS)

    Nall, Marsha; Griffin, DeVon; Myers, Jerry; Perusek, Gail

    2008-01-01

    The NASA Human Research Program is aimed at correcting problems in critical areas that place NASA human spaceflight missions at risk due to shortfalls in astronaut health, safety and performance. The Glenn Research Center (GRC) and partners from Ohio are significant contributors to this effort. This presentation describes several areas of GRC emphasis, the first being NASA s path to creating exercise hardware requirements and protocols that mitigate the effects of long duration spaceflight. Computational simulations will be a second area that is discussed. This includes deterministic models that simulate the effects of spaceflight on the human body, as well as probabilistic models that bound and quantify the probability that adverse medical incidents will happen during an exploration mission. Medical technology development for exploration will be the final area to be discussed.

  18. Airborne Satcom Terminal Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Zakrajsek, Robert

    2002-01-01

    NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.

  19. 2003 NASA Faculty Fellowship Program at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Heyward, An O.; Kankam, Mark D.

    2003-01-01

    The Office of Education at NASA Headquarters provides overall policy and direction for the NASA Faculty Fellowship Program (NFFP). The American Society for Engineering Education (ASEE) and the Universities Space Research Association (USRA) have joined in partnership to recruit participants, accept applications from a broad range of participants, and provide overall evaluation of the NFFP. The NASA Centers, through their University Affairs Officers, develop and operate the experiential part of the program. In concert with co-directing universities and the Centers, Fellows are selected and provided the actual research experiences. This report summarizes the 2003 session conducted at the Glenn Research Center (GRC).Research topics covered a variety of areas including, but not limited to, biological sensors, modeling of biological fluid systems, electronic circuits, ceramics and coatings, unsteady probablistic analysis and aerodynamics, gas turbines, environmental monitoring systems for water quality, air quality, gaseous and particulate emissions, bearings for flywheel energy storage, shape memory alloys,photonic interrogation and nanoprocesses,carbon nanotubes, polymer synthesis for fuel cells, aviation communications, algorithm development and RESPlan Database.

  20. DIME 2002 Participants at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Students from the four teams pose in front of he NASA Glenn Administration Building alongside the NASA Glenn Time Capsule. The students participated in the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  1. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn; hide

    2009-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.

  2. An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center

    NASA Astrophysics Data System (ADS)

    Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

    2002-10-01

    For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

  3. An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

    2002-01-01

    For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

  4. Proposed Development of NASA Glenn Research Center's Aeronautical Network Research Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Kerczewski, Robert J.; Wargo, Chris A.; Kocin, Michael J.; Garcia, Manuel L.

    2004-01-01

    Accurate knowledge and understanding of data link traffic loads that will have an impact on the underlying communications infrastructure within the National Airspace System (NAS) is of paramount importance for planning, development and fielding of future airborne and ground-based communications systems. Attempting to better understand this impact, NASA Glenn Research Center (GRC), through its contractor Computer Networks & Software, Inc. (CNS, Inc.), has developed an emulation and test facility known as the Virtual Aircraft and Controller (VAC) to study data link interactions and the capacity of the NAS to support Controller Pilot Data Link Communications (CPDLC) traffic. The drawback of the current VAC test bed is that it does not allow the test personnel and researchers to present a real world RF environment to a complex airborne or ground system. Fortunately, the United States Air Force and Navy Avionics Test Commands, through its contractor ViaSat, Inc., have developed the Joint Communications Simulator (JCS) to provide communications band test and simulation capability for the RF spectrum through 18 GHz including Communications, Navigation, and Identification and Surveillance functions. In this paper, we are proposing the development of a new and robust test bed that will leverage on the existing NASA GRC's VAC and the Air Force and Navy Commands JCS systems capabilities and functionalities. The proposed NASA Glenn Research Center's Aeronautical Networks Research Simulator (ANRS) will combine current Air Traffic Control applications and physical RF stimulation into an integrated system capable of emulating data transmission behaviors including propagation delay, physical protocol delay, transmission failure and channel interference. The ANRS will provide a simulation/stimulation tool and test bed environment that allow the researcher to predict the performance of various aeronautical network protocol standards and their associated waveforms under varying

  5. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  6. CMC Research at NASA Glenn in 2014: Recent Progress and Plans

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber, matrix and CMC development activities will be reviewed and the improvements in the properties and durability of each will be summarized. Plans for 2014 will be summarized, including fabrication and durability testing of the 2700F CMC and status updates on research collaborations underway with AFRL and DOE

  7. Electrical Systems Analysis at NASA Glenn Research Center: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Liang, Anita D.; Berton, Jeffrey J.; Wickenheiser, Timothy J.

    2003-01-01

    An analysis of an electrical power and propulsion system for a 2-place general aviation aircraft is presented to provide a status of such modeling at NASA Glenn Research Center. The thermodynamic/ electrical model and mass prediction tools are described and the resulting system power and mass are shown. Three technology levels are used to predict the effect of advancements in component technology. Methods of fuel storage are compared by mass and volume. Prospects for future model development and validation at NASA as well as possible applications are also summarized.

  8. Background-Oriented Schlieren Applications in NASA Glenn Research Center's Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Woike, Mark R.

    2015-01-01

    This is a presentation for an invited session at the 2015 SciTech Conference 53rd AIAA Aerospace Sciences Meeting. The presentation covers the recent applications of Background-Oriented Schlieren in NASA Glenn Research Center's ground test facilities, such as the 8x6 SWT, open jet rig, and AAPL.

  9. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)

    2001-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.

  10. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugfer, Raymond E.

    2002-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.

  11. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid beat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.

  12. Glenn Research Center Human Research Program: Overview

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Myers, Jerry G.

    2013-01-01

    The NASA-Glenn Research Centers Human Research Program office supports a wide range of technology development efforts aimed at enabling extended human presence in space. This presentation provides a brief overview of the historical successes, current 2013 activities and future projects of NASA-GRCs Human Research Program.

  13. Selected Research and Development Topics on Aerospace Communications at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert R.; Nessel, James A.

    2014-01-01

    This presentation discusses some of the efforts on communications RD that have been performed or are currently underway at NASA Glenn Research Center. The primary purpose of this presentation is to outline some RD topics to serve as talking points for a Technical Interchange Meeting with the Ohio State University. The meeting is scheduled to take place at The ElectroScience Laboratory of the Ohio State University on February 24, 2014.

  14. NASA Glenn's Engine Components Research Lab, Cell 2B, Reactivated to Support the U.S. Army Research Laboratory T700 Engine Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Griffin, Thomas A.

    2004-01-01

    The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.

  15. NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock

    2011-01-01

    At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.

  16. CMC Research at NASA Glenn in 2017: Recent Progress and Plans

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2017-01-01

    As part of NASA's Aeronautics research mission, Glenn Research Center has developed advanced constituents for 2700F CMC turbine engine applications. In this presentation, fiber and matrix development and characterization for SiCSiC composites will be reviewed and resulting improvements in CMC durability and mechanical properties will be summarized. Progress toward the development and validation of models predicting the effects of the engine environment on durability of CMC and Environmental Barrier Coatings will be summarized and plans for research and collaborations in 2017 will be summarized.

  17. Phased Array Antenna Testbed Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Kubat, Gregory; Johnson, Sandra K.; Anzic, Godfrey

    2003-01-01

    Ideal phased array antennas offer advantages for communication systems, such as wide-angle scanning and multibeam operation, which can be utilized in certain NASA applications. However, physically realizable, electronically steered, phased array antennas introduce additional system performance parameters, which must be included in the evaluation of the system. The NASA Glenn Research Center (GRC) is currently conducting research to identify these parameters and to develop the tools necessary to measure them. One of these tools is a testbed where phased array antennas may be operated in an environment that simulates their use. This paper describes the development of the testbed and its use in characterizing a particular K-Band, phased array antenna.

  18. NASA Glenn High Pressure Low NOx Emissions Research

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Wey, Changlie

    2008-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  19. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  20. Propulsion Controls and Health Management Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2002-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with the U.S. aerospace industry and academia to develop advanced controls and health management technologies that will help meet these challenges. These technologies are being developed with a view towards making the concept of "Intelligent Engines" a reality. The major research activities of the Controls and Dynamics Technology Branch are described in the following.

  1. Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center

    NASA Technical Reports Server (NTRS)

    Graham, Scott R.

    2015-01-01

    The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agency-wide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.

  2. Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center

    NASA Technical Reports Server (NTRS)

    Graham, Scott R.

    2014-01-01

    The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agencywide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.

  3. Overview of Propulsion Controls and Diagnostics Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2012-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. CDB conducts propulsion control and diagnostics research in support of various programs and projects under the NASA Aeronautics Research Mission Directorate and the Human Exploration and Operations Mission Directorate. The paper first provides an overview of the various research tasks in CDB relative to the NASA programs and projects, and briefly describes the progress being made on each of these tasks. The discussion here is at a high level providing the objectives of the tasks, the technical challenges in meeting the objectives and most recent accomplishments. References are provided for each of the technical tasks for the reader to familiarize themselves with the details.

  4. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  5. High Power MPD Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Propulsion requirements for large platform orbit raising, cargo and piloted planetary missions, and robotic deep space exploration have rekindled interest in the development and deployment of high power electromagnetic thrusters. Magnetoplasmadynamic (MPD) thrusters can effectively process megawatts of power over a broad range of specific impulse values to meet these diverse in-space propulsion requirements. As NASA's lead center for electric propulsion, the Glenn Research Center has established an MW-class pulsed thruster test facility and is refurbishing a high-power steady-state facility to design, build, and test efficient gas-fed MPD thrusters. A complimentary numerical modeling effort based on the robust MACH2 code provides a well-balanced program of numerical analysis and experimental validation leading to improved high power MPD thruster performance. This paper reviews the current and planned experimental facilities and numerical modeling capabilities at the Glenn Research Center and outlines program plans for the development of new, efficient high power MPD thrusters.

  6. NASA Glenn Icing Research Tunnel: Upgrade and Cloud Calibration

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura E.

    2012-01-01

    In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.

  7. Icing Cloud Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.; Oldenburg, John R.

    2001-01-01

    The icing research tunnel at the NASA Glenn Research Center underwent a major rehabilitation in 1999, necessitating recalibration of the icing clouds. This report describes the methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content. The instruments and methods used to perform the droplet size calibration are also described. The liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and compared to the FAA icing certification criteria. The capabilities of the IRT to produce large droplet icing clouds is also detailed.

  8. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2012 Tests)

    NASA Technical Reports Server (NTRS)

    Pastor-Barsi, Christine; Allen, Arrington E.

    2013-01-01

    A full aero-thermal calibration of the NASA Glenn Icing Research Tunnel (IRT) was completed in 2012 following the major modifications to the facility that included replacement of the refrigeration plant and heat exchanger. The calibration test provided data used to fully document the aero-thermal flow quality in the IRT test section and to construct calibration curves for the operation of the IRT.

  9. CMC Research at NASA Glenn in 2015: Recent Progress and Plans

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    As part of NASAs Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiC/SiC composites with Environmental Barrier Coatings

  10. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  11. NASA Glenn Research Center Electrochemistry Branch Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Reid, Concha

    2010-01-01

    This presentation covers an overview of NASA Glenn's history and heritage in the development of electrochemical systems for aerospace applications. Current programs related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions. The presentation covers details of current component development efforts for high energy and ultra high energy Li-ion batteries and non-flow-through fuel cell stack and balance of plant development. Electrochemistry Branch capabilities and facilities are also addressed.

  12. Development of Li-Metal Battery Cell Chemistries at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.

    2015-01-01

    State-of-the-Art lithium-ion battery technology is limited by specific energy and thus not sufficiently advanced to support the energy storage necessary for aerospace needs, such as all-electric aircraft and many deep space NASA exploration missions. In response to this technological gap, our research team at NASA Glenn Research Center has been active in formulating concepts and developing testing hardware and components for Li-metal battery cell chemistries. Lithium metal anodes combined with advanced cathode materials could provide up to five times the specific energy versus state-of-the-art lithium-ion cells (1000 Whkg versus 200 Whkg). Although Lithium metal anodes offer very high theoretical capacity, they have not been shown to successfully operate reversibly.

  13. CMC Research at NASA Glenn in 2016: Recent Progress and Plans

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2016-01-01

    As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700 degrees Fahrenheit CMC (Ceramic Matrix Composite) for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiCSiC composites with Environmental Barrier Coatings (EBCs).

  14. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  15. A High Temperature Cyclic Oxidation Data Base for Selected Materials Tested at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    2003-01-01

    The cyclic oxidation test results for some 1000 high temperature commercial and experimental alloys have been collected in an EXCEL database. This database represents over thirty years of research at NASA Glenn Research Center in Cleveland, Ohio. The data is in the form of a series of runs of specific weight change versus time values for a set of samples tested at a given temperature, cycle time, and exposure time. Included on each run is a set of embedded plots of the critical data. The nature of the data is discussed along with analysis of the cyclic oxidation process. In addition examples are given as to how a set of results can be analyzed. The data is assembled on a read-only compact disk which is available on request from Materials Durability Branch, NASA Glenn Research Center, Cleveland, Ohio.

  16. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... obtain public comments on construction and operation of the wind farm. The purpose of constructing and...

  17. Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen

    1999-01-01

    A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.

  18. FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.

  19. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Benavides, Gabriel; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; hide

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the 200 W Busek BHT-200-I and the continued development of the 600 W BHT-600-I Hall thruster propulsion systems. This paper presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  20. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Benavides, Gabriel; Haag, Thomas; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; hide

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek BHT-200-I, 200 W and the continued development of the BHT-600-I Hall thruster propulsion systems. This presentation presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  1. Aero-thermal Calibration of the NASA Glenn Icing Research Tunnel (2000 Tests)

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen; Curry, Monroe R., III

    2001-01-01

    Aerothermal calibration measurements and flow quality surveys were made in the test section of the Icing Research Tunnel at the NASA Glenn Research Center. These surveys were made following major facility modifications including widening of the heat exchanger tunnel section, replacement of the heat exchanger, installation of new turning vanes, and installation of new fan exit guide vanes. Standard practice at NASA Glenn requires that test section calibration and flow quality surveys be performed following such major facility modifications. A single horizontally oriented rake was used to survey the flow field at several vertical positions within a single cross-sectional plane of the test section. These surveys provided a detailed mapping of the total and static pressure, total temperature, Mach number, velocity, flow angle and turbulence intensity. Data were acquired over the entire velocity and total temperature range of the facility. No icing conditions were tested; however, the effects of air sprayed through the water injecting spray bars were assessed. All data indicate good flow quality. Mach number standard deviations were less than 0.0017, flow angle standard deviations were between 0.3 deg and 0.8 deg, total temperature standard deviations were between 0.5 and 1.8 F for subfreezing conditions, axial turbulence intensities varied between 0.3 and 1.0 percent, and transverse turbulence intensities varied between 0.3 and 1.5 percent. Measurement uncertainties were also quantified.

  2. Polymeric Materials for Aerospace Power and Propulsion: Overview of Polymer Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2007-01-01

    Weight, durability and performance are all major concerns for any NASA mission. Use of lightweight materials, such as fiber reinforced polymer matrix composites can lead to significant reductions in vehicle weight and improvements in vehicle performance. Research in the Polymeric Materials Branch at NASA Glenn is focused on improving the durability, properties, processability and performance of polymeric materials by utilizing both conventional polymer science and engineering as well as nanotechnology and bioinspired approaches. This presentation will provide an overview of these efforts and highlight recent progress.

  3. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  4. Institutional Memory Preservation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Coffey, J.; Moreman, Douglas; Dyer, J.; Hemminger, J. A.

    1999-01-01

    In this era of downsizing and deficit reduction, the preservation of institutional memory is a widespread concern for U.S. companies and governmental agencies. The National Aeronautical and Space Administration faces the pending retirement of many of the agency's long-term, senior engineers. NASA has a marvelous long-term history of success, but the agency faces a recurring problem caused by the loss of these engineers' unique knowledge and perspectives on NASA's role in aeronautics and space exploration. The current work describes a knowledge elicitation effort aimed at demonstrating the feasibility of preserving the more personal, heuristic knowledge accumulated over the years by NASA engineers, as contrasted with the "textbook" knowledge of launch vehicles. Work on this project was performed at NASA Glenn Research Center and elsewhere, and focused on launch vehicle systems integration. The initial effort was directed toward an historic view of the Centaur upper stage which is powered by two RL-10 engines. Various experts were consulted, employing a variety of knowledge elicitation techniques, regarding the Centaur and RL-10. Their knowledge is represented in searchable Web-based multimedia presentations. This paper discusses the various approaches to knowledge elicitation and knowledge representation employed, and assesses successes and challenges in trying to perform large-scale knowledge preservation of institutional memory. It is anticipated that strategies for knowledge elicitation and representation that have been developed in this grant will be utilized to elicit knowledge in a variety of domains including the complex heuristics that underly use of simulation software packages such as that being explored in the Expert System Architecture for Rocket Engine Numerical Simulators.

  5. Improvements to the Total Temperature Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Gonsalez, Jose C.

    2005-01-01

    The ability to accurately set repeatable total temperature conditions is critical for collecting quality icing condition data, particularly near freezing conditions. As part of efforts to continually improve data quality in the NASA Glenn Icing Research Tunnel (IRT), new facility instrumentation and new calibration hardware for total temperature measurement were installed and new operational techniques were developed and implemented. This paper focuses on the improvements made in the calibration of total temperature in the IRT.

  6. NASA Glenn Research Center's Materials International Space Station Experiments (MISSE 1-7)

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce a.; Dever, Joyce A.; Jaworske, Donald A.; Miller, Sharon K.; Sechkar, Edward A.; Panko, Scott R.

    2008-01-01

    NASA Glenn Research Center (Glenn) has 39 individual materials flight experiments (>540 samples) flown as part of the Materials International Space Station Experiment (MISSE) to address long duration environmental durability of spacecraft materials in low Earth orbit (LEO). MISSE is a series of materials flight experiments consisting of trays, called Passive Experiment Carriers (PECs) that are exposed to the space environment on the exterior of the International Space Station (ISS). MISSE 1-5 have been successfully flown and retrieved and were exposed to the space environment from one to four years. MISSE 6A & 6B were deployed during the STS-123 shuttle mission in March 2008, and MISSE 7A & 7B are being prepared for launch in 2009. The Glenn MISSE experiments address atomic oxygen (AO) effects such as erosion and undercutting of polymers, AO scattering, stress effects on AO erosion, and in-situ AO fluence monitoring. Experiments also address solar radiation effects such as radiation induced polymer shrinkage, stress effects on radiation degradation of polymers, and radiation degradation of indium tin oxide (ITO) coatings and spacesuit fabrics. Additional experiments address combined AO and solar radiation effects on thermal control films, paints and cermet coatings. Experiments with Orion Crew Exploration Vehicle (CEV) seals and UltraFlex solar array materials are also being flown. Several experiments were designed to provide ground-facility to in-space calibration data thus enabling more accurate in-space performance predictions based on ground-laboratory testing. This paper provides an overview of Glenn s MISSE 1-7 flight experiments along with a summary of results from Glenn s MISSE 1 & 2 experiments.

  7. ThermoBuild: Online Method Made Available for Accessing NASA Glenn Thermodynamic Data

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie; Zehe, Michael J.

    2004-01-01

    The new Web site program "ThermoBuild" allows users to easily access and use the NASA Glenn Thermodynamic Database of over 2000 solid, liquid, and gaseous species. A convenient periodic table allows users to "build" the molecules of interest and designate the temperature range over which thermodynamic functions are to be displayed. ThermoBuild also allows users to build custom databases for use with NASA's Chemical Equilibrium with Applications (CEA) program or other programs that require the NASA format for thermodynamic properties. The NASA Glenn Research Center has long been a leader in the compilation and dissemination of up-to-date thermodynamic data, primarily for use with the NASA CEA program, but increasingly for use with other computer programs.

  8. Recent Efforts in Advanced High Frequency Communications at the Glenn Research Center in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation will discuss research and technology development work at the NASA Glenn Research Center in advanced frequency communications in support of NASAs mission. An overview of the work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

  9. Overview of Icing Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.

    2013-01-01

    The aviation industry continues to deal with icing-related incidents and accidents on a regular basis. Air traffic continues to increase, placing more aircraft in adverse icing conditions more frequently and for longer periods. Icing conditions once considered rare or of little consequence, such as super-cooled large droplet icing or high altitude ice crystals, have emerged as major concerns for modern aviation. Because of this, there is a need to better understand the atmospheric environment, the fundamental mechanisms and characteristics of ice growth, and the aerodynamic effects due to icing, as well as how best to protect these aircraft. The icing branch at NASA Glenn continues to develop icing simulation methods and engineering tools to address current aviation safety issues in airframe, engine and rotorcraft icing.

  10. NASA Glenn Research Center Support of the ASRG Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2014-01-01

    A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.

  11. NASA Glenn Icing Research Tunnel: 2012 Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura E.

    2012-01-01

    In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.

  12. Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Grady, Joseph E.; Bhatt, Ramakrishna T.; Wiesner, Valerie L.; Zhu, Dongming

    2016-01-01

    In support of NASAs Aeronautics Research Mission, the Glenn Research Center has developed and assessed various constituents for a high temperature (2700F) SiCSiC CMC system for turbine engine applications. Combinations of highly creep-resistant SiC fibers, advanced 3D weaves, durable environmental barrier coatings (EBCs), and a 2700F-capable hybrid SiC matrix are being developed evaluated. The resulting improvements in CMC mechanical properties and durability will be summarized. The development and validation of models for predicting the effects of the environment on the durability of CMCs and EBCs and other operating-environment challenges including the effect of CMAS (calcium magnesium aluminosilicate) degradation of EBCs will be discussed. Progress toward the development of CMC joining technology for 2400F joint applications will also be reviewed.

  13. High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie

    2007-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  14. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2012 Test)

    NASA Technical Reports Server (NTRS)

    Pastor-Barsi, Christine M.; Arrington, E. Allen; VanZante, Judith Foss

    2012-01-01

    A major modification of the refrigeration plant and heat exchanger at the NASA Glenn Icing Research Tunnel (IRT) occurred in autumn of 2011. It is standard practice at NASA Glenn to perform a full aero-thermal calibration of the test section of a wind tunnel facility upon completion of major modifications. This paper will discuss the tools and techniques used to complete an aero-thermal calibration of the IRT and the results that were acquired. The goal of this test entry was to complete a flow quality survey and aero-thermal calibration measurements in the test section of the IRT. Test hardware that was used includes the 2D Resistive Temperature Detector (RTD) array, 9-ft pressure survey rake, hot wire survey rake, and the quick check survey rake. This test hardware provides a map of the velocity, Mach number, total and static pressure, total temperature, flow angle and turbulence intensity. The data acquired were then reduced to examine pressure, temperature, velocity, flow angle, and turbulence intensity. Reduced data has been evaluated to assess how the facility meets flow quality goals. No icing conditions were tested as part of the aero-thermal calibration. However, the effects of the spray bar air injections on the flow quality and aero-thermal calibration measurements were examined as part of this calibration.

  15. Education, Technology, and Media: A Peak into My Summer Internship at NASA Glenn Research Center in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senor at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time sohare applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community.

  16. Status of Real-Time Laser Based Ion Engine Diagnostics at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Williams, George J., Jr.

    2001-01-01

    The development status of laser based erosion diagnostics for ion engines at the NASA Glenn Research Center is discussed. The diagnostics are being developed to enhance component life-prediction capabilities. A direct measurement of the erosion product density using laser induced fluorescence (LIF) is described. Erosion diagnostics based upon evaluation of the ion dynamics are also under development, and the basic approach is presented. The planned implementation of the diagnostics is discussed.

  17. Status and Evaluation of Microwave Furnace Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lizcano, Maricela; Mackey, Jonathan A.

    2014-01-01

    The microwave (MW) furnace is a HY-Tech Microwave Systems, 2 kW 2.45 GHz Single Mode Microwave Applicator operating in continuous wave (CW) with variable power. It is located in Cleveland, Ohio at NASA Glenn Research Center. Until recently, the furnace capabilities had not been fully realized due to unknown failure that subsequently damaged critical furnace components. Although the causes of the problems were unknown, an assessment of the furnace itself indicated operational failure may have been partially caused by power quality. This report summarizes the status of the MW furnace and evaluates its capabilities in materials processing.

  18. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  19. Update on the NASA Glenn PSL Ice Crystal Cloud Characterization (2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, J.; Bencic, T.; Ratvasky, Thomas P.; Struk, Peter M.

