Sample records for nasa langley transonic

  1. Subsonic Transonic Applied Refinements By Using Key Strategies - STARBUKS In the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2014-01-01

    Several upgrade projects have been completed at the NASA Langley Research Center National Transonic Facility over the last 1.5 years in an effort defined as STARBUKS - Subsonic Transonic Applied Refinements By Using Key Strategies. This multi-year effort was undertaken to improve NTF's overall capabilities by addressing Accuracy and Validation, Productivity, and Reliability areas at the NTF. This presentation will give a brief synopsis of each of these efforts.

  2. Recent Developments at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2011-01-01

    Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.

  3. Computations for the 16-foot transonic tunnel, NASA, Langley Research Center, revision 1

    NASA Technical Reports Server (NTRS)

    Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.; Sherman, C. D.

    1987-01-01

    The equations used by the 16 foot transonic tunnel in the data reduction programs are presented in eight modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: tunnel parameters; jet exhaust measurements; skin friction drag; balance loads and model attitudes calculations; internal drag (or exit-flow distributions); pressure coefficients and integrated forces; thrust removal options; and turboprop options. This document is a companion document to NASA TM-83186, A User's Guide to the Langley 16 Foot Transonic Tunnel, August 1981.

  4. Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Corliss, James M.; Cole, Stanley, R.

    1998-01-01

    The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.

  5. Vapor-screen flow-visualization experiments in the NASA Langley 0.3-m transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Selby, G. V.

    1986-01-01

    The vortical flow on the leeward side of a delta-wing model has been visualized at several different tunnel conditions in the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel using a vapor-screen flow-visualization technique. Vapor-screen photographs of the subject flow field are presented and interpreted relative to phenomenological implications. Results indicate that the use of nitrogen fog in conjunction with the vapor-screen technique is feasibile.

  6. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  7. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.

    2013-01-01

    NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

  8. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  9. Model Deformation Measurements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1998-01-01

    Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.

  10. Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Bennett, Robert M.

    2007-01-01

    Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.

  11. Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2001-01-01

    Tests conducted in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT) assess the aerodynamic characteristics of a splitter plate used to test some semispan models in this facility. Aerodynamic data are analyzed to determine the effect of the splitter plate on the operating characteristics of the TDT, as well as to define the range of conditions over which the plate can be reasonably used to obtain aerodynamic data. Static pressures measurements on the splitter plate surface and the equipment fairing between the wind tunnel wall and the splitter plate are evaluated to determine the flow quality around the apparatus over a range of operating conditions. Boundary layer rake data acquired near the plate surface define the viscous characteristics of the flow over the plate. Data were acquired over a range of subsonic, transonic and supersonic conditions at dynamic pressures typical for models tested on this apparatus. Data from this investigation should be used as a guide for the design of TDT models and tests using the splitter plate, as well as to guide future splitter plate design for this facility.

  12. Activities in Aeroelasticity at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Noll, Thomas E.

    1997-01-01

    This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.

  13. The NASA Langley 8-foot Transonic Pressure Tunnel calibration

    NASA Technical Reports Server (NTRS)

    Brooks, Cuyler W., Jr.; Harris, Charles D.; Reagon, Patricia G.

    1994-01-01

    The NASA Langley 8-Foot Transonic Pressure Tunnel is a continuous-flow, variable-pressure wind tunnel with control capability to independently vary Mach number, stagnation pressure, stagnation temperature, and humidity. The top and bottom walls of the test section are axially slotted to permit continuous variation of the test section Mach number from 0.2 to 1.2, the slot-width contour provides a gradient-free test section 50 in. long for Mach numbers equal to or greater than 1.0 and 100 in. long for Mach numbers less than 1.0. The stagnation pressure may be varied from 0.25 to 2.0 atm. The tunnel test section has been recalibrated to determine the relationship between the free-stream Mach number and the test chamber reference Mach number. The hardware was the same as that of an earlier calibration in 1972 but the pressure measurement instrumentation available for the recalibration was about an order of magnitude more precise. The principal result of the recalibration was a slightly different schedule of reentry flap settings for Mach numbers from 0.80 to 1.05 than that determined during the 1972 calibration. Detailed tunnel contraction geometry, test section geometry, and limited test section wall boundary layer data are presented.

  14. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  15. Measurements of Flow Turbulence in the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Wiesman, Carol D.; Sleeper, Robert K.

    2005-01-01

    An assessment of the flow turbulence in the NASA Langley Transonic Dynamics Tunnel (TDT) was conducted during calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to an R134a heavy-gas test medium. Total pressure, static pressure, and acoustic pressure levels were measured at several locations on a stingmounted rake. The test measured wall static pressures at several locations although this paper presents only those from one location. The test used two data acquisition systems, one sampling at 1000 Hz and the second sampling at 125 000 Hz, for acquiring time-domain data. This paper presents standard deviations and power spectral densities of the turbulence points throughout the wind tunnel envelope in air and R134a. The objective of this paper is to present the turbulence characteristics for the test section. No attempt is made to assess the causes of the turbulence. The present paper looks at turbulence in terms of pressure fluctuations. Reference 1 looked at tunnel turbulence in terms of velocity fluctuations.

  16. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.

  17. Langley 16- Ft. Transonic Tunnel Pressure Sensitive Paint System

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Leighty, Bradley D.; Carmine, Michael T.; Sealey, Bradley S.; Burkett, Cecil G.

    2001-01-01

    This report describes the NASA Langley 16-Ft. Transonic Tunnel Pressure Sensitive Paint (PSP) System and presents results of a test conducted June 22-23, 2000 in the tunnel to validate the PSP system. The PSP system provides global surface pressure measurements on wind tunnel models. The system was developed and installed by PSP Team personnel of the Instrumentation Systems Development Branch and the Advanced Measurement and Diagnostics Branch. A discussion of the results of the validation test follows a description of the system and a description of the test.

  18. Aerodynamic performance and pressure distributions for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, Renaldo V.; Hill, Acquilla S.; Ray, Edward J.

    1988-01-01

    This report presents in graphic and tabular forms the aerodynamic coefficient and surface pressure distribution data for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The test was another in a series of tests involved in the joint NASA/U.S. Industry Advanced Technology Airfoil Tests program. This 14% thick supercritical airfoil was tested at Mach numbers from 0.6 to 0.76 and angles of attack from -2.0 to 6.0 degrees. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, 40 million, and 45 million.

  19. Possible safety hazards associated with the operation of the 0.3-m transonic cryogenic tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1982-01-01

    The 0.3 m Transonic Cryogenic Tunnel (TCT) at the NASA Langley Research Center was built in 1973 as a facility intended to be used for no more than 60 hours in order to verify the validity of the cryogenic wind tunnel concept at transonic speeds. The role of the 0.3 m TCT has gradually changed until now, after over 3000 hours of operation, it is classified as a major NASA research facility and, under the administration of the Experimental Techniques Branch, it is used extensively for the testing of airfoils at high Reynolds numbers and for the development of various technologies related to the efficient operation and use of cryogenic wind tunnels. The purpose of this report is to document the results of a recent safety analysis of the 0.3 m TCT facility. This analysis was made as part of an on going program with the Experimental Techniques Branch designed to ensure that the existing equipment and current operating procedures of the 0.3 m TCT facility are acceptable in terms of today's standards of safety for cryogenic systems.

  20. Wind tunnel wall interference investigations in NAE/NRC High Reynolds Number 2D Facility and NASA Langley 0.3m Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Chan, Y. Y.; Nishimura, Y.; Mineck, R. E.

    1989-01-01

    Results are reported from a NAE/NRC and NASA cooperative program on two-dimensional wind-tunnel wall-interference research, aimed at developing the technology for correcting or eliminating wall interference effects in two-dimensional transonic wind-tunnel investigations. Both NASA Langley and NAE facilities are described, along with a NASA-designed and fabricated airfoil model. It is shown that data from the NAE facility, corrected for wall interference, agree with those obtained from the NASA tunnel, which has adaptive walls; the comparison of surface pressure data shows that the flowfield conditions in which the model is investigated appear to be nearly identical under most conditions. It is concluded that both approaches, posttest correction and an adaptive wall, adequately eliminate the tunnel-wall interference effects.

  1. A New High Channel-Count, High Scan-Rate, Data Acquisition System for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.

    2016-01-01

    A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.

  2. High Reynolds Number tests of the NASA SC(2)-0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Lawing, Pierce L.

    1987-01-01

    A wind-tunnel investigation of the NASA SC(2)-0012 airfoil has been conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel. This investigation supplements the two-dimensional airfoil studies of the Advanced Technology Airfoil Test Program. The Mach number was varied from 0.60 to 0.84. The stagnation temperature and pressure were varied to provide a Reynolds number range from 6 to 40 x 10 to the 6th power based on a 6.0-in. (15.24-cm) airfoil chord. No corrections for wind-tunnel wall interference have been made to the data. The aerodynamic results are presented as integrated force and moment coefficients and pressure distributions without any analysis.

  3. Development of Background-Oriented Schlieren for NASA Langley Research Center Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Borg, Stephen; Jones, Stephen; Overmeyer, Austin; Walker, Eric; Goad, William; Clem, Michelle; Schairer, Edward T.; Mizukaki, Toshiharu

    2015-01-01

    This paper provides an overview of recent wind tunnel tests performed at the NASA Langley Research Center where the Background-Oriented Schlieren (BOS) technique was used to provide information pertaining to flow-field density disturbances. The facilities in which the BOS technique was applied included the National Transonic Facility (NTF), Transonic Dynamics Tunnel (TDT), 31-Inch Mach 10 Air Tunnel, 15-Inch Mach 6 High-Temperature Air Tunnel, Rotor Test Cell at the 14 by 22 Subsonic Tunnel, and a 13-Inch Low-Speed Tunnel.

  4. Flight Reynolds Number Testing of the Orion Launch Abort Vehicle in the NASA Langley National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Brauckmann, Gregory J.

    2011-01-01

    A 6%-scale unpowered model of the Orion Launch Abort Vehicle (LAV) ALAS-11-rev3c configuration was tested in the NASA Langley National Transonic Facility to obtain static aerodynamic data at flight Reynolds numbers. Subsonic and transonic data were obtained for Mach numbers between 0.3 and 0.95 for angles of attack from -4 to +22 degrees and angles of sideslip from -10 to +10 degrees. Data were also obtained at various intermediate Reynolds numbers between 2.5 million and 45 million depending on Mach number in order to examine the effects of Reynolds number on the vehicle. Force and moment data were obtained using a 6-component strain gauge balance that operated both at warm temperatures (+120 . F) and cryogenic temperatures (-250 . F). Surface pressure data were obtained with electronically scanned pressure units housed in heated enclosures designed to survive cryogenic temperatures. Data obtained during the 3-week test entry were used to support development of the LAV aerodynamic database and to support computational fluid dynamics code validation. Furthermore, one of the outcomes of the test was the reduction of database uncertainty on axial force coefficient for the static unpowered LAV. This was accomplished as a result of good data repeatability throughout the test and because of decreased uncertainty on scaling wind tunnel data to flight.

  5. The NASA Langley 16-Foot Transonic Tunnel: Historical Overview, Facility Description, Calibration, Flow Characteristics, and Test Capabilities

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bangert, Linda S.; Asbury, Scott C.; Mills, Charles T. L.; Bare, E. Ann

    1995-01-01

    The Langley 16-Foot Transonic Tunnel is a closed-circuit single-return atmospheric wind tunnel that has a slotted octagonal test section with continuous air exchange. The wind tunnel speed can be varied continuously over a Mach number range from 0.1 to 1.3. Test-section plenum suction is used for speeds above a Mach number of 1.05. Over a period of some 40 years, the wind tunnel has undergone many modifications. During the modifications completed in 1990, a new model support system that increased blockage, new fan blades, a catcher screen for the first set of turning vanes, and process controllers for tunnel speed, model attitude, and jet flow for powered models were installed. This report presents a complete description of the Langley 16-Foot Transonic Tunnel and auxiliary equipment, the calibration procedures, and the results of the 1977 and the 1990 wind tunnel calibration with test section air removal. Comparisons with previous calibrations showed that the modifications made to the wind tunnel had little or no effect on the aerodynamic characteristics of the tunnel. Information required for planning experimental investigations and the use of test hardware and model support systems is also provided.

  6. Contributions of the NASA Langley Transonic Dynamics Tunnel to Launch Vehicle and Spacecraft Development

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Keller, Donald F.; Piatak, David J.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided wind-tunnel experimental validation and research data for numerous launch vehicles and spacecraft throughout its forty year history. Most of these tests have dealt with some aspect of aeroelastic or unsteady-response testing, which is the primary purpose of the TDT facility. However, some space-related test programs that have not involved aeroelasticity have used the TDT to take advantage of specific characteristics of the wind-tunnel facility. In general. the heavy gas test medium, variable pressure, relatively high Reynolds number and large size of the TDT test section have made it the preferred facility for these tests. The space-related tests conducted in the TDT have been divided into five categories. These categories are ground wind loads, launch vehicle dynamics, atmospheric flight of space vehicles, atmospheric reentry. and planetary-probe testing. All known TDT tests of launch vehicles and spacecraft are discussed in this report. An attempt has been made to succinctly summarize each wind-tunnel test, or in the case of multiple. related tests, each wind-tunnel program. Most summaries include model program discussion, description of the physical wind-tunnel model, and some typical or significant test results. When available, references are presented to assist the reader in further pursuing information on the tests.

  7. Status of the KTH-NASA Wind-Tunnel Test for Acquisition of Transonic Nonlinear Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Ringertz, Ulf; Stenfelt, Gloria; Eller, David; Keller, Donald F.; Chwalowski, Pawel

    2016-01-01

    This paper presents a status report on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the design, fabrication, modeling, and testing of a full-span lighter configuration in the Transonic Dynamics Tunnel (TDT). The goal of the test is to acquire transonic limit-cycle- oscillation (LCO) data, including accelerations, strains, and unsteady pressures. Finite element models (FEMs) and aerodynamic models are presented and discussed along with results obtained to date.

  8. The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.

    1997-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.

  9. Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

    1987-01-01

    The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral equations and finite difference methods for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite difference solution of the transonic small perturbation equation, the integral equation program is given primary emphasis here because it is less well known.

  10. Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

    1987-01-01

    The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known.

  11. Modifications to the Langley 8-foot transonic pressure tunnel for the laminar flow control experiment

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.

    1988-01-01

    Modifications to the NASA Langley 8 Foot Transonic Pressure Tunnel in support of the Lamina Flow Control (LFC) Experiment included the installation of a honeymoon and five screens in the settling chamber upstream of the test section 41-long test section liner that extended from the upstream end of the test section contraction region, through the best section, and into the diffuser. The honeycomb and screens were installed as permanent additions to the facility, and the liner was a temporary addition to be removed at the conclusion of the LFC Experiment. These modifications are briefly described.

  12. NASA Langley Highlights, 1998

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. A color electronic version of this report is available at URL http://larcpubs.larc.nasa.gov/randt/1998/.

  13. High Reynolds number tests of a NASA SC(3)-0712(B) airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.

    1985-01-01

    A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.60 to 0.80. These variables provided a Reynolds number range from 4,400,000 to 40,000,000 based on a 15.24-cm (6.0-in.) airfoil chord. This investigation was designed to test a NASA advanced-technology airfoil from low to flight-equivalent Reynolds numbers, provide experience in cryogenic wind tunnel model design and testing techniques, and demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. The aerodynamic results are presented as integrated force and moment coefficients and pressure distributions. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  14. Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1980-01-01

    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds.

  15. Pressure distribution from high Reynolds number tests of a NASA SC(3)-0712(B) airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.

    1985-01-01

    A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.50 to 0.80. This investigation was designed to: (1) test a NASA advanced-technology airfoil from low to flight equivalent Reynolds numbers, (2) provide experience in cryogenic wind-tunnel model design and testing techniques, and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the test objectives were met. The pressure data are presented without analysis in tabulated format and as plots of pressure coefficient versus position on the airfoil. This report was prepared for use in conjunction with the aerodynamic coefficient data published in NASA-TM-86371. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design and fabrication.

  16. NASA Langley Highlights, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research.

  17. A user's guide to the Langley 16-foot transonic tunnel complex. Revision 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The operational characteristics and equipment associated with the Langley 16-foot transonic tunnel complex which is located in buildings 1146 and 1234 at the Langley Research Center are described in detail. This complex consists of the 16-foot transonic wind tunnel, the static test facility, and the 16- by 24-inch water tunnel research facilities. The 16-foot transonic tunnel is a single-return atmospheric wind tunnel with a 15.5 foot diameter test section and a Mach number capability from 0.20 to 1.30. The emphasis for research conducted in this research complex is on the integration of the propulsion system into advanced aircraft concepts. In the past, the primary focus has been on the integration of nozzles and empennage into the afterbody of fighter aircraft. During the last several years this experimental research has been expanded to include developing the fundamental data base necessary to verify new theoretical concepts, inlet integration into fighter aircraft, nozzle integration for supersonic and hypersonic transports, nacelle/pylon/wing integration for subsonic transport configurations, and the study of vortical flows (in the 16- by 24-inch water tunnel). The purpose here is to provide a comprehensive description of the operational characteristics of the research facilities of the 16-foot transonic tunnel complex and their associated systems and equipments.

  18. Lunar Landing Testing at NASA Langley

    NASA Image and Video Library

    1965-06-18

    Lunar Landing Testing at NASA Langley. Lunar Landing Testing at NASA Langley. A simulated environment that contributed in a significant way to the success of Apollo project was the Lunar Landing Research Facility, an imposing 250 foot high, 400 foot long gantry structure that became operational in 1965. Published in the book "Space Flight Revolution" NASA SP-4308 pg. 376

  19. Nasa Langley Research Center seventy-fifth anniversary publications, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The following are presented: The National Advisory Committee for Aeronautics Charter; Exploring NASA's Roots, the History of NASA Langley Research Center; NASA Langley's National Historic Landmarks; The Mustang Story: Recollections of the XP-51; Testing the First Supersonic Aircraft: Memoirs of NACA Pilot Bob Champine; NASA Langley's Contributions to Spaceflight; The Rendezvous that was Almost Missed: Lunar Orbit Rendezvous and the Apollo Program; NASA Langley's Contributions to the Apollo Program; Scout Launch Vehicle Program; NASA Langley's Contributions to the Space Shuttle; 69 Months in Space: A History of the First LDEF; NACA TR No. 460: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; NACA TR No. 755: Requirements for Satisfactory Flying Qualities of Airplanes; 'Happy Birthday Langley' NASA Magazine Summer 1992 Issue.

  20. Survey Of Wind Tunnels At Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bower, Robert E.

    1989-01-01

    Report presented at AIAA 14th Aerodynamic Testing Conference on current capabilities and planned improvements at NASA Langley Research Center's major wind tunnels. Focuses on 14 major tunnels, 8 unique in world, 3 unique in country. Covers Langley Spin Tunnel. Includes new National Transonic Facility (NTF). Also surveys Langley Unitary Plan Wind Tunnel (UPWT). Addresses resurgence of inexpensive simple-to-operate research tunnels. Predicts no shortage of tools for aerospace researcher and engineer in next decade or two.

  1. 14. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-90-2684) AERIAL VIEW OF THE 8-FOOT HIGH SPEED TUNNEL (FOREGROUND) AND THE 8-FOOT TRANSONIC PRESSURE TUNNEL (REAR). - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  2. Emerging technology for transonic wind-tunnel-wall interference assessment and corrections

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.

    1988-01-01

    Several nonlinear transonic codes and a panel method code for wind tunnel/wall interference assessment and correction (WIAC) studies are reviewed. Contrasts between two- and three-dimensional transonic testing factors which affect WIAC procedures are illustrated with airfoil data from the NASA/Langley 0.3-meter transonic cyrogenic tunnel and Pathfinder I data. Also, three-dimensional transonic WIAC results for Mach number and angle-of-attack corrections to data from a relatively large 20 deg swept semispan wing in the solid wall NASA/Ames high Reynolds number Channel I are verified by three-dimensional thin-layer Navier-Stokes free-air solutions.

  3. Implementing DSpace at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Lowe, Greta

    2007-01-01

    This presentation looks at the implementation of the DSpace institutional repository system at the NASA Langley Technical Library. NASA Langley Technical Library implemented DSpace software as a replacement for the Langley Technical Report Server (LTRS). DSpace was also used to develop the Langley Technical Library Digital Repository (LTLDR). LTLDR contains archival copies of core technical reports in the aeronautics area dating back to the NACA era and other specialized collections relevant to the NASA Langley community. Extensive metadata crosswalks were created to facilitate moving data from various systems and formats to DSpace. The Dublin Core metadata screens were also customized. The OpenURL standard and Ex Libris Metalib are being used in this environment to assist our customers with either discovering full-text content or with initiating a request for the item.

  4. Buffet test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  5. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wing-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  6. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wind-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  7. Calibration of the Langley 16-foot transonic tunnel with test section air removal

    NASA Technical Reports Server (NTRS)

    Corson, B. W., Jr.; Runckel, J. F.; Igoe, W. B.

    1974-01-01

    The Langley 16-foot transonic tunnel with test section air removal (plenum suction) was calibrated to a Mach number of 1.3. The results of the calibration, including the effects of slot shape modifications, test section wall divergence, and water vapor condensation, are presented. A complete description of the wind tunnel and its auxiliary equipment is included.

  8. Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

    2001-01-01

    The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

  9. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  10. Review of Skin Friction Measurements Including Recent High-Reynolds Number Results from NASA Langley NTF

    NASA Technical Reports Server (NTRS)

    Watson, Ralph D.; Hall, Robert M.; Anders, John B.

    2000-01-01

    This paper reviews flat plate skin friction data from early correlations of drag on plates in water to measurements in the cryogenic environment of The NASA Langley National Transonic Facility (NTF) in late 1996. The flat plate (zero pressure gradient with negligible surface curvature) incompressible skin friction at high Reynolds numbers is emphasized in this paper, due to its importance in assessing the accuracy of measurements, and as being important to the aerodynamics of large scale vehicles. A correlation of zero pressure gradient skin friction data minimizing extraneous effects between tests is often used as the first step in the calculation of skin friction in complex flows. Early data compiled by Schoenherr for a range of momentum thickness Reynolds numbers, R(sub Theta) from 860 to 370,000 contained large scatter, but has proved surprisingly accurate in its correlated form. Subsequent measurements in wind tunnels under more carefully controlled conditions have provided inputs to this database, usually to a maximum R(sub Theta) of about 40,000. Data on a large axisymmetric model in the NASA Langley National Transonic Facility extends the upper limit in incompressible R(sub Theta) to 619,800 using the van Driest transformation. Previous data, test techniques, and error sources ar discussed, and the NTF data will be discussed in detail. The NTF Preston tube and Clauser inferred data accuracy is estimated to be within -2 percent of a power-law curve fit, and falls above the Spalding theory by 1 percent at R(sub Theta) of about 600,000.

  11. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  12. Transonic Symposium: Theory, Application, and Experiment, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    Foughner, Jerome T., Jr. (Compiler)

    1989-01-01

    In order to assess the state of the art in transonic flow disciplines and to glimpse at future directions, NASA-Langley held a Transonic Symposium. Emphasis was placed on steady, three dimensional external, transonic flow and its simulation, both numerically and experimentally. The symposium included technical sessions on wind tunnel and flight experiments; computational fluid dynamic applications; inviscid methods and grid generation; viscous methods and boundary layer stability; and wind tunnel techniques and wall interference. This, being volume 1, is unclassified.

  13. Aeroelasticity matters: Some reflections on two decades of testing in the NASA Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1981-01-01

    Testing of wind-tunnel aeroelastic models is a well established, widely used means of studying flutter trends, validating theory and investigating flutter margins of safety of new vehicle designs. The Langley Transonic Dynamics Tunnel was designed specifically for work on dynamics and aeroelastic problems of aircraft and space vehicles. A cross section of aeroelastic research and testing in the facility since it became operational more than two decades ago is presented. Examples selected from a large store of experience illustrate the nature and purpose of some major areas of work performed in the tunnel. These areas include: specialized experimental techniques; development testing of new aircraft and launch vehicle designs; evaluation of proposed "fixes" to solve aeroelastic problems uncovered during development testing; study of unexpected aeroelastic phenomena (i.e., "surprises"); control of aeroelastic effects by active and passive means; and, finally, fundamental research involving measurement of unsteady pressures on oscillating wings and control surface.

  14. Design features and operational characteristics of the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Experience with the Langley 0.3 meter transonic cryogenic tunnel, which is fan driven, indicated that such a tunnel presents no unusual design difficulties and is simple to operate. Purging, cooldown, and warmup times were acceptable and were predicted with good accuracy. Cooling with liquid nitrogen was practical over a wide range of operating conditions at power levels required for transonic testing, and good temperature distributions were obtained by using a simple liquid nitrogen injection system. To take full advantage of the unique Reynolds number capabilities of the 0.3 meter transonic tunnel, it was designed to accommodate test sections other than the original, octagonal, three dimensional test section. A 20- by 60-cm two dimensional test section was recently installed and is being calibrated. A two dimensional test section with self-streamlining walls and a test section incorporating a magnetic suspension and balance system are being considered.

  15. Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Chwalowski, Pawel; Wieseman, Carol D.; Eller, David; Ringertz, Ulf

    2017-01-01

    A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs).

  16. A vapor generator for transonic flow visualization

    NASA Technical Reports Server (NTRS)

    Bruce, Robert A.; Hess, Robert W.; Rivera, Jose A., Jr.

    1989-01-01

    A vapor generator was developed for use in the NASA Langley Transonic Dynamics Tunnel (TDT). Propylene glycol was used as the vapor material. The vapor generator system was evaluated in a laboratory setting and then used in the TDT as part of a laser light sheet flow visualization system. The vapor generator provided satisfactory seeding of the air flow with visible condensate particles, smoke, for tests ranging from low subsonic through transonic speeds for tunnel total pressures from atmospheric pressure down to less than 0.1 atmospheric pressure.

  17. Third NASA Langley Formal Methods Workshop

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael (Compiler)

    1995-01-01

    This publication constitutes the proceedings of NASA Langley Research Center's third workshop on the application of formal methods to the design and verification of life-critical systems. This workshop brought together formal methods researchers, industry engineers, and academicians to discuss the potential of NASA-sponsored formal methods and to investigate new opportunities for applying these methods to industry problems. contained herein are copies of the material presented at the workshop, summaries of many of the presentations, a complete list of attendees, and a detailed summary of the Langley formal methods program. Much of this material is available electronically through the World-Wide Web via the following URL.

  18. Transonic empirical configuration design process

    NASA Technical Reports Server (NTRS)

    Whitcomb, R. T.

    1983-01-01

    This lecture describes some of the experimental research pertaining to transonic configuration development conducted by the Transonic Aerodynamics Branch of the NASA Langley Research Center. Discussions are presented of the following: use of florescent oil films for the study of surface boundary layer flows; the severe effect of wind tunnel wall interference on the measured configuration drag rise near the speed of sound as determined by a comparison between wind tunnel and free air results; the development of a near sonic transport configuration incorporating a supercritical wing and an indented fuselage, designed on the basis of the area rule with a modification to account for the presence of local supersonic flow above the wing; a device for improving the transonic pitch up of swept wings with very little added drag at the cruise condition; a means for reducing the large transonic aerodynamic interference between the wing, fuselage, nacelle and pylon for a for a fuselage mounted nacelle having the inlet above the wing; and methods for reducing the transonic interference between flows over a winglet and the wing.

  19. Overview of military technology at NASA Langley

    NASA Technical Reports Server (NTRS)

    Sawyer, Wallace C.; Jackson, Charlie M., Jr.

    1989-01-01

    The Langley Research Center began addressing major research topics pertinent to the design of military aircraft under the egis of The National Advisory Council on Aeronautics in 1917, until 1958, when it passed under the control of the newly-instituted NASA research facilities system. A historical account is presented of NASA-Langley's involvement in the experimental investigation of twin-engined jet aircraft nozzle interfairings, thrust reversers, high-efficiency supersonic cruise configurations, high-alpha aerodynamics, air-to-air combat handling qualities, wing/stores flutter suppression, and store carriage and separation characteristics.

  20. Modeling and control study of the NASA 0.3-meter transonic cryogenic tunnel for use with sulfur hexafluoride medium

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1992-01-01

    The NASA Langley 0.3-m Transonic Cryogenic Tunnel is to be modified to operate with sulfur hexafluoride gas while retaining its present capability to operate with nitrogen. The modified tunnel will provide high Reynolds number flow on aerodynamic models with two different test gases. The document details a study of the SF6 tunnel performance boundaries, thermodynamic modeling of the tunnel process, nonlinear dynamical simulation of math model to yield tunnel responses, the closed loop control requirements, control laws, and mechanization of the control laws on the microprocessor based controller.

  1. Investigations for Supersonic Transports at Transonic and Supersonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. Melissa B.; Owens, Lewis R.; Wahls, Richard A.

    2007-01-01

    Several computational studies were conducted as part of NASA s High Speed Research Program. Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-Speed Research program are given. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin-Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.

  2. Numerical design of streamlined tunnel walls for a two-dimensional transonic test

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Anderson, E. C.

