Sample records for nasa ozone study

  1. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Pawson, Steven; Labow, Gordon; Frith, Stacey M.; Livesey, Nathaniel; Partyka, Gary

    2017-01-01

    The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), produced at NASAs Global Modeling and Assimilation Office (GMAO) is summarized. The reanalysis begins in 1980 with the use of retrieved partial-column ozone concentrations from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft. Beginning in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument (OMI) on NASAs EOS Aura satellite are assimilated. While this change in data streams does lead to a discontinuity in the assimilated ozone fields in MERRA-2, making it not useful for studies in decadal (secular) trends in ozone, this choice was made to prioritize demonstrating the value NASAs high-quality research data in the reanalysis context. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above. This is indicative of a realistic representation of the UTLS ozone variability in MERRA-2. After 2004, the upper tropospheric ozone in MERRA-2 shows a low bias compared to the sondes, but the covariance with independent observations is improved compared to earlier years. Case studies demonstrate the integrity of MERRA-2 analyses in representing important features such as tropopause folds.

  2. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2017-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASAs Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASAs EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

  3. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis.

    PubMed

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2017-04-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA's Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA's EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

  4. NASA's upper atmosphere research satellite: A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.

    1992-01-01

    The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.

  5. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  6. Discoveries about Tropical Tropospheric Ozone from Satellite and SHADOZ (Southern Hemisphere Additional Ozonesondes) and a Future Perspective on NASA's Ozone Sensors

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    2003-01-01

    We have been producing near-real tropical tropospheric ozone ('TTO') data from TOMS since 1997 with Prof. Hudson and students at the University of Maryland. Maps for 1996-2000 for the operational Earth-Probe instrument reside at: . We also have archived 'TTO' data from the Nimbus 7/TOMS satellite (1979-1992). The tropics is a region strongly influenced by natural variability and anthropogenic activity and the satellite data have been used to track biomass burning pollution and to detect interannual variability and climate signals in ozone. We look forward to future ozone sensors from NASA; four will be launched in 2004 as part of the EOS AURA Mission. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical variability. Thus, in 1998, NASA's Goddard Space Flight Center, NOAA's Climate Monitoring and Diagnostics Laboratory (CMDL) and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches at selected sites and provides a public archive of ozonesonde data from twelve tropical and subtropical stations at http://croc.nsfc.nasa.gov/shadoz. The stations are: Ascension Island; Nairobi, Kenya; Irene, South Africa; R,union Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil, Malindi, Kenya; Paramaribo, Surinam. From the first 3-4 years of data (presently greater than 1700 sondes), the following features emerge: (a) highly variable tropospheric ozone; (b) a zonal wave-one pattern in tropospheric column ozone; (c) tropospheric ozone variability over the Indian and Pacific Ocean displays strong convective signatures.

  7. Tropospheric Ozone Lidar Network (TOLNet) - Long-term Tropospheric Ozone and Aerosol Profiling for Satellite Continuity and Process Studies

    NASA Astrophysics Data System (ADS)

    Newchurch, M.; Al-Saadi, J. A.; Alvarez, R. J.; Burris, J.; Cantrell, W.; Chen, G.; De Young, R.; Hardesty, R.; Hoff, R. M.; Kaye, J. A.; kuang, S.; Langford, A. O.; LeBlanc, T.; McDermid, I. S.; McGee, T. J.; Pierce, R.; Senff, C. J.; Sullivan, J. T.; Szykman, J.; Tonnesen, G.; Wang, L.

    2012-12-01

    An interagency research initiative for ground-based ozone and aerosol lidar profiling recently funded by NASA has important applications to air-quality studies in addition to the goal of serving the GEO-CAPE and other air-quality missions. Ozone is a key trace-gas species, a greenhouse gas, and an important pollutant in the troposphere. High spatial and temporal variability of ozone affected by various physical and photochemical processes motivates the high spatio-temporal lidar profiling of tropospheric ozone for improving the simulation and forecasting capability of the photochemical/air-quality models, especially in the boundary layer where the resolution and precision of satellite retrievals are fundamentally limited. It is well known that there are large discrepancies between the surface and upper-air ozone due to titration, surface deposition, diurnal processes, free-tropospheric transport, and other processes. Near-ground ozone profiling has been technically challenging for lidars due to some engineering difficulties, such as near-range saturation, field-of-view overlap, and signal processing issues. This initiative provides an opportunity for us to solve those engineering issues and redesign the lidars aimed at long-term, routine ozone/aerosol observations from the near surface to the top of the troposphere at multiple stations (i.e., NASA/GSFC, NASA/LaRC, NASA/JPL, NOAA/ESRL, UAHuntsville) for addressing the needs of NASA, NOAA, EPA and State/local AQ agencies. We will present the details of the science investigations, current status of the instrumentation development, data access/protocol, and the future goals of this lidar network. Ozone lidar/RAQMS comparison of laminar structures.

  8. AROTAL Ozone and Temperature Vertical Profile Measurements from the NASA DC-8 during the SOLVE II Campaign

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.

    2004-01-01

    The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.

  9. Comparison of tropospheric ozone profiles measured by lidars simultaneously over land and water during the 2017 NASA OWLETS campaign

    NASA Astrophysics Data System (ADS)

    Gronoff, G.; Sullivan, J.; Berkoff, T.; Carrion, W.; Farris, B.

    2017-12-01

    The NASA Langley Mobile Ozone Lidar (LMOL) and NASA Goddard's lidar (TROPOZ) have routinely measured tropospheric ozone profiles in support of various NASA campaigns and local field studies since 2013 (e.g. DISCOVER-AQ 2014). They are both charter members of the NASA Tropospheric Lidar Network (TOLNet) and were constructed within transportable containers, allowing for observations directly within a variety of complex environments. To gain a better understanding of ozone's interactions close to the surface, both of these instruments have recently designed and optimized near field optical elements for ozone detection. One of the major difficulties for the modeling and satellite communities are the sharp transition regions, both horizontal and vertical, such as the land-water gradients in O3 near coastal/urban regions that are driven by differences in surface deposition, boundary layer height, and cloud coverage.To better understand these gradients, both lidars were deployed in the Hampton Roads / Tidewater region, in Virginia, in July-August 2017, in the context of the OWLETS (Ozone Water Land Environment Transition Study) campaign. The TROPOZ lidar was deployed above land at NASA LaRC, while the LMOL lidar was deployed on the Chesapeake Bay Bridge Tunnel third island, being de-facto an over-water lidar. The distance between the two lidars was approximately 30 km. Strong differences between the two lidars measurements were observed. Some influence of the ship traffic can be seen over water, but does not affect the observations above 300m. Overall, some important discrepancies between the modeling and the lidar observations over water were found. These results shows the importance of making more measurements over water to better constrain pollution models.

  10. TOLNet - A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Kuang, Shi; Wang, Lihua; LeBlanc, Thierry; Alvarez II, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Brown, Steve; Johnson, Bryan; Burris, John F.; hide

    2015-01-01

    NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly time-resolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation.

  11. Monitoring O3 and Aerosols with the NASA LaRC Mobile Ozone Lidar System

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene; Gronoff, Guillaume; Berkoff, Timothy; DeYoung, Russell; Carrion, William

    2016-01-01

    The NASA's Langley Mobile Ozone Lidar (LMOL) system routinely measures tropospheric ozone and aerosol profiles, and is part of the Tropospheric Lidar Network (TOLNet). Recent upgrades to the system include a new pump laser that has tripled the transmission output power extending measurements up to 8 km in altitude during the day. In addition, software and algorithm developments have improved data output quality and enabled a real-time ozone display capability. In 2016, a number of ozone features were captured by LMOL, including the dynamics of an early-season ozone exceedance that impacted the Hampton Roads region. In this presentation, we will review current LMOL capabilities, recent air quality events observed by the system, and show a comparison of aerosol retrieval through the UV channel and the green line channel.