    2016-01-01

    NASA Glenn's Propulsion Systems Laboratory (PSL) is an altitude engine research test facility capable of producing ice-crystal and supercooled liquid clouds. The cloud characterization parameter space is fairly large and complex, but the phase of the cloud seems primarily governed by wet bulb temperature. The presentation will discuss some of the issues uncovered through four cloud characterization efforts to date, as well as some of instrumentation that has been used to characterize cloud parameters including cloud uniformity, bulk total water content, median volumetric diameter and max-diameter, percent freeze-out, relative humidity, and an update on the NASA Glenn PSL Ice Crystal Cloud Characterization (2016).

  20. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Blaze, Gina M.

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science and exploration missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such as a rover. This paper discusses the design, fabrication, and implementation of these experiments.

  1. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  2. Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2006-01-01

    A range of thin film sensor technology has been demonstrated enabling measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Multiple techniques exist for refractory thin film fabrication, fabrication and integration on complex surfaces and multilayered thin film insulation. Leveraging expertise in thin films and high temperature materials, investigations for the applications of thin film ceramic sensors has begun. The current challenges of instrumentation technology are to further develop systems packaging and component testing of specialized sensors, further develop instrumentation techniques on complex surfaces, improve sensor durability, and to address needs for extreme temperature applications. The technology research and development ongoing at NASA Glenn for applications to future launch vehicles, space vehicles, and ground systems is outlined.

  3. NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2011-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.

  4. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.

  5. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  6. Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.

    2008-01-01

    In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.

  7. Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.

    2005-01-01

    NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.

  8. An Assessment of NASA Glenn's Aeroacoustic Experimental and Predictive Capabilities for Installed Cooling Fans

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; VanZante, Dale E.; Wernet, Mark P.; Podboy, Gary G.

    2006-01-01

    Quiet, high performance electronics cooling fans are needed for both commercial applications and future manned space exploration missions. Researchers at NASA Glenn focusing on aircraft engine noise, have long been familiar with the challenge of reducing fan noise without sacrificing aerodynamic performance. Is it possible to capitalize on the lessons-learned in aircraft engine noise reduction to identify inexpensive ways to improve the aerodynamic and acoustic performance of electronics cooling fans? Recent tests at NASA Glenn have begun to look for answers to this question. The overall aerodynamic and acoustic performance of a commercially available, spaceflight qualified 80 mm diameter axial flow fan has been measured using an automated plenum in accordance with ISO 10302 in the hemi-anechoic chamber of NASA Glenn s Acoustical Testing Laboratory. These measurements are complemented by detailed aerodynamic measurements of the inlet, exhaust, and rotor wake regions of the fan using Particle Image Velocimetry and hot-wire probes. A study of preliminary results yielded recommendations for system designers, fan manufacturers, and researchers.

  9. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  10. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2004 and 2005 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pastor, Christine M.; Gonsalez, Jose C.; Curry, Monroe R., III

    2010-01-01

    A full aero-thermal calibration of the NASA Glenn Icing Research Tunnel was completed in 2004 following the replacement of the inlet guide vanes upstream of the tunnel drive system and improvement to the facility total temperature instrumentation. This calibration test provided data used to fully document the aero-thermal flow quality in the IRT test section and to construct calibration curves for the operation of the IRT. The 2004 test was also the first to use the 2-D RTD array, an improved total temperature calibration measurement platform.

  11. Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.

  12. Recent Efforts in Communications Research and Technology at the Glenn Research Center in Support of NASA's Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    As it has done in the past, NASA is currently engaged in furthering the frontiers of space and planetary exploration. The effectiveness in gathering the desired science data in the amount and quality required to perform this pioneering work relies heavily on the communications capabilities of the spacecraft and space platforms being considered to enable future missions. Accordingly, the continuous improvement and development of radiofrequency and optical communications systems are fundamental to prevent communications to become the limiting factor for space explorations. This presentation will discuss some of the research and technology development efforts currently underway at the NASA Glenn Research Center in the radio frequency (RF) and Optical Communications. Examples of work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, thin films ferroelectric-based tunable components, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

  13. Extreme Environments Capabilities at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Balcerski, Jeffrey; Kremic, Tibor; Arnett, Lori; Vento, Dan; Nakley, Leah

    2016-01-01

    The NASA Glenn Research Center has several facilities that can provide testing for extreme evironments of interest to the New Frontiers community. This includes the Glenn Extreme Enivironments Rig (GEER) which can duplicate the atmospheric chemistry and conditions for the Venus surface or any other planet with a hot environment. GRC also has several cryogenic facilities which have the capability to run with hydrogen atmospheres, hydrocarbon atmosphere, CO2 based atmospheres or nitrogen atmospheres. The cryogenic facilities have the capability to emulate Titan lakes.

  14. Free-Piston Stirling Convertor Controller Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Regan, Timothy

    2004-01-01

    The free-piston Stirling convertor end-to-end modeling effort at NASA Glenn Research Center (GRC) has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor - the Stirling cycle engine, linear alternator, controller, and load. This paper is concerned with controllers. It discusses three controllers that have been studied using this model. Case motion has been added to the model recently so that effects of differences between convertor components can be simulated and ameliorative control engineering techniques can be developed. One concern when applying a system comprised of interconnected mass-spring-damper components is to prevent operation in any but the intended mode. The design mode is the only desired mode of operation, but all other modes are considered in controller design.

  15. Historical Overview and Recent Improvements at the NASA Glenn Research Center 8x6 9x15 Wind Tunnel Complex

    NASA Technical Reports Server (NTRS)

    Dussling, Joseph John

    2015-01-01

    A brief history of the 8x6 Supersonic Wind Tunnel (SWT) and 9x15 Low Speed Wind Tunnel (LSWT) at NASA Glenn Research Center, Cleveland, Ohio is presented along with current capabilities and plans for future upgrades within the facility.

  16. Results From the John Glenn Biomedical Engineering Consortium. A Success Story for NASA and Northeast Ohio

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Barna, Gerald J.

    2009-01-01

    The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.

  17. An Overview of Advanced Elastomeric Seal Development and Testing Capabilities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.

    2014-01-01

    NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.

  18. Overview of NASA Glenn Aero/Mobile Communications Demonstrations

    NASA Technical Reports Server (NTRS)

    Brooks, David; Hoder, Doug; Wilkins, Ryan

    2004-01-01

    The Glenn Research Center at Lewis Field (GRC) has been involved with several other NASA field centers on various networking and RF communications demonstrations and experiments since 1998. These collaborative experiments investigated communications technologies new to aviation, such as wideband Ku satcom, L-band narrowband satcom, and IP (Internet Protocol), using commercial off-the-shelf (COTS) components These technologies can be used to distribute weather and hazard data, air traffic management and airline fleet management information, and passenger cabin Internet service.

  19. Overview of NASA Glenn Aero/Mobile Communication Demonstrations

    NASA Technical Reports Server (NTRS)

    Brooks, David; Hoder, Doug; Wilkins, Ryan

    2004-01-01

    The Glenn Research Center at Lewis Field (GRC) has been involved with several other NASA field centers on various networking and RF communications demonstrations and experiments since 1998. These collaborative experiments investigated communications technologies new to aviation, such as wideband Ku satcom, L-band narrowband satcom, and IP (Internet Protocol), using commercial off-the-shelf (COTS) components These technologies can be used to distribute weather and hazard data, air traffic management and airline fleet management information, and passenger cabin Internet service.

  20. Altitude Wind Tunnel at NASA Glenn Research Center: An Interactive History

    NASA Technical Reports Server (NTRS)

    2008-01-01

    When constructed in the Early 1940s, the Altitude Wind Tunnel (AWT) at NASA Glenn Research Center was the nation's only wind tunnel capable of studying full scale engines under realistic flight conditions. It played a significant role in the development of the first U.S. jet engines as well as technologies such as the afterburner and variable-area nozzle. In the late 1950s, the tunnels interior components were removed so that hardware for Project Mercury could be tested in altitude conditions. In 1961, a portion of the tunnel was converted into one of the country's first large vacuum tanks and renamed the Space Power Chamber (SPC). SPC was used extensively throughout the 1960s for the Centaur rocket program. This multimedia piece allows one to interactively learn about the Altitude Wind Tunnel facility. and the research performed there. The piece contains: (1) A chronological history of the AWT from its construction during World War II and the testing of early jet engines, through the Mercury and Centaur programs of the 1960s and up to the final use of the building for the Microwave Systems laboratory. (2) Photographic surveys of the facility in it wind tunnel, vacuum tank and final configurations. (3) Browsable gallery of over 200 captioned photographs and video clips.(4) A nine minute documentary of the AWT produced by NASA in 1961 (5) Links to over 70 reports and publications related to AWT research and the history of the NACA.

  1. Atlas V Launch Incorporated NASA Glenn Thermal Barrier

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    In the Spring of 2002, Aerojet experienced a major failure during a qualification test of the solid rocket motor that they were developing for the Atlas V Enhanced Expendable Launch Vehicle. In that test, hot combustion gas reached the O-rings in the nozzle-to-case joint and caused a structural failure that resulted in loss of the nozzle and aft dome sections of the motor. To improve the design of this joint, Aerojet decided to incorporate three braided carbon-fiber thermal barriers developed at the NASA Glenn Research Center. The thermal barriers were used to block the searing-hot 5500 F pressurized gases from reaching the temperature-sensitive O-rings that seal the joint. Glenn originally developed the thermal barriers for the nozzle joints of the space shuttle solid rocket motors, and Aerojet decided to use them on the basis of the results of several successful ground tests of the thermal barriers in the shuttle rockets. Aerojet undertook an aggressive schedule to redesign the rocket nozzle-to-case joint with the thermal barriers and to qualify it in time for a launch planned for the middle of 2003. They performed two successful qualification tests (Oct. and Dec. 2002) in which the Glenn thermal barriers effectively protected the O-rings. These qualification tests saved hundreds of thousands of dollars in development costs and put the Lockheed-Martin/Aerojet team back on schedule. On July 17, 2003, the first flight of an Atlas V boosted with solid rocket motors successfully launched a commercial satellite into orbit from Cape Canaveral Air Force Station. Aero-jet's two 67-ft solid rocket boosters performed flawlessly, with each providing thrust in excess of 250,000 lbf. Both motors incorporated three Glenn-developed thermal barriers in their nozzle-to-case joints. The Cablevision satellite launched on this mission will be used to provide direct-to-home satellite television programming for the U.S. market starting in late 2003. The Atlas V is a product of the

  2. Advanced Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Poriti, Sal

    2010-01-01

    The NASA Glenn Research Center (GRC) has been testing high-efficiency free-piston Stirling convertors for potential use in radioisotope power systems (RPSs) since 1999. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower, Inc., and the NASA GRC. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. As reliability is paramount to a RPS capable of providing spacecraft power for potential multi-year missions, GRC provides direct technology support to the ASRG flight project in the areas of reliability, convertor and generator testing, high-temperature materials, structures, modeling and analysis, organics, structural dynamics, electromagnetic interference (EMI), and permanent magnets to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. Convertor and generator testing is carried out in short- and long-duration tests designed to characterize convertor performance when subjected to environments intended to simulate launch and space conditions. Long duration testing is intended to baseline performance and observe any performance degradation over the life of the test. Testing involves developing support hardware that enables 24/7 unattended operation and data collection. GRC currently has 14 Stirling convertors under unattended extended operation testing, including two operating in the ASRG Engineering Unit (ASRG-EU). Test data and high-temperature support hardware are discussed for ongoing and future ASC tests with emphasis on the ASC-E and ASC-E2.

  3. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  4. NASA-OAI Collaborative Aerospace Research and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2003-01-01

    During the summer of 2003, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). The objectives of CFP are: (1) to further the professional knowledge of qualified engineering and science faculty, (2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of Glenn. This report is intended primarily to summarize the research activities comprising the 2003 CFP Program at Glenn.

  5. Calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Friedlander, David J.; Saunders, J. David; Frate, Franco C.; Foster, Lancert E.

    2014-01-01

    The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

  6. NASA Glenn Research Center Experience Using DOE Midwest Region Super ESPC

    NASA Technical Reports Server (NTRS)

    Zala, Laszlo F.

    2000-01-01

    The energy crisis of 1973 prompted the Federal Government and private industry to look into alternative methods to save energy. At the same time the constant reduction of operations and maintenance funds during the last 5 years forced Glenn Research Center (GRC) to look for alternative funding sources to meet the mandate to reduce energy consumption. The Super Energy Savings Performance Contract (ESPC) was chosen as a viable source of facility improvement funding that can create larger project scope and help replace aging, inefficient equipment. This paper describes Glenn's participation in the Department of Energy (DOE) Super ESPC program. This program provided Glenn cost savings in the performance of energy audits, preparation of documents, evaluation of proposals, and selection of energy service company (ESCO).

  7. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  8. Ion Engine and Hall Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Jankovsky, Robert S.

    2002-01-01

    NASA's Glenn Research Center has been selected to lead development of NASA's Evolutionary Xenon Thruster (NEXT) system. The central feature of the NEXT system is an electric propulsion thruster (EPT) that inherits the knowledge gained through the NSTAR thruster that successfully propelled Deep Space 1 to asteroid Braille and comet Borrelly, while significantly increasing the thruster power level and making improvements in performance parameters associated with NSTAR. The EPT concept under development has a 40 cm beam diameter, twice the effective area of the Deep-Space 1 thruster, while maintaining a relatively-small volume. It incorporates mechanical features and operating conditions to maximize the design heritage established by the flight NSTAR 30 cm engine, while incorporating new technology where warranted to extend the power and throughput capability. The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1.) the development of a laboratory Hall thruster capable of providing high thrust at high power; 2.) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program, These additional activities are related to issues such as thruster lifetime and spacecraft integration.

  9. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  10. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2014-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Centers Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  11. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Van Zante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and ow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  12. Small Radioisotope Power System at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Fraeman, Martin; Frankford, David P.; Duven, Dennis; Shamkovich, Andrei; Ambrose, Hollis; Meer, David W.

    2012-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer for possible use by the International Lunar Network (ILN) program. The ILN program is studying the feasibility of implementing a multiple node seismometer network to investigate the internal lunar structure. A single ASC produces approximately 80 W(sub e) and could potentially supply sufficient power for that application. The IPT consists of Sunpower, Inc., to provide the single ASC with balancer, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to design an engineering model Single Convertor Controller (SCC) for an ASC with balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. A controller maintains stable operation of an ASC. It regulates the alternating current produced by the linear alternator of the convertor, provides a specified output voltage, and maintains operation at a steady piston amplitude and hot end temperature. JHU/APL also designed an ASC dynamic engine/alternator simulator to aid in the testing and troubleshooting of the SCC. This paper describes the requirements, design, and development of the SCC, including some of the key challenges and the solutions chosen to overcome those issues. In addition, it describes the plans to analyze the effectiveness of a passive balancer to minimize vibration from the ASC, characterize the effect of ASC vibration on a lunar lander, characterize the performance of the SCC, and integrate the single ASC, SCC, and lunar lander test stand to characterize performance of the overall system.

  13. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2006-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

  14. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2014-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center (GRC). While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA GRC. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  15. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Glenn Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  16. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  17. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  18. Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Woodling, Mark A.

    2000-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

  19. Hall Propulsion Technology Development, NASA Glenn Research Center: 50 kW Thruster Technology EXPRESS Ground/Space Correlation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Elliott, Fred

    2000-01-01

    It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.

  20. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  1. Closed-Cycle Hydrogen-Oxygen Regenerative Fuel Cell at the NASA Glenn Research Center-An Update

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2008-01-01

    The closed cycle hydrogen-oxygen proton exchange membrane (PEM) regenerative fuel cell (RFC) at the NASA Glenn Research Center has demonstrated multiple back-to-back contiguous cycles at rated power and round-trip efficiencies up to 52 percent. It is the first fully closed cycle RFC ever demonstrated. (The entire system is sealed; nothing enters or escapes the system other than electrical power and heat.) During fiscal year fiscal year (FY) FY06 to FY07, the system s numerous modifications and internal improvements focused on reducing parasitic power, heat loss, and noise signature; increasing its functionality as an unattended automated energy storage device; and in-service reliability.

  2. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    2007-01-01

    NASA Glenn hosted the Seals/Secondary Air System Workshop on November 14-15, 2006. At this workshop NASA and our industry and university partners shared their respective seal technology developments. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing the presentations from this workshop in two volumes. Volume I will be publicly available and individual papers will be made available on-line through the web page address listed at the end of this presentation. Volume II will be restricted as Sensitive But Unclassified (SBU) under International Traffic and Arms Regulations (ITAR).

  3. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  4. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  5. Hydrogen Generation Through Renewable Energy Sources at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Prokopius, Kevin

    2007-01-01

    An evaluation of the potential for generating high pressure, high purity hydrogen at the NASA Glenn Research Center (GRC) was performed. This evaluation was based on producing hydrogen utilizing a prototype Hamilton Standard electrolyzer that is capable of producing hydrogen at 3000 psi. The present state of the electrolyzer system was determined to identify the refurbishment requirements. The power for operating the electrolyzer would be produced through renewable power sources. Both wind and solar were considered in the analysis. The solar power production capability was based on the existing solar array field located at NASA GRC. The refurbishment and upgrade potential of the array field was determined and the array output was analyzed with various levels of upgrades throughout the year. The total available monthly and yearly energy from the array was determined. A wind turbine was also sized for operation. This sizing evaluated the wind potential at the site and produced an operational design point for the wind turbine. Commercially available wind turbines were evaluated to determine their applicability to this site. The system installation and power integration were also addressed. This included items such as housing the electrolyzer, power management, water supply, gas storage, cooling and hydrogen dispensing.

  6. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  7. Doppler Global Velocimetry at NASA Glenn Research Center: System Discussion and Results

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    2003-01-01

    A ruggedized Doppler Global Velocimetry system has been built and tested at NASA Glenn Research Center. One component of planar velocity measurements of subsonic and supersonic flows from an under-expanded free jet are reported, which agree well with predicted values. An error analysis evaluates geometric and spectral error terms, and characterizes speckle noise in isotropic data. A multimode, fused fiber optic bundle is demonstrated to couple up to 650 mJ/pulse of laser light without burning or fiber ablation, and without evidence of Stimulated Brillouin Scattering or other spectral-broadening problems. Comparisons are made between spinning wheel data using illumination by freespace beam propagation and fiber optic beam delivery. The fiber bundle illumination is found to provide more spatially even and stable illumination than is typically available from pulsed Nd:YAG laser beams. The fiber bundle beam delivery is also a step toward making remote measurements and automatic real-time plume sectioning feasible in wind tunnel environments.

  8. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl

    2005-01-01

    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  9. Evaluation of the Tone Fan Noise Design/Prediction System (TFaNS) at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    1999-01-01

    Version 1.4 of TFaNS, the Tone Fan Noise Design/Prediction System. has recently been evaluated at the NASA Glenn Research Center. Data from tests of the Allison Ultra High Bypass Fan (UHBF) were used to compare to predicted farfield directivities for the radial stator configuration. There was good agreement between measured and predicted directivities at low fan speeds when rotor effects were neglected in the TFaNS calculations. At higher fan speeds, TFaNS is shown to be useful in predicting overall trends rather than absolute sound pressure levels.

  10. My Work in the NASA Glenn History Office and Records Management Office

    NASA Technical Reports Server (NTRS)

    Mate, Robert C.

    2004-01-01

    This is my fourth summer working with my mentor, Kevin P. Coleman, who is the Center History Coordinator, Center Records Manager, and Center Forms Manager. I am working in the GRC History Office with some overlap in the Records Management Office. I have three major projects this summer. First, I am assisting in the documentation of historic facilities. Second, I am involved in a project to organize files and create an archives at Plum Brook Station. Third, I have helped the records management office with its inventory of stored records at Plum Brook. Also, I received an award this summer for research work I had done for NASA in the past. First, my primary project is to help assemble documentation for historic facilities at Glenn. This is somewhat of an extension of my project from last summer. Last summer, I worked to compile a complete list of all of NASA s historic sites and landmarks (as designated by the National Park Service, as well as several private organizations) throughout the country. Then, I briefly researched the significance of historic designation under federal law. Finally, I put my findings into a report which was submitted to NASA Headquarters. Upon review by the NASA History Office and several center-level history officials, it was decided that NASA should work to update its documentation of its historic sites and landmarks since some of the documentation was outdated or unavailable. Until recently, many project managers and facility managers working at historic facilities were not even aware that their surroundings had been designated as historic under federal law (most specifically, the National Historic Preservation Act of 1966 and its amendments). Therefore, they were unaware of the legal obligations for historic preservation. This summer, my project is to research some of Glenn s historic sites and landmarks in more detail. The goal is to put together a template for documenting historic NASA facilities. The hope is that this template of

  11. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.

    2005-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.

  12. Stirling Convertor Control for a Concept Rover at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Blaze-Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for potential use as an electric power system for space science missions. This generator would make use of the free-piston Stirling cycle to achieve higher conversion efficiency than currently used alternatives. NASA GRC initiated an experiment with an ASRG simulator to demonstrate the functionality of a Stirling convertor on a mobile application, such as a rover. The ASRG simulator made use of two Advanced Stirling Convertors to convert thermal energy from a heat source to electricity. The ASRG simulator was designed to incorporate a minimum amount of support equipment, allowing integration onto a rover powered directly by the convertors. Support equipment to provide control was designed including a linear AC regulator controller, constant power controller, and Li-ion battery charger controller. The ASRG simulator is controlled by a linear AC regulator controller. The rover is powered by both a Stirling convertor and Li-ion batteries. A constant power controller enables the Stirling convertor to maintain a constant power output when additional power is supplied by the Li-ion batteries. A Li-ion battery charger controller limits the charging current and cut off current of the batteries. This paper discusses the design, fabrication, and implementation of these three controllers.

  13. Small Radioisotope Power System Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  14. Polymeric Materials for Aerospace Power and Propulsion-NASA Glenn Overview

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2008-01-01

    Use of lightweight materials in aerospace power and propulsion components can lead to significant reductions in vehicle weight and improvements in performance and efficiency. Polymeric materials are well suited for many of these applications, but improvements in processability, durability and performance are required for their successful use in these components. Polymers Research at NASA Glenn is focused on utilizing a combination of traditional polymer science and engineering approaches and nanotechnology to develop new materials with enhanced processability, performance and durability. An overview of these efforts will be presented.

  15. Glenn's Strategic Partnerships With HBCUs and OMUs

    NASA Technical Reports Server (NTRS)

    Kankam, M. David

    2003-01-01

    NASA senior management has identified the need to develop a strategy for increased contracting with the historically black colleges and universities (HBCUs) and other minority universities (OMUs). The benefits to the institutions, by partnering with NASA, include developing their industrial base via NASA-industry partnerships, strong competitive advantage in technology-based research opportunities, and improved research capabilities. NASA gains increased contributed value to the Agency missions and programs as well as potential future recruits from technology-trained students who also constitute a pool for the nation s workforce. This report documents synergistic links between Glenn Research Center research and technology programs and faculty expertise at HBCUs and OMUs. The links are derived, based on Glenn technologies in the various directorates, program offices, and project offices. Such links readily identify universities with faculty members who are knowledgeable or have backgrounds in the listed technologies for possible collaboration. Recommendations are made to use the links as opportunities for Glenn and NASA, as well as industry collaborators, to cultivate stronger partnerships with the universities. It is concluded that Glenn and its partners and collaborators can expect to mutually benefit from leveraging NASA s cutting-edge and challenging research and technologies; industry's high technology development, research and development facilities, system design capabilities and market awareness; and academia s expertise in basic research and relatively low overhead cost. Reduced cost, accelerated technology development, technology transfer, and infrastructure development constitute some of the derived benefits.

  16. An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.

    2014-01-01

    The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities

  17. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  18. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie J.; Zehe, Michael J.; Gordon, Sanford

    2002-01-01

    This report documents the library of thermodynamic data used with the NASA Glenn computer program CEA (Chemical Equilibrium with Applications). This library, containing data for over 2000 solid, liquid, and gaseous chemical species for temperatures ranging from 200 to 20,000 K, is available for use with other computer codes as well. The data are expressed as least-squares coefficients to a seven-term functional form for C((sup o)(sub p)) (T) / R with integration constants for H (sup o) (T) / RT and S(sup o) (T) / R. The NASA Glenn computer program PAC (Properties and Coefficients) was used to calculate thermodynamic functions and to generate the least-squares coefficients. PAC input was taken from a variety of sources. A complete listing of the database is given along with a summary of thermodynamic properties at 0 and 298.15 K.

  19. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  20. Creating a Bimodal Drop-Size Distribution in the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    King-Steen, Laura E.; Ide, Robert F.

