Sample records for nasa national space

  1. National Directory of NASA Space Grant Contacts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Congress enacted the National Space Grant College and Fellowship Program (also known as Space Grant). NASA's Space Grant Program funds education, research, and public service programs in all 50 States, the District of Columbia, and the Commonwealth of Puerto Rico through 52 university-based Space Grant consortia. These consortia form a network of colleges and universities, industry partners, State and local Government agencies, other Federal agencies, museum and science centers, and nonprofit organizations, all with interests in aerospace education, research, and training. Space Grant programs emphasize the diversity of human resources, the participation of students in research, and the communication of the benefits of science and technology to the general public. Each year approximately one-third of the NASA Space Grant funds support scholarships and fellowships for United States students at the undergraduate and graduate levels. Typically, at least 20 percent of these awards go to students from underrepresented groups, and at least 40 percent go to women. Most Space Grant student awards include a mentored research experience with university faculty or NASA scientists or engineers. Space Grant consortia also fund curriculum enhancement and faculty development programs. Consortia members administer precollege and public service education programs in their States. The 52 consortia typically leverage NASA funds with matching contributions from State, local, and other university sources, which more than double the NASA funding. For more information, consult the Space Grant Web site at http://education.nasa.gov/spacegrant/

  2. NASA's Space Launch System (SLS): A New National Capability

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.

  3. National Aeronautics and Space Administration (NASA) Education 1993-2009

    ERIC Educational Resources Information Center

    Ivie, Christine M.

    2009-01-01

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993-2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that…

  4. NASA Provides Coverage for First Meeting of the National Space Council

    NASA Image and Video Library

    2017-10-06

    During the first meeting of the National Space Council, on Oct. 5, Vice President Mike Pence – chair of the council – outlined the Trump Administration’s vision and expectations for the council, which include returning American astronauts to the moon – to build the foundation needed to send Americans to Mars and beyond. The meeting, titled “Leading the Next Frontier: An Event with the National Space Council,” was held at the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center in Chantilly, Virginia. Participants included NASA Administrator Robert Lightfoot, as well as a number of Trump Administration cabinet members and senior officials, and aerospace industry leaders. The council heard testimony from expert witnesses who represent the sectors of the space industry: Civil Space, Commercial Space, and National Security Space. President Trump signed an executive order reestablishing the National Space Council on June 30.

  5. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  6. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  7. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  8. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  9. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  10. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  11. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-090)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  12. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-095)] NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the Charter of the International...

  13. NASA Historical Data Book. Volume 5; NASA Launch Systems, Space Transportation, Human Spaceflight and Space Science, 1979-1988

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A. (Compiler)

    1999-01-01

    In 1973, NASA published the first volume of the NASA Historical Data Book, a hefty tome containing mostly tabular data on the resources of the space agency between 1958 and 1968. There, broken into detailed tables, were the facts and figures associated with the budget, facilities, procurement, installations, and personnel of NASA during that formative decade. In 1988, NASA reissued that first volume of the data book and added two additional volumes on the agency's programs and projects, one each for 1958-1968 and 1969-1978. NASA published a fourth volume in 1994 that addressed NASA resources for the period between 1969 and 1978. This fifth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of four critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the development and operation of launch systems, space transportation, human spaceflight, and space science during this era. As such, it contains in-depth statistical information about the early Space Shuttle program through the return to flight in 1988, the early efforts to build a space station, the development of new launch systems, and the launching of seventeen space science missions. A companion volume will appear late in 1999, documenting the space applications, support operations, aeronautics, and resources aspects of NASA during the period between 1979 and 1988. NASA began its operations as the nation's civilian space agency in 1958 following the passage of the National Aeronautics and Space Act. It succeeded the National Advisory Committee for Aeronautics (NACA). The new organization was charged with preserving the role of the United States "as a leader in aeronautical and space science and technology" and in its application, with expanding our knowledge of the Earth's atmosphere and space, and with

  14. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-036)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Space Operations Committee. DATES: Tuesday, April 13, 2010, 3-5 p.m. CDT. ADDRESSES: NASA Johnson Space...

  15. 76 FR 40753 - NASA Advisory Council; Commercial Space; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-061)] NASA Advisory Council; Commercial Space; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announces a meeting of the Commercial Space Committee of the NASA...

  16. National Space Council Meeting

    NASA Image and Video Library

    2017-10-05

    Acting NASA Administrator Robert Lightfoot, center, along with Deputy Chief Technology Officer of the United States Michael Kratsios, left, and Director of National Intelligence Daniel Coats, right, listen to remarks by panelists during the National Space Council's first meeting, Thursday, Oct. 5, 2017 at the Smithsonian National Air and Space Museum's Steven F. Udvar-Hazy Center in Chantilly, Va. The National Space Council, chaired by Vice President Mike Pence heard testimony from representatives from civil space, commercial space, and national security space industry representatives. Photo Credit: (NASA/Joel Kowsky)

  17. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-014)] NASA Commercial Space Committee... and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E...

  18. 75 FR 51853 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-092)] NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council...

  19. NASA Participates in Mars Day Activities at National Air and Space Museum

    NASA Image and Video Library

    2017-07-21

    NASA participated in the July 21 Mars Day event at the Smithsonian National Air and Space Museum (NASM) in Washington, D.C. The museum hosts this annual event, which includes exhibits, speakers and educational activities, to celebrate the Red Planet.    Jim Green, director of NASA’s Planetary Science Division, along with other NASA scientists and engineers, was on hand to talk with visitors about the agency’s Mars exploration missions. There was also a Mars concept rover on display, developed by vehicle designers the Parker Brothers with advice from NASA. The vehicle is currently on an East Coast tour from its home base at the Kennedy Space Center Visitor’s Complex in Florida. The concept rover is designed to engage and educate the public by demonstrating the types of features and equipment a future human exploration vehicle may need.

  20. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-093] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The [[Page 67029

  1. 76 FR 20717 - NASA Advisory Council; Space Operations Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-035)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council... Headquarters, Washington, DC 20546, 202/358-1507, [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The agenda...

  2. 76 FR 3673 - NASA Advisory Council; Space Operations Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-005)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council.... ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 7C61, Washington, DC 20546. FOR FURTHER INFORMATION...

  3. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-012] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  4. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-080)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  5. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-052)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  6. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  7. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-148)] NASA Advisory Council; NASA... Committee of the NASA Advisory Council. DATES: Tuesday, December 14, 2010, 1:30 p.m.-4:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center Room 1Q39, Washington, DC 20546...

  8. NASA Participates in Mars Day Activities at the National Air and Space Museum

    NASA Image and Video Library

    2017-07-21

    NASA participated in the July 21 Mars Day event at the Smithsonian National Air and Space Museum (NASM) in Washington, D.C. The museum hosts this annual event, which includes exhibits, speakers and educational activities, to celebrate the Red Planet. Jim Green, director of NASA’s Planetary Science Division, along with other NASA scientists and engineers, was on hand to talk with visitors about the agency’s Mars exploration missions. There was also a Mars concept rover on display, developed by vehicle designers the Parker Brothers with advice from NASA. The vehicle is currently on an East Coast tour from its home base at the Kennedy Space Center Visitor’s Complex in Florida. The concept rover is designed to engage and educate the public by demonstrating the types of features and equipment a future human exploration vehicle may need.

  9. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  10. Space station interior design: Results of the NASA/AIA space station interior national design competition

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1975-01-01

    The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

  11. NASA Facts, Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a…

  12. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  13. The Second Meeting of the National Space Council on This Week @NASA – February 23, 2018

    NASA Image and Video Library

    2018-02-23

    Vice President Mike Pence led the second meeting of the National Space Council, Next Space Station Crew Trains for Launch, and Webb Telescope to Reveal Secrets of Mars … a few of the stories to tell you about – This Week at NASA!

  14. National Space Council

    NASA Image and Video Library

    2018-06-18

    President Donald Trump delivers opening remarks during a meeting of the National Space Council in the East Room of the White House, Monday, June 18, 2018, in Washington. Chaired by the Vice President, the council's role is to advise the President regarding national space policy and strategy, and review the nation's long-range goals for space activities. Photo Credit: (NASA/Bill Ingalls)

  15. National Space Council

    NASA Image and Video Library

    2018-06-18

    President Donald Trump holds up Space Policy Directive - 3 after signing it during a meeting of the National Space Council in the East Room of the White House, Monday, June 18, 2018, in Washington. Chaired by the Vice President, the council's role is to advise the President regarding national space policy and strategy, and review the nation's long-range goals for space activities. Photo Credit: (NASA/Bill Ingalls)

  16. Overview of the NASA space radiation laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  17. Overview of the NASA space radiation laboratory

    DOE PAGES

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; ...

    2016-11-11

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  18. The NASA Space Power Technology Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Hudson, W. R.; Randolph, L. P.

    1979-01-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  4. 77 FR 4370 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-006)] NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  5. 77 FR 20852 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-027)] NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  6. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    Dr. John Mather, NASA Goddard Space Flight Center scientist and Nobel Laureate, center, presents Gen. John R. “Jack” Dailey, director of the Smithsonian National Air and Space Museum, left, with a a replica of Mather’s Nobel Prize medal that flew in space aboard STS-132, as astronaut Piers Sellers looks on, during a ceremony at the museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  7. Overview of the NASA space radiation laboratory.

    PubMed

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; Lowenstein, Derek; Rusek, Adam

    2016-11-01

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. This work contains a general overview of NSRL structure, capabilities and operation. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.

  8. NASA and the practice of space law

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1985-01-01

    The paper discusses the need for increased awareness in space law due to advances in space technology and a trend toward commercialization of space. A list of national and international treaties, conventions, agreements, laws, and regulations relevant to space activities is presented. NASA lawyers specialize in international and municipal laws that affect the NASA space mission; an example of the lawyers working with insurance companies in negotiating the first Space Shuttle liability policy is provided. The increased participation of the public sector in space activities, for example, the commercialization of the Space Shuttle transportation system, is examined.

  9. National Space Council

    NASA Image and Video Library

    2018-06-18

    President Donald Trump delivers opening remarks as Vice President Mike Pence looks on during a meeting of the National Space Council in the East Room of the White House, Monday, June 18, 2018, in Washington. Chaired by the Vice President, the council's role is to advise the President regarding national space policy and strategy, and review the nation's long-range goals for space activities. Photo Credit: (NASA/Bill Ingalls)

  10. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [12-069] NASA Advisory Council; Commercial Space.... DATES: Tuesday, September 18, 2012, 11:45 a.m.-5:30 p.m.; Local Time. ADDRESSES: NASA Ames Research Center (ARC), The Showroom, Building M-3, NASA Ames Conference Center, 500 Severyns Road, NASA Research...

  11. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-039)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Monday, April 26, 2010, 1:30 p.m.-6 p.m. CDT. ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, 2101 NASA Parkway, Houston, TX 77058. FOR FURTHER...

  12. Space Radiation Research at NASA

    NASA Technical Reports Server (NTRS)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  13. 75 FR 28821 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-060)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Thursday, June 17, 2010, 1 p.m.-4 p.m., EDST. ADDRESSES: NASA... Space Administration, Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa...

  14. Administrator Bridenstine Attends National Space Council Meeting on This Week @NASA – June 22, 2018

    NASA Image and Video Library

    2018-06-22

    The third meeting of the National Space Council, seeking a partnership to power our Gateway, and – an educational activity that’s quite a blast … a few of the stories to tell you about – This Week at NASA!

  15. National Space Council Users' Advisory Group

    NASA Image and Video Library

    2018-06-19

    James Uthmeier, of the Department of Commerce, speaks about deregulation and space traffic management initiatives at the first meeting of the National Space Council Users' Advisory Group, Tuesday, June 19, 2018 at NASA Headquarters in Washington. The Users' Advisory Group will advise and inform the National Space Council on a broad range of aerospace topics, including the impacts of U.S. and international laws and regulations, national security space priorities, scientific and human space exploration priorities, and ways to bolster support. Photo Credit: (NASA/Joel Kowsky)

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  17. Space astronomy and astrophysics program by NASA

    NASA Astrophysics Data System (ADS)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  18. Partnering to Change the Way NASA and the Nation Communicate Through Space

    NASA Technical Reports Server (NTRS)

    Vrotsos, Pete A.; Budinger, James M.; Bhasin, Kul; Ponchak, Denise S.

    2000-01-01

    For at least 20 years, the Space Communications Program at NASA Glenn Research Center (GRC) has focused on enhancing the capability and competitiveness of the U.S. commercial communications satellite industry. GRC has partnered with the industry on the development of enabling technologies to help maintain U.S. preeminence in the worldwide communications satellite marketplace. The Advanced Communications Technology Satellite (ACTS) has been the most significant space communications technology endeavor ever performed at GRC, and the centerpiece of GRC's communication technology program for the last decade. Under new sponsorship from NASA's Human Exploration and Development of Space Enterprise, GRC has transitioned the focus and direction of its program, from commercial relevance to NASA mission relevance. Instead of one major experimental spacecraft and one headquarters sponsor, GRC is now exploring opportunities for all of NASA's Enterprises to benefit from advances in space communications technologies, and accomplish their missions through the use of existing and emerging commercially provided services. A growing vision within NASA is to leverage the best commercial standards, technologies, and services as a starting point to satisfy NASA's unique needs. GRC's heritage of industry partnerships is closely aligned with this vision. NASA intends to leverage the explosive growth of the telecommunications industry through its impressive technology advancements and potential new commercial satellite systems. GRC's partnerships with the industry, academia, and other government agencies will directly support all four NASA's future mission needs, while advancing the state of the art of commercial practice. GRC now conducts applied research and develops and demonstrates advanced communications and network technologies in support of all four NASA Enterprises (Human Exploration and Development of Space, Space Science, Earth Science, and Aero-Space Technologies).

  19. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  20. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.

  1. NASA Space Science Resource Catalog

    NASA Astrophysics Data System (ADS)

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  2. 75 FR 39974 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-074)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, July 28, 2010, 2-5 p.m. EDT. ADDRESSES: Doubletree..., Washington, DC 20546, 202/358-1507, [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The agenda for the...

  3. National Space Council Users' Advisory Group

    NASA Image and Video Library

    2018-06-19

    Users' Advisory Group member Faith Ozmen, CEO of the Sierra Nevada Corporation is seen durring the first meeting of the National Space Council Users' Advisory Group, Tuesday, June 19, 2018 at NASA Headquarters in Washington. The Users' Advisory Group will advise and inform the National Space Council on a broad range of aerospace topics, including the impacts of U.S. and international laws and regulations, national security space priorities, scientific and human space exploration priorities, and ways to bolster support. Photo Credit: (NASA/Joel Kowsky)

  4. 75 FR 5630 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-017)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, February 17, 2010, 9 a.m.-12 p.m. EST. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC 20456, Room 2U22. FOR FURTHER INFORMATION CONTACT...

  5. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  6. Learning Without Boundaries: A NASA - National Guard Bureau Distance Learning Partnership

    NASA Technical Reports Server (NTRS)

    Anderson, Susan H.; Chilelli, Christopher J.; Picard, Stephan

    2003-01-01

    With a variety of high-quality live interactive educational programs originating at the Johnson Space Center in Houston, Texas and other space and research centers, the US space agency NASA (National Aeronautics and Space Administration) has a proud track record of connecting with students throughout the world and stimulating their creativity and collaborative skills by teaching them underlying scientific and technological underpinnings of space exploration. However, NASA desires to expand its outreach capability for this type of interactive instruction. In early 2002, NASA and the National Guard Bureau -- using the Guard's nationwide system of state-ofthe-art classrooms and high bandwidth network -- began a collaboration to extend the reach of NASA content and educational programs to more of America's young people. Already, hundreds of elementary, middle, and high school students have visited Guard e-Learning facilities and participated in interactive NASA learning events. Topics have included experimental flight, satellite imagery-interpretation, and Mars exploration. Through this partnership, NASA and the National Guard are enabling local school systems throughout the United States (and, increasingly, the world) to use the excitement of space flight to encourage their students to become passionate about the possibility of one day serving as scientists, mathematicians, technologists, and engineers. At the 54th International Astronautical Conference MAJ Stephan Picard, the guiding visionary behind the Guard's partnership with NASA, and Chris Chilelli, an educator and senior instructional designer at NASA, will share with attendees background on NASA's educational products and the National Guard's distributed learning network; will discuss the unique opportunity this partnership already has provided students and teachers throughout the United States; will offer insights into the formation by government entities of e-Learning partnerships with one another; and will

  7. NASA-universities relationships in aero/space engineering: A review of NASA's program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    NASA is concerned about the health of aerospace engineering departments at U.S. universities. The number of advanced degrees in aerospace engineering has declined. There is concern that universities' facilities, research equipment, and instrumentation may be aging or outmoded and therefore affect the quality of research and education. NASA requested that the National Research Council's Aeronautics and Space Engineering Board (ASEB) review NASA's support of universities and make recommendations to improve the program's effectiveness.

  8. Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook

    2012-01-01

    The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.