  12. 2009 Antarctic Ozone Hole

    NASA Image and Video Library

    2009-09-16

    The annual ozone hole has started developing over the South Pole, and it appears that it will be comparable to ozone depletions over the past decade. This composite image from September 10 depicts ozone concentrations in Dobson units, with purple and blues depicting severe deficits of ozone. "We have observed the ozone hole again in 2009, and it appears to be pretty average so far," said ozone researcher Paul Newman of NASA's Goddard Space Flight Center in Greenbelt, Md. "However, we won't know for another four weeks how this year's ozone hole will fully develop." Scientists are tracking the size and depth of the ozone hole with observations from the Ozone Monitoring Instrument on NASA's Aura spacecraft, the Global Ozone Monitoring Experiment on the European Space Agency's ERS-2 spacecraft, and the Solar Backscatter Ultraviolet instrument on the National Oceanic and Atmospheric Administration's NOAA-16 satellite. The depth and area of the ozone hole are governed by the amount of chlorine and bromine in the Antarctic stratosphere. Over the southern winter, polar stratospheric clouds (PSCs) form in the extreme cold of the atmosphere, and chlorine gases react on the cloud particles to release chlorine into a form that can easily destroy ozone. When the sun rises in August after months of seasonal polar darkness, the sunlight heats the clouds and catalyzes the chemical reactions that deplete the ozone layer. The ozone hole begins to grow in August and reaches its largest area in late September to early October. Recent observations and several studies have shown that the size of the annual ozone hole has stabilized and the level of ozone-depleting substances has decreased by 4 percent since 2001. But since chlorine and bromine compounds have long lifetimes in the atmosphere, a recovery of atmospheric ozone is not likely to be noticeable until 2020 or later. Visit NASA's Ozone Watch page for current imagery and data: ozonewatch.gsfc.nasa.gov/index.html

  13. A New NASA Data Product: Tropospheric and Stratospheric Column Ozone in the Tropics Derived from TOMS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.

    1999-01-01

    Tropospheric column ozone (TCO) and stratospheric column ozone (SCO) gridded data in the tropics for 1979-present are now available from NASA Goddard Space Flight Center via either direct ftp, world-NN,ide-NN,eb, or electronic mail. This note provides a brief overview of the method used to derive the data set including validation and adjustments.

  14. Tropical Tropospheric Ozone: New Insights from Remote Sensing, Sondes and Field Studies

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    1999-01-01

    This talk will summarize our recent research in tropical tropospheric ozone studies in the field and from space. New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument will be highlighted (Hudson and Thompson, 1998; Thompson and Hudson, 1999). These are suitable for studying processes like ozone pollution resulting from biomass fires, seasonal and interannual variations and trends. Archived maps of tropospheric ozone over the tropics, from the Nimbus 7 observing period (1979-1992) are available in digital form at our website: http://metosrv2.umd.edu/-tropo. Real-time processing of TOMS data has produced images of tropical tropospheric ozone (TTO) since early 1997, using Earth-Probe TOMS; these maps are also available on the homepage. The need for validation data for TTO maps has led to establishment of the NASA/NOAA-sponsored SHADOZ (Southern Hemisphere Additional Ozonesondes) network, from which a 2-year record of high-quality ozonesonde data can be obtained: (http://hyperion.gsfc.nasa.gov/Data-services/Shadoz/shadoz-hmpg2.htrnl). Examples will be shown, along with ozonesondes from the January-February 1999 Aerosols-99 cruise of the R/V Ronald H Brown from Virginia to Cape Town, South Africa.

  15. Largest-ever Ozone Hole over Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    . 'At this point we can only wait to see how the ozone hole will evolve in the coming few months and see how the year's hole compares in all respects to those of previous years.' 'Discoveries like these demonstrate the value of our long-term commitment to providing key observations to the scientific community,' said Dr. Ghassem Asrar, Associate Administrator for NASA's Office of Earth Sciences at Headquarters. 'We will soon launch QuickTOMS and Aura, two spacecraft that will continue to gather these important data.' The measurements released today were obtained using the Total Ozone Mapping Spectrometer (TOMS) instrument aboard NASA's Earth Probe (TOMS-EP) satellite. NASA instruments have been measuring Antarctic ozone levels since the early 1970s. Since the discovery of the ozone 'hole' in 1985, TOMS has been a key instrument for monitoring ozone levels over the Earth. TOMS ozone data and more pictures are available at: http://toms.gsfc.nasa.gov/ TOMS-EP and other ozone-measurement programs are important parts of a global environmental effort of NASA's Earth Science enterprise, a long-term research program designed to study Earth's land, oceans, atmosphere, ice and life as a total integrated system. For more information about ozone and ozone loss, visit: Ozone in the Stratosphere. Image courtesy the TOMS science team and and the Scientific Visualization Studio, NASA GSFC

  16. NASA satellite helps airliners avoid ozone concentrations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Results from a test to determine the effectiveness of satellite data for helping airlines avoid heavy concentrations of ozone are reported. Information from the Total Ozone Mapping Spectrometer, aboard the Nimbus-7 was transmitted, for use in meteorological forecast activities. The results show: (1) Total Ozone Mapping Spectrometer profile of total ozone in the atmosphere accurately represents upper air patterns and can be used to locate meteorological activity; (2) route forecasting of highly concentrated ozone is feasible; (3) five research aircraft flights were flown in jet stream regions located by the Total Ozone Mapping Spectrometer to determine winds, temperatures, and air composition. It is shown that the jet stream is coincides with the area of highest total ozone gradient, and low total ozone amounts are found where tropospheric air has been carried along above the tropopause on the anticyclonic side of the subtropical jet stream.

  17. Ozone minimum concentrations, 1979-2013

    NASA Image and Video Library

    2014-09-10

    This is a visualizations of ozone concentrations over the southern hemisphere. Minimum concentration of ozone in the southern hemisphere for each year from 1979-2013 (there is no data from 1995). Each image is the day of the year with the lowest concentration of ozone. A graph of the lowest ozone amount for each year is shown. Read more/download file: svs.gsfc.nasa.gov/vis/a010000/a011600/a011648/ NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Ozone precursors and ozone photochemistry over eastern North Pacific during the spring of 1984 based on the NASA GTE/CITE 1 airborne observations

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.; Gregory, G. L.; Sachse, G.; Torres, A. L.

    1989-01-01

    Simultaneous high-resolution measurements of O3, NO, CO, dew point temperature, and UV flux obtained during the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation (GTE/CITE 1) spring 1984 airborne field exercise over the eastern North Pacific Ocean are analyzed. Mid-tropospheric CO, O3, and NO mixing ratios averaged about 120 parts per billion by volume (ppbv), 50 ppbv, and 10 parts per trillion by volume (pptv), respectively. Statistical analysis of the high-resolution data indicates the existence of two ozone sources, one related to the downward transport of ozone-rich air from the upper troposphere and stratosphere, and the other to the transport of ozone-rich air from the continents. Modeling calculations based on these average levels imply that, from the surface to about 8 km, photochemical reactions probably supplied a net sink of ozone to the region overlying the eastern North Pacific Ocean during the sampling period. However, because the NO levels measured during the flights were frequently at or near the detection limit of the instruments and because the results are very sensitive to the absolute NO levels and their temporal variability, the conclusion must be considered provisional.

  19. Aircraft cabin ozone measurements on B747-100 and B747-SP aircraft: Correlations with atmospheric ozone and ozone encounter statistics

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Gauntner, D. J.

    1978-01-01

    Simultaneous measurements of atmospheric (outside) ozone concentration and ozone levels in the cabin of the B747-100 and B747-SP airliners were made by NASA to evaluate the aircraft cabin ozone contamination problem. Instrumentation on these aircraft measured ozone from an outside probe and at one point in the cabin. Average ozone in the cabin of the B747-100 was 39 percent of the outside. Ozone in the cabin of the B747-SP measured 82 percent of the outside, before corrective measures. Procedures to reduce the ozone in this aircraft included changes in the cabin air circulation system, use of the high-temperature 15th stage compressor bleed, and charcoal filters in the inlet cabin air ducting, which as separate actions reduced the ozone to 58, 19 and 5 percent, respectively. The potential for the NASA instrumented B747 aircraft to encounter high levels of cabin ozone was derived from atmospheric oxone measurements on these aircraft. Encounter frequencies for two B747-100's were comparable even though the route structures were different. The B747-SP encountered high ozone than did the B747-100's.

  20. Comparison of Tropical Ozone from SHADOZ with Remote Sensing Retrievals from Suomi-npp Ozone Mapping Profile Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof

    2014-01-01

    The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.

  1. Ozone Layer Observations

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  2. Elements of NASA GSFC Wallops Island's ozone measurement program

    NASA Astrophysics Data System (ADS)

    Schmidlin, F. J.; Schauer, A. G.; Thompson, A. M.; Northam, E. T.; Brothers, G. B.; Beebe, A.

    2003-04-01

    Ozone observations from GSFC Wallops Flight Facility, Natal, Brazil, and Ascension Island involve instrument preparation, analyses, comparisons, archiving, and documentation. The complement of instrumentation enables reliable, accurate world-class information be made available to the scientific community. At Wallops Island, instruments in use include the electrochemical concentration cell ECC ozonesondes, Dobson spectrophotometer, Microtops Sun Photometer, Ground-based Ultraviolet Radiometer GUV, and the NILU-UV Irradiance meter. ECC's and a Dobson are used at Natal while ECC's and a handheld Microtops Sunphotometer are used at Ascension Island. ECC ozonesondes are released from Natal as part of an agreement between NASA and INPE and from Ascension Island with US Air Force cooperation. Both of these sites provide vertical ozone profiles to SHADOZ. All of the instruments mentioned are widely used and need not be described further. Unique ECC preparation procedures developed at Wallops Island over many years also are used at the three sites. Description of the ECC calibration against known standards is given. Emphasis is given to results of comparisons between ECC's of two manufacturers, to the affect of different KI solutions and possible adjustment to older measurements that used different KI solution strengths, and to laboratory tests conducted during JOSIE2000 and their relationship to in situ tests conducted at Wallops Island. If time permits, we will give a summary of the performance of the ground-based instruments.