    1978-01-01

    An analytical procedure is discussed for designing wall shapes for streamlined, nonporous, two-dimensional, transonic wind tunnels. It is based upon currently available 2-D inviscid transonic and boundary layer analysis computer programs. Predicted wall shapes are compared with experimental data obtained from the NASA Langley 6 by 19 inch Transonic Tunnel where the slotted walls were replaced by flexible nonporous walls. Comparisons are presented for the empty tunnel operating at a Mach number of 0.9 and for a supercritical test of an NACA 0012 airfoil at zero lift. Satisfactory agreement is obtained between the analytically and experimentally determined wall shapes.

  3. User guide for WIACX: A transonic wind-tunnel wall interference assessment and correction procedure for the NTF

    NASA Technical Reports Server (NTRS)

    Garriz, Javier A.; Haigler, Kara J.

    1992-01-01

    A three dimensional transonic Wind-tunnel Interference Assessment and Correction (WIAC) procedure developed specifically for use in the National Transonic Facility (NTF) at NASA Langley Research Center is discussed. This report is a user manual for the codes comprising the correction procedure. It also includes listings of sample procedures and input files for running a sample case and plotting the results.

  4. Flutter tests (IS4) of the 0.0125-scale shuttle reflection plane model 30-OTS in the Langley Research Center 26-inch transonic blowdown tunnel test no. 547

    NASA Technical Reports Server (NTRS)

    Kotch, M. A.

    1974-01-01

    A series of slab wing flutter models with rigid orbiter fuselage, external tank, and SRB models of the space shuttle were tested, in a reflection plane arrangement, in the NASA Langley Research Center's 26-inch Transonic Blowdown Tunnel. Model flutter boundaries were obtained for both a wing-alone configuration and a wing-with-orbiter, tank and SRB configuration. Additional test points were taken of the wing-with-orbiter configuration, as a correlation with the wing-alone condition. A description of the wind tunnel models and test procedures utilized in the experiment are provided.

  5. Turbulence Model Comparisons for Supersonic Transports at Transonic and Supersonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.

    2003-01-01

    Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-speed Research program are given. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin- Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.

  6. Revitalization of the NASA Langley Research Center's Infrastructure

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  7. Performance Test of Laser Velocimeter System for the Langley 16-foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Meyers, J. F.; Hunter, W. W., Jr.; Reubush, D. E.; Nichols, C. E., Jr.; Hepner, T. E.; Lee, J. W.

    1985-01-01

    An investigation in the Langley 16-Foot Transonic Tunnel has been conducted in which a laser velocimeter was used to measure free-stream velocities from Mach 0.1 to 1.0 and the flow velocities along the stagnating streamline of a hemisphere-cylinder model at Mach 0.8 and 1.0. The flow velocity was also measured at Mach 1.0 along the line 0.533 model diameters below the model. These tests determined the performance characteristics of the dedicated two-component laser velocimeter at flow velocities up to Mach 1.0 and the effects of the wind tunnel environment on the particle-generating system and on the resulting size of the generated particles. To determine these characteristics, the measured particle velocities along the stagnating streamline at the two Mach numbers were compared with the theoretically predicted gas and particle velocities calculated using a transonic potential flow method. Through this comparison the mean detectable particle size (2.1 micron) along with the standard deviation of the detectable particles (0.76 micron) was determined; thus the performance characteristics of the laser velocimeter were established.

  8. Description and calibration of the Langley 6- by 19-inch transonic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, C. L.

    1973-01-01

    A description and calibration is presented of the Langley 6- by 19-inch transonic tunnel which is a two-dimensional facility with top and bottom slotted walls used for testing two-dimensional airfoil sections. Basic tunnel-empty Mach number distributions and schlieren flow photographs as well as integrated normal-force coefficients, pitching-moment coefficients, surface-pressure distributions, and schlieren flow photographs of an NACA 0012 airfoil calibration model are presented. The Mach number capability of the facility is from 0.5 to about 1.1 with a corresponding Reynolds number range of 1.5 million to 3 million based on a 4.0-in. model chord. Comparisons of experimental results from the tests with previous data are also presented.

  9. Reynolds Number Effects on a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Wahls, R. N.; Owens, L. R.; Rivers, S. M. B.

    2001-01-01

    A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and the high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at low speed high-lift and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on both the Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.90 for a configuration without an empennage.

  10. Lfm2000: Fifth NASA Langley Formal Methods Workshop

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael (Compiler)

    2000-01-01

    This is the proceedings of Lfm2000: Fifth NASA Langley Formal Methods Workshop. The workshop was held June 13-15, 2000, in Williamsburg, Virginia. See the web site nasa.gov/lfm2000/> for complete information about the event.

  11. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-01-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  12. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  13. Laser velocimetry technique applied to the Langley 0.3 meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Gooderum, P. B.; Hunter, W. W., Jr.; Meyers, J. F.

    1981-01-01

    A low power laser velocimeter operating in the forward scatter mode was used to measure free stream mean velocities in the Langley 0.3 Meter Transonic Cryogenic Tunnel. Velocity ranging from 51 to 235 m/s was measured. Measurements were obtained for a variety of nominal tunnel conditions: Mach numbers from 0.20 to 0.77, total temperatures from 100 to 250 K, and pressures from 101 to 152 kPa. Particles were not injected to augment the existing Mie scattering materials. Liquid nitrogen droplets were the existing liqht scattering material. Tunnel vibrations and thermal effects had no detrimental effects on the optical system.

  14. Snapshot of Active Flow Control Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.

    2002-01-01

    NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.

  15. Data from tests of a R4 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Johnson, W. G., Jr.; Hill, A. S.; Mueller, R.; Redeker, G.

    1984-01-01

    Aerodynamic data for the DFVLR R4 airfoil are presented in both graphic and tabular form. The R4 was tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) at Mach number from 0.60 to 0.78 at angles of attack from -2.0 to 8.0 degrees. The airfoil was tested at Reynolds numbers of 4, 6, 10, 15, 30, and 40 million based on the 152.32 mm chord.

  16. Assessment of the National Transonic Facility for Laminar Flow Testing

    NASA Technical Reports Server (NTRS)

    Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.

    2010-01-01

    A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.

  17. Computational mechanics and physics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr.

    1987-01-01

    An overview is given of computational mechanics and physics at NASA Langley Research Center. Computational analysis is a major component and tool in many of Langley's diverse research disciplines, as well as in the interdisciplinary research. Examples are given for algorithm development and advanced applications in aerodynamics, transition to turbulence and turbulence simulation, hypersonics, structures, and interdisciplinary optimization.

  18. NASA Langley/CNU Distance Learning Programs.

    ERIC Educational Resources Information Center

    Caton, Randall; Pinelli, Thomas E.

    NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and currently there are a suite of five distance-learning programs. This paper presents the major…

  19. A Selection of Composites Simulation Practices at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2007-01-01

    One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.

  20. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  1. Automatic control of NASA Langley's 0.3-meter cryogenic test facility

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.; Balakrishna, S.

    1980-01-01

    Experience during the past 6 years of operation of the 0.3-meter transonic cryogenic tunnel at the NASA Langley Research Center has shown that there are problems associated with efficient operation and control of cryogenic tunnels using manual control schemes. This is due to the high degree of process crosscoupling between the independent control variables (temperature, pressure, and fan drive speed) and the desired test condition (Mach number and Reynolds number). One problem has been the inability to maintain long-term accurate control of the test parameters. Additionally, the time required to change from one test condition to another has proven to be excessively long and much less efficient than desirable in terms of liquid nitrogen and electrical power usage. For these reasons, studies have been undertaken to: (1) develop and validate a mathematical model of the 0.3-meter cryogenic tunnel process, (2) utilize this model in a hybrid computer simulation to design temperature and pressure feedback control laws, and (3) evaluate the adequacy of these control schemes by analysis of closed-loop experimental data. This paper will present the results of these studies.

  2. Sidewall Mach Number Distributions for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Florance, James R.; Rivera, Jose A., Jr.

    2001-01-01

    The Transonic Dynamics Tunnel(TDT) was recalibrated due to the conversion of the heavy gas test medium from R-12 to R-134a. The objectives of the tests were to determine the relationship between the free-stream Mach number and the measured test section Mach number, and to quantify any necessary corrections. Other tests included the measurement of pressure distributions along the test-section walls, test-section centerline, at certain tunnel stations via a rake apparatus, and in the tunnel settling chamber. Wall boundary layer, turbulence, and flow angularity measurements were also performed. This paper discusses the determination of sidewall Mach number distributions.

  3. NASA Langley WINN System Operational Assessment

    NASA Technical Reports Server (NTRS)

    Jonsson, Jon

    2003-01-01

    An operational assessment of the NASA Langley Weather Information Network (WINN) System is presented. The objectives of this program include: 1) Determine if near real-time weather information presented on the flight deck improves pilot situational awareness of weather; and 2) Identify pilot interface issues related to the use of WINN system during test flights. This paper is in viewgraph form.

  4. Two-dimensional converging-diverging rippled nozzles at transonic speeds. [performed in the Langley 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Asbury, Scott C.

    1994-01-01

    An experimental investigation was performed in the Langley 16-Foot Transonic tunnel to determine the effects of external and internal flap rippling on the aerodynamics of a nonaxisymmetric nozzle. Data were obtained at several Mach numbers from static conditions to 1.2 over a range of nozzle pressure ratios. Nozzles with chordal boattail angles of 10, 20, and 30 degrees, with and without surface rippling, were tested. No effect on discharge coefficient due to surface rippling was observed. Internal thrust losses due to surface rippling were measured and attributed to a combination of additional internal skin friction and shock losses. External nozzle drag for the baseline configurations were generally less than that for the rippled configurations at all free-stream Mach numbers tested. The difference between the baseline and rippled nozzle drag levels generally increased with increasing boat tail angle. The thrust-minus-drag level for each rippled nozzle configuration was less than the equivalent baseline configuration for each Mach number at the design nozzle pressure ratio.

  5. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.

  6. Application of Pressure-Based Wall Correction Methods to Two NASA Langley Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Everhart, J. L.

    2001-01-01

    This paper is a description and status report on the implementation and application of the WICS wall interference method to the National Transonic Facility (NTF) and the 14 x 22-ft subsonic wind tunnel at the NASA Langley Research Center. The method calculates free-air corrections to the measured parameters and aerodynamic coefficients for full span and semispan models when the tunnels are in the solid-wall configuration. From a data quality point of view, these corrections remove predictable bias errors in the measurement due to the presence of the tunnel walls. At the NTF, the method is operational in the off-line and on-line modes, with three tests already computed for wall corrections. At the 14 x 22-ft tunnel, initial implementation has been done based on a test on a full span wing. This facility is currently scheduled for an upgrade to its wall pressure measurement system. With the addition of new wall orifices and other instrumentation upgrades, a significant improvement in the wall correction accuracy is expected.

  7. Parametric Evaluation of Thin, Transonic Circulation-Control Airfoils

    NASA Technical Reports Server (NTRS)

    Schlecht, Robin; Anders, Scott

    2007-01-01

    Wind-tunnel tests were conducted in the NASA Langley Transonic Dynamics Tunnel on a 6 percent-thick, elliptical circulation-control airfoil with upper-surface and lower-surface blowing capability. Results for elliptical Coanda trailing-edge geometries, biconvex Coanda trailing-edge geometries, and leading-edge geometries are reported. Results are presented at subsonic and transonic Mach numbers of 0.3 and 0.8, respectively. When considering one fixed trailing-edge geometry, for both the subsonic and transonic conditions it was found that the [3.0:1] ratio elliptical Coanda surface with the most rounded leading-edge [03] performed favorably and was determined to be the best compromise between comparable configurations that took advantage of the Coanda effect. This configuration generated a maximum. (Delta)C(sub 1) = 0.625 at a C(sub mu) = 0.06 at M = 0.3, alpha = 6deg. This same configuration generated a maximum (Delta)C(sub 1) = 0.275 at a C(sub mu) = 0.0085 at M = 0.8, alpha = 3deg.

  8. Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1985-01-01

    Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.

  9. Study of methods of improving the performance of the Langley Research Center Transonic Dynamics Tunnel (TDT)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study has been made of possible ways to improve the performance of the Langley Research Center's Transonic Dynamics Tunnel (TDT). The major effort was directed toward obtaining increased dynamic pressure in the Mach number range from 0.8 to 1.2, but methods to increase Mach number capability were also considered. Methods studied for increasing dynamic pressure capability were higher total pressure, auxiliary suction, reducing circuit losses, reduced test medium temperature, smaller test section and higher molecular weight test medium. Increased Mach number methods investigated were nozzle block inserts, variable geometry nozzle, changes in test section wall configuration, and auxiliary suction.

  10. Wall adjustment strategy software for use with the NASA Langley 0.3-meter transonic cryogenic tunnel adaptive wall test section

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.

  11. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  12. A Bibliography of Transonic Dynamics Tunnel (TDT) Publications

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V.

    2016-01-01

    The Transonic Dynamics Tunnel (TDT) at the National Aeronautics and Space Administration's (NASA) Langley Research Center began research operations in early 1960. Since that time, over 600 tests have been conducted, primarily in the discipline of aeroelasticity. This paper presents a bibliography of the publications that contain data from these tests along with other reports that describe the facility, its capabilities, testing techniques, and associated research equipment. The bibliography is divided by subject matter into a number of categories. An index by author's last name is provided.

  13. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/ Northrop Grumman Smart Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.

    2003-01-01

    An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final

  14. UAV Research at NASA Langley: Towards Safe, Reliable, and Autonomous Operations

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    2016-01-01

    Unmanned Aerial Vehicles (UAV) are fundamental components in several aspects of research at NASA Langley, such as flight dynamics, mission-driven airframe design, airspace integration demonstrations, atmospheric science projects, and more. In particular, NASA Langley Research Center (Langley) is using UAVs to develop and demonstrate innovative capabilities that meet the autonomy and robotics challenges that are anticipated in science, space exploration, and aeronautics. These capabilities will enable new NASA missions such as asteroid rendezvous and retrieval (ARRM), Mars exploration, in-situ resource utilization (ISRU), pollution measurements in historically inaccessible areas, and the integration of UAVs into our everyday lives all missions of increasing complexity, distance, pace, and/or accessibility. Building on decades of NASA experience and success in the design, fabrication, and integration of robust and reliable automated systems for space and aeronautics, Langley Autonomy Incubator seeks to bridge the gap between automation and autonomy by enabling safe autonomous operations via onboard sensing and perception systems in both data-rich and data-deprived environments. The Autonomy Incubator is focused on the challenge of mobility and manipulation in dynamic and unstructured environments by integrating technologies such as computer vision, visual odometry, real-time mapping, path planning, object detection and avoidance, object classification, adaptive control, sensor fusion, machine learning, and natural human-machine teaming. These technologies are implemented in an architectural framework developed in-house for easy integration and interoperability of cutting-edge hardware and software.

  15. An assessment of the future roles of the National Transonic Facility and the Langley Transonic Dynamics Tunnel in aeroelastic and unsteady aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1980-01-01

    The characteristics and capabilities of the two tunnels, that relate to studies in the fields of aeroelasticity and unsteady aerodynamics are discussed. Scaling considerations for aeroelasticity and unsteady aerodynamics testing in the two facilities are reviewed, and some of the special features (or lack thereof) of the Langley Research Center Transonic Dynamics Tunnel (TDT) and the National Transonic Facility (NTF) that will weigh heavily in any decisions conducting a given study in the two tunnels are discussed. For illustrative purposes a fighter and a transport airplane are scaled for tests in the NTF and in the TDT, and the resulting model characteristics are compared. The NTF was designed specifically to meet the need for higher Reynolds number capability for flow simulation in aerodynamic performance testing of aircraft designs. However, the NTF can be a valuable tool for evaluating the severity of Reynolds number effects in the areas of dynamic aeroelasticity and unsteady aerodynamics. On the other hand, the TDT was constructed specifically for studies and tests in the field of aeroelasticity. Except for tests requiring the Reynolds number capability of NTF, the TDT will remain the primary facility for tests of dynamic aeroelasticity and unsteady aerodynamics.

  16. Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound

    DTIC Science & Technology

    2013-04-01

    Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound by W.C. Kirkpatrick Alberts, II...Windshield and Microphone for Infrasound W.C. Kirkpatrick Alberts, II, Stephen M. Tenney, and John M. Noble Sensors and Electron Devices Directorate...2013 4. TITLE AND SUBTITLE Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound 5a. CONTRACT

  17. Wind tunnel-sidewall-boundary-layer effects in transonic airfoil testing-some correctable, but some not

    NASA Technical Reports Server (NTRS)

    Lynch, F. T.; Johnson, C. B.

    1988-01-01

    The need to correct transonic airfoil wind tunnel test data for the influence of the tunnel sidewall boundary layers, in addition to the wall accepted corrections for the analytical investigation was carried out in order to evaluate sidewall boundary layer effects on transonic airfoil characteristics, and to validate proposed correction and the limit to their applications. This investigation involved testing of modern airfoil configurations in two different transonic airfoil test facilities, the 15 x 60 inch two-dimensional insert of the National Aeronautical Establishment (NAE) 5 foot tunnel in Ottawa, Canada, and the two-dimensional test section of the NASA Langley 0.3 m Transonic Cryogenic Tunnel (TCT). Results presented included effects of variations in sidewall-boundary layer bleed in both facilities, different sidewall boundary layer correction procedures, tunnel-to tunnel comparisons of correcte results, and flow conditions with and without separation.

  18. Fourth NASA Langley Formal Methods Workshop

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael (Compiler); Hayhurst, Kelly J. (Compiler)

    1997-01-01

    This publication consists of papers presented at NASA Langley Research Center's fourth workshop on the application of formal methods to the design and verification of life-critical systems. Topic considered include: Proving properties of accident; modeling and validating SAFER in VDM-SL; requirement analysis of real-time control systems using PVS; a tabular language for system design; automated deductive verification of parallel systems. Also included is a fundamental hardware design in PVS.

  19. Operating envelope charts for the Langley 0.3-meter transonic cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Rallo, R. A.; Dress, D. A.; Siegle, H. J. A.

    1986-01-01

    To take full advantage of the unique Reynolds number capabilities of the 0.3-meter Transonic Cryogenic Tunnel (0.3-m TCT) at the NASA Langley Research Center, it was designed to accommodate test sections other than the original, octagonal, three-dimensional test section. A 20- by 60-cm two-dimensional test section was installed in 1976 and was extensively used, primarily for airfoil testing, through the fall of 1984. The tunnel was inactive during 1985 so that a new test section and improved high speed diffuser could be installed in the tunnel circuit. The new test section has solid adaptive top and bottom walls to reduce or eliminate wall interference for two-dimensional testing. The test section is 33- by 33-cm in cross section at the entrance and is 142 cm long. In the planning and running of past airfoil tests in the 0.3-m TCT, the use of operating envelope charts have proven very useful. These charts give the variation of total temperature and pressure with Mach number and Reynolds number. The operating total temperature range of the 0.3-m TCT is from about 78 K to 327 K with total pressures ranging from about 17.5 psia to 88 psia. This report presents the operating envelope charts for the 0.3-m TCT with the adaptive wall tes t section installed. They were all generated based on a 1-foot chord model. The Mach numbers vary from 0.1 to 0.95.

  20. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  1. Analysis of NASA Common Research Model Dynamic Data

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Acheson, Michael J.

    2011-01-01

    Recent NASA Common Research Model (CRM) tests at the Langley National Transonic Facility (NTF) and Ames 11-foot Transonic Wind Tunnel (11-foot TWT) have generated an experimental database for CFD code validation. The database consists of force and moment, surface pressures and wideband wing-root dynamic strain/wing Kulite data from continuous sweep pitch polars. The dynamic data sets, acquired at 12,800 Hz sampling rate, are analyzed in this study to evaluate CRM wing buffet onset and potential CRM wing flow separation.

  2. MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.

    2001-01-01

    The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations of clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including LCO behavior.

  3. MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.

    2001-01-01

    The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.

  4. Buffet test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk for the facility. Presented here are the test results from a structural dynamics and aeroelastic response point of view. The activities required for the safety analysis and risk assessment are described. The test was conducted in the same manner as a flutter test and employed on-board dynamic instrumentation, real time dynamic data monitoring, and automatic and manual tunnel interlock systems for protecting the model.

  5. ARIES: NASA Langley's Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Wusk, Michael S.

    2002-01-01

    In 1994, the NASA Langley Research Center (LaRC) acquired a B-757-200 aircraft to replace the aging B-737 Transport Systems Research Vehicle (TSRV). The TSRV was a modified B-737-100, which served as a trailblazer in the development of glass cockpit technologies and other innovative aeronautical concepts. The mission for the B-757 is to continue the three-decade tradition of civil transport technology research begun by the TSRV. Since its arrival at Langley, this standard 757 aircraft has undergone extensive modifications to transform it into an aeronautical research "flying laboratory". With this transformation, the aircraft, which has been designated Airborne Research Integrated Experiments System (ARIES), has become a unique national asset which will continue to benefit the U.S. aviation industry and commercial airline customers for many generations to come. This paper will discuss the evolution of the modifications, detail the current capabilities of the research systems, and provide an overview of the research contributions already achieved.

  6. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    EPA Science Inventory

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  7. Recent transonic unsteady pressure measurements at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Hess, R. W.

    1985-01-01

    Four semispan wing model configurations were studied in the Transonic Dynamics Tunnel (TDT). The first model had a clipped delta planform with a circular arc airfoil, the second model had a high aspect ratio planform with a supercritical airfoil, the third model has a rectangular planform with a supercritical airfoil and the fourth model had a high aspect ratio planform with a supercritical airfoil. To generate unsteady flow, the first and third models were equipped with pitch oscillation mechanisms and the first, second and fourth models were equipped with control surface oscillation mechanisms. The fourth model was similar in planform and airfoil shape to the second model, but it is the only one of the four models that has an elastic wing structure. The unsteady pressure studies of the four models are described and some typical results for each model are presented. Comparison of selected experimental data with analytical results also are included.

  8. High Reynolds number tests of the CAST 10-2/DOA 2 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, phase 1

    NASA Technical Reports Server (NTRS)

    Dress, D. A.; Mcguire, P. D.; Stanewsky, E.; Ray, E. J.

    1983-01-01

    A wind tunnel investigation of an advanced technology airfoil, the CAST 10-2/DOA 2, was conducted in the Langley 0.3 meter Transonic Cryogenic Tunnel (0.3 m TCT). This was the first of a series of tests conducted in a cooperative National Aeronautics and Space Administration (NASA) and the Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e. V. (DFVLR) airfoil research program. Test temperature was varied from 280 K to 100 K to pressures from slightly above 1 to 5.8 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 4 x 10 to the 8th power to 45 x 10 to the 6th power. This report presents the experimental aerodynamic data obtained for the airfoil and includes descriptions of the airfoil model, the 0.3 m TCT, the test instrumentation, and the testing procedures.

  9. Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, Charles L.; Hill, Acquilla S.; Johnson, William G., Jr.

    1987-01-01

    Tests were conducted in the 2-D test section of the Langley 0.3-meter Transonic Cryogenic Tunnel on a NACA 0012 airfoil to obtain aerodynamic data as a part of the Advanced Technology Airfoil Test (ATAT) program. The test program covered a Mach number range of 0.30 to 0.82 and a Reynolds number range of 3.0 to 45.0 x 10 to the 6th power. The stagnation pressure was varied between 1.2 and 6.0 atmospheres and the stagnation temperature was varied between 300 K and 90 K to obtain these test conditions. Tabulated pressure distributions and integrated force and moment coefficients are presented as well as plots of the surface pressure distributions. The data are presented uncorrected for wall interference effects and without analysis.

  10. Status of the national transonic facility

    NASA Technical Reports Server (NTRS)

    Mckinney, L. W.; Gloss, B. B.

    1982-01-01

    The National Transonic Facility at NASA Langley Research Center, scheduled for completion in July, 1982, is described with emphasis on model and instrumentation activities, calibration plans and some initial research plans. Performance capabilities include a Mach number range of 0.2-1.2, a pressure range of 1-9 atmospheres, and a temperature range of 77-350 K, which will produce a maximum Reynolds number of 120 million at a Mach number of 1.0, based on a 0.25 m chord. A comprehensive tunnel calibration program is planned, which will cover basic tunnel calibration, data qualities, and data comparisons with other facilites and flights.

  11. High Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.; Ray, E. J.; Rozendaal, R. A.; Butler, T. W.

    1982-01-01

    A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  12. CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino

    2016-01-01

    A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.

  13. On the Application of Contour Bumps for Transonic Drag Reduction(Invited)

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Owens, Lewis R.

    2005-01-01

    The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.

  14. Boundary layer separation on isolated boattail nozzles. M.S. Thesis; [conducted in the Langley 16-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.

    1977-01-01

    The phenomenon of separated flow on a series of circular-arc afterbodies was investigated using the Langley 16-foot transonic tunnel at free-stream Mach numbers from 0.40 to 0.95 at 0 deg angle of attack. Both high-pressure air and solid circular cylinders with a diameter equal to the nozzle exit diameter were used to simulate jet exhausts. A detailed data base of boundary layer separation locations was obtained using oil-flow techniques. The results indicate that boundary layer separation is most extensive on steep boattails at high Mach numbers.

  15. Pressure distributions from high Reynolds number tests of a Boeing BAC 1 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.; Hill, A. S.

    1985-01-01

    A wind-tunnel investigation designed to test a Boeing advanced-technology airfoil from low to flight-equivalent Reynolds numbers has been completed in the Langley 0.3-Meter Transonic Cryogenic Tunnel. This investigation represents the first in a series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from 4.4 X 10 to the 6th power to 50.0 X 10 to the 6th power. All the test objectives were met. The pressure data are presented without analysis in plotted and tabulated formats for use in conjunction with the aerodynamic coefficient data published as NASA TM-81922. At the time of the test, these pressure data were considered proprietary and have only recently been made available by Boeing for general release. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

  16. Description of the insulation system for the Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Dress, D. A.; Kilgore, R. A.

    1985-01-01

    The thermal insulation system of the Langley 0.3 Meter Transonic Cryogenic Tunnel is described. The insulation system is designed to operate from room temperature down to about 77.4 K, the temperature of liquid nitrogen at 1 atmosphere. A detailed description is given of the primary insulation sytem consists of glass fiber mats, a three part vapor barrier, and a dry positive pressure purge system. Also described are several secondary insulation systems required for the test section, actuators, and tunnel supports. An appendix briefly describes the original insulation system which is considered inferior to the one presently in place. The time required for opening and closing portions of the insulation system for modification or repair to the tunnel has been reduced, typically, from a few days for the original thermal insulating system to a few hours for the present system.

  17. Investigating the Transonic Flutter Boundary of the Benchmark Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel

    2017-01-01

    This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results focus on understanding the dip in the transonic flutter boundary at a single Mach number (0.74), exploring an angle of attack range of ??1 to 8 and dynamic pressures from wind off to beyond flutter onset. The rigid analysis results are examined for insights into the behavior of the aeroelastic system. Both static and dynamic aeroelastic simulation results are also examined.

  18. HSCT Ref-H Transonic Flap Data Base: Wind-Tunnel Test and Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M.

    1999-01-01

    In cooperation with personnel from the Boeing ANP Laboratory and NASA Langley, a performance test was conducted using the Reference-H 1.675% model ("NASA Modular Model") without nacelles at the NASA Langley 16-Ft Transonic Tunnel. The main objective of the test was to determine the drag reduction achievable with leading-edge and trailing-edge flaps deflected along the outboard wing span at transonic Mach numbers (M = 0.9 to 1.2) for purpose of preliminary design and for comparison with computational predictions. The obtained drag data with flap deflections for Mach numbers of 1.07 to 1.20 are unique for the Reference H wing. Four leading-edge and two trailing-edge flap deflection angles were tested at a mean-wing chord-Reynolds number of about 5.7 million. An outboard-wing leading-edge flap deflection of 81 provides a 4.5 percent drag reduction at M = 1.2 A = 0.2), and much larger values at lower Mach numbers with larger flap deflections. The present results for the baseline (no flaps deflected) compare reasonably well with previous Boeing and NASA Ref-H tunnel tests, including high-Reynolds number NTF results. Viscous CFD simulations using the OVERFLOW thin-layer N.S. method properly predict the observed trend in drag reduction at M = 1.2 as function of leading-edge flap deflection. Modified linear theory properly predicts the flap effects on drag at subsonic conditions (Aero2S code), and properly predicts the absolute drag for the 40 and 80 leading-edge deflection at M = 1.2 (A389 code).

  19. Aerodynamic characteristics of three slender sharp-edge 74 degrees swept wings at subsonic, transonic, and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Davenport, E. E.

    1974-01-01

    Slender sharp-edge wings having leading-edge sweep angles of 74 deg have been studied at Mach numbers from 0.60 to 2.80, at angles of attack from about minus 4 deg to 22 deg, and at angles of sideslip from 0 deg to 5 deg. The wings had delta, arrow, and diamond planforms. The experimental tests were made in the Langley 8-foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel test section number 1. The theoretical predictions were made using the theories of NASA TN D-3767 and NASA TN D-6243. The results of the study indicated that the lift and drag characteristics as affected by planform and Mach number could be reasonably well predicted for the delta wing in the subsonic and transonic Mach number range. In the supersonic range, the delta and diamond wings were about equally good in the degree of agreement between experiment and theory. In making drag-due-to-lift predictions the vortex lift effects must be taken into account if reasonable results are to be obtained at moderate or high lift coefficients.