  9. Space Commerce 1994 Forum: The 10th National Space Symposium. Proceedings report

    NASA Astrophysics Data System (ADS)

    Lipskin, Beth Ann; Patterson, Sara; Aragon, Larry; Brescia, David A.; Flannery, Jack; Mossey, Roberty; Regan, Christopher; Steeby, Kurt; Suhr, Stacy; Zimkas, Chuck

    1994-04-01

    The theme of the 10th National Space Symposium was 'New Windows of Opportunity'. These proceedings cover the following: Business Trends in High Tech Commercialization; How to Succeed in Space Technology Business -- Making Dollars and Sense; Obstacles and Opportunities to Success in Technology Commercialization NASA's Commercial Technology Mission -- a New Way of Doing Business: Policy and Practices; Field Center Practices; Practices in Action -- A New Way: Implementation and Business Opportunities; Space Commerce Review; Windows of Opportunity; the International Space Station; Space Support Forum; Spacelift Update; Competitive Launch Capabilities; Supporting Life on Planet Earth; National Security Space Issues; NASA in the Balance; Earth and Space Observations -- Did We Have Cousins on Mars?; NASA: A New Vision for Science; and Space Technology Hall of Fame.

  10. Space Commerce 1994 Forum: The 10th National Space Symposium. Proceedings report

    NASA Technical Reports Server (NTRS)

    Lipskin, Beth Ann (Editor); Patterson, Sara (Editor); Aragon, Larry (Editor); Brescia, David A. (Editor); Flannery, Jack (Editor); Mossey, Roberty (Editor); Regan, Christopher (Editor); Steeby, Kurt (Editor); Suhr, Stacy (Editor); Zimkas, Chuck (Editor)

    1994-01-01

    The theme of the 10th National Space Symposium was 'New Windows of Opportunity'. These proceedings cover the following: Business Trends in High Tech Commercialization; How to Succeed in Space Technology Business -- Making Dollars and Sense; Obstacles and Opportunities to Success in Technology Commercialization NASA's Commercial Technology Mission -- a New Way of Doing Business: Policy and Practices; Field Center Practices; Practices in Action -- A New Way: Implementation and Business Opportunities; Space Commerce Review; Windows of Opportunity; the International Space Station; Space Support Forum; Spacelift Update; Competitive Launch Capabilities; Supporting Life on Planet Earth; National Security Space Issues; NASA in the Balance; Earth and Space Observations -- Did We Have Cousins on Mars?; NASA: A New Vision for Science; and Space Technology Hall of Fame.

  11. NASA in Crisis: The Space Agency's Public Relations Efforts Regarding the Hubble Space Telescope.

    ERIC Educational Resources Information Center

    Kauffman, James

    1997-01-01

    Examines the National Aeronautics and Space Administration's (NASA) public relations efforts concerning the Hubble telescope. Proposes that NASA's poor public relations exacerbated problems: NASA oversold the telescope before it was deployed, failed to develop a plan for release of images, provided misleading flight reports, and reported…

  12. NASA/SDIO Space Environmental Effects on Materials Workshop, part 2

    NASA Technical Reports Server (NTRS)

    Teichman, Louis A. (Compiler); Stein, Bland A. (Compiler)

    1989-01-01

    The National Aeronautics and Space Administration (NASA) and the Strategic Defense Initiative Organization (SDIO) cosponsored a workshop on Space Environmental Effects on Materials. The joint workshop was designed to inform participants of the present state of knowledge regarding space environmental effects on materials and to identify knowledge gaps that prevent informed decisions on the best use of advanced materials in space for long duration NASA and SDIO missions. Establishing priorities for future ground based and space based materials research was a major goal of the workshop. The end product of the workshop was an assessment of the current state-of-the-art in space environmental effects on materials in order to develop a national plan for spaceflight experiments.

  13. Overview of NASA Heliophysics and the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.

    2017-12-01

    In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.

  14. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  15. 76 FR 17712 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-027)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: April 27, 2011, 2-3:30 p.m., Local Time. ADDRESSES: NASA... Administration, Washington, DC 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  16. 75 FR 53349 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-098)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday September 14, 8 a.m. to 12 noon CDT. ADDRESSES: NASA..., Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa.gov . SUPPLEMENTARY...

  17. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-025)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday, March 30, 2010, 1 p.m.-5 p.m., EST. ADDRESSES: NASA... Administration, Washington, DC, 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  18. Enabling the space exploration initiative: NASA's exploration technology program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  19. 14 CFR 1217.106 - Articles brought into the United States by NASA from space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NASA from space. 1217.106 Section 1217.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES § 1217.106 Articles brought into the United States by NASA from... territory of the United States by NASA from space shall not be considered an importation, and no...

  20. 14 CFR 1217.106 - Articles brought into the United States by NASA from space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NASA from space. 1217.106 Section 1217.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES § 1217.106 Articles brought into the United States by NASA from... territory of the United States by NASA from space shall not be considered an importation, and no...

  1. 14 CFR 1217.106 - Articles brought into the United States by NASA from space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NASA from space. 1217.106 Section 1217.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES § 1217.106 Articles brought into the United States by NASA from... territory of the United States by NASA from space shall not be considered an importation, and no...

  2. National Aeronautics and Space Administration's (NASA) Automated Information Security Handbook

    NASA Technical Reports Server (NTRS)

    Roback, E.

    1991-01-01

    The NASA Automated Information Security Handbook provides NASA's overall approach to automated information systems security including discussions of such aspects as: program goals and objectives, assignment of responsibilities, risk assessment, foreign national access, contingency planning and disaster recovery, awareness training, procurement, certification, planning, and special considerations for microcomputers.

  3. The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1999-01-01

    This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

  4. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    NASA Technical Reports Server (NTRS)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  5. NASA Nebraska Space Grant Consortium 1995-1999 Self Evaluation

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M.; Bowen, Brent D.; Schaffart, Mary M.

    1999-01-01

    The NASA Nebraska Space Grant Consortium receives funds from NASA to allow Nebraska colleges and universities to implement balanced programs of research, education and public service related to aeronautics, space science and technology. Nebraska is a capability enhancement state which directs efforts and resources toward developing research infrastructure and enhancing the quality of aerospace research and education for all Nebraskans. Furthermore, the Nebraska Space Grant strives to provide national leadership in applied aspects of aeronautics. Nebraska has met, meets and will continue to meet all requirements set forth by NASA. Nebraska is a top-tier consortium and will continue to be a model program.

  6. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  7. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  8. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-074)] NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel...

  9. NASA Marshall Space Flight Center Barrel-Shaped Asymmetrical Capacitor

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.; Carruth, M. R.; Edwards, D. L.; Finchum, A.; Maxwell, G.; Nabors, S.; Smalley, L.; Huston, D.; Ila, D.; Zimmerman, R.

    2004-01-01

    The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.

  10. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  11. 76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-006)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Tuesday, February 8, 2011, 2 p.m.-3:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center, Room 1Q39, Washington, DC 20546...

  12. 75 FR 39973 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-076)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Thursday, July 29, 2010, 9 a.m.-12 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E Street, SW., PRC/Room 9H40, Washington, DC 20546. FOR FURTHER INFORMATION...

  13. Challenges and Future Opportunities in Our Nation's Space Program

    NASA Technical Reports Server (NTRS)

    Clements, Greg

    2011-01-01

    For the first time in decades, there is a significant amount of change in our nation's space program. Along with change, there are opportunities, and NASA has begun a set of planning to be prepared for the future, emphasizing innovation and technology development, increased emphasis on collaboration, commercially-provided access to space, and the need for reinvention. This discussion will briefly give an overview of NASA, showcase some of the diverse activities that are part of our nation' fs space program, identify some of the new changes envisioned to NASA's mission, and how our space program can continue to inspire the nation during changing times.

  14. Overview of NASA's space radiation research program.

    PubMed

    Schimmerling, Walter

    2003-06-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  15. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  16. The Space Launch System: NASA's Exploration Rocket

    NASA Technical Reports Server (NTRS)

    Blackerby, Christopher; Cate, Hugh C., III

    2013-01-01

    Powerful, versatile, and capable vehicle for entirely new missions to deep space. Vital to NASA's exploration strategy and the Nation's space agenda. Safe, affordable, and sustainable. Engaging the U.S. aerospace workforce and infrastructure. Competitive opportunities for innovations that affordably upgrade performance. Successfully meeting milestones in preparation for Preliminary Design Review in 2013. On course for first flight in 2017.

  17. National Space Council - Moon, Mars, and Worlds Beyond: Winning the Next Frontier

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence hosts the second meeting of the National Space Council in the high bay of NASA's Kennedy Space Center's Space Station Processing Facility. The event’s theme is “Moon, Mars and Worlds Beyond: Winning the Next Frontier” and includes testimonials from leaders in the civil, commercial and national security sectors about the importance of the United States’ space enterprise.The National Space Council’s role is to advise the president on America’s space policy and strategy, and review the nation’s long-range goals for space activities. The council includes leaders in government from both civil and military space programs. The council’s historic roots go back to the earliest days of NASA when the agency was established in 1958. Through 1973 it was known as the National Aeronautics and Space Council. From 1989 to 1993 the group was the National Space Council, guiding NASA and helping achieve the agency’s ambitious milestones. On June 30, 2017, President Donald Trump signed an executive order re-establishing the National Space Council to streamline and coordinate national space policy. The first meeting of the new National Space Council took place Oct. 5, 2017, at the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center in Chantilly, Virginia. Afterward, acting NASA Administrator Robert Lightfoot praised the vice president for calling for renewed U.S. leadership in space with NASA helping lead and shape the way forward.

  18. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  19. 14 CFR § 1217.106 - Articles brought into the United States by NASA from space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NASA from space. § 1217.106 Section § 1217.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DUTY-FREE ENTRY OF SPACE ARTICLES § 1217.106 Articles brought into the United States by NASA from... territory of the United States by NASA from space shall not be considered an importation, and no...

  20. NASA Space Safety Standards and Procedures for Human Rating Requirements

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herbert

    2009-01-01

    The National Aeronautics and Space Administration of the United States of America (NASA) has arguably led this planet in space exploration and certainly has been one of two major leaders in those endeavors. NASA governance is institutionalized and managed in a series documents arranged in a hierarchy and flowing down to the work levels. A document tree of NASA s documentation in its totality would likely overwhelm and not be very informative. Taken in segments related to the various business topics and focusing in those segments, however, provides a logical and understandable relationship and flow of requirements and processes. That is the nature of this chapter, a selection of NASA documentation pertaining to space exploration and a description of how those documents together form the plan by which NASA business for space exploration is conducted. Information presented herein is taken from NASA publications and is available publicly and no information herein is protected by copyright or security regulations. While NASA documents are the source of information presented herein, any and all views expressed herein and any misrepresentations of NASA data that may occur herein are those of the author and should not be considered NASA official positions or statements, nor should NASA endorsement of anything presented in this work be assumed.

  1. National Aeronautics and Space Administration Twenty-Fifth Anniversary, 1958-1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This year marks a major milestone for the National Aeronautics and Space Administration: its silver anniversary. It seems appropriate, on this occasion, to sum up how NASA has responded to the legislative charter that established the agency. Among the responsibilities the Congress assigned NASA in the National Aeronautics and Space Act of 1958 were these: preservation of U.S. leadership in aerospace science and technology; cooperation with other nations in the peaceful application of technology; expansion of human knowledge of phenomena in the atmosphere and in space; pursuit of the practical benefits to be gained from aeronautical and space activities. There can be no doubt that NASA's quarter century of effort has preserved the nation's leadership role and strengthened its posture in aerospace science and technology. As for international cooperation. NASA has - since its inception - fostered the concept that the fruits of civil space research are to be shared with all mankind. The agency has provided technical assistance to scores of nations and has actively promoted cooperative ventures; indeed, virtually every major NASA space project today boasts some degree of foreign participation. In the last 25 years, man has teamed more about his planet, the near-Earth environment, and the universe than in all the prior years of history. NASA's space science program has spearheaded this great expansion of human knowledge. And, from the beginning, NASA has vigorously pursued the practical benefits that aerospace research offers. The agency pioneered in weather, communications and Earth resources survey satellites, the prime examples of space technology applied for Earth benefit, and it has built a broad base for expanding into new applications, some of which promise direct benefits of exceptional order. In aeronautical research, NASA has contributed in substantial degree to safer, better performing, more efficient, more environmentally acceptable aircraft.

  2. The NASA technology push towards future space mission systems

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Povinelli, Frederick P.; Rosen, Robert

    1988-01-01

    As a result of the new Space Policy, the NASA technology program has been called upon to a provide a solid base of national capabilities and talent to serve NASA's civil space program, commercial, and other space sector interests. This paper describes the new technology program structure and its characteristics, traces its origin and evolution, and projects the likely near- and far-term strategic steps. It addresses the alternative 'push-pull' approaches to technology development, the readiness levels to which the technology needs to be developed for effective technology transfer, and the focused technology programs currently being implemented to satisfy the needs of future space systems.

  3. Building a Better NASA Workforce: Meeting the Workforce Needs for the National Vision for Space Exploration

    ERIC Educational Resources Information Center

    National Academies Press, 2007

    2007-01-01

    The Vision for Space Exploration (VSE) announced by President George W. Bush in 2004 sets NASA and the nation on a bold path to return to the Moon and one day put a human on Mars. The long-term endeavor represented by the VSE is, however, subject to the constraints imposed by annual funding. Given that the VSE may take tens of years to implement,…

  4. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  5. National Space Club

    NASA Image and Video Library

    2018-03-20

    NASA Kennedy Space Center Director Bob Cabana speaks to National Space Club-Florida Chapter (NSCFC) members and guests at the Radisson Resort at the Port in Cape Canaveral, Florida. Cabana's presentation was titled, "KSC - Space Exploration Begins Here." He included an update on the multi-user spaceport and several programs, including Exploration Ground Systems, Launch Services Program and Commercial Crew Program. The NSCFC is a non-profit organization composed of representatives from the space industry, government, educational institutions, and private individuals who share a commitment to increasing public awareness of America's aerospace programs.

  6. NASA Acting Administrator Robert Lightfoot addresses members of the National Space Club at a breakfast meeting in the Jackson Conference Center in Huntsville, Alabama.

    NASA Image and Video Library

    2018-03-22

    NASA Acting Administrator Robert Lightfoot addresses a standing room-only crowd at the March 20 National Space Club Huntsville breakfast. Lightfoot, who recently announced he will be retiring from the agency on April 30, praised NASA's Marshall Space Flight Center and spoke about where the agency is headed over the next two decades. “I get to be nostalgic now, as I leave the Agency. This work was going on before I got here, and it’s going to keep going on after I leave,” said Lightfoot. “In this nation where we hear a lot about what we can't do, NASA is a demonstration of what this nation can do. The Space Launch System rocket is taking shape right here at Marshall. The passion our team has on our exploration journey is second to none and there seems to be a sense of urgency to get to that first launch. Exploration gives us hope for the future, and brings today's generation on board to forge its own path to the next great milestones for humanity.” National Space Club Huntsville's mission is to promote the awareness of civilian and military applications for rocketry and astronautics. Participation in its events helps raise money for scholarships and STEM engagement in the community.

  7. The National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview is presented of the services offered by the National Space Science Data Center (NSSDC). The NSSDC was established by the National Aeronautics and Space Administration (NASA) over 20 years ago to be the long-term archive for data from its space missions. NSSDC's goal is to provide the research community with data and attendant services in the most efficient, economical, and useful manner possible now and in the future. The organization is dedicated to getting the most scientific value out of NASA's initial investment in its missions. Each service available to scientists through the world is discussed. Also a contact person is identified for each service in case more information in needed.

  8. National Space Council Meeting from the White House

    NASA Image and Video Library

    2018-06-18

    NASA Administrator Jim Bridenstine attends the third meeting of the National Space Council in the East Room of the White House, Monday, June 18, 2018, in Washington. President Trump kicked off the meeting by signing Space Policy Directive-3, which directs the U.S. to lead space traffic management and mitigate the effects of space debris. Vice President Mike Pence led the meeting, joined by other government officials. Administrator Bridenstine reported on NASA's progress in implementing Space Policy Directive-1, which directs NASA to return astronauts to the Moon and eventually send humans to Mars.

  9. Commercialization in NASA Space Operations

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene E.

    1998-01-01

    Various issues associated with commercialization in NASA space operations are presented in viewgraph form. Specific topics include: 1) NASA's financial outlook; 2) Space operations; 3) Space operations technology; and 4) Strategies associated with these operations.

  10. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This report outlines National Space Biomedical Research Institute (NSBRI) activities during FY 2001, the fourth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI).

  11. NASA Space Environments Technical Discipline Team Space Weather Activities

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  12. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  13. Meet the (National Council of) Space Grant Directors

    NASA Astrophysics Data System (ADS)

    Henry, R. C.

    1999-05-01

    The National Council of Space Grant Directors is a private group that is closely aligned with NASA's National Space Grant College and Fellowship Program. The Council, and NASA, work to: 1) establish a national network of universities with interests and capabilities in aeronautics, space, and related fields 2) encourage cooperative programs among universities, aerospace industry, and federal, state, and local governments 3) encourage interdisciplinary training, research, and public-service programs related to aerospace 4) recruit and train professionals, especially women and underrepresented minorities, for careers in aerospace science, technology, and allied fields 5) promote a strong science, math, and technology educational base from elementary through university levels. There are 52 NASA Space Grant Consortia, located in every one of the United States of America, plus Puerto Rico and the District of Columbia. The Council works to encourge interaction among these consortia, to achieve maximum efficiency of operation. Each consortium has a number of affilates in its state: there are currently more than 700 institutions that are Space Grant Affiliates. Space Grant is not oriented toward a particular discipline (such as astronomy) but toward the larger goal of strengthening the US work force educational level very broadly, thus ensuring that highly-trained people are available to work for and with NASA in the coming century. I will encourge listeners to contact their State Space Grant Consortium to explore "how you can help."