  3. Feasibility Study For A Spaceborne Ozone/Aerosol Lidar System

    NASA Technical Reports Server (NTRS)

    Campbell, Richard E.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Carswell, Allan I.; Ulitsky, Arkady

    1997-01-01

    Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.

  4. Standardizing Interfaces for External Access to Data and Processing for the NASA Ozone Product Evaluation and Test Element (PEATE)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt A.; Fleig, Albert J.

    2008-01-01

    NASA's traditional science data processing systems have focused on specific missions, and providing data access, processing and services to the funded science teams of those specific missions. Recently NASA has been modifying this stance, changing the focus from Missions to Measurements. Where a specific Mission has a discrete beginning and end, the Measurement considers long term data continuity across multiple missions. Total Column Ozone, a critical measurement of atmospheric composition, has been monitored for'decades on a series of Total Ozone Mapping Spectrometer (TOMS) instruments. Some important European missions also monitor ozone, including the Global Ozone Monitoring Experiment (GOME) and SCIAMACHY. With the U.S.IEuropean cooperative launch of the Dutch Ozone Monitoring Instrument (OMI) on NASA Aura satellite, and the GOME-2 instrumental on MetOp, the ozone monitoring record has been further extended. In conjunction with the U.S. Department of Defense (DoD) and the National Oceanic and Atmospheric Administration (NOAA), NASA is now preparing to evaluate data and algorithms for the next generation Ozone Mapping and Profiler Suite (OMPS) which will launch on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) in 2010. NASA is constructing the Science Data Segment (SDS) which is comprised of several elements to evaluate the various NPP data products and algorithms. The NPP SDS Ozone Product Evaluation and Test Element (PEATE) will build on the heritage of the TOMS and OM1 mission based processing systems. The overall measurement based system that will encompass these efforts is the Atmospheric Composition Processing System (ACPS). We have extended the system to include access to publically available data sets from other instruments where feasible, including non-NASA missions as appropriate. The heritage system was largely monolithic providing a very controlled processing flow from data.ingest of

  5. Comparison of NASA OMI and MLS Ozone Products with US Forest Service Ground-based Ozone Monitoring Data for US Forest Service Air Quality / Forest Management Decision Support

    NASA Astrophysics Data System (ADS)

    Barrett, S.; Brooks, A.; Moussa, Y.; Spencer, T.; Thompson, J.

    2013-12-01

    Tropospheric ozone, formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is a significant threat to the health of US National Forests. Approximately one third of ozone is absorbed by plants during the uptake of carbon dioxide. This increases the vegetation's susceptibility to drought, beetle infestation, and wildfire. Currently the US Forest Service has ground monitoring stations sparsely located across the country. This project looks specifically at the area surrounding several Class I Wilderness Areas in the Appalachian region. These areas are the highest priority for protection from air pollutants. The Forest Service must interpolate ozone concentrations for areas between these monitoring stations. Class I Wilderness Areas are designated by the Forest Service and are defined as a total 5000 acres or greater when the Clean Air Act was passed in 1977. This Act mandated that the EPA create national ambient air quality standards (NAAQS) for six major air pollutants including ground-level ozone. This project assessed the feasibility of incorporating NASA ozone data into Forest Service ozone monitoring in an effort to enhance the accuracy and precision of ozone exposure measurements in Class I Wilderness Areas and other federally managed lands in order to aid in complying with the Clean Air Act of 1977. This was accomplished by establishing a method of comparison between a preliminary data product produced at the Goddard Space Flight Center that uses OMI/MLS data to derive global tropospheric ozone measurements and Forest Service ozone monitoring station measurements. Once a methodology for comparison was established, statistical comparisons of these data were performed to assess the quantitative differences.

  6. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; hide

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  7. Stratospheric contribution to surface ozone in the desert Southwest during the 2013 Las Vegas Ozone Study

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II; Brioude, J. F.; Cooper, O. R.; Holloway, J. S.; Lin, M.; Marchbanks, R.; Pierce, R. B.; Reddy, P. J.; Sandberg, S.; Weickmann, A. M.; Williams, E. J.; Gustin, M. S.; Iraci, L. T.; Leblanc, T.; Yates, E. L.

    2014-12-01

    The 2013 Las Vegas Ozone Study (LVOS) was designed to investigate the potential impact of stratosphere-troposphere transport (STT) and long-range transport of pollution from Asia on surface O3 concentrations in Clark County, NV. This measurement campaign, which took place in May and June of 2013, was conducted at Angel Peak, NV, a high elevation site about 2.8 km above mean sea level and 45 km west of Las Vegas. The study was organized around the NOAA ESRL truck-based TOPAZ scanning ozone lidar with collocated in situ sampling of O3, CO, and meteorological parameters. These measurements were supported by the NOAA/NESDIS real time modelling system (RAQMS), FLEXPART particle dispersion model, and the NOAA GFDL AM3 model. In this talk, I will describe one of several STT events that occurred during the LVOS campaign. This intrusion, which was profiled by TOPAZ on the night of May 24-25, was also sampled by the NASA Alpha Jet, the Table Mountain ozone lidar, and by an ozonesonde flying above southern California. This event also led to significant ozone increases at surface monitors operated by Clark County, the California Air Resources Board, the U.S. National Park Service, and the Nevada Rural Ozone Initiative (NRVOI), and resulted in exceedances of the 2008 75 ppbv O3 NAAQS both in Clark County and in surrounding areas of Nevada and southern California. The potential implications of this and similar events for air quality compliance in the western U.S. will be discussed.

  8. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  9. Airborne Measurements of Nitric Oxide, Nitrogen Dioxide, Ozone, and Total Reactive Nitrogen During the NASA Global Tropospheric Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, Mary Anne

    2000-01-01

    Fabrication of the University of Michigan Multichannel Chemiluminescence Instrument (UMMCI) was completed in early 1996 and the instrument participated in test flights on the NASA P3B at Wallops Island prior to integration and deployment for the PEM- Tropics A Mission. The UMMCI consists of 4 channels for simultaneous measurements of ozone and NO with the option for measurements of NO2 and NOy (total reactive nitrogen) when converters are placed upstream of the NO channels. Each NO channel consists of a zeroing volume and reaction vessel, while the ozone channel consists of an ozone catalyst (or scrubber) trap that is not in line with the reaction vessel. The detectors in all for channels are Hamamatsu photomultiplier tubes, which are followed by pulse amplifier discriminators on the NO channels and an electrometer on the ozone channel. Schematics of the Detector Module and NOx/03 Probe Insert and Diagrams of the Control and Data System, the Power and Ground System, the Gas Flow System, and the Calibration System Flow are attached. Intercomparisons were conducted with G. Gregory, NASA/Langley, during the test flights (following prior calibration of the ozone generator/calibrators at the Wallops Long-Path Absorption facility). Initial test results appeared to be reasonable, and instrument characterization studies proceeded for the ozone channel and the 3 NO channels until deployment for integration for the PEM-Tropics Mission. Ozone data was obtained for Flights #4, and 6-2 1, and finalized data was submitted to the PEM-Tropics Data Archive and to the Science Team during the April 1997 Data Workshop. Although it initially appeared that the instrument sensitivity varied, subsequent tests showed that this was the fault of a leak in the ozone calibrator. In fact; the instrument sensitivity has not been observed to vary in a large number of tests over the years since the PEM-Tropics mission. We have, therefore, a very high degree of confidence in the O3 data that we

  10. Selected Measurements of Total Arctic Column Ozone Amounts from Aura Ozone Monitoring Instrument, 2004-2005 Arctic Winter

    NASA Image and Video Library

    2005-06-02

    Images from the Ozone Monitoring Instrument onboard NASA Aura spacecraft shows the average total column ozone during the months of January and March, and the total column ozone on the single day of 11 March, 2005.

  11. Assimilation of Satellite Ozone Observations

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.

    2003-01-01

    This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.

  12. Processes Affecting Tropospheric Ozone over Africa

    NASA Technical Reports Server (NTRS)

    Diab, Roseanne D.; Thompson, Anne M.