    2017-01-01

    The Icing Research Tunnel at NASA Glenn has demonstrated that they can create a drop-size distribution that matches the FAA Part 25 Appendix O FZDZ, MVD <40 microns normalized cumulative volume within 10%. This is done by simultaneously spraying the Standard and Mod1 nozzles at the same nozzle air pressure and different nozzle water pressures. It was also found through these tests that the distributions that are measured when the two nozzle sets are sprayed simultaneously closely matched what was found by combining the two individual distributions analytically. Additionally, distributions were compared between spraying all spraybars and also by spraying only every-other spraybar, and were found to match within 4%. The cloud liquid water content uniformity for this condition has been found to be excellent. It should be noted, however, that the liquid water content for this condition in the IRT is much higher than the requirement specified in Part 25 Appendix O.

  1. Creating a Bimodal Drop-Size Distribution in the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    King-Steen, Laura E.; Ide, Robert F.

    2017-01-01

    The Icing Research Tunnel at NASA Glenn has demonstrated that they can create a drop-size distribution that matches the FAA Part 25 Appendix O FZDZ, MVD40 m normalized cumulative volume within 10. This is done by simultaneously spraying the Standard and Mod1 nozzles at the same nozzle air pressure and different nozzle water pressures. It was also found through these tests that the distributions that are measured when the two nozzle sets are sprayed simultaneously closely matched what was found by combining the two individual distributions analytically. Additionally, distributions were compared between spraying all spraybars and also by spraying only every-other spraybar, and were found to match within 4. The cloud liquid water content uniformity for this condition has been found to be excellent: 10. It should be noted, however, that the liquid water content for this condition in the IRT is much higher than the requirement specified in Part 25 Appendix O.

  2. Overview of Stirling Technology Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2015-01-01

    Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  3. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  4. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  5. Engineered Solutions to Reduce Occupational Noise Exposure at the NASA Glenn Research Center: A Five-Year Progress Summary (1994-1999)

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Hange, Donald W.; Mikulic, John J.

    1999-01-01

    At the NASA John H. Glenn Research Center at Lewis Field (formerly the Lewis Research Center), experimental research in aircraft and space propulsion systems is conducted in more than 100 test cells and laboratories. These facilities are supported by a central process air system that supplies high-volume, high-pressure compressed air and vacuum at various conditions that simulate altitude flight. Nearly 100,000 square feet of metalworking and specialized fabrication shops located on-site produce prototypes, models, and test hardware in support of experimental research operations. These activities, comprising numerous individual noise sources and operational scenarios, result in a varied and complex noise exposure environment, which is the responsibility of the Glenn Research Center Noise Exposure Management Program. Hearing conservation, community noise complaint response and noise control engineering services are included under the umbrella of this Program, which encompasses the Occupational Safety and Health Administration (OSHA) standard on occupational noise exposure, Sec. 29CFR 1910.95, as well as the more stringent NASA Health Standard on Hearing Conservation. Prior to 1994, in the absence of feasible engineering controls, strong emphasis had been placed on personal hearing protection as the primary mechanism for assuring compliance with Sec. 29CFR 1910.95 as well as NASA's more conservative policy, which prohibits unprotected exposure to noise levels above 85 dB(A). Center policy and prudent engineering practice required, however, that these efforts be extended to engineered noise controls in order to bring existing work areas into compliance with Sec. 29CFR 1910.95 and NASA's own policies and to ensure compliance for new installations. Coincident with the establishment in 1995 of a NASA wide multi-year commitment of funding for environmental abatement projects, the Noise Exposure Management Program was established, with its focus on engineering approaches

  6. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.

  7. NASA Hydrogen Research at Florida Universities, Program Year 2003

    NASA Technical Reports Server (NTRS)

    Block, David L.; Raissi, Ali

    2006-01-01

    This document presents the final report for the NASA Hydrogen Research at Florida Universities project for program year 2003. This multiyear hydrogen research program has positioned Florida to become a major player in future NASA space and space launch projects. The program is funded by grants from NASA Glenn Research Center with the objective of supporting NASA's hydrogen-related space, space launch and aeronautical research activities. The program conducts over 40 individual projects covering the areas of cryogenics, storage, production, sensors, fuel cells, power and education. At the agency side, this program is managed by NASA Glenn Research Center and at the university side, co-managed by FSEC and the University of Florida with research being conducted by FSEC and seven Florida universities: Florida International University, Florida State University, Florida A&M University, University of Central Florida, University of South Florida, University of West Florida and University of Florida. For detailed information, see the documents section of www.hydrogenresearch.org. This program has teamed these universities with the nation's premier space research center, NASA Glenn, and the nation's premier space launch facility, NASA Kennedy Space Center. It should be noted that the NASA Hydrogen Research at Florida Universities program has provided a shining example and a conduit for seven Florida universities within the SUS to work collaboratively to address a major problem of national interest, hydrogen energy and the future of energy supply in the U.S.

  8. Deregulation Impact in Negotiating a New Electrical Contract Between NASA Glenn Research Center at Lewis Field and FirstEnergy Corp., Cleveland, Ohio, USA

    NASA Technical Reports Server (NTRS)

    Quach, Quyen T.; Zala, Laszlo F.

    2002-01-01

    The governor of the State of Ohio signed amended substitute Senate bill 3 on July 6, 1999, requiring Ohio's electric industry to change from a monopoly environment to a competitive electric environment for generation services. The start date for competitive retail generation services was set for January 1, 2001. This new deregulation law allowed all Ohioans to choose the supplier of generation service, but the transmission and distribution would remain regulated. It also required electric utilities to unbundle the three main components (generation, transmission, and distribution) and make other changes designed to produce a competitive electric generation market. While deregulation was taking shape, the NASA Glenn Research Center electrical contract with FirstEnergy Corp. of Cleveland, Ohio, was to expire on September 7, 1999. Glenn strategically evaluated and incorporated the impacts of electric deregulation in the negotiations. Glenn and FirstEnergy spent over a year in negotiations until the Glenn utility team and the FirstEnergy negotiating team came to an agreement in the fall of 2000, and a new contract became effective on January 1, 2001.

  9. Open Rotor Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecma and GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. The research program in both the low and high-speed wind tunnels is reviewed. Some detailed flowfield and acoustics measurements acquired for an internal NASA program are highlighted. The publically available research data is presented also.

  10. Update on Extended Operation of Stirling Convertors in Thermal Vacuum at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Infinia Corporation, and NASA Glenn Research Center (GRC) have been developing a Stirling Radioisotope Generator (SRG) for use as a power system on space science missions. This generator would make use of Stirling cycle energy conversion to achieve higher efficiency than currently used alternatives. A test has been initiated at GRC to demonstrate functionality of Stirling conversion in a thermal vacuum environment over an extended period of time. The test article resembles the configuration of the SRG, but was designed without the requirement of low mass. Throughout the 8700 cumulative hours of operation, modifications to the supporting hardware were required to attain the desired operating conditions. These modifications, the status of testing, and the data recorded will be discussed in this paper.

  11. Automating the Transition Between Sensorless Motor Control Methods for the NASA Glenn Research Center Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Fehrmann, Elizabeth A.; Kenny, Barbara H.

    2004-01-01

    The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.

  12. NASA Glenn Icing Research Tunnel: 2014 and 2015 Cloud Calibration Procedures and Results

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.; Acosta, Waldo J.

    2015-01-01

    This report summarizes the current status of the NASA Glenn Research Center (GRC) Icing Research Tunnel cloud calibration: specifically, the cloud uniformity, liquid water content, and drop-size calibration results from both the January-February 2014 full cloud calibration and the January 2015 interim cloud calibration. Some aspects of the cloud have remained the same as what was reported for the 2014 full calibration, including the cloud uniformity from the Standard nozzles, the drop-size equations for Standard and Mod1 nozzles, and the liquid water content for large-drop conditions. Overall, the tests performed in January 2015 showed good repeatability to 2014, but there is new information to report as well. There have been minor updates to the Mod1 cloud uniformity on the north side of the test section. Also, successful testing with the OAP-230Y has allowed the IRT to re-expand its operating envelopes for large-drop conditions to a maximum median volumetric diameter of 270 microns. Lastly, improvements to the collection-efficiency correction for the SEA multi-wire have resulted in new calibration equations for Standard- and Mod1-nozzle liquid water content.

  13. Lessons Learned from the Construction of Upgrades to the NASA Glenn Icing Research Tunnel and Re-activation Testing

    NASA Technical Reports Server (NTRS)

    Sheldon, David W.; Andracchio, Charles R.; Krivanek, Thomas M.; Spera, David A.; Austinson, Todd A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper presents an overview of the construction and reactivation testing phases of the project. Important lessons learned during the technical and contract management work are documented.

  14. Low-Pressure Capability of NASA Glenn's 10- by 10-Foot Supersonic Wind Tunnel Expanded

    NASA Technical Reports Server (NTRS)

    Roeder, James W.

    2004-01-01

    Extremely low dynamic pressure Q conditions are desired for space-related research including the testing of parachute designs and other decelerator concepts for future vehicles landing on Mars. Therefore, the low-pressure operating capability of the Abe Silverstein 10- by 10-foot Supersonic Wind Tunnel (10 10 SWT) at NASA Glenn Research Center was recently increased. Successful checkout tests performed in the fall of 2002 showed significantly reduced minimum operating pressures in the wind tunnel.

  15. User Manual for the NASA Glenn Ice Accretion Code LEWICE. Version 2.2.2

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    2002-01-01

    A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.2.2 of this code, which is called LEWICE. This version differs from release 2.0 due to the addition of advanced thermal analysis capabilities for de-icing and anti-icing applications using electrothermal heaters or bleed air applications. An extensive effort was also undertaken to compare the results against the database of electrothermal results which have been generated in the NASA Glenn Icing Research Tunnel (IRT) as was performed for the validation effort for version 2.0. This report will primarily describe the features of the software related to the use of the program. Appendix A of this report has been included to list some of the inner workings of the software or the physical models used. This information is also available in the form of several unpublished documents internal to NASA. This report is intended as a replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.

  16. Overview of NASA Magnet and Linear Alternator Research Efforts

    NASA Astrophysics Data System (ADS)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2005-02-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  17. Overview of NASA Magnet and Linear Alternator Research Efforts

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Nieda, Janis M.

    2005-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  18. Overview of the Icing and Flow Quality Improvements Program for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Kevdzija, Susan L.; Sheldon, David W.; Spera, David A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper describes the rationale behind this latest program of IRT upgrades and the program's requirements and goals. An overview is given of the scope of work undertaken by the design and construction contractors, the scale-model IRT (SMIRT) design verification program, the comprehensive reactivation test program initiated upon completion of construction, and the overall management approach followed.

  19. Uncertainty Analysis of NASA Glenn's 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, Julia E.; Hubbard, Erin P.; Walter, Joel A.; McElroy, Tyler

    2016-01-01

    An analysis was performed to determine the measurement uncertainty of the Mach Number of the 8- by 6-foot Supersonic Wind Tunnel at the NASA Glenn Research Center. This paper details the analysis process used, including methods for handling limited data and complicated data correlations. Due to the complexity of the equations used, a Monte Carlo Method was utilized for this uncertainty analysis. A summary of the findings are presented as pertains to understanding what the uncertainties are, how they impact various research tests in the facility, and methods of reducing the uncertainties in the future.

  20. Acting on Lessons Learned: A NASA Glenn Acoustics Branch Perspective

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2008-01-01

    Lessons learned from the International Space Station have indicated that early attention to acoustics will be key to achieving safer, more productive environments for new long duration missions. Fans are known to be dominant noise sources, and reducing fan noise poses challenges for fan manufacturers and systems engineers. The NASA Glenn Acoustics Branch has considered ways in which expertise and capabilities traditionally used to understand and mitigate aircraft engine noise can be used to address small fan noise issues in Exploration and Information Technology applications. Many could benefit if NASA can capture what is known about small fan aero and acoustic performance in a "Guide for the Design, Selection, and Installation of Fans for Spaceflight Applications." A draft outline for this document will be offered as a useful starting point for brainstorming ideas for the various smaller, near-term research projects that would need to be addressed first.

  1. An Overview of Wide Bandgap Silicon Carbide Sensors and Electronics Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Okojie, Robert S.; Chen, Liangyu; Spry, D.; Trunek, A.

    2007-01-01

    A brief overview is presented of the sensors and electronics development work ongoing at NASA Glenn Research Center which is intended to meet the needs of future aerospace applications. Three major technology areas are discussed: 1) high temperature SiC electronics, 2) SiC gas sensor technology development, and 3) packaging of harsh environment devices. Highlights of this work include world-record operation of SiC electronic devices including 500?C JFET transistor operation with excellent properties, atomically flat SiC gas sensors integrated with an on-chip temperature detector/heater, and operation of a packaged AC amplifier. A description of the state-of-the-art is given for each topic. It is concluded that significant progress has been made and that given recent advancements the development of high temperature smart sensors is envisioned.

  2. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing

  3. Repair of Corrosion in Air Supply Piping at the NASA Glenn Research Center's 1 by 1 Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Henry, Michael

    2000-01-01

    During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.

  4. Integrated Micro-Power System (IMPS) Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilt, David; Hepp, Aloysius; Moran, Matt; Jenkins, Phillip; Scheiman, David; Raffaelle, Ryne

    2003-01-01

    Glenn Research Center (GRC) has a long history of energy related technology developments for large space related power systems, including photovoltaics, thermo-mechanical energy conversion, electrochemical energy storage. mechanical energy storage, power management and distribution and power system design. Recently, many of these technologies have begun to be adapted for small, distributed power system applications or Integrated Micro-Power Systems (IMPS). This paper will describe the IMPS component and system demonstration efforts to date.

  5. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  6. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Science Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.

  7. User Manual for the NASA Glenn Ice Accretion Code LEWICE: Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1999-01-01

    A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive effort undertaken to compare the results against the database of ice shapes which have been generated in the NASA Glenn Icing Research Tunnel (IRT) 1. This report will only describe the features of the code related to the use of the program. The report will not describe the inner working of the code or the physical models used. This information is available in the form of several unpublished documents which will be collectively referred to as a Programmers Manual for LEWICE 2 in this report. These reports are intended as an update/replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.

  8. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  9. An Overview of Recent Phased Array Measurements at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2008-01-01

    A review of measurements made at the NASA Glenn Research Center using an OptiNAV Array 48 phased array system is provided. Data were acquired on a series of round convergent and convergent-divergent nozzles using the Small Hot Jet Acoustic Rig. Tests were conducted over a range of jet operating conditions, including subsonic and supersonic and cold and hot jets. Phased array measurements were also acquired on a Williams International FJ44 engine. These measurements show how the noise generated by the engine is split between the inlet-radiated and exhaust-radiated components. The data also show inlet noise being reflected off of the inflow control device used during the test.

  10. 2002 NASA Faculty Fellowship Program at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    While several objectives are served with this program, the central mechanism involved is the conduct of research assignments by faculty in direct support of NASA programs. In general, the results of the research will be assimilated by NASA program managers into an overall effort and will ultimately find their way into the literature. Occasionally, specific assignments result directly in reports for publication or conference presentation. Taken as a body, the assignments represent a large intellectual contribution by the academic community to NASA programs. It is appropriate therefore to summarize the research that was accomplished. The remainder of this report consists of research summaries arranged alphabetically by participant name. For each summary, the faculty fellow is briefly identified and the assignment prepared by the GRC host organization is given. This is followed by a brief narrative, prepared by the fellow, of the research performed. Narratives provided by the accompanying students immediately follow the narratives of their professors.

  11. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  12. How to Improve SBIR Phase 3 Technology Commercialization Effectiveness: A NASA Glenn Internal Assessment

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1999-01-01

    Governmental departments and agencies with responsibilities for implementing the Small Business Innovative Research program under the auspices of the Small Business Administration, are now required to be more accountable for phase 3 performance. At NASA Glenn Research Center, internal, one-on-one interviews were conducted with seven contracting officer technical representatives who have managed one or more SBIR contracts through completion of phase 2. A questionnaire consisting of nineteen questions was formulated and used for the above purpose. This self-assessment produced several comments, conclusions, and recommendations for consideration and potential application.

  13. Strategic Research to Enable NASA's Exploration Missions Conference

    NASA Technical Reports Server (NTRS)

    Nahra, Henry (Compiler)

    2004-01-01

    Abstracts are presented from a conference sponsored by the NASA Office of Biological and Physical Research and hosted by NASA Glenn Research Center and the National Center for Microgravity Research on Fluids and Combustion, held in Cleveland, Ohio, June 22-23, 2004. Topics pertained to the behavior of processes and materials in microgravity as well as physiological-biological studies and microgravity effects.

  14. Processing and Preparation of Advanced Stirling Convertors for Extended Operation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Peggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  15. Summary of Stirling Convertor Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2006-01-01

    The NASA Glenn Research Center (GRC) has been testing free-piston Stirling convertors for potential use in radioisotope power systems. These convertors tend to be in the 35 to 80 W electric power output range. Tests at GRC have accumulated over 80,000 hr of operation. Test articles have been received from Infinia Corporation of Kennewick, Washington and from Sunpower of Athens, Ohio. Infinia designed and built the developmental Stirling Technology Demonstration Convertors (TDC) in addition to the more advanced Test Bed and Engineering Unit convertors. GRC has eight of the TDC's under test including two that operate in a thermal vacuum environment. Sunpower designed and developed the EE-35 and the Advanced Stirling Convertor (ASC). GRC has six of the EE- 35 s and is preparing for testing multiple ASC s. Free-piston Stirling convertors for radioisotope power systems make use of non-contacting operation that eliminates wear and is suited for long-term operation. Space missions with radioisotope power systems are often considered that extend from three to 14 years. One of the key capabilities of the GRC test facility is the ability to support continuous, unattended operation. Hardware, software, and procedures for preparing the test articles were developed to support these tests. These included the processing of the convertors for minimizing the contaminants in the working fluid, developing a helium charging system for filling and for gas sample analysis, and the development of new control software and a high-speed protection circuit to insure safe, round-the-clock operation. Performance data of Stirling convertors over time is required to demonstrate that a radioisotope power system is capable of providing reliable power for multi-year missions. This paper will discuss the status of Stirling convertor testing at GRC.

  16. The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

    2010-01-01

    The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

  17. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  18. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2011-01-01

    Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.

  19. Green Propellant Test Capabilities of the Altitude Combustion Stand at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kubiak, Jonathan M.; Arnett, Lori A.

    2016-01-01

    The NASA Glenn Research Center (GRC) is committed to providing simulated altitude rocket test capabilities to NASA programs, other government agencies, private industry partners, and academic partners. A primary facility to support those needs is the Altitude Combustion Stand (ACS). ACS provides the capability to test combustion components at a simulated altitude up to 100,000 ft. (approx.0.2 psia/10 Torr) through a nitrogen-driven ejector system. The facility is equipped with an axial thrust stand, gaseous and cryogenic liquid propellant feed systems, data acquisition system with up to 1000 Hz recording, and automated facility control system. Propellant capabilities include gaseous and liquid hydrogen, gaseous and liquid oxygen, and liquid methane. A water-cooled diffuser, exhaust spray cooling chamber, and multi-stage ejector systems can enable run times up to 180 seconds to 16 minutes. The system can accommodate engines up to 2000-lbf thrust, liquid propellant supply pressures up to 1800 psia, and test at the component level. Engines can also be fired at sea level if needed. The NASA GRC is in the process of modifying ACS capabilities to enable the testing of green propellant (GP) thrusters and components. Green propellants are actively being explored throughout government and industry as a non-toxic replacement to hydrazine monopropellants for applications such as reaction control systems or small spacecraft main propulsion systems. These propellants offer increased performance and cost savings over hydrazine. The modification of ACS is intended to enable testing of a wide range of green propellant engines for research and qualification-like testing applications. Once complete, ACS will have the capability to test green propellant engines up to 880 N in thrust, thermally condition the green propellants, provide test durations up to 60 minutes depending on thrust class, provide high speed control and data acquisition, as well as provide advanced imaging and

  20. An Assessment of Gigabit Ethernet Technology and Its Applications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bakes, Catherine Murphy; Kim, Chan M.; Ramos, Calvin T.

    2000-01-01

    This paper describes Gigabit Ethernet and its role in supporting R&D programs at NASA Glenn. These programs require an advanced high-speed network capable of transporting multimedia traffic, including real-time visualization, high- resolution graphics, and scientific data. GigE is a 1 Gbps extension to 10 and 100 Mbps Ethernet. The IEEE 802.3z and 802.3ab standards define the MAC layer and 1000BASE-X and 1000BASE-T physical layer specifications for GigE. GigE switches and buffered distributors support IEEE 802.3x flow control. The paper also compares GigE with ATM in terms of quality of service, data rate, throughput, scalability, interoperability, network management, and cost of ownership.

  1. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-01-01

    A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  2. Former NASA Astronaut, U.S. Senator John Glenn laid to rest in Arlington Cemetery

    NASA Image and Video Library

    2017-04-05

    On April 6, former astronaut and U.S. Senator John Glenn was interred at Arlington National Cemetery in Virginia. Glenn, who passed away Dec. 8, 2016 at the age of 95, served four terms as a U.S. senator from Ohio, and was one of NASA's original seven Mercury astronauts. His flight on Friendship 7 on Feb. 20, 1962, made him the first American to orbit Earth. The riveting flight united our nation, launched America to the forefront of the space race and secured for him a unique place in the annals of history.

  3. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  4. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

  5. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC?s Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA?s space exploration program. T he large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world?s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada?s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic de-sign and subsequent on-going construction.

  6. Bolden Glenn Lecture Series

    NASA Image and Video Library

    2012-06-27

    NASA Administrator Charles Bolden, left, stands with former United States Marine Corps pilot, astronaut, and United States Senator John Glenn and Gen. John R. Dailey, director of the National Air and Space Museum, in the Fly Marines exhibit at the museum, Wednesday evening, June 27, 2012, in Washington. Bolden spoke later at the 2012 John H. Glenn Lecture in Space History. Photo Credit: (NASA/Paul E. Alers)

  7. Bolden Glenn Lecture Series

    NASA Image and Video Library

    2012-06-27

    NASA Administrator Charles Bolden, left, along with former United States Marine Corps pilot, astronaut, and United States Sen. John Glenn and Gen. John R. Dailey, director of the National Air and Space Museum, right, look around the Fly Marines exhibit at the museum, Wednesday evening, June 27, 2012, in Washington. Bolden spoke later at the 2012 John H. Glenn Lecture in Space History. Photo Credit: (NASA/Paul E. Alers)

  8. Concurrent Mission and Systems Design at NASA Glenn Research Center: The Origins of the COMPASS Team

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Oleson, Steven R.; Sarver-Verhey, Timothy R.

    2012-01-01

    Established at the NASA Glenn Research Center (GRC) in 2006 to meet the need for rapid mission analysis and multi-disciplinary systems design for in-space and human missions, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team is a multidisciplinary, concurrent engineering group whose primary purpose is to perform integrated systems analysis, but it is also capable of designing any system that involves one or more of the disciplines present in the team. The authors were involved in the development of the COMPASS team and its design process, and are continuously making refinements and enhancements. The team was unofficially started in the early 2000s as part of the distributed team known as Team JIMO (Jupiter Icy Moons Orbiter) in support of the multi-center collaborative JIMO spacecraft design during Project Prometheus. This paper documents the origins of a concurrent mission and systems design team at GRC and how it evolved into the COMPASS team, including defining the process, gathering the team and tools, building the facility, and performing studies.

  9. Variable-Speed Power-Turbine Research at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; McVetta, Ashlie B.; Stevens, Mark A.; Howard, Samuel A.; Giel, Paul W.; Ameri, Ali, A.; To, Waiming; Skoch, Gary J.; Thurman, Douglas R.

    2012-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle operate over a wide speed-range, from 100 percent at takeoff to 54 percent at cruise. The variable-speed power turbine (VSPT) offers one approach by which to effect this speed variation. VSPT aerodynamics challenges include high work factors at cruise, wide (40 to 60 ) incidence-angle variations in blade and vane rows over the speed range, and operation at low Reynolds numbers. Rotordynamics challenges include potential responsiveness to shaft modes within the 50 percent VSPT speed-range. A research effort underway at NASA Glenn Research Center, intended to address these key aerodynamic and rotordynamic challenges, is described. Conceptual design and 3-D multistage RANS and URANS analyses, conducted internally and under contract, provide expected VSPT sizing, stage-count, performance and operability information, and maps for system studies. Initial steps toward experimental testing of incidence-tolerant blading in a transonic linear cascade are described, and progress toward development/improvement of a simulation capability for multistage turbines with low Reynolds number transitional flow is summarized. Preliminary rotordynamics analyses indicate that viable concept engines with 50 percent VSPT shaft-speed range. Assessments of potential paths toward VSPT component-level testing are summarized.

  10. Glenn Extreme Environment Rig (GEER)

    NASA Image and Video Library

    2017-01-17

    NASA Glenn research engineers prepare our extreme environments chamber (GEER) for a test. GEER, which simulates the extreme conditions found in space, tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800˚F.