  14. Vice President Mike Pence Visits Kennedy Space Center - National

    NASA Image and Video Library

    2018-02-21

    Members of the National Space Council meet in the high bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. Chaired by Vice President Mike Pence, the council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  15. Vice President Mike Pence Visits Kennedy Space Center - National

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence chairs a meeting of the National Space Council in the high bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  16. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  17. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS -132 astronauts from left, Steve Bowen, Tony Antonelli, Garrett Reisman, Ken Ham, Piers Sellers, and Michael Good are seen with students fromthe Summer of Innovation program following a presentation by the crew at the Smithsonian National Air and Space Museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  18. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.

  19. Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.

  20. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    A replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis is seen, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. STS-132 astronaut Piers Sellers returned the replica during a ceremony at the museum. Photo Credit: (NASA/Paul E. Alers)

  1. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report outlines the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2003, the sixth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  2. NASA Space Human Factors Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance.

  3. Improving NASA's technology for space science

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The continued advance of the nation's space program is directly dependent upon the development and use of new technology. Technology is the foundation for every aspect of space missions and ground operations. The improvements in technology that will enable future advances are not only in device and system performance, but also in permitting missions to be carried out more rapidly and at lower cost. Although more can be done with current technology, NASA's recent call for new and innovative approaches should not be answered by employing only today's technologies; new technologies with revolutionary potential should be sought. The study reported here was performed to identify means to enhance the development of technologies for the space sciences and applications.

  4. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-129)] International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National...

  5. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    NASA Technical Reports Server (NTRS)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  6. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, at podium, acknowleges museum director Ret. Gen. John R. "Jack" Dailey, seated left, and NASA astrophycisist Dr. John Mather, center, during a presentation, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  7. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  8. America in Space: The First Decade - NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    It is ten years since the National Aeronautics and Space Administration was created to explore space and to continue the American efforts that had already begun with the launch of Explorer 1 on January 31, 1958. Many changes have occurred since that tumbling, 31 -pound cylinder went into an Earth orbit. "NASA Spacecraft" represents one of the broad avenues selected by NASA as an approach to its objective of making widely known the progress that has taken place in its program of space exploration. This report is a vivid illustration of the changes that have occurred and the complexities that have developed. Here one finds descriptions of the present family of spacecraft some small, some large; some spinoriented, some accurately attitude-controlled; some manned, some automated; some in low orbits, some in trajectories to the Moon and the planets; some free in space until they expire, others commanded to return to the Earth or to land on the Moon

  9. Materials in NASA's Space Launch System: The Stuff Dreams are Made of

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  10. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    John Grunsfeld (far left), Associate Administrator for the Science Mission Directorate at NASA Headquarters, Dr. Francisco Javier Mendieta Jimenez, Director General of the Mexican Space Agency, NASA Administrator Charles Bolden, Leland Melvin, NASA Associate Administrator for Education and Al Condes (far right), Deputy Associate Administrator for International and Interagency Relations pose for a photo, Monday, March 18, 2013 at NASA Headquarters in Washington. A Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program was signed between the two agencies. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  11. Terrestrial applications of NASA space telerobotics technologies

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    In 1985 the National Aeronautics and Space Administration (NASA) instituted a research program in telerobotics to develop and provide the technology for applications of telerobotics to the United States space program. The activities of the program are intended to most effectively utilize limited astronaut time by facilitating tasks such as inspection, assembly, repair, and servicing, as well as providing extended capability for remotely conducting planetary surface operations. As the program matured, it also developed a strong heritage of working with government and industry to directly transfer the developed technology into industrial applications.

  12. NASA Self-Assessment of Space Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  13. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  14. Code of conduct for the International Space Station Crew. National Aeronautics and Space Administration (NASA). Interim final rule.

    PubMed

    2000-12-21

    NASA is issuing new regulations entitled "International Space Station Crew," to implement certain provisions of the International Space Station (ISS) Intergovernmental Agreement (IGA) regarding ISS crewmembers' observance of an ISS Code of Conduct.

  15. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    Leland Melvin (right), NASA Associate Administrator for Education, along with the head of the Mexican Space Agency, Dr. Francisco Javier Mendieta Jimenez shake hands after signing a Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program as NASA Administrator Charles Bolden looks on, Monday, March 18, 2013 at NASA Headquarters in Washington. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  16. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    NASA Administrator Charles Bolden (center) presents Dr. Francisco Javier Mendieta Jimenez, Director General of the Mexican Space Agency, a NASA montage in honor of the Reimbursable Space Act Agreement (RSAA) signed between the two agencies, Monday, March 18, 2013 at NASA Headquarters in Washington. Leland Melvin (right), NASA Associate Administrator for Education looks on. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  17. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    Leland Melvin (right), NASA Associate Administrator for Education, along with the head of the Mexican Space Agency, Dr. Francisco Javier Mendieta Jimenez pose for a photo after signing a Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program as NASA Administrator Charles Bolden looks on, Monday, March 18, 2013 at NASA Headquarters in Washington. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  18. Review of NASA approach to space radiation risk assessments for Mars exploration.

    PubMed

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  19. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits under white tents line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  20. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    Signage points the way to NASA exhibits at the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  1. NASA Pathways Co-op Tour Johnson Space Center Fall 2013

    NASA Technical Reports Server (NTRS)

    Masood, Amir; Osborne-Lee, Irwin W.

    2013-01-01

    This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole

  2. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    NASA Astrophycist Dr. John Mather, at podium, speaks Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington as museum director Gen. John R. "Jack" Dailey, U.S. Marine Corps ret. and STS-132 astronaut Piers Sellers look on. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  3. NASA's future space power needs and requirements

    NASA Technical Reports Server (NTRS)

    Schnyer, A. D.; Sovie, Ronald J.

    1990-01-01

    The National Space Policy of 1988 established the U.S.'s long-range civil space goals, and has served to guide NASA's recent planning for future space mission operations. One of the major goals was to extend the human presence beyond earth's boundaries and to advance the scientific knowledge of the solar system. A broad spectrum of potential civil space mission opportunities and interests are currently being investigated by NASA to meet the espoused goals. Participation in many of these missions requires power systems with capabilities far beyond what exists today. In other mission examples, advanced power systems technology could enhance mission performance significantly. Power system requirements and issues that need resolution to ensure eventual mission accomplishment are addressed, in conjunction with the ongoing NASA technology development efforts and the need for even greater innovative efforts to match the ambitious solar exploration mission goals. Particular attention is given to potential lunar surface operations and technology goals, based on investigations to date. It is suggested that the nuclear reactor power systems can best meet long-life requirements as well as dramatically reduce the earth-surface-to-lunar-surface transportation costs due to the lunar day/night cycle impact on the solar system's energy storage mass requirements. The state of the art of candidate power systems and elements for the lunar application and the respective exploration technology goals for mission life requirements from 10 to 25 years are examined.

  4. Vice President Pence Leads National Space Council Meeting, Tours Kennedy Space Center

    NASA Image and Video Library

    2018-02-20

    Vice President Mike Pence arrived at Kennedy Space Center in Florida on Tuesday, Feb. 20 at 5:10 p.m. aboard Air Force Two. The Vice President was greeted by Robert Lightfoot, acting NASA Administrator and Brig. Gen. Wayne Monteith, commander, 45th Space Wing. After arrival, the vice president toured commercial partner United Launch Alliance’s facility at Cape Canaveral Air Force Station adjacent to Kennedy. He also toured Blue Origin’s new rocket facility located at nearby Exploration Park. On Feb. 21, Vice President Mike Pence led a National Space Council meeting inside NASA Kennedy Space Center’s Space Station Processing Facility. This second meeting of the council, called, “Moon, Mars, and Worlds Beyond: Winning the Next Frontier,” included testimonials from leaders in the civil, commercial, and national security sectors about the importance of the United States’ space enterprise. Vice President Pence concluded his visit with a tour of Kennedy Space Center, which included stops at the Boeing Commercial Crew and Cargo Processing Facility, and SpaceX Launch Complex 39A.

  5. NASA's National Center for Advanced Manufacturing

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  6. The NASA Space Grant College and Fellowship Program

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Ward, E. B.; Detroye, D.

    1998-09-01

    National Aeronautics and Space Administration in 1989, the National Space Grant College and Fellowship Program (also known as Space Grant) contributes to the nation's science enterprise by funding research, education, and public service projects through a national network of 52 university-based Space Grant consortia. These consortia administer programs in all 50 states, the District of Columbia, and Puerto Rico. In 1998, the consortia's 703 affiliates include 493 academic institutions and 62 businesses. Other partners include state and local government agencies, other federal agencies, and nonprofit organizations. Space Grant celebrates its tenth year of service in 1999. Since its inception, Space Grant has awarded over 12,000 U.S. citizens with tuition assistance in science, engineering, and related fields of study. Approximately twenty percent of these awards were to students from underrepresented groups and approximately thirty-five percent were to women. The majority of Space Grant student awards include a mentored research experience with university faculty or NASA scientists. Space Grant funds curriculum enhancement and faculty development as well. Space Grant colleges and universities also administer precollege and public service education programs that help to meet the education needs of their states. The Space Grant consortia have leveraged federal funds to more than double the Space Grant budget with matching contributions from state and local sources. Space Grant encourages collaboration among departments, across institutions, and with business and industry. All Space Grant programs emphasize the diversity of human resources, the participation of students in research, and the communication of the benefits of science and technology to the general public.

  7. International Space Station: National Laboratory Education Concept Development Report

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The International Space Station (ISS) program has brought together 16 spacefaring nations in an effort to build a permanent base for human explorers in low-Earth orbit, the first stop past Earth in humanity's path into space. The ISS is a remarkably capable spacecraft, by significant margins the largest and most complex space vehicle ever built. Planned for completion in 2010, the ISS will provide a home for laboratories equipped with a wide array of resources to develop and test the technologies needed for future generations of space exploration. The resources of the only permanent base in space clearly have the potential to find application in areas beyond the research required to enable future exploration missions. In response to Congressional direction in the 2005 National Aeronautics and Space Administration (NASA) Authorization Act, NASA has begun to examine the value of these unique capabilities to other national priorities, particularly education. In early 2006, NASA invited education experts from other Federal agencies to participate in a Task Force charged with developing concepts for using the ISS for educational purposes. Senior representatives from the education offices of the Department of Defense, Department of Education, Department of Energy, National Institutes of Health, and National Science Foundation agreed to take part in the Task Force and have graciously contributed their time and energy to produce a plan that lays out a conceptual framework for potential utilization of the ISS for educational activities sponsored by Federal agencies as well as other future users.

  8. Challenges of Integrating NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  9. Challenges of Integrating NASAs Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  10. NASA 20th Century Explorer . . . Into the Sea of Space. A Guide to Careers in Aero-Space Technology.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet lists career opportunities in aerospace technology announced by the Boards of the U. S. Civil Service for the National Aeronautics and Space Administration (NASA). Information given includes (1) the work of the NASA, (2) technical and administrative specialties in aerospace technology, (3) educational and experience requirements, and…

  11. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  12. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA Acting Chief Technologist Douglas Terrier gives a talk to teachers attending a professional development workshop held in tandem with the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  13. National Aeronautics and Space Administration technology application team program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Contracts are reported between the RTI TATeam and the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and other governmental, educational, and industrial organizations participating in NASA's Technology Utilization Program.

  14. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  15. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  16. NASA's Commercial Space Centers: Bringing Together Government and Industry for "Out of this World" Benefits

    NASA Technical Reports Server (NTRS)

    Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.

  17. Status of the NASA Space Power Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Holcomb, L.

    1977-01-01

    The NASA Space Power Research and Technology Program has the objective to provide the technological basis for satisfying the nation's future needs regarding electrical power in space. The development of power sources of low mass and increased environmental resistance is considered. Attention is given to advances in the area of photovoltaic energy conversion, improved Ni-Cd battery components, a nickel-hydrogen battery, remotely activated silver-zinc and lithium-water batteries, the technology of an advanced water electrolysis/regenerative fuel cell system, aspects of thermal-to-electric conversion, environmental interactions, multi-kW low cost systems, and high-performance systems.

  18. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  19. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi-Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the life-cycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reachback support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-ofthe- art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  20. Propulsion Progress for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.; Priskos, Alex S.; Kynard, Michael H.; Lavoie, Anthony R.

    2012-01-01

    Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.

  1. NASA Space Engineering Research Center Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.

    1990-01-01

    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers.

  2. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA James Webb Space Telescope systems engineer Mike Menzel, participates in a panel discussion titled "The Big Picture", Saturday, Aug. 5, 2017 at the Intrepid Sea, Air & Space Museum in New York City. Photo Credit: (NASA/Bill Ingalls)

  3. NASA's Internal Space Weather Working Group

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  4. NASA's Contribution to Global Space Geodesy Networks

    NASA Technical Reports Server (NTRS)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  5. NASA's approach to space commercialization

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  6. National Space Biomedical Research Institute Annual Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).

  7. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  8. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  9. NASA/SDIO Space Environmental Effects on Materials Workshop, part 1

    NASA Technical Reports Server (NTRS)

    Teichman, Louis A. (Compiler); Stein, Bland A. (Compiler)

    1989-01-01

    The present state of knowledge regarding space environmental effects on materials is described and the knowledge gaps that prevent informed decisions on the best use of advanced materials in space for long-duration NASA and Strategic Defense Initiative Organization (SDIO) missions are identified. Establishing priorities for future ground-based and space-based materials research was a major goal. The end product was an assessment of the current state-of-the-art in space environmental effects on materials in order to develop a national plan for spaceflight experiments.

  10. Space Debris Modeling at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOLVE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been released with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NASA Safety Standard 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the

  11. 76 FR 72218 - National Environmental Policy Act; NASA Routine Payloads on Expendable Launch Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ...; NASA Routine Payloads on Expendable Launch Vehicles AGENCY: National Aeronautics and Space... (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 CFR parts 1500-1508), and NASA policy and procedures (14 CFR part 1216 subpart 1216.3), NASA has made a Finding of No Significant Impact...

  12. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  13. Vice President Pence Arrives at Kennedy Space Center for National Space Council Meeting

    NASA Image and Video Library

    2018-02-20

    Vice President Mike Pence arrived at the Shuttle Landing Facility at NASA’s Kennedy Space Center, Florida on Feb. 20 ahead of the second meeting of the National Space Council. Vice President Pence, and his wife Karen, were greeted by Robert Lightfoot, acting NASA Administrator and Brig. Gen. Wayne Monteith, commander, 45th Space Wing. On Feb. 21, Vice President Pence will lead the National Space Council meeting inside Kennedy’s Space Station Processing Facility. “Moon, Mars, and Worlds Beyond: Winning the Next Frontier” will include testimonials from leaders in the civil, commercial, and national security sectors about the importance of the United States’ space enterprise. The Vice President will conclude his visit with a tour of Kennedy Space Center.

  14. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Operations Committee and Exploration Committee; Joint Meeting AGENCY: National Aeronautics and Space... the Space Operations Committee and Exploration Committee of the NASA Advisory Council. DATES: Tuesday.../Exploration Systems Mission Directorate Merger Update. [[Page 41308

  15. "Festival of Flight Special": Opening Space for Next Generation Explorers. NASA CONNECT[TM]. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    The National Aeronautics and Space Administration's (NASA) Space Launch Initiative (SLI) Program will ultimately move from the explorations of the Mercury, Gemini, Apollo, and Space Shuttle missions to a new period of pioneering in which people and businesses are more routinely traveling, working, and living in space. (Author/NB)

  16. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In 1987, responding to widespread concern about America's competitiveness and future in the development of space technology and the academic preparation of our next generation of space professionals, NASA initiated a program to establish Space Engineering Research Centers (SERC's) at universities with strong doctoral programs in engineering. The goal was to create a national infrastructure for space exploration and development, and sites for the Centers would be selected on the basis of originality of proposed research, the potential for near-term utilization of technologies developed, and the impact these technologies could have on the U.S. space program. The Centers would also be charged with a major academic mission: the recruitment of topnotch students and their training as space professionals. This document describes the goals, accomplishments, and benefits of the research activities of the University of Arizona/NASA SERC. This SERC has become recognized as the premier center in the area known as In-Situ Resource Utilization or Indigenous Space Materials Utilization.

  17. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    NASA Technical Reports Server (NTRS)

    Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  18. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Briones, Janette C.; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was con- ducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round- trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  19. National Space Transportation Policy: Issues for Congress

    NASA Astrophysics Data System (ADS)

    1995-05-01

    This report, prepared for the House Committee on Science, is the first in a broad assessment of the health and future prospects of the U.S. space transportation technology and industrial base. The report focuses on the Clinton Administration's National Space Transportation Policy, which was released last fall. It examines administration policy in light of the implementation plans prepared by NASA, DOD, and the Transportation and Commerce Departments. The policy also emphasizes the important contribution private industry can make to the direction and development of U.S. space transportation capabilities. However, an analysis of the policy and implementation plans also raises some issues that might be of interest to Congress as it debates space transportation legislation, oversight, and funding. These issues involve decisions on NASA and DOD development programs, the use of foreign launch vehicles, and the new role of the private sector in space transportation research and development decisionmaking. This report also identifies two issues omitted from the Administration's policy: the preservation of long-range ballistic missile capabilities after final production in 2005, and the perspective of lower industrial tier firms toward national space transportation policy.