    2004-01-01

    This is a Workshop Report prepared for Eos, the weekly AGU magazine, The workshop took place between 26-28 January 2004 at the University of KwaZulu-Natal in Durban, South Africa and was attended by 26 participants (http//www.geography.und.ac.za). Considerable progress has been made in ozone observations except for northern Africa (large data gaps) and west Africa (to be covered by the French-sponsored AMMA program). The present-day ozone findings were evaluated and reviewed by speakers using Aircraft data (MOZAIC program), NASA satellites (MOPITT, TRMM, TOMS) and ozone soundings (SHADOZ). Besides some ozone gaps, there are challenges posed by the need to assess the relative strengths of photochemical and dynamic influences on the tropospheric ozone budget. Biogenic, biofuels, biomass burning sources of ozone precursors remain highly uncertain. Recent findings (by NASA's Chatfield and Thompson, using satellite and sounding data) show significant impact of Indian Ocean pollution on African ozone. European research on pollutants over the Mediterranean and the middle east, that suggests that ozone may be exported to Africa from these areas, also needs to be considered.

  13. Ozone Gardens for the Citizen Scientist

    NASA Technical Reports Server (NTRS)

    Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily

    2016-01-01

    NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.

  14. Snapshot of the Antarctic Ozone Hole 2010

    NASA Image and Video Library

    2017-12-08

    Ozone Layer, a commemoration of the day in 1987 when nations commenced the signing of the Montreal Protocol to limit and eventually ban ozone-depleting substances such as chlorofluorocarbons (CFCs) and other chlorine and bromine-containing compounds. The ozone scientific assessment panel for the United Nations Environment Program, which monitors the effectiveness of the Montreal Protocol, is expected to release its latest review of the state of the world’s ozone layer by the end of 2010. (The last assessment was released in 2006.) Paul Newman is one of the four co-chairs of the assessment panel. NASA image courtesy Ozone Hole Watch. Caption by Michael Carlowicz. Instrument: Aura - OMI To learn more go to: ozonewatch.gsfc.nasa.gov/ Credit: NASA’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  15. Application of Satellite and Ozonesonde Data to the Study of Nighttime Tropospheric Ozone Impacts and Relationship to Air Quality

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Eldering, A.; Neu, J. L.; Tang, Y.; McQueen, J.; Pinder, R. W.

    2011-12-01

    To help protect human health and ecosystems, regional-scale atmospheric chemistry models are used to forecast high ozone events and to design emission control strategies to decrease the frequency and severity of ozone events. Despite the impact that nighttime aloft ozone can have on surface ozone, regional-scale atmospheric chemistry models often do not simulate the nighttime ozone concentrations well and nor do they sufficiently capture the ozone transport patterns. Fully characterizing the importance of the nighttime ozone has been hampered by limited measurements of the vertical distribution of ozone and ozone-precursors. The main focus of this work is to begin to utilize remote sensing data sets to characterize the impact of nighttime aloft ozone to air quality events. We will describe our plans to use NASA satellite data sets, transport models and air quality models to study ozone transport, focusing primarily on nighttime ozone and provide initial results. We will use satellite and ozonesonde data to help understand how well the air quality models are simulating ozone in the lower free troposphere and attempt to characterize the impact of nighttime ozone to air quality events. Our specific objectives are: 1) Characterize nighttime aloft ozone using remote sensing data and sondes. 2) Evaluate the ability of the Community Multi-scale Air Quality (CMAQ) model and the National Air Quality Forecast Capability (NAQFC) model to capture the nighttime aloft ozone and its relationship to air quality events. 3) Analyze a set of air quality events and determine the relationship of air quality events to the nighttime aloft ozone. We will achieve our objectives by utilizing the ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the Aura mission (IONS), EPA AirNow ground station ozone data, the CMAQ continental-scale air quality model, and the National Air Quality

  16. Unprecedented Arctic Ozone Loss in 2011

    NASA Image and Video Library

    2011-10-02

    In mid-March 2011, NASA Aura spacecraft observed ozone in Earth stratosphere -- low ozone amounts are shown in purple and grey colors, large amounts of chlorine monoxide are shown in dark blue colors.

  17. Assimilation of MLS and OMI Ozone Data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.

    2005-01-01

    Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).

  18. Ozone measurement systems improvements studies

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Guard, K.; Holland, A. C.; Spurling, J. F.

    1974-01-01

    Results are summarized of an initial study of techniques for measuring atmospheric ozone, carried out as the first phase of a program to improve ozone measurement techniques. The study concentrated on two measurement systems, the electro chemical cell (ECC) ozonesonde and the Dobson ozone spectrophotometer, and consisted of two tasks. The first task consisted of error modeling and system error analysis of the two measurement systems. Under the second task a Monte-Carlo model of the Dobson ozone measurement technique was developed and programmed for computer operation.

  19. The Case of Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  20. Towards A Representation of Vertically Resolved Ozone Changes in Reanalyses

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Wargan, Krzysztof; Keller, Christoph; McCarty, Will; Coy, Larry

    2017-01-01

    The Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft provide a long-term record of total-column ozone and deep-layer partial columns since about 1980. These data have been carefully processed to extract long-term trends and offer a valuable resource for ozone monitoring. Studies assimilating limb-sounding observations in the Goddard Earth Observing System (GEOS) data assimilation system (DAS) demonstrate that vertical ozone gradients in the upper troposphere and lower stratosphere (UTLS) are much better represented than with the deep-layer SBUV observations. This is exemplified by the use of retrieved ozone from the EOS Microwave Limb Sounder (EOS-MLS) instrument in the MERRA-2 reanalysis, for the period after 2004. This study examines the potential for extending the use of limb-sounding observations at earlier times and into the future, so that future reanalyses may be more applicable to the study of long-term ozone changes.Historical data are available from NASA instruments: the Limb Infrared Monitor of the Stratosphere (LIMS: 1978-1979); the Upper Atmospheric Research Satellite (UARS: 1991-1995); Sounding of the Atmosphere using Broadband Emission Radiometry (SABER: 2000-onwards). For the post EOS-MLS period, the joint NASA-NOAA Ozone Monitoring and Profiling Suite Limb Profiler (OMPS-LP) instrument was launched on the Suomi-NPP platform in 201x and is planned for future platforms. This study will examine two aspects of these data pertaining to future reanalyses. First, the feasibility of merging the EOS-MLS and OMPS-LP instruments to provide a long-term record that extends beyond the potential lifetime of EOS-MLS. If feasible, this would allow for long-term monitoring of ozone recovery in a three-dimensional reanalysis context. Second, the skill of the GEOS DAS in ingesting historical data types will be investigated. Because these do not overlap with EOS-MLS, use will be made of system statistics and evaluation using

  1. Tropospheric Ozone Near-Nadir-Viewing IR Spectral Sensitivity and Ozone Measurements from NAST-I

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.

    2001-01-01

    Infrared ozone spectra from near nadir observations have provided atmospheric ozone information from the sensor to the Earth's surface. Simulations of the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) from the NASA ER-2 aircraft (approximately 20 km altitude) with a spectral resolution of 0.25/cm were used for sensitivity analysis. The spectral sensitivity of ozone retrievals to uncertainties in atmospheric temperature and water vapor is assessed in order to understand the relationship between the IR emissions and the atmospheric state. In addition, ozone spectral radiance sensitivity to its ozone layer densities and radiance weighting functions reveals the limit of the ozone profile retrieval accuracy from NAST-I measurements. Statistical retrievals of ozone with temperature and moisture retrievals from NAST-I spectra have been investigated and the preliminary results from NAST-I field campaigns are presented.

  2. Development of a UAV-based Global Ozone Lidar Demonstrator (GOLD)

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Deyoung, R. J.; Hair, J. W.; Ismail, S.; McGee, T.; Hardesty, R. M.; Brewer, W. A.; McDermid, I. S.

    2006-12-01

    Global ozone measurements are needed across the troposphere with high vertical resolution to enable comprehensive studies of continental and intercontinental atmospheric chemistry and dynamics, which are affected by diverse natural and human-induced processes. The development of a unattended aerial vehicle (UAV) based Global Ozone Lidar Demonstrator (GOLD) is an important step in enabling a space-based ozone and aerosol lidar and for conducting unique UAV-based large-scale atmospheric investigations. The GOLD system will incorporate the most advanced technology developed under the NASA Laser Risk Reduction Program (LRRP) and the Small Business Innovative Research (SBIR) program to produce a compact, autonomously operating ozone and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. This system will leverage advanced Nd:YAG and optical parametric oscillator (OPO) laser technologies being developed by ITT Industries under the LRRP and the autonomously operating ozone DIAL system being developed by Science and Engineering Services Inc. (SESI) under an SBIR Phase-3 contract. Laser components from ITT will be integrated into the SESI DIAL system, and the resulting GOLD system will be flight tested on a NASA UAV. The development of the GOLD system was initiated as part of the NASA Instrument Incubator Program in December 2005, and great progress has been made towards completing major GOLD subsystems. ITT has begun construction of the high-power Nd:YAG pump laser and the ultraviolet OPO for generating the ozone DIAL wavelengths of 290 and 300 nm and the aerosol visible wavelength at 532 nm. SESI is completing the Phase-3 SBIR contract for the delivery and demonstration of the ozone DIAL receiver and data system, and NOAA is completing detector evaluations for use in the GOLD system. Welch Mechanical is examining system designs for integrating GOLD into the external pod that will be hung under the new IKANA (Predator-B) UAV that NASA Dryden is

  3. The NASA participation in the 1980 EPA PEPE/NEROS field measurements program

    NASA Technical Reports Server (NTRS)

    Remsberg, E.; Bendura, R.