  20. Practical Application of NASA-Langley Advanced Satellite Products to In-Flight Icing Nowcasts

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.; Wolff, Cory A.; Minnis, Patrick

    2006-01-01

    Experimental satellite-based icing products developed by the NASA Langley Research Center provide new tools to identify the locations of icing and its intensity. Since 1997, research forecasters at the National Center for Atmospheric Research (NCAR) have been helping to guide the NASA Glenn Research Center's Twin Otter aircraft into and out of clouds and precipitation for the purpose of characterizing in-flight icing conditions, including supercooled large drops, the accretions that result from such encounters and their effect on aircraft performance. Since the winter of 2003-04, the NASA Langley satellite products have been evaluated as part of this process, and are being considered as an input to NCAR s automated Current Icing Potential (CIP) products. This has already been accomplished for a relatively straightforward icing event, but many icing events have much more complex characteristics, providing additional challenges to all icing diagnosis tools. In this paper, four icing events with a variety of characteristics will be examined, with a focus on the NASA Langley satellite retrievals that were available in real time and their implications for icing nowcasting and potential applications in CIP.

  1. Spaceflight revolution: NASA Langley Research Center from Sputnik to Apollo

    NASA Technical Reports Server (NTRS)

    Hansen, James R.

    1995-01-01

    As part of the transition to the broad research scope of the National Aeronautics and Space Administration (NASA) starting in the late 1950's, the Langley Research Center underwent many changes in program content, organization and management, and areas of personnel expertise. This book describes and evaluates the evolution and activities of the Langley Research Center during the seventeen-year period from 1958 to 1975. The book was based on the analysis of hundreds of written records, both published and unpublished, as well as numerous personal interviews with many of the key individuals involved in the transition of Langley. Some of the projects and research areas covered include Project Echo, magnetoplasmadynamics research, Scout Rocket Program, lunar-orbit rendezvous research, manned space laboratory development, and Apollo and the Lunar Orbiter Project.

  2. Effect of nozzle and vertical-tail variables on the performance of a 3-surface F-15 model at transonic Mach numbers. [Langley 16 foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Pendergraft, O. C., Jr.; Bare, E. A.

    1982-01-01

    An investigation was conducted in the Langley 16 foot transonic tunnel to determine the longitudinal aerodynamic characteristics of twin two dimensional nozzles and twin baseline axisymmetric nozzles installed on a fully metric 0.047 scale model of the F-15 three surface configuration (canards, wing, horizontal tails). The effects on performance of two dimensional nozzle in flight thrust reversing, locations and orientation of the vertical tails, and deflections of the horizontal tails were also determined. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.20 over an angle of attack range from -2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 6.5.

  3. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    EPA Science Inventory

    This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

  4. TRACT 2 Frame Drop Test AT NASA Langley Research Center's Landin

    NASA Image and Video Library

    2014-05-09

    (Tract)2 Transport Rotorcraft Airframe Crash Testbed; Full Frame Drop Test: rotary wing crash worthiness, impact research at NASA Langley Research Center's Landing and Impact Research (LandIR) Facility Building 1297

  5. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  6. Free-To-Roll Analysis of Abrupt Wing Stall on Military Aircraft at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Owens, D. Bruce; Capone, Francis J.; Brandon, Jay M.; Cunningham, Kevin; Chambers, Joseph R.

    2003-01-01

    Transonic free-to-roll and static wind tunnel tests for four military aircraft - the AV-8B, the F/A-18C, the preproduction F/A-18E, and the F-16C - have been analyzed. These tests were conducted in the NASA Langley 16-Foot Transonic Tunnel as a part of the NASA/Navy/Air Force Abrupt Wing Stall Program. The objectives were to evaluate the utility of the free-to-roll test technique as a tool for predicting areas of significant uncommanded lateral motions and for gaining insight into the wing-drop and wing-rock behavior of military aircraft at transonic conditions. The analysis indicated that the free-to-roll results had good agreement with flight data on all four models. A wide range of motions - limit cycle wing rock, occasional and frequent damped wing drop/rock and wing rock divergence - were observed. The analysis shows the effects that the static and dynamic lateral stability can have on the wing drop/rock behavior. In addition, a free-to-roll figure of merit was developed to assist in the interpretation of results and assessment of the severity of the motions.

  7. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  8. Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.

    2001-01-01

    The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.

  9. High Reynolds number tests of a Douglas DLBA 032 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Charles B.; Dress, David A.; Hill, Acquilla S.; Wilcox, Peter A.; Bui, Minh H.

    1986-01-01

    A wind-tunnel investigation of a Douglas advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). The temperature was varied from 227 K (409 R) to 100 K (180 R) at pressures ranging from about 159 kPa (1.57 atm) to about 514 kPa (5.07 atm). Mach number was varied from 0.50 to 0.78. These variables provided a Reynolds number range (based on airfoil chord) from 6.0 to 30.0 x 10 to the 6th power. This investigation was specifically designed to: (1) test a Douglas airfoil from moderately low to flight-equivalent Reynolds numbers, and (2) evaluate sidewall-boundary-layer effects on transonic airfoil performance characteristics by a systematic variation of Mach number, Reynolds number, and sidewall-boundary-layer removal. Data are included which demonstrate the effects of fixing transition, Mach number, Reynolds number, and sidewall-boundary-layer removal on the aerodynamic characteristics of the airfoil. Also included are remarks on model design and model structural integrity.

  10. The World Wide Web and Technology Transfer at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Bianco, David J.

    1994-01-01

    NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.

  11. Historical Contributions to Vertical Flight at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.

    2016-01-01

    The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.

  12. The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel microcomputer controller source code

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Balakrishna, S.

    1991-01-01

    The 0.3 m Transonic Cryogenic Tunnel (TCT) microcomputer based controller has been operating for several thousand hours in a safe and efficient manner. A complete listing is provided of the source codes for the tunnel controller and tunnel simulator. Included also is a listing of all the variables used in these programs. Several changes made to the controller are described. These changes are to improve the controller ease of use and safety.

  13. Open Rotor Noise Prediction at NASA Langley - Capabilities, Research and Development

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun

    2010-01-01

    The high fuel prices of recent years have caused the operating cost of the airlines to soar. In an effort to bring down the fuel consumption, the major aircraft engine manufacturers are now taking a fresh look at open rotors for the propulsion of future airliners. Open rotors, also known as propfans or unducted fans, can offer up to 30 per cent improvement in efficiency compared to high bypass engines of 1980 vintage currently in use in most civilian aircraft. NASA Langley researchers have contributed significantly to the development of aeroacoustic technology of open rotors. This report discusses the current noise prediction technology at Langley and reviews the input data requirements, strengths and limitations of each method as well as the associated problems in need of attention by the researchers. We present a brief history of research on the aeroacoustics of rotating blade machinery at Langley Research Center. We then discuss the available noise prediction codes for open rotors developed at NASA Langley and their capabilities. In particular, we present the two useful formulations used for the computation of noise from subsonic and supersonic surfaces. Here we discuss the open rotor noise prediction codes ASSPIN and one based on Ffowcs Williams-Hawkings equation with penetrable data surface (FW - Hpds). The scattering of sound from surfaces near the rotor are calculated using the fast scattering code (FSC) which is also discussed in this report. Plans for further improvements of these codes are given.

  14. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  15. Tabulation of data from tests of an NPL 9510 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1983-01-01

    The tabulated data from tests of a six inch chord NPL 9510 airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The tests were performed over the following range of conditions: Mach numbers of 0.35 to 0.82, total temperature of 94 K to 300 K, total pressure of 1.20 to 5.81 atm, Reynolds number based on chord of 1.34 x 10 to the 6th to 48.23 x 10 to the 6th, and angle of attack of 0 deg to 6 deg. The NPL 9510 airfoil was observed to have decreasing drag coefficient up to the highest test Reynolds number.

  16. NASA Langley Research Center tethered balloon systems

    NASA Technical Reports Server (NTRS)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  17. Test Activities in the Langley Transonic Dynamics Tunnel and a Summary of Recent Facility Improvements

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.

    2003-01-01

    The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.

  18. Support System Effects on the NASA Common Research Model

    NASA Technical Reports Server (NTRS)

    Rivers, S. Melissa B.; Hunter, Craig A.

    2012-01-01

    An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-Foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experimental and the computational data from the 4th Drag Prediction Workshop. This difference led to the present work. In this study, a computational assessment has been undertaken to investigate model support system interference effects on the Common Research Model. The configurations computed during this investigation were the wing/body/tail=0deg without the support system and the wing/body/tail=0deg with the support system. The results from this investigation confirm that the addition of the support system to the computational cases does shift the pitching moment in the direction of the experimental results.

  19. Data reduction formulas for the 16-foot transonic tunnel: NASA Langley Research Center, revision 2

    NASA Technical Reports Server (NTRS)

    Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.

    1992-01-01

    The equations used by the 16-Foot Transonic Wind Tunnel in the data reduction programs are presented in nine modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: (1) tunnel parameters; (2) jet exhaust measurements; (3) skin friction drag; (4) balance loads and model attitudes calculations; (5) internal drag (or exit-flow distribution); (6) pressure coefficients and integrated forces; (7) thrust removal options; (8) turboprop options; and (9) inlet distortion.

  20. Transonic Semispan Aerodynamic Testing of the Hybrid Wing Body with Over Wing Nacelles in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Hooker, John R.; Wick, Andrew; Plumley, Ryan W.; Zeune, Cale H.; Ol, Michael V.; DeMoss, Joshua A.

    2017-01-01

    A wind tunnel investigation of a 0.04-scale model of the Lockheed Martin Hybrid Wing Body (HWB) with Over Wing Nacelles (OWN) air mobility transport configuration was conducted in the National Transonic Facility at the NASA Langley Research Center under a collaborative partnership between NASA, the Air Force Research Laboratory, and Lockheed Martin Aeronautics Company. The wind tunnel test sought to validate the transonic aerodynamic performance of the HWB and to validate the efficiency benefits of the OWN installation as compared to the traditional under-wing installation. The semispan HWB model was tested in a clean wing configuration and also tested with two different nacelles representative of a modern turbofan engine and a future advanced high bypass ratio engine. The nacelles were installed in three different locations with two over-wing positions and one under-wing position. Five-component force and moment data, surface static pressure data, and aeroelastic deformation data were acquired. For the cruise configuration, the model was tested in an angle-of-attack range between -2 and 10 degrees at free-stream Mach numbers from 0.3 to 0.9 and at unit Reynolds numbers between 8 and 39 million per foot, achieving a maximum of 80% of flight Reynolds numbers across the Mach number range. The test results validated pretest computational fluid dynamic (CFD) simulations of the HWB performance including the OWN benefit and the results also exhibited excellent transonic drag data repeatability to within +/-1 drag count. This paper details the experimental setup and model overview, presents some sample data results, and describes the facility improvements that led to the success of the test.

  1. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1992-01-01

    The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution.

  2. Dryden's David Bushman explains the capabilities of the Altus UAV to NASA Langley's Charles Hudgins

    NASA Image and Video Library

    2003-05-27

    David Bushman, unmanned aerial vehicle (UAV) mission manager in NASA Dryden's Airborne Science Program, explains the capabilities of the Altus UAV to Charles Hudgins of NASA Langley's Chemistry and Dynamics Branch.

  3. Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.

    2017-01-01

    A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.

  4. Two Micron Laser Technology Advancements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  5. A strategy for electronic dissemination of NASA Langley technical publications

    NASA Technical Reports Server (NTRS)

    Roper, Donna G.; Mccaskill, Mary K.; Holland, Scott D.; Walsh, Joanne L.; Nelson, Michael L.; Adkins, Susan L.; Ambur, Manjula Y.; Campbell, Bryan A.

    1994-01-01

    To demonstrate NASA Langley Research Center's relevance and to transfer technology to external customers in a timely and efficient manner, Langley has formed a working group to study and recommend a course of action for the electronic dissemination of technical reports (EDTR). The working group identified electronic report requirements (e.g., accessibility, file format, search requirements) of customers in U.S. industry through numerous site visits and personal contacts. Internal surveys were also used to determine commonalities in document preparation methods. From these surveys, a set of requirements for an electronic dissemination system was developed. Two candidate systems were identified and evaluated against the set of requirements: the Full-Text Electronic Documents System (FEDS), which is a full-text retrieval system based on the commercial document management package Interleaf, and the Langley Technical Report Server (LTRS), which is a Langley-developed system based on the publicly available World Wide Web (WWW) software system. Factors that led to the selection of LTRS as the vehicle for electronic dissemination included searching and viewing capability, current system operability, and client software availability for multiple platforms at no cost to industry. This report includes the survey results, evaluations, a description of the LTRS architecture, recommended policy statement, and suggestions for future implementations.

  6. NASA Langley Research and Technology-Transfer Program in Formal Methods

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  7. Results for the hybrid laminar flow control experiment conducted in the NASA Langley 8-foot transonic pressure tunnel on a 7-foot chord model

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Ferris, James C.; Harvey, William D.; Goradia, Suresh H.

    1992-01-01

    A description is given of the development of, and results from, the hybrid laminar flow control (HLFC) experiment conducted in the NASA LaRC 8 ft Transonic Pressure Tunnel on a 7 ft chord, 23 deg swept model. The methods/codes used to obtain the contours of the HLFC model surface and to define the suction requirements are outlined followed by a discussion of the model construction, suction system, instrumentation, and some example results from the wind tunnel tests. Included in the latter are the effects of Mach number, suction level, and the extent of suction. An assessment is also given of the effect of the wind tunnel environment on the suction requirements. The data show that, at or near the design Mach number, large extents of laminar flow can be achieved with suction mass flows over the first 25 percent, or less, of the chord. Top surface drag coefficients with suction extending from the near leading edge to 20 percent of the chord were approximately 40 percent lower than those obtained with no suction. The results indicate that HLFC can be designed for transonic speeds with lift and drag coefficients approaching those of LFC designs but with much smaller extents and levels of suction.

  8. Langley aerospace test highlights, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The role of the NASA Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests that were performed during calendar year 1989 in the NASA Langley Research Center test facilities are highlighted. Both the broad range of the research and technology activities at the NASA Langley Research Center are illustrated along with the contributions of this work toward maintaining United States leadership in aeronautics and space research. Other highlights of Langley research and technology for 1989 are described in Research and Technology 1989 - Langley Research Center.

  9. Langley aerospace test highlights, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.

  10. Measurement of recovery temperature on an airfoil in the Langley 0.3-m transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Adcock, J. B.

    1981-01-01

    Experimental measurements of recovery temperature were made on an airfoil in the Langley 0.3-m Transonic Cryogenic Tunnel at Mach numbers of 0.60 and 0.84 over a Reynolds number per meter range from about 15,000,000 to about 335,000,000. The measured recovery temperatures were considerably below those associated with ideal-gas ambient temperature wind tunnels. This difference was accentuated as the stagnation pressure increased and the total temperature decreased. A boundary-layer code modified for use with cryogenic nitrogen adequately predicted the measured adiabatic wall temperature at all conditions. A quantitative, on-line assessment of the nonadiabatic condition of a model can be made during the operation of a cryogenic wind tunnel by using a correlation for the adiabatic wall temperature which is only a function of total temperature, total pressure, and local Mach number on the model.

  11. Langley Centennial Celebration Highlights Hidden Figures on This Week @NASA – December 2, 2016

    NASA Image and Video Library

    2016-12-02

    On Dec. 1, NASA Administrator Charlie Bolden helped kick off a yearlong centennial celebration for the agency’s Langley Research Center in Hampton, Virginia with several events highlighting the work of the African American women of Langley’s West Computing Unit. These mathematicians performed critical calculations for several historic NASA space missions in the early days of America’s space program, and their story is told in the book, “Hidden Figures,” by author Margot Lee Shetterly and the upcoming 20th Century Fox movie of the same name. It was also discussed during a NASA education event at Langley featuring Bolden, the film’s director Ted Melfi, NASA’s Chief Historian Bill Barry, and Langley electro-optics engineer Julie Williams-Byrd – a modern-day NASA figure using science, technology, engineering and mathematics, or STEM -- skills to make an impact. Later that evening, a VIP social and screenings of the film took place at nearby Virginia Air & Space Center. The women featured in Hidden Figures – Katherine Johnson, Mary Jackson and Dorothy Vaughan – known as “human computers,” helped put John Glenn in orbit, and helped Neil Armstrong and other astronauts land on the moon. Also, Cassini’s Ring-Grazing Orbit around Saturn, Next Space Station Crew Previews Mission, and Russian Cargo Ship Experiences Anomaly after Launch!

  12. A future perspective on technological obsolescenceat NASA, Langley Research Center

    NASA Technical Reports Server (NTRS)

    Mcintyre, Robert M.

    1990-01-01

    The present research effort was the first phase of a study to forecast whether technological obsolescence will be a problem for the engineers, scientists, and technicians at NASA Langley Research Center (LaRC). There were four goals of the research: to review the literature on technological obsolescence; to determine through interviews of division chiefs and branch heads Langley's perspective on future technological obsolescence; to begin making contacts with outside industries to find out how they view the possibility of technological obsolescence; and to make preliminary recommendations for dealing with the problem. A complete description of the findings of this research can be reviewed in a technical report in preparation. The following are a small subset of the key findings of the study: NASA's centers and divisions vary in their missions and because of this, in their capability to control obsolescence; research-oriented organizations within NASA are believed by respondents to keep up to date more than the project-oriented organizations; asked what are the signs of a professional's technological obsolescence, respondents had a variety of responses; top performing scientists were viewed as continuous learners, keeping up to date by a variety of means; when asked what incentives were available to aerospace technologists for keeping up to data, respondents specified a number of ideas; respondents identified many obstacles to professionals' keeping up to date in the future; and most respondents expressed some concern for the future of the professionals at NASA vis a vis the issue of professional obsolescence.

  13. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1977-01-01

    Work has continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes on airfoil data and wall contours. Mechanical design analyses for the transonic self streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility is outlined.

  14. Using transonic small disturbance theory for predicting the aeroelastic stability of a flexible wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bennett, Robert M.

    1990-01-01

    The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code, developed at the NASA - Langley Research Center, is applied to the Active Flexible Wing (AFW) wind tunnel model for prediction of the model's transonic aeroelastic behavior. Static aeroelastic solutions using CAP-TSD are computed. Dynamic (flutter) analyses are then performed as perturbations about the static aeroelastic deformations of the AFW. The accuracy of the static aeroelastic procedure is investigated by comparing analytical results to those from previous AFW wind tunnel experiments. Dynamic results are presented in the form of root loci at different Mach numbers for a heavy gas and air. The resultant flutter boundaries for both gases are also presented. The effects of viscous damping and angle-of-attack, on the flutter boundary in air, are presented as well.

  15. NASA Langley Research Center outreach in astronautical education

    NASA Technical Reports Server (NTRS)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  16. Operating Characteristics of the Multiple Critical Venturi System and Secondary Calibration Nozzles Used for Weight-Flow Measurements in the Langley 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Leavitt, L. D.; Bangert, L. S.

    1985-01-01

    An investigation has been conducted in the Langley 16 Foot Transonic Tunnel to determine the weight flow measurement characteristics of a multiple critical Venturi system and the nozzle discharge coefficient characteristics of a series of convergent calibration nozzles. The effects on model discharge coefficient of nozzle throat area, model choke plate open area, nozzle pressure ratio, jet total temperature, and number and combination of operating Venturis were investigated. Tests were conducted at static conditions (tunnel wind off) at nozzle pressure ratios from 1.3 to 7.0.

  17. Acoustic fatigue: Overview of activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Roussos, Louis A.

    1987-01-01

    A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway.

  18. A Storm Surge and Inundation Model of the Back River Watershed at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Loftis, Jon Derek; Wang, Harry V.; DeYoung, Russell J.

    2013-01-01

    This report on a Virginia Institute for Marine Science project demonstrates that the sub-grid modeling technology (now as part of Chesapeake Bay Inundation Prediction System, CIPS) can incorporate high-resolution Lidar measurements provided by NASA Langley Research Center into the sub-grid model framework to resolve detailed topographic features for use as a hydrological transport model for run-off simulations within NASA Langley and Langley Air Force Base. The rainfall over land accumulates in the ditches/channels resolved via the model sub-grid was tested to simulate the run-off induced by heavy precipitation. Possessing both the capabilities for storm surge and run-off simulations, the CIPS model was then applied to simulate real storm events starting with Hurricane Isabel in 2003. It will be shown that the model can generate highly accurate on-land inundation maps as demonstrated by excellent comparison of the Langley tidal gauge time series data (CAPABLE.larc.nasa.gov) and spatial patterns of real storm wrack line measurements with the model results simulated during Hurricanes Isabel (2003), Irene (2011), and a 2009 Nor'easter. With confidence built upon the model's performance, sea level rise scenarios from the ICCP (International Climate Change Partnership) were also included in the model scenario runs to simulate future inundation cases.

  19. Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

    2003-01-01

    The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

  20. Educator Resource Center for NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bridgford, Todd; Koltun, Nick R.

    2003-01-01

    The goal of the ERCN is to provide expertise and facilities to help educators access and utilize science, mathematics, and technology instructional products aligned with national standards and appropriate state frameworks and based on NASA s unique mission and results. The NASA Langley s Office of Education has established the service area for this ERC to be the five states of Kentucky, North Carolina, South Carolina, Virginia and West Virginia. This educational grant activity is associated with NASA s Mission to inspire the next generation of explorers.. .as only NASA can. The communication of NASA s knowledge is the prime role of this ERC. Functioning as a dissemination system of instructional materials and support for pre-college education programs we have met the NASA Education ERCN Program's goal. The following ERCN objectives have been accomplished: Demonstrate and facilitate the use of NASA educational products and technologies in print, video and web based formats. Examples include but are not limited to NASA approved Educator s Guides with Activities based on national standards for appropriate subjects and grade levels. We have demonstrated the use videotape series in analogue format and the new digital video instructional systems along with the use of NASA TV. The promotion of web page based resources such as the new NASA Portal web and the ability to download print resources is continuously facilitated in workshops. This objective has been completed by educator contacts that include on-site visits, phone requests, postal mail requests, e-mail requests, fax requests and workshops offered.

  1. A Review of Head-Worn Display Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis (Trey) J., III; Bailey, Randall E.; Williams, Steven P.; Prinzel, Lawrence J., III; Shelton, Kevin J.; Jones, Denise R.; Houston, Vincent

    2015-01-01

    NASA Langley has conducted research in the area of helmet-mounted/head-worn displays over the past 30 years. Initially, NASA Langley's research focused on military applications, but recently it has conducted a line of research in the area of head-worn displays for commercial and business aircraft. This work has revolved around numerous simulation experiments as well as flight tests to develop technology and data for industry and regulatory guidance. The paper summarizes the results of NASA's helmet-mounted/head-worn display research. Of note, the work tracks progress in wearable collimated optics, head tracking, latency reduction, and weight. The research lends credence that a small, sunglasses-type form factor of the head-worn display would be acceptable to commercial pilots, and this goal is now becoming technologically feasible. The research further suggests that a head-worn display may serve as an "equivalent" Head-Up Display (HUD) with safety, operational, and cost benefits. "HUD equivalence" appears to be the economic avenue by which head-worn displays can become main-stream on the commercial and business aircraft flight deck. If this happens, NASA's research suggests that additional operational benefits using the unique capabilities of the head-worn display can open up new operational paradigms.

  2. A review of head-worn display research at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J.; Bailey, Randall E.; Williams, Steven P.; Prinzel, Lawrence J.; Shelton, Kevin J.; Jones, Denise R.; Houston, Vincent

    2015-05-01

    NASA Langley has conducted research in the area of helmet-mounted/head-worn displays over the past 30 years. Initially, NASA Langley's research focused on military applications, but recently has conducted a line of research in the area of head-worn displays for commercial and business aircraft. This work has revolved around numerous simulation experiments as well as flight tests to develop technology and data for industry and regulatory guidance. The paper summarizes the results of NASA's helmet-mounted/head-worn display research. Of note, the work tracks progress in wearable collimated optics, head tracking, latency reduction, and weight. The research lends credence that a small, sunglasses-type form factor of the head-worn display would be acceptable to commercial pilots, and this goal is now becoming technologically feasible. The research further suggests that a head-worn display may serve as an "equivalent" Head-Up Display (HUD) with safety, operational, and cost benefits. "HUD equivalence" appears to be the economic avenue by which head-worn displays can become main-stream on the commercial and business aircraft flight deck. If this happens, NASA's research suggests that additional operational benefits using the unique capabilities of the head-worn display can open up new operational paradigms.

  3. Recent Productivity Improvements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Popernack, Thomas G., Jr.; Sydnor, George H.

    1998-01-01

    Productivity gains have recently been made at the National Transonic Facility wind tunnel at NASA Langley Research Center. A team was assigned to assess and set productivity goals to achieve the desired operating cost and output of the facility. Simulations have been developed to show the sensitivity of selected process productivity improvements in critical areas to reduce overall test cycle times. The improvements consist of an expanded liquid nitrogen storage system, a new fan drive, a new tunnel vent stack heater, replacement of programmable logic controllers, an increased data communications speed, automated test sequencing, and a faster model changeout system. Where possible, quantifiable results of these improvements are presented. Results show that in most cases, improvements meet the productivity gains predicted by the simulations.

  4. A simplified fourwall interference assessment procedure for airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    A simplified fourwall interference assessment method has been described, and a computer program developed to facilitate correction of the airfoil data obtained in the Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The procedure adopted is to first apply a blockage correction due to sidewall boundary-layer effects by various methods. The sidewall boundary-layer corrected data are then used to calculate the top and bottom wall interference effects by the method of Capallier, Chevallier and Bouinol, using the measured wall pressure distribution and the model force coefficients. The interference corrections obtained by the present method have been compared with other methods and found to give good agreement for the experimental data obtained in the TCT with slotted top and bottom walls.

  5. Evolution, calibration, and operational characteristics of the two-dimensional test section of the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ladson, Charles L.; Ray, Edward J.

    1987-01-01

    Presented is a review of the development of the world's first cryogenic pressure tunnel, the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). Descriptions of the instrumentation, data acquisition systems, and physical features of the two-dimensional 8- by 24-in, (20.32 by 60.96 cm) and advanced 13- by 13-in (33.02 by 33.02 cm) adaptive-wall test-section inserts of the 0.3-m TCT are included. Basic tunnel-empty Mach number distributions, stagnation temperature distributions, and power requirements are included. The Mach number capability of the facility is from about 0.20 to 0.90. Stagnation pressure can be varied from about 80 to 327 K.

  6. Blended-Wing-Body Transonic Aerodynamics: Summary of Ground Tests and Sample Results

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Vicroy, Dan D.; Patel, Dharmendra

    2009-01-01

    The Blended-Wing-Body (BWB) concept has shown substantial performance benefits over conventional aircraft configuration with part of the benefit being derived from the absence of a conventional empennage arrangement. The configuration instead relies upon a bank of trailing edge devices to provide control authority and augment stability. To determine the aerodynamic characteristics of the aircraft, several wind tunnel tests were conducted with a 2% model of Boeing's BWB-450-1L configuration. The tests were conducted in the NASA Langley Research Center's National Transonic Facility and the Arnold Engineering Development Center s 16-Foot Transonic Tunnel. Characteristics of the configuration and the effectiveness of the elevons, drag rudders and winglet rudders were measured at various angles of attack, yaw angles, and Mach numbers (subsonic to transonic speeds). The data from these tests will be used to develop a high fidelity simulation model for flight dynamics analysis and also serve as a reference for CFD comparisons. This paper provides an overview of the wind tunnel tests and examines the effects of Reynolds number, Mach number, pitch-pause versus continuous sweep data acquisition and compares the data from the two wind tunnels.

  7. Trailing Edge Blowing on a Two-Dimensional Six-Percent Thick Elliptical Circulation Control Airfoil Up to Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Anders, Scott G.; Johnson, Stuart K.; Florance, Jennifer P.; Keller, Donald F.

    2005-01-01

    A wind tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing capability. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at momentum coefficients (Cm) from 0.0 to 0.12. Test data were acquired at Mach numbers of 0.3, 0.5, 0.7, 0.8, and 0.84 at Reynolds numbers per foot of 2.43 x 105 to 1.05 x 106. For a transonic condition, (Mach = 0.8 at alpha = 3 degrees), it was generally found the smaller slot and larger Coanda surface combination was overall more effective than other slot/Coanda surface combinations. Lower surface blowing was not as effective as the upper surface blowing over the same range of momentum coefficients. No appreciable Coanda surface, slot height, or slot blowing position preference was indicated transonically with the dual slot blowing.