  20. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Roger Launius, senior curator, Smithsonian Institution National Air and Space Museum, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  1. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2016-03-01

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of

  4. NASA's Space Launch System Progress Report

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.; Lyles, Garry M.; Beaman, David E.

    2011-01-01

    Exploration beyond Earth will be an enduring legacy for future generations, confirming America's commitment to explore, learn, and progress. NASA's Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program's Saturn V that sent Americans to the Moon. The SLS offers a flexible design that may be configured for the MultiPurpose Crew Vehicle and associated equipment, or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Both options support a national capability that will pay dividends for future generations. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 metric tons (mT) and will be evolvable to 130 mT. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of asteroids and Mars. With its superior lift capability, the SLS can expand the interplanetary highway to many possible destinations, conducting revolutionary missions that will change the way we view ourselves, our planet and its place in the cosmos. To perform missions such as these, the SLS will be the largest launch vehicle ever built. It is being designed for safety and affordability - to sustain our journey into the space age. Current plans include launching the first flight, without crew, later this decade, with crewed flights beginning early next decade. Development work now in progress is based on heritage space systems and working knowledge, allowing for a relatively quick start and for maturing the SLS rocket as future technologies become available. Together, NASA and the U.S. aerospace industry are partnering to develop this one-of-a-kind asset. Many of NASA's space

  5. National Space Council Meets on This Week @NASA – October 6, 2017

    NASA Image and Video Library

    2017-10-06

    Vice President Mike Pence called for renewed U.S. leadership in space during the first meeting of the National Space Council – outlining exploration goals that include returning American astronauts to the Moon, to build the foundation needed to send Americans to Mars and beyond. The October 5 council meeting, held at the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center, outside Washington, brought together representatives from all aspects and sectors of the national space enterprise, for the first time in a quarter century – including NASA’s Acting Administrator, Robert Lightfoot. Also, U.S. Spacewalk aboard the Space Station, Eugene Parker Views Solar Probe Spacecraft, Scientists Find Giant Black Hole Pairs, and Parachute Test Platform Launched!

  6. Knowledge Sharing at NASA: Extending Social Constructivism to Space Exploration

    ERIC Educational Resources Information Center

    Chindgren, Tina M.

    2008-01-01

    Social constructivism provides the framework for exploring communities of practice and storytelling at the National Aeronautics and Space Administration (NASA) in this applied theory paper. A brief overview of traditional learning and development efforts as well as the current knowledge sharing initiative is offered. In addition, a conceptual plan…

  7. NASA space station software standards issues

    NASA Technical Reports Server (NTRS)

    Tice, G. D., Jr.

    1985-01-01

    The selection and application of software standards present the NASA Space Station Program with the opportunity to serve as a pacesetter for the United States software in the area of software standards. The strengths and weaknesses of each of the NASA defined software standards issues are summerized and discussed. Several significant standards issues are offered for NASA consideration. A challenge is presented for the NASA Space Station Program to serve as a pacesetter for the U.S. Software Industry through: (1) Management commitment to software standards; (2) Overall program participation in software standards; and (3) Employment of the best available technology to support software standards

  8. The astrophysics program at the National Aeronautics and Space Administration (NASA)

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J.

    1990-01-01

    Three broad themes characterize the goals of the Astrophysics Division at NASA. These are obtaining an understanding of the origin and evolution of the universe, the fundamental laws of physics, and the birth and evolutionary cycle of galaxies, stars, planets and life. These goals are pursued through contemporaneous observations across the electromagnetic spectrum with high sensitivity and resolution. The strategy to accomplish these goals is fourfold: the establishment of long term space based observatories implemented through the Great Observatories program; attainment of crucial bridging and supporting measurements visa missions of intermediate and small scope conducted within the Explorer, Spacelab, and Space Station Attached Payload Programs; enhancement of scientific access to results of space based research activities through an integrated data system; and development and maintenance of the scientific/technical base for space astrophysics programs through the research and analysis and suborbital programs. The near term activities supporting the first two objectives are discussed.

  9. Economic Analysis on the Space Transportation Architecture Study (STAS) NASA Team

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) performed the Space Transportation Architecture Study (STAS) to provide information to support end-of-the-decade decisions on possible near-term US Government (USG) investments in space transportation. To gain a clearer understanding of the costs and benefits of the broadest range of possible space transportation options, six teams, five from aerospace industry companies and one internal to NASA, were tasked to answer three primary questions: a) If the Space Shuttle system should be replaced; b) If so, when the replacement should take place and how the transition should be implemented; and c) If not, what is the upgrade strategy to continue safe and affordable flight of the Space Shuttle beyond 2010. The overall goal of the Study was "to develop investment options to be considered by the Administration for the President's FY2001 budget to meet NASA's future human space flight requirements with significant reductions in costs." This emphasis on government investment, coupled with the participation by commercial f'trms, required an unprecedented level of economic analysis of costs and benefits from both industry and government viewpoints. This paper will discuss the economic and market models developed by the in-house NASA Team to analyze space transportation architectures, the results of those analyses, and how those results were reflected in the conclusions and recommendations of the STAS NASA Team. Copyright 1999 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.$. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

  10. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    An inflatable scale model of the SLS rocket is seen on Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  11. Legal Issues inherent in space shuttle operations. [reviewed by NASA Deputy General Counsel

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The legal issues inherent in NASA's proceeding into the day-to-day operations of the space shuttle and other elements of the Space Transportation System are considered in light of the National Aeronautics and Space Act of 1958. Based on this review, it was concluded that there is no immediate need for substantive amendments to that legislation.

  12. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  13. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global

  14. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    NASA Technical Reports Server (NTRS)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  15. The NASA Space Communications Data Networking Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Hooke, Adrian J.; Freeman, Kenneth; Rush, John J.

    2006-01-01

    The NASA Space Communications Architecture Working Group (SCAWG) has recently been developing an integrated agency-wide space communications architecture in order to provide the necessary communication and navigation capabilities to support NASA's new Exploration and Science Programs. A critical element of the space communications architecture is the end-to-end Data Networking Architecture, which must provide a wide range of services required for missions ranging from planetary rovers to human spaceflight, and from sub-orbital space to deep space. Requirements for a higher degree of user autonomy and interoperability between a variety of elements must be accommodated within an architecture that necessarily features minimum operational complexity. The architecture must also be scalable and evolvable to meet mission needs for the next 25 years. This paper will describe the recommended NASA Data Networking Architecture, present some of the rationale for the recommendations, and will illustrate an application of the architecture to example NASA missions.

  16. Scientific American Inventions From Outer Space: Everyday Uses For NASA Technology

    NASA Technical Reports Server (NTRS)

    Baker, David

    2000-01-01

    The purpose of this book is to present some of the inventions highlighted in the yearly publication of the National Aeronautics and Space Administration (NASA) Spinoff. These inventions cover a wide range, some of which include improvements in health, medicine, public safety, energy, environment, resource management, computer technology, automation, construction, transportation, and manufacturing technology. NASA technology has brought forth thousands of commercial products which include athletic shoes, portable x-ray machines, and scratch-resistant sunglasses, guidance systems, lasers, solar power, robotics and prosthetic devices. These products are examples of NASA research innovations which have positively impacted the community.

  17. 76 FR 52694 - National Environmental Policy Act: Launch of NASA Routine Payloads on Expendable Launch Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ...: Launch of NASA Routine Payloads on Expendable Launch Vehicles AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of availability and request for comments on the draft environmental assessment (``Draft EA'') for launch of NASA routine payloads on expendable launch vehicles. SUMMARY...

  18. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  19. NASA NASA CONNECT: Special World Space Congress. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of free integrated mathematics, science, and technology instructional distance learning programs for students in grades 5-8. This video presents the World Space Congress 2002, the meeting of the decade for space professionals. Topics discussed range from the discovery of distant planets to medical advancements,…

  20. Autonomy, Interdependence, and Social Control: NASA and the Space Shuttle "Challenger."

    ERIC Educational Resources Information Center

    Vaughan, Diane

    1990-01-01

    Shows that the organizations responsible for regulating safety at the National Aeronautics and Space Administration (NASA) failed to identify flaws in management procedures and technical design that, if corrected, might have prevented the "Challenger" tragedy. Regulatory effectiveness was inhibited by the autonomy and interdependence of…

  1. NASA's SDR Standard: Space Telecommunications Radio System

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Johnson, Sandra K.

    2007-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  2. NASA's mobile satellite communications program; ground and space segment technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  3. Summary Report of the NASA Management Study Group: Recommendations to the Administrator, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Phillips, Samuel C.

    1986-01-01

    The NASA Management Study Group (NMSG) was established under the auspices of the National Acedamy of Public Administration at the request of the Administrator of NASA to assess NASA's management practices and to evaluate the effectiveness of the NASA organization. This report summarizes the conclusions and recommendations of the NMSG on the overall management and organization of NASA.

  4. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Dr. Amber Straughn, Lead Scientist for James Webb Space Telescope Education & Public Outreach at NASA's Goddard Space Flight Center, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014 Photo Credit: (NASA/Joel Kowsky)

  5. NASA's Space Environments and Effects (SEE) Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody

    2001-01-01

    The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, adhesives and other data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on a spacecraft, its sub-systems, materials and instruments. In partnership with industry, academia, and other US and international government agencies, the National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program (agency-wide in scope but managed at the Marshall Space Flight Center) provides a very comprehensive and focused approach to understanding the space environment. It does this by defining the best techniques for both flight- and groundbased experimentation, updating models which predict both the environments and the environmental effects on spacecraft and ensuring that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and discuss several current technology development activities associated with the spacecraft charging phenomenon.

  6. NASA Kennedy Space Center: Contributions to Sea Turtle Science and Conservation

    NASA Technical Reports Server (NTRS)

    Provancha, Jane A.; Phillips, Lynne V.; Mako, Cheryle L.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) is a United States (US) federal agency that oversees US space exploration and aeronautical research. NASA's primary launch site, Kennedy Space Center (KSC) is located along the east coast of Florida, on Cape Canaveral and the western Atlantic Ocean. The natural environment within KSC's large land boundaries, not only functions as an extensive safety buffer-area, it performs simultaneously as a wildlife refuge and a national seashore. In the early 1960s, NASA was developing KSC for rocket launches and the US was establishing an awareness of, and commitment to protecting the environment. The US began creating regulations that required the consideration of the environment when taking action on federal land or with federal funds. The timing of the US Endangered Species Act (1973), the US National Environmental Policy Act (1972), coincided with the planning and implementation of the US Space Shuttle Program. This resulted in the first efforts to evaluate the impacts of space launch operation operations on waterways, air quality, habitats, and wildlife. The first KSC fauna and flora baseline studies were predominantly performed by University of Central Florida (then Florida Technological University). Numerous species of relative importance were observed and sea turtles were receiving regulatory review and protection as surveys by Dr. L Ehrhart (UCF) from 1973-1978 described turtles nesting along the KSC beaches and foraging in the KSC lagoon systems. These data were used in the first NASA Environmental Impact Statement for the Space Transportation System (shuttle program) in 1980. In 1982, NASA began a long term ecological monitoring program with contracted scientists on site. This included efforts to track sea turtle status and trends at KSC and maintain protective measures for these species. Many studies and collaborations have occurred on KSC over these last 45 years with agencies (USFWS, NOAA, NAVY), students

  7. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, left, and Dr. John Mather are seen with a replica of Mather's Nobel Prize, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned the replica that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe. Photo Credit: (NASA/Paul E. Alers)

  8. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  9. The International Space Station: A National Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2012-01-01

    After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.

  10. Recent Applications of Space Weather Research to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

    2013-01-01

    Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

  11. An Update of the Nation's Long-Term Strategic Needs for NASA's Aeronautics Test Facilities

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Raman, Raj; Osburg, Jan; Kallimani, James G.

    2009-01-01

    The National Aeronautics and Space Administration's (NASA's) major wind tunnel (WT), propulsion test (PT), and simulation facilities exist to serve NASA's and the nation's aeronautics needs. RAND Corporation researchers conducted a prior study of these facilities from 2002 to 2003, identifying (1) NASA's continuing ability to serve national needs, (2) which facilities appear strategically important from an engineering perspective given the vehicle classes the nation investigates and produces, and (3) management challenges and issues. This documented briefing (DB) is the final report from a new, one-year study (conducted from September 2006 through January 2008), partially updating the prior assessment. The study focuses on updating the list of facilities in the prior study that were deemed to be strategically important (again, from an engineering perspective) in serving those needs. This update also adds a new assessment of national needs for six major aeronautics simulators at NASA and lists those deemed strategically important.

  12. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  13. NASA Deputy Administrator Tours Sierra Nevada Space Systems

    NASA Image and Video Library

    2011-02-05

    NASA Deputy Administrator Lori Garver speaks at Sierra Nevada Space Systems, on Saturday, Feb. 5, 2011, in Louisville, Colo. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  14. National Aeronautics and Space Administration FY 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  15. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    Former NASA astronaut Mike Massimino participates in a panel discussion titled "The Big Picture", Saturday, Aug. 5, 2017 at the Intrepid Sea, Air & Space Museum in New York City. Photo Credit: (NASA/Bill Ingalls)

  16. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  17. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200

  18. The National Space Grant College and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Schwartz, Elaine T.; Keffer, Lynne

    1991-01-01

    This paper outlines the development of NASA's National Space Grant College and Fellowship Program. The program was introduced by Senator Bentsen (D-TX) and passed into law on October 30, 1987. NASA consulted with professional higher education associations in translating the law's provisions into program objectives. The objectives include the establishment of a national network of universities with interests and capabilities in aeronautics, space and related fields; the formation of cooperative programs among universities, aerospace industry, and federal, state and local governments; the broadening of interdisciplinary training, research and public-service programs related to aerospace; the recruiting and training of professionals, especially women and underrepresented minorities, for careers in aerospace science, and technology and allied fields; and, the development of a strong science, mathematics and technology base from elementary school through university levels.

  19. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.

  20. The NASA space power technology program

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1992-01-01

    NASA has a broad technology program in the field of space power. This paper describes that program, including the roles and responsibilities of the various NASA field centers and major contractors. In the power source area, the paper discusses the SP-100 Space Nuclear Power Project, which has been under way for about seven years and is making substantial progress toward development of components for a 100-kilowatt power system that can be scaled to other sizes. This system is a candidate power source for nuclear electric propulsion, as well as for a power plant for a lunar base. In the energy storage area, the paper describes NASA's battery- and fuel-cell development programs. NASA is actively working on NiCd, NiH2, and lithium batteries. A status update is also given on a U.S. Air Force-sponsored program to develop a large (150 ampere-hour) lithium-thionyl chloride battery for the Centaur upper-stage launch vehicle. Finally, the area of power management and distribution (PMAD) is addressed, including power system components such as solid-state switches and power integrated circuits. Automated load management and other computer-controlled functions offer considerable payoffs. The state of the art in space power is described, along with NASA's medium- and long-term goals in the area.

  1. NASA's Space Launch System: Positioning Assets for Tele-Robotic Operations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.; Robinson, Kimberly F.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) is designing and developing America's most capable launch vehicle to support high-priority human and scientific exploration beyond Earth's orbit. The Space Launch System (SLS) will initially lift 70 metric tons (t) on its first flights, slated to begin in 2017, and will be evolved after 2021 to a full 130-t capability-larger than the Saturn V Moon rocket. This superior lift and associated volume capacity will support game-changing exploration in regions that were previously unattainable, being too costly and risky to reach. On the International Space Station, astronauts are training for long-duration missions to asteroids and cis-martian regions, but have not had transportation out of Earth's orbit - until now. Simultaneously, productive rovers are sending scientists - and space fans - unprecedented information about the composition and history of Mars, the planet thought to be most like Earth. This combination of experience and information is laying the foundation for future missions, such as those outlined in NASA's "Mars Next Decade" report, that will rely on te1e-robotic operations to take exploration to the next level. Within this paradigm, NASA's Space Launch System stands ready to manifest the unique payloads that will be required for mission success. Ultimately, the ability to position assets - ranging from orbiters, to landers, to communication satellites and surface systems - is a critical step in broadening the reach of technological innovation that will benefit all Earth's people as the Space Age unfolds. This briefing will provide an overview of how the Space Launch System will support delivery of elements for tele-robotic operations at destinations such as the Moon and Mars, which will synchronize the human-machine interface to deliver hybrid on-orbit capabilities. Ultimately, telerobotic operations will open entirely new vistas and the doors of discovery. NASA's Space Launch System will be a

  2. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  3. New NASA Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  4. NASA Deputy Administrator Tours Sierra Nevada Space Systems

    NASA Image and Video Library

    2011-02-05

    Sierra Nevada Space Systems chairman Mark Sirangello talks to NASA Deputy Administrator Lori Garver, on Saturday, Feb. 5, 2011, in Louisville, Colo. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  5. NASA Space Weather Center Services: Potential for Space Weather Research

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  6. NASA's Space Launch System: Affordability for Sustainability

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  7. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Chief Technologist Mason Peck talks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  8. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Deputy Administrator Lori Garver speaks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  9. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    NASA Technical Reports Server (NTRS)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  10. Commercialization of space transportation : exploring the impact of the National Space Transportation Policy

    DOT National Transportation Integrated Search

    1998-09-01

    The 1994 National Space Transportation Policy designates the roles of the DoD, NASA and the Departments of Transportaiton and Commerce to "identify and promote innovative types of arrangements between the US government and the private sector in order...