    1982-01-01

    The Persistent Elevated Pollution Episode (PEPE)/Northeast Regional Oxidant Study (NEROS) Project consisted of a series of field measurements sponsored by the EPA during July and August, 1980. NASA participation in the Project had several purposes: (1) use remote sensing to help determine mixed layer height and ozone profiles regionally; and (2) provide opportunity for development, testing and evaluation of several NASA 'emerging' airborne remote sensing systems. NASA also provided information on the hazy pollution episodes throughout the summer of 1980 with satellite imagery. This paper describes findings on atmospheric aerosols, ozone profile and ozone column and discusses the instruments (airborne and ground-based sensors) and techniques used to obtain the relevant data. Associated archived data is also discussed.

  4. A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling

    NASA Technical Reports Server (NTRS)

    De Young, Russell; Carrion, William; Pliutau, Denis

    2014-01-01

    A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.

  5. Coordinated profiling of stratospheric intrusions and transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet experiment (AJAX): Observations and comparison to HYSPLIT, RAQMS, and FLEXPART

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Alvarez, R. J.; Brioude, J.; Evan, S.; Iraci, L. T.; Kirgis, G.; Kuang, S.; Leblanc, T.; Newchurch, M. J.; Pierce, R. B.; Senff, C. J.; Yates, E. L.

    2018-02-01

    Ground-based lidars and ozonesondes belonging to the NASA-supported Tropospheric Ozone Lidar Network (TOLNet) are used in conjunction with the NASA Alpha Jet Atmospheric eXperiment (AJAX) to investigate the transport of stratospheric ozone and entrained pollution into the lower troposphere above the United States on May 24-25, 2013. TOLNet and AJAX measurements made in California, Nevada, and Alabama are compared to tropospheric ozone retrievals from the Atmospheric Infrared Sounder (AIRS), to back trajectories from the NOAA Air Resources Laboratory (ARL) Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, and to analyses from the NOAA/NESDIS Real-time Air Quality Modeling System (RAQMS) and FLEXPART particle dispersion model. The measurements and model analyses show much deeper descent of ozone-rich upper tropospheric/lower stratospheric air above the Desert Southwest than above the Southeast, and comparisons to surface measurements from regulatory monitors reporting to the U.S. EPA Air Quality System (AQS) suggest that there was a much greater surface impact in the Southwest including exceedances of the 2008 National Ambient Air Quality Standard (NAAQS) of 0.075 ppm in both Southern California and Nevada. Our analysis demonstrates the potential benefits to be gained by supplementing the existing surface ozone network with coordinated upper air observations by TOLNet.

  6. Human Health Effects of Ozone Depletion From Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wey, Chowen (Technical Monitor)

    2001-01-01

    This report presents EPA's initial response to NASA's request to advise on potential environmental policy issues associated with the future development of supersonic flight technologies. Consistent with the scope of the study to which NASA and EPA agreed, EPA has evaluated only the environmental concerns related to the stratospheric ozone impacts of a hypothetical HSCT fleet, although recent research indicates that a fleet of HSCT is predicted to contribute to climate warming as well. This report also briefly describes the international and domestic institutional frameworks established to address stratospheric ozone depletion, as well as those established to control pollution from aircraft engine exhaust emissions.

  7. Discoveries about Tropospheric Ozone Pollution from Satellite and Soundings

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2004-01-01

    We have been producing near-red time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. Maps for 1996-2000 for the operational Earth-Probe instrument are at:. Pollution in the tropics is influenced by biomass burning and by transport patterns that favor recirculation and in other cases reflect climate variability like the El-Nino-Southern Oscillation [Thompson et al., 2001]. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical gradients in pollution. Thus, in 1998, NASA's Goddard Space Flight Center and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches and provides a public archive of ozonesonde data from twelve tropical stations at http://croc.gsfc.nasa.gov/shadoz. Further insights into the role of chemical and dynamical influences have emerged from the first 4-5 years of SHADOZ data (more than 2000 ozone profiles). Highly variable tropospheric ozone and a zonal wave-one pattern in tropospheric ozone suggest that dynamics is as important as pollution in determining tropical ozone distributions.

  8. New capability for ozone dial profiling measurements in the troposphere and lower stratosphere from aircraft

    NASA Astrophysics Data System (ADS)

    Hair, Johnathan; Hostetler, Chris; Cook, Anthony; Harper, David; Notari, Anthony; Fenn, Marta; Newchurch, Mike; Wang, Lihua; Kuang, Shi; Knepp, Travis; Burton, Sharon; Ferrare, Richard; Butler, Carolyn; Collins, Jim; Nehrir, Amin

    2018-04-01

    Recently, we successfully demonstrated a new compact and robust ozone DIAL lidar for smaller aircraft such as the NASA B200 and the ER-2 high-altitude aircraft. This is the first NASA airborne lidar to incorporate advanced solid-state lasers to produce the required power at the required ultraviolet wavelengths, and is compact and robust enough to operate nearly autonomously on the high-altitude ER-2 aircraft. This technology development resulted in the first new NASA airborne ozone DIAL instrument in more than 15 years. The combined ozone, aerosol, and clouds measurements provide valuable information on the chemistry, radiation, and dynamics of the atmosphere. In particular, from the ER-2 it offers a unique capability to study the upper troposphere and lower stratosphere.

  9. Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.

    2013-12-01

    Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint

  10. Total Ozone from the Ozone Monitoring System (OMI) using TOMS and DOAS Methods

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Bhartia, P. K.; Gleason, J.; deHaan, J. F.; Wellemeyer, C.; Levelt, P. F.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to NASA's EOS-Aura satellite scheduled for launch in January 2004. OMI is an imaging spectrometer that will measure the back-scattered Solar radiance in the wavelength range of 270 to 500 nm. The instrument provides near global coverage in one day with a spatial resolution of 13x24 square kilometers. OMI is a new instrument, with a heritage from TOMS, SBW, GOME, GOMOS and SCIAMACHY. OMI'S unique capabilities for measuring important trace gases and aerosols with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will provide data continuity with the 23-year ozone record of TOMS. There are three ozone products planned for OMI: total column ozone, ozone profile and tropospheric column ozone. We are developing two different algorithms for total column ozone: one similar to the algorithm currently being used to process the TOMS data, and the other an improved version of the differential optical absorption spectroscopy (DOAS) method, which has been applied to GOME and SCIAMACHY data. The main reasons for starting with two algorithms for total ozone have to do with heritage and past experience; our long-term goal is to combine the two to develop a more accurate and reliable total ozone product for OMI. We will compare the performance of these two algorithms by applying both of them to the GOME data. We will examine where and how the results differ, and use the extensive TOMS-Dobson comparison studies to assess the performance of the DOAS algorithm.

  11. Tropospheric and stratospheric ozone from assimilation of Aura data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawwson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data reproduces ozone gradients and variability in the lower stratosphere well. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. The impacts of Aura data are illustrated and their role in the representation of ozone variability in the lower stratosphere and troposphere is shown.

  12. A Study on Generation Ice Containing Ozone

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Koyama, Shigeru; Yamamoto, Hiromi

    Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it changes back into oxygen. Recently, ice containing ozone is taken attention for the purpose of its conservation. The use of ice containing ozone seems to keep food fresher when we conserve and transport perishable foods due to effects of cooling and sterilization of ice containing ozone. In the present study, we investigated the influence of temperatures of water dissolving ozone on the timewise attenuations of ozone concentration in water. We also investigated the influence of cooling temperature, ice diameter, initial temperatures of water dissolving ozone and container internal pressure of the water dissolving ozone on ozone concentration in the ice. In addition, we investigated the influence of the ice diameter on the timewise attenuations of ozone concentration in the ice. It was confirmed that the solidification experimental data can be adjusted by a correlation between ozone concentration in the ice and solidification time.

  13. Merged SAGE II / MIPAS / OMPS Ozone Record : Impact of Transfer Standard on Ozone Trends.

    NASA Astrophysics Data System (ADS)

    Kramarova, N. A.; Laeng, A.; von Clarmann, T.; Stiller, G. P.; Walker, K. A.; Zawodny, J. M.; Plieninger, J.