  8. Superfund record of decision (EPA Region 3): Langley AFB/NASA Langley Center, Tabbs Creek Operable Unit, Hampton, VA, September 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    This Record of Decision (ROD) presents remedial action for the Tabbs Creek Operable Unit (OU) at the NASA Langley Research Center (LaRC) in Hampton, Virginia (the Site). This action addresses the principle threat at the OU by dredging and disposing contaminated sediment.

  9. Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Tomek, W. G.; Hall, R. M.; Wahls, R. A.; Luckring, J. M.; Owens, L. R.

    2002-01-01

    A wind tunnel test of a generic fighter configuration was tested in the National Transonic Facility through a cooperative agreement between NASA Langley Research Center and McDonnell Douglas. The primary purpose of the test was to assess Reynolds number scale effects on a thin-wing, fighter-type configuration up to full-scale flight conditions (that is, Reynolds numbers of the order of 60 million). The test included longitudinal and lateral/directional studies at subsonic and transonic conditions across a range of Reynolds numbers from that available in conventional wind tunnels to flight conditions. Results are presented for three Mach numbers (0.6, 0.8, and 0.9) and three configurations: (1) Fuselage/Wing; (2) Fuselage/Wing/Centerline Vertical Tail/Horizontal Tail; and (3) Fuselage/Wing/Trailing-Edge Extension/Twin Vertical Tails. Reynolds number effects on the longitudinal aerodynamic characteristics are presented herein.

  10. Public health assessment for USAF Langley Air Force Base and NASA-Langley Research Center, Hampton, York County, Virginia, Region 3. CERCLIS Number VA4570024477 and CERCLIS Number VA2800005033; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-29

    Langley Air Force Base (Langley AFB) and the National Aeronautics and Space Administration Langley Research Center (NASA LaRC) are located adjacent to each other on a small coastal basin of the Back River, a tidal estuary of the Chesapeake Bay. The Agency for Toxic Substances and Disease Registry (ATSDR) visited the sites in 1994 and 1997. During the 1994 visit, several potential public health concerns were raised. (1) the potential for contaminants to migrate to fish and shellfish (which might be ingested by local residents) in the adjoining estuary, (2) surface soil contamination at a former playground at Langley AFBmore » Site OT-06, (3) surface soil contamination and physical hazards at Langley AFB Sites OT-25 and FT-41, where children or youths might trespass, (4) the use of Langley AFB Site LF-12 for storing fill material, and (5) lead-contaminated soil in the housing areas at Langley AFB. ATSDR made recommendations for several of these sites. During the 1997 visit, ATSDR identified one additional potential concern at NASA LaRC Site 4, an open storage site where surface soil has not been characterized.« less

  11. Microcomputer based controller for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1989-01-01

    Flow control of the Langley 0.3-meter Transonic Cryogenic Tunnel (TCT) is a multivariable nonlinear control problem. Globally stable control laws were generated to hold tunnel conditions in the presence of geometrical disturbances in the test section and precisely control the tunnel states for small and large set point changes. The control laws are mechanized as four inner control loops for tunnel pressure, temperature, fan speed, and liquid nitrogen supply pressure, and two outer loops for Mach number and Reynolds number. These integrated control laws have been mechanized on a 16-bit microcomputer working on DOS. This document details the model of the 0.3-m TCT, control laws, microcomputer realization, and its performance. The tunnel closed loop responses to small and large set point changes were presented. The controller incorporates safe thermal management of the tunnel cooldown based on thermal restrictions. The controller was shown to provide control of temperature to + or - 0.2K, pressure to + or - 0.07 psia, and Mach number to + or - 0.002 of a given set point during aerodynamic data acquisition in the presence of intrusive geometrical changes like flexwall movement, angle-of-attack changes, and drag rake traverse. The controller also provides a new feature of Reynolds number control. The controller provides a safe, reliable, and economical control of the 0.3-m TCT.

  12. Design features and operational characteristics of the Langley pilot transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1974-01-01

    A fan-driven transonic cryogenic tunnel was designed, and its purging, cooldown, and warmup times were determined satisfactory. Cooling with liquid nitrogen is at the power levels required for transonic testing. Good temperature distributions are obtained by using a simple nitrogen injection system.

  13. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    NASA Technical Reports Server (NTRS)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  14. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  15. Experimental uncertainty and drag measurements in the national transonic facility

    NASA Technical Reports Server (NTRS)

    Batill, Stephen M.

    1994-01-01

    This report documents the results of a study which was conducted in order to establish a framework for the quantitative description of the uncertainty in measurements conducted in the National Transonic Facility (NTF). The importance of uncertainty analysis in both experiment planning and reporting results has grown significantly in the past few years. Various methodologies have been proposed and the engineering community appears to be 'converging' on certain accepted practices. The practical application of these methods to the complex wind tunnel testing environment at the NASA Langley Research Center was based upon terminology and methods established in the American National Standards Institute (ANSI) and the American Society of Mechanical Engineers (ASME) standards. The report overviews this methodology.

  16. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    NASA Technical Reports Server (NTRS)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  17. Progress in multidisciplinary design optimization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    1993-01-01

    Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.

  18. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  19. NASA High-Reynolds Number Circulation Control Research - Overview of CFD and Planned Experiments

    NASA Technical Reports Server (NTRS)

    Milholen, W. E., II; Jones, Greg S.; Cagle, Christopher M.

    2010-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. This technique is focused on the use of semi-span models due to their increased model size and relative ease of routing high-pressure air to the model. A new dual flow-path high-pressure air delivery station has been designed, along with a new high performance transonic sem -si pan wing model. The modular wind tunnel model is designed for testing circulation control concepts at both transonic cruise and low-speed high-lift conditions. The ability of the model to test other active flow control techniques will be highlighted. In addition, a new higher capacity semi-span force and moment wind tunnel balance has been completed and calibrated to enable testing at transonic conditions.

  20. Impingement of Boundary-Reflected Disturbances Originating at the Nose of a Body of Revolution in the Langley Research Center 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Re, Richard, J.; Capone, Francis J.

    1998-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine boundary-reflected disturbance lengths at low supersonic Mach numbers in the octagonally shaped test section. A body of revolution that had a nose designed to produce a bow shock and flow field similar to that about the nose of a supersonic transport configuration was used. The impingement of reflected disturbances on the model was determined from static pressures measured on the surface of the model. Test variables included Mach number (0.90 to 1.25), model angle of attack (nominally -10, 0, and 10), and model roll angle.

  1. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.

  2. Application of FLEET Velocimetry in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.; Halls, Benjamin R.; Jiang, Naibo

    2015-01-01

    Femtosecond laser electronic excitation and tagging (FLEET) velocimetry is demonstrated in a large-scale transonic cryogenic wind tunnel. Test conditions include total pressures, total temperatures, and Mach numbers ranging from 15 to 58 psia, 200 to 295 K, and 0.2 to 0.75, respectively. Freestream velocity measurements exhibit accuracies within 1 percent and precisions better than 1 m/s. The measured velocities adhere closely to isentropic flow theory over the domain of temperatures and pressures that were tested. Additional velocity measurements are made within the tunnel boundary layer; virtual trajectories traced out by the FLEET signal are indicative of the characteristic turbulent behavior in this region of the flow, where the unsteadiness increases demonstrably as the wall is approached. Mean velocities taken within the boundary layer are in agreement with theoretical velocity profiles, though the fluctuating velocities exhibit a greater deviation from theoretical predictions.

  3. Experiences in using the CYBER 203 for three-dimensional transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Melson, N. D.; Keller, J. D.

    1982-01-01

    In this paper, the authors report on some of their experiences modifying two three-dimensional transonic flow programs (FLO22 and FLO27) for use on the NASA Langley Research Center CYBER 203. Both of the programs discussed were originally written for use on serial machines. Several methods were attempted to optimize the execution of the two programs on the vector machine, including: (1) leaving the program in a scalar form (i.e., serial computation) with compiler software used to optimize and vectorize the program, (2) vectorizing parts of the existing algorithm in the program, and (3) incorporating a new vectorizable algorithm (ZEBRA I or ZEBRA II) in the program.

  4. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

    1997-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  5. Langley Aerospace Research Summer Scholars (LARSS) Scholars Pres

    NASA Image and Video Library

    2013-08-07

    250 students participated in the Langley Aerospace Research Summer Scholars (LARSS) Presentations focused on 3D modeling of STARBUKS calibration components in the National Transonic Facility, hypersonic aerodynamic inflatable decelerator, and optimization of a microphone-based array for flight testing. Reid Center LaRC Hampton, VA

  6. The NASA Langley Isolator Dynamics Research Lab

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.

    2010-01-01

    The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.

  7. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  8. Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

    2012-01-01

    We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

  9. The NASA Langley Mars Tumbleweed Rover Prototype

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.

    2005-01-01

    Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.

  10. A Program of Research and Education in Astronautics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.

    2000-01-01

    The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

  11. Measurements on NASA Langley Durable Combustor Rig by TDLAT: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Busa, Kristin; Ellison, Erik N.; McGovern, Brian J.; McDaniel, James C.; Diskin, Glenn S.; DePiro, Maxwell J.; Capriotti, Diego P.; Gaffney, Richard L.

    2013-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. Several separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  12. An Overview of Unsteady Pressure Measurements in the Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Edwards, John W.; Bennett, Robert M.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel has served as a unique national facility for aeroelastic testing for over forty years. A significant portion of this testing has been to measure unsteady pressures on models undergoing flutter, forced oscillations, or buffet. These tests have ranged from early launch vehicle buffet to flutter of a generic high-speed transport. This paper will highlight some of the test techniques, model design approaches, and the many unsteady pressure tests conducted in the TDT. The objectives and results of the data acquired during these tests will be summarized for each case and a brief discussion of ongoing research involving unsteady pressure measurements and new TDT capabilities will be presented.

  13. Exhaust Simulation Testing of a Hypersonic Airbreathing Model at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Witte, David W.; Andrews, Earl H., Jr.

    2004-01-01

    An experimental study was performed to examine jet-effects for an airframe-integrated, scramjet-rocket combined-cycle vehicle configuration at transonic test conditions. This investigation was performed by testing an existing exhaust simulation wind tunnel model, known as Model 5B, in the NASA Langley 16-Ft. Transonic Tunnel. Tests were conducted at freestream Mach numbers from 0.7 to 1.2, at angles of attack from 2 to +14 degrees, and at up to seven nozzle static pressure ratio values for a set of horizontal-tail and body-flap deflections. The model aftbody, horizontal tails, and body flaps were extensively pressure instrumented to provide an understanding of jet-effects and control-surface/plume interactions, as well as for the development of analytical methodologies and calibration of computational fluid dynamic codes to predict this type of flow phenomenon. At all transonic test conditions examined, the exhaust flow at the exit of the internal nozzle was over-expanded, generating an exhaust plume that turned toward the aftbody. Pressure contour plots for the aftbody of Model 5B are presented for freestream transonic Mach numbers of 0.70, 0.95, and 1.20. These pressure data, along with shadowgraph images, indicated the impingement of an internal plume shock and at least one reflected shock onto the aftbody for all transonic conditions tested. These results also provided evidence of the highly three-dimensional nature of the aftbody exhaust flowfield. Parametric testing showed that angle-of-attack, static nozzle pressure ratio, and freestream Mach number all affected the exhaust-plume size, exhaust-flowfield shock structure, and the aftbody-pressure distribution, with Mach number having the largest effect. Integration of the aftbody pressure data showed large variations in the pitching moment throughout the transonic regime.

  14. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  15. Enhancements to the FAST-MAC Circulation Control Model and Recent High-Reynolds Number Testing in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.; Anders, Scott G.; Melton, Latunia P.; Carter, Melissa B.; Allan, Brian G.; Capone, Francis J.

    2013-01-01

    A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements.

  16. Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.

    1979-01-01

    The past 6 years of operation with the NASA Langley 0.3 m transonic cryogenic tunnel (TCT) show that there are no insurmountable problems associated with cryogenic testing with gaseous nitrogen at transonic Mach numbers. The fundamentals of the concept were validated both analytically and experimentally and the 0.3 m TCT, with its unique Reynolds number capability, was used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects were developed and cryogenic tunnel conditions can be set and maintained accurately. Cryogenic cooling by injecting liquid nitrogen directly into the tunnel circuit imposes no problems with temperature distribution or dynamic response characteristics. Experience with the 0.3 m TCT, indicates that there is a significant learning process associated with cryogenic, high Reynolds number testing. Many of the questions have already been answered; however, factors such as tunnel control, run logic, economics, instrumentation, and model technology present many new and challenging problems.

  17. Demonstration of Imaging Flow Diagnostics Using Rayleigh Scattering in Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Herring, G. C.; Barros, Toya

    1999-01-01

    The feasibility of using the Rayleigh scattering technique for molecular density imaging of the free-stream flow field in the Langley 0.3-Meter Transonic Cryogenic Tunnel has been experimentally demonstrated. The Rayleigh scattering was viewed with a near-backward geometry with a frequency-doubled output from a diode-pumped CW Nd:YAG laser and an intensified charge-coupled device camera. Measurements performed in the range of free-stream densities from 3 x 10(exp 25) to 24 x 10(exp 25) molecules/cu m indicate that the observed relative Rayleigh signal levels are approximately linear with flow field density. The absolute signal levels agree (within approx. 30 percent) with the expected signal levels computed based on the well-known quantities of flow field density, Rayleigh scattering cross section for N2, solid angle of collection, transmission of the optics, and the independently calibrated camera sensitivity. These results show that the flow field in this facility is primarily molecular (i.e., not contaminated by clusters) and that Rayleigh scattering is a viable technique for quantitative nonintrusive diagnostics in this facility.

  18. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  19. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.

  20. The NASA Langley Laminar-Flow-Control Experiment on a Swept Supercritical Airfoil: Basic Results for Slotted Configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1989-01-01

    The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number.

  1. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  2. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-01

    This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.

  3. Results From a Pressure Sensitive Paint Test Conducted at the National Transonic Facility on Test 197: The Common Research Model

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.

    2011-01-01

    This report will serve to present results of a test of the pressure sensitive paint (PSP) technique on the Common Research Model (CRM). This test was conducted at the National Transonic Facility (NTF) at NASA Langley Research Center. PSP data was collected on several surfaces with the tunnel operating in both cryogenic mode and standard air mode. This report will also outline lessons learned from the test as well as possible approaches to challenges faced in the test that can be applied to later entries.

  4. Aeroacoustic Experiments in the NASA Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Lockard, David P.; Macaraeg, Michele G.; Singer, Bart A.; Streett, Craig L.; Neubert, Guy R.; Stoker, Robert W.; Underbrink, James R.; Berkman, Mert E.; Khorrami, Mehdi R.

    2002-01-01

    A phased microphone array was used in the NASA Langley Low-Turbulence Pressure Tunnel to obtain acoustic data radiating from high-lift wing configurations. The data included noise localization plots and acoustic spectra. The tests were performed at Reynolds numbers based on the cruise-wing chord, ranging from 3.6 x 10(exp 6) to 19.2 x 10(exp 6). The effects of Reynolds number were small and monotonic for Reynolds numbers above 7.2 x 10(exp 6).

  5. Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berger, Karen T.; Berry, Scott A.; Bruckmann, Gregory J.; Buck, Gregory M.; DiFulvio, Michael; Horvath, Thomas J.; Liechty, Derek S.; Merski, N. Ronald; Murphy, Kelly J.; hide

    2014-01-01

    A review is presented of recent research, development, testing and evaluation activities related to entry, descent and landing that have been conducted at the NASA Langley Research Center. An overview of the test facilities, model development and fabrication capabilities, and instrumentation and measurement techniques employed in this work is provided. Contributions to hypersonic/supersonic flight and planetary exploration programs are detailed, as are fundamental research and development activities.

  6. Effect of simulated in-flight thrust reversing on vertical-tail loads of F-18 and F-15 airplane models. [conducted in the Langley 16-foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Bare, E. A.; Berrier, B. L.; Capone, F. J.

    1981-01-01

    Investigations were conducted in the Langley 16-Foot Transonic Tunnel to provide data on a 0.10-scale model of the prototype F-18 airplane and a 0.047-scale model of the F-15 three-surface configuration (canard, wing, and horizontal tails). Test data were obtained at static conditions and at Mach numbers from 0.6 to 1.2 over an angle-of-attack range from 2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 8.0.

  7. Pressure- and Temperature-Sensitive Paint at 0.3-m Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.

    2015-01-01

    Recently both Pressure- and Temperature-Sensitive Paint experiments were conducted at cryogenic conditions in the 0.3-m Transonic Cryogenic Tunnel at NASA Langley Research Center. This represented a re-introduction of the techniques to the facility after more than a decade, and provided a means to upgrade the measurements using newer technology as well as demonstrate that the techniques were still viable in the facility. Temperature-Sensitive Paint was employed on a laminar airfoil for transition detection and Pressure-Sensitive Paint was employed on a supercritical airfoil. This report will detail the techniques and their unique challenges that need to be overcome in cryogenic environments. In addition, several optimization strategies will also be discussed.

  8. Coherent Lidar Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong

    2007-01-01

    NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.

  9. Crafting Flight: Aircraft Pioneers and the Contributions of the Men and Women of NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Schultz, James

    2003-01-01

    While this is a self-contained history of NASA Langley Research Center's contributions to flight, many other organizations around the country played a vital role in the work described in this book.When you pass through the front gates of NASA Langley Research Center you are entering an extraordinary place. You could easily miss that fact, however. A few years cross-state bicycle tour passed through the Center. As interesting as looping around Center was, the riders observed that nothing about the vaguely industrial site fit the conventional stereotypes of what high tech looks like. NASA Langley does not fit many stereotypes. It takes a close examination to discover the many ways it has contributed to development of flight. As part of the national celebrations commemorating the 100th anniversary of the Wright brothers first flight, James Schultz, an experienced journalist with a gift for translating the language of engineers and scientists into prose that nonspecialists can comprehend, has revised and expanded Winds of Change , his wonderful guide to the Center. This revised book, Crafting Flight , invites you inside. You will read about one of the Nation s oldest research and development facilities, a place of imagination and ingenuity.

  10. Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.

    2008-01-01

    NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

  11. The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel T-P/Re-M controller manual

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1989-01-01

    A new microcomputer based controller for the 0.3-m Transonic Cryogenic Tunnel (TCT) has been commissioned in 1988 and has reliably operated for more than a year. The tunnel stagnation pressure, gas stagnation temperature, tunnel wall structural temperature and flow Mach number are precisely controlled by the new controller in a stable manner. The tunnel control hardware, software, and the flow chart to assist in calibration of the sensors, actuators, and the controller real time functions are described. The software installation details are also presented. The report serves as the maintenance and trouble shooting manual for the 0.3-m TCT controller.

  12. Finite Element Analysis of a NASA National Transonic Facility Wind Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.

    1996-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  13. Finite Element Analysis of a NASA National Transonic Facility Wide Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C. (Editor)

    1999-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  14. A brief overview of NASA Langley's research program in formal methods

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

  15. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

  16. HSR Model Deformation Measurements from Subsonic to Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Erickson, G. E.; Goodman, W. L.; Fleming, G. A.

    1999-01-01

    This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.

  17. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered,more » focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.« less

  18. Superfund record of decision (EPA Region 3): Langley AFB/NASA Langley Center, Area E Warehouse Operable Unit, Hampton, VA, September 28, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    This Record of Decision (ROD) presents the selected remedial action for the Area E Warehouse Operable Unit (OU) at the NASA Langley Research Center (LaRC) in Hampton, Virginia (the Site). This actions addresses the principle threat at the OU by imposing land use restrictions that will prevent any non-industrial activities to take place on the OU.

  19. Nonlinear transonic Wall-Interference Assessment/Correction (WIAC) procedures and application to cast-10 airfoil results from the NASA 0.3-m TCT 8- by 24-inch Slotted Wall Test Section (SWTS)

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Green, Lawrence L.; Newman, Perry A.

    1989-01-01

    From the time that wind tunnel wall interference was recognized to be significant, researchers have been developing methods to alleviate or account for it. Despite the best effort so far, it appears that no method is available which completely eliminates the effects due to the wind tunnel walls. This report discusses procedures developed for slotted wall and adaptive wall test sections of the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) to assess and correct for the residual interference by methods consistent with the transonic nature of the tests.

  20. NASA supercritical laminar flow control airfoil experiment

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.

    1982-01-01

    The design and goals of experimental investigations of supercritical LFC airfoils conducted in the NASA Langley 8-ft Transonic Pressure Tunnel beginning in March 1982 are reviewed. Topics addressed include laminarization aspects; flow-quality requirements; simulation of flight parameters; the setup of screens, honeycomb, and sonic throat; the design cycle; theoretical pressure distributions and shock-free limits; drag divergence and stability analysis; and the LFC suction system. Consideration is given to the LFC airfoil model, the air-flow control system, airfoil-surface instrumentation, liner design and hardware, and test options. Extensive diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  1. Investigation of some effects of humidity on aerodynamic characteristics on a 10-percent-thick NASA supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1976-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel to determine the effects of wind-tunnel humidity on the aerodynamic characteristics of a 10-percent-thick NASA supercritical airfoil. Effects of dewpoint variation from 267 K (20 F) to 294 K (70 F) were investigated. The tunnel stagnation temperature was 322 K (120 F) and the stagnation pressure was 0.1013 MN/09 m (1 atm).

  2. Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using classical, and minimax techniques are described. A unified general formulation and solution for the minimax approach, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  3. FLEET Velocimetry Measurements on a Transonic Airfoil

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.

    2017-01-01

    Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.

  4. Overview of Active Flow Control at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pack, L. G.; Joslin, R. D.

    1998-01-01

    The paper summarizes Active Flow Control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state-of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R&D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry. Keywords: active flow control, separation control, MEMS, review

  5. Aeropropulsive characteristics of twin nonaxisymmetric vectoring nozzles installed with forward-swept and aft-swept wings. [in the Langley 16 Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Capone, F. J.

    1981-01-01

    An investigation was conducted in the Langley 16 Foot Transonic Tunnel to determine the aeropropulsive characteristics of a single expansion ramp nozzle (SERN) and a two dimensional convergent divergent nozzle (2-D C-D) installed with both an aft swept and a forward swept wing. The SERN was tested in both an upright and an inverted position. The effects of thrust vectoring at nozzle vector angles from -5 deg to 20 deg were studied. This investigation was conducted at Mach numbers from 0.40 to 1.20 and angles of attack from -2.0 deg to 16 deg. Nozzle pressure ratio was varied from 1.0 (jet off) to about 9.0. Reynolds number based on the wing mean geometric chord varied from about 3 million to 4.8 million, depending upon free stream number.

  6. Model-Based Systems Engineering Pilot Program at NASA Langley

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  7. NASA Langley/CNU Distance Learning Programs

    NASA Technical Reports Server (NTRS)

    Caton, Randall; Pinelli, Thomas E.

    2002-01-01

    NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and we currently have a suite of five distance-learning programs. We have around 450,000 registered educators and 12.5 million registered students in 60 countries. Partners and affiliates include the American Institute of Aeronautics and Astronautics (AIAA), the Aerospace Education Coordinating Committee (AECC), the Alliance for Community Media, the National Educational Telecommunications Association, Public Broadcasting System (PBS) affiliates, the NASA Learning Technologies Channel, the National Council of Teachers of Mathematics (NCTM), the Council of the Great City Schools, Hampton City Public Schools, Sea World Adventure Parks, Busch Gardens, ePALS.com, and Riverdeep. Our mission is based on the "Horizon of Learning," a vision for inspiring learning across a continuum of educational experiences. The programs form a continuum of educational experiences for elementary youth through adult learners. The strategic plan for the programs will evolve to reflect evolving national educational needs, changes within NASA, and emerging system initiatives. Plans for each program component include goals, objectives, learning outcomes, and rely on sound business models. It is well documented that if technology is used properly it can be a powerful partner in education. Our programs employ both advances in information technology and in effective pedagogy to produce a broad range of materials to complement and enhance other educational efforts. Collectively, the goals of the five programs are to increase educational excellence; enhance and enrich the teaching of mathematics, science, and technology; increase scientific and technological literacy; and communicate the results of NASA discovery, exploration, innovation and research

  8. Resonance Effects in the NASA Transonic Flutter Cascade Facility

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Capece, V. R.; Ford, C. T.

    2003-01-01

    Investigations of unsteady pressure loadings on the blades of fans operating near the stall flutter boundary are carried out under simulated conditions in the NASA Transonic Flutter Cascade facility (TFC). It has been observed that for inlet Mach numbers of about 0.8, the cascade flowfield exhibits intense low-frequency pressure oscillations. The origins of these oscillations were not clear. It was speculated that this behavior was either caused by instabilities in the blade separated flow zone or that it was a tunnel resonance phenomenon. It has now been determined that the strong low-frequency oscillations, observed in the TFC facility, are not a cascade phenomenon contributing to blade flutter, but that they are solely caused by the tunnel resonance characteristics. Most likely, the self-induced oscillations originate in the system of exit duct resonators. For sure, the self-induced oscillations can be significantly suppressed for a narrow range of inlet Mach numbers by tuning one of the resonators. A considerable amount of flutter simulation data has been acquired in this facility to date, and therefore it is of interest to know how much this tunnel self-induced flow oscillation influences the experimental data at high subsonic Mach numbers since this facility is being used to simulate flutter in transonic fans. In short, can this body of experimental data still be used reliably to verify computer codes for blade flutter and blade life predictions? To answer this question a study on resonance effects in the NASA TFC facility was carried out. The results, based on spectral and ensemble averaging analysis of the cascade data, showed that the interaction between self-induced oscillations and forced blade motion oscillations is very weak and can generally be neglected. The forced motion data acquired with the mistuned tunnel, when strong self-induced oscillations were present, can be used as reliable forced pressure fluctuations provided that they are extracted

  9. Development and application of a program to calculate transonic flow around an oscillating three-dimensional wing using finite difference procedures

    NASA Technical Reports Server (NTRS)

    Weatherill, Warren H.; Ehlers, F. Edward

    1989-01-01

    A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. Difference equations are derived for harmonic transonic flow to include a coordinate transformation for swept and tapered planforms. A pilot program is developed for three-dimensional planar lifting surface configurations (including thickness) for the CRAY-XMP at Boeing Commercial Airplanes and for the CYBER VPS-32 at the NASA Langley Research Center. An investigation is made of the effect of the location of the outer boundaries on accuracy for very small reduced frequencies. Finally, the pilot program is applied to the flutter analysis of a rectangular wing.

  10. Optically Based Flame Detection in the NASA Langley 8-ft High- Temperature Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.

    2005-01-01

    Two optically based flame-detection systems have been developed for use in NASA Langley's 8-Foot High-Temperature Tunnel (8-ft HTT). These systems are used to detect the presence and stability of the main-burner and pilot-level flames during facility operation. System design considerations will be discussed, and a detailed description of the system components and circuit diagrams will be provided in the Appendices of this report. A more detailed description of the manufacturing process used in the fabrication of the fiber-optic probes is covered in NASA TM-2001-211233.

  11. Experimental and analytical study on the flutter and gust response characteristics of a torsion-free-wing airplane model. [in the Langley transonic dynamics tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, A. C.

    1981-01-01

    Experimental data and correlative analytical results on the flutter and gust response characteristics of a torsion-free-wing (TFW) fighter airplane model are presented. TFW consists of a combined wing/boom/canard surface and was tested with the TFW free to pivot in pitch and with the TFW locked to the fuselage. Flutter and gust response characteristics were measured in the Langley Transonic Dynamics Tunnel with the complete airplane model mounted on a cable mount system that provided a near free flying condition. Although the lowest flutter dynamic pressure was measured for the wing free configuration, it was only about 20 deg less than that for the wing locked configuration. However, no appreciable alleviation of the gust response was measured by freeing the wing.

  12. Employee Communication at the NASA Langley Research Center. M.S. Thesis - Coll. of William and Mary

    NASA Technical Reports Server (NTRS)

    Bendura, R. J.

    1972-01-01

    The means of employee communication at the NASA Langley Research Center are reported, and their effectiveness evaluated. The history, purpose, and structure of the organization as well as the employee educational background and salary status are discussed. Some of the approaches used by Langley Research Center management in communicating with their men are addressed and compared with recommendations of experts in employee communication. The results of personal interviews involving both employee and management assessment of management-employee communication are presented and evaluated. Employees need a great deal more recommunication from management providing rationale behind the cancellation of existing projects or the disapproval of proposed research projects. Also NASA management needs to establish a policy and guidelines for the rapid and simultaneous dissemination of all non-restricted information to employees during organizational activities having potential adverse effects on large numbers of personnel. Finally some improvements should be made in employee orientation procedures.

  13. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  14. Dynamic wind-tunnel testing of active controls by the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, I.; Doggett, R. V.; Newsom, J. R.; Sandford, M.

    1984-01-01

    Dynamic wind-tunnel testing of active controls by the NASA Langley Research Center is presented. Seven experimental studies that were accomplished to date are described. Six of the studies focus on active flutter suppression. The other focuses on active load alleviation. In addition to presenting basic results for these experimental studies, topics including model design and construction, control law synthesis, active control system implementation, and wind-tunnel test techniques are discussed.

  15. Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Scallion, William I.

    2005-01-01

    As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

  16. Implementation of the WICS Wall Interference Correction System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert

    2000-01-01

    The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration. The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.