  11. NASA Space Flight Human System Standards

    NASA Technical Reports Server (NTRS)

    Tillman, Barry; Pickett, Lynn; Russo, Dane; Stroud, Ken; Connolly, Jan; Foley, Tico

    2007-01-01

    NASA has begun a new approach to human factors design standards. For years NASA-STD-3000, Manned Systems Integration Standards, has been a source of human factors design guidance for space systems. In order to better meet the needs of the system developers, NASA is revising its human factors standards system. NASA-STD-3000 will be replaced by two documents: set of broad human systems specifications (including both human factors and medical topics) and a human factors design handbook

  12. An Overview of NASA's In-Space Cryogenic Propellant Management Technologies

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)

    2001-01-01

    Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC

  13. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  14. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  15. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  16. Evaluation of “The Space Place,” a NASA Integrated, Multi-mission Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Fisher, Diane K.; Leon, N. J.

    2006-12-01

    The Space Place is an integrated NASA education and public outreach program, so far representing over 40 different NASA missions. It combines Web-based, printed, and externally published media to reach underserved audiences across the nation. Its primary mission is to develop and provide a highly desirable suite of attractive and educational products designed to appeal to and immerse the general public in space exploration. Its primary target audience is elementary school age kids. The program has developed an extensive network of partnerships with museums and libraries in rural areas, English and Spanish language newspapers, astronomy societies, rocketry clubs, and national youth organizations. Materials are distributed monthly through all these channels. Originally a New Millennium Program (NMP) outreach effort only, it is open to all NASA missions. NMP (a NASA-level program managed out of the Jet Propulsion Laboratory) continues to provide the base of support to build and maintain the outreach program’s infrastructure. Obtaining independent evaluation and reporting of the effectiveness of the program is one of NASA’s requirements for education and public outreach efforts. The Program Evaluation and Research Group (PERG) at Lesley University, Cambridge, MA, was retained to perform this service for The Space Place. PERG is also evaluating education and public outreach programs for NASA’s Science Mission Directorate. PERG recently delivered a report evaluating The Space Place program. Using both qualitative and quantitative methods, PERG surveyed representative samples of Space Place partner museums, astronomy clubs, and newspapers. The survey included questions about all the products the program provides. The report concludes that The Space Place fills a niche by serving small institutions, giving them a personal alliance with NASA that they would otherwise not have. By providing free, quality materials, The Space Place program provides these under

  17. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Public Affairs Officer Lauren Worley kicks off the second day of the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  18. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for adhering...

  19. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for adhering...

  20. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for adhering...

  1. 14 CFR 1212.700 - NASA employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false NASA employees. 1212.700 Section 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible for adhering...

  2. Overview of NASA communications infrastructure

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Fuechsel, Charles

    1991-01-01

    The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.

  3. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.

    1989-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  4. CFD Modeling Activities at the NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel

    2007-01-01

    A viewgraph presentation on NASA Stennis Space Center's Computational Fluid Dynamics (CFD) Modeling activities is shown. The topics include: 1) Overview of NASA Stennis Space Center; 2) Role of Computational Modeling at NASA-SSC; 3) Computational Modeling Tools and Resources; and 4) CFD Modeling Applications.

  5. NASA Live Tweetup Event with International Space Station

    NASA Image and Video Library

    2009-10-21

    Former NASA astronaut Tom Jones shows off a sleeping bag used by astronauts living aboard the International Space Station during a NASA Tweetup event at NASA Headquarters in Washington, Wednesday, Oct. 21, 2009. Photo Credit: (NASA/Carla Cioffi)

  6. Space Images for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Boggs, Karen; Gutheinz, Sandy C.; Watanabe, Susan M.; Oks, Boris; Arca, Jeremy M.; Stanboli, Alice; Peez, Martin; Whatmore, Rebecca; Kang, Minliang; Espinoza, Luis A.

    2010-01-01

    Space Images for NASA/JPL is an Apple iPhone application that allows the general public to access featured images from the Jet Propulsion Laboratory (JPL). A back-end infrastructure stores, tracks, and retrieves space images from the JPL Photojournal Web server, and catalogs the information into a streamlined rating infrastructure.

  7. NASA's new university engineering space research programs

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.

    1988-01-01

    The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.

  8. National Aeronautics and Space Administration Scientific and Technical Information Programs.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E., Ed.

    1990-01-01

    Eleven articles discuss informational and educational programs of the National Aeronautics and Space Administration (NASA). Some of the areas discussed include scientific and technical information management, the new Space and Earth Science Information Systems, transfer of technology to other industries, intellectual property issues, and the…

  9. NASA's Orbital Space Plane Risk Reduction Strategy

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan

    2003-01-01

    This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.

  10. Preliminary Results From NASA's Space Solar Power Exploratory Research and Technology Program

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.

    2000-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, during 1999-2000, NASA has been conducting the SSP Exploratory Research and Technology (SERT) program. The goal of the SERT activity has been to conduct preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). In pursuing that goal, the SERT: (1) refined and modeled systems approaches for the utilization of SSP concepts and technologies, ranging from the near-term (e.g., for space science, exploration and commercial space applications) to the far-term (e.g., SSP for terrestrial markets), including systems concepts, architectures, technology, infrastructure (e.g. transportation), and economics; (2) conducted technology research, development and demonstration activities to produce "proof-of-concept" validation of critical SSP elements for both nearer and farther-term applications; and (3) engendered the beginnings of partnerships (nationally and internationally) that could be expanded, as appropriate, to pursue later SSP technology and applications. Through these efforts, the SERT should allow better informed future decisions regarding further SSP and related technology research and development investments by both NASA and prospective partners, and guide further definition of technology roadmaps - including performance objectives, resources and schedules, as well as "multi-purpose" applications (e.g., commerce, science, and government). This paper

  11. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  12. An Interim Report on NASA's Draft Space Technology Roadmaps

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA has developed a set of 14 draft roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each of these roadmaps focuses on a particular technology area (TA). The roadmaps are intended to foster the development of advanced technologies and concepts that address NASA's needs and contribute to other aerospace and national needs. OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The statement of task states that "based on the results of the community input and its own deliberations, the steering committee will prepare a brief interim report that addresses high-level issues associated with the roadmaps, such as the advisability of modifying the number or technical focus of the draft NASA roadmaps." This interim report, which does not include formal recommendations, addresses that one element of the study charge. NASA requested this interim report so that it would have the opportunity to make an early start in modifying the draft roadmaps based on feedback from the panels and steering committee. The final report will address all other tasks in the statement of task. In particular, the final report will include a prioritization of technologies, will describe in detail the prioritization process and criteria, and will include specific recommendations on a variety of topics, including many of the topics mentioned in this interim report. In developing both this interim report and the final report to come, the steering committee draws on the work of six study panels organized by technical area, loosely following the organization of the 14 roadmaps, as follows: A Panel 1: Propulsion and Power TA01 Launch Propulsion Systems TA02 In-Space Propulsion Technologies TA03 Space Power and Energy Storage Systems TA13

  13. National Aeronautics and Space Administration Fiscal Year 2001 Accountability Report

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events. The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this report.

  14. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  15. NASA's Space Launch System: A New Capability for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and

  16. NASA's commercial space program - Initiatives for the future

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1990-01-01

    NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.

  17. Proposed Array-based Deep Space Network for NASA

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Statman, Joseph I.; Gatti, Mark S.

    2007-01-01

    The current assets of the Deep Space Network (DSN) of the National Aeronautics and Space Administration (NASA), especially the 70-m antennas, are aging and becoming less reliable. Furthermore, they are expensive to operate and difficult to upgrade for operation at Ka-band (321 GHz). Replacing them with comparable monolithic large antennas would be expensive. On the other hand, implementation of similar high-sensitivity assets can be achieved economically using an array-based architecture, where sensitivity is measured by G/T, the ratio of antenna gain to system temperature. An array-based architecture would also provide flexibility in operations and allow for easy addition of more G/T whenever required. Therefore, an array-based plan of the next-generation DSN for NASA has been proposed. The DSN array would provide more flexible downlink capability compared to the current DSN for robust telemetry, tracking and command services to the space missions of NASA and its international partners in a cost effective way. Instead of using the array as an element of the DSN and relying on the existing concept of operation, we explore a broader departure in establishing a more modern concept of operations to reduce the operations costs. This paper presents the array-based architecture for the next generation DSN. It includes system block diagram, operations philosophy, user's view of operations, operations management, and logistics like maintenance philosophy and anomaly analysis and reporting. To develop the various required technologies and understand the logistics of building the array-based lowcost system, a breadboard array of three antennas has been built. This paper briefly describes the breadboard array system and its performance.

  18. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  19. NASA's current activities in free space optical communications

    NASA Astrophysics Data System (ADS)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  20. NASA space biology accomplishments, 1982

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Pleasant, L. G.

    1983-01-01

    Summaries of NASA's Space Biology Program projects are provided. The goals, objectives, accomplishments, and future plans of each project are described in this publication as individual technical summaries.

  1. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    new waveforms requires a waveform build environment for the particular SDR, helps assess the usefulness of the platform provider documentation, and exercises the objectives of STRS Standard and the SCaN Testbed. There is considerable interest in conducting experiments using the SCaN Testbed from NASA, academia, commercial companies, and other space agencies. There are approximately 25 experiments or activities supported by the project underway or in development, with more proposals ready, as time and funding allow, and new experiment solicitations available. NASA continues development of new waveforms and applications in communications, networking, and navigation, the first university experimenters are beginning waveform development, which will support the next generation of communications engineers, and international interest is beginning with space agency partners from European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES). This paper will provide an overview of the SCaN Testbed and discuss its recent accomplishments and experiment activities.Its recent successes in Ka-band operations, reception of the newest GPS signals, SDR reconfigurations, and STRS demonstration in space when combined with the future experiment portfolio have positioned the SCaN Testbed to enable future space communications and navigation capabilities for exploration and science.

  2. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  3. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Leland Melvin, NASA Associate Administrator for Education and NASA Astronaut, moderates the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  4. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Sen. John Glenn delivers the closing remarks for NASA's Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  5. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  6. NASA's Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  7. 75 FR 59747 - NASA Advisory Council; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-113)] NASA Advisory Council; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration announces a meeting of the NASA Advisory Council. DATES: Wednesday, October 6, 2010...

  8. Space The New Medical Frontier / NASA Spinoffs Milestones in Space Research

    MedlinePlus

    ... occasion. Photo courtesy of NIH Long-Term Space Research Until the advent of the ISS, research missions ... improving human health." NASA Spinoffs Milestones in Space Research Inspired by the space suits Apollo astronauts wore ...

  9. Leading the Next Frontier: An Event with the National Space Council

    NASA Image and Video Library

    2017-10-05

    During the first meeting of the National Space Council, on Oct. 5, Vice President Mike Pence – chair of the council – outlined the Trump Administration’s vision and expectations for the council, which include returning American astronauts to the moon – to build the foundation needed to send Americans to Mars and beyond. The meeting, titled “Leading the Next Frontier: An Event with the National Space Council,” was held at the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center in Chantilly, Virginia. Participants included NASA Administrator Robert Lightfoot, as well as a number of Trump Administration cabinet members and senior officials, and aerospace industry leaders. The council heard testimony from expert witnesses who represent the sectors of the space industry: Civil Space, Commercial Space, and National Security Space. President Trump signed an executive order reestablishing the National Space Council on June 30.

  10. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA s) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making measurable progress toward delivering a new capability for human and scientific exploration. To arrive at the current plan, government and industry experts carefully analyzed hundreds of architecture options and selected the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. Slated for its maiden voyage in 2017, the SLS will provide a platform for further cooperation in space based on the International Space Station model. This briefing will focus on specific progress that has been made by the SLS team in its first year, as well as provide a framework for evolving the vehicle for far-reaching missions to destinations such as near-Earth asteroids, Lagrange Points, and Mars. As this briefing will show, the SLS will serve as an infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  11. James Webb Space Telescope in NASA's giant thermal vacuum chamber

    NASA Image and Video Library

    2015-04-20

    Inside NASA's giant thermal vacuum chamber, called Chamber A, at NASA's Johnson Space Center in Houston, the James Webb Space Telescope's Pathfinder backplane test model, is being prepared for its cryogenic test. Previously used for manned spaceflight missions, this historic chamber is now filled with engineers and technicians preparing for a crucial test. Exelis developed and installed the optical test equipment in the chamber. "The optical test equipment was developed and installed in the chamber by Exelis," said Thomas Scorse, Exelis JWST Program Manager. "The Pathfinder telescope gives us our first opportunity for an end-to-end checkout of our equipment." "This will be the first time on the program that we will be aligning two primary mirror segments together," said Lee Feinberg, NASA Optical Telescope Element Manager. "In the past, we have always tested one mirror at a time but this time we will use a single test system and align both mirrors to it as though they are a single monolithic mirror." The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Chris Gunn Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt, Maryland NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Otte, Neil E.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space

  13. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  14. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  15. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Fayette Collier, Aeronautics Research Mission Directorate, NASA Headquarters talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  16. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Technology Transfer Program Executive Daniel Lockney moderates the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  17. NASA Space Day in Mississippi - Senate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astronaut Michael Foale (center) and Stennis Space Center officials met with Mississippi Lt. Gov. Phil Bryant (at rear podium) and Gulf Coast delegation members in Mississippi Senate chambers during NASA Space Day in Mississippi activities at the Capitol on January 30.

  18. NASA Space Day in Mississippi - Senate

    NASA Image and Video Library

    2008-01-30

    Astronaut Michael Foale (center) and Stennis Space Center officials met with Mississippi Lt. Gov. Phil Bryant (at rear podium) and Gulf Coast delegation members in Mississippi Senate chambers during NASA Space Day in Mississippi activities at the Capitol on January 30.

  19. Students Celebrate Space Days with NASA and the Traveling Space Museum (Reporter Package)

    NASA Image and Video Library

    2012-06-04

    NASA Ames Research Center partnered with the Traveling Space Museum to bring NASA Space Days to schools in California. Students visited 14 interactive stations that demonstrated concepts such as living in space, physics, aeronautics and Earth Science. During the Space Days at the Ronald McNair Academy in East Palo Alto, Calif., Cheryl McNair, the widow of the fallen astronaut, was a guest of honor who spoke to inspire the students.

  20. 76 FR 21072 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-039)] NASA Advisory Council; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance... Space Administration announces a meeting of the NASA Advisory Council. DATES: Thursday, May 5, 2011, 8 a...

  1. 78 FR 72719 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-140)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday, December...., Local Time. ADDRESSES: NASA Kennedy Space Center, Headquarters Building, Room 2201, Kennedy Space Center...

  2. Space science at NASA - Retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Rosendhal, Jeffrey D.

    1988-01-01

    Following a brief overview of past accomplishments in space science, a status report is given concerning progress toward recovering from the Challenger accident and a number of trends are described which are likely to have a major influence on the future of the NASA Space Science program. Key changes in process include a trend toward a program centered on the use of large, long-lived facilities, the emergence of strong space capabilities outside the U.S., and steps being taken toward the diversification of NASA's launch capability. A number of recent planning activities are also discussed. Major considerations which will specifically need to be taken into account in NASA's prgram planning include the need for provision of a spectrum of flight activities and the need to recognize likely resource limitations and to do more realistic program planning.

  3. Senator Barbara Mikulski visits NASA Goddard Space Flight Center.

    NASA Image and Video Library

    2016-01-06

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: http://www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mikulski-visits-nasa-goddard Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram   N

  4. NASA Invites Artists to Visit James Webb Space Telescope

    NASA Image and Video Library

    2017-12-08

    Witness History: Be inspired by giant, golden, fully-assembled James Webb Space Telescope mirror on display at NASA Goddard. Read more: go.nasa.gov/2dUOmSX Are you an artist? If so, we have a unique opportunity to view the amazing and aesthetic scientific marvel that is the James Webb Space Telescope. Because of Webb’s visually striking appearance, we are hosting a special viewing event on Wednesday, Nov. 2, 2016, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Artists are invited to apply to attend. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Beri, A. C.; Doll, C. E.

    1990-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  6. 14 CFR § 1212.700 - NASA employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA employees. § 1212.700 Section § 1212.700 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.700 NASA employees. (a) Each NASA employee is responsible...

  7. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    The Ohio State University President E. Gordon Gee speaks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  8. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  9. 77 FR 38336 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-050] NASA Advisory Council; Meeting... Space Administration (NASA) announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday..., 9 a.m.-12 p.m.; Local Time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Rooms...