    2017-12-01

    The deseasonalized ozone anomalies from SAGE II, MIPAS and OMPS-LP datasets are merged into one long record. Two versions of the dataset will be presented : ACE-FTS instrument or MLS instrument are used as a transfer standard. The data are provided in 10 degrees latitude bins, going from 60N to 60S for the period from October 1984 to March 2017. The main differences between presented in this study merged ozone record and the merged SAGE II / Ozone_CCI / OMPS-Saskatoon dataset by V. Sofieva are: - the OMPS-LP data are from the NASA GSFC version 2 processor - the MIPAS 2002-2004 date are taken into the record - Data are merged using a transfer standard. In overlapping periods data are merged as weighted means where the weights are inversely proportional to the standard errors of the means (SEM) of the corresponding individual monthly means. The merged dataset comes with the uncertainty estimates. Ozone trends are calculated out of both versions of the dataset. The impact of transfer standard on obtained trends is discussed.

  14. Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone Dial

    NASA Technical Reports Server (NTRS)

    Sullivan, John T.; McGee, Thomas J.; Hoff, Raymond M.; Sumnicht, Grant; Twigg, Laurence

    2015-01-01

    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZDIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins,Colorado.The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase a loft during recirculation episodes has been historically difficult, results indicate that an increase of 20 -30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region.

  15. Discoveries about Tropospheric Ozone Pollution from Satellite and Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2004-01-01

    We have been producing near-real time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. This is most readily done for the tropics, where the stratospheric and tropospheric ozone column amounts can be discriminated readily. Maps for 1996-2000 for the operational Earth-Probe instrument reside at: chttp://www.atmos.umd.edu/-trope>. Pollution in the tropics is influenced by biomass burning and by transport patterns that favor recirculation and in other cases reflect climate variability like the El-Nino-Southern Oscillation [Thompson et al., 2001]. Time permitting, examples of mid-latitude, intercontinental transport of ozone pollution sensed by TOMS will be shown. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical variability. Thus, in 1998, NASA's Goddard Space Flight Center and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches and provides a public archive of ozonesonde data from twelve tropical stations at http://croc.gsfc.nasa.gov/shadoz. Further insights into the role of chemical and dynamical influences have emerged from the first 4-5 years of SHADOZ data (less than 2000 ozone profiles): (a) highly variable tropospheric ozone; (b) a zonal wave-one pattern in tropospheric column ozone; (c) convective variability affects tropospheric ozone over the Indian and Pacific Ocean; (d) a "tropical Atlantic Paradox" appears in December-January-February.

  16. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    NASA Astrophysics Data System (ADS)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  17. Tropical Tropospheric Ozone from SHADOZ (Southern Hemisphere ADditional Ozonesondes) Network: A Project for Satellite Research, Process Studies, Education

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: nasa.nov/Data_services/shadoz>. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole and convective mixing. Pollution transport from Africa and South America is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  18. [A Study of Data From the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) Mission

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Fahey, David W.; Brune, William H.; Kurylo, Michael J.; Kawa, S. Randolph

    1999-01-01

    The Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) mission was designed to investigate the natural summer decrease of stratospheric ozone levels. Both polar regions have large and distinct annual cycles of ozone column amounts. In northern spring, the average level is over 450 Dobson units (DU), decreasing to less than 275 DU by September. In order to cover this period of ozone decrease, POLARIS was conducted in three deployment phases from Fairbanks, Alaska, (650N) during the summer of 1997. The principal measurement platforms were the NASA ER-2 high-altitude aircraft and stratospheric balloons. Additional measurements were provided by ground-based instruments, sondes, and satellites. POLARIS observations included ozone, meteorological variables, particles, long-lived chemicals, and short-lived radicals. During the field deployments, several modeling and theoretical groups participated in flight planning and data evaluation activities. The interpretive studies in this Special Section of the Journal of Geophysical Research are a first comprehensive examination of the POLARIS data set, addressing stratospheric ozone abundances and its changes; the role of aerosols; details of the photochemistry of reactive species; transport of stratospheric air and the correlations of long-lived species; and measurement intercomparisons.

  19. Development of algorithms for using satellite meteorological data sets to study global transport of stratospheric aerosols and ozone

    NASA Technical Reports Server (NTRS)

    Want, P. H.; Deepak, A.

    1985-01-01

    The utilization of stratospheric aerosol and ozone measurements obtained from the NASA developed SAM II and SAGE satellite instruments were investigated for their global scale transports. The stratospheric aerosols showed that during the stratospheric warming of the winter 1978 to 1979, the distribution of the zonal mean aerosol extinction ratio in the northern high latitude exhibited distinct changes. Dynamic processes might have played an important role in maintenance role in maintenance of this zonal mean distribution. As to the stratospheric ozone, large poleward ozone transports are shown to occur in the altitude region from 24 km to 38 km near 55N during this warming. This altitude region is shown to be a transition region of the phase relationship between ozone and temperature waves from an in-phase one above 38 km. It is shown that the ozone solar heating in the upper stratosphere might lead to enhancement of the damping rate of the planetary waves due to infrared radiation alone in agreement with theoretical analyses and an earlier observational study.

  20. Insights into Tropical Tropospheric Ozone from Satellite and Sonde Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2003-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The data reside at: http://code916.gsfc.nasa.gov/Data_services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this. In addition to leading the SHADOZ network, we have been producing near-real tropical tropospheric ozone ('TTO') data from the Total Ozone Mapping Spectrometer (TOMS) since 1997 with Prof. Hudson and students at the University of Maryland: http://metosrv2.umd.edu/tropo. Further perspective on the complexity of tropospheric ozone variability is shown using satellite observations.

  1. The 1979 Southeastern Virginia Urban Plume Study. Volume 2: Data listings for NASA Cessna aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The data reported are these measured onboard the NASA Langley chartered Cessna aircraft. Data include ozone, nitrogen oxides, light scattering coefficient, temperature, dewpoint, and aircraft altitude.

  2. Comparative analyses of the ultraviolet-B flux over the continental United State based on the NASA total ozone mapping spectrometer data and USDA ground-based measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei; Chang, Ni-Bin

    2010-10-01

    In recent years, the risk of health effects caused by the increased exposure to Ultraviolet-B (UVB) due to stratospheric ozone depletion has received wide attention. In the US, there are two ways to accurately measure the UVB. They include: 1) the National Aeronautical and Space Administration (NASA) Nimbus-7 total ozone mapping spectrometer (TOMS), and 2) the United State Department of Agriculture (USDA) ground-based network. This paper compares these two sensors' data for the ultraviolet index (UVI) nationally and regionally to support possible public health, agricultural, and ecological analyses in the future. The major findings of our study are: 1) although there are discrepancies between these two data sets, the temporal correlation coefficients can be as high as 98%. 2) Both types of data sources depict the macroscopic spatial pattern of the UVI across the continental US.indicating a strong spatial correlation; 3) The two data sources are generally consistent though the UVI of the NASA TOMS data are often about 0.13-1.05 units larger than those of the USDA ground-based measurements; and 4) Varying differences can be seen between the Midwest and two coastal regions. While the level of the UVI on the west coast has shown a decreasing trend in the past few years, its counterpart on the east coast showed an opposite trend in between 2000 and 2005. It is hard to conclude that the changes are due to variations of total ozone concentrations in this study period. The USDA ground-based measurements may be better applied for time series analysis for public health, ecological, and agricultural applications due to their ability to provide intensive calibrated point measurements.

  3. Overview of the Ozone Water-Land Environmental Transition Study: Summary of Observations and Initial Results

    NASA Astrophysics Data System (ADS)

    Berkoff, T.; Sullivan, J.; Pippin, M. R.; Gronoff, G.; Knepp, T. N.; Twigg, L.; Schroeder, J.; Carrion, W.; Farris, B.; Kowalewski, M. G.; Nino, L.; Gargulinski, E.; Rodio, L.; Sanchez, P.; Desorae Davis, A. A.; Janz, S. J.; Judd, L.; Pusede, S.; Wolfe, G. M.; Stauffer, R. M.; Munyan, J.; Flynn, J.; Moore, B.; Dreessen, J.; Salkovitz, D.; Stumpf, K.; King, B.; Hanisco, T. F.; Brandt, J.; Blake, D. R.; Abuhassan, N.; Cede, A.; Tzortziou, M.; Demoz, B.; Tsay, S. C.; Swap, R.; Holben, B. N.; Szykman, J.; McGee, T. J.; Neilan, J.; Allen, D.