  11. Facility Upgrade/Replacement Tasks ('planned') at the NASA Glenn Research Center 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Giriunas, Julius A.

    2012-01-01

    Facility upgrades and large maintenance tasks needed at the NASA Glenn 10x10 Supersonic Wind Tunnel requires significant planning to make sure implementation proceeds in an efficiently and cost effective manner. Advanced planning to secure the funding, complete design efforts and schedule the installation needs to be thought out years in advance to avoid interference with wind tunnel testing. This presentation describes five facility tasks planned for implementation over the next few years. The main focus of the presentation highlights the efforts on possible replacement of the diesel generator and the rationale behind the effort.

  12. The Testing Behind the Test Facility: the Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio, U.S.A. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, U.S.A. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent ongoing construction.

  13. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  14. TechPort Featured at Glenn Research Center's Technology Day

    NASA Technical Reports Server (NTRS)

    Owens, Jeannette P.; Diem, Priscilla S.

    2016-01-01

    The NASA Technology Portfolio (TechPort) System was featured at NASA Glenn Research Center's Technology Day on May 24, 2016. This event, which coincided with GRC's 75th Anniversary celebration, drew nearly 250 registered guests including aerospace and technology representatives, local business leaders, state and local government officials, and members of academia. GRC's Director of the Office of Technology Incubation and Innovation and Center Chief Technologist, John Sankovic, presented the opening remarks. Several technical and business-focused panel sessions were convened. NASA's Associate Administrator for the Space Technology Mission Directorate, Steve Jurczyk, GRC's Director of Space Flight Systems, Bryan Smith, and NASA astronaut and U.S. Navy Captain, Sunita Williams, were engaged as a panel for a discussion about "NASA's Journey to Mars: Science Fiction Meets Reality." Another panel moderated by the Executive Director of the Cleveland Water Alliance, Bryan Stubbs, involved a discussion with four GRC technologists on the subject of global water scarcity and water treatment concerns. The GRC panelists shared information on the development of snow-sensing, hyperspectral imaging, and non-equilibrium plasma technologies. Technology Day attendees received overviews of GRC's technologies and partnership objectives, and were introduced to areas for potential collaboration. They were also informed about opportunities to license technologies and how to do business with NASA.

  15. Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.

    2016-01-01

    Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA Glenn Research Center. The TDU consists of three subsystems: the reactor simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the heat exchanger manifold (HXM). An annular linear induction pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now) is referred to as the "RxSim subsystem" and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the computer-aided-design (CAD) model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras (S?A) turbulence model) and 2.223 kg/sec (using the k- turbulence model). The computational error of the predictions for the available mass flow is ?0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k- turbulence model) when compared to measured data.

  16. Recent Stirling Conversion Technology Developments and Operational Measurements at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Schifer, Nicholas A.

    2010-01-01

    In support of the Advanced Stirling Radioisotope Generator (ASRG) project and other potential applications, NASA Glenn Research Center (GRC) has initiated convertor technology development efforts in the areas of acoustic emission, electromagnetic field mitigation, thermoacoustic Stirling conversion, and multiple-cylinder alpha arrangements of Stirling machines. The acoustic emission measurement effort was developed as a health monitoring metric for several Stirling convertors undergoing life testing. While accelerometers have been used in the past to monitor dynamic signature, the acoustic sensors were chosen to monitor cycle events, such gas bearing operation. Several electromagnetic interference (EMI) experiments were performed on a pair of Advanced Stirling Convertors (ASC). These tests demonstrated that a simple bucking coil was capable of reducing the alternating current (ac) magnetic field below the ASRG system specification. The thermoacoustic Stirling concept eliminates the displacer typically found in Stirling machines by making use of the pressure oscillations of a traveling acoustic wave. A 100 W-class thermoacoustic Stirling prototype manufactured by Northrop Grumman Space and Technology was received and tested. Another thermoacoustic prototype designed and fabricated by Sunpower, Inc., will be tested in the near future. A four cylinder free piston alpha prototype convertor was received from Sunpower, Inc. and has been tested at GRC. This hardware was used as a proof of concept to validate thermodynamic models and demonstrate stable operation of multiple-cylinder free-piston Stirling conversion. This paper will discuss each of these activities and the results they produced.

  17. [The Engineering and Technical Services Directorate at the Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.

  18. NASA Glenn 1-by 1-Foot Supersonic Wind Tunnel User Manual

    NASA Technical Reports Server (NTRS)

    Seablom, Kirk D.; Soeder, Ronald H.; Stark, David E.; Leone, John F. X.; Henry, Michael W.

    1999-01-01

    This manual describes the NASA Glenn Research Center's 1 - by 1 -Foot Supersonic Wind Tunnel and provides information for customers who wish to conduct experiments in this facility. Tunnel performance envelopes of total pressure, total temperature, and dynamic pressure as a function of test section Mach number are presented. For each Mach number, maps are presented of Reynolds number per foot as a function of the total air temperature at the test section inlet for constant total air pressure at the inlet. General support systems-such as the service air, combustion air, altitude exhaust system, auxiliary bleed system, model hydraulic system, schlieren system, model pressure-sensitive paint, and laser sheet system are discussed. In addition, instrumentation and data processing, acquisition systems are described, pretest meeting formats and schedules are outlined, and customer responsibilities and personnel safety are addressed.

  19. Bolden Glenn Lecture Series

    NASA Image and Video Library

    2012-06-27

    Former United States Marine Corps pilot, astronaut, and United States Sen. John Glenn speaks to those in attendance as he introduces NASA Administrator Charles Bolden as the speaker for the 2012 John H. Glenn Lecture in Space History, Wednesday evening, June 27, 2012, at the National Air and Space Museum in Washington. Bolden talked about his career as a Marine aviator, a Space Shuttle pilot and commander, and his leadership of America's space agency. Photo Credit: (NASA/Paul E. Alers)

  20. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  1. Glenn Extreme Environments Rig (GEER) Independent Review

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Smiles, Michael D.; George, Mark A.; Ton, Mimi C.; Le, Son K.

    2015-01-01

    The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation. This document contains the outcome of the NESC assessment.

  2. Development of a Batch Fabrication Process for Chemical Nanosensors: Recent Advancements at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.

    2014-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption. Chemical sensors involving nanostructured materials can provide these characteristics as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited by the ability to control their location on the sensor platform, which in turn hinders the progress for batch fabrication. This presentation will discuss the following: the development of a novel room temperature methane (CH4) sensor fabricated using porous tin oxide (SnO2) nanorods as the sensing material, the advantages of using nanomaterials in sensor designs, the challenges encountered with the integration of nanostructures into microsensordevices, and the different methods that have been attempted to address these challenges. An approach for the mass production of sensors with nanostructures using a method developed by our group at the NASA Glenn Research Center to control the alignment of nanostructures onto a sensor platform will also be described.

  3. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, OH, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hour period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hour period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  4. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, Ohio, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hr period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hr period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  5. NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Geng, Steven M.

    2016-01-01

    A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.

  6. Round Trip Energy Efficiency of NASA Glenn Regenerative Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher P.; Chang, Bei-jiann; Johnson, Donald W.; Bents, David J.; Scullin, Vincent J.; Jakupca, Ian J.; Scullin, Vincent J.; Jakupca, Ian J.

    2006-01-01

    NASA Glenn Research Center (GRC) has recently demonstrated a Polymer Electrolyte Membrane (PEM) based hydrogen/oxygen regenerative fuel cell system (RFCS) that operated for a charge/discharge cycle with round trip efficiency (RTE) greater than 50 percent. The regenerative fuel cell system (RFCS) demonstrated closed loop energy storage over a pressure range of 90 to 190 psig. In charge mode, a constant electrical power profile of 7.1 kWe was absorbed by the RFCS and stored as pressurized hydrogen and oxygen gas. In discharge mode, the system delivered 3 to 4 kWe of electrical power along with product water. Fuel cell and electrolyzer power profiles and polarization performance are documented in this paper. Individual cell performance and the variation of cell voltages within the electrochemical stacks are also reported. Fuel cell efficiency, electrolyzer efficiency, and the system RTE were calculated from the test data and are included below.

  7. Astronaut John H. Glenn

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut John H. Glenn, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-6 mission, boosted by the Mercury-Atlas vehicle, was the first manned orbital launch by the United States, and carried Astronaut Glenn aboard the Friendship 7 spacecraft to orbit the Earth.

  8. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    NASA Administrator Charles Bolden, right, talks as Sen. John Glenn, and Ohio State University Graduate Research Associate Vijay Gadepally, left, listen during a NASA Future Forum panel discussion at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  9. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    The Ohio State University Vice President for Research Dr. Caroline Whitacre, standing right, moderates the first panel discussion during NASA's Future Forum with NASA Associate Administrator for Science Mission Directorate John Grunsfeld, left, Ohio State University Graduate Research Associate Vijay Gadepally, Sen. John Glenn, NASA Administrator Charles Bolden, and NASA 2009 Astronaut Candidate and Flight Surgeon Serena Auñón, seated right, at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  10. 17. Historic plan of Building 100. June 29, 1955. NASA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Historic plan of Building 100. June 29, 1955. NASA GRC drawing number CE-101441. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  11. 9. Historic plan drawing of Building 205, July 1978. NASA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic plan drawing of Building 205, July 1978. NASA GRC Drawing no. CC-18263. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 205, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  12. Astronaut John Glenn - Crew Quarters - Prelaunch - Cape

    NASA Image and Video Library

    1962-02-20

    S62-00377 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., walking out of building with Dr. William K. Douglas (to Glenn's left), and Joe W. Schmitt, NASA's suit technician (in front of Dr. Douglas). This Mercury Atlas 6 (MA-6) ?Friendship 7? flight marks America's first manned Earth-orbiting spaceflight. Photo credit: NASA

  13. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection.

  14. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (1) mode blockage, (2) liner insertion loss, (3) short ducts, and (4) mode reflection.

  15. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Sen. John Glenn, right, talks during a NASA Future Forum panel discussion at The Ohio State University as NASA Associate Administrator for Science Mission Directorate John Grunsfeld, left, and Ohio State University Graduate Research Associate Vijay Gadepally look on, Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  16. Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.

    2009-01-01

    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high-temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short-range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a benchtop calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.

  17. Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.

    2009-01-01

    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a bench top calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.

  18. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Ohio State University Graduate Research Associate Vijay Gadepally, left, listens as Sen. John Glenn talks during a NASA Future Forum panel discussion at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  19. Uncertainty Analysis of the NASA Glenn 8x6 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, Julia; Hubbard, Erin; Walter, Joel; McElroy, Tyler

    2016-01-01

    This paper presents methods and results of a detailed measurement uncertainty analysis that was performed for the 8- by 6-foot Supersonic Wind Tunnel located at the NASA Glenn Research Center. The statistical methods and engineering judgments used to estimate elemental uncertainties are described. The Monte Carlo method of propagating uncertainty was selected to determine the uncertainty of calculated variables of interest. A detailed description of the Monte Carlo method as applied for this analysis is provided. Detailed uncertainty results for the uncertainty in average free stream Mach number as well as other variables of interest are provided. All results are presented as random (variation in observed values about a true value), systematic (potential offset between observed and true value), and total (random and systematic combined) uncertainty. The largest sources contributing to uncertainty are determined and potential improvement opportunities for the facility are investigated.

  20. Virtual Reality Used to Serve the Glenn Engineering Community

    NASA Technical Reports Server (NTRS)

    Carney, Dorothy V.

    2001-01-01

    There are a variety of innovative new visualization tools available to scientists and engineers for the display and analysis of their models. At the NASA Glenn Research Center, we have an ImmersaDesk, a large, single-panel, semi-immersive display device. This versatile unit can interactively display three-dimensional images in visual stereo. Our challenge is to make this virtual reality platform accessible and useful to researchers. An example of a successful application of this computer technology is the display of blade out simulations. NASA Glenn structural dynamicists, Dr. Kelly Carney and Dr. Charles Lawrence, funded by the Ultra Safe Propulsion Project under Base R&T, are researching blade outs, when turbine engines lose a fan blade during operation. Key objectives of this research include minimizing danger to the aircraft via effective blade containment, predicting destructive loads due to the imbalance following a blade loss, and identifying safe, cost-effective designs and materials for future engines.

  1. New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P.

    2004-01-01

    A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and

  2. John H Glenn Jr.

    NASA Image and Video Library

    2012-02-17

    Mercury astronaut John Glenn speaks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975.

  3. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  4. New Compressor Added to Glenn's 450- psig Combustion Air System

    NASA Technical Reports Server (NTRS)

    Swan, Jeffrey A.

    2000-01-01

    In September 1999, the Central Process Systems Engineering Branch and the Maintenance and the Central Process Systems Operations Branch, released for service a new high pressure compressor to supplement the 450-psig Combustion Air System at the NASA Glenn Research Center at Lewis Field. The new compressor, designated C-18, is located in Glenn s Central Air Equipment Building and is remotely operated from the Central Control Building. C-18 can provide 40 pounds per second (pps) of airflow at pressure to our research customers. This capability augments our existing system capacity (compressors C 4 at 38 pps and C-5 at 32 pps), which is generated from Glenn's Engine Research Building. The C-18 compressor was originally part of Glenn's 21-Inch Hypersonic Tunnel, which was transferred from the Jet Propulsion Laboratory to Glenn in the mid-1980's. With the investment of construction of facilities funding, the compressor was modified, new mechanical and electrical support equipment were purchased, and the unit was installed in the basement of the Central Air Equipment Building. After several weeks of checkout and troubleshooting, the new compressor was ready for long-term, reliable operations. With a total of 110 pps in airflow now available, Glenn is well positioned to support the high-pressure air test requirements of our research customers.

  5. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  6. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  7. NASA Research Being Shared Through Live, Interactive Video Tours

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth A.; Zona, Kathleen A.

    2001-01-01

    On June 2, 2000, the NASA Glenn Research Center Learning Technologies Project (LTP) coordinated the first live remote videoconferencing broadcast from a Glenn facility. The historic event from Glenn's Icing Research Tunnel featured wind tunnel technicians and researchers performing an icing experiment, obtaining results, and discussing the relevance to everyday flight operations and safety. After a brief overview of its history, students were able to "walk through" the tunnel, stand in the control room, and observe a live icing experiment that demonstrated how ice would grow on an airplane wing in flight through an icing cloud. The tour was interactive, with a spirited exchange of questions and explanations between the students and presenters. The virtual tour of the oldest and largest refrigerated icing research tunnel in the world was the second of a series of videoconferencing connections with the AP Physics students at Bay Village High School, Bay Village, Ohio. The first connection, called Aircraft Safety and Icing Research, introduced the Tailplane Icing Program. In an effort to improve aircraft safety by reducing the number of in-flight icing events, Glenn's Icing Branch uses its icing research aircraft to conduct flight tests. The presenter engaged the students in discussions of basic aircraft flight mechanics and the function of the horizontal tailplane, as well as the effect of ice on airfoil (wing or tail) surfaces. A brief video of actual flight footage provided a view of the pilot's actions and reactions and of the horizon during tailplane icing conditions.

  8. Bolden Glenn Lecture Series

    NASA Image and Video Library

    2012-06-27

    NASA Administrator Charles Bolden talks about his career as a marine aviator, as Space Shuttle pilot and commander, and his leadership of America's space agency during a speech, Wednesday evening, June 27, 2012, in Washington. Bolden spoke was the guest speaker at the 2012 John H. Glenn Lecture in Space History. Photo Credit: (NASA/Paul E. Alers)

  9. Turbine Blade and Endwall Heat Transfer Measured in NASA Glenn's Transonic Turbine Blade Cascade

    NASA Technical Reports Server (NTRS)

    Giel, Paul W.

    2000-01-01

    Higher operating temperatures increase the efficiency of aircraft gas turbine engines, but can also degrade internal components. High-pressure turbine blades just downstream of the combustor are particularly susceptible to overheating. Computational fluid dynamics (CFD) computer programs can predict the flow around the blades so that potential hot spots can be identified and appropriate cooling schemes can be designed. Various blade and cooling schemes can be examined computationally before any hardware is built, thus saving time and effort. Often though, the accuracy of these programs has been found to be inadequate for predicting heat transfer. Code and model developers need highly detailed aerodynamic and heat transfer data to validate and improve their analyses. The Transonic Turbine Blade Cascade was built at the NASA Glenn Research Center at Lewis Field to help satisfy the need for this type of data.

  10. Antenna Technology and other Radio Frequency (RF) Communications Activities at the Glenn Research Center in Support of NASA's Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2007-01-01

    NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.

  11. Astronaut John Glenn - Egress Training Activity - Langley AFB, VA

    NASA Image and Video Library

    1960-12-12

    B60-00285 (1960) --- Astronaut John H. Glenn Jr., pilot of the Mercury Atlas 6 spaceflight, emerges from an egress trainer during training activity at the Langley Research Center. He is attempting to transfer onto a life raft from the mock-up of the Mercury capsule. Photo credit: NASA

  12. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks with news media members at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex following a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  13. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  14. Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.

    2004-01-01

    Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.

  15. Glenn's Telescience Support Center Provided Around-the-Clock Operations Support for Space Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.

    2005-01-01

    NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.

  16. Spacecraft Fire Safety Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  17. Use of a Scale Model in the Design of Modifications to the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.; Spera, David A.; Burke, Thomas (Technical Monitor)

    2001-01-01

    Major modifications were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research tunnel (IRT) at the NASA Glenn Research Center, including replacement of its heat exchanger and associated ducts and turning vanes, and the addition of fan outlet guide vanes (OGV's). A one-tenth scale model of the IRT (designated as the SMIRT) was constructed with and without these modifications and tested to increase confidence in obtaining expected improvements in flow quality around the tunnel loop. The SMIRT is itself an aerodynamic test facility whose flow patterns without modifications have been shown to be accurate, scaled representations of those measured in the IRT prior to the 1999 upgrade program. In addition, tests in the SMIRT equipped with simulated OGV's indicated that these devices in the IRT might reduce flow distortions immediately downstream of the fan by two thirds. Flow quality parameters measured in the SMIRT were projected to the full-size modified IRT, and quantitative estimates of improvements in flow quality were given prior to construction. In this paper, the results of extensive flow quality studies conducted in the SMIRT are documented. Samples of these are then compared with equivalent measurements made in the full-scale IRT, both before and after its configuration was upgraded. Airspeed, turbulence intensity, and flow angularity distributions are presented for cross sections downstream of the drive fan, both upstream and downstream of the replacement flat heat exchanger, in the stilling chamber, in the test section, and in the wakes of the new comer turning vanes with their unique expanding and contracting designs. Lessons learned from these scale-model studies are discussed.

  18. Astronaut John Glenn, Jr. - Insertion - Mercury Spacecraft - Cape

    NASA Image and Video Library

    1962-02-20

    S62-00371 (20 Feb. 1962) --- Mercury astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) spaceflight, enters the Mercury "Friendship 7" spacecraft during the MA-6 prelaunch preparations at Cape Canaveral, Florida. Glenn became the first American to orbit Earth. Photo credit: NASA

  19. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronauts Bob Cabana, director of NASA's Kennedy Space Center in Florida, from left, Jon McBride, Al Worden and Winston Scott pose outside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex following a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  20. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06940 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) is assisted by Carlous Gillis in suiting up for a training exercise at the Johnson Space Center's systems integration facility. Glenn is scheduled to join a second payload specialist and five NASA astronauts for a mission aboard the Space Shuttle Disovery later this year. This day's training was scheduled for the STS-95 crewmembers to rehearse launch readiness procedures. The photo was taken by Joe McNally, National Geographic, for NASA.

  1. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  2. NASA aviation safety program aircraft engine health management data mining tools roadmap

    DOT National Transportation Integrated Search

    2000-04-01

    Aircraft Engine Health Management Data Mining Tools is a project led by NASA Glenn Research Center in support of the NASA Aviation Safety Program's Aviation System Monitoring and Modeling Thrust. The objective of the Glenn-led effort is to develop en...

  3. Closeup View - Astronaut John Glenn - Insertion - Mercury Capsule - Cape

    NASA Image and Video Library

    1962-02-20

    S62-01004 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury Atlas 6 (MA-6) mission, participates in Mercury egress training during MA-6 preflight preparations. Glenn made the free world's first manned Earth-orbital flight on Feb. 20, 1962. Photo credit: NASA

  4. Astronaut John Glenn leaving crew quarters prior to launch

    NASA Image and Video Library

    1962-02-20

    S62-00222 (20 Feb. 1962) --- View of astronaut John H. Glenn Jr. and equipment specialist Joe Schmitt leaving crew quarters prior to Mercury-Atlas 6 (MA-6) mission. Glenn is in his pressure suit and is carrying the portable ventilation unit. Photo credit: NASA

  5. Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2005-01-01

    A high-efficiency, 110-W(sub e) (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 W(sub e) per kilogram. GRC has performed random vibration testing of a lowerpower version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.

  6. Senator John Glenn training in Single Systems Trainer

    NASA Image and Video Library

    1998-03-30

    S98-08642 (30 March 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) is briefed on the usage of the single systems trainer at the Johnson Space Center (JSC). Glenn is in training for payload specialist duties for a scheduled late October flight aboard the Space Shuttle Discovery. Photo by Joe McNally, National Geographic, for NASA

  7. Astronaut John Glenn leaving crew quarters prior to launch

    NASA Image and Video Library

    1961-02-20

    S62-00330 (1962) --- Astronaut John H. Glenn Jr. (left), Dr. William Douglas, astronauts flight surgeon, and equipment specialist Joe Schmitt leave crew quarters prior to Mercury-Atlas 6 (MA-6) mission. Glenn is in his pressure suit and is carrying the portable ventilation unit. Photo credit: NASA

  8. LEWICE3D/GlennHT Particle Analysis of the Honeywell Al502 Low Pressure Compressor

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Rigby, David L.

    2015-01-01

    A flow and ice particle trajectory analysis was performed for the booster of the Honeywell AL502 engine. The analysis focused on two closely related conditions one of which produced a rollback and another which did not rollback during testing in the Propulsion Systems Lab at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.56 ice accretion software. The flow and particle analysis used a 3D steady flow, mixing plane approach to model the transport of flow and particles through the engine. The inflow conditions for the rollback case were: airspeed, 145 ms; static pressure, 33,373 Pa; static temperature, 253.3 K. The inflow conditions for the non-roll-back case were: airspeed, 153 ms; static pressure, 34,252 Pa; static temperature, 260.1 K. Both cases were subjected to an ice particle cloud with a median volume diameter of 24 microns, an ice water content of 2.0 gm3 and a relative humidity of 100 percent. The most significant difference between the rollback and non-rollback conditions was the inflow static temperature which was 6.8 K higher for the non-rollback case.

  9. Pressure Probe Designs for Dynamic Pressure Measurements in a Supersonic Flow Field. [conducted in the Glenn Supersonic Wind Tunnel (SWT)

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2001-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor stall and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  10. Research & Technology 2005

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2005. It comprises 126 short articles submitted by the staff scientists and engineers. The report is organized into three major sections: Programs and Projects, Research and Technology, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information, visit Glenn's Web site at http://www.nasa.gov/glenn/. This document is available online (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov).

  11. KENNEDY SPACE CENTER, FLA. - Dryden Flight Research Center Director Kevin Peterson talks about One NASA during the rollout of the Agency initiative at KSC. The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Peterson, were KSC Director Jim Kennedy, James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Dryden Flight Research Center Director Kevin Peterson talks about One NASA during the rollout of the Agency initiative at KSC. The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Peterson, were KSC Director Jim Kennedy, James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

  12. Research and Technology 2000

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This report selectively summarizes the NASA Glenn Research Center's research and technology accomplishments for the fiscal year 2000. It comprises 138 short articles submitted by staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology, a table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that was reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at NASA Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/WWW/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.gre.nasa.gov/GLTRS).

  13. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  14. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    An Atlas rocket and Mercury capsule like the ones that carried Sen. John Glenn into Earth orbit in February 1962 stand in the Rocket Garden at the Kennedy Space Center Visitor Complex adjacent to the Heroes and Legends exhibit hall where Glenn was remembered during a ceremony Dec. 9, 2016. Glenn, one of the Mercury Seven astronauts NASA chose to fly the first missions of the Space Age, passed away on Dec. 8, 2016, at age 95. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  15. A Summary of The 2000-2001 NASA Glenn Lear Jet AM0 Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Scheiman, David; Brinker, David; Snyder, David; Baraona, Cosmo; Jenkins, Phillip; Rieke, William J.; Blankenship, Kurt S.; Tom, Ellen M.