  10. NASA reports

    NASA Technical Reports Server (NTRS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  11. NASA reports

    NASA Astrophysics Data System (ADS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  12. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  13. Second NASA Workshop on Wiring for Space Applications

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This document contains the proceedings of the Second NASA Workshop on Wiring for Space Applications held at NASA LeRC in Cleveland, OH, 6-7 Oct. 1993. The workshop was sponsored by NASA Headquarters Code QW Office of Safety and Mission Quality, Technical Standards Division and hosted by NASA LeRC, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry, and academia presented and discussed topics on arc tracking phenomena, wiring system design, insulation constructions, and system protection. Presentation materials provided by the various speakers are included in this document.

  14. NASA/BAE SYSTEMS SpaceWire Effort

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments of SpaceWire. NASA has developed intellectual property that implements SpaceWire in Register Transfer Level (RTL) VHDL for a SpaceWire link and router. This design has been extensively verified using directed tests from the SpaceWire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for Spaceflight worthy FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented on their .25micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS drivers/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed SpaceWire transport layer. The need to provide a reliable transport mechanism for SpaceWire has been identified by both NASA And ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach that works end-to-end. This layer needs to be implemented in hardware to prevent bottlenecks.

  15. The Impact of Space Commercialization on Space Agencies: the Case of NASA

    NASA Astrophysics Data System (ADS)

    Zervos, Vasilis

    2002-01-01

    The purpose of this paper is to examine the hypothesis that commercialisation of space results in inefficient contracting policies by the space agencies, using the US NASA as a case study. Though commercialisation is seen by many as a way to reduce costs in space programmes, as the space industry is seen as a decreasing costs industry, this is not a problem-free process. Commercialisation of space has affected the US and European space industries and policies in two major ways. The first is that the public sector actively encourages mergers and acquisitions of major contractors, confined, however, within the geographical borders of the US and Europe. This follows largely from the perceived benefits of economies of size when competing in global commercial markets. The second is the formation of an increasing number of public-private partnerships (PPPs) in space programmes and a more `cosy' relationship between the two within a public-assistance strategic trade theoretic framework. As ESA's contracting policy of `juste retour' is marked by limited competition, the paper focuses on the case of NASA, which is expected to be more pro- competitive, to examine the impact of commercialisation. With the use of quantitative methods based on time series econometric analysis, the paper shows that NASA's contracting policy, results in increasingly less competition and more rent-favouring contracting. This is attributed to the decreasing number of major contractors in conjunction with the preferential treatment of the domestic space industry (`Buy American'). The results of the paper verify that the support of the domestic space industry in commercial and public space markets results in inefficient contracting policies, with NASA facing the conflicting tasks of a stated policy of enhancing competition and efficiency in contracting, as well as, supporting the competitiveness of the domestic space industry. The paper concludes with an analysis and assessment of solutions to this

  16. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-047] NASA Advisory Council; Aeronautics... National Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA..., July 24, 2012, 8 a.m. to 3 p.m. local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC...

  17. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Bobby Braun, professor, Georgia Institute of Technology, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  18. NASA support for commerce in space - Broadening opportunities

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Livingston, Candace D.

    1989-01-01

    The status of the NASA Office of Commercial Program's initiatives to implement the 1988 commercial space policy and expand industrial interest in the commercial development of space in the post-Challenger era is presented. Specific objectives have been developed to capture the drive and creativity of the private sector, for increasing NASA's effectiveness in conducting business with industrial firms, and impacting the commercial space market. An aggressive, comprehensive, and forward-looking program has been defined which provides the type of infrastructure and organization required to bring industry into the mainstream of space activities.

  19. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  20. NASA Langley Teacher Resource Center at the Virginia Air and Space Center

    NASA Technical Reports Server (NTRS)

    Maher, Kim L.

    1999-01-01

    Nation's education goals through expanding and enhancing the scientific an technological competence of students and educators. To help disseminate NASA instructional materials and educational information, NASA's Education Division has established the Educator Resource Center Network. Through this network (ERCN), educators are provided the opportunity to receive free instructional information, materials, consultation, and training workshops on NASA educational products. The Office of Education at NASA Langley Research Center offers an extension of its Precollege Education program by supporting the NASA LARC Educator Resource Center at the Virginia Air & Space Center, the official visitor center for NASA LARC. This facility is the principal distribution point for educators in the five state service region that includes Virginia, West Virginia, Kentucky, North Carolina and South Carolina. The primary goal, to provide expertise and facilities to help educators access and utilize science, mathematics, and technology instructional products aligned with national standards and appropriate state frameworks and based on NASA's unique mission and results, has been accomplished. This ERC had 15,200 contacts and disseminated over 190,000 instructional items during the period of performance. In addition the manager attended 35 conferences, workshops, and educational meetings as an GR, presenter, or participant. The objective to demonstrate and facilitate the use of educational technologies has been accomplished through the following: The ERC's web page has been developed as a cyber-gateway to a multitude of NASA and other educational resources as well as to Our own database of current resource materials. NASA CORE CD-ROM technology is regularly demonstrated and promoted using the center's computers. NASA TV is available, demonstrated to educators, and used to facilitate the downlinking of NASA educational programming.

  1. First Semiannual Report of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Glennan, T. Keith

    1959-01-01

    The First Semiannual Report of the National Aeronautics and Space Administration (NASA) is submitted to Congress pursuant to section 206 (a) of the National Aeronautics and Space Act of 1958 (Public Law 85-568) to provide for research into problems of flight within and outside the Earth's atmosphere, which states: The Administration shall submit to the President for transmittal to Congress, semiannually and at such other times as it deems desirable, a report on its activities and accomplishments.

  2. In-Space Networking on NASA's SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.

    2016-01-01

    The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.

  3. The NASA Technical Report Server

    NASA Astrophysics Data System (ADS)

    Nelson, M. L.; Gottlich, G. L.; Bianco, D. J.; Paulson, S. S.; Binkley, R. L.; Kellogg, Y. D.; Beaumont, C. J.; Schmunk, R. B.; Kurtz, M. J.; Accomazzi, A.; Syed, O.

    The National Aeronautics and Space Act of 1958 established the National Aeronautics and Space Administration (NASA) and charged it to "provide for the widest practicable and appropriate dissemination of information concerning...its activities and the results thereof". The search for innovative methods to distribute NASA's information led a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems .

  4. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  5. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  6. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  7. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  8. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  9. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  10. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  11. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  12. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  13. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  14. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  15. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  16. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  17. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  18. 14 CFR 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Logotype. 1221.111 Section 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  19. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  20. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  1. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  2. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  3. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  4. 14 CFR 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Flags. 1221.113 Section 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  5. 14 CFR 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Seal. 1221.109 Section 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  6. 14 CFR 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of the NASA Flag. 1221.106 Section 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  7. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  8. 14 CFR 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Seal. 1221.102 Section 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  9. 14 CFR 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Insignia. 1221.110 Section 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  10. NASA space research and technology overview (ITP)

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1992-01-01

    A series of viewgraphs summarizing NASA space research and technology is presented. Some of the specific topics covered include the organization and goals of the Office of Aeronautics and Space Technology, technology maturation strategy, integrated technology plan for the Civil Space Program, program selection and investment prioritization, and space technology benefits.

  11. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam

    2007-01-01

    In space, astronauts are constantly bombarded with energetic particles. The goal of the National Aeronautics and Space Agency and the NASA Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. Among the identified radiation risks are cancer, acute and late CNS damage, chronic and degenerative tissue decease, and acute radiation syndrome. The term "safely" means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences can be defined. The NASA Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting the identified radiation risks. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus, the fourth element develops computer algorithms to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining

  12. 78 FR 66964 - NASA Advisory Council; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-130)] NASA Advisory Council; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the NASA Advisory Council. SUMMARY: Pursuant to sections 14(b)(1) and 9(c) of...

  13. 75 FR 52375 - NASA Advisory Council; Exploration Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-094)] NASA Advisory Council... National Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory Council. DATES: Tuesday, September 21, 2010, 1 p.m.-6:30 p.m., Local Time. ADDRESSES: NASA...

  14. 76 FR 67482 - NASA Advisory Council; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-108)] NASA Advisory Council; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the NASA Advisory Council. SUMMARY: Pursuant to sections 14(b)(1) and 9(c) of...

  15. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  16. Presidential Space Policy Directs NASA to Return Humans to Moon

    NASA Image and Video Library

    2017-12-11

    President Donald Trump signed a new Space Policy Directive-1 at the White House on Monday, Dec. 11, directing NASA’s human spaceflight program back to the Moon, as recommended by the National Space Council.    The directive calls for NASA to lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system, and to bring back to Earth new knowledge and opportunities for human advancement. This effort will more effectively organize government, private industry, and international efforts toward returning humans on the Moon, and will lay the foundation that will eventually enable human exploration of Mars.

  17. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-22

    The National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  18. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  19. First NASA Workshop on Wiring for Space Applications

    NASA Technical Reports Server (NTRS)

    Hammond, Ahmad (Compiler); Stavnes, Mark W. (Compiler)

    1994-01-01

    This document contains the proceedings of the First NASA Workshop on Wiring for Space Applications held at NASA Lewis Research Center in Cleveland, OH, July 23-24, 1991. The workshop was sponsored by NASA Headquarters Code QE Office of Safety and Mission Quality, Technical Standards Division and hosted by the NASA Lewis Research Center, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry and academia presented and discussed topics on arc tracking phenomena, wiring applications and requirements, and new candidate insulation materials and constructions. Presentation materials provided by the various speakers are included in this document.

  20. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  1. NASA's Aero-Space Technology

    NASA Technical Reports Server (NTRS)

    Milstead, Phil

    2000-01-01

    This presentation reviews the three pillars and the associated goals of NASA's Aero-Space Technology Enterprise. The three pillars for success are: (1) Global Civil Aviation, (2) Revolutionary Technology Leaps, (3) Advanced Space Transportation. The associated goals of the first pillar are to reduce accidents, emissions, and cost, and to increase the aviation system capacity. The goals of the second pillar are to reduce transoceanic travel time, revolutionize general aviation aircraft, and improve development capacity. The goals associated with the third pillar are to reduce the launch cost for low earth orbit and to reduce travel time for planetary missions. In order to meet these goals NASA must provide next-generation design capability for new and or experimental craft which enable a balance between reducing components of the design cycle by up to 50% and or increasing the confidence in design by 50%. These next-generation design tools, concepts, and processes will revolutionize vehicle development. The presentation finally reviews the importance of modeling and simulation in achieving the goals.

  2. Wind Tunnel and Propulsion Test Facilities: An Assessment of NASA's Capabilities to Serve National Needs

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Gritton, Eugene C.; Mesic, Richard; Steinberg, Paul; Johnson, Dana J.

    2004-01-01

    This monograph reveals and discusses the National Aeronautics and Space Administration's (NASA's) wind tunnel and propulsion test facility management issues that are creating real risks to the United States' competitive aeronautics advantage.

  3. NASA Radio Frequency Spectrum Management Manual

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.

  4. NASA Integrated Space Communications Network

    NASA Technical Reports Server (NTRS)

    Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

    2012-01-01

    The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

  5. Internship at NASA Kennedy Space Center's Cryogenic Test laboratory

    NASA Technical Reports Server (NTRS)

    Holland, Katherine

    2013-01-01

    NASA's Kennedy Space Center (KSC) is known for hosting all of the United States manned rocket launches as well as many unmanned launches at low inclinations. Even though the Space Shuttle recently retired, they are continuing to support unmanned launches and modifying manned launch facilities. Before a rocket can be launched, it has to go through months of preparation, called processing. Pieces of a rocket and its payload may come in from anywhere in the nation or even the world. The facilities all around the center help integrate the rocket and prepare it for launch. As NASA prepares for the Space Launch System, a rocket designed to take astronauts beyond Low Earth Orbit throughout the solar system, technology development is crucial for enhancing launch capabilities at the KSC. The Cryogenics Test Laboratory at Kennedy Space Center greatly contributes to cryogenic research and technology development. The engineers and technicians that work there come up with new ways to efficiently store and transfer liquid cryogens. NASA has a great need for this research and technology development as it deals with cryogenic liquid hydrogen and liquid oxygen for rocket fuel, as well as long term space flight applications. Additionally, in this new era of space exploration, the Cryogenics Test Laboratory works with the commercial sector. One technology development project is the Liquid Hydrogen (LH2) Ground Operations Demonstration Unit (GODU). LH2 GODU intends to demonstrate increased efficiency in storing and transferring liquid hydrogen during processing, loading, launch and spaceflight of a spacecraft. During the Shuttle Program, only 55% of hydrogen purchased was used by the Space Shuttle Main Engines. GODU's goal is to demonstrate that this percentage can be increased to 75%. Figure 2 shows the GODU layout when I concluded my internship. The site will include a 33,000 gallon hydrogen tank (shown in cyan) with a heat exchanger inside the hydrogen tank attached to a

  6. 78 FR 11235 - Information Collection Notice/NASA Great Moonbuggy Race

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-013] Information Collection Notice/NASA Great Moonbuggy Race AGENCY: National Aeronautics and Space Administration (NASA). ACTION: NASA... general public and other Federal agencies to comment on a proposed information collection; the NASA Great...

  7. 14 CFR 1212.703 - NASA Chief Information Officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA Chief Information Officer. 1212.703 Section 1212.703 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.703 NASA Chief Information Officer. (a) The NASA Chief...

  8. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  9. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Ohio State University graduate student, biological sciences and NASA Student Ambassador, Monica Okon talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  10. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Ohio Space Grant Consortium (OSGC) Director Gary Slater talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  11. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  12. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  13. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  14. 14 CFR 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Logotype. 1221.104 Section 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  15. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  16. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  17. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  18. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  19. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  20. 14 CFR 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of the NASA Insignia. 1221.103 Section 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  1. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  2. NASA cash boost for space firms

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2012-09-01

    NASA has awarded 1.1bn to three US firms to design and develop the "next generation of human spaceflight capabilities". Boeing, Sierra Nevada and Space Exploration Technologies (SpaceX), who will receive 460m, 212.5m and 440m respectively, will use the money to improve and test their systems intended to fly astronauts to the International Space Station (ISS) within the next five years.

  3. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... obtain public comments on construction and operation of the wind farm. The purpose of constructing and...

  4. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-153] NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting...

  5. NASA SpaceWire Activities/Comments/Recommendations

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn

    2006-01-01

    This viewgraph presentation reviews NASA's activities, and proposes recommendations for the further use of the SpaceWire (SpW). The areas covered in this presentation are: (1) Protocol ID assignment, (2) Protocol development, (3) Plug & Play (PnP), (4) Recommended additions t o SpW protocol and (5) SpaceFibre trade.

  6. The NASA Space Radiation Health Program

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Sulzman, F. M.

    1994-01-01

    The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.

  7. 78 FR 64253 - NASA Asteroid Initiative Idea Synthesis Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-124] NASA Asteroid Initiative Idea.... SUMMARY: The National Aeronautics and Space Administration announces that the agency will resume the NASA... INFORMATION CONTACT: Michele Gates, Senior Technical Advisor, NASA Human Exploration and Operations Mission...

  8. 77 FR 68152 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-086)] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee.... Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358-4452, fax...

  9. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    John Logsdon, professor emeritus of Political Science and International Affairs, Elliott School of International Affairs, George Washington University, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  10. NASA's Ares I and Ares V Launch Vehicles--Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.

  11. Future Plans for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Preston, Robert A.; Geldzahler, Barry J.

    2008-01-01

    This slide presentation reviews the importance of NASA's Deep Space Network (DSN) to space exploration, and future planned improvements to the communication capabilities that the network allows, in terms of precision, and communication power.

  12. National Rocket Propulsion Materials Plan: A NASA, Department of Defense, and Industry Partnership

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA, Department of Defense, and rocket propulsion industry representatives are working together to create a national rocket propulsion materials development roadmap. This "living document" will facilitate collaboration among the partners, leveraging of resources, and will be a highly effective tool for technology development planning. The structuring of the roadmap, and development plan, which will combine the significant efforts of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Program, and NASA's Integrated Space Transportation Plan (ISTP), is being lead by the IHPRPT Materials Working Group (IMWG). The IHPRPT Program is a joint DoD, NASA, and industry effort to dramatically improve the nation's rocket propulsion capabilities. This phased program is structured with increasingly challenging goals focused on performance, reliability, and cost to effectively double rocket propulsion capabilities by 2010. The IHPRPT program is focused on three propulsion application areas: Boost and Orbit Transfer (both liquid rocket engines and solid rocket motors), Tactical, and Spacecraft. Critical to the success of this initiative is the development and application of advanced materials, processes, and manufacturing technologies. NASA's ISTP is a comprehensive strategy focusing on the aggressive safety, reliability, and affordability goals for future space transportation systems established by the agency. Key elements of this plan are the 2 nd and 3 d Generation Reusable Launch Vehicles (RLV). The affordability and safety goals of these generational systems are, respectively, 10X cheaper and 100X safer by 2010, and 100X cheaper and 10,000X safer by 2025. Accomplishment of these goals requires dramatic and sustained breakthroughs, particularly in the development and the application of advanced material systems. The presentation will provide an overview of the IHPRPT materials initiatives, NASA's 2nd and 3 rd Generation RLV propulsion materials projects, and the

  13. NASA Space Radiation Program Integrative Risk Model Toolkit

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  14. Overview of Space Science and Information Research Opportunities at NASA

    NASA Technical Reports Server (NTRS)

    Green, James L.