    2017-12-01

    The monitoring of ozone (O3) in the troposphere is of pronounced interest due to its known toxicity and health hazard as a photo-chemically generated pollutant. One of the major difficulties for the air quality modeling, forecasting and satellite communities is the validation of O3 levels in sharp transition regions, as well as near-surface vertical gradients. Land-water gradients of O3 near coastal regions can be large due to differences in surface deposition, boundary layer height, and cloud coverage. Observations in horizontal and vertical directions over the Chesapeake Bay are needed to better understand O3 formation and redistribution within regional recirculation patterns. The O3 Water-Land Environmental Transition Study (OWLETS) was a field campaign conducted in the summer 2017 in the VA Tidewater region to better characterize O3 across the coastal boundary. To obtain over-water measurements, the NASA Langley Ozone Lidar as well as supplemental measurements from other sensors (e.g. Pandora, AERONET) were deployed on the Chesapeake Bay Bridge Tunnel (CBBT) 7-8 miles offshore. These observations were complimented by NASA Goddard's Tropospheric Ozone Lidar along with ground-based measurements over-land at the NASA Langley Research Center (LaRC) in Hampton, VA. On measurement days, time-synchronized data were collected, including launches of ozonesondes from CBBT and LaRC sites that provided additional O3, wind, and temperature vertical distribution differences between land and water. These measurements were complimented with: in-situ O3 sensors on two mobile cars, a micro-pulse lidar at Hampton University, an in-situ O3 sensor on a small UAV-drone, and Virginia DEQ air-quality sites. Two aircraft and a research vessel also contributed to OWLETS at various points during the campaign: the NASA UC-12B with the GeoTASO passive remote sensor, the NASA C-23 with an in-situ chemistry analysis suite, and a SERC research vessel with both remote and in-situ sensors. This

  4. An observational study of the ozone dilution effect: Ozone transport in the austral spring stratosphere

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger J.; Plumb, R. Alan

    1994-01-01

    In a previous observational analysis, Atkinson et al (1989) ascribed a sudden decrease in Southern Hemisphere midlatitude total ozone during December 1987 to an 'ozone dilution effect' brought about by the breakup of the polar stratospheric vortex at that time. A question alluded to but unanswered by that study was the degree to which the observed total ozone decrease might have been caused by the quasi-horizontal equatorward transport of 'ozone hold' air from within the vortex, and to what degree by the vertical advection from lower levels of air naturally low in ozone, a dynamical adjustment process which must accompany the equatorward outbreak of a discrete high-latitude airmass. In the present study, analyses of Ertel potential vorticity, TOMS total ozone, and SAGE and ozone sonde vertical profile data are employed using a novel technique to examine the 1987 event in greater detail, to answer this question. Recent progress is then reported in refining the technique and extending the investigation to examine the dynamical evolution of the austral spring stratosphere during other recent years, to shed more light on the precise nature, frequency, and severity of such 'ozone dilution' events, and the effect that this process may have on long term ozone behavior in the Southern Hemisphere.

  5. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid.

    PubMed

    Gümüş, Dilek; Akbal, Feryal

    2017-05-01

    This study compares ozonation (O 3 ), iron coated zeolite catalyzed ozonation (ICZ-O 3 ) and granular activated carbon catalyzed ozonation (GAC-O 3 ) for removal of humic acid from an aqueous solution. The results were evaluated by the removal of DOC that specifies organic matter, UV 254 absorbance, SUVA (Specific Ultraviolet Absorbance at 254 nm) and absorbance at 436 nm. When ozonation was used alone, DOC removal was 21.4% at an ozone concentration of 10 mg/L, pH 6.50 and oxidation time of 60 min. The results showed that the use of ICZ or GAC as a catalyst increased the decomposition of humic acid compared to ozonation alone. DOC removal efficiencies were 62% and 48.1% at pH 6.5, at a catalyst loading of 0.75 g/L, and oxidation time of 60 min for ICZ and GAC, respectively. The oxidation experiments were also carried out using <100 kDa and <50 kDa molecular size fractions of humic acid in the presence of ICZ or GAC. Catalytic ozonation also yielded better DOC and UV 254 reduction in both <50 kDa and <100 kDa fractions of HA compared to ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Analysis of atmospheric ozone measurements made from a B-747 airliner during March 1975

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Falconer, P. D.

    1976-01-01

    Measurements of atmospheric ozone in the upper troposphere and lower stratosphere made during March 1975 as part of the NASA Global Atmospheric Sampling Program are reported and analyzed. The interrelationships between the ozone mixing ratio and geographical and meteorological parameters are examined in several case studies. The ozone data correlate well with the difference between the flight altitude and the height of the tropopause, as obtained from National Meteorological Center gridded data. The distribution of ozone mixing ratios with latitude at an altitude of 11 + or - 0.5 km shows a poleward increase and large variability at latitudes greater than 30 deg N in agreement with published mean ozone levels from the North American ozone sonde network.

  7. Tropospheric Ozone as a Short-lived Chemical Climate Forcer

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2012-01-01

    Tropospheric ozone is the third most important greenhouse gas according to the most recent IPCC assessment. However, tropospheric ozone is highly variable in both space and time. Ozone that is located in the vicinity of the tropopause has the greatest effect on climate forcing. Nitrogen oxides (NOx) are the most important precursors for ozone In most of the troposphere. Therefore, pollution that is lofted upward in thunderstorm updrafts or NOx produced by lightning leads to efficient ozone production in the upper troposphere, where ozone is most important climatically. Global and regional model estimates of the impact of North American pollution and lightning on ozone radiative forcing will be presented. It will be shown that in the Northern Hemisphere summer, the lightning effect on ozone radiative forcing can dominate over that of pollution, and that the radiative forcing signal from North America extends well into Europe and North Africa. An algorithm for predicting lightning flash rates and estimating lightning NOx emissions is being incorporated into the NASA GEOS-5 Chemistry and Climate Model. Changes in flash rates and emissions over an ENSO cycle and in future climates will be assessed, along with the resulting changes in upper tropospheric ozone. Other research on the production of NOx per lightning flash and its distribution in the vertical based on cloud-resolving modeling and satellite observations will be presented. Distributions of NO2 and O3 over the Middle East from the OMI instrument on NASA's Aura satellite will also be shown.

  8. ER-2 #809 awaits pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-28

    ER-2 #809 awaiting pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE). The ER-2, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, "Arena Arctica" housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. "The collaborative campaign will provide an immense new body of information about the Arctic stratosphere," said program scientist Dr. Michael Kurylo, NASA Headquarters. "Our understanding of the Earth's ozone will be greatly enhanced by this research."

  9. Ozone studies in the Paso del Norte region

    NASA Astrophysics Data System (ADS)

    Becerra-Davila, Fernando

    The Paso del Norte region forms the largest contiguous bi-national conglomerate on the US-Mexico border. With a combined population of around 2 million inhabitants, the Paso del Norte region is isolated, more than 500 km away from the nearest urban area of comparable size, thus making it an ideal location for air quality studies of an isolated urban environment. The meteorological conditions leading to a high ozone episode in this region, such as the historical ozone episode of June 2006, are analyzed. It is well known that stagnation and minimal winds, high temperatures, and pressure ridges over the region are conducive to high ozone episodes. In addition, the planetary boundary height is studied to understand its impact on high ozone episodes. Several studies report that ground level ozone non-attainment regulations could be caused not only by local emissions, but also by atmospheric transport. In this work the atmospheric advection of pollutants into the region is analyzed using HYSPLIT backward trajectories. Furthermore, a novel backward trajectory clustering technique is implemented for the summer of 2006. The "ozone weekend effect" (OWE) is a phenomenon by which in some geographical regions ambient ozone concentrations tend to be higher on weekends than on weekdays, despite the lower emissions of ozone precursors during those days. The observed local OWE has never previously been studied in terms of the photolysis rates of four of the main ozone precursors. In this research a novel method that allows the calculation of actinic fluxes, photolysis frequencies and photolysis rates with a high degree of accuracy and reliability has been developed. This method utilizes a combination of the experimental data available for this region in conjunction with a radiative transfer model (TUV model). Three weekend-weekday cases during summers 2006, 2009 and 2010 are studied in this work. In this research, the photolysis impact on the local OWE is studied. The results

  10. Tropical Tropospheric Ozone Climatology: Approaches Based on SHADOZ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Chatfield, Robert B.; Hudson, Robert D.; Andrade, Marcos; Coetzee, Geert J. R.; Posny, Francoise

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, nasa.gov/shadoz>, for 12 stations that span the entire equatorial zone [Thompson et al., JGR, 108,8238, 2003]. The most striking features of tropospheric ozone profiles in SHADOZ are: (1) persistent longitudinal variability in tropospheric ozone profiles, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; (2) intense short-term variability triggered by changing meteorological conditions and advection of pollution. The implications of these results for profile climatologies and trends are described along with several approaches to classifying ozone profiles: 1) Seasonal means during MAM (March-April-May) and SON (September-October-November); 2) Maxima and minima, identified through correlation of TOMS-derived TTO (tropical tropospheric ozone) column depth with the sonde integrated tropospheric ozone column; and 3) Meteorological regimes, a technique that is effective in the subtropics where tropical and mid-latitude conditions alternate.