  17. Implementation of the WICS Wall Interference Correction System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Martin, Lockheed; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert

    2000-01-01

    The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration, The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including, tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.

  18. Further Investigation of the Support System Effects and Wing Twist on the NASA Common Research Model

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Hunter, Craig A.; Campbell, Richard L.

    2012-01-01

    An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experiment and computational data from the 4th Drag Prediction Workshop. This difference led to a computational assessment to investigate model support system interference effects on the Common Research Model. The results from this investigation showed that the addition of the support system to the computational cases did increase the pitching moment so that it more closely matched the experimental results, but there was still a large discrepancy in pitching moment. This large discrepancy led to an investigation into the shape of the as-built model, which in turn led to a change in the computational grids and re-running of all the previous support system cases. The results of these cases are the focus of this paper.

  19. Nasa langley research center and the tidewater interagency pollution prevention program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houlihan, J.; Binkley, K.

    1994-09-01

    National Aeronautics and Space Administration (NASA)`s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. LaRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implemented through specific projects. Over twenty specific source reduction or recycling projects have been initiated since 1991. Recycling activities and use of conservation measures have reduced the use of various freon chlorofluorocarbons, ozone depleting substances (ODCs), by 84 percent in 1993 compared with 1990 figures. In addition, improved silver recovery procedures reduced the amount of photographic laboratory waste by 70 percent, or 11,982more » pounds, during 1993. Total hazardous waste, excluding abrasive blasting debris generated by specific remediation projects, has been reduced by 25 percent, or about 50,000 pounds, in 1993 compared to 1992.« less

  20. Desktop Access to Full-Text NACA and NASA Reports: Systems Developed by NASA Langley Technical Library

    NASA Technical Reports Server (NTRS)

    Ambur, Manjula Y.; Adams, David L.; Trinidad, P. Paul

    1997-01-01

    NASA Langley Technical Library has been involved in developing systems for full-text information delivery of NACA/NASA technical reports since 1991. This paper will describe the two prototypes it has developed and the present production system configuration. The prototype systems are a NACA CD-ROM of thirty-three classic paper NACA reports and a network-based Full-text Electronic Reports Documents System (FEDS) constructed from both paper and electronic formats of NACA and NASA reports. The production system is the DigiDoc System (DIGItal Documents) presently being developed based on the experiences gained from the two prototypes. DigiDoc configuration integrates the on-line catalog database World Wide Web interface and PDF technology to provide a powerful and flexible search and retrieval system. It describes in detail significant achievements and lessons learned in terms of data conversion, storage technologies, full-text searching and retrieval, and image databases. The conclusions from the experiences of digitization and full- text access and future plans for DigiDoc system implementation are discussed.

  1. Transonic Flutter Suppression Control Law Design, Analysis and Wind Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  2. Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  3. Testing of the Trim Tab Parametric Model in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Watkins, Anthony N.; Korzun, Ashley M.; Edquist, Karl T.

    2013-01-01

    In support of NASA's Entry, Descent, and Landing technology development efforts, testing of Langley's Trim Tab Parametric Models was conducted in Test Section 2 of NASA Langley's Unitary Plan Wind Tunnel. The objectives of these tests were to generate quantitative aerodynamic data and qualitative surface pressure data for experimental and computational validation and aerodynamic database development. Six component force-and-moment data were measured on 38 unique, blunt body trim tab configurations at Mach numbers of 2.5, 3.5, and 4.5, angles of attack from -4deg to +20deg, and angles of sideslip from 0deg to +8deg. Configuration parameters investigated in this study were forebody shape, tab area, tab cant angle, and tab aspect ratio. Pressure Sensitive Paint was used to provide qualitative surface pressure mapping for a subset of these flow and configuration variables. Over the range of parameters tested, the effects of varying tab area and tab cant angle were found to be much more significant than varying tab aspect ratio relative to key aerodynamic performance requirements. Qualitative surface pressure data supported the integrated aerodynamic data and provided information to aid in future analyses of localized phenomena for trim tab configurations.

  4. Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurements in Supersonic Combustors at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.

    2005-01-01

    This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  5. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  6. Characteristics of the transmission loss apparatus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1983-01-01

    A description of the Transmission Loss Apparatus at NASA Langley Research Center, which is specifically designed to accommodate general aviation type aircraft structures, is presented. The measurement methodology, referred to as the Plate Reference Method, is discussed and compared with the classical method as described in the Standard of the American Society for Testing and Materials. This measurement procedure enables reliable and accurate noise transmission loss measurements down to the 50 Hz one-third octave band. The transmission loss characteristics of add-on acoustical treatments, applied to the basic structure, can be established by inclusion of appropriate absorption corrections for the treatment.

  7. Transonic Free-To-Roll Analysis of the F/A-18E and F-35 Configurations

    NASA Technical Reports Server (NTRS)

    Owens, D. Bruce; McConnell, Jeffrey K.; Brandon, Jay M.; Hall, Robert M.

    2004-01-01

    The free-to-roll technique is used as a tool for predicting areas of uncommanded lateral motions. Recently, the NASA/Navy/Air Force Abrupt Wing Stall Program extended the use of this technique to the transonic speed regime. Using this technique, this paper evaluates various wing configurations on the pre-production F/A-18E aircraft and the Joint Strike Fighter (F-35) aircraft. The configurations investigated include leading and trailing edge flap deflections, fences, leading edge flap gap seals, and vortex generators. These tests were conducted in the NASA Langley 16-Foot Transonic Tunnel. The analysis used a modification of a figure-of-merit developed during the Abrupt Wing Stall Program to discern configuration effects. The results showed how the figure-of-merit can be used to schedule wing flap deflections to avoid areas of uncommanded lateral motion. The analysis also used both static and dynamic wind tunnel data to provide insight into the uncommanded lateral behavior. The dynamic data was extracted from the time history data using parameter identification techniques. In general, modifications to the pre-production F/A-18E resulted in shifts in angle-of-attack where uncommanded lateral activity occurred. Sealing the gap between the inboard and outboard leading-edge flaps on the Navy version of the F-35 eliminated uncommanded lateral activity or delayed the activity to a higher angle-of-attack.

  8. Vibro-Acoustics Modal Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Pritchard, Jocelyn I.; Buehrle, Ralph D.

    1999-01-01

    This paper summarizes on-going modal testing activities at the NASA Langley Research Center for two aircraft fuselage structures: a generic "aluminum testbed cylinder" (ATC) and a Beechcraft Starship fuselage (BSF). Subsequent acoustic tests will measure the interior noise field created by exterior mechanical and acoustic sources. These test results will provide validation databases for interior noise prediction codes on realistic aircraft fuselage structures. The ATC is a 12-ft-long, all-aluminum, scale model assembly. The BSF is a 40-ft-long, all-composite, complete aircraft fuselage. To date, two of seven test configurations of the ATC and all three test configurations of the BSF have been completed. The paper briefly describes the various test configurations, testing procedure, and typical results for frequencies up to 250 Hz.

  9. Review of fatigue and fracture research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Everett, Richard A., Jr.

    1988-01-01

    Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.

  10. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  11. Transonic Dynamics Tunnel Force and Pressure Data Acquired on the HSR Rigid Semispan Model

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Rausch, Russ D.

    1999-01-01

    This report describes the aerodynamic data acquired on the High Speed Research Rigid Semispan Model (HSR-RSM) during NASA Langley Transonic Dynamics Tunnel (TDT) Test 520 conducted from 18 March to 4 April, 1996. The purpose of this test was to assess the aerodynamic character of a rigid high speed civil transport wing. The wing was fitted with a single trailing edge control surface which was both steadily deflected and oscillated during the test to investigate the response of the aerodynamic data to steady and unsteady control motion. Angle-of-attack and control surface deflection polars at subsonic, transonic and low-supersonic Mach numbers were obtained in the tunnel?s heavy gas configuration. Unsteady pressure and steady loads data were acquired on the wing, while steady pressures were measured on the fuselage. These data were reduced using a variety of methods, programs and computer systems. The reduced data was ultimately compiled onto a CD-ROM volume which was distributed to HSR industry team members in July, 1996. This report documents the methods used to acquire and reduce the data, and provides an assessment of the quality, repeatability, and overall character of the aerodynamic data measured during this test.

  12. Results of flutter test OS6 obtained using the 0.14-scale wing/elevon model (54-0) in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter wing was tested in the Langley Research Center 16-Foot Transonic Dynamics Wind Tunnel to determine flutter, buffet, and elevon buzz boundaries. Mach numbers between 0.3 and 1.1 were investigated. Rockwell shuttle model 54-0 was utilized for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  13. Aerodynamic design of the contoured wind-tunnel liner for the NASA supercritical, laminar-flow-control, swept-wing experiment

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Anderson, E. C.; Peterson, J. B., Jr.

    1984-01-01

    An overview is presented of the entire procedure developed for the aerodynamic design of the contoured wind tunnel liner for the NASA supercritical, laminar flow control (LFC), swept wing experiment. This numerical design procedure is based upon the simple idea of streamlining and incorporates several transonic and boundary layer analysis codes. The liner, presently installed in the Langley 8 Foot Transonic Pressure Tunnel, is about 54 ft long and extends from within the existing contraction cone, through the test section, and into the diffuser. LFC model testing has begun and preliminary results indicate that the liner is performing as intended. The liner design results presented in this paper, however, are examples of the calculated requirements and the hardware implementation of them.

  14. Electroforming of a throat nozzle for a combustion facility (NASA Langley Reimbursable Program)

    NASA Technical Reports Server (NTRS)

    Dini, J. W.; Johnson, H. R.

    1976-01-01

    Special procedures were developed and then utilized for plating nickel over channels of a throat nozzle section of a NASA Langley combustor facility. When tested hydrostatically, the part failed in the stainless-steel substrate and not at the interface between the plating and substrate. The procedures used for plating the part are detailed as are high-temperature property data which show that the part can withstand long-term, high-temperature exposure without suffering degradation of the plated bond.

  15. NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.; hide

    2006-01-01

    At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.

  16. Application of technology developed for flight simulation at NASA. Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1991-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations including mathematical model computation and data input/output to the simulators must be deterministic and be completed in as short a time as possible. Personnel at NASA's Langley Research Center are currently developing the use of supercomputers for simulation mathematical model computation for real-time simulation. This, coupled with the use of an open systems software architecture, will advance the state-of-the-art in real-time flight simulation.

  17. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  18. Forward-swept wing configuration designed for high maneuverability by use of a transonic computational method

    NASA Technical Reports Server (NTRS)

    Mann, M. J.; Mercer, C. E.

    1986-01-01

    A transonic computational analysis method and a transonic design procedure have been used to design the wing and the canard of a forward-swept-wing fighter configuration for good transonic maneuver performance. A model of this configuration was tested in the Langley 16-Foot Transonic Tunnel. Oil-flow photographs were obtained to examine the wind flow patterns at Mach numbers from 0.60 to 0.90. The transonic theory gave a reasonably good estimate of the wing pressure distributions at transonic maneuver conditions. Comparison of the forward-swept-wing configuration with an equivalent aft-swept-wing-configuration showed that, at a Mach number of 0.90 and a lift coefficient of 0.9, the two configurations have the same trimmed drag. The forward-swept wing configuration was also found to have trimmed drag levels at transonic maneuver conditions which are comparable to those of the HiMAT (highly maneuverable aircraft technology) configuration and the X-29 forward-swept-wing research configuration. The configuration of this study was also tested with a forebody strake.

  19. Effects of winglet on transonic flutter characteristics of a cantilevered twin-engine-transport wing model

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Bhatia, K. G.; Nagaraja, K. S.

    1986-01-01

    A transonic model and a low-speed model were flutter tested in the Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90. Transonic flutter boundaries were measured for 10 different model configurations, which included variations in wing fuel, nacelle pylon stiffness, and wingtip configuration. The winglet effects were evaluated by testing the transonic model, having a specific wing fuel and nacelle pylon stiffness, with each of three wingtips, a nonimal tip, a winglet, and a nominal tip ballasted to simulate the winglet mass. The addition of the winglet substantially reduced the flutter speed of the wing at transonic Mach numbers. The winglet effect was configuration-dependent and was primarily due to winglet aerodynamics rather than mass. Flutter analyses using modified strip-theory aerodynamics (experimentally weighted) correlated reasonably well with test results. The four transonic flutter mechanisms predicted by analysis were obtained experimentally. The analysis satisfactorily predicted the mass-density-ratio effects on subsonic flutter obtained using the low-speed model. Additional analyses were made to determine the flutter sensitivity to several parameters at transonic speeds.

  20. Thrust Removal Scheme for the FAST-MAC Circulation Control Model Tested in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.

    2014-01-01

    A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.

  1. Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

  2. A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona

    1992-01-01

    A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.

  3. Langley aerospace test highlights, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.

  4. An Experimental Evaluation of Advanced Rotorcraft Airfoils in the NASA Ames Eleven-foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.

    1984-01-01

    Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.

  5. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  6. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  7. Experimental Supersonic Combustion Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

    1998-01-01

    Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

  8. Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Haskin, Henry H.

    2017-01-01

    The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.

  9. NASA Langley Teacher Resource Center at the Virginia Air and Space Center

    NASA Technical Reports Server (NTRS)

    Maher, Kim L.

    1999-01-01

    Nation's education goals through expanding and enhancing the scientific an technological competence of students and educators. To help disseminate NASA instructional materials and educational information, NASA's Education Division has established the Educator Resource Center Network. Through this network (ERCN), educators are provided the opportunity to receive free instructional information, materials, consultation, and training workshops on NASA educational products. The Office of Education at NASA Langley Research Center offers an extension of its Precollege Education program by supporting the NASA LARC Educator Resource Center at the Virginia Air & Space Center, the official visitor center for NASA LARC. This facility is the principal distribution point for educators in the five state service region that includes Virginia, West Virginia, Kentucky, North Carolina and South Carolina. The primary goal, to provide expertise and facilities to help educators access and utilize science, mathematics, and technology instructional products aligned with national standards and appropriate state frameworks and based on NASA's unique mission and results, has been accomplished. This ERC had 15,200 contacts and disseminated over 190,000 instructional items during the period of performance. In addition the manager attended 35 conferences, workshops, and educational meetings as an GR, presenter, or participant. The objective to demonstrate and facilitate the use of educational technologies has been accomplished through the following: The ERC's web page has been developed as a cyber-gateway to a multitude of NASA and other educational resources as well as to Our own database of current resource materials. NASA CORE CD-ROM technology is regularly demonstrated and promoted using the center's computers. NASA TV is available, demonstrated to educators, and used to facilitate the downlinking of NASA educational programming.

  10. Transonic Performance Characteristics of Several Jet Noise Suppressors

    NASA Technical Reports Server (NTRS)

    Schmeer, James W.; Salters, Leland B., Jr.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the transonic performance characteristics of several noise-suppressor configurations has been conducted in the Langley 16-foot transonic tunnel. The models were tested statically and over a Mach number range from 0.70 to 1.05 at an angle of attack of 0 deg. The primary jet total-pressure ratio was varied from 1.0 (jet off) to about 4.5. The effect of secondary air flow on the performance of two of the configurations was investigated. A hydrogen peroxide turbojet-engine simulator was used to supply the hot-jet exhaust. An 8-lobe afterbody with centerbody, short shroud, and secondary air had the highest thrust-minus-drag coefficients of the six noise-suppressor configurations tested. The 12-tube and 12-lobe afterbodies had the lowest internal losses. The presence of an ejector shroud partially shields the external pressure distribution of the 8-lobe after-body from the influence of the primary jet. A ring-airfoil shroud increased the static thrust of the annular nozzle but generally decreased the thrust minus drag at transonic Mach numbers.

  11. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Faceted Missile Model at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Global PSP calibrations were obtained using an in-situ method featuring the simultaneous electronically-scanned pressures (ESP) measurements. Both techniques revealed the significant influence leading-edge vortices on the surface pressure distributions. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M(sub infinity)=0.70 and 2.6 percent at M(sub infinity)=0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.

  12. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  13. 16-foot transonic tunnel test section flowfield survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Abeyounis, W. K.

    1994-01-01

    A flow survey has been made of the test section of the NASA Langley Research Center 16-Foot Transonic Tunnel at subsonic and supersonic speeds. The survey was performed using five five-hole pyramid-head probes mounted at 14 inch intervals on a survey rake. Probes were calibrated at freestream Mach numbers from 0.50 to 0.95 and from 1.18 to 1.23. Flowfield surveys were made at Mach numbers from 0.50 to 0.90 and at Mach 1.20. The surveys were made at tunnel stations 130.6, 133.6, and 136.0. By rotating the survey rake through 180 degrees, a cylindrical volume of the test section 4.7 feet in diameter and 5.4 feet long centered about the tunnel centerline was surveyed. Survey results showing the measured test section upflow and sideflow characteristics and local Mach number distributions are presented. The report documents the survey probe calibration techniques used, summarizes the procedural problems encountered during testing, and identifies the data discrepancies observed during the post-test data analysis.

  14. Overview of NASA Langley's Piezoelectric Ceramic Packaging Technology and Applications

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.

    2007-01-01

    Over the past decade, NASA Langley Research Center (LaRC) has developed several actuator packaging concepts designed to enhance the performance of commercial electroactive ceramics. NASA LaRC focused on properly designed actuator and sensor packaging for the following reasons, increased durability, protect the working material from the environment, allow for proper mechanical and electrical contact, afford "ready to use" mechanisms that are scalable, and develop fabrication methodology applicable to any active material of the same physical class. It is more cost effective to enhance or tailor the performance of existing systems, through innovative packaging, than to develop, test and manufacture new materials. This approach led to the development of several solid state actuators that include THUNDER, the Macrofiber Composite or (MFC) and the Radial Field Diaphragm or (RFD). All these actuators are fabricated using standard materials and processes derived from earlier concepts. NASA s fabrication and packaging technology as yielded, piezoelectric actuators and sensors that are easy to implement, reliable, consistent in properties, and of lower cost to manufacture in quantity, than their predecessors (as evidenced by their continued commercial availability.) These piezoelectric actuators have helped foster new research and development in areas involving computational modeling, actuator specific refinements, and engineering system redesign which led to new applications for piezo-based devices that replace traditional systems currently in use.

  15. Longitudinal Stability and Control Characteristics at Transonic Speeds of a 1/30-Scale Model of the Republic XF-103 Airplane

    NASA Technical Reports Server (NTRS)

    Luoma, Arvo A.

    1954-01-01

    The longitudinal stability and control characteristics of a 1/30-scale model of the Republic XF-103 airplane were investigated in the Langley 8-foot transonic tunnel. The effect of speed brakes located at the end of the fuselage was also investigated. The main part of the investigation was made with internal flow in the model, but some data were obtained with no internal flow. The longitudinal stability and control at transonic-speeds appeared satisfactory. The transonic drag rise was small. The speed brakes had no adverse effects on longitudinal stability.

  16. Calibration and Data Retrieval Algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)

    2002-01-01

    This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.

  17. Overview of Transonic to Hypersonic Stage Separation Tool Development for Multi-Stage-to-Orbit Concepts

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bunning, Pieter G.; Pamadi, Bandu N.; Scallion, William I.; Jones, Kenneth M.

    2004-01-01

    An overview of research efforts at NASA in support of the stage separation and ascent aerothermodynamics research program is presented. The objective of this work is to develop a synergistic suite of experimental, computational, and engineering tools and methods to apply to vehicle separation across the transonic to hypersonic speed regimes. Proximity testing of a generic bimese wing-body configuration is on-going in the transonic (Mach numbers 0.6, 1.05, and 1.1), supersonic (Mach numbers 2.3, 3.0, and 4.5) and hypersonic (Mach numbers 6 and 10) speed regimes in four wind tunnel facilities at the NASA Langley Research Center. An overset grid, Navier-Stokes flow solver has been enhanced and demonstrated on a matrix of proximity cases and on a dynamic separation simulation of the bimese configuration. Steady-state predictions with this solver were in excellent agreement with wind tunnel data at Mach 3 as were predictions via a Cartesian-grid Euler solver. Experimental and computational data have been used to evaluate multi-body enhancements to the widely-used Aerodynamic Preliminary Analysis System, an engineering methodology, and to develop a new software package, SepSim, for the simulation and visualization of vehicle motions in a stage separation scenario. Web-based software will be used for archiving information generated from this research program into a database accessible to the user community. Thus, a framework has been established to study stage separation problems using coordinated experimental, computational, and engineering tools.

  18. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  19. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  20. Performance of the active sidewall boundary-layer removal system for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen; Murthy, A. V.

    1989-01-01

    A performance evaluation of an active sidewall boundary-layer removal system for the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) was evaluated in 1988. This system uses a compressor and two throttling digital valves to control the boundary-layer mass flow removal from the tunnel. The compressor operates near the maximum pressure ratio for all conditions. The system uses a surge prevention and flow recirculation scheme. A microprocessor based controller is used to provide the necessary mass flow and compressor pressure ratio control. Initial tests on the system indicated problems in realizing smooth mass flow control while running the compressor at high speed and high pressure ratios. An alternate method has been conceived to realize boundary-layer mass flow control which avoids the recirculation of the compressor mass flow and operation near the compressor surge point. This scheme is based on varying the speed of the compressor for a sufficient pressure ratio to provide needed mass flow removal. The system has a mass flow removal capability of about 10 percent of test section flow at M = 0.3 and 4 percent at M = 0.8. The system performance has been evaluated in the form of the compressor map, and compressor tunnel interface characteristics covering most of the 0.3-m TCT operational envelope.

  1. Assessment team report on flight-critical systems research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)

    1989-01-01

    The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.

  2. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

  3. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  4. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  5. 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 1; Configuration Aerodynamics

    NASA Technical Reports Server (NTRS)

    Baize, Daniel G. (Editor)

    1999-01-01

    The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.

  6. Validation of Force Limited Vibration Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rice, Chad; Buehrle, Ralph D.

    2003-01-01

    Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.

  7. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II

    NASA Technical Reports Server (NTRS)

    Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  8. Biomimetics for NASA Langley Research Center: Year 2000 Report of Findings From a Six-Month Survey

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Anders, John B., Jr.; Cox, David E.; Jegley, Dawn C.; Fox, Robert L.; Katzberg, Stephen J.

    2002-01-01

    This report represents an attempt to see if some of the techniques biological systems use to maximize their efficiency can be applied to the problems NASA faces in aeronautics and space exploration. It includes an internal survey of resources available at NASA Langley Research Center for biomimetics research efforts, an external survey of state of the art in biomimetics covering the Materials, Structures, Aerodynamics, Guidance and Controls areas. The Biomimetics Planning team also included ideas for potential research areas, as well as recommendations on how to implement this new program. This six-month survey was conducted in the second half of 1999.

  9. Langley's views on NEMS

    NASA Technical Reports Server (NTRS)

    George, J. W.

    1984-01-01

    The views of the Langley Research Center regarding the NASA Equipment Management System (EMS) are discussed. One of Langley's greatest concerns is with the reconciliation between NEMS and the General Ledger. Langley's accounting system tracks cost data to the penny level. NEMS deals in whole dollar amounts. Therefore, Langley has no way of reconciling the two. The only approach that is acceptable to Langley, unless requirements for reconciliation are changed, is for the NEMS files and the reports involved in the process be at the penny level. All other NEMS reports can remain whole dollars. Also to reconcile, Langley needs data to show the difference between the previous cost and the new cost for the month. On an input record, the adjustment amount is added to the cost and recorded as total amount. The adjusted cost is not captured. In order to establish a control between the prior months and the current month, a new field needs to be added to capture the adjusted cost (debits And credits). Langley has not reconciled the Equipment account with the General Ledger since February 1984. Problems with NEMS regular production runs cause concern. Production at Langley is run on the second and/or third shift. If a run(s) terminates and/or abends in a particular module, Langley must wait until the next day to resolve NEMS problems after consultation with Headquarters personnel. For a successful installation, Langley must have a good data base to convert to NEMS and users and the data processing staff must work together.

  10. Flow Control Research at NASA Langley in Support of High-Lift Augmentation

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.

    2002-01-01

    The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

  11. Recent studies at NASA-Langley of vortical flows interacting with neighboring surfaces

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Campbell, J. F.

    1983-01-01

    The importance of leadingedge vortical flows, which occur near and interact with neighboring surfaces, is stressed. Research in this area conducted or sponsored by the NASA Langley Research Center since 1978 is surveyed. Particular attention is given to the cumulative results of a number of theoretical and experimental studies. It is noted that these studies have been carried out in order to understand and use this kind of flow. Much of the work has been devoted to improving the lift-to-drag ratio and pitch characteristics for wings in this flow, although work has also been done on examining the unsteady and lateral characteristics.

  12. Recent studies at NASA-Langley of vortical flows interacting with neighboring surfaces

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Campbell, J. F.

    1983-01-01

    The importance of leading edge vortical flows, which occur near and interact with neighboring surfaces, is stressed. Research in this area conducted or sponsored by the NASA Langley Research Center since 1978 is surveyed. Particular attention is given to the cumulative results of a number of theoretical and experimental studies. It is noted that these studies have been carried out in order to understand and use this kind of flow. Much of the work has been devoted to improving the lift-to-drag ratio and pitch characteristics for wings in this flow, although work has also been done on examining the unsteady and lateral characteristics.

  13. Fifteen Years of Operation at NASA's National Transonic Facility with the World's Largest Adjustable Speed Drive

    NASA Technical Reports Server (NTRS)

    Sydnor, George H.; Bhatia, Ram; Krattiger, Hansueli; Mylius, Justus; Schafer, D.

    2012-01-01

    In September 1995, a project was initiated to replace the existing drive line at NASA's most unique transonic wind tunnel, the National Transonic Facility (NTF), with a single 101 MW synchronous motor driven by a Load Commutated Inverter (LCI). This Adjustable Speed Drive (ASD) system also included a custom four-winding transformer, harmonic filter, exciter, switch gear, control system, and feeder cable. The complete system requirements and design details have previously been presented and published [1], as well as the commissioning and acceptance test results [2]. The NTF was returned to service in December 1997 with the new drive system powering the fan. Today, this installation still represents the world s largest horizontal single motor/drive combination. This paper describes some significant events that occurred with the drive system during the first 15 years of service. These noteworthy issues are analyzed and root causes presented. Improvements that have substantially increased the long term viability of the system are given.

  14. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  15. Performance of the 0.3-meter transonic cryogenic tunnel with air, nitrogen, and sulfur hexafluoride media under closed loop automatic control

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1995-01-01

    The NASA Langley 0.3-m Transonic Cryogenic Tunnel was modified in 1994, to operate with any one of the three test gas media viz., air, cryogenic nitrogen gas, or sulfur hexafluoride gas. This document provides the initial test results with respect to the tunnel performance and tunnel control, as a part of the commissioning activities on the microcomputer based controller. The tunnel can provide precise and stable control of temperature to less than or equal to +/- 0.3 K in the range 80-320 K in cyro mode or 300-320 K in air/SF6 mode, pressure to +/- 0.01 psia in the range 15-88 psia and Mach number to +/- O.0015 in the range 0.150 to transonic Mach numbers up to 1.000. A new heat exchanger has been included in the tunnel circuit and is performing adequately. The tunnel airfoil testing benefits considerably by precise control of tunnel states and helps in generating high quality aerodynamic test data from the 0.3-m TCT.

  16. Production version of the extended NASA-Langley Vortex Lattice FORTRAN computer program. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Herbert, H. E.

    1982-01-01

    The latest production version, MARK IV, of the NASA-Langley vortex lattice computer program is summarized. All viable subcritical aerodynamic features of previous versions were retained. This version extends the previously documented program capabilities to four planforms, 400 panels, and enables the user to obtain vortex-flow aerodynamics on cambered planforms, flowfield properties off the configuration in attached flow, and planform longitudinal load distributions.

  17. Modifications to Langley 0.3-m TCT adaptive wall software for heavy gas test medium, phase 1 studies

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1992-01-01

    The scheme for two-dimensional wall adaptation with sulfur hexafluoride (SF6) as test gas in the NASA Langley Research Center 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT) is presented. A unified version of the wall adaptation software has been developed to function in a dual gas operation mode (nitrogen or SF6). The feature of ideal gas calculations for nitrogen operation is retained. For SF6 operation, real gas properties have been computed using the departure function technique. Installation of the software on the 0.3-m TCT ModComp-A computer and preliminary validation with nitrogen operation were found to be satisfactory. Further validation and improvements to the software will be undertaken when the 0.3-m TCT is ready for operation with SF6 gas.

  18. Instrumentation complex for Langley Research Center's National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Russell, C. H.; Bryant, C. S.

    1977-01-01

    The instrumentation discussed in the present paper was developed to ensure reliable operation for a 2.5-meter cryogenic high-Reynolds-number fan-driven transonic wind tunnel. It will incorporate four CPU's and associated analog and digital input/output equipment, necessary for acquiring research data, controlling the tunnel parameters, and monitoring the process conditions. Connected in a multipoint distributed network, the CPU's will support data base management and processing; research measurement data acquisition and display; process monitoring; and communication control. The design will allow essential processes to continue, in the case of major hardware failures, by switching input/output equipment to alternate CPU's and by eliminating nonessential functions. It will also permit software modularization by CPU activity and thereby reduce complexity and development time.