    2000-01-01

    It is not possible to review all the opportunities that NASA provides to support the Space Science Enterprise, in the short amount of time allotted for this presentation. Therefore, only a few key programs will be discussed. The programs that I will discuss will concentrate on research opportunities for faculty, graduate and postdoctoral candidates in Space Science research and information technologies at NASA. One of the most important programs for research opportunities is the NASA Research Announcement or NRA. NASA Headquarters issues NRA's on a regular basis and these cover space science and computer science activities relating to NASA missions and programs. In the Space Sciences, the most important NRA is called the "Research Opportunities in Space Science or the ROSS NRA. The ROSS NRA is composed of multiple announcements in the areas of structure and evolution of the Universe, Solar System exploration, Sun-Earth connections, and applied information systems. Another important opportunity is the Graduate Student Research Program (GSRP). The GSRP is designed to cultivate research ties between a NASA Center and the academic community through the award of fellowships to promising students in science and engineering. This program is unique since it matches the student's area of research interest with existing work being carried out at NASA. This program is for U.S. citizens who are full-time graduate students. Students who are successful have made the match between their research and the NASA employee who will act as their NASA Advisor/ Mentor. In this program, the student's research is primarily accomplished under the supervision of his faculty advisor with periodic or frequent interactions with the NASA Mentor. These interactions typically involve travel to the sponsoring NASA Center on a regular basis. The one-year fellowships are renewable for up to three years and over $20,000 per year. These and other important opportunities will be discussed.

  15. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  16. 76 FR 65540 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-100)] NASA Advisory Council; Meeting... Aeronautics and Space Administration announces that the meeting of the NASA Advisory Council scheduled to be held at NASA Goddard Space Flight Center in Greenbelt, Maryland, on November 3-4, 2011, has been...

  17. NASA + JAXA = Partners in Space

    NASA Image and Video Library

    2017-02-12

    NASA announced the continuation of the successful collaboration with the Japan Aerospace Exploration Agency (JAXA) with the recent signing of an agreement to encourage scientists from both countries to use International Space Station hardware located in both countries’ laboratories. JAXA’s Tetesuya Sakashita, the science integration manager for JAXA’s “Kibo” laboratory module, talks about plans to expand on investigations in microgravity including inviting more countries to participate in this unique orbiting laboratory. To learn more about this new program of cooperation, check out this recent article posted at NASA.gov.

  18. NASA Discusses Recent Testing of the James Webb Space Telescope

    NASA Image and Video Library

    2018-01-10

    Members of the media were invited to NASA’s Johnson Space Center in Houston on Jan. 10, to hear about the results of recent cryogenic vacuum tests on the James Webb Space Telescope, and the next steps on the observatory’s path to space. Webb was tested as a complete optical system in Chamber A at Johnson, which mimics the space environment the telescope will experience during its mission. Built in 1965 to conduct thermal-vacuum testing on the Apollo command and service modules, Chamber A is the largest structure of its kind in the world and is a listed National Historic Landmark. The James Webb Space Telescope is the world’s premier infrared space observatory of the next decade. Webb will help to solve mysteries of our solar system, look to distant worlds orbiting other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, the ESA (European Space Agency) and the Canadian Space Agency.

  19. The 1990-1991 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1993-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the period May 1990 through May 1991. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and other environmental factors on biological systems and to using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  20. Architectural Implementation of NASA Space Telecommunications Radio System Specification

    NASA Technical Reports Server (NTRS)

    Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.

    2012-01-01

    This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.

  1. 77 FR 13153 - Information Collection; NASA Contractor Financial Management Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ..., [email protected] . SUPPLEMENTARY INFORMATION: I. Abstract The NASA Contractor Financial Management... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-019] Information Collection; NASA Contractor Financial Management Reports AGENCY: National Aeronautics and Space Administration (NASA). ACTION...

  2. NASA Education Activities on the International Space Station: A National Laboratory for Inspiring, Engaging, Educating and Employing the Next Generation

    NASA Technical Reports Server (NTRS)

    Severance, Mark T.; Tate-Brown, Judy; McArthur, Cynthia L.

    2010-01-01

    The International Space Station (ISS) National Lab Education Project has been created as a part of the ISS National Lab effort mandated by the U.S. Congress The project seeks to expand ISS education of activities so that they reach a larger number of students with clear educational metrics of accomplishments. This paper provides an overview of several recent ISS educational payloads and activities. The expected outcomes of the project, consistent with those of the NASA Office of Education, are also described. NASA performs numerous education activities as part of its ISS program. These cover the gamut from formal to informal educational opportunities in grades Kindergarten to grade 12, Higher Education (undergraduate and graduate University) and informal educational venues (museums, science centers, exhibits). Projects within the portfolio consist of experiments performed onboard the ISS using onboard resources which require no upmass, payloads flown to ISS or integrated into ISS cargo vehicles, and ground based activities that follow or complement onboard activities. Examples include ground based control group experiments, flight or experiment following lesson plans, ground based activities involving direct interaction with ISS or ground based activities considering ISS resources in their solution set. These projects range from totally NASA funded to projects which partner with external entities. These external agencies can be: other federal, state or local government agencies, commercial entities, universities, professional organizations or non-profit organizations. This paper will describe the recent ISS education activities and discuss the approach, outcomes and metrics associated with the projects.

  3. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Jordan Hansell, chairman and CEO, NetJets Inc. talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  4. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Michael Donovan, technology consultant, New Services Development, Hewlett-Packard Company talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  5. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, moderates the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  6. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Carlos Grodsinsky, Vice Presiden of Technology, Zin Technologies, talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  7. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Neal Seater, President, Greenfield Solar, holds up a small solar chip during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  8. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Yael Vodovotz, Associate Professor, Department of Food Science and Technology, Ohio State University, talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  9. A systems engineering initiative for NASA's space communications

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Hei, Donald J., Jr.; Kelly, Angelita C.; Lightfoot, Patricia C.; Bell, Holland T.; Cureton-Snead, Izeller E.; Hurd, William J.; Scales, Charles H.

    1993-01-01

    In addition to but separate from the Red and Blue Teams commissioned by the NASA Administrator, NASA's Associate Administrator for Space Communications commissioned a Blue Team to review the Office of Space Communications (Code O) Core Program and determine how the program could be conducted faster, better, and cheaper, without compromising safety. Since there was no corresponding Red Team for the Code O Blue Team, the Blue Team assumed a Red Team independent attitude and challenged the status quo. The Blue Team process and results are summarized. The Associate Administrator for Space Communications subsequently convened a special management session to discuss the significance and implications of the Blue Team's report and to lay the groundwork and teamwork for the next steps, including the transition from engineering systems to systems engineering. The methodology and progress toward realizing the Code O Family vision and accomplishing the systems engineering initiative for NASA's space communications are presented.

  10. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Metro High School Student Anthony Springer talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  11. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Dayton Regional STEM student Cheyenne Benson talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  12. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    After more than four decades exploring the space environment from low Earth orbit and developing long-duration spaceflight operational experience with the International Space Station (ISS), NASA is once again preparing to send explorers into deep space. Development, test and manufacturing is now underway on the launch vehicle, the crew spacecraft and the ground processing and launch facilities to support human and robotic missions to the moon, Mars and the outer solar system. The enabling launch vehicle for these ambitious new missions is the Space Launch System (SLS), managed by NASA's Marshall Space Flight Center (MSFC). Since the program began in 2011, the design has passed Critical Design Review, and extensive development, test and flight hardware has been produced by every major element of the SLS vehicle. Testing continues on engines, boosters, tanks and avionics. While the program has experienced engineering challenges typical of a new development, it continues to make steady progress toward the first SLS mission in roughly two years and a sustained cadence of missions thereafter. This paper will discuss these and other technical and SLS programmatic successes and challenges over the past year and provide a preview of work ahead before first flight.

  13. 75 FR 54389 - NASA Advisory Council; Science Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-103)] NASA Advisory Council; Science... National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for the...

  14. 75 FR 14472 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-033)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  15. 76 FR 18800 - NASA Advisory Council; Exploration Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-028)] NASA Advisory Council; Exploration... National Aeronautics and Space Administration announces a meeting of the Exploration Committee of the NASA Advisory Council. DATES: Tuesday, April 26, 2011, 1 p.m.-6 p.m., Local Time ADDRESSES: NASA Headquarters...

  16. 75 FR 2892 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-003)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  17. Activities of the Space Studies Board of the National Research Council

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This 1993 annual report of the Space Studies Board of the National Research Council chronicles the activities of the board during a year filled with questioning and change in the country's civil space program. The brief accounts contained herein of the activities of the board and of its committees, together with summaries of two major reports and the complete texts of three letter reports, sketch out major space research issues that faced the nation's space scientists and engineers during the year, including scientific prerequisites for the human exploration of space, improving NASA's technology for space science, the space station and prerequisites for the human exploration program, several issues in the space life sciences, and the Advanced X-ray Astrophysics Facility.

  18. 77 FR 61432 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-080] NASA Advisory Council; Aeronautics Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory...

  19. 75 FR 4589 - NASA Advisory Council Exploration Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-012)] NASA Advisory Council Exploration... Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Exploration Committee... Parham, Exploration Committee Administrative Officer, Mail Stop 7C27, National Aeronautics and Space...

  20. The Road from the NASA Access to Space Study to a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae

    1998-01-01

    NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.

  1. 75 FR 61778 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-118)] NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...

  2. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  3. NASA'S second decade in space.

    NASA Technical Reports Server (NTRS)

    Manganiello, E. J.

    1972-01-01

    Advances in space science during the last decade are reviewed. The basic scientific goals of NASA's Planetary Program are to increase man's understanding of the origin and evolution of the solar system, the origin and evolution of life, and the earth, through a comparative study of the other planets. Studies of the planets will be continued during the second decade. Aspects of manned space flights are discussed, giving attention to the Skylab workshop, and the Space Shuttle. The applications program is divided into four major areas including meteorology, communications and navigation, geodesy, and earth resources. Areas of aeronautical research are also examined.

  4. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  5. 77 FR 60620 - Update of Existing Privacy Act-NASA Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... be accessed on the Agency's open Government Web site at http://www.nasa.gov/open/ . DATES: This rule... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 14 CFR Part 1212 [Document No. NASA--NASA-2012-0005] RIN 2700-AD86 Update of Existing Privacy Act--NASA Regulations AGENCY: National Aeronautics and Space...

  6. Reducing the complexity of NASA's space communications infrastructure

    NASA Technical Reports Server (NTRS)

    Miller, Raymond E.; Liu, Hong; Song, Junehwa

    1995-01-01

    This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.

  7. NASA STI Database, Aerospace Database and ARIN coverage of 'space law'

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1992-01-01

    The space-law coverage provided by the NASA STI Database, the Aerospace Database, and ARIN is briefly described. Particular attention is given to the space law content of the two Databases and of ARIN, the NASA Thesauras space law terminology, space law publication forms, and the availability of the space law literature.

  8. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Dr. Caroline Wagner, associate professor, Ambassador Milton A. and Roslyn Z. Wolf Chair in International Affairs, and Director, Battelle Center for Science and Technology Policy, The Ohio State University moderates the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  9. 14 CFR § 1221.106 - Establishment of the NASA Flag.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of the NASA Flag. § 1221.106 Section § 1221.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  10. 14 CFR § 1221.111 - Use of the NASA Logotype.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Logotype. § 1221.111 Section § 1221.111 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  11. 14 CFR § 1221.109 - Use of the NASA Seal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Seal. § 1221.109 Section § 1221.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program...

  12. 14 CFR § 1221.113 - Use of the NASA Flags.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Flags. § 1221.113 Section § 1221.113 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  13. 14 CFR § 1221.102 - Establishment of the NASA Seal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of the NASA Seal. § 1221.102 Section § 1221.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  14. 14 CFR § 1221.110 - Use of the NASA Insignia.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Insignia. § 1221.110 Section § 1221.110 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA...

  15. 75 FR 18240 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-042)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Wednesday, April 28, 2010, 8 a.m.-5 p.m. CDT; Thursday, April 29, 2010, 8 a.m.-3 p.m. CDT ADDRESSES: NASA Johnson Space Center...

  16. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  17. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  18. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  19. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  20. NASA Deputy Administrator Tours Sierra Nevada Space Systems' Dre

    NASA Image and Video Library

    2011-02-05

    Sierra Nevada Space Systems chairman Mark Sirangello talks during a press conference with Sierra Nevada's Dream Chaser spacecraft in the background on Saturday, Feb. 5, 2011, at the University of Colorado at Boulder. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  1. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hasbrook, Pete

    2016-01-01

    The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging

  2. Reaching for the Stars: A New NASA-National Federation of the Blind Initiative

    NASA Astrophysics Data System (ADS)

    Maynard, N. G.; Riccobono, M. A.

    2004-12-01

    The National Aeronautics and Space Administration (NASA) and the National Federation of the Blind (NFB) recently launched a unique new partnership which will inspire and empower blind youth to consider opportunities in science, technologies, engineering, and math related careers from which they have typically been excluded. This partnership presents a framework for successful cultivation of the next generation of scientists. By partnering with the NFB Jernigan Institute, a one of a kind research and training facility developed and directed by blind people, NASA has engaged the most powerful tool for tapping the potential of blind youth. By teaming NASA scientists and engineers with successful blind adults within a national organization, the NFB, this partnership has established an unparalleled pipeline of talent and imagination. The NASA/NFB partnership seeks to facilitate the means that will lead to increased science and technology employment opportunities for the blind, and particularly within NASA. The initiative is facilitating the development of education programs and products which will stimulate better educational opportunities and supports for blind youth in the STEM areas and better preparing them to enter the NASA employment path. In addition, the partnership brings the unique perspective of the blind to the continuing effort to develop improved space technologies, which may be applied for navigation and wayfinding, technologies for education and outreach, and technologies for improving access to information using nonvisual techniques. This presentation describes some of the activities accomplished in the first year of the partnership. Examples include the establishment of the first NFB Science Academy for Blind Youth which included two summer science camps supported by NASA. During the first camp session, twelve middle school age blind youth explored earth science concepts such as identification and characterization of soils, weather parameters, plants

  3. Space Internet Architectures and Technologies for NASA Enterprises

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  4. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Ron Sega, Vice president and enterprise executive for Energy and the Environment, The Ohio State University and Colorado State University talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  5. Remote Sensing Product Verification and Validation at the NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas M.

    2005-01-01

    Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.

  6. Report of the Committee on the Space Station of the National Research Council

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Space Station Program will be the most ambitious space project the nation has ever undertaken; will require tens of billions of dollars; and will entwine for many years the space program with those of international partners. It must have enduring stable support across administrations, and the support must be generous. The current Space Shuttle is barely adequate for the limited purpose of deploying the Space Station, and it is inadequate to meet broader national needs in space. The Committee recommends in the strongest terms that the Shuttle be upgraded with new improved solid rocket motors, that it be supplemented with expendable launch vehicles, and that a heavy lift launch vehicle be developed for use in the latter half of the 1990s. The Committee strongly recommends that NASA prepare a new Space Station Program cost estimate in conjunction with the Program Requirements Review scheduled for early next year by NASA. The exercise should address the full range of uncertainties in the current Program, some of which are discussed in the report.

  7. 14 CFR § 1212.703 - NASA Chief Information Officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA Chief Information Officer. § 1212.703 Section § 1212.703 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.703 NASA Chief Information Officer. (a) The NASA Chief...

  8. 14 CFR § 1221.104 - Establishment of the NASA Logotype.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of the NASA Logotype. § 1221.104 Section § 1221.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  9. 14 CFR § 1221.103 - Establishment of the NASA Insignia.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of the NASA Insignia. § 1221.103 Section § 1221.103 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  10. Designing astrophysics missions for NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-10-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.

  11. Genesis of the NASA Space Radiation Laboratory.

    PubMed

    Schimmerling, Walter

    2016-06-01

    A personal recollection of events leading up to the construction and commissioning of NSRL, including reference to precursor facilities and the development of the NASA Space Radiation Program. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  12. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Pickerington High School student Jordan Elliott, left, and Dayton Regional STEM student Cheyenne Benson participate in the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  13. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Founding head of MC2 STEM High School Jeffrey McClellan talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  14. NASA's Next Generation Space Geodesy Program

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Frey, H. V.; Gross, R. S.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Merkowitz, S. M.; Noll, C. E.; Pavilis, E. C.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard s Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  15. NASA's Next Generation Space Geodesy Program

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  16. The 1992-1993 NASA Space Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1994-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the calendar years of 1992 and 1993. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and the effects of microgravity on biological processes; determining the effects of the interaction of gravity and other environmental factors on biological systems; and using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  17. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    PubMed Central

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  18. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.

    PubMed

    Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J

    2016-02-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. Published by Elsevier Ltd.

  19. NASA's Earth Observations Commercialization Applications Program: A model for government promotion of commercial space opportunities

    NASA Technical Reports Server (NTRS)

    Macauley, Molly K.

    1995-01-01

    The role of government in promoting space commerce is a topic of discussion in every spacefaring nation. This article describes a new approach to government intervention which, based on its five-year track record, appears to have met with success. The approach, developed in NASA's Earth Observations Commercialization Application Program (EOCAP), offer several lessons for effective government sponsorship of commercial space development in general and of commercial remote sensing in particular.