    2002-01-01

    Calibration of solar cells for space is extremely important for satellite power system design. Accurate prediction of solar cell performance is critical to solar array sizing, often required to be within 1%. The NASA Glenn Research Center solar cell calibration airplane facility has been in operation since 1963 with 531 flights to date. The calibration includes real data to Air Mass (AM) 0.2 and uses the Langley plot method plus an ozone correction factor to extrapolate to AM0. Comparison of the AM0 calibration data indicates that there is good correlation with Balloon and Shuttle flown solar cells. This paper will present a history of the airplane calibration procedure, flying considerations, and a brief summary of the previous flying season with some measurement results. This past flying season had a record 35 flights. It will also discuss efforts to more clearly define the ozone correction factor.

  16. Research and Technology 2004

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2004. It comprises 133 short articles submitted by the staff scientists and engineers. The report is organized into three major sections: Programs and Projects, Research and Technology, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information, visit Glenn's Web site at http://www.nasa.gov/glenn/. This document is available online (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov).

  17. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.

    2016-01-01

    NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  18. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  19. Comparison of LEWICE and GlennICE in the SLD Regime

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Potapczuk, Mark G.; Levinson, Laurie H.

    2008-01-01

    A research project is underway at the NASA Glenn Research Center (GRC) to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from two different computer programs. The first program, LEWICE version 3.2.2, has been reported on previously. The second program is GlennICE version 0.1. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the GRC Icing Research Tunnel (IRT) has also been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. This paper will show the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. This report will also provide a description of both programs. Comparisons are then made to recent additions to the SLD database and selected previous cases. Quantitative comparisons are shown for horn height, horn angle, icing limit, area, and leading edge thickness. The results show that the predicted results for both programs are within the accuracy limits of the experimental data for the majority of cases.

  20. Current Status of Post-combustor Trace Chemistry Modeling and Simulation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2003-01-01

    The overall objective of the current effort at NASA GRC is to evaluate, develop, and apply methodologies suitable for modeling intra-engine trace chemical changes over post combustor flow path relevant to the pollutant emissions from aircraft engines. At the present time, the focus is the high pressure turbine environment. At first, the trace chemistry model of CNEWT were implemented into GLENN-HT as well as NCC. Then, CNEWT, CGLENN-HT, and NCC were applied to the trace species evolution in a cascade of Cambridge University's No. 2 rotor and in a turbine vane passage. In general, the results from these different codes provide similar features. However, the details of some of the quantities of interest can be sensitive to the differences of these codes. This report summaries the implementation effort and presents the comparison of the No. 2 rotor results obtained from these different codes. The comparison of the turbine vane passage results is reported elsewhere. In addition to the implementation of trace chemistry model into existing CFD codes, several pre/post-processing tools that can handle the manipulations of the geometry, the unstructured and structured grids as well as the CFD solutions also have been enhanced and seamlessly tied with NCC, CGLENN-HT, and CNEWT. Thus, a complete CFD package consisting of pre/post-processing tools and flow solvers suitable for post-combustor intra-engine trace chemistry study is assembled.

  1. An Assessment of NASA Glenn's Aeroacoustic Experimental and Predictive Capabilities for Installed Cooling Fans. Part 1; Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Koch, L. Danielle; Wernet, Mark P.; Podboy, Gary G.

    2006-01-01

    Driven by the need for low production costs, electronics cooling fans have evolved differently than the bladed components of gas turbine engines which incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Drawing upon NASA Glenn's experience in the measurement and prediction of gas turbine engine aeroacoustic performance, tests have been conducted to determine if these tools and techniques can be extended for application to the aerodynamics and acoustics of electronics cooling fans. An automated fan plenum installed in NASA Glenn's Acoustical Testing Laboratory was used to map the overall aerodynamic and acoustic performance of a spaceflight qualified 80 mm diameter axial cooling fan. In order to more accurately identify noise sources, diagnose performance limiting aerodynamic deficiencies, and validate noise prediction codes, additional aerodynamic measurements were recorded for two operating points: free delivery and a mild stall condition. Non-uniformities in the fan s inlet and exhaust regions captured by Particle Image Velocimetry measurements, and rotor blade wakes characterized by hot wire anemometry measurements provide some assessment of the fan aerodynamic performance. The data can be used to identify fan installation/design changes which could enlarge the stable operating region for the fan and improve its aerodynamic performance and reduce noise emissions.

  2. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of the first human landing on the Moon, Apollo 11 Astronaut Neil Armstrong speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included Former NASA Astronaut and U.S. Senator John Glenn, NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft and the crew of Apollo 11. Photo Credit: (NASA/Bill Ingalls)

  3. Research and Technology 1999

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report selectively summarizes the NASA Glenn Research Center's research and technology accomplishments for the fiscal year 1999. It comprises 130 short articles submitted by the staff scientists and engineers. The report is organized into four major sections: Aeronautics. Research and Technology, Space, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at NASA Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available on the World Wide Web (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (GLTRS) on the World Wide Web (http://gltrs.grc.nasa.gov/GLTRS/).

  4. Regenerative Fuel Cell Test Rig Completed and Operational at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has completed construction of its first closed-cycle hydrogen-oxygen regenerative fuel cell (RFC). The RFC is an electrochemical system that collects and stores solar energy during the day then releases that energy at night, thus making the Sun's energy available all 24 hours. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for reuse during the next cycle.

  5. Astronauts Carpenter and Glenn relax following breakfast during MA-6 activity

    NASA Image and Video Library

    1962-02-01

    S64-10801 (1962) --- Astronauts M. Scott Carpenter (far left) and John H. Glenn Jr. relax following breakfast during Mercury Atlas 6 (MA-6) preflight activity. Glenn is the MA-6 pilot. Carpenter is the MA-6 backup pilot. Photo credit: NASA

  6. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06949 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), talks with crew trainer Sharon Jones prior to simulating procedures for egressing from a troubled space shuttle. This training mockup is called the full fuselage trainer (FFT). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. Photo Credit: Joe McNally, National Geographic, for NASA

  7. Improving Data Collection and Analysis Interface for the Data Acquisition Software of the Spin Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.

    2011-01-01

    In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported

  8. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included Former NASA Astronaut and U.S. Senator John Glenn, Apollo 11 crew members, Buzz Aldrin, Neil Armstrong, and Michael Collins. Photo Credit: (NASA/Bill Ingalls)

  9. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, Apollo 11 crew member, Michael Collins speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included Former NASA Astronaut and U.S. Senator John Glenn, NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft and the crew of Apollo 11. Photo Credit: (NASA/Bill Ingalls)

  10. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, Former NASA Astronaut and U.S. Senator John Glenn speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft, Apollo 11 crew members, Buzz Aldrin, Neil Armstrong, and Michael Collins. Photo Credit: (NASA/Bill Ingalls)

  11. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, Apollo 11 crew member, Buzz Aldrin speaks during a lecture in honor of Apollo 11 at the National Air and Space Museum in Washington, Sunday, July 19, 2009. Guest speakers included Former NASA Astronaut and U.S. Senator John Glenn, NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft and the crew of Apollo 11. Photo Credit: (NASA/Bill Ingalls)

  12. Research and Technology 2002

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.

    2003-01-01

    This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2002. It comprises 166 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/WWW/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov/GLTRS/).

  13. Research and Technology 2001

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2001. It comprises 156 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and, where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/www/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov/GLTRS).

  14. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    A memorial wreath stands at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  15. Astronaut John Glenn poses for press photographers at Cape Canaveral

    NASA Image and Video Library

    1962-02-01

    S64-14869 (February 1962) --- Astronaut John H. Glenn Jr., wearing a Mercury pressure suit, was the pilot of the Mercury-Atlas 6 (MA-6) mission. Glenn made America's first manned Earth-orbital spaceflight on Feb. 20, 1962. This photograph was taken at Cape Canaveral, Florida, during MA-6 preflight training activities. Photo credit: NASA

  16. View of Astronaut John Glenn in his Mercury pressure suit

    NASA Image and Video Library

    1964-10-27

    S64-36910 (February 1962) --- Astronaut John H. Glenn Jr., wearing a Mercury pressure suit, was the pilot of the Mercury-Atlas 6 (MA-6) mission. Glenn made America's first manned Earth-orbiting spaceflight on Feb. 20, 1962. This photograph was taken at Cape Canaveral, Florida, during MA-6 preflight training activities. Photo credit: NASA

  17. ASTRONAUT GLENN - MERCURY-ATLAS (MA)-6 FLIGHT - HANGAR "S" - CAPE

    NASA Image and Video Library

    1962-02-20

    S62-00379 (20 Feb. 1962) --- View of astronaut John H. Glenn Jr., Dr. William Douglas, astronauts' flight surgeon, and equipment specialist Joe Schmitt leaving Operations and Checkout Building prior to the Mercury-Atlas 6 (MA-6) mission. Glenn is in his pressure suit and is carrying the portable ventilation unit. Photo credit: NASA

  18. Astronaut John Glenn tests balance mechanism performance

    NASA Image and Video Library

    1962-02-01

    S64-14849 (1962) --- Astronaut John H. Glenn Jr.'s balance mechanism (semi-circular-canals) is tested by running cool water into his ear and measuring effect on eye motions (nystagmus). Photo credit: NASA

  19. Astronaut John Glenn - Blood Draw - Training - Cape

    NASA Image and Video Library

    1961-07-05

    S61-02579 (1961) --- Astronaut nurse Delores B. O'Hara, R.N., in the Aeromedical Laboratory at Cape Canaveral, Florida, takes a blood sample from Mercury astronaut John H. Glenn Jr. Photo credit: NASA

  20. ASTRONAUT GLENN, JOHN - MERCURY SPACE SUIT

    NASA Image and Video Library

    1962-02-20

    S62-00965 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., finishes suiting up, and prepares for the launch of his Mercury-Atlas 6 (MA-6) spacecraft. The MA-6 ?Friendship 7? mission marks America's first manned Earth-orbiting spaceflight. Photo credit: NASA

  1. Parametric Inlet Tested in Glenn's 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Davis, David O.; Solano, Paul A.

    2005-01-01

    The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.

  2. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David; Schoenenberger, Mark

    2017-01-01

    A feasibility study is in progress at NASA Glenn Research Center to implement a magnetic suspension and balance system in the 225 sq cm Supersonic Wind Tunnel for the purpose of testing the dynamic stability of blunt bodies. An important area of investigation in this study was determining the optimum size of the model and the iron spherical core inside of it. In order to minimize the required magnetic field and thus the size of the magnetic suspension system, it was determined that the test model should be as large as possible. Blockage tests were conducted to determine the largest possible model that would allow for tunnel start at Mach 2, 2.5, and 3. Three different forebody model geometries were tested at different Mach numbers, axial locations in the tunnel, and in both a square and axisymmetric test section. Experimental results showed that different model geometries produced more varied results at higher Mach Numbers. It was also shown that testing closer to the nozzle allowed larger models to start compared with testing near the end of the test section. Finally, allowable model blockage was larger in the axisymmetric test section compared with the square test section at the same Mach number. This testing answered key questions posed by the feasibility study and will be used in the future to dictate model size and performance required from the magnetic suspension system.

  3. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former space shuttle astronaut Jon McBride speaks at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  4. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    News media members and visitors gather at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  5. Ohio Senator John Glenn tours the Design Engineering lab at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the Engineering Development Laboratory at Kennedy Space Center. Standing with Senator Glenn is Design Engineer David Kruhm of NASA Advanced Development and Shuttle Upgrades. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  6. Propulsion Controls and Diagnostics Research in Support of NASA Aeronautics and Exploration Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2011-01-01

    The Controls and Dynamics Branch (CDB) at National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research and Exploration Systems Missions. This paper provides a brief overview of the various CDB tasks in support of the NASA programs. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.

  7. NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith F.; Rosine, Bryan M.

    2014-01-01

    The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

  8. Ohio Senator John Glenn tours the Space Station Processing Facility at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at right, enjoys a tour of the Space Station Processing Facility at Kennedy Space Center. With Senator Glenn is Stephen Francois, director, Space Station and Shuttle Payloads, NASA. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  9. 75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-079)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory....m. to 4 p.m. (local time). ADDRESSES: NASA Glenn Research Center, Building 15, Small Dining...

  10. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    A portrait of Sen. John Glenn and a memorial wreath stand at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering the iconic astronaut who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  11. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark

    2017-01-01

    The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.

  12. Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen

    2012-01-01

    There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.

  13. NASA 2012 Small Business Industry Awards (SBIA)

    NASA Image and Video Library

    2013-04-23

    NASA Administrator Charles Bolden, left, NASA Associate Administrator for Small Business Programs Glenn A. Delgado, and NASA Deputy Administrator Lori Garver, right, pose for a photograph with Autumn Sellars, President/CEO of A2Research of Huntsville, Alabama after the company was awarded the Small Business Prime Contractor of the Year at NASA Headquarters, Tuesday, April 23, 2013 in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. Glenn Lecture With Crew of Apollo 11

    NASA Image and Video Library

    2009-07-18

    On the eve of the fortieth anniversary of Apollo 11's first human landing on the Moon, Apollo 11 crew members, Buzz Aldrin, left, Michael Collins, 2nd from left, Neil Armstrong and NASA Mission Control creator and former NASA Johnson Space Center director Chris Kraft, right, gathered at the National Air and Space Museum in Washington, Sunday, July 19, 2009. The four were speakers at the Museum's 2009 John H. Glenn lecture in space history. Photo Credit: (NASA/Bill Ingalls)

  15. Ohio Senator John Glenn tours the Design Engineering lab at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the Engineering Development Laboratory at Kennedy Space Center. Standing with Senator Glenn are, left to right, Chief Engineer Hugo Delgado and Design Engineer David Kruhm, both of NASA Advanced Development and Shuttle Upgrades. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five- hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  16. Astronaut John Glenn is suited up at Cape Canaveral during MA-6 activities

    NASA Image and Video Library

    1962-02-01

    S64-14843 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 Earth-orbital space mission, is suited up at Cape Canaveral, Florida, during MA-6 preflight activities. Assisting Glenn is suit technician Al Rochford. Photo credit: NASA

  17. John Glenn Receives Presidential Medal of Freedom

    NASA Image and Video Library

    2012-05-29

    President Barack Obama presents former United States Marine Corps pilot, astronaut, and United States Senator John Glenn with a Medal of Freedom, Tuesday, May 29, 2012, during a ceremony at the White House in Washington. Photo Credit: (NASA/Bill Ingalls)

  18. The Electrical Engineering Profession at NASA

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2004-01-01

    Presentation given at the opening ceremony of the Centre of Vocational Excellence in Birmingham, England on October 7, 2004. Presentation highlights examples of work performed by Electrical Engineers at the NASA Glenn Research Center and highlights the demographics of the NASA workforce. Presentation is intended to be inspirational in nature.

  19. John H Glenn Jr. Wreath Laying Ceremony - Inside Heroes and Lege

    NASA Image and Video Library

    2016-12-09

    A life-size photo inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows astronaut Sen. John Glenn, center, with fellow Mercury Seven astronauts Gordon Cooper, left, and Gus Grissom. Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  20. Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.

    2003-01-01

    NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.

  1. John Glenn Receives Presidential Medal of Freedom

    NASA Image and Video Library

    2012-05-29

    President Barack Obama congratulates former United States Marine Corps pilot, astronaut, and United States Senator John Glenn after presenting him with a Medal of Freedom, Tuesday, May 29, 2012, during a ceremony at the White House in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. KENNEDY SPACE CENTER, FLA. - KSC Director Jim Kennedy and Glenn Research Center Director Dr. Julian Earls share the stage during the rollout of the One NASA initiative at KSC. Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center. The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Kennedy and Earls, were James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - KSC Director Jim Kennedy and Glenn Research Center Director Dr. Julian Earls share the stage during the rollout of the One NASA initiative at KSC. Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center. The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Kennedy and Earls, were James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson.

  3. KENNEDY SPACE CENTER, FLA. - KSC’s incoming Deputy Director Woodrow Whitlow speaks to employees and guests during the rollout at KSC of the Agency initiative One NASA . The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Whitlow, were KSC Director Jim Kennedy; James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - KSC’s incoming Deputy Director Woodrow Whitlow speaks to employees and guests during the rollout at KSC of the Agency initiative One NASA . The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Whitlow, were KSC Director Jim Kennedy; James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

  4. Research Project for Increasing the Pool of Minority Engineers

    NASA Technical Reports Server (NTRS)

    Gott, Susan F. (Technical Monitor); Rogers, Decatur B.

    2003-01-01

    The NASA Glenn Research Center (GRC) funded the 2001-2002 Tennessee State University (TSU) Research Project for increasing the pool of minority engineers. The NASA GRC/TSU Research Project is designed to develop a cadre of SMET professionals who have academic and research expertise in technical areas of interest to NASA, in addition to having some familiarity with the mission of the NASA Glenn Research Center. The goal of increasing minority participation in SMET disciplines was accomplished by: (1) introducing and exposing 96 minority youth to Science, Math, Engineering, and Technology (SMET) careers and to the required high school preparation necessary to make high school graduation, college attendance and engineering careers a reality through the campus based pre-college SMET program: Minority Introduction to Engineering (MITE); (2) by providing financial support through scholarships for four (4) TSU engineering students to NASA; (3) familiarization with the SMET profession and with NASA through summer internships at NASA GRC for two TSU NASA Glenn Research Scholars; and experiences through research internships at NASA GRC.

  5. NASA's Bio-Inspired Acoustic Absorber Concept

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2017-01-01

    are encouraged to contact the NASA Glenn Technology Transfer Office, https:technology.grc.nasa.gov. The NASA Glenn Office of Education https:www.nasa.govcentersglenneducationindex.html and the NASA Glenn Virtual Interchange for Nature-Inspired Exploration https:www.grc.nasa.govvine are also helping to make research like this accessible to the public and students of all ages.

  6. Reduced-Noise Gas Flow Design Guide Developed as a Noise-Control Design Tool for Meeting Glenn's Hearing Conservation and Community Noise Goals

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2000-01-01

    A Reduced-Noise Gas Flow Design Guide has been developed for the NASA Glenn Research Center at Lewis Field by Nelson Acoustical Engineering of Elgin, Texas. Gas flow systems are a significant contributor to t he noise exposure landscape at Glenn. Because of the power of many of these systems, hearing conservation and community noise are importan t issues. The purpose of the Guide is to allow Glenn engineers and de signers to address noise emission and control at the design stage by using readily available system parameters. Although the Guide was deve loped with Glenn equipment and systems in mind, it is expected to hav e wide application in industry.

  7. Lithium-ion Battery Demonstration for the 2007 NASA Desert Research and Technology Studies (Desert RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William; Baldwin, Richard

    2007-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and produced five lithium-ion battery packs for demonstration in a portable life support system (PLSS) on spacesuit simulators. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, over-discharge and over-temperature. The 500-gram batteries were designed to deliver a constant power of 38 watts over 103 minutes of discharge time (130 Wh/kg). Battery design details are described and field and laboratory test results are summarized.

  8. Precourt and Goldin welcome Glenn back to Earth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Charles Precourt, chief of the Astronaut office in Houston, and Daniel Goldin, NASA administrator, welcome back to Earth Senator John H. Glenn Jr., from a successful mission STS-95 aboard orbiter Discovery. Glenn served as payload specialist, one of a crew of seven that included Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialists Stephen K. Robinson, Scott E. Parazynski and Pedro Duque of Spain, with the European Space Agency; and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). They landed at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  9. Stirling Technology Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  10. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06944 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) prepares to rehearse launch readiness procedures on the middeck of a crew trainer at the Johnson Space Center (JSC). Sharon Jones, involved in crew training, briefs the STS-95 payload specialist. When he lifts off aboard the Space Shuttle Discovery in October of this year and later lands in Florida, Sen. Glenn will be seated in a temporary middeck chair like the one used in this training exercise. The photo was taken by Joe McNally, National Geographic, for NASA.

  11. NASA Mission: Encouraging the Pursuit of STEM Excellence

    NASA Technical Reports Server (NTRS)

    Lizcano, Maricela

    2015-01-01

    In this presentation, Dr. Maricela Lizcano will discuss her academic career path at UTPA that directed her to earn a PhD in Mechanical Engineering. Dr. Lizcano will also discuss her research area at NASA Glenn Research Center (NASA-GRC) and the various educational and career opportunities available at NASA. Her experiences, challenges, and goals will serve to both advise and encourage UTRGV students to pursue a STEM career.

  12. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  13. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  14. Recommendations from NASA's Operational and Research Musculoskeletal Summit

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Johnson-Throop, K. A.; Scheuring, R. A.; Walton, M. E.; Davis-Street, J. E.; Smaka, T.; McCulley, P. A.; Jones, J. A.; Stokes, C. R.; Parker, K. K.; hide

    2006-01-01

    Introduction: Continuously evolving medical standards of care, limited crew training time, and the inherent constraints of space flight necessitate regular revisions of the mission medical support infrastructure and methodology. A three-day Operational and Research Musculoskeletal Summit was held to review NASA s current strategy for preflight health maintenance and injury screening, risk mitigation for musculoskeletal injuries or syndromes, treatment methods during flight, and research topics to mitigate risks to astronaut health. The Summit also undertook consideration of the best evidence-based terrestrial musculoskeletal practices to recommend their adaptation for use in space. Methods: The types and frequencies of musculoskeletal injuries sustained by short- and long-duration astronauts were obtained from the Longitudinal Study of Astronaut Health. The Summit panel was comprised of experts from the clinical and research communities, as well as representatives from NASA Headquarters, the Astronaut corps, and the offices of JSC Medical Operations, JSC Human Adaptation and Countermeasures, Glenn Research Center Human Research, and Astronaut Strength Conditioning and Rehabilitation. Before the summit, panelists participated in a Web-based review of NASA s Space Medical Conditions List (SMCL). Results: The Summit generated seventy-five operational and research recommendations to the NASA Office of Space Medicine, including changes to the SMCL and to the musculoskeletal section of the ISS debrief questionnaire. From these recommendations, seven were assigned highest value and priority, and could be immediately adopted for the exploration architecture. Discussion: Optimized exercise and conditioning to improve performance and forestall musculoskeletal damage on orbit were the primary area of focus. Special attention was paid to exercise timing and muscle group specificity. The panel s recommendations are currently in various stages of consideration or integration

  15. NASA Glenn/AADC-Rolls Royce Collaborated to Measure Erosion Resistance on Coated Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Sutter, James K.; Mondry, Richard; Ma, Kong; Horan, Dick; Naik, Subhash; Cupp, Randall

    2003-01-01

    Polymer matrix composites (PMCs) are increasingly used in aerospace and automotive applications because of their light weight and high strength-to-weight ratio relative to metals. However, a major drawback of PMCs is poor abrasion resistance, which restricts their use, especially at high temperatures. Simply applying a hard coating on PMCs to improve abrasion and erosion resistance is not effective since coating durability is short lived (ref. 1). Generally, PMCs have higher coefficients of thermal expansion than metallic or ceramic coatings have, and coating adhesion suffers because of poor interfacial adhesion strength. One technique commonly used to improve coating adhesion or durability is the use of bond coats that are interleaved between a coating and a substrate with vastly different coefficients of thermal expansion. An example of this remedy is the use of bondcoats for ceramic thermal barrier coatings on metallic turbine components (ref. 2). Prior collaborative research between the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) demonstrated that bond coats sandwiched between PMCs and high-quality plasma-sprayed, erosion-resistant coatings substantially improved the erosion resistance of PMCs (ref. 3). One unresolved problem in this earlier collaboration was that there was no easy, accurate way to measure the coating erosion wear scar. Coating wear was determined by both profilometry and optical microscopy. Both techniques are time consuming. Wear measurement by optical microscopy requires sample destruction and does not provide a comprehensive measure of the entire wear volume. An even more subtle, yet critical, problem is that these erosion coatings contain two or more materials with different densities. Therefore, simply measuring specimen mass loss before and after erosion will not provide an accurate gauge for coating and/or substrate volume loss. By using a noncontact technique called scanning optical interferometry

  16. NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem

    NASA Technical Reports Server (NTRS)

    Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

    2011-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

  17. Stirling Technology Development at NASA GRC. Revised

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  18. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  19. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06946 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). This training mockup is called The full fuselage trainer (FFT). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crew members for procedures to follow in egressing a troubled shuttle on the ground. Photo Credit: Joe McNally, National Geographic, for NASA

  20. Acoustic Performance of the GEAE UPS Research Fan in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel in 1994. The Universal Propulsion Simulator fan was designed and manufactured by General Electric Aircraft Engines, and included an active core, as well as bypass, flow paths. The fan was tested with several rotors featuring unswept, forward-swept and aft-swept designs of both metal and composite construction. Sideline acoustic data were taken with both hard and acoustically treated walls in the flow passages. The fan was tested within an airflow at a Mach number of 0.20, which is representative of aircraft takeoff/approach conditions. All rotors showed similar aerodynamic performance. However, the composite rotors typically showed higher noise levels than did corresponding metal rotors. Aft and forward rotor sweep showed at most modest reductions of transonic multiple pure tone levels. However, rotor sweep often introduced increased rotor-stator interaction tone levels. Broadband noise was typically higher for the composite rotors and also for the aft-swept metal rotor. Transonic MPT generation was reduced with increasing fan axis angle of attack (AOA); however, higher downstream noise levels did increase with AOA resulting in higher overall Effective Perceived Noise Level.