  19. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  20. Transonic Flutter Suppression Control Law Design Using Classical and Optimal Techniques with Wind-Tunnel Results

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1999-01-01

    The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.

  1. NASA Langley Systems Analysis & Concepts Directorate Technology Assessment/Portfolio Analysis

    NASA Technical Reports Server (NTRS)

    Cavanaugh, Stephen; Chytka, Trina; Arcara, Phil; Jones, Sharon; Stanley, Doug; Wilhite, Alan W.

    2006-01-01

    Systems analysis develops and documents candidate mission and architectures, associated system concepts, enabling capabilities and investment strategies to achieve NASA s strategic objectives. The technology assessment process connects the mission and architectures to the investment strategies. In order to successfully implement a technology assessment, there is a need to collect, manipulate, analyze, document, and disseminate technology-related information. Information must be collected and organized on the wide variety of potentially applicable technologies, including: previous research results, key technical parameters and characteristics, technology readiness levels, relationships to other technologies, costs, and potential barriers and risks. This information must be manipulated to facilitate planning and documentation. An assessment is included of the programmatic and technical risks associated with each technology task as well as potential risk mitigation plans. Risks are assessed and tracked in terms of likelihood of the risk occurring and consequences of the risk if it does occur. The risk assessments take into account cost, schedule, and technical risk dimensions. Assessment data must be simplified for presentation to decision makers. The Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center has a wealth of experience in performing Technology Assessment and Portfolio Analysis as this has been a business line since 1978.

  2. Skin Friction at Very High Reynolds Numbers in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Watson, Ralph D.; Anders, John B.; Hall, Robert M.

    2006-01-01

    Skin friction coefficients were derived from measurements using standard measurement technologies on an axisymmetric cylinder in the NASA Langley National Transonic Facility (NTF) at Mach numbers from 0.2 to 0.85. The pressure gradient was nominally zero, the wall temperature was nominally adiabatic, and the ratio of boundary layer thickness to model diameter within the measurement region was 0.10 to 0.14, varying with distance along the model. Reynolds numbers based on momentum thicknesses ranged from 37,000 to 605,000. The measurements approximately doubled the range of available data for flat plate skin friction coefficients. Three different techniques were used to measure surface shear. The maximum error of Preston tube measurements was estimated to be 2.5 percent, while that of Clauser derived measurements was estimated to be approximately 5 percent. Direct measurements by skin friction balance proved to be subject to large errors and were not considered reliable.

  3. Recent Improvements in Semi-Span Testing at the National Transonic Facility (Invited)

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Tomek, W. G.; Payne, F. M.; Griffiths, R. C.

    2006-01-01

    Three wind tunnel investigations of a commercial transport, high-lift, semi-span configuration have recently been conducted in the National Transonic Facility at the NASA Langley Research Center. Throughout the course of these investigations multiple improvements have been developed in the facility semi-span test capability. The primary purpose of the investigations was to assess Reynolds number scale effects on a modern commercial transport configuration up to full-scale flight test conditions (Reynolds numbers on the order of 27 million). The tests included longitudinal aerodynamic studies at subsonic takeoff and landing conditions across a range of Reynolds numbers from that available in conventional wind tunnels up to flight conditions. The purpose of this paper is to discuss lessons learned and improvements incorporated into the semi-span testing process. Topics addressed include enhanced thermal stabilization and moisture reduction procedures, assessments and improvements in model sealing techniques, compensation of model reference dimensions due to test temperature, significantly improved semi-span model access capability, and assessments of data repeatability.

  4. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  5. Investigation of Liner Characteristics in the NASA Langley Curved Duct Test Rig

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Watson, Willie R.; Jones, Michael G.

    2007-01-01

    The Curved Duct Test Rig (CDTR), which is designed to investigate propagation of sound in a duct with flow, has been developed at NASA Langley Research Center. The duct incorporates an adaptive control system to generate a tone in the duct at a specific frequency with a target Sound Pressure Level and a target mode shape. The size of the duct, the ability to isolate higher order modes, and the ability to modify the duct configuration make this rig unique among experimental duct acoustics facilities. An experiment is described in which the facility performance is evaluated by measuring the sound attenuation by a sample duct liner. The liner sample comprises one wall of the liner test section. Sound in tones from 500 to 2400 Hz, with modes that are parallel to the liner surface of order 0 to 5, and that are normal to the liner surface of order 0 to 2, can be generated incident on the liner test section. Tests are performed in which sound is generated without axial flow in the duct and with flow at a Mach number of 0.275. The attenuation of the liner is determined by comparing the sound power in a hard wall section downstream of the liner test section to the sound power in a hard wall section upstream of the liner test section. These experimentally determined attenuations are compared to numerically determined attenuations calculated by means of a finite element analysis code. The code incorporates liner impedance values educed from measured data from the NASA Langley Grazing Incidence Tube, a test rig that is used for investigating liner performance with flow and with (0,0) mode incident grazing. The analytical and experimental results compare favorably, indicating the validity of the finite element method and demonstrating that finite element prediction tools can be used together with experiment to characterize the liner attenuation.

  6. Langley aerospace test highlights, 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during the calender year 1987 in Langley test facilites are illustrated. Both the broad range of the research and technology activities at Langley and the contributions of this work toward maintaining the U.S. leadership in aeronautic and space research are illustrated.

  7. Recent Langley helicopter acoustics contributions

    NASA Technical Reports Server (NTRS)

    Morgan, Homer G.; Pao, S. P.; Powell, C. A.

    1988-01-01

    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

  8. Some anomalies observed in wind-tunnel tests of a blunt body at transonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Brooks, J. D.

    1976-01-01

    An investigation of anomalies observed in wind tunnel force tests of a blunt body configuration was conducted at Mach numbers from 0.20 to 1.35 in the Langley 8-foot transonic pressure tunnel and at Mach numbers of 1.50, 1,80, and 2.16 in the Langley Unitary Plan wind tunnel. At a Mach number of 1.35, large variations occurred in axial force coefficient at a given angle of attack. At transonic and low supersonic speeds, the total drag measured in the wind tunnel was much lower than that measured during earlier ballistic range tests. Accurate measurements of total drag for blunt bodies will require the use of models smaller than those tested thus far; however, it appears that accurate forebody drag results can be obtained by using relatively large models. Shock standoff distance is presented from experimental data over the Mach number range from 1.05 to 4.34. Theory accurately predicts the shock standoff distance at Mach numbers up to 1.75.

  9. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  10. NASA Langley developments in response calculations needed for failure and life prediction

    NASA Technical Reports Server (NTRS)

    Housner, Jerrold M.

    1993-01-01

    NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.

  11. Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2003-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-Foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow-through porosity was applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free-stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp 6)) per foot, angles of attack up to 30 deg, and angles of sideslip to +/- 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex-dominated aerodynamics to the location and level of porosity applied to the LEX.

  12. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I

    NASA Technical Reports Server (NTRS)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2013-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  13. Research and Technology 1990, Langley Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  14. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  15. Investigation of transonic region of high dynamic response encountered on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Eckstrom, Clinton V.; Sandford, Maynard C.

    1987-01-01

    Unsteady aerodynamic data were measured on an aspect ratio 10.3 elastic supercritical wing while undergoing high dynamic response above Mach number of 0.90. These tests were conducted in the NASA Langley Transonic Dynamics Tunnel. A previous test of this wing predicted an unusual instability boundary based upon subcritical response data. During the present test no instability was found, but an angle of attack dependent narrow Mach number region of high dynamic wing response was observed over a wide range of dynamic pressures. The effect on dynamic wing response of wing angle of attack, static outboard control surface deflection and a lower surface spanwise fence located near the 60 percent local chordline was investigated. The driving mechanism of the dynamic wing response appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on both the upper and lower surfaces.

  16. Investigation of transonic region of high dynamic response encountered on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Eckstrom, Clinton V.; Sandford, Maynard C.

    1987-01-01

    Unsteady aerodynamic data were measured on an aspect ratio 10.3 elastic supercritical wing while undergoing high dynamic response above a Mach number of 0.90. These tests were conducted in the NASA Langley Transonic Dynamics Tunnel. A previous test of this wing predicted an unusual instability boundary based on subcritical response data. During the present test no instability was found, but an angle of attack dependent narrow Mach number region of high dynamic wing response was observed over a wide range of dynamic pressures. The effect on dynamic wing response of wing angle of attack, static outbound control surface deflection and a lower surface spanwise fence located near the 60 percent local chordline was investigated. The driving mechanism of the dynamic wing response appears to be related to chordwise shock movement in conjunction with flow separation and reattachment on both the upper and lower surfaces.

  17. Uncertainty Reduction using Bayesian Inference and Sensitivity Analysis: A Sequential Approach to the NASA Langley Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar

    2016-01-01

    This paper presents a computational framework for uncertainty characterization and propagation, and sensitivity analysis under the presence of aleatory and epistemic un- certainty, and develops a rigorous methodology for efficient refinement of epistemic un- certainty by identifying important epistemic variables that significantly affect the overall performance of an engineering system. The proposed methodology is illustrated using the NASA Langley Uncertainty Quantification Challenge (NASA-LUQC) problem that deals with uncertainty analysis of a generic transport model (GTM). First, Bayesian inference is used to infer subsystem-level epistemic quantities using the subsystem-level model and corresponding data. Second, tools of variance-based global sensitivity analysis are used to identify four important epistemic variables (this limitation specified in the NASA-LUQC is reflective of practical engineering situations where not all epistemic variables can be refined due to time/budget constraints) that significantly affect system-level performance. The most significant contribution of this paper is the development of the sequential refine- ment methodology, where epistemic variables for refinement are not identified all-at-once. Instead, only one variable is first identified, and then, Bayesian inference and global sensi- tivity calculations are repeated to identify the next important variable. This procedure is continued until all 4 variables are identified and the refinement in the system-level perfor- mance is computed. The advantages of the proposed sequential refinement methodology over the all-at-once uncertainty refinement approach are explained, and then applied to the NASA Langley Uncertainty Quantification Challenge problem.

  18. The Langley Fitness Center

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA Langley recognizes the importance of healthy employees by committing itself to offering a complete fitness program. The scope of the program focuses on promoting overall health and wellness in an effort to reduce the risks of illness and disease and to increase productivity. This is accomplished through a comprehensive Health and Fitness Program offered to all NASA employees. Various aspects of the program are discussed.

  19. A New Forced Oscillation Capability for the Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Cleckner, Craig S.

    2002-01-01

    A new forced oscillation system has been installed and tested at NASA Langley Research Center's Transonic Dynamics Tunnel (TDT). The system is known as the Oscillating Turntable (OTT) and has been designed for the purpose of oscillating, large semispan models in pitch at frequencies up to 40 Hz to acquire high-quality unsteady pressure and loads data. Precisely controlled motions of a wind-tunnel model on the OTT can yield unsteady aerodynamic phenomena associated with flutter, limit cycle oscillations, shock dynamics, and non-linear aerodynamic effects on many vehicle configurations. This paper will discuss general design and components of the OTT and will present test data from performance testing and from research tests on two rigid semispan wind-tunnel models. The research tests were designed to challenge the OTT over a wide range of operating conditions while acquiring unsteady pressure data on a small rectangular supercritical wing and a large supersonic transport wing. These results will be presented to illustrate the performance capabilities, consistency of oscillations, and usefulness of the OTT as a research tool.

  20. Langley aerospace test highlights - 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  1. Langley aerospace test highlights, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  2. Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)

    2000-01-01

    Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.

  3. Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

    1998-01-01

    Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.

  4. The Fight Deck Perspective of the NASA Langley AILS Concept

    NASA Technical Reports Server (NTRS)

    Rine, Laura L.; Abbott, Terence S.; Lohr, Gary W.; Elliott, Dawn M.; Waller, Marvin C.; Perry, R. Brad

    2000-01-01

    Many US airports depend on parallel runway operations to meet the growing demand for day to day operations. In the current airspace system, Instrument Meteorological Conditions (IMC) reduce the capacity of close parallel runway operations; that is, runways spaced closer than 4300 ft. These capacity losses can result in landing delays causing inconveniences to the traveling public, interruptions in commerce, and increased operating costs to the airlines. This document presents the flight deck perspective component of the Airborne Information for Lateral Spacing (AILS) approaches to close parallel runways in IMC. It represents the ideas the NASA Langley Research Center (LaRC) AILS Development Team envisions to integrate a number of components and procedures into a workable system for conducting close parallel runway approaches. An initial documentation of the aspects of this concept was sponsored by LaRC and completed in 1996. Since that time a number of the aspects have evolved to a more mature state. This paper is an update of the earlier documentation.

  5. Research and technology, 1991. Langley Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  6. Research and technology, 1989: Langley Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  7. A Wind-Tunnel Investigation of the Application of the NASA Supercritical Airfoil to a Variable-Wing-Sweep Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Ayers, T. G.

    1973-01-01

    An investigation was conducted in the Langley 8 foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel to evaluate the effectiveness of three variations of the NASA supercritical airfoil as applied to a model of a variable wing sweep fighter airplane. Wing panels incorporating conventional NACA 64A series airfoil with 0.20 and 0.40 camber were used as bases of reference for this evaluation. Static force and moment measurements were obtained for wing leading edge sweep angles of 26, 33, 39, and 72.5 degrees. Fluctuating wing root bending moment data were obtained at subsonic speeds to determine buffet characteristics. Subsonic data were also obtained for determining the effects of wing transition location and spoiler deflection. Limited lateral directional data are included for the conventional 0.20 cambered wing and the supercritical wing.

  8. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA AERIAL VIEW OF THE SEAPLANE TOWING CHANNEL STRUCTURE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  9. Performance characteristics of an isolated coannular plug nozzle at transonic speeds

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Burley, J. R., II

    1985-01-01

    The Langley 16-Foot Transonic Tunnel was used to evaluate the performance characteristics of a coannular plug nozzle at static conditions (Mach number of 0) and at Mach numbers from 0.65 to 1.20. Jet total pressure ratio was varied from 1.0 (jet off) to 10.0. Thirty-seven configurations generated by the combination of three geometric variables - plug angle, shroud boattail length (fixed exit radius), and shroud extension length - were tested.

  10. Noise Prediction of NASA SR2 Propeller in Transonic Conditions

    NASA Astrophysics Data System (ADS)

    Gennaro, Michele De; Caridi, Domenico; Nicola, Carlo De

    2010-09-01

    In this paper we propose a numerical approach for noise prediction of high-speed propellers for Turboprop applications. It is based on a RANS approach for aerodynamic simulation coupled with Ffowcs Williams-Hawkings (FW-H) Acoustic Analogy for propeller noise prediction. The test-case geometry adopted for this study is the 8-bladed NASA SR2 transonic cruise propeller, and simulated Sound Pressure Levels (SPL) have been compared with experimental data available from Wind Tunnel and Flight Tests for different microphone locations in a range of Mach numbers between 0.78 and 0.85 and rotational velocities between 7000 and 9000 rpm. Results show the ability of this approach to predict noise to within a few dB of experimental data. Moreover corrections are provided to be applied to acoustic numerical results in order for them to be compared with Wind Tunnel and Flight Test experimental data, as well computational grid requirements and guidelines in order to perform complete aerodynamic and aeroacoustic calculations with highly competitive computational cost.

  11. Dynamic tests on the NASA Langley CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Troidl, H.; Elliott, K. B.

    1993-01-01

    A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.

  12. Control of the NASA Langley 16-Foot Transonic Tunnel with the Self-Organizing Feature Map

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    1998-01-01

    A predictive, multiple model control strategy is developed based on an ensemble of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The local linear models are estimated directly from the weights of a Self Organizing Feature Map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is extended to a control framework where the modeled system is nonautonomous, driven by an exogenous input. This extension to a control framework is based on the consideration of a finite number of subregions in the control space. Multiple self organizing feature maps collectively model the global response of the wind tunnel to a finite set of representative prototype controls. These prototype controls partition the control space and incorporate experimental knowledge gained from decades of operation. Each SOFM models the combination of the tunnel with one of the representative controls, over the entire range of operation. The SOFM based linear models are used to predict the tunnel response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal. Each SOFM provides a codebook representation of the tunnel dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the minimization of a similarity metric which is the essence of the self organizing feature of the map. Thus, the SOFM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme than selects the best available model for the applied control. Experimental results of controlling the wind tunnel, with the proposed method, during operational runs where strict research requirements on the control of the Mach number were met, are

  13. Highlights of experience with a flexible walled test section in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Ray, Edward J.

    1988-01-01

    The unique combination of adaptive wall technology with a contonuous flow cryogenic wind tunnel is described. This powerful combination allows wind tunnel users to carry out 2-D tests at flight Reynolds numbers with wall interference essentially eliminated. Validation testing was conducted to support this claim using well tested symmetrical and cambered airfoils at transonic speeds and high Reynolds numbers. The test section hardware has four solid walls, with the floor and ceiling flexible. The method of adapting/shaping the floor and ceiling to eliminate top and bottom wall interference at its source is outlined. Data comparisons for different size models tested and others in several sophisticated 2-D wind tunnels are made. In addition, the effects of Reynolds number, testing at high lift with associated large flexible wall movements, the uniqueness of the adapted wall shapes, and the effects of sidewall boundary layer control are examined. The 0.3-m TCT is now the most advanced 2-D research facility anywhere.

  14. Feasibility of Rayleigh Scattering Flow Diagnostics in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Lee, Joseph W.; Goad, William K.

    2015-01-01

    Laser-based Rayleigh light scattering (RLS) was performed in the National Transonic Facility (NTF) at NASA Langley Research Center. The goal was to determine if the free-stream flow undergoes clustering (early stage of condensation from gas to liquid) or remains in a pure diatomic molecular phase. Data indicate that clusters are not observable down to levels of 10% of the total light scatter for a variety of total pressures at one N2 cryogenic-mode total temperature (Tt = -50 F = 227 K) and one air-mode temperature (Tt = +130 F = 327 K). Thus RLS appears viable as a qualitative or quantitative diagnostic for flow density in NTF in the future. Particles are distinguished from optically unresolvable clusters because they are much larger and individually resolvable in the laser beam image with Mie scattering. The same RLS apparatus was also used, without modification, to visualize naturally occurring particles entrained in the flow for both cryogenic and air-modes. Estimates of the free-stream particle flux are presented, which may be important for interpretation of laminar-to-turbulent boundary-layer transition studies. 1

  15. Research on Subjective Response to Simulated Sonic Booms at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2005-01-01

    Over the past 15 years, NASA Langley Research Center has conducted many tests investigating subjective response to simulated sonic booms. Most tests have used the Sonic Boom Booth, an airtight concrete booth fitted with loudspeakers that play synthesized sonic booms pre-processed to compensate for the response of the booth/loudspeaker system. Tests using the Booth have included investigations of shaped booms, booms with simulated ground reflections, recorded booms, outdoor and indoor booms, booms with differing loudness for bow and tail shocks, and comparisons of aircraft flyover recordings with sonic booms. Another study used loudspeakers placed inside people s houses, so that they could experience the booms while in their own homes. This study investigated the reactions of people to different numbers of booms heard within a 24-hour period. The most recent Booth test used predicted boom shapes from candidate low-boom aircraft. At present, a test to compare the Booth with boom simulators constructed by Gulfstream Aerospace Corporation and Lockheed Martin Aeronautics Company is underway. The Lockheed simulator is an airtight booth similar to the Langley booth; the Gulfstream booth uses a traveling wave method to create the booms. Comparison of "realism" as well as loudness and other descriptors is to be studied.

  16. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  17. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  18. Investigation at near-sonic speed of some effects of humidity on the longitudinal aerodynamic characteristics of an NASA supercritical wing research airplane model

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1972-01-01

    The Langley 8-foot transonic pressure tunnel was used in an effort to determine the effects of humidity at near-sonic speed on the longitudinal aerodynamic characteristics and wing pressure distributions of an area-rule research airplane model with an NASA supercritical wing. Effects of dewpoint at the normal tunnel operating stagnation temperature of 48.9 C (120 F) and effects of stagnation temperature at a relatively high dewpoint of 15.6 C (60 F) were investigated. The test tunnel stagnation pressure was 101 325 N/sq m (1 atmosphere).

  19. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  20. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  1. Climate Change and Vector Borne Diseases on NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

    2014-01-01

    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

  2. Who's Got the Bridge? - Towards Safe, Robust Autonomous Operations at NASA Langley's Autonomy Incubator

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Crisp, Vicki K.

    2015-01-01

    NASA aeronautics research has made decades of contributions to aviation. Both aircraft and air traffic management (ATM) systems in use today contain NASA-developed and NASA sponsored technologies that improve safety and efficiency. Recent innovations in robotics and autonomy for automobiles and unmanned systems point to a future with increased personal mobility and access to transportation, including aviation. Automation and autonomous operations will transform the way we move people and goods. Achieving this mobility will require safe, robust, reliable operations for both the vehicle and the airspace and challenges to this inevitable future are being addressed now in government labs, universities, and industry. These challenges are the focus of NASA Langley Research Center's Autonomy Incubator whose R&D portfolio includes mission planning, trajectory and path planning, object detection and avoidance, object classification, sensor fusion, controls, machine learning, computer vision, human-machine teaming, geo-containment, open architecture design and development, as well as the test and evaluation environment that will be critical to prove system reliability and support certification. Safe autonomous operations will be enabled via onboard sensing and perception systems in both data-rich and data-deprived environments. Applied autonomy will enable safety, efficiency and unprecedented mobility as people and goods take to the skies tomorrow just as we do on the road today.

  3. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (LAL 5169) AERIAL VIEW OF THE SEAPLANE TOWING CHANNEL STRUCTURE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  4. Gas Dynamics Laboratory or Spheres NASA Langley

    NASA Image and Video Library

    1965-07-22

    L65-5505 In the Gas Dynamics Laboratory, completed in 1951, researchers explored basic aerodynamic, heating and fluid-mechanical problems in the speed range from Mach 1.5 to Mach 8.0. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 348.

  5. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L81-05967) AERIAL VIEW OF THE SEAPLANE TOWING CHANNEL STRUCTURE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  6. An Overview of Computational Aeroacoustic Modeling at NASA Langley

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2001-01-01

    The use of computational techniques in the area of acoustics is known as computational aeroacoustics and has shown great promise in recent years. Although an ultimate goal is to use computational simulations as a virtual wind tunnel, the problem is so complex that blind applications of traditional algorithms are typically unable to produce acceptable results. The phenomena of interest are inherently unsteady and cover a wide range of frequencies and amplitudes. Nonetheless, with appropriate simplifications and special care to resolve specific phenomena, currently available methods can be used to solve important acoustic problems. These simulations can be used to complement experiments, and often give much more detailed information than can be obtained in a wind tunnel. The use of acoustic analogy methods to inexpensively determine far-field acoustics from near-field unsteadiness has greatly reduced the computational requirements. A few examples of current applications of computational aeroacoustics at NASA Langley are given. There remains a large class of problems that require more accurate and efficient methods. Research to develop more advanced methods that are able to handle the geometric complexity of realistic problems using block-structured and unstructured grids are highlighted.

  7. Experiences From NASA/Langley's DMSS Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage

  8. Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    2003-01-01

    Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.

  9. Open Rotor Noise Prediction Methods at NASA Langley- A Technology Review

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, Mark H.; Tinetti, Ana F.; Nark, Douglas M.

    2009-01-01

    Open rotors are once again under consideration for propulsion of the future airliners because of their high efficiency. The noise generated by these propulsion systems must meet the stringent noise standards of today to reduce community impact. In this paper we review the open rotor noise prediction methods available at NASA Langley. We discuss three codes called ASSPIN (Advanced Subsonic-Supersonic Propeller Induced Noise), FW - Hpds (Ffowcs Williams-Hawkings with penetrable data surface) and the FSC (Fast Scattering Code). The first two codes are in the time domain and the third code is a frequency domain code. The capabilities of these codes and the input data requirements as well as the output data are presented. Plans for further improvements of these codes are discussed. In particular, a method based on equivalent sources is outlined to get rid of spurious signals in the FW - Hpds code.

  10. Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2003-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow- through porosity was applied to a wind leading-edge extension (LEX) mounted to a 65 deg cropped delta wind model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free- stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp-6) per foot, angles of attack up to 30 deg and angles of sideslip to plus or minus 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex- dominated aerodynamics to the location and level of porosity applied to the LEX.

  11. Cryogenic nitrogen as a transonic wind-tunnel test gas

    NASA Technical Reports Server (NTRS)

    Adcock, J. B.; Kilgore, R. A.; Ray, E. J.

    1975-01-01

    The test gas for the Langley Pilot Transonic Cryogenic Tunnel is nitrogen. Results from analytical and experimental studies that have verified cryogenic nitrogen as an acceptable test gas are reviewed. Real-gas isentropic and normal-shock flow solutions for nitrogen are compared to the ideal diatomic gas solutions. Experimental data demonstrate that for temperatures above the liquefaction boundaries there are no significant real-gas effects on two-dimensional airfoil pressure distributions. Results of studies to determine the minimum operating temperatures while avoiding appreciable effects due to liquefaction are included.

  12. 15. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4933) VIEW NORTHWEST OF THE FULL-SCALE WIND TUNNEL, c. 1932. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  13. 16. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (LAL-12470) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  14. 23. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L73-5028) MODEL OF SUPERSONIC TRANSPORT IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  15. 26. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64792) ALBACORE SUBMARINE DRAG TESTS IN THE FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  16. 17. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79-7343) AERIAL VIEW OF THE FULL-SCALE WIND TUNNEL, 1979. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  17. Big Data Analytics and Machine Intelligence Capability Development at NASA Langley Research Center: Strategy, Roadmap, and Progress

    NASA Technical Reports Server (NTRS)

    Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward

    2016-01-01

    In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.

  18. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 36 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at a Reynolds number of 6 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  19. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  20. Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  1. Recent progress in NASA Langley textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced

  2. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  3. Wall interference assessment and corrections

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.

    1989-01-01

    Wind tunnel wall interference assessment and correction (WIAC) concepts, applications, and typical results are discussed in terms of several nonlinear transonic codes and one panel method code developed for and being implemented at NASA-Langley. Contrasts between 2-D and 3-D transonic testing factors which affect WIAC procedures are illustrated using airfoil data from the 0.3 m Transonic Cryogenic Tunnel and Pathfinder 1 data from the National Transonic Facility. Initial results from the 3-D WIAC codes are encouraging; research on and implementation of WIAC concepts continue.

  4. 23. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L43584) VIEW OF CHANNEL WITH SEAPLANE MODEL HULL IN POSITION FOR TESTING UNDER CARRIAGE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  5. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L84-154) INTERIOR VIEW OF THE SEAPLANE TOWING CHANNEL WITH TANK FULLY DRAINED. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  6. 25. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L88-10198) CONTEMPORARY VIEW OF THE "720" EXPRESS OR TEST CARRIAGE IN 1988. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  7. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L83-8341) VIEW OF FANS IN FULL-SCALE WIND TUNNEL, c. 1960s. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  8. 13. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 4655) VIEW LOOKING NORTH AT THE FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  9. 16. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L89-07075) AERIAL VIEW LOOKING NORTHWEST AT THE FULL-SCALE WIND TUNNEL, 1989. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  10. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L5925) LOENING SCL-1 SEAPLANE IN THE FULL-SCALE WIND TUNNEL, OCTOBER 1931. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  11. Development of a model protection and dynamic response monitoring system for the national transonic facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Balakrishna, S.; Kilgore, W. Allen

    1995-01-01

    A state-of-the-art, computerized mode protection and dynamic response monitoring system has been developed for the NASA Langley Research Center National Transonic Facility (NTF). This report describes the development of the model protection and shutdown system (MPSS). A technical description of the system is given along with discussions on operation and capabilities of the system. Applications of the system to vibration problems are presented to demonstrate the system capabilities, typical applications, versatility, and investment research return derived from the system to date. The system was custom designed for the NTF but can be used at other facilities or for other dynamic measurement/diagnostic applications. Potential commercial uses of the system are described. System capability has been demonstrated for forced response testing and for characterizing and quantifying bias errors for onboard inertial model attitude measurement devices. The system is installed in the NTF control room and has been used successfully for monitoring, recording and analyzing the dynamic response of several model systems tested in the NTF.

  12. Future experimental needs to support applied aerodynamics - A transonic perspective

    NASA Technical Reports Server (NTRS)

    Gloss, Blair B.

    1992-01-01

    Advancements in facilities, test techniques, and instrumentation are needed to provide data required for the development of advanced aircraft and to verify computational methods. An industry survey of major users of wind tunnel facilities at Langley Research Center (LaRC) was recently carried out to determine future facility requirements, test techniques, and instrumentation requirements; results from this survey are reflected in this paper. In addition, areas related to transonic testing at LaRC which are either currently being developed or are recognized as needing improvements are discussed.

  13. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Apollo 204 command module is seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of related hardware and investigative data occupy 3,300 cubic feet of Langley's storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34, Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage at the site of all the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  14. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Part of 81 cartons of Apollo 204 hardware and investigation data are seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and the cartons occupy 3,300 cubic feet of Langley's storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34, Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  15. Results from a Sting Whip Correction Verification Test at the Langley 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Crawford, B. L.; Finley, T. D.