  20. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  1. 76 FR 41825 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-066)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). The agenda topics for the....-12 p.m., Local Time. ADDRESSES: NASA Ames Conference Center (Building 3), Ballroom, 500 Severyns...

  2. Role of Lidar Technology in Future NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2008-01-01

    The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.

  3. 77 FR 38093 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-046] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory.... to 2:30 p.m., local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100E...

  4. Space Technology Demo at NASA Wallops

    NASA Image and Video Library

    2017-12-08

    A Black Brant IX suborbital sounding rocket is launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/A. Stancil) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Space Technology Demo at NASA Wallops

    NASA Image and Video Library

    2017-12-08

    A Black Brant IX suborbital sounding rocket is launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/T. Zaperach) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA space and Earth science data on CD-ROM

    NASA Technical Reports Server (NTRS)

    Towheed, Syed S.

    1993-01-01

    The National Space Science Data Center (NSSDC) is very interested in facilitating the widest possible use of the scientific data acquired through NASA spaceflight missions. Therefore, NSSDC has participated with projects and data management elements throughout the NASA science environment in the creation, archiving, and dissemination of data using Compact Disk-Read Only Memory (CD-ROM). This CD-ROM technology has the potential to enable the dissemination of very large data volumes at very low prices to a great many researchers, students and their teachers, and others. This catalog identifies and describes the scientific CD-ROM's now available from NSSDC including the following data sets: Einstein Observatory CD-ROM, Galileo Cruise Imaging on CD-ROM, International Halley Watch, IRAS Sky Survey Atlas, Infrared Thermal Mapper (IRTM), Magellan (MIDR), Magellan (ARCDR's), Magellan (GxDR's), Mars Digital Image Map (MDIM), Outer Planets Fields & Particles Data, Pre-Magellan, Selected Astronomical Catalogs, TOMS Gridded Ozone Data, TOMS Ozone Image Data, TOMS Update, Viking Orbiter Images of Mars, and Voyager Image.

  7. 78 FR 42110 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-078)] NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Human...

  8. Complex Decision-Making Applications for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  9. The National Aeronautics and Space Administration Nondestructive Evaluation Program for Safe and Reliable Operations

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Nondestructive Evaluation (NDE) Program is presented. As a result of the loss of seven astronauts and the Space Shuttle Columbia on February 1, 2003, NASA has undergone many changes in its organization. NDE is one of the key areas that are recognized by the Columbia Accident Investigation Board (CAIB) that needed to be strengthened by warranting NDE as a discipline with Independent Technical Authority (iTA). The current NASA NDE system and activities are presented including the latest developments in inspection technologies being applied to the Space Transportation System (STS). The unfolding trends and directions in NDE for the future are discussed as they apply to assuring safe and reliable operations.

  10. 75 FR 55616 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-110)] NASA Advisory Council...-463, as amended, the National Aeronautics and Space Administration (NASA) announce a meeting for the Information Technology Infrastructure Committee of the NASA Advisory Council (NAC). DATES: Tuesday, September...

  11. An Overview of NASA Space Cryocooler Programs--2006

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.; Boyle, R. F.

    2006-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Many of NASA's space instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, or enable the use of advanced detectors to observe a wide range of phenomena--from crop dynamics to stellar birth. Reflecting the relative maturity of the technology at these temperatures, the largest utilization of coolers over the last fifteen years has been for instruments operating at medium to high cryogenic temperatures (55 to 150K). For the future, important new developments are focusing on the lower temperature range, from 6 to 20 K, in support of studies of the origin of the Universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and a 6 K cryocooler for the MIRI instrument on the James Webb Space Telescope (JWST) are examples of the thrust to provide low-temperature cooling for this class of future missions.

  12. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  13. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  14. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  15. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  16. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  17. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  18. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  19. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  20. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  1. NASA's Participation in the National Computational Grid

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Zornetzer, Steve F. (Technical Monitor)

    1998-01-01

    Over the last several years it has become evident that the character of NASA's supercomputing needs has changed. One of the major missions of the agency is to support the design and manufacture of aero- and space-vehicles with technologies that will significantly reduce their cost. It is becoming clear that improvements in the process of aerospace design and manufacturing will require a high performance information infrastructure that allows geographically dispersed teams to draw upon resources that are broader than traditional supercomputing. A computational grid draws together our information resources into one system. We can foresee the time when a Grid will allow engineers and scientists to use the tools of supercomputers, databases and on line experimental devices in a virtual environment to collaborate with distant colleagues. The concept of a computational grid has been spoken of for many years, but several events in recent times are conspiring to allow us to actually build one. In late 1997 the National Science Foundation initiated the Partnerships for Advanced Computational Infrastructure (PACI) which is built around the idea of distributed high performance computing. The Alliance lead, by the National Computational Science Alliance (NCSA), and the National Partnership for Advanced Computational Infrastructure (NPACI), lead by the San Diego Supercomputing Center, have been instrumental in drawing together the "Grid Community" to identify the technology bottlenecks and propose a research agenda to address them. During the same period NASA has begun to reformulate parts of two major high performance computing research programs to concentrate on distributed high performance computing and has banded together with the PACI centers to address the research agenda in common.

  2. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Eric Fingerhut, head of Education at Battelle, former chancellor of Ohio's Higher Education System, talks during the during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  3. 78 FR 20357 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-035] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday, April 24...: NASA Headquarters, 300 E Street SW., Room 9H40, Program Review Center (PRC), Washington, DC, 20456 FOR...

  4. 78 FR 41804 - NASA Advisory Council; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-077)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). DATES: Wednesday, July 31... ADDRESSES: NASA Headquarters, Room 9H40, Program Review Center, 300 E Street SW., Washington, DC 20456 FOR...

  5. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Jasinski, Michael; Mocko, David; Kempler, Steven

    2016-01-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and indicator data, to other NCA-teams and the general public. The NCA-LDAS data will be archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp, THREDDS, Mirador search and download, and Giovanni visualization and analysis system.

  6. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  7. NASA's Plan for SDLS Testing

    NASA Technical Reports Server (NTRS)

    Bailey, Brandon

    2015-01-01

    The Space Data Link Security (SDLS) Protocol is a Consultative Committee for Space Data Systems (CCSDS) standard which extends the known Data Link protocols to secure data being sent over a space link by providing confidentiality and integrity services. This plan outlines the approach by National Aeronautics Space Administration (NASA) in performing testing of the SDLS protocol using a prototype based on an existing NASA missions simulator.

  8. NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business

  9. Supporting Research at NASA's Goddard Space Flight Center Through Focused Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Closs, J.

    2003-12-01

    NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide

  10. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    Honeybee Robotics co-founder and chairman Stephen Gorevan participates in a panel discussion titled "The Big Picture", Saturday, Aug. 5, 2017 at the Intrepid Sea, Air & Space Museum in New York City. Photo Credit: (NASA/Bill Ingalls)

  11. The NASA Space Biology Program

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1982-01-01

    A discussion is presented of the research conducted under the auspices of the NASA Space Biology Program. The objectives of this Program include the determination of how gravity affects and how it has shaped life on earth, the use of gravity as a tool to investigate relevant biological questions, and obtaining an understanding of how near-weightlessness affects both plants and animals in order to enhance the capability to use and explore space. Several areas of current developmental research are discussed and the future focus of the Program is considered.

  12. Techno-Political Space Cooperation: A Longitudinal Analysis of NASA's Bilateral and Multilateral Agreements

    NASA Technical Reports Server (NTRS)

    Hudiburg, John J.

    2004-01-01

    NASA's international programs are both numerous and successful, with over two thousand international agreements forming a foundation of U.S. government cooperation that involved over half the United Nation's membership. Previous research, by the author, into these agreements has identified five variables underlying NASA's international cooperation efforts and these variables form a framework for explaining international cooperation behavior on a macro-level. This paper builds upon that research to effectively explain lower-level patterns of cooperation in NASA's experience. Two approaches for analyzing the space agency's history are used: aggregation of all agreements and a cluster (disaggregated) analysis of four key segments. While researchers of NASA's international cooperation often considered individual cases first, and then generalize to macro-level explanations. This study, in contrast, begins by considering all agreements together in order to explain as much as possible at the macro level before proceeding to lower tier explanations. These lower tier assessments are important to understanding regional and political influences on bilateral and multilateral cooperation. In order to accomplish this lower-tier analysis, the 2000 agreements are disaggregated into logical groupings enabling an analysis of important questions and clearer focus on key patterns concerning developing states, such as the role of international institutions or privatization on international cooperation in space technology.

  13. NASA Space Cryocooler Programs: A 2003 Overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Boyle, R. F.; Kittel, P.

    2004-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science missions. An overview is presented of ongoing cryocooler activities within NASA in support of current flight projects, near-term flight instruments, and long-term technology development. NASA programs in Earth and space science observe a wide range of phenomena, from crop dynamics to stellar birth. Many of the instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, and enable the use of advanced detectors. Although, the largest utilization of coolers over the last decade has been for instruments operating at medium to high cryogenic temperatures (55 to 150 K), reflecting the relative maturity of the technology at these temperatures, important new developments are now focusing at the lower temperature range from 4 to 20 K in support of studies of the origin of the universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and its new Advanced Cryocooler Technology Development Program (ACTDP) for 6-18 K coolers are examples of the thrust to provide low temperature cooling for this class of missions.

  14. System Safety in Early Manned Space Program: A Case Study of NASA and Project Mercury

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick D.; Pitts, Donald

    2005-01-01

    This case study provides a review of National Aeronautics and Space Administration s (NASA's) involvement in system safety during research and evolution from air breathing to exo-atmospheric capable flight systems culminating in the successful Project Mercury. Although NASA has been philosophically committed to the principals of system safety, this case study points out that budget and manpower constraints-as well as a variety of internal and external pressures can jeopardize even a well-designed system safety program. This study begins with a review of the evolution and early years of NASA's rise as a project lead agency and ends with the lessons learned from Project Mercury.

  15. Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation

    NASA Technical Reports Server (NTRS)

    2012-01-01

    At the request of NASA, the National Research Council's (NRC's) Committee for Evaluation of Space Radiation Cancer Risk Model reviewed a number of changes that NASA proposes to make to its model for estimating the risk of radiation-induced cancer in astronauts. The NASA model in current use was last updated in 2005, and the proposed model would incorporate recent research directed at improving the quantification and understanding of the health risks posed by the space radiation environment. NASA's proposed model is defined by the 2011 NASA report Space Radiation Cancer Risk Projections and Uncertainties 2010 (Cucinotta et al., 2011). The committee's evaluation is based primarily on this source, which is referred to hereafter as the 2011 NASA report, with mention of specific sections or tables cited more formally as Cucinotta et al. (2011). The overall process for estimating cancer risks due to low linear energy transfer (LET) radiation exposure has been fully described in reports by a number of organizations. They include, more recently: (1) The "BEIR VII Phase 2" report from the NRC's Committee on Biological Effects of Ionizing Radiation (BEIR) (NRC, 2006); (2) Studies of Radiation and Cancer from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006), (3) The 2007 Recommendations of the International Commission on Radiological Protection (ICRP), ICRP Publication 103 (ICRP, 2007); and (4) The Environmental Protection Agency s (EPA s) report EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population (EPA, 2011). The approaches described in the reports from all of these expert groups are quite similar. NASA's proposed space radiation cancer risk assessment model calculates, as its main output, age- and gender-specific risk of exposure-induced death (REID) for use in the estimation of mission and astronaut-specific cancer risk. The model also calculates the associated uncertainties in REID. The general approach for

  16. 78 FR 8963 - Update of Existing Privacy Act-NASA Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 14 CFR Part 1212 [Document Number NASA-2012-0005] RIN 2700-AD86 Update of Existing Privacy Act--NASA Regulations AGENCY: National Aeronautics and Space... regulations (NASA-2012-0005), which were published in the Federal Register of Thursday, October 4, 2012 (77 FR...

  17. NASA Accelerates SpaceCube Technology into Orbit

    NASA Technical Reports Server (NTRS)

    Petrick, David

    2010-01-01

    On May 11, 2009, STS-125 Space Shuttle Atlantis blasted off from Kennedy Space Center on a historic mission to service the Hubble Space Telescope (HST). In addition to sending up the hardware and tools required to repair the observatory, the servicing team at NASA's Goddard Space Flight Center also sent along a complex experimental payload called Relative Navigation Sensors (RNS). The main objective of the RNS payload was to provide real-time image tracking of HST during rendezvous and docking operations. RNS was a complete success, and was brought to life by four Xilinx FPGAs (Field Programmable Gate Arrays) tightly packed into one integrated computer called SpaceCube. SpaceCube is a compact, reconfigurable, multiprocessor computing platform for space applications demanding extreme processing capabilities based on Xilinx Virtex 4 FX60 FPGAs. In a matter of months, the concept quickly went from the white board to a fully funded flight project. The 4-inch by 4-inch SpaceCube processor card was prototyped by a group of Goddard engineers using internal research funding. Once engineers were able to demonstrate the processing power of SpaceCube to NASA, HST management stood behind the product and invested in a flight qualified version, inserting it into the heart of the RNS system. With the determination of putting Xilinx into space, the team strengthened to a small army and delivered a fully functional, space qualified system to the mission.

  18. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  19. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  20. 76 FR 14433 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-023)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  1. 75 FR 53350 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-096)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  2. 76 FR 28470 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-047)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  3. 77 FR 64561 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-083] NASA Advisory Council; Technology...: Notice of meeting. SUMMARY: The National Aeronautics and Space Administration (NASA) announces a meeting of the Technology and Innovation Committee of the NASA Advisory Council (NAC). The meeting will be...

  4. 75 FR 74089 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-149)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  5. NASA Space Day in Mississippi - House of Representatives

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astronaut Michael Foale (center) and Stennis Space Center officials met with Mississippi House of Representatives Gulf Coast delegation, including Speaker William 'Billy' McCoy (far right), during NASA Space Day in Mississippi on January 30.

  6. Space Technology Demo at NASA Wallops

    NASA Image and Video Library

    2017-12-08

    A vapor cloud is seen after launch of a Black Brant IX suborbital sounding rocket, launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/J. Adkins) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Microgravity research results and experiences from the NASA/MIR space station program.

    PubMed

    Schlagheck, R A; Trach, B L

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Published by Elsevier Ltd.

  8. NASA's Long-range Technology Goals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document is part of the Final Report performed under contract NASW-3864, titled "NASA's Long-Range Technology Goals". The objectives of the effort were: To identify technologies whose development falls within NASA's capability and purview, and which have high potential for leapfrog advances in the national industrial posture in the 2005-2010 era. To define which of these technologies can also enable quantum jumps in the national space program. To assess mechanisms of interaction between NASA and industry constituencies for realizing the leapfrog technologies. This Volume details the findings pertaining to the advanced space-enabling technologies.

  9. 78 FR 39341 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-070] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This [[Page 39342

  10. NASA Aerosciences Activities to Support Human Space Flight

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  11. INFINITY at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  12. INFINITY at NASA Stennis Space Center

    NASA Image and Video Library

    2010-11-17

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  13. First among equals: The selection of NASA space science experiments

    NASA Technical Reports Server (NTRS)

    Naugle, John E.

    1990-01-01

    The process is recounted by which NASA and the scientific community have, since 1958, selected individual experiments for NASA space missions. It explores the scientific and organizational issues involved in the selection process and discusses the significance of the process in the character and accomplishments of U.S. space activities.

  14. NASA's Space Environments and Effects (SEE) program: contamination engineering technology development

    NASA Astrophysics Data System (ADS)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-10-01

    The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  15. NASA's Space Environments and Effects (SEE) Program: Contamination Engineering Technology Development

    NASA Technical Reports Server (NTRS)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-01-01

    ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  16. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2006-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  17. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2007-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  18. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.

    2006-01-01

    In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  19. NASA's Space Launch System: SmallSat Deployment to Deep Space

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Creech, Stephen D.

    2017-01-01

    Leveraging the significant capability it offers for human exploration and flagship science missions, NASA's Space Launch System (SLS) also provides a unique opportunity for lower-cost deep-space science in the form of small-satellite secondary payloads. Current plans call for such opportunities to begin with the rocket's first flight; a launch of the vehicle's Block 1 configuration, capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO), which will send the Orion crew vehicle around the moon and return it to Earth. On that flight, SLS will also deploy 13 CubeSat-class payloads to deep-space destinations. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. While the SLS Program is making significant progress toward that first launch, preparations are already under way for the second, which will see the booster evolve to its more-capable Block 1B configuration, able to deliver 105t to LEO. That configuration will have the capability to carry large payloads co-manifested with the Orion spacecraft, or to utilize an 8.4-meter (m) fairing to carry payloads several times larger than are currently possible. The Block 1B vehicle will be the workhorse of the Proving Ground phase of NASA's deep-space exploration plans, developing and testing the systems and capabilities necessary for human missions into deep space and ultimately to Mars. Ultimately, the vehicle will evolve to its full Block 2 configuration, with a LEO capability of 130 metric tons. Both the Block 1B and Block 2 versions of the vehicle will be able to carry larger secondary payloads than the Block 1 configuration, creating even more opportunities for affordable scientific exploration of deep space. This paper will outline the progress being made toward flying smallsats on the first

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.