  1. Flexible Electronics Development Supported by NASA

    NASA Technical Reports Server (NTRS)

    Baumann, Eric

    2014-01-01

    The commercial electronics industry is leading development in most areas of electronics for NASA applications; however, working in partnership with industry and the academic community, results from NASA research could lead to better understanding and utilization of electronic materials by the flexible electronics industry. Innovative ideas explored by our partners in industry and the broader U.S. research community help NASA execute our missions and bring new American products and services to the global technology marketplace. [Mike Gazarik, associate administrator for Space Technology, NASA Headquarters, Washington DC] This presentation provides information on NASA needs in electronics looking towards the future, some of the work being supported by NASA in flexible electronics, and the capabilities of the Glenn Research Center supporting the development of flexible electronics.

  2. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John; Saunders, John

    2014-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  3. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  4. NASA Glenn's Acoustical Testing Laboratory Awarded Accreditation by the National Voluntary Laboratory Accreditation Program

    NASA Technical Reports Server (NTRS)

    Akers, James C.; Cooper, Beth A.

    2004-01-01

    NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive

  5. KENNEDY SPACE CENTER, FLA. - KSC Director Jim Kennedy (left) and incoming KSC Deputy Director Woodrow Whitlow talk about One NASA during the rollout of the Agency initiative at KSC. They were joined at the IMAX Theater® by other NASA leaders James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; and implementation team lead Johnny Stevenson to explain how their respective centers contribute to One NASA. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - KSC Director Jim Kennedy (left) and incoming KSC Deputy Director Woodrow Whitlow talk about One NASA during the rollout of the Agency initiative at KSC. They were joined at the IMAX Theater® by other NASA leaders James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; and implementation team lead Johnny Stevenson to explain how their respective centers contribute to One NASA. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

  6. NASA Hispanic Profile Interview with Evan Pineda

    NASA Image and Video Library

    2017-10-20

    Evan Pineda received his Ph.D. at the University of Michigan which was funded by a NASA project. After receiving a co-op position, he became a full-time employee at NASA Glenn Research Center. He talks about his project involvement with Space Launch System (SLS) and receiving the Hispanic Engineer National Achievement Awards Conference (HENAAC).

  7. KENNEDY SPACE CENTER, FLA. - NASA leaders discuss the Agency’s One NASA initiative with selected employees at the KSC Visitor Complex IMAX Theater®. From left are KSC Director Jim Kennedy; James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - NASA leaders discuss the Agency’s One NASA initiative with selected employees at the KSC Visitor Complex IMAX Theater®. From left are KSC Director Jim Kennedy; James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

  8. Redesign of Glenn Research Center D1 Flywheel Module

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Wagner, Robert C.; Duffy, Kirsten P.; Hervol, David S.; Storozuk, Ronald J.; Dever, Timothy P.; Anzalone, Salvatore M.; Trudell, Jeffrey J.; Konno, Kevin E.; Kenny, Andrew

    2002-01-01

    Glenn Research Center has completed the redesign of the D1 flywheel module. The redesign includes a new rotor with a composite rim, motor/generator, touchdown bearings, sensors, and a magnetic actuator. The purpose of the relatively low cost module upgrade is to enable it to continuously operate throughout its speed range of 0 to 60,000 RPM. The module will be used as part of a combined attitude control and bus regulation experiment.

  9. John H Glenn Jr. Wreath Laying Ceremony - Inside Hereos and Lege

    NASA Image and Video Library

    2016-12-09

    A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows the name of astronaut Sen. John Glenn. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  10. Feasibility Study for Implementing Magnetic Suspension in the Glenn Research Center 225 cm2 Supersonic Wind Tunnel for Testing the Dynamic Stability of Blunt Bodies

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul

    2016-01-01

    The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.

  11. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06937 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crewmembers for procedures to follow in egressing a troubled shuttle on the ground. The full fuselage trainer (FFT) is at left, with the crew compartment trainer (CCT) at right. Photo Credit: Joe McNally, National Geographic, for NASA

  12. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06938 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crewmembers for procedures to follow in egressing a troubled shuttle on the ground. The full fuselage trainer (FFT) is at left, with the crew compartment trainer (CCT) at right. Photo Credit: Joe McNally, National Geographic, for NASA

  13. KENNEDY SPACE CENTER, FLA. - At the rollout of the One NASA initiative at KSC, Glenn Research Center Director Dr. Julian Earls embraces implementation team lead Johnny Stevenson while KSC Director Jim Kennedy (left) applauds. Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center. The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Kennedy and Earls, were James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - At the rollout of the One NASA initiative at KSC, Glenn Research Center Director Dr. Julian Earls embraces implementation team lead Johnny Stevenson while KSC Director Jim Kennedy (left) applauds. Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center. The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Kennedy and Earls, were James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson.

  14. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  15. NASA Test Conductor Monitoring DIME competition

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA test conductor at the top of the 2.2-second Drop Tower monitors a student lecture at a lower level. This was part of the Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  16. Overview of the NASA Glenn Flux Reconstruction Based High-Order Unstructured Grid Code

    NASA Technical Reports Server (NTRS)

    Spiegel, Seth C.; DeBonis, James R.; Huynh, H. T.

    2016-01-01

    A computational fluid dynamics code based on the flux reconstruction (FR) method is currently being developed at NASA Glenn Research Center to ultimately provide a large- eddy simulation capability that is both accurate and efficient for complex aeropropulsion flows. The FR approach offers a simple and efficient method that is easy to implement and accurate to an arbitrary order on common grid cell geometries. The governing compressible Navier-Stokes equations are discretized in time using various explicit Runge-Kutta schemes, with the default being the 3-stage/3rd-order strong stability preserving scheme. The code is written in modern Fortran (i.e., Fortran 2008) and parallelization is attained through MPI for execution on distributed-memory high-performance computing systems. An h- refinement study of the isentropic Euler vortex problem is able to empirically demonstrate the capability of the FR method to achieve super-accuracy for inviscid flows. Additionally, the code is applied to the Taylor-Green vortex problem, performing numerous implicit large-eddy simulations across a range of grid resolutions and solution orders. The solution found by a pseudo-spectral code is commonly used as a reference solution to this problem, and the FR code is able to reproduce this solution using approximately the same grid resolution. Finally, an examination of the code's performance demonstrates good parallel scaling, as well as an implementation of the FR method with a computational cost/degree- of-freedom/time-step that is essentially independent of the solution order of accuracy for structured geometries.

  17. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  18. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  19. Research and Technology 2003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Glenn Research Center at Lewis Field, in partnership with U.S. industries, universities, and other Government institutions, is responsible for developing critical technologies that address national priorities in aeropropulsion and space applications. Our work is focused on research for new aeropropulsion technologies, aerospace power, microgravity science (fluids and combustion), electric propulsion, and communications technologies for aeronautics, space, and aerospace applications. As NASA s premier center for aeropropulsion, aerospace power, and turbomachinery, our role is to conduct world-class research and to develop key technologies. We contribute to economic growth and national security through safe, superior, and environmentally compatible U.S. civil and military aircraft propulsion systems. Our Aerospace Power Program supports all NASA Enterprises and major programs, including the International Space Station, Advanced Space Transportation, and new initiatives in human and robotic exploration. Glenn Research Center leads NASA s research in the microgravity science disciplines of fluid physics, combustion science, and acceleration measurement. Almost every space shuttle science mission has had an experiment managed by NASA Glenn, and we have conducted a wide array of similar experiments on the International Space Station. The Glenn staff consists of over 3200 civil service employees and support service contractor personnel. Scientists and engineers comprise more than half of our workforce, with technical specialists, skilled workers, and an administrative staff supporting them. We aggressively strive for technical excellence through continuing education, increased diversity in our workforce, and continuous improvement in our management and business practices so that we can expand the boundaries of aeronautics, space, and aerospace technology. Glenn Research Center is a unique facility located in northeast Ohio. Situated on 350 acres of land adjacent

  20. 2007 Research and Technology

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, Stephen M. (Editor)

    2008-01-01

    The NASA Glenn Research Center is pushing the envelope of research and technology in aeronautics, space exploration, science, and space operations. Our research in aeropropulsion, structures and materials, and instrumentation and controls is enabling next-generation transportation systems that are faster, more environmentally friendly, more fuel efficient, and safer. Our research and development of space flight systems is enabling advanced power, propulsion, communications, and human health systems that will advance the exploration of our solar system. This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2007. Comprising 104 short articles submitted by the staff scientists and engineers, the report is organized into six major sections: Aeropropulsion, Power and Space Propulsion, Communications, Space Processes and Experiments, Instrumentation and Controls, and Structures and Materials. It is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year; most of the work is reported in Glenn-published technical reports, journal articles, and presentations. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained.

  1. Studying - Astronaut John H. Glenn, Jr. - Mercury-Atlas (MA)-6 - Cape

    NASA Image and Video Library

    1961-01-01

    S61-04546 (1961) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) "Friendship 7" mission, takes part in spacecraft systems briefing during preflight activity at Cape Canaveral, Florida. Photo credit: NASA

  2. John H Glenn Jr. Wreath Laying Ceremony - Inside Heroes and Lege

    NASA Image and Video Library

    2016-12-09

    A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows astronaut Sen. John Glenn, along with his mission insignias for Friendship 7 and STS-95, the two flights he made into space. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  3. Astronaut John Glenn looks over checklist during MA-6 preflight activity

    NASA Image and Video Library

    1962-02-20

    S62-01000 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 "Friendship 7" mission, looks over a checklist during MA-6 preflight activity. He is wearing his Mercury spacesuit. Photo credit: NASA

  4. Multimillion Dollar Construction Project Completed in Glenn's Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Kevdzija, Susan L.

    2001-01-01

    Over the last year, the Glenn Research Center's Icing Research Tunnel (IRT) underwent a major $5.2 million rehabilitation project as part of the Construction of Facilities program. The scope of the project included redesign and replacement of the 55-yr-old heat exchanger, the addition of fan outlet guide vanes for flow conditioning downstream of the 25-ft-diameter fan, and redesign and replacement of the C and D corner-turning vanes. The purpose of the rehabilitation was to replace old portions of the infrastructure and to improve the aerodynamic flow quality in the tunnel.

  5. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08737 (9 April 1998) --- The mission commander, along with two payload specialists in training for NASA's STS-95 mission scheduled for later this year aboard Discovery, samples space foods at the Johnson Space Center (JSC). With payload specialists Chiaki Mukai and U.S. Sen. John H. Glenn Jr. (D.-Ohio) is Curtis L. Brown Jr. (right), mission commander. The photo was taken by Joe McNally, National Geographic, for NASA.

  6. MERCURY-ATLAS (MA)-6 - ASTRONAUT GLENN - LT. O'HARA, DELORES (DEE)

    NASA Image and Video Library

    1962-03-09

    S62-00469 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) Earth-orbital space mission, confers with astronaut nurse Dolores B. O'Hara, R.N., during MA-6 prelaunch preparations. Photo credit: NASA

  7. In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

    2005-01-01

    The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

  8. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06947 (28 April 1998)--- Three crewmembers for the STS-95 mission take notes during a class room session in preparation for the scheduled October 1998 flight. From the left are U.S. Sen. John H. Glenn Jr.(D.-Ohio), Pedro Duque and Stephen K. Robinson. Duque represents the European Space Agency (ESA). Photo Credit: Joe McNally, National Geographic, for NASA.

  9. Astronaut John Glenn inspects decal for side of his Mercury capsule

    NASA Image and Video Library

    1962-02-02

    S64-14854 (20 Feb. 1962) --- Astronaut John H. Glenn Jr. and technicians inspect a decal ready for application to the side of his Mercury spacecraft prior to launch on Feb. 20, 1962. The decal reads "Friendship 7". Photo credit: NASA

  10. Astronaut John Glenn running as part of physical training program

    NASA Image and Video Library

    1962-02-20

    S64-14883 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, participates in a strict physical training program, as he exemplifies by frequent running. Here he pauses during an exercise period on the beach near Cape Canaveral, Florida. Photo credit: NASA

  11. John Glenn Prepares for a Test in the Multi-Axis Space Test Inertia Facility

    NASA Image and Video Library

    1960-02-21

    Mercury astronaut John Glenn prepares for a test in the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The MASTIF was a three-axis test rig with a pilot’s chair mounted in the center. The device was designed to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig was then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control. In February and March 1960, the seven Project Mercury astronauts traveled to Cleveland to train on the MASTIF. Warren North and a team of air force physicians were on hand to monitor their health. After being briefed by Lewis pilot Joe Algranti and researcher James Useller, the rider would climb into the rig and be secured in the chair, as seen in this photograph. A Lewis engineer would then slowly set the MASTIF in motion. It was the astronaut’s job to bring it under control. Each individual was required to accumulate 4.5 to 5 hours of MASTIF time. Glenn became the first American to orbit the earth on February 20, 1962 in the Friendship 7 Mercury capsule. In March 1999, the Lewis Research Center was renamed the John H. Glenn Research Center at Lewis Field.

  12. The work of Glenn F. Webb.

    PubMed

    Fitzgibbon, William E

    2015-08-01

    It is my distinct pleasure to introduce this volume honoring the 70th birthday of Professor Glenn F. Webb. The existence of this compiled volume is in itself a testimony of Glenn's dedication to, his pursuit of, and his achievement of scientific excellence. As we honor Glenn, we honor what is excellent in our profession. Aristotle clearly articulated his concept of excellence. ``We are what we repeatedly do. Excellence, then, is not an act, but a habit." As we look over the course of his career we observe ample evidence of Glenn Webb's habitual practice of excellence. Beginning with Glenn's first paper [1], one observes a constant stream of productivity and high impact work. Glenn has authored or co-authored over 160 papers, written one research monograph, and co-edited six volumes. He has delivered plenary lectures, colloquia, and seminars across the globe, and he serves on the editorial boards of 11 archival journals. He is a Fellow of the American Mathematical Society. Glenn's scientific career chronicles an evolution of scientific work that began with his interest in nonlinear semigroup theory and leads up to his current activity in biomedical mathematics. At each stage we see seminal contributions in the areas of nonlinear semigroups, functional differential equations, infinite dimensional dynamical systems, mathematical population dynamics, mathematical biology and biomedical mathematics. Glenn's work is distinguished by a clarity and accessibility of exposition, a precise identification and description of the problem or model under consideration, and thorough referencing. He uses elementary methods whenever possible but couples this with an ability to employ power abstract methods when necessitated by the problem.

  13. Apollo 11 and John Glenn Astronauts Congressional Gold Medal

    NASA Image and Video Library

    2009-07-20

    Apollo 11 Astronauts, from left, Michael Collins, Neil Armstrong, Buzz Aldrin and NASA Administrator Charles Bolden attend the U.S House of Representatives Committee on Science and Technology tribute to the Apollo 11 Astronauts at the Cannon House Office Building on Capitol Hill, Tuesday, July 21, 2009 in Washington. The Committee presented the three Apollo 11 astronauts with a framed copy of House Resolution 607 honoring their achievement, and announced passage of legislation awarding them and John Glenn the Congressional Gold Medal. Photo Credit: (NASA/Bill Ingalls)

  14. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical

  15. Zero-Gravity Research Facility Drop Test (2/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physcis, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 2 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  16. Zero-Gravity Research Facility Drop Test (1/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to 1 meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No.1 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  17. Zero-Gravity Research Facility Drop Test (3/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one-meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 3 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  18. Zero-Gravity Research Facility Drop Test (4/4)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    An experiment vehicle plunges into the deceleration pit at the end of a 5.18-second drop in the Zero-Gravity Research Facility at NASA's Glenn Research Center. The Zero-Gravity Research Facility was developed to support microgravity research and development programs that investigate various physical sciences, materials, fluid physics, and combustion and processing systems. Payloads up to one meter in diameter and 455 kg in weight can be accommodated. The facility has a 145-meter evacuated shaft to ensure a disturbance-free drop. This is No. 4 of a sequence of 4 images. (Credit: NASA/Glenn Research Center)

  19. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06936 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), is assisted by suit experts Jean Alexander and Carlous Gillis prior to a training session at the Johnson Space Center (JSC). The STS-95 crew members are getting prepared for a scheduled Oct. 29 launch aboard the Space Shuttle Discovery. The photo was taken by Joe McNally, National Geographic, for NASA.

  20. Senator John Glenn training in Single Systems Trainer

    NASA Image and Video Library

    1998-03-30

    S98-08640 (6 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) temporarily occupies the commander's station in a space shuttle instruction facility called the single systems trainer. The senator is training as a payload specialist for the STS-95 mission, scheduled for launch aboard the Space Shuttle Discovery later this year. The photo was taken by Joe Mcnally, National Geographic, for NASA.

  1. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  2. Validation of NASA Thermal Ice Protection Computer Codes. Part 3; The Validation of Antice

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Horvath, Charles; Miller, Dean R.; Wright, William B.

    2001-01-01

    An experimental program was generated by the Icing Technology Branch at NASA Glenn Research Center to validate two ice protection simulation codes: (1) LEWICE/Thermal for transient electrothermal de-icing and anti-icing simulations, and (2) ANTICE for steady state hot gas and electrothermal anti-icing simulations. An electrothermal ice protection system was designed and constructed integral to a 36 inch chord NACA0012 airfoil. The model was fully instrumented with thermo-couples, RTD'S, and heat flux gages. Tests were conducted at several icing environmental conditions during a two week period at the NASA Glenn Icing Research Tunnel. Experimental results of running-wet and evaporative cases were compared to the ANTICE computer code predictions and are presented in this paper.

  3. Glenn Refractory Adhesive for Bonding and Exterior Repair (GRABER) Developed for Repairing Shuttle Damage

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah P.

    2005-01-01

    Advanced in-space repair technologies for reinforced carbon/carbon composite (RCC) thermal protection system (TPS) structures are critically needed for the space shuttle Return To Flight (RTF) efforts. These technologies are also critical for the repair and refurbishment of thermal protection system structures of future Crew Exploration Vehicles of space exploration programs. The Glenn Refractory Adhesive for Bonding and Exterior Repair (GRABER) material developed at the NASA Glenn Research Center has demonstrated capabilities for repair of small cracks and damage in RCC leading-edge material. The concept consists of preparing an adhesive paste of desired ceramic in a polymer/phenolic resin matrix with appropriate additives, such as surfactants, and then applying the paste into the damaged or cracked area of the RCC composite components with caulking guns. The adhesive paste cures at 100 to 120 C and transforms into a high-temperature ceramic during simulated vehicle reentry testing conditions.

  4. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  5. NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts

    NASA Technical Reports Server (NTRS)

    Manthey, Lri

    2001-01-01

    Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.

  6. Tennessee State University (TSU) Research Project For Increasing The Pool of Minority Engineers

    NASA Technical Reports Server (NTRS)

    Rogers, Decatur B.; Merritt, Sylvia (Technical Monitor)

    2000-01-01

    The NASA Glenn Research Center funded the 1998-1999 Tennessee State University (TSU) Research Project for Increasing the Pool of Minority Engineers. The NASA/GRC-TSU Research Project developed a cadre of engineers who have academic and research expertise in technical areas of interest to NASA, in addition to having some familiarity with the mission of the NASA/Glenn Research Center. Increased minority participation in engineering was accomplished by: (1) introducing and exposing minority youth to engineering careers and to the required high school preparation necessary to access engineering through two campus based precollege programs: Minority Introduction to Engineering (MITE), and Engineering and Technology Previews; (2) providing financial support through the Research Scholars Program for minority youth majoring in engineering disciplines of interest to NASA; (3) familiarization with the engineering profession and with NASA through field trips and summer internships at the Space and Rocket Center, and (4) with practical research exposure and experiences through research internships at NASA/GRC and at TSU.

  7. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  8. Potential Application of NASA Aerospace Technology to Ground-Based Power System

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Welch, Gerard E.; Bakhle, Milind A.; Brown, Gerald V.

    2000-01-01

    A review of some of the basic gas turbine technology being developed at the NASA John H. Glenn Research Center at Lewis Field, which may have the potential to be applied to ground-based systems, is presented in this paper. Only a sampling of the large number of research activities underway at the Glenn Research Center can be represented here. The items selected for presentation are those that may lead to increased power and efficiency, reduced cycle design time and cost, improved thermal design, reduced fatigue and fracture, reduced mechanical friction and increased operating margin. The topic of improved material will be presented in this conference and shall not be discussed here. The topics selected for presentation are key research activities at the Glenn Center of Excellence on Turbo-machinery. These activities should be of interest and utility to this ISABE (International Symposium on Air Breathing Engines) Special Forum on Aero-Derivative Land-Based Gas Turbines and to the power industry.

  9. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  10. Aerospace Communications Technologies in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  11. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  12. Reaction of Basaltic Materials under High-Fidelity Venus Surface Conditions using the Glenn Extreme Environment Rig: First Results

    NASA Technical Reports Server (NTRS)

    Radoman-Shaw, Brandon; Harvey, Ralph; Costa, Gustavo; Nakley, Leah Michelle; Jacobson, Nathan S.

    2016-01-01

    Both historical and current investigations of Venus suggest that atmosphererock interactions play a critical role in the evolution of its atmosphere and crust. We have begun a series of systematic experiments designed to further our understanding of atmosphere-driven weathering and secondary mineralization of basaltic materials that may be occurring on Venus today. Our experiments expose representative igneous phases (mineral, glasses and rocks) to a high-fidelity simulation of Venus surface conditions using the NASA Glenn Extreme Environment Rig (GEER) located at the NASA Glenn Research Center in Cleveland, Ohio. GEER is a very large (800L) vessel capable of producing a long-term, high fidelity simulation of both the physical conditions (750 K and 92 bar) and atmospheric chemistry (down to the ppb-level) asso-ciated with the Venusian surface. As of this writing we have just finished the first of several planned experiments: a 42-day exposure of selected mineral, rocks and volcanic glasses. Our goal is to identify and prioritize the reactions taking place and better our understanding of their importance in Venus' climate history.

  13. Radioisotope Heater Unit-Based Stirling Power Convertor Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Geng, Steven M.; Penswick, Lawrence; Schmitz, Paul C.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize RPS for landers, probes, and rovers and only require milliwatts to tens of watts of power. These missions would contain science measuring instruments that could be distributed across planetary surfaces or near objects of interest in space solar flux insufficient for using solar cells. A low power Stirling convertor is being developed to provide an RPS option for future low power applications. Initial concepts convert heat available from several Radioisotope Heater Units to electrical power for spacecraft instruments and communication. Initial development activity includes defining and evaluating a variety of Stirling configurations and selecting one for detailed design, research of advanced manufacturing methods that could simplify fabrication, evaluating thermal interfaces, characterizing components and subassemblies to validate design codes, and preparing for an upcoming demonstration of proof of concept in a laboratory environment.

  14. Experimental Lithium-Ion Battery Developed for Demonstration at the 2007 NASA Desert Research and Technology Studies (D-RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2010-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.

  15. John Glenn and rest of STS-95 crew exit Crew Transport Vehicle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Following touchdown at 12:04 p.m. EST at the Shuttle Landing Facility, the mission STS-95 crew leave the Crew Transport Vehicle. Payload Specialist John H. Glenn Jr. (center), a senator from Ohio, shakes hands with NASA Administrator Daniel S. Goldin. At left is Center Director Roy Bridges. Other crew members shown are Pilot Steven W. Lindsey (far left) and, behind Glenn, Mission Specialists Scott E. Parazynski and Stephen K. Robinson, and Payload Specialist Chiaki Mukai, Ph.D., M.D., with the National Space Development Agency of Japan. Not seen are Mission Commander Curtis L. Brown Jr. and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The STS-95 crew completed a successful mission, landing at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  16. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08741 (May 1998) --- Three crew members in training for the STS-95 mission check out a training version of a blood centrifuge that will accompany them aboard the Space Shuttle Discovery later this year. In the foreground (from the left), are astronauts Scott E. Parazynski and Pedro Duque, both mission specialists, and U.S. Sen. John H. Glenn Jr., payload specialist. Duque, representing the European Space Agency (ESA), has his right hand on the centrifuge. Sen. Glenn holds a vial of blood that would be placed inside the centrifuge. Among those in the background is astronaut Stephen K. Robinson (left side of frame), STS-95 mission specialist. The photo was taken by Joe McNally, National Geographic, for NASA.