    2002-01-01

    In recent years, great strides have been made toward correcting the largest error in inertial Angle of Attack (AoA) measurements in wind tunnel models. This error source is commonly referred to as 'sting whip' and is caused by aerodynamically induced forces imparting dynamics on sting-mounted models. These aerodynamic forces cause the model to whip through an arc section in the pitch and/or yaw planes, thus generating a centrifugal acceleration and creating a bias error in the AoA measurement. It has been shown that, under certain conditions, this induced AoA error can be greater than one third of a degree. An error of this magnitude far exceeds the target AoA goal of 0.01 deg established at NASA Langley Research Center (LaRC) and elsewhere. New sting whip correction techniques being developed at LaRC are able to measure and reduce this sting whip error by an order of magnitude. With this increase of accuracy, the 0.01 deg AoA target is achievable under all but the most severe conditions.

  16. A concept for transition mapping on a 10 deg-cone in the National Transonic Facility using flow-pressure variation

    NASA Technical Reports Server (NTRS)

    Gartenberg, Ehud

    1995-01-01

    A conceptual study was performed to define a technique for mapping the boundary-layer transition on a 10 deg-Cone in the National Transonic Facility (NTF) as a means of determining this cryogenic-tunnel suitability for laminar flow testing. A major challenge was to devise a test matrix using a fixed surface pitot probe, varying the flow pressure to pr oduce the actual Reynolds numbers for boundary-layer transition. This constraint resulted from a lack of a suitable and reliable electrical motor to drive the probe along the cone's surface under cryogenic flow conditions. The initial phase of this research was performed by the author in collaboration with the late Dr. William B. Igoe from the Aerodynamics Division at NASA Langley Research Center. His comments made during the drafting of this document were invaluable and a source of inspiration.

  17. Earth Radiation Budget Research at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  18. Wind Tunnel Application of a Pressure-Sensitive Paint Technique to a Faceted Missile Model at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Satisfactory global calibrations of the PSP were obtained at =0.70, 0.90, and 1.20, angles of attack from 10 degrees to 20 degrees, and angles of sideslip of 0 and 2.5 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at 57 discrete locations on the model. Both techniques clearly revealed the significant influence on the surface pressure distributions of the vortices shed from the sharp, chine-like leading edges. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M infinity =0.70 and 2.6 percent at M infinity =0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.

  19. NASA LaRC FIB Multi-Channel Anemometry Recording System-User's Manual. [conducted at the Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Sherylene (Compiler); Bertelrud, Arild (Compiler); Anders, J. B. (Technical Monitor)

    2002-01-01

    This report is part of a series of reports describing a flow physics high-lift experiment conducted in NASA Langley Research Center's Low-Turbulence Pressure Tunnel (LTPT) in 1996. The anemometry system used in the experiment was originally designed for and used in flight tests with NASA's Boeing 737 airplane. Information that may be useful in the evaluation or use of the experimental data has been compiled. The report also contains details regarding record structure, how to read the embedded time code, as well as the output file formats used in the code reading the binary data.

  20. Langley Research Highlights 1999: Advanced Aerospace Technology Clouds That Help Create the Ozone Hole Capturing Comet Dust

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report contains highlights of some of the major accomplishments and applications made by NASA Langley Research Center and its university partners and industry colleagues during 1999. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. The Center's historic national role since 1917 continues in Aerospace Technology research with an additional major role in Earth Science research. Langley also partners closely with other NASA Centers and the Jet Propulsion Laboratory in Space Science and the Human Exploration and Development of Space. A color version is available at http://larcpubs.larc.nasa.gov/randt/1999/. For further information, contact Dennis Bushnell, Senior Scientist, Mail Stop 110, NASA Langley Research Center, Hampton, Virginia 23681-2199, (757)-864-8987, e-mail address: d.m.bushnell@larc.nasa.gov.

  1. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L6415) STUFFED SEAGULL ON CARRIAGE OF TOWING TANK - 1932; EXPERIMENT TO DETERMINE AERODYNAMIC QUALITIES OF BIRDS. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  2. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L15337) DRAG-CLEANUP STUDIES OF THE BREWSTER BUFFALO IN THE FULL SCALE WIND TUNNEL, 1938. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  3. 24. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L75-734) MODEL OF SUPERSONIC TRANSPORT IN FULL-SCALE WIND TUNNEL FROM ENTRANCE CONE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  4. 15. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L12000.1) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL, c. 1935. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  5. 25. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L81-7333) RUTAN'S VARI-EZE ADVANCED CONCEPTS AIRCRAFT IN THE FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  6. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  7. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  8. Acoustic treatment of the NASA Langley 4- by 7-meter tunnel: A feasibility study

    NASA Technical Reports Server (NTRS)

    Yu, J. C.; Abrahamson, A. L.

    1986-01-01

    A feasibility study for upgrading the NASA Langley 4- by 7-Meter Tunnel so that it may be used for aeroacoustic research related to helicopters is described. The requirements for noise research leading to the design of the next generation of helicopters impose a set of acoustic test criteria that no existing wind tunnel in the United States can presently meet. Included in this feasibility study are the following considerations: (1) an evaluation of general wind-tunnel requirements and desired tunnel background noise levels for helicopter aeroacoustic research; (2) an assessment of the present acoustic environment for testing model rotors; (3) a diagnostic investigation of tunnel background noise sources and paths; (4) acoustic treatment options for tunnel background noise reduction and a trade-off study between these options; (5) an engineering feasibility assessment of the selected option; and (6) an integrated analysis of study components and recommendations of treatment for an approach to meet the tunnel background noise reduction goal. It is concluded that the Langley 4- by 7-Meter Tunnel is a fundamentally suitable facility for helicopter aeroacoustic research. It is also concluded that acoustic treatment of this facility for meeting the required tunnel background noise goal can be accomplished technically at reasonable risk and cost.

  9. 14. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4776) VIEW SOUTH THROUGH ENTRANCE CONE OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION, SEPTEMBER 12, 1930. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  10. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10235) INTERIOR VIEW SHOWING TURNING VANES IN 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  11. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  12. Wind Tunnel Investigation of Passive Vortex Control and Vortex-Tail Interactions on a Slender Wing at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.

  13. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  14. Design study of advanced model support systems for the National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    It has long been recognized that the sting (or support system) is a very critical part of the model system. The designer is frequently faced with the tradeoff of minimizing sting size, thereby compromising facility and model safety, against a larger sting and the subsequent problems of sting interference effects. In the NASA Langley Research Center National Transonic Facility (NTF), this problem is accentuated by the severe environment of high pressure/low temperature, designed into the facility to provide the desired high Reynolds number. Compromises in the configuration geometry and/or limiting the test envelope are therefore contrary to the purposes and goals of the NTF and are unacceptable. The results of an investigation aimed at improvements of 25% in both strength and Young's modulus of elasticity as compared to high strength cryogenically acceptable steels currently being used are presented. Various materials or combinations of materials were studied along with different design approaches. Design concepts were developed which included conventional material stings, advanced composites, and hybrid configurations. Candidate configurations are recommended.

  15. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 16900) DETAIL VIEW OF CONTROL/MONITORING STATION IN 8-FOOT HIGH SPEED WIND TUNNEL, c. 1930s. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  16. 17. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10,257) DETAIL VIEW OF EXTERIOR OF COOLING TOWER FOR 8- FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  17. 12. Photocopy of photograph (original in Langley Research Center Archives, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph (original in Langley Research Center Archives, Hampton, VA LaRC) (L4496) AERIAL VIEW OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION; c. 1930. NOTE SEAPLANE TOWING CHANNEL STRUCTURE IN BACKGROUND. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  18. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79758) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  19. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-9850) ANNUAL AIRCRAFT ENGINEERING CONFERENCE IN FULL-SCALE WIND TUNNEL; GROUP PHOTOGRAPH OF PARTICIPANTS, mAY 23, 1934. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  20. 13. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) AERIAL VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL IN FOREGROUND. NOTE COOLING TOWER AT LEFT CENTER. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  1. Subsonic and transonic dynamic stability characteristics of the space shuttle launch vehicle

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Boyden, R. P.; Davenport, E. E.

    1976-01-01

    An investigation has been conducted to determine the subsonic and transonic dynamic stability characteristics of a 0.015 scale model of the space shuttle launch vehicle. These tests were conducted in the Langley 8-foot transonic pressure tunnel over a Mach number range from 0.3 to 1.2. Forced oscillation equipment was used to determine the damping characteristics of several configurations about all three axes. The test results show that the model exhibited positive damping in pitch except at the highest Mach number (1.2) where there was a region of negative damping at 2 deg angle of attack. The yawing oscillation tests show that the model exhibited nonlinearities and negative damping at Mach numbers of 0.3 and 0.6. The model exhibited positive roll damping throughout the test angle of attack and Mach range.

  2. Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

    2008-01-01

    Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

  3. NASA Langley Scientific and Technical Information Output-2001

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler)

    2002-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the 2001 calendar year. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  4. NASA Langley Scientific and Technical Information Output-2002

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler)

    2003-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2002. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  5. NASA Langley Scientific and Technical Information Output: 1998

    NASA Technical Reports Server (NTRS)

    Machie, Harriet B. (Compiler); Stewart, Susan H. (Compiler)

    1999-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1998. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  6. Effects of differential and symmetrical aileron deflection on the aerodynamic characteristics of an NASA supercritical-wing research airplane model

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1975-01-01

    An investigation has been conducted in the Langley 8 foot transonic pressure tunnel to determine the effects of differential and symmetrical aileron deflection on the longitudinal and lateral directional aerodynamic characteristics of an 0.087 scale model of an NASA supercritical wing research airplane (TF-8A). Tests were conducted at Mach numbers from 0.25 to 0.99 in order to determine the effects of differential aileron deflection and at Mach numbers of 0.25 and 0.50 to determine the effects of symmetrical aileron (flap) deflection. The angle of attack range for all tests varied from approximately -12 deg to 20 deg.

  7. Collaborative Mission Design at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  8. Reduced-Order Modeling: Cooperative Research and Development at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Beran, Philip S.; Cesnik, Carlos E. S.; Guendel, Randal E.; Kurdila, Andrew; Prazenica, Richard J.; Librescu, Liviu; Marzocca, Piergiovanni; Raveh, Daniella E.

    2001-01-01

    Cooperative research and development activities at the NASA Langley Research Center (LaRC) involving reduced-order modeling (ROM) techniques are presented. Emphasis is given to reduced-order methods and analyses based on Volterra series representations, although some recent results using Proper Orthogonal Deco in position (POD) are discussed as well. Results are reported for a variety of computational and experimental nonlinear systems to provide clear examples of the use of reduced-order models, particularly within the field of computational aeroelasticity. The need for and the relative performance (speed, accuracy, and robustness) of reduced-order modeling strategies is documented. The development of unsteady aerodynamic state-space models directly from computational fluid dynamics analyses is presented in addition to analytical and experimental identifications of Volterra kernels. Finally, future directions for this research activity are summarized.

  9. NASA Langley Scientific and Technical Information Output?2003

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler)

    2004-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2003. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  10. NASA Langley Scientific and Technical Information Output: 1997

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Machie, Harriet B. (Compiler)

    1998-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1997. Included are citations for Formal Reports, Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  11. 24. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA CARRIAGE IN SEAPLANE TOWING CHANNEL SHOWING OGIVE SHAPE READY FOR TEST. TANK HAS BEEN DRAINED AND THE OGIVE WOULD BE SUBMERGED UNDER NORMAL TEST CONDITIONS. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  12. Program of Research in Flight Dynamics, The George Washington University at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C. (Technical Monitor); Klein, Vladislav

    2005-01-01

    The program objectives are fully defined in the original proposal entitled Program of Research in Flight Dynamics in GW at NASA Langley Research Center, which was originated March 20, 1975, and in the renewals of the research program from January 1, 2003 to September 30, 2005. The program in its present form includes three major topics: 1. the improvement of existing methods and development of new methods for wind tunnel and flight data analysis, 2. the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3. the correlation of flight results with wind tunnel measurements, and theoretical predictions.

  13. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  14. Turbulence Model Comparisons and Reynolds Number Effects Over a High-Speed Aircraft at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Wahls, Richard A.

    1999-01-01

    This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.

  15. NASA Langley Scientific and Technical Information Output 2000

    NASA Technical Reports Server (NTRS)

    Machie, Harriet B. (Compiler); Stewart, Susan H. (Compiler)

    2001-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2000. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandum, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, Tech Briefs, and Patents.

  16. NASA Langley Scientific and Technical Information Output: 1999

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Machie, Harriet (Compiler)

    2000-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1999. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, Tech Briefs, and Patents.

  17. Proceedings of the Sixth NASA Langley Formal Methods (LFM) Workshop

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Yvonne (Editor)

    2008-01-01

    Today's verification techniques are hard-pressed to scale with the ever-increasing complexity of safety critical systems. Within the field of aeronautics alone, we find the need for verification of algorithms for separation assurance, air traffic control, auto-pilot, Unmanned Aerial Vehicles (UAVs), adaptive avionics, automated decision authority, and much more. Recent advances in formal methods have made verifying more of these problems realistic. Thus we need to continually re-assess what we can solve now and identify the next barriers to overcome. Only through an exchange of ideas between theoreticians and practitioners from academia to industry can we extend formal methods for the verification of ever more challenging problem domains. This volume contains the extended abstracts of the talks presented at LFM 2008: The Sixth NASA Langley Formal Methods Workshop held on April 30 - May 2, 2008 in Newport News, Virginia, USA. The topics of interest that were listed in the call for abstracts were: advances in formal verification techniques; formal models of distributed computing; planning and scheduling; automated air traffic management; fault tolerance; hybrid systems/hybrid automata; embedded systems; safety critical applications; safety cases; accident/safety analysis.

  18. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L27056) LOCKHEED YP-38 IN THE FULL-SCALE WIND TUNNEL; THIS WAS THE PROTOTYPE OF THE P-38 (LOCKHEED LIGHTNING); c. 1941. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  19. Journey in Aeronautical Research: A Career at NASA Langley Research Center. No. 12; Monographs in Aerospace History

    NASA Technical Reports Server (NTRS)

    Phillips, W. Hewitt

    1998-01-01

    An autobiography, of a noted aeronautical engineer, W. Hewitt Phillips, whose career spanned 58 years (1940-1998) at NASA Langley is presented. This work covers his early years to the Sputnik launch. His interests have been in research in aeronautics and in the related problems of spaceflight. After an introduction, his early life through the college years is reviewed, and his early interest in model airplanes is described. The first assignment for the National Advisory Committee for Aeronautics (NACA), which would later become NASA, was with the Flight Research Division. His early work involved "Flying Qualities", i.e., the stability and control characteristics of an airplane. The next chapter describes his early analytical studies. His work during World War II in the design of military airplanes, and the other effects of the war on research activities, is covered in the next two chapters. This research was involved in such innovations and refinements as the swept wing, the flettner tabs, servo tabs, spring tabs and whirlerons. The rest of the work covers the research which Mr. Hewitt was involved in, after the war until the Sputnik launch. These areas include unsteady lift, measurements of turbulence in the atmosphere, gust alleviation, and lateral response to random turbulence. He was also involved in several investigations of airplane accidents. The last two chapters cover the administration of the Langley Research Center, and the dawn of the Space Age. A complete bibliography of reports written by Mr. Hewitt, is included.

  20. High-Reynolds-Number Test of a 5-Percent-Thick Low-Aspect-Ratio Semispan Wing in the Langley 0.3-Meter Transonic Cryogenic Tunnel: Wing Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Lawing, Pierce L.

    1990-01-01

    A high Reynolds number test of a 5 percent thick low aspect ratio semispan wing was conducted in the adaptive wall test section of the Langley 0.3 m Transonic Cryogenic Tunnel. The model tested had a planform and a NACA 64A-105 airfoil section that is similar to that of the pressure instrumented canard on the X-29 experimental aircraft. Chordwise pressure data for Mach numbers of 0.3, 0.7, and 0.9 were measured for an angle-of-attack range of -4 to 15 deg. The associated Reynolds numbers, based on the geometric mean chord, encompass most of the flight regime of the canard. This test was a free transition investigation. A summary of the wing pressures are presented without analysis as well as adapted test section top and bottom wall pressure signatures. However, the presented graphical data indicate Reynolds number dependent complex leading edge separation phenomena. This data set supplements the existing high Reynolds number database and are useful for computational codes comparison.

  1. Multidisciplinary Design Investigation of Truss-Braced Wing Aircraft. Phase 4

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Kapania, R. K.; Mason, W. H.; Schetz, J. A.

    2000-01-01

    The subject grant was in effect from 7/l/99 to 10/31/99. The objective of this grant was to complete a strut-braced wing study which began, which was in effect from 6/27/96 until 9/15/99. While the initial grant was on-going, we were also under subcontract to Lockheed-Martin, Aerospace Systems Division, Marietta, GA to do additional studies related to the strut-braced wing grant "A Structural and Aerodynamic Investigation of a Strut-Braced Wing Transonic Aircraft Concept", 4/l/98-11/15/98. Lockheed-Martin was under contract to NASA Langley. Finally the research under this grant has led to a joint proposal from NASA Langley, Locheed-Martin, Virginia Tech and NASA Dryden to develop a transonic strut-braced wing demonstration aircraft in response to Flight Research for Revolutionary Aeronautical Concepts (REVCON). This final report summarizes the research done, augmented by the additional concommitant research projects mentioned above.

  2. NASA Langley Scientific and Technical Information Output: 1996

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

    1997-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1996. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  3. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  4. Turbine Blade and Endwall Heat Transfer Measured in NASA Glenn's Transonic Turbine Blade Cascade

    NASA Technical Reports Server (NTRS)

    Giel, Paul W.

    2000-01-01

    Higher operating temperatures increase the efficiency of aircraft gas turbine engines, but can also degrade internal components. High-pressure turbine blades just downstream of the combustor are particularly susceptible to overheating. Computational fluid dynamics (CFD) computer programs can predict the flow around the blades so that potential hot spots can be identified and appropriate cooling schemes can be designed. Various blade and cooling schemes can be examined computationally before any hardware is built, thus saving time and effort. Often though, the accuracy of these programs has been found to be inadequate for predicting heat transfer. Code and model developers need highly detailed aerodynamic and heat transfer data to validate and improve their analyses. The Transonic Turbine Blade Cascade was built at the NASA Glenn Research Center at Lewis Field to help satisfy the need for this type of data.

  5. DARPA/ARFL/NASA Smart Wing second wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; West, Mark N.; Florance, Jennifer P.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.

    1999-07-01

    To quantify the benefits of smart materials and structures adaptive wing technology. Northrop Grumman Corp. built and tested two 16 percent scale wind tunnel models of a fighter/attach aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment, increased rolling moment and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy wires and spanwise wing twist effected by SMA torque tube mechanism, compared to convention hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center's 16 ft Transonic Dynamic Tunnel in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12 percent increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10 percent increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  6. Vibration attenuation of the NASA Langley evolutionary structure experiment using H(sub infinity) and structured singular value (micron) robust multivariable control techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1992-01-01

    The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.

  7. Overview of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2012-01-01

    A facility has been constructed at NASA Langley Research Center to simulate the soundscape inside residential houses that are exposed to environmental noise from aircraft. This controllable indoor listening environment, the Interior Effects Room, enables systematic study of parameters that affect psychoacoustic response. The single-room facility, built using typical residential construction methods and materials, is surrounded on adjacent sides by two arrays of loudspeakers in close proximity to the exterior walls. The arrays, containing 52 subwoofers and 52 mid-range speakers, have a usable bandwidth of 3 Hz to 5 kHz and sufficient output to allow study of sonic boom noise. In addition to these exterior arrays, satellite speakers placed inside the room are used to augment the transmitted sound with rattle and other audible contact ]induced noise that can result from low frequency excitation of a residential house. The layout of the facility, operational characteristics, acoustic characteristics and equalization approaches are summarized.

  8. Acoustical characteristics of the NASA Langley full scale wind tunnel test section

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.

    1975-01-01

    The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.

  9. Characteristics of the Langley 8-foot Transonic Tunnel with Slotted Test Section

    NASA Technical Reports Server (NTRS)

    Wright, Ray H; Ritchie, Virgil S; Pearson, Albin O

    1958-01-01

    A large wind tunnel, approximately 8 feet in diameter, has been converted to transonic operation by means of slots in the boundary extending in the direction of flow. The usefulness of such a slotted wind tunnel, already known with respect to the reduction of the subsonic blockage interference and the production of continuously variable supersonic flows, has been augmented by devising a slot shape with which a supersonic test region with excellent flow quality could be produced. Experimental locations of detached shock waves ahead of axially symmetric bodies at low supersonic speeds in the slotted test section agreed satisfactorily with predictions obtained by use of existing approximate methods.

  10. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  11. Experimental studies of transonic flow field near a longitudinally slotted wind tunnel wall. Ph.D. Thesis - George Washington Univ., 1988

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Bobbitt, Percy J.

    1994-01-01

    The results of detailed parametric experiments are presented for the near-wall flow field of a longitudinally slotted transonic wind tunnel. Existing data are reevaluated and new data obtained in the Langley 6- by 19-inch Transonic Wind Tunnel are presented and analyzed. In the experiments, researchers systematically investigate many pertinent wall-geometry variables such as the wall openness and the number of slots along with the free stream Mach number and model angle of attack. Flow field surveys on the plane passing through the centerline of the slot were conducted and are presented. The effects of viscosity on the slot flow are considered in the analysis. The present experiments, combined with those of previous investigations, give a more complete physical characterization of the flow near and through the slotted wall of a transonic wind tunnel.

  12. Electronic Photography at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Holm, Jack; Judge, Nancianne

    1995-01-01

    An electronic photography facility has been established in the Imaging & Photographic Technology Section, Visual Imaging Branch, at the NASA Langley Research Center (LaRC). The purpose of this facility is to provide the LaRC community with access to digital imaging technology. In particular, capabilities have been established for image scanning, direct image capture, optimized image processing for storage, image enhancement, and optimized device dependent image processing for output. Unique approaches include: evaluation and extraction of the entire film information content through scanning; standardization of image file tone reproduction characteristics for optimal bit utilization and viewing; education of digital imaging personnel on the effects of sampling and quantization to minimize image processing related information loss; investigation of the use of small kernel optimal filters for image restoration; characterization of a large array of output devices and development of image processing protocols for standardized output. Currently, the laboratory has a large collection of digital image files which contain essentially all the information present on the original films. These files are stored at 8-bits per color, but the initial image processing was done at higher bit depths and/or resolutions so that the full 8-bits are used in the stored files. The tone reproduction of these files has also been optimized so the available levels are distributed according to visual perceptibility. Look up tables are available which modify these files for standardized output on various devices, although color reproduction has been allowed to float to some extent to allow for full utilization of output device gamut.

  13. Packet radio data link applications in the NASA Langley Research Center Transport Systems Research Vehicle

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.; Carter, Donald; Mcluer, David G.

    1994-01-01

    An amateur packet radio system operating in the very high frequency (VHF) range has been implemented in the Transport Systems Research Vehicle at the NASA Langley Research Center to provide an economical, bidirectional, real-time, ground-to-air data link. The packet system has been used to support flight research involving air traffic control (ATC), differential global positioning systems (DGPS), and windshear terminal doppler weather radar (TDWR). A data maximum rate of 2400 baud was used. Operational reliability of the packet system has been very good. Also, its versatility permits numerous specific configurations. These features, plus its low cost, have rendered it very satisfactory for support of data link flight experiments that do not require high data transfer rates.

  14. User guide for the digital control system of the NASA/Langley Research Center's 13-inch Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1987-01-01

    The technical background to the development of the digital control system of the NASA/Langley Research Center's 13 inch Magnetic Supension and Balance Systen (MSBS) is reviewed. The implementation of traditional MSBS control algorithms in digital form is examined. Extensive details of the 13-inch MSBS digital controller and related hardware are given, together with the introductory instructions for systems operators. Full listings of software are included in the Appendices.

  15. Development of a Semi-Span Test Capability at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Parker, P. A.; Owens, L. R., Jr.

    2001-01-01

    A need for low-speed, high Reynolds number test capabilities has been identified for the design and development of advanced subsonic transport high-lift systems. In support of this need, multiple investigations have been conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center to develop a semi-span testing capability that will provide the low-speed, flight Reynolds number data currently unattainable using conventional sting-mounted, full-span models. Although a semi-span testing capability will effectively double the Reynolds number capability over full-span models, it does come at the expense of contending with the issue of the interaction of the flow over the model with the windtunnel wall boundary layer. To address this issue the size and shape of the semi-span model mounting geometry have been investigated, and the results are presented herein. The cryogenic operating environment of the NTF produced another semi-span test technique issue in that varying thermal gradients have developed on the large semi-span balance. The suspected cause of these thermal gradients and methods to eliminate them are presented. Data are also presented that demonstrate the successful elimination of these varying thermal gradients during cryogenic operations.

  16. Airfoil modification effects on subsonic and transonic pressure distributions and performance for the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Sewall, William G.

    1995-01-01

    Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.

  17. Mixed Layer Heights Derived from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Scarino, Amy J.; Burton, Sharon P.; Ferrare, Rich A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.; Rogers, Raymond R.; Cook, Anthony L.; Harper, David B.; Fast, Jerome; hide

    2012-01-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) has been deployed on board the NASA Langley Research Center's B200 aircraft to several locations in North America from 2006 to 2012 to aid in characterizing aerosol properties for over fourteen field missions. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Mixing Layer (ML) height. We describe the use of the HSRL data collected during these missions for computing ML heights and show how the HSRL data can be used to determine the fraction of aerosol optical thickness within and above the ML, which is important for air quality assessments. We describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. We also describe how the ML heights derived from HSRL have been used to help assess simulations of Planetary Boundary Layer (PBL) derived using various models, including the Weather Research and Forecasting Chemistry (WRF-Chem), NASA GEOS-5 model, and the ECMWF/MACC models.

  18. Survey of supersonic combustion ramjet research at Langley

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  19. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64110) DIVING SUIT REQUIRED FOR WORKING IN 8- FOOT HIGH SPEED WIND TUNNEL; ROY H. WRIGHT, DESIGNER OF THE INNOVATIVE SLOTTED SECTION OF TUNNEL IS IN THE SUIT. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  20. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    NASA Astrophysics Data System (ADS)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  1. A comparison of the aerodynamic characteristics at transonic speeds of four wing-fuselage configurations as determined from different test techniques, 4 October 1960

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.; Myers, B. C., II; Mattson, A. T.

    1976-01-01

    The high speed aerodynamic characteristics of a family of four wing-fuselage configurations of 0, 35, 45, and 60 deg sweepback were determined from transonic bump model tests that were conducted in the Langley high speed 7 by 10 foot tunnel; sting supported model tests were conducted in the Langley 8 foot high speed tunnel and in the Langley high speed 7 by 10 foot tunnel, and rocket model tests were conducted by the Langley Pilotless Aircraft Research Division. A complementary study of the effect of Mach number gradients and streamline curvature on bump results is also included. The qualitative data obtained from the various test facilities for the wing-fuselage configurations were in essential agreement as regards the relative effects of sweepback and Mach number except for drag at zero lift. Quantitatively, important differences were present.

  2. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Apollo 204 command module is seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of related hardware and investigative data occupy 3,300 cubic feet of warehouse storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34 at Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  3. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A warehouse holding Apollo 204 hardware and investigative data is seen at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of data and other related materials occupy 3,300 cubic feet. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34 at Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  4. Langley Ground Facilities and Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Kegelman, Jerome T.; Kilgore, William A.

    2010-01-01

    A strategic approach for retaining and more efficiently operating the essential Langley Ground Testing Facilities in the 21st Century is presented. This effort takes advantage of the previously completed and ongoing studies at the Agency and National levels. This integrated approach takes into consideration the overall decline in test business base within the nation and reduced utilization in each of the Langley facilities with capabilities to test in the subsonic, transonic, supersonic, and hypersonic speed regimes. The strategy accounts for capability needs to meet the Agency programmatic requirements and strategic goals and to execute test activities in the most efficient and flexible facility operating structure. The structure currently being implemented at Langley offers agility to right-size our capability and capacity from a national perspective, to accommodate the dynamic nature of the testing needs, and will address the influence of existing and emerging analytical tools for design. The paradigm for testing in the retained facilities is to efficiently and reliably provide more accurate and high-quality test results at an affordable cost to support design information needs for flight regimes where the computational capability is not adequate and to verify and validate the existing and emerging computational tools. Each of the above goals are planned to be achieved, keeping in mind the increasing small industry customer base engaged in developing unpiloted aerial vehicles and commercial space transportation systems.

  5. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  6. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  7. Results of transonic wind tunnel tests on an 0.010-scale space shuttle mated vehicle model 72-OTS in the LaRC 8-foot TPT (IA43)

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in NASA/Langley 8-Foot transonic pressure tunnel on a sting mounted 0.010-scale outer mold line model of 104A/B configuration of the Rockwell International space shuttle vehicle. Component aerodynamic force and moment data and base and balance cavity pressures were recorded over an angle of attack range of -10 deg to +10 deg at Mach numbers of 0.6, 0.8, 0.9, 0.98, 1.13, and 1.2. Selected configurations were tested at sideslip angles from -10 deg to +10 deg. For all configurations involving the orbit, wing bending and torsion were measured on the right wing. Inboard elevon setting of 0 deg, +4 deg and +8 deg and outboard settings of 0 deg, +4 deg and +8 deg were tested.