  17. Overview of NASA Glenn Seal Developments

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Proctor, Margaret P.; Dunlap, Patrick H., Jr.; Delgado, Irebert; DeMange, Jeffrey J.; Daniels, Christopher C.; Lattime, Scott B.

    2004-01-01

    Turbine engine studies have shown that reducing high pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin and increase range. Dr. Lattime presented the design and development status of a new Active Clearance Control Test rig aimed at demonstrating advanced ACC approaches and sensors. Mr. Melcher presented controls considerations for turbine active clearance control. Mr. Geisheimer of Radatech presented an overview of their microwave blade tip sensor technology. Microwave tip sensors show promise of operation in the extreme gas temperatures present in the HPT location. Mr. Justak presented an overview of non-contacting seal developments at Advanced Technologies Group. Dr. Braun presented investigations into a non-contacting finger seal under development by NASA GRC and University of Akron. Dr. Stango presented analytical assessments of the effects of flow-induced radial loads on brush seal behavior. Mr. Flaherty presented innovative seal and seal fabrication developments at FlowServ. Mr. Chappel presented abradable seal developments at Technetics. Dr. Daniels presented an overview of NASA GRC s acoustic seal developments. NASA is investigating the ability to harness high amplitude acoustic waves, possible through a new field of acoustics called Resonant Macrosonic Synthesis, to effect a non-contacting, low leakage seal. Dr. Daniels presented early results showing the ability to restrict flow via acoustic pressures. Dr. Athavale presented numerical results simulating the flow blocking capability of a pre-prototype acoustic seal.

  18. NASA Examines Technology To Fold Aircraft Wings In Flight

    NASA Image and Video Library

    2018-01-17

    NASA conducts a flight test series to investigate the ability of an innovative technology to fold the outer portions of wings in flight as part of the Spanwise Adaptive Wing project, or SAW. Flight tests took place at NASA Armstrong Flight Research Center in California, using a subscale UAV called Prototype Technology-Evaluation Research Aircraft, or PTERA, provided by Area-I. NASA Glenn Research Center in Cleveland developed the alloy material, and worked with Boeing Research & Technology to integrate the material into an actuator. The alloy is triggered by temperature to move the outer portions of wings up or down in flight. The ability to fold wings to the ideal position of various flight conditions may produce several aerodynamic benefits for both subsonic and supersonic aircraft.

  19. An Assessment of the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.

    2015-01-01

    The NASA Glenn Icing Research tunnel has been using an Icing Blade technique to measure cloud liquid water content (LWC) since 1980. The IRT conducted tests with SEA Multi-Element sensors from 2009 to 2011 to assess their performance in measuring LWC. These tests revealed that the Multi-Element sensors showed some significant advantages over the Icing Blade, particularly at higher water contents, higher impingement rates, and large drop sizes. Results of these and other tests are presented here.

  20. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Sen. John Glenn delivers the closing remarks for NASA's Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  1. CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.

    2001-01-01

    For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.

  2. Lessons Learned from Inlet Integration Analysis of NASA's Low Boom Flight Demonstrator

    NASA Technical Reports Server (NTRS)

    Friedlander, David; Heath, Christopher; Castner, Ray

    2017-01-01

    In 2016, NASA's Aeronautics Research Mission Directorate announced the New Aviation Horizons Initiative with a goal of designing/building several X-Planes, including a Low Boom Flight Demonstrator (LBFD). That same year, NASA awarded a contract to Lockheed Martin (LM) to advance the LBFD concept through preliminary design. Several configurations of the LBFD aircraft were analyzed by both LM engineers and NASA researchers. This presentation focuses on some of the CFD simulations that were run by NASA Glenn researchers. NASA's FUN3D V13.1 code was used for all adjoint-based grid refinement studies and Spalart-Allmaras turbulence model was used during adaptation. It was found that adjoint-based grid adaptation did not accurately capture inlet performance for high speed top-aft-mounted propulsion.

  3. Operating The Central Process Systems At Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Weiler, Carly P.

    2004-01-01

    As a research facility, the Glenn Research Center (GRC) trusts and expects all the systems, controlling their facilities to run properly and efficiently in order for their research and operations to occur proficiently and on time. While there are many systems necessary for the operations at GRC, one of those most vital systems is the Central Process Systems (CPS). The CPS controls operations used by GRC's wind tunnels, propulsion systems lab, engine components research lab, and compressor, turbine and combustor test cells. Used widely throughout the lab, it operates equipment such as exhausters, chillers, cooling towers, compressors, dehydrators, and other such equipment. Through parameters such as pressure, temperature, speed, flow, etc., it performs its primary operations on the major systems of Electrical Dispatch (ED), Central Air Dispatch (CAD), Central Air Equipment Building (CAEB), and Engine Research Building (ERB). In order for the CPS to continue its operations at Glenn, a new contract must be awarded. Consequently, one of my primary responsibilities was assisting the Source Evaluation Board (SEB) with the process of awarding the recertification contract of the CPS. The job of the SEB was to evaluate the proposals of the contract bidders and then to present their findings to the Source Selecting Official (SSO). Before the evaluations began, the Center Director established the level of the competition. For this contract, the competition was limited to those companies classified as a small, disadvantaged business. After an industry briefing that explained to qualified companies the CPS and type of work required, each of the interested companies then submitted proposals addressing three components: Mission Suitability, Cost, and Past Performance. These proposals were based off the Statement of Work (SOW) written by the SEB. After companies submitted their proposals, the SEB reviewed all three components and then presented their results to the SSO. While the

  4. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  5. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08735 (9 April 1998) --- Five members of the STS-95 crew participate in a food tasting session at NASA's Johnson Space Center. From the left are Pedro Duque, a mission specialist representing the European Space Agency (ESA); Scott E. Parazynski, mission specialist; Steven W. Lindsey, pilot; Stephen K. Robinson, mission specialist; and payload specialist Chiaki Mukai of Japan's National Space Development Agency (NASDA). At the session but not pictured are U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., commander. The photo was taken by Joe McNally, National Geographic, for NASA.

  6. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08732 (9 April 1998) --- Holding a 35mm camera, U.S. Sen. John H. Glenn Jr. (D.-Ohio) gets a refresher course in photography from a JSC crew trainer (out of frame, right). The STS-95 payload specialist carried a 35mm camera on his historic MA-6 flight over 36 years ago. The photo was taken by Joe McNally, National Geographic, for NASA.

  7. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06948 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) receives assistance from crew trainer Sharon Jones and an unidentified staffer in the systems integration facility as he checks his training version of the Shuttle launch and entry garment. Suit expert Carlous Gillis looks on at right. Moments later, the STS-95 payload specialist participated in a rehearsal of an emergency egress from the Space Shuttle. The photo was made by Joe McNally, National Geographic, for NASA.

  8. CAP: A Computer Code for Generating Tabular Thermodynamic Functions from NASA Lewis Coefficients. Revised

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Gordon, Sanford; McBride, Bonnie J.

    2002-01-01

    For several decades the NASA Glenn Research Center has been providing a file of thermodynamic data for use in several computer programs. These data are in the form of least-squares coefficients that have been calculated from tabular thermodynamic data by means of the NASA Properties and Coefficients (PAC) program. The source thermodynamic data are obtained from the literature or from standard compilations. Most gas-phase thermodynamic functions are calculated by the authors from molecular constant data using ideal gas partition functions. The Coefficients and Properties (CAP) program described in this report permits the generation of tabulated thermodynamic functions from the NASA least-squares coefficients. CAP provides considerable flexibility in the output format, the number of temperatures to be tabulated, and the energy units of the calculated properties. This report provides a detailed description of input preparation, examples of input and output for several species, and a listing of all species in the current NASA Glenn thermodynamic data file.

  9. KENNEDY SPACE CENTER, FLA. - NASA’s Ed Weiler, associate administrator for Space Science, speaks to employees and guests during the rollout at KSC of the Agency initiative One NASA . The event was held at the IMAX Theater®. Explaining how their respective centers contribute to One NASA, along with Weiler, were KSC Director Jim Kennedy; James Jennings, NASA’s associate deputy administrator for institutions and asset management; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - NASA’s Ed Weiler, associate administrator for Space Science, speaks to employees and guests during the rollout at KSC of the Agency initiative One NASA . The event was held at the IMAX Theater®. Explaining how their respective centers contribute to One NASA, along with Weiler, were KSC Director Jim Kennedy; James Jennings, NASA’s associate deputy administrator for institutions and asset management; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

  10. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  11. Summary of Research Report Lewis Incubator for Technology

    NASA Technical Reports Server (NTRS)

    Zeman, Wayne P.

    2000-01-01

    This report summarizes the work done to establish and operate the Lewis Incubator for Technology (LIFT) for the period July 1996 through September 2000. The Lewis Incubator helps the startup and growth of technology-based businesses with the potential to incorporate technology from the NASA Glenn Research Center. During the grant period, LIFT began operation, met or exceeded all key performance measures, and continues its operation through a new cooperative agreement with NASA Glenn and also through continued funding from the State of Ohio.

  12. Sooting Limits Of Microgravity Spherical Diffusion Flames. [conducted in the NASA Glenn 2.2-second drop tower

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Chao, B.-H.; Axelbaum, Richard L.; Salzman, Jack (Technical Monitor)

    2001-01-01

    Limiting conditions for soot-particle inception were studied in microgravity spherical diffusion flames burning ethylene at atmospheric pressure. Nitrogen was supplied in the fuel and/or oxidizer to obtain the broadest range of stoichiometric mixture fraction. Both normal flames (oxygen in ambience) and inverted flames (fuel in ambience) were considered. Microgravity was obtained in the NASA Glenn 2.2-second drop tower. The flames were observed with a color video camera and sooting conditions were defined as conditions for which yellow emission was present throughout the duration of the drop. Sooting limit results were successfully correlated in terms of adiabatic flame temperature and stoichiometric mixture fraction. Soot free conditions were favored by increased stoichiometric mixture fractions. No statistically significant effect of convection direction on sooting limits was observed. The relationship between adiabatic flame temperature and stoichiometric mixture fraction at the sooting limits was found to be in qualitative agreement with a simple theory based on the assumption that soot inception can occur only where temperature and local C/O ratio exceed threshold values (circa 1250 K and 1, respectively).

  13. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  14. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08733 (9 April 1998) --- Looking through the view finder on a camera, U.S. Sen. John H. Glenn Jr. (D.-Ohio) gets a refresher course in photography from a JSC crew trainer (out of frame, right). The STS-95 payload specialist carried a 35mm camera on his historic MA-6 flight over 36 years ago. The photo was taken by Joe McNally, National Geographic, for NASA.

  15. A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2012-01-01

    Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.

  16. The NASA Glen Research Center's Hypersonic Tunnel Facility. Chapter 16

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Willis, Brian P.

    2001-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF) is a blow-down, freejet wind tunnel that provides true enthalpy flight conditions for Mach numbers of 5, 6, and 7. The Hypersonic Tunnel Facility is unique due to its large scale and use of non-vitiated (clean air) flow. A 3MW graphite core storage heater is used to heat the test medium of gaseous nitrogen to the high stagnation temperatures required to produce true enthalpy conditions. Gaseous oxygen is mixed into the heated test flow to generate the true air simulation. The freejet test section is 1.07m (42 in.) in diameter and 4.3m (14 ft) in length. The facility is well suited for the testing of large scale airbreathing propulsion systems. In this chapter, a brief history and detailed description of the facility are presented along with a discussion of the facility's application towards hypersonic airbreathing propulsion testing.

  17. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  18. Cataract Research Testing

    NASA Image and Video Library

    2016-04-18

    Dr. Rafat Ansari and James King testing their dynamic light scattering clinical device in NASA's Vision Research Laboratory at NASA Glenn. The objective is to diagnose eye diseases non-invasively long before the clinical symptoms appear and help find non-surgical medical treatments. The device shown was recently used in humans by ophthalmologists and scientists for the study of early onset of cataracts.

  19. Design of a Glenn Research Center Solar Field Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) designed, developed, and installed, a 37.5 kW DC photovoltaic (PV) Solar Field in the GRC West Area in the 1970s for the purpose of testing PV panels for various space and terrestrial applications. The PV panels are arranged to provide a nominal 120 VDC. The GRC Solar Field has been extremely successful in meeting its mission. The PV panels and the supporting electrical systems are all near their end of life. GRC has designed a 72 kW DC grid-tied PV power system to replace the existing GRC West Area Solar Field. The 72 kW DC grid-tied PV power system will provide DC solar power for GRC PV testing applications, and provide AC facility power for all times that research power is not required. A grid-tied system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility for use by all. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. The report concludes that the GRC West Area grid-tied PV power system design is viable for a reliable

  20. Commercialization of NASA PS304 Solid Lubricant Coating Enhanced by Fundamental Powder Flow Research

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2003-01-01

    The NASA Glenn Research Center has developed a patented high-temperature solid lubricant coating, designated PS304, for reducing friction and wear in bearing systems. The material used to produce the coating is initially a blend of metallic and ceramic powders that are deposited on the bearing surface by the plasma spray process. PS304 was developed to lubricate foil air bearings in Oil-Free turbomachinery, where the moving surfaces are coated with a hydrodynamic air film except at the beginning and end of an operation cycle when the air film is not present. The coating has been successful in several applications including turbochargers, land-based turbines, and industrial drying furnace conveyor components, with current development activities directed at implementation in Oil-Free aeropropulsion engines.

  1. ASTRONAUT GLENN, JOHN H., JR. - INSERTION PRACTICE - MERCURY-ATLAS (MA)-6 - FRIENDSHIP "7" - CAPE

    NASA Image and Video Library

    1962-02-05

    S62-00993 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) mission, practices insertion into the Mercury "Friendship 7" spacecraft during MA-6 preflight training activity at Cape Canaveral, Florida. He is wearing the full pressure suit and helmet. Photo credit: NASA

  2. Oxide Ceramic Films Grown on 60 Nitinol for NASA and Department of Defense Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W.; Lukco, Dorothy; Cytron, Sheldon J.

    2005-01-01

    Both the NASA Glenn Research Center and the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) have worked to develop oxide ceramic films grown on 60 nitinol (60-wt% nickel and 40-wt% titanium) to decrease friction and increase wear resistance under unlubricated conditions. In general, oxide and nonoxide ceramic films have unique capabilities as mechanical-, chemical-, and thermal-barrier materials in diverse applications, including high-temperature bearings and gas bearings requiring low friction, wear resistance, and chemical stability. All oxide ceramic films grown on 60 nitinol were furnished by ARDEC, and materials and surface characterization and tribological experiments were conducted at Glenn.

  3. NASA Videofile of Solar Eclipse from Jefferson City, Missouri

    NASA Image and Video Library

    2017-08-21

    During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. During this event, NASA Glenn Research Center celebrates the eclipse at the capital eclipse event in Jefferson City, MO

  4. Analysis of the Meteorology Associated with the 1998 NASA Glenn Twin Otter Icing Flights

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.

    2000-01-01

    This document contains a basic analysis of the meteorology associated with the NASA Glenn Twin Otter icing encounters between December 1997 and March 1998. The purpose of this analysis is to provide a meteorological context for the aircraft data collected during these flights. For each case, the following data elements are presented: (1) A brief overview of the Twin Otter encounter, including locations, liquid water contents, temperatures and microphysical makeup of the clouds and precipitation aloft, (2) Upper-air charts, providing hand-analyzed locations of lows, troughs, ridges, saturated/unsaturated air, temperatures, warm/cold advection, and jet streams, (3) Balloon-borne soundings, providing vertical profiles of temperature, moisture and winds, (4) Infrared and visible satellite data, providing cloud locations and cloud top temperature, (5) 3-hourly surface charts, providing hand-analyzed locations of lows, highs, fronts, precipitation (including type) and cloud cover, (6) Hourly, regional radar mosaics, providing fine resolution of the locations of precipitation (including intensity and type), pilot reports of icing (including intensity and type), surface observations of precipitation type and Twin Otter tracks for a one hour window centered on the time of the radar data, and (7) Hourly plots of icing pilot reports, providing the icing intensity, icing type, icing altitudes and aircraft type. Outages occurred in nearly every dataset at some point. All relevant data that was available is presented here. All times are in UTC and all heights are in feet above mean sea level (MSL).

  5. High-Data-Rate Quadrax Cable Microwave Characterization at the NASA Glenn Structural Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Theofylaktos, Onoufrios; Warner, Joseph D.; Sheehe, Charles J.

    2012-01-01

    An experiment was performed to determine the degradation in the bit-error-rate (BER) in the high-data-rate cables chosen for the Orion Service Module due to extreme launch conditions of vibrations with a magnitude of 60g. The cable type chosen for the Orion Service Module was no. 8 quadrax cable. The increase in electrical noise induced on these no. 8 quadrax cables was measured at the NASA Glenn vibration facility in the Structural Dynamics Laboratory. The intensity of the vibrations was set at 32g, which was the maximum available level at the facility. The cable lengths used during measurements were 1, 4, and 8 m. The noise measurements were done in an analog fashion using a performance network analyzer (PNA) by recording the standard deviation of the transmission scattering parameter S(sub 21) over the frequency range of 100 to 900 MHz. The standard deviation of S(sub 210 was measured before, during, and after the vibration of the cables at the vibration facility. We observed an increase in noise by a factor of 2 to 6. From these measurements we estimated the increase expected in the BER for a cable length of 25 m and concluded that these findings are large enough that the noise increase due to vibration must be taken in to account for the design of the communication system for a BER of 10(exp -8).

  6. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  7. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL (Technology Readiness Level) level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT - NASA’s Electric Aircraft Testbed) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST - Hybrid-Electric Integrated Systems Testbed) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  8. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  9. NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine

    NASA Technical Reports Server (NTRS)

    Weaver, Harold F.

    2003-01-01

    In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.

  10. Senator John Glenn visit to Johnson Space Center (JSC)

    NASA Image and Video Library

    1995-05-30

    Senator John Glenn visit to Johnson Space Center (JSC). Views of Glenn sitting in cockpit of T-38 in Hangar 276 with John Young, George Abbey, David Leestma and Mark Polansky observing (11150). An engineer explains SPIFEX experiment hardware to Abby, Young and Glenn in Bldg 13 (11151, 11153). Glenn talks with astronaut Terrence T. Henricks and employees in Bldg 9C, Virtual reality lab (11152). Lunch in Bldg 17 Flight Crew support division with Dr. Ellen Baker, Robert "Hoot" Gibson and John Glenn (11154). Linda Godwin, Robert Cabana, Abbey, Young, Baker, Gibson and Glenn at lunch (11155). Astronaut Mark Lee shows Glenn and his aide how to use the virtural reality helmets (11156-7). Glenn shakes the hand of Franklin Chang-Diaz with his plasma rocket in the background in the Sonny Carter Training Facility (SCTF) (11158). Glenn in the Manipulator Development Facility (MDF) Remote Manipulator System (RMS) station mock-up in Bldg 9A with Abbey, Young and aide (11159, 11186). Glenn signs a book for Thomas D. Jones as Frederick Sturckow and Linda Godwin look on (11160). Glenn inside visual-vestibular trainer in Bldg 9B (11161). In conference room meeting with astronaut corps in Bldg 4S, Glenn shakes Robert Cabana's hand (11162). John Glenn and John Young pose for a group shot with Bldg 17 Food lab personnel (11163). Glenn thanks the food lab personnel (11164). Glenn visits Bldg 5 Fixed Base (FB) middeck simulator with astronauts Terrence Henricks and Mary Ellen Weber (11165). Glenn with Charles T. Bourland (11166). STS-70 crew Donald Thomas, Terrence Henricks, Mary Ellen Weber, Nancy Currie and Kevin Kregel with Glenn's advisor (11167). STS-70 crew Thomas, Henricks, Weber, Currie and Kregel with John Glenn (11175). Glenn with Thomas, Kregel, Weber, Henricks and trainer (11176-7). David J. Homan assists Glenn's aide with virtual reality goggles (11168) and Glenn (11174). John Young in Bldg 9C equilibrium trainer (11169). Glenn with Carl Walz in flight deck mock-up of MDF in

  11. ASTRONAUT GLENN, JOHN H., JR. - INSERTION PRACTICE - MERCURY-ATLAS (MA)-6 - FRIENDSHIP "7" - CAPE

    NASA Image and Video Library

    1962-02-05

    S62-00994 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, practices insertion into the Mercury "Friendship 7? spacecraft, with help of a McDonnell Aircraft Corporation technician, during MA-6 preflight training activity at Cape Canaveral, Florida. He is wearing the full pressure suit. Photo credit: NASA

  12. Servant Leadership: How does NASA Serve the Interests of Humankind in Aerospace Exploration and the Role STEM Plays in it?

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2013-01-01

    This presentation provides a description of technology efforts illustrative of NASA Glenn Research Center Core competencies and which exemplifies how NASA serves the interest of humankind in aerospace exploration. Examples are provided as talking points to illustrate the role that career paths in science, technology, engineering and mathematics (STEM) plays in the aforementioned endeavor.

  13. NASA Lunar Dust Filtration and Separations Workshop Report

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Stocker, Dennis P.

    2009-01-01

    NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.

  14. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06939 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) prepares to rehearse launch readiness procedures on the middeck of a crew trainer at the Johnson Space Center (JSC). Sharon Jones, involved in crew training, goes over a check list. When the STS-95 payload specialist lifts off aboard the Space Shuttle Discovery in October of this year and later lands in Florida, he will be seated in a temporary middeck chair like the one used in this training exercise. The photo was taken by Joe McNally, National Geographic, for NASA.

  15. Regenerative Fuel Cell Test Rig at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.

    2003-01-01

    The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.

  16. Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.

  17. Research Symposium I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The proceedings of this symposium consist of abstracts of talks presented by interns at NASA Glenn Research Center (GRC). The interns assisted researchers at GRC in projects which primarily address the following topics: aircraft engines and propulsion, spacecraft propulsion, fuel cells, thin film photovoltaic cells, aerospace materials, computational fluid dynamics, aircraft icing, management, and computerized simulation.

  18. NASA 2012 Small Business Industry Awards (SBIA)

    NASA Image and Video Library

    2013-04-23

    NASA Administrator Charles Bolden, left, NASA Associate Administrator for Small Business Programs Glenn A. Delgado, second from left, and NASA Deputy Administrator Lori Garver, right, pose for a photograph with Patricia Rice, Manager, Supplier Diversity, Small Business Liaison Officer & Supplier Development, Pratt & Whitney Rocketdyne, Inc. and Jim Maser, President of Pratt & Whitney Rocketdyne, Inc. of East Hartford, Connecticut after the company was awarded the Large Business Prime Contractor of the Year at NASA Headquarters, Tuesday, April 23, 2013 in Washington. Photo Credit: (NASA/Bill Ingalls)

  19. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  20. High-school Student Teams in a National NASA Microgravity Science Competition

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hodanbosi, Carol; Stocker, Dennis

    2003-01-01

    The Dropping In a Microgravity Environment or DIME competition for high-school-aged student teams has completed the first year for nationwide eligibility after two regional pilot years. With the expanded geographic participation and increased complexity of experiments, new lessons were learned by the DIME staff. A team participating in DIME will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a NASA microgravity drop tower. A team of NASA scientists and engineers will select the top proposals and then the selected teams will design and build their experiment apparatus. When completed, team representatives will visit NASA Glenn in Cleveland, Ohio to operate their experiment in the 2.2 Second Drop Tower and participate in workshops and center tours. NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA (e.g. NASA Student Involvement Program) and student teams mentored by NASA centers (e.g. For Inspiration and Recognition of Science and Technology Robotics Competition). This participation by NASA in these public forums serves to bring the excitement of aerospace science to students and educators.Researchers from academic institutions, NASA, and industry utilize the 2.2 Second Drop Tower at NASA Glenn Research Center in Cleveland, Ohio for microgravity research. The researcher may be able to complete the suite of experiments in the drop tower but many experiments are precursor experiments for spaceflight experiments. The short turnaround time for an experiment's operations (45 minutes) and ready access to experiment carriers makes the facility amenable for use in a student program. The pilot year for DIME was conducted during the 2000-2001 school year with invitations sent out to Ohio- based schools and organizations. A second pilot year was conducted during the 2001-2002 school year for teams in the six-state region

  1. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  2. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08744 (28 April 1998) --- Four members of the STS-95 crew are briefed on video cameras by crew trainer Donald Carico during a training session in the systems integration facility at the Johnson Space Center (JSC). From the left are U.S. Sen. John H. Glenn Jr. (D.-Ohio), payload specialist; astronaut Scott E. Parazynski, mission specialist; Chiaki Mukai, payload specialist representing Japan's National Space Development Agency (NASDA); Carico and astronaut Pedro Duque, mission specialist representing the European Space Agency (ESA). The photo was taken by Joe McNally, National Geographic, for NASA.

  3. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08731 (9 April 1998) --- Four members of the STS-95 crew participate in a food tasting session at the Johnson Space Center (JSC). From the left are Steven W. Lindsey, pilot; Stephen K. Robinson, mission specialist; with payload specialists Chiaki Mukai of Japan's National Space Development Agency (NASDA) and U.S. Sen. John H. Glenn Jr. They will be joined by three other astronauts when Discovery lifts off in late October of this year for a scheduled nine-day mission. The photo was taken by Joe McNally, National Geographic, for NASA.

  4. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08740 (9 April 1998) --- Five members of the STS-95 crew review supplies that may accompany them on the scheduled October launch of the Space Shuttle Discovery. From the left are Stephen K. Robinson, mission specialist; U.S. Sen. John H. Glenn Jr. (D.-Ohio), payload specialist; Pedro Duque, mission specialist representing the European Space Agency (ESA); Scott E. Parazynski, mission specialist; and Chiaki Mukai, payload specialist representing Japan's National Space Development Agency (NASDA). The photo was taken by Joe McNally, National Geographic, for NASA.

  5. Power System Overview for the Small RPS Centaur Flyby and the Mars Polar Hard Lander NASA COMPASS Studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    2014-01-01

    The NASA Glenn Research Center (GRC) Radioisotope Power System Program Office (RPSPO) sponsored two studies lead by their mission analysis team. The studies were performed by NASA GRCs Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team. Typically a complete toplevel design reference mission (DRM) is performed assessing conceptual spacecraft design, launch mass, trajectory, science strategy and sub-system design such as, power, propulsion, structure and thermal.

  6. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    NASA Image and Video Library

    1962-02-20

    S64-14861 (1962) --- Department of Defense (DOD) recovery personnel and spacecraft technicians from NASA and McDonnell Aircraft Corp., inspect astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean. Photo credit: NASA

  7. NASA Guidelines for Promoting Scientific and Research Integrity

    NASA Technical Reports Server (NTRS)

    Kaminski, Amy P.; Neogi, Natasha A.

    2017-01-01

    This guidebook provides an overarching summary of existing policies, activities, and guiding principles for scientific and research integrity with which NASA's workforce and affiliates must conform. This document addresses NASA's obligations as both a research institution and as a funder of research, NASA's use of federal advisory committees, NASA's public communication of research results, and professional development of NASA's workforce. This guidebook is intended to provide a single resource for NASA researchers, NASA research program administrators and project managers, external entities who do or might receive funding from NASA for research or technical projects, evaluators of NASA research proposals, NASA advisory committee members, NASA communications specialists, and members of the general public so that they can understand NASA's commitment to and expectations for scientific and integrity across the agency.

  8. WORK FUNCTION CHARACTERIZATION OF DIRECTIONALLY SOLIDIFIED LAB6VB2 EUTECTIC (POSTPRINT)

    DTIC Science & Technology

    2017-05-10

    Berkeley National Laboratory Marc Cahay University of Cincinnati Ali Sayir NASA Glenn Research Center 28 April 2017 Interim Report...Derkink, and Chen Gong - LBNL 4) Marc Cahay - University of Cincinnati 5) Ali Sayir - NASA Glenn Research Center 7. PERFORMING...Cincinnati, 2600 Clifton Ave. Cincinnati, Ohio, 45221-003 5) NASA Glenn Research Ctr, 21000 Brookpark Rd. Cleveland

  9. Speaking Personally--With Glenn Nierman

    ERIC Educational Resources Information Center

    Long, Joshua

    2017-01-01

    Dr. Glenn Nierman, current Glenn Korff Chair of Music Education at the University of Nebraska-Lincoln, is the immediate past president of the National Association for Music Education (NAfME) and a member of the board of directors of the International Society of Music Education (ISME). He has authored several journal articles, presented at NAfME…

  10. NASA/OAI Research Associates program

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1994-01-01

    The intent of this activity was the development of a cooperative program between the Ohio Aerospace Institute and the NASA Lewis Research Center with the objective of better preparing recent university graduates for careers in government aerospace research laboratories. The selected individuals were given the title of research associate. To accomplish the aims of this effort: (1) the research associates were introduced to the NASA Lewis Research Center and its mission/programs, (2) the research associates directly participated in NASA research and development programs, and (3) the research associates were given continuing educational opportunities in specialized areas. A number of individuals participated in this project during the discourse of this cooperative agreement. Attached are the research summaries of eight of the research associates. These reports give a very good picture of the research activities that were conducted by the associates.

  11. John H Glenn Jr.

    NASA Image and Video Library

    1962-02-20

    Project Mercury astronaut John H. Glenn Jr., enters the Friendship 7 spacecraft during the last part of the countdown on Feb. 20, 1962. At 9:47 a.m. EST, the Atlas launch vehicle lifted the spacecraft into orbit for a three-orbit mission lasting four hours, 55 minutes and 23 seconds. Glenn and his spacecraft were recovered by the destroyer Noa just 21 minutes after landing in the Atlantic near Grand Turk Island, to successfully complete the nation's first manned orbital flight.

  12. NASA's Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Evans, Cody; Mogford, Richard; Wing, David; Stallmann, Summer L.

    2017-01-01

    NASA's working with airlines and industry partners to introduce innovative concepts and new technology. This presentation will describe some of the research efforts at NASA Ames and NASA Langley and discuss future projects and research in aviation.

  13. Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Soulas, George; Smith, Timothy; Mikellides, Ioannis; Hofer, Richard

    2013-01-01

    NASA's Space Technology Mission Directorate is sponsoring the development of a high fidelity 15 kW-class long-life high performance Hall thruster for candidate NASA technology demonstration missions. An essential element of the development process is demonstration that incorporation of magnetic shielding on a 20 kW-class Hall thruster will yield significant improvements in the throughput capability of the thruster without any significant reduction in thruster performance. As such, NASA Glenn Research Center and the Jet Propulsion Laboratory collaborated on modifying the NASA-300M 20 kW Hall thruster to improve its propellant throughput capability. JPL and NASA Glenn researchers performed plasma numerical simulations with JPL's Hall2De and a commercially available magnetic modeling code that indicated significant enhancement in the throughput capability of the NASA-300M can be attained by modifying the thruster's magnetic circuit. This led to modifying the NASA-300M magnetic topology to a magnetically shielded topology. This paper presents performance evaluation results of the two NASA-300M magnetically shielded thruster configurations, designated 300MS and 300MS-2. The 300MS and 300MS-2 were operated at power levels between 2.5 and 20 kW at discharge voltages between 200 and 700 V. Discharge channel deposition from back-sputtered facility wall flux, and plasma potential and electron temperature measurements made on the inner and outer discharge channel surfaces confirmed that magnetic shielding was achieved. Peak total thrust efficiency of 64% and total specific impulse of 3,050 sec were demonstrated with the 300MS-2 at 20 kW. Thermal characterization results indicate that the boron nitride discharge chamber walls temperatures are approximately 100 C lower for the 300MS when compared to the NASA- 300M at the same thruster operating discharge power.

  14. Satellite Communications for Aeronautical Applications: Recent research and Development Results

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2001-01-01

    Communications systems have always been a critical element in aviation. Until recently, nearly all communications between the ground and aircraft have been based on analog voice technology. But the future of global aviation requires a more sophisticated "information infrastructure" which not only provides more and better communications, but integrates the key information functions (communications, navigation, and surveillance) into a modern, network-based infrastructure. Satellite communications will play an increasing role in providing information infrastructure solutions for aviation. Developing and adapting satellite communications technologies for aviation use is now receiving increased attention as the urgency to develop information infrastructure solutions grows. The NASA Glenn Research Center is actively involved in research and development activities for aeronautical satellite communications, with a key emphasis on air traffic management communications needs. This paper describes the recent results and status of NASA Glenn's research program.

  15. John Glenn Biomedical Engineering Consortium

    NASA Technical Reports Server (NTRS)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  16. Overview of NASA Iodine Hall Thruster Propulsion System Development

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  17. View of clouds over Indian Ocean taken by Astronaut John Glenn during MA-6

    NASA Image and Video Library

    1962-02-20

    S62-06021 (20 Feb. 1962) --- A view of clouds over the Indian Ocean as photographed by astronaut John H. Glenn Jr. aboard the "Friendship 7" spacecraft during his Mercury Atlas 6 (MA-6) spaceflight on Feb. 20, 1962. The cloud panorama illustrates the visibility of different cloud types and weather patterns. Shadows produced by the rising sun aid in the determination of relative cloud heights. Photo credit: NASA

  18. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08736 (9 April 1998) --- The STS-95 crew members sample space food as part of their training agenda for the scheduled late October/early November mission aboard the Space Shuttle Discovery. From the left are Pedro Duque, mission specialist representing the European Space Agency (ESA); Scott E. Parazynski, mission specialist; Steven W. Lindsey, pilot; Stephen K. Robinson, mission specialist; Chiaki Mukai, payload specialist representing Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., commander. The photo was taken by Joe McNally, National Geographic, for NASA.

  19. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08745 (May 1998) --- Four members of the STS-95 crew are briefed on flight hardware during a training session in the shuttle crew compartment trainer (CCT) at the Johnson Space Center (JSC). Donald C. Carico, an instructor, holds a loc-line bracket. Crewmembers, from the left, are Scott E. Parazynski and Pedro Duque, both mission specialists; Chiaki Mukai and U.S. Sen. John H. Glenn Jr., both payload specialists. Duque represents the European Space Agency (ESA) and Mukai, Japan's National Space Development Agency (NASDA). The photo was taken by Joe McNally, National Geographic, for NASA.

  20. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08729 (9 April 1998) --- Four members of the STS-95 crew participate in a food tasting session at the Johnson Space Center (JSC). From the left are Stephen K. Robinson, mission specialist; payload specialist Chiaki Mukai of Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., mission commander. They will be joined by three other astronauts when Discovery lifts off in late October of this year for a scheduled nine-day mission. The photo was taken by Joe McNally, National Geographic, for NASA.

  1. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08730 (9 April 1998) --- Four members of the STS-95 crew participate in a food tasting session at the Johnson Space Center (JSC). From the left are Stephen K. Robinson, mission specialist; payload specialist Chiaki Mukai of Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., mission commander. They will be joined by three other astronauts when Discovery lifts off in late October of this year for a scheduled nine-day mission. The photo was taken by Joe McNally, National Geographic, for NASA.

  2. Advanced aerodynamics. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This Conference Publication contains selected NASA papers that were presented at the Fifth Annual Status Review of the NASA Aircraft Energy Efficiency (ACEE) Energy Efficient Transport (EET) Program held at Dryden Flight Research Center in Edwards, California on September 14 to 15, 1981. These papers describe the status of several NASA in-house research activities in the areas of advanced turboprops, natural laminar flow, oscillating control surfaces, high-Reynolds-number airfoil tests, high-lift technology, and theoretical design techniques.

  3. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  4. 14. Historic elevation drawing of Building 206A, September 8, 1982. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Historic elevation drawing of Building 206A, September 8, 1982. NASA GRC drawing number CF-100863. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  5. NASA Research Announcement

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    2002-01-01

    This paper presents viewgraphs of NASA's strategic and fundamental research program at the Office of Biological and Physical Research (OBPR). The topics include: 1) Colloid-Polymer Samples; 2) Pool Boiling Experiment; 3) The Dynamics of Miscible Interfaces: A Space Flight Experiment (MIDAS); and 4) ISS and Ground-based Facilities.

  6. Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Setlock, John A.; Farmer, Serene C.; Eckel, Andy J.

    2009-01-01

    The NASA Glenn Research Center is developing both a novel cell design (BSC) and a novel ceramic fabrication technique to produce fuel cells predicted to exceed a specific power density of 1.0 kW/kg. The NASA Glenn cell design has taken a completely different approach among planar designs by removing the metal interconnect and returning to the use of a thin, doped LaCrO3 interconnect. The cell is structurally symmetrical. Both electrodes support the thin electrolyte and contain micro-channels for gas flow-- a geometry referred to as a bi-electrode supported cell or BSC. The cell characteristics have been demonstrated under both SOFC and SOE conditions. Electrolysis tests verify that this cell design operates at very high electrochemical voltage efficiencies (EVE) and high H2O conversion percentages, even at the low flow rates predicted for closed loop systems encountered in unmanned aerial vehicle (UAV) applications. For UAVs the volume, weight and the efficiency are critical as they determine the size of the water tank, the solar panel size, and other system requirements. For UAVs, regenerative solid oxide fuel cell stacks (RSOFC) use solar panels during daylight to generate power for electrolysis and then operate in fuel cell mode during the night to power the UAV and electronics. Recent studies, performed by NASA for a more electric commercial aircraft, evaluated SOFCs for auxiliary power units (APUs). System studies were also conducted for regenerative RSOFC systems. One common requirement for aerospace SOFCs and RSOFCs, determined independently in each application study, was the need for high specific power density and volume density, on the order of 1.0 kW/kg and greater than 1.0 kW/L. Until recently the best reported performance for SOFCs was 0.2 kW/kg or less for stacks. NASA Glenn is working to prototype the light weight, low volume BSC design for such high specific power aerospace applications.

  7. Research on Liquid Lubricants for Space Mechanisms

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Shogrin, Bradley A.; Jansen, Mark J.

    1999-01-01

    Four research areas at the NASA Glenn Research Center involving the tribology of space mechanisms are highlighted. These areas include: soluble boundary lubrication additives for perfluoropolyether liquid lubricants, a Pennzane dewetting phenomenon, the effect of ODC-free bearing cleaning processes on bearing lifetimes and the development of a new class of liquid lubricants based on silahydrocarbons.

  8. NASA Ames Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Tu, Eugene; Yan, Jerry Chi Yiu

    2017-01-01

    This overview of NASA Ames Research Center is intended to give the target audience of university students a general understanding of the mission, core competencies, and research goals of NASA and Ames.

  9. Research and Development at NASA

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Vision for Space Exploration marks the next segment of NASA's continuing journey to find answers to compelling questions about the origins of the solar system, the existence of life beyond Earth, and the ability of humankind to live on other worlds. The success of the Vision relies upon the ongoing research and development activities conducted at each of NASA's 10 field centers. In an effort to promote synergy across NASA as it works to meet its long-term goals, the Agency restructured its Strategic Enterprises into four Mission Directorates that align with the Vision. Consisting of Exploration Systems, Space Operations, Science, and Aeronautics Research, these directorates provide NASA Headquarters and the field centers with a streamlined approach to continue exploration both in space and on Earth.

  10. NASA's aeronautics research and technology base

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's research technology base in aeronautics is assessed in terms of: (1) US aeronautical technology needs and requirements in the future; (2) objectives of the aeronautics program; (3) magnitude and scope of the program; and (4) research and technology performed by NASA and other research organizations.

  11. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

  12. NASA Glenn Research Center Battery Activities Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2009-01-01

    This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon and GRC's involvement in their development. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  13. 21. Historic section drawing of Building 100. June 29, 1955. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Historic section drawing of Building 100. June 29, 1955. NASA GRC drawing number CE-101444. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  14. NASA Cribs: Human Exploration Research Analog

    NASA Image and Video Library

    2017-07-20

    Follow along as interns at NASA’s Johnson Space Center show you around the Human Exploration Research Analog (HERA), a mission simulation environment located onsite at the Johnson Space Center in Houston. HERA is a unique three-story habitat designed to serve as an analog for isolation, confinement, and remote conditions in exploration scenarios. This video gives a tour of where crew members live, work, sleep, and eat during the analog missions. Find out more about HERA mission activities: https://www.nasa.gov/analogs/hera Find out how to be a HERA crew member: https://www.nasa.gov/analogs/hera/want-to-participate For more on NASA internships: https://intern.nasa.gov/ For Johnson Space Center specific internships: https://pathways.jsc.nasa.gov/ https://www.nasa.gov/centers/johnson/education/interns/index.html HD download link: https://archive.org/details/jsc2017m000730_NASA-Cribs-Human-Exploration-Research-Analog --------------------------------- FOLLOW JOHNSON SPACE CENTER INTERNS! Facebook: @NASA.JSC.Students https://www.facebook.com/NASA.JSC.Students/ Instagram: @nasajscstudents https://www.instagram.com/nasajscstudents/ Twitter: @NASAJSCStudents https://twitter.com/nasajscstudents

  15. 18. Historic plan of Building 100 control room. March 21, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Historic plan of Building 100 control room. March 21, 1956. NASA GRC drawing number CE-101736. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  16. 12. Historic plot plan and drawings index for rocket engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic plot plan and drawings index for rocket engine test facility, June 28, 1956. NASA GRC drawing number CE-101810. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  17. 8. Historic plan, section, and detail drawing of observation blockhouse. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic plan, section, and detail drawing of observation blockhouse. NASA GRC drawing no. CE-101540, June29, 1955 (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, Observation Blockhouse, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  18. 60. Historic plan of Building 202 exhaust scrubber, June 18, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Historic plan of Building 202 exhaust scrubber, June 18, 1955. NASA GRC drawing no. CD-101261. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  19. Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

  20. NASA Participated in the Japan 2001 Science, Creativity and the Young Mind Workshop

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.; Petersen, Ruth A.

    2002-01-01

    During the week of July 23, 2001, a workshop called the Japan 2001 Science, Creativity and the Young Mind took place at Bristol University in Bristol, England. Coordinated by the Clifton Scientific Trust, it brought together 60 British and Japanese students and provided them with a forum for learning and interacting. All the students were chosen from geographical areas of social deprivation, where university education is not seen as a natural progression for students. One of the aims of the workshop was to give the combined group a new view of themselves as potential scientists and an ambition to succeed at the highest level. Members of the Glenn Research Center's Learning Technologies Project participated with six of the students and their team leaders as a Space Science Team. Four interactive videoconferencing sessions were held between the NASA Glenn Research Center and Bristol University on four consecutive days. During the sessions, students raised questions concerning various theories about the probable formation of volcanoes on Mars. Of specific interest was if the great Tharsis volcanoes might be the result of an ancient collision of planetary proportions, or if plate tectonic movement, evidence for which was recently discovered by NASA's Mars Global Surveyor Spacecraft, might account for them.

  1. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  2. NASA & USDA teams to plant seeds Today on This Week @NASA – October 9, 2015

    NASA Image and Video Library

    2015-10-09

    On Monday, October 5th, NASA Deputy Administrator Dava Newman and U.S. Department of Agriculture (USDA) Deputy Secretary Krysta Harden planted “Outredgeous” Red Romaine Lettuce seeds in USDA’s People’s Garden, sister seeds of those grown and harvested on the International Space Station. During the event in Washington, D.C., they also signed an a new interagency agreement expanding USDA and NASA's commitment to promoting careers in science, technology, engineering, agriculture and math to young people. Also, CubeSats launched to test new technology, New Orion crew egress test, NASA living of Land in Space? NASA lends a helping hand for Start Ups, Meet the New Inductees to the Glenn Hall of Fame, and it’s National Cybersecurity Awareness Month, so Stop, Think & Connect.

  3. Overview of NASA Glenn Research Center's Communications and Intelligent Systems Division

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    The Communications and Intelligent Systems Division provides expertise, plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for application in current and future aeronautics and space systems.

  4. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles

  5. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  6. Research in NASA history: A guide to the NASA history program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes the research opportunities and accomplishments of NASA's agency wide history program. It also offers a concise guide to the historical documentary resources available at NASA Headquarters in Washington D.C., at NASA facilities located around the country, and through the federal records system. In addition, this report contains expanded contributions by Lee D. Saegessor and other members of the NASA Headquarters History Division and by those responsible for historical documents and records at some NASA centers.

  7. 8. Historic plan, section, elevation, and detail drawing of Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic plan, section, elevation, and detail drawing of Building 206, August 26, 1968. NASA GRC drawing number CE-101188 (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 206, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  8. 20. Historic south and west elevation drawing of Building 100. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Historic south and west elevation drawing of Building 100. June 29, 1955. NASA GRC drawing number CE-101443. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  9. 62. Historic propellant piping diagram of oxidant pit at Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Historic propellant piping diagram of oxidant pit at Building 202, January 6, 1956. NASA GRC drawing no. CF-101644. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  10. 19. Historic north and east elevation drawing of Building 100. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Historic north and east elevation drawing of Building 100. June 29, 1955. NASA GRC drawing number CE-101442. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  11. 61. Historic elevation and section drawing of Building 202 exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. Historic elevation and section drawing of Building 202 exhaust scrubber, July 18, 1955. NASA GRC drawing no. CD-101263. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  12. 59. Historic elevation and detail drawing of Building 202 test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Historic elevation and detail drawing of Building 202 test cell, June 29, 1955. NASA GRC drawing no. CE-101341 (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  13. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27- by 23- by 20-ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3-D traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4 in.-microphones spaced 3 in. apart (36 in. span). An updated data acquisition system was also incorporated into the facility.

  14. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27 by 23 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3 dimensional traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4"-microphones spaced 3" apart (36" span). An updated data acquisition system was also incorporated into the facility.

  15. More Intelligent Gas Turbine Engines (Des turbomoteurs plus intelligents)

    DTIC Science & Technology

    2009-04-01

    Group 128. by Dennis Culley, NASA Glenn Research Center Sanjay Garg, NASA Glenn Research Center S.-J. Hiller, MTU Aero Engines GmbH Wolfgang Horn...in Swirled Gas Turbine Combustors”, AIAA-2005-116. [2.90] Seume, J.R., Vortmeyer, N., Krause , W., Hermann, J., Hantschk, C.-C., Zangl, P., Gleis, S...TR-AVT-128 8 - 1 Chapter 8 – SUMMARY AND RECOMMENDATIONS by Sanjay Garg (NASA Glenn Research Center), Wolfgang Horn and S.-J. Hiller (MTU

  16. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  17. Incident Involving 30-Ah Li-ion Cell at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bennett, William

    2006-01-01

    The key lesson learned from the February 17, 2006 cell explosion incident is that PC-based test-systems, even those having built-in watchdog monitors, can lose control and malfunction. In the case of lithiumion cell/battery testing, the stored energy can be released explosively causing considerable injury and damage to facilities. The investigation showed that although the Arbin system has a built-in watchdog monitor, the circumstances of the incident defeated the action of the watchdog and allowed the cycler to continue operation without control. An upgrade to the most recent version of Arbin software (version 4) was provided as a fix to the presumed control problem. This upgrade included newer EPROM s for the cycler microprocessor. Investigation revealed that similar incidents have occurred at other NASA centers with a variety of PC-based test instruments. JPL suffered an incident with Maccor testers and the GRC fuel cell group observed similar problems with LabView software. This is not exclusively an Arbin problem, but an issue with all PC-based systems. In this incident, it was fortunate that the event occurred after-hours with no-one in the room. The facility arrangement placed control consoles adjacent to the test chamber doors. Had someone been in the room during the event, they would have been exposed to hot debris and toxic combustion products. It was also fortunate that the exploded cell stayed inside the chamber after the door was forced open. If the cell had been ejected into the room it could have caused serious facility damage by impact and possibly caused a fire in the facility.

  18. Microgravity Combustion Research: 1999 Program and Results

    NASA Technical Reports Server (NTRS)

    Friedman, Robert (Editor); Gokoglu, Suleyman A. (Editor); Urban, David L. (Editor)

    1999-01-01

    The use of the microgravity environment of space to expand scientific knowledge and to enable the commercial development of space for enhancing the quality of life on Earth is particularly suitable to the field of combustion. This document reviews the current status of microgravity combustion research and derived information. It is the fourth in a series of timely surveys, all published as NASA Technical Memoranda, and it covers largely the period from 1995 to early 1999. The scope of the review covers three program areas: fundamental studies, applications to fire safety and other fields. and general measurements and diagnostics. The document also describes the opportunities for Principal Investigator participation through the NASA Research Announcement program and the NASA Glenn Research Center low-gravity facilities available to researchers.

  19. NASA Successfully Conducts Wallops Rocket Launch with Technology Experiments

    NASA Image and Video Library

    2015-07-07

    NASA successfully launched a NASA Black Brant IX suborbital sounding rocket carrying two space technology demonstration projects at 6:15 a.m. today. The rocket carried the SOAREX-8 Exo-Brake Flight Test from NASA’s Ames Research Center in California and the Radial Core Heat Spreader from NASA’s Glenn Research Center in Ohio. Preliminary analysis shows that data was received on both projects. The payload flew to an altitude of 206 miles and impacted in the Atlantic Ocean approximately 10 minutes after launch. The payload will not be recovered. The flight was conducted through NASA’s Space Technology Mission Directorate. The next launch from NASA’s Wallops Flight Facility is a Terrier-Improved Malemute suborbital sounding rocket early in the morning on August 11 carrying the RockSat-X university student payload. For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Fundamental research in artificial intelligence at NASA

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.