  8. Pressure system recertification at NASA-Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Ramsey, J. W., Jr.

    1983-01-01

    Langley Research Center pressure systems are being recertified to ensure safe operation of these systems. The procedures for recertifying these pressure systems are reviewed. Generally, the analysis and inspection requirements outlined in the appropriate national consensus codes are followed. In some instances where the requirements of these codes are not met. The systems are analyzed further, repaired, modified and/or tested to demonstrate their structural integrity.

  9. Transonic Unsteady Aerodynamics of the F/A-18E at Conditions Promoting Abrupt Wing Stall

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Byrd, James E.

    2003-01-01

    A transonic wind tunnel test of an 8% F/A-18E model was conducted in the NASA Langley Research Center (LaRC) 16-Foot Transonic Tunnel (16-Ft TT) to investigate the Abrupt Wing Stall (AWS) characteristics of this aircraft. During this test, both steady and unsteady measurements of balance loads, wing surface pressures, wing root bending moments, and outer wing accelerations were performed. The test was conducted with a wide range of model configurations and test conditions in an attempt to reproduce behavior indicative of the AWS phenomenon experienced on full-scale aircraft during flight tests. This paper focuses on the analysis of the unsteady data acquired during this test. Though the test apparatus was designed to be effectively rigid. model motions due to sting and balance flexibility were observed during the testing, particularly when the model was operating in the AWS flight regime. Correlation between observed aerodynamic frequencies and model structural frequencies are analyzed and presented. Significant shock motion and separated flow is observed as the aircraft pitches through the AWS region. A shock tracking strategy has been formulated to observe this phenomenon. Using this technique, the range of shock motion is readily determined as the aircraft encounters AWS conditions. Spectral analysis of the shock motion shows the frequencies at which the shock oscillates in the AWS region, and probability density function analysis of the shock location shows the propensity of the shock to take on a bi-stable and even tri-stable character in the AWS flight regime.

  10. Increasing Access to Atmospheric Science Research at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

    2013-12-01

    The Science Directorate (SD) at NASA's Langley Research Center conducts cutting edge research in fundamental atmospheric science topics including radiation and climate, air quality, active remote sensing, and upper atmospheric composition. These topics matter to the public, as they improve our understanding of our home planet. Thus, we have had ongoing efforts to improve public access to the results of our research. These efforts have accelerated with the release of the February OSTP memo. Our efforts can be grouped in two main categories: 1. Visual presentation techniques to improve science understanding: For fundamental concepts such as the Earth's energy budget, we have worked to display information in a more "digestible" way for lay audiences with more pictures and fewer words. These audiences are iPad-lovers and TV-watchers with shorter attention spans than audiences of the past. They are also educators and students who need a basic understanding of a concept delivered briefly to fit into busy classroom schedules. We seek to reach them with a quick, visual message packed with important information. This presentation will share several examples of visual techniques, such as infographics (e.g., a history of lidar at Langley and a timeline of atmospheric research, ozone garden diagrams (http://science-edu.larc.nasa.gov/ozonegarden/ozone-cycle.php); history of lidar at LaRC; DISCOVER-AQ maps. It will also share examples of animations and interactive graphics (DISCOVER-AQ); and customized presentations (e.g., to explain the energy budget or to give a general overview of research). One of the challenges we face is a required culture shift between the way scientists traditionally share knowledge with each other and the way these public audiences ingest knowledge. A cross-disciplinary communications team in SD is crucial to bridge that gap. 2. Lay research summaries to make research more accessible: Peer-reviewed publications are a primary product of the SD, with more

  11. A Parametric Investigation of Nozzle Planform and Internal/External Geometry at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Cler, Daniel L.

    1995-01-01

    An experimental investigation of multidisciplinary (scarfed trailing edge) nozzle divergent flap geometry was conducted at transonic speeds in the NASA Langley 16-Foot Transonic Tunnel. The geometric parameters investigated include nozzle planform, nozzle contouring location (internal and/or external), and nozzle area ratio (area ratio 1.2 and 2.0). Data were acquired over a range of Mach Numbers from 0.6 to 1.2, angle-of-attack from 0.0 degrees to 9.6 degrees and nozzle pressure ratios from 1.0 to 20.0. Results showed that increasing the rate of change internal divergence angle across the width of the nozzle or increasing internal contouring will decrease static, aeropropulsive and thrust removed drag performance regardless of the speed regime. Also, increasing the rate of change in boattail angle across the width of the nozzle or increasing external contouring will provide the lowest thrust removed drag. Scarfing of the nozzle trailing edges reduces the aeropropulsive performance for the most part and adversely affects the nozzle plume shape at higher nozzle pressure ratios thus increasing the thrust removed drag. The effects of contouring were primary in nature and the effects of planform were secondary in nature. Larger losses occur supersonically than subsonically when scarfing of nozzle trailing edges occurs. The single sawtooth nozzle almost always provided lower thrust removed drag than the double sawtooth nozzles regardless the speed regime. If internal contouring is required, the double sawtooth nozzle planform provides better static and aeropropulsive performance than the single sawtooth nozzle and if no internal contouring is required the single sawtooth provides the highest static and aeropropulsive performance.

  12. Sensitivity analysis of cool-down strategies for a transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.

    1982-01-01

    Guidelines and suggestions substantiated by real-time simulation data to ensure optimum time and energy use of injected liquid nitrogen for cooling the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) are presented. It is directed toward enabling operators and researchers to become cognizant of criteria for using the 0.3-m TCT in an energy- or time-efficient manner. Operational recommendations were developed based on information collected from a validated simulator of the 0.3-m TCT and experimental data from the tunnel. Results and trends, however, can be extrapolated to other similarly constructed cryogenic wind tunnels.

  13. Transonic static and dynamic stability characteristics of a finned projectile configuration

    NASA Technical Reports Server (NTRS)

    Boyden, R. P.; Brooks, C. W., Jr.; Davenport, E. E.

    1978-01-01

    Static and dynamic stability tests were made of a finned projectile configuration with the aft-mounted fins arranged in a cruciform pattern. The tests were made at free stream Mach numbers of 0.7, 0.9, 1.1, and 1.2 in the Langley 8-foot transonic pressure tunnel. Some of the parameters measured during the tests were lift, drag, pitching moment, pitch damping, and roll damping. Configurations tested included the body with undeflected fins, the body with various fin deflections for control, and the body with fins removed. Theoretical estimates of the stability derivatives were made for the fins on configuration.

  14. Effects of Liner Length and Attenuation on NASA Langley Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.

    2016-01-01

    This study explores the effects of liner length and attenuation on the CHE (convected Helmholtz equation) impedance eduction method, in which the surface impedance of an acoustic liner is inferred through an iterative process based on repeated solutions to the convected Helmholtz equation. Wire mesh-over-honeycomb and perforate-over-honeycomb acoustic liners are tested in the NASA Langley Grazing Flow Impedance Tube, and the resultant data are processed using two impedance eduction methods. The first is the CHE method, and the second is a direct method (labeled the KT method) that uses the Kumaresan and Tufts algorithm to compute the impedance directly. The CHE method has been extensively used for acoustic liner evaluation, but experiences anomalous behavior under some test conditions. It is postulated that the anomalies are related to the liner length and/or attenuation. Since the KT method only employs data measured over the length of the liner, it is expected to be unaffected by liner length. A comparison of results achieved with the two impedance eduction methods is used to explore the interactive effects of liner length and attenuation on the CHE impedance eduction method.

  15. Open Architecture Data System for NASA Langley Combined Loads Test System

    NASA Technical Reports Server (NTRS)

    Lightfoot, Michael C.; Ambur, Damodar R.

    1998-01-01

    The Combined Loads Test System (COLTS) is a new structures test complex that is being developed at NASA Langley Research Center (LaRC) to test large curved panels and cylindrical shell structures. These structural components are representative of aircraft fuselage sections of subsonic and supersonic transport aircraft and cryogenic tank structures of reusable launch vehicles. Test structures are subjected to combined loading conditions that simulate realistic flight load conditions. The facility consists of two pressure-box test machines and one combined loads test machine. Each test machine possesses a unique set of requirements or research data acquisition and real-time data display. Given the complex nature of the mechanical and thermal loads to be applied to the various research test articles, each data system has been designed with connectivity attributes that support both data acquisition and data management functions. This paper addresses the research driven data acquisition requirements for each test machine and demonstrates how an open architecture data system design not only meets those needs but provides robust data sharing between data systems including the various control systems which apply spectra of mechanical and thermal loading profiles.

  16. NASA Langley Atmospheric Science Data Center (ASDC) Experience with Aircraft Data

    NASA Astrophysics Data System (ADS)

    Perez, J.; Sorlie, S.; Parker, L.; Mason, K. L.; Rinsland, P.; Kusterer, J.

    2011-12-01

    Over the past decade the NASA Langley ASDC has archived and distributed a variety of aircraft mission data sets. These datasets posed unique challenges for archiving from the rigidity of the archiving system and formats to the lack of metadata. The ASDC developed a state-of-the-art data archive and distribution system to serve the atmospheric sciences data provider and researcher communities. The system, called Archive - Next Generation (ANGe), is designed with a distributed, multi-tier, serviced-based, message oriented architecture enabling new methods for searching, accessing, and customizing data. The ANGe system provides the ease and flexibility to ingest and archive aircraft data through an ad hoc workflow or to develop a new workflow to suit the providers needs. The ASDC will describe the challenges encountered in preparing aircraft data for archiving and distribution. The ASDC is currently providing guidance to the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Earth Venture-1 project on developing collection, granule, and browse metadata as well as supporting the ADAM (Airborne Data For Assessing Models) site.

  17. Basic Pressure Measurements at Transonic Speeds on a Thin 45 deg Sweptback Highly Tapered Wing with Systematic Spanwise Twist Variations

    NASA Technical Reports Server (NTRS)

    Mugler, John P., Jr.

    1958-01-01

    Pressure distributions are presented for a thin highly tapered untwisted 45 deg sweptback wing in combination with a body. These tests were made in the Langley 8-foot transonic pressure tunnel at both 1.0 and 0.5 atmosphere stagnation pressures at Mach numbers from 0.800 to 1.200 through an angle-of-attack range of -4 deg to 12 deg.

  18. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  19. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  20. ARES I Aerodynamic Testing at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Wilcox, Floyd J.

    2011-01-01

    Small-scale force and moment and pressure models based on the outer mold lines of the Ares I design analysis cycle crew launch vehicle were tested in the NASA Langley Research Center Unitary Plan Wind Tunnel from May 2006 to September 2009. The test objectives were to establish supersonic ascent aerodynamic databases and to obtain force and moment, surface pressure, and longitudinal line-load distributions for comparison to computational predictions. Test data were obtained at low through high supersonic Mach numbers for ranges of the Reynolds number, angle of attack, and roll angle. This paper focuses on (1) the sensitivity of the supersonic aerodynamic characteristics to selected protuberances, outer mold line changes, and wind tunnel boundary layer transition techniques, (2) comparisons of experimental data to computational predictions, and (3) data reproducibility. The experimental data obtained in the Unitary Plan Wind Tunnel captured the effects of evolutionary changes to the Ares I crew launch vehicle, exhibited good agreement with predictions, and displayed satisfactory within-test and tunnel-to-tunnel data reproducibility.

  1. Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Perry, Boyd, III; Gilbert, Michael G.

    1989-01-01

    The objective of research in aeroservoelasticity at the NASA Langley Research Center is to enhance the modeling, analysis, and multidisciplinary design methodologies for obtaining multifunction digital control systems for application to flexible flight vehicles. Recent accomplishments are discussed, and a status report on current activities within the Aeroservoelasticity Branch is presented. In the area of modeling, improvements to the Minimum-State Method of approximating unsteady aerodynamics are shown to provide precise, low-order aeroservoelastic models for design and simulation activities. Analytical methods based on Matched Filter Theory and Random Process Theory to provide efficient and direct predictions of the critical gust profile and the time-correlated gust loads for linear structural design considerations are also discussed. Two research projects leading towards improved design methodology are summarized. The first program is developing an integrated structure/control design capability based on hierarchical problem decomposition, multilevel optimization and analytical sensitivities. The second program provides procedures for obtaining low-order, robust digital control laws for aeroelastic applications. In terms of methodology validation and application the current activities associated with the Active Flexible Wing project are reviewed.

  2. An overview of controls research on the NASA Langley Research Center grid

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.

    1987-01-01

    The NASA Langley Research Center has assembled a flexible grid on which control systems research can be accomplished on a two-dimensional structure that has many physically distributed sensors and actuators. The grid is a rectangular planar structure that is suspended by two cables attached to one edge so that out of plane vibrations are normal to gravity. There are six torque wheel actuators mounted to it so that torque is produced in the grid plane. Also, there are six rate gyros mounted to sense angular motion in the grid plane and eight accelerometers that measure linear acceleration normal to the grid plane. All components can be relocated to meet specific control system test requirements. Digital, analog, and hybrid control systems capability is provided in the apparatus. To date, research on this grid has been conducted in the areas of system and parameter identification, model estimation, distributed modal control, hierarchical adaptive control, and advanced redundancy management algorithms. The presentation overviews each technique and presents the most significant results generated for each area.

  3. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  4. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  5. A Sample of NASA Langley Unsteady Pressure Experiments for Computational Aerodynamics Code Evaluation

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Scott, Robert C.; Bartels, Robert E.; Edwards, John W.; Bennett, Robert M.

    2000-01-01

    As computational fluid dynamics methods mature, code development is rapidly transitioning from prediction of steady flowfields to unsteady flows. This change in emphasis offers a number of new challenges to the research community, not the least of which is obtaining detailed, accurate unsteady experimental data with which to evaluate new methods. Researchers at NASA Langley Research Center (LaRC) have been actively measuring unsteady pressure distributions for nearly 40 years. Over the last 20 years, these measurements have focused on developing high-quality datasets for use in code evaluation. This paper provides a sample of unsteady pressure measurements obtained by LaRC and available for government, university, and industry researchers to evaluate new and existing unsteady aerodynamic analysis methods. A number of cases are highlighted and discussed with attention focused on the unique character of the individual datasets and their perceived usefulness for code evaluation. Ongoing LaRC research in this area is also presented.

  6. Testing of the Crew Exploration Vehicle in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Borg, Stephen E.; Watkins, Anthony N.; Cole, Daniel R.; Schwartz, Richard J.

    2007-01-01

    As part of a strategic, multi-facility test program, subscale testing of NASA s Crew Exploration Vehicle was conducted in both legs of NASA Langley s Unitary Plan Wind Tunnel. The objectives of these tests were to generate aerodynamic and surface pressure data over a range of supersonic Mach numbers and reentry angles of attack for experimental and computational validation and aerodynamic database development. To provide initial information on boundary layer transition at supersonic test conditions, transition studies were conducted using temperature sensitive paint and infrared thermography optical techniques. To support implementation of these optical diagnostics in the Unitary Wind Tunnel, the experiment was first modeled using the Virtual Diagnostics Interface software. For reentry orientations of 140 to 170 degrees (heat shield forward), windward surface flow was entirely laminar for freestream unit Reynolds numbers equal to or less than 3 million per foot. Optical techniques showed qualitative evidence of forced transition on the windward heat shield with application of both distributed grit and discreet trip dots. Longitudinal static force and moment data showed the largest differences with Mach number and angle of attack variations. Differences associated with Reynolds number variation and/or laminar versus turbulent flow on the heat shield were very small. Static surface pressure data supported the aforementioned trends with Mach number, Reynolds number, and angle of attack.

  7. Langley Research Center Strategic Plan for Education

    NASA Technical Reports Server (NTRS)

    Proctor, Sandra B.

    1994-01-01

    Research assignment centered on the preparation of final draft of the NASA Langley Strategic Plan for Education. Primary research activity consisted of data collection, through interviews with LaRC Office of Education and NASA Headquarters staff, university administrators and faculty, and school administrators / teachers; and documentary analysis. Pre-college and university programs were critically reviewed to assure effectiveness, support of NASA and Langley's mission and goals; National Education Goals; and educational reform strategies. In addition to these mandates, pre-college programs were reviewed to address present and future LaRC activities for teacher enhancement and preparation. University programs were reviewed with emphasis on student support and recruitment; faculty development and enhancement; and LaRC's role in promoting the utilization of educational technologies and distance learning. The LaRC Strategic Plan for Education will enable the Office of Education to provide a focused and well planned continuum of education programs for students, teachers and faculty. It will serve to direct and focus present activities and programs while simultaneously offering the flexibility to address new and emerging directions based on changing national, state, and agency trends.

  8. Langley Deputy Chief Technologist Julie Williams-Byrd Speaks to Norfolk State University Students

    NASA Image and Video Library

    2018-02-06

    Deputy Chief Technologist Julie Williams-Byrd of NASA Langley Research Center speaks to Norfolk State University students following a “Hidden Figures to Modern Figures” event on February 6, 2018. (Credit: NASA)

  9. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  10. 8. VIEW LOOKING NORTHEAST AT ELLIOTT COMPRESSORS, 100,000 CFM, USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING NORTHEAST AT ELLIOTT COMPRESSORS, 100,000 CFM, USED FOR REMOVAL OF BOUNDARY LAYER OF AIR IN TUNNEL THROUGH SLOTS. (ONLY USED BETWEEN MACH 1.1 AND 1.2). - NASA Langley Research Center, 8-Foot Transonic Pressure Tunnel, 640 Thornell Avenue, Hampton, Hampton, VA

  11. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  12. Sources, paths, and concepts for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Wilby, J. F.

    1984-01-01

    NASA is investigating the feasibility of modifying the 4x7m Wind Tunnel at the Langley Research Center to make it suitable for a variety of aeroacoustic testing applications, most notably model helicopter rotors. The amount of noise reduction required to meet NASA's goal for test section background noise was determined, the predominant sources and paths causing the background noise were quantified, and trade-off studies between schemes to reduce fan noise at the source and those to attenuate the sound generated in the circuit between the sources and the test section were carried out. An extensive data base is also presented on circuit sources and paths.

  13. DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.

    2001-01-01

    To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  14. National Transonic Facility: A review of the operational plan

    NASA Technical Reports Server (NTRS)

    Liepmann, H. W.; Black, R. E.; Dietz, R. O.; Kirchner, M. E.; Sears, W. R.

    1980-01-01

    The proposed National Transonic Facility (NTF) operational plan is reviewed. The NTF will provide an aerodynamic test capability significantly exceeding that of other transonic regime wind tunnels now available. A limited number of academic research program that might use the NTF are suggested. It is concluded that the NTF operational plan is useful for management, technical, instrumentation, and model building techniques available in the specialized field of aerodynamic analysis and simulation. It is also suggested that NASA hold an annual conference to discuss wind tunnel research results and to report on developments that will further improve the utilization and cost effectiveness of the NTF and other wind tunnels.

  15. Effect of empennage arrangement on single-engine nozzle/afterbody static pressures at transonic speeds

    NASA Technical Reports Server (NTRS)

    Henderson, William P.; Burley, James R., II

    1987-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on empennage arrangement on single-engine nozzle/afterbody static pressures. Tests were done at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.0 (jet off) to 8.0. and angles of attack from -3 to 9 deg (at jet off conditions), depending on Mach number. Three empennage arrangements (aft, staggered, and forward) were investigated. Extensive measurements were made of static pressure on the nozzle/afterbody in the vicinity of the tail surfaces.

  16. NASA Langley Research Center's Contributions to International Active Buffeting Alleviation Programs

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2000-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.

  17. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  18. Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.

    1991-01-01

    Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.

  19. World wide web implementation of the Langley technical report server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.

    1994-01-01

    On January 14, 1993, NASA Langley Research Center (LaRC) made approximately 130 formal, 'unclassified, unlimited' technical reports available via the anonymous FTP Langley Technical Report Server (LTRS). LaRC was the first organization to provide a significant number of aerospace technical reports for open electronic dissemination. LTRS has been successful in its first 18 months of operation, with over 11,000 reports distributed and has helped lay the foundation for electronic document distribution for NASA. The availability of World Wide Web (WWW) technology has revolutionized the Internet-based information community. This paper describes the transition of LTRS from a centralized FTP site to a distributed data model using the WWW, and suggests how the general model for LTRS can be applied to other similar systems.

  20. Does Cloud Computing in the Atmospheric Sciences Make Sense? A case study of hybrid cloud computing at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.; Spangenberg, D.; Ayers, J. K.; Palikonda, R.; Vakhnin, A.; Dubois, R.; Murphy, P. R.

    2014-12-01

    The processing, storage and dissemination of satellite cloud and radiation products produced at NASA Langley Research Center are key activities for the Climate Science Branch. A constellation of systems operates in sync to accomplish these goals. Because of the complexity involved with operating such intricate systems, there are both high failure rates and high costs for hardware and system maintenance. Cloud computing has the potential to ameliorate cost and complexity issues. Over time, the cloud computing model has evolved and hybrid systems comprising off-site as well as on-site resources are now common. Towards our mission of providing the highest quality research products to the widest audience, we have explored the use of the Amazon Web Services (AWS) Cloud and Storage and present a case study of our results and efforts. This project builds upon NASA Langley Cloud and Radiation Group's experience with operating large and complex computing infrastructures in a reliable and cost effective manner to explore novel ways to leverage cloud computing resources in the atmospheric science environment. Our case study presents the project requirements and then examines the fit of AWS with the LaRC computing model. We also discuss the evaluation metrics, feasibility, and outcomes and close the case study with the lessons we learned that would apply to others interested in exploring the implementation of the AWS system in their own atmospheric science computing environments.

  1. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  2. NASA Earthdata Webinar: Improving Accessibility and Use of NASA Earth Science Data

    Atmospheric Science Data Center

    2015-05-08

    ... Webinar: Improving Accessibility and Use of NASA Earth Science Data Friday, May 8, 2015 Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) ...

  3. Investigation of Seal-to-Floor Effects on Semi-Span Transonic Models

    NASA Technical Reports Server (NTRS)

    Sleppy, Mark A.; Engel, Eric A.; Watson, Kevin T.; Atler, Douglas M.

    2009-01-01

    In an effort to achieve the maximum possible Reynolds number (Re) when conducting production testing for flight loads aerodynamic databases, it has been the preferred practice of The Boeing Company / Commercial Airplanes (BCA) -- Loads and Dynamics Group since the early 1990's to test large scale semi-span models in the 11- By 11-Foot Transonic Wind Tunnel (TWT) leg of the Unitary Plan Wind Tunnel (UPWT) at the NASA Ames Research Center (ARC). There are many problems related to testing large scale semi-span models of high aspect ratio flexible transport wings, such as; floor boundary layer effects, wing spanwise wall effects, solid blockage buoyancy effects, floor mechanical interference effects, airflow under the model effects, or tunnel flow gradient effects. For most of these issues, BCA has developed and implemented either standard testing methods or numerical correction schemes and these will not be discussed in this document. Other researchers have reported on semi-span transonic testing correction issues, however most of the reported research has been for low Mach testing. Some of the reports for low Mach testing address the difficult problem of preventing undesirable airflow under a semi-span model while ensuring unrestricted main balance functionality, however, for transonic models this issue has gone unresolved. BCA has been cognizant for sometime that there are marked differences in wing pressure distributions from semi-span transonic model testing than from full model or flight testing. It has been suspected that these differences are at least in part due to airflow under the model. Previous efforts by BCA to address this issue have proven to be ineffective or inconclusive and in one situation resulted in broken hardware. This paper reports on a Boeing-NASA collaborative investigation based on a series of small tests conducted between June 2006 and November 2007 in the 11 by 11 foot Transonic Wind Tunnel at NASA Ames on three large commercial jet

  4. Program of Research in Flight Dynamics in The George Washington University at NASA Langley Research Center, Hampton, Virginia

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    2002-01-01

    The program objectives were defined in the original proposal entitled 'Program of Research in Flight Dynamics in the JIAFS at NASA Langley Research Center' which was originated March 20, 1975, and yearly renewals of the research program dated December 1, 1998 to December 31, 2002. The program included three major topics: 1) Improvement of existing methods and development of new methods for flight and wind tunnel data analysis based on system identification methodology; 2) Application of these methods to flight and wind tunnel data obtained from advanced aircraft; 3) Modeling and control of aircraft. The principal investigator of the program was Dr. Vladislav Klein, Professor Emeritus at The George Washington University, DC. Seven Graduate Research Scholar Assistants (GRSA) participated in the program. The results of the research conducted during four years of the total co-operative period were published in 2 NASA Technical Reports, 3 thesis and 3 papers. The list of these publications is included.

  5. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  6. Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.

    2002-01-01

    In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.

  7. Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob

    2011-01-01

    A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.

  8. Langley test highlights, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A 20 ft vertical spin tunnel, a 30 by 60 ft tunnel, a 7 by 10 ft high speed tunnel, a 4 by 7 meter tunnel, an 8 ft transonic pressure tunnel, a transonic dynamics tunnel, a 16 ft transonic tunnel, a national transonic facility, a 0.3 meter transonic cryogenic tunnel, a unitary plan wind tunnel, a hypersonic facilities complex, an 8 ft high temperature tunnel, an aircraft noise reduction lab, an avionics integration research lab, a DC9 full workload simulator, a transport simulator, a general aviation simulator, an advanced concepts simulator, a mission oriented terminal area simulation (MOTAS), a differential maneuvering simulator, a visual/motion simulator, a vehicle antenna test facility, an impact dynamics research facility, and a flight research facility are all reviewed.

  9. A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.

  10. Development and status of data quality assurance program at NASA Langley research center: Toward national standards

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    1996-01-01

    As part of a continuing effort to re-engineer the wind tunnel testing process, a comprehensive data quality assurance program is being established at NASA Langley Research Center (LaRC). The ultimate goal of the program is routing provision of tunnel-to-tunnel reproducibility with total uncertainty levels acceptable for test and evaluation of civilian transports. The operational elements for reaching such levels of reproducibility are: (1) statistical control, which provides long term measurement uncertainty predictability and a base for continuous improvement, (2) measurement uncertainty prediction, which provides test designs that can meet data quality expectations with the system's predictable variation, and (3) national standards, which provide a means for resolving tunnel-to-tunnel differences. The paper presents the LaRC design for the program and discusses the process of implementation.

  11. NASA Langley scientific and technical information output: 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Phillips, Marilou S. (Compiler); Stewart, Susan H. (Compiler)

    1995-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

  12. NASA Langley Scientific and Technical Information Output: 1994. Volume 1

    NASA Technical Reports Server (NTRS)

    Phillips, Marilou S. (Compiler); Stewart, Susan H. (Compiler)

    1995-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

  13. Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet. [conducted in Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Rauch, F. J., Jr.; Waters, C.

    1982-01-01

    The model was a 1/6.5-size, semipan version of a wing proposed for an executive-jet-transport airplane. The model was tested with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers (M) from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M=0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5 percent, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect.

  14. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  15. NASA Langley Scientific and Technical Information Output, 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

    1996-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1995. Included are citations for formal reports, high-numbered conference publications, high-numbered technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

  16. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  17. Electronic document distribution: Design of the anonymous FTP Langley Technical Report Server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.

    1994-01-01

    An experimental electronic dissemination project, the Langley Technical Report Server (LTRS), has been undertaken to determine the feasibility of delivering Langley technical reports directly to the desktops of researchers worldwide. During the first six months, over 4700 accesses occurred and over 2400 technical reports were distributed. This usage indicates the high level of interest that researchers have in performing literature searches and retrieving technical reports at their desktops. The initial system was developed with existing resources and technology. The reports are stored as files on an inexpensive UNIX workstation and are accessible over the Internet. This project will serve as a foundation for ongoing projects at other NASA centers that will allow for greater access to NASA technical reports.

  18. Structural mechanics research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.

    1976-01-01

    The contributions of NASA's Langley Research Center in areas of structural mechanics were traced from its NACA origins in 1917 to the present. The developments in structural mechanics technology since 1940 were emphasized. A brief review of some current research topics were discussed as well as anticipated near-term research projects.

  19. Propulsion-airframe integration for commercial and military aircraft

    NASA Technical Reports Server (NTRS)

    Henderson, William P.

    1988-01-01

    A significant level of research is ongoing at NASA's Langley Research Center on integrating the propulsion system with the aircraft. This program has included nacelle/pylon/wing integration for turbofan transports, propeller/nacelle/wing integration for turboprop transports, and nozzle/afterbody/empennage integration for high performance aircraft. The studies included in this paper focus more specifically on pylon shaping and nacelle location studies for turbofan transports, nacelle and wing contouring and propeller location effects for turboprop transports, and nozzle shaping and empennage effects for high performance aircraft. The studies were primarily conducted in NASA Langley's 16-Foot Transonic Tunnel at Mach numbers up to 1.20. Some higher Mach number data obtained at NASA's Lewis Research Center is also included.

  20. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.