  11. Use of AIRS, OMI, MLS, and TES Data in Assessing Forest Ecosystem Exposure to Ozone

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2007-01-01

    Ground-level ozone at high levels poses health threats to exposed flora and fauna, including negative impacts to human health. While concern is common regarding depletion of ozone in the stratosphere, portions of the urban and rural United States periodically have high ambient levels of tropospheric ozone on the ground. Ozone pollution can cause a variety of impacts to susceptible vegetation (e.g., Ponderosa and Jeffrey pine species in the southwestern United States), such as stunted growth, alteration of growth form, needle or leaf chlorosis, and impaired ability to withstand drought-induced water stress. In addition, Southern Californian forests with high ozone exposures have been recently subject to multiyear droughts that have led to extensive forest overstory mortality from insect outbreaks and increased incidence of wildfires. Residual forests in these impacted areas may be more vulnerable to high ozone exposures and to other forest threats than ever before. NASA sensors collect a wealth of atmospheric data that have been used recently for mapping and monitoring regional tropospheric ozone levels. AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), MLS (Microwave Limb Sounder), and TES (Tropospheric Emission Spectrometer) data could be used to assess forest ecosystem exposure to ozone. Such NASA data hold promise for providing better or at least complementary synoptic information on ground-level ozone levels that Federal agency partners can use to assess forest health trends and to mitigate the threats as needed in compliance with Federal laws and mandates. NASA data products on ozone concentrations may be able to aid applications of DSTs (decision support tools) adopted by the USDA FS (U.S. Department of Agriculture Forest Service) and by the NPS (National Park Service), such as the Ozone Calculator, in which ground ozone estimates are employed to assess ozone impacts to forested vegetation.

  12. Development of the Global Ozone Lidar Demonstrator (GOLD) Instrument for Deployment on the NASA Global Hawk

    NASA Technical Reports Server (NTRS)

    Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris

    2010-01-01

    A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.

  13. Expected Performance of Ozone Climate Data Records from Ozone Mapping and Profiler Suite Limb Profiler

    NASA Technical Reports Server (NTRS)

    Xu, P. Q.; Rault, D. F.; Pawson, S.; Wargan, K.; Bhartia, P. K.

    2012-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) was launched on board of the Soumi NPP space platform in late October 2011. It provides ozone-profiling capability with high-vertical resolution from 60 Ian to cloud top. In this study, an end-to-end Observing System Simulation Experiment (OSSE) of OMPS/LP ozone is discussed. The OSSE was developed at NASA's Global Modeling and Assimilation Office (GMAO) using the Goddard Earth Observing System (GEOS-5) data assimilation system. The "truth" for this OSSE is built by assimilating MLS profiles and OMI ozone columns, which is known to produce realistic three-dimensional ozone fields in the stratosphere and upper troposphere. OMPS/LP radiances were computed at tangent points computed by an appropriate orbital model. The OMPS/LP forward RT model, Instrument Models (IMs) and EDR retrieval model were introduced and pseudo-observations derived. The resultant synthetic OMPS/LP observations were evaluated against the "truth" and subsequently these observations were assimilated into GEOS-5. Comparison of this assimilated dataset with the "truth" enables comparisons of the likely uncertainties in 3-D analyses of OMPS/LP data. This study demonstrated the assimilation capabilities of OMPS/LP ozone in GEOS-5, with the monthly, zonal mean (O-A) smaller than 0.02ppmv at all levels, the nns(O-A) close to O.lppmv from 100hPa to 0.2hPa; and the mean(O-B) around the 0.02ppmv for all levels. The monthly zonal mean analysis generally agrees to within 2% of the truth, with larger differences of 2-4% (0.1-0.2ppmv) around 10hPa close to North Pole and in the tropical tropopause region, where the difference is above 20% due to the very low ozone concentrations. These OSSEs demonstrated that, within a single data assimilation system and the assumption that assimilated MLS observations provide a true rendition of the stratosphere, the OMPS/LP ozone data are likely to produce accurate analyses through much of the stratosphere

  14. Development of a Portable, Ground-based Ozone Lidar Instrument for Tropospheric Ozone Research and Educational Training

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas; Zemker, Thomas; Fishman, Jack (Technical Monitor)

    1999-01-01

    The objective of this research project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This research project directly supports the goal of NASA's Earth Science Enterprise to understand the distribution and budget of tropospheric ozone (objective 1.5 of the Earth Science Strategic Enterprise Plan, 1998-2002). It can participate in ground validation experiments for TES, a tropospheric ozone satellite mission due to be launched in 2002. It can also be utilized for correlative ground measurements in future GTE (Global Tropospheric Experiment) and space-based ozone lidar missions, such as ORACLE. Multiple ground-based ozone lidar systems would improve the data obtained through current ozone-sonde networks. This prototype instrument could to serve as the basic unit for these and other future monitoring projects requiring multi-instrument networks, such as that proposed for the Global Tropospheric Ozone Project (GTOP). GTOP is currently being formulated by a scientific panel of the International Global Atmospheric Chemistry Project to meet its goal to better understand the processes that control the global distribution of tropospheric ozone. In order for the lidar to be widely deployed in networks, it must be fairly easy to use and maintain as well as being cost-competitive with a ground station launching ozonesondes several times a day. A second 2-year grant to continue this effort with students participating in ground tests and system improvements has been awarded by the Office of Equal Employment Opportunities (OEOP). This project also supports existing NASA lidar missions through its development of advanced, compact lidar technology. Innovations in both transmitters and receivers have been made in this project. Finally, this system could be modified in the future to probe more deeply into the stratosphere. This could be accomplished by increasing the

  15. From LIMS to OMPS-LP: limb ozone observations for future reanalyses

    NASA Astrophysics Data System (ADS)

    Wargan, K.; Kramarova, N. A.; Remsberg, E. E.; Coy, L.; Harvey, L.; Livesey, N. J.; Pawson, S.

    2017-12-01

    High vertical resolution and accuracy of ozone data from satellite-borne limb sounders have made them an invaluable tool in scientific studies of the middle and upper atmosphere. However, it was not until recently that these measurements were successfully incorporated in atmospheric reanalyses: of the major multidecadal reanalyses only ECMWF's ERA-Interim/ERA5 and NASA's MERRA-2 use limb ozone data. Validation and comparison studies have demonstrated that the addition of observations from the Microwave Limb Sounder (MLS) on EOS Aura greatly improved the quality of ozone fields in MERRA-2 making these assimilated data sets useful for scientific research. In this presentation, we will show the results of test experiments assimilating retrieved ozone from the Limb Infrared Monitor of the Stratosphere (LIMS, 1978/1979) and Ozone Mapping Profiler Suite Limb Profiler (OMPS-LP, 2012 to present). Our approach builds on the established assimilation methodology used for MLS in MERRA-2 and, in the case of OMPS-LP, extends the excellent record of MLS ozone assimilation into the post-EOS era in Earth observations. We will show case studies, discuss comparisons of the new experiments with MERRA-2, strategies for bias correction and the potential for combined assimilation of multiple limb ozone data types in future reanalyses for studies of multidecadal stratospheric ozone changes including trends.

  16. Treatability study of the effluent containing reactive blue 21 dye by ozonation and the mass transfer study of ozone

    NASA Astrophysics Data System (ADS)

    Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.

    2018-04-01

    Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.

  17. The impact of high altitude aircraft on the ozone layer in the stratosphere

    NASA Technical Reports Server (NTRS)

    Tie, Xue XI; Brasseur, Guy; Lin, Xing; Friedlingstein, P.; Granier, Claire; Rasch, Philip

    1994-01-01

    The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10-20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NOx from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.

  18. Ozone Layer Educator's Guide.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This guide has been developed through a collaborative effort involving the U.S. Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA), and the National Aeronautics and Space Administration (NASA). It is part of an ongoing commitment to ensure that the results of scientific research on ozone depletion are…

  19. Observations over Hurricanes from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Yang, K.; Bhartia, P. K.

    2006-01-01

    There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones.

  20. Ozone contamination in aircraft cabins - Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.

  1. Ozone determinations with the NOAA SBUV/2 system

    NASA Technical Reports Server (NTRS)

    Planet, Walter G.; Lienesch, James H.; Bowman, Harold D.; Miller, Alvin J.; Nagatani, Ronald M.

    1994-01-01

    The NOAA satellite ozone monitoring program was initiated by the National Environmental Satellite Data and Information Service (NESDIS) in December 1984, with the launch of the NOAA-9 spacecraft carrying the first operational Solar Backscatter Ultraviolet Spectrometer (SBUV/2). This instrument and its successor on NOAA-11, launched in 1988, are similar to the SBUV instrument launched by the NASA in 1978 on the Nimbus-7 research spacecraft. Measurements by the SBUV and SBUV/2 instruments overlap beginning in 1985. These instruments use measurements of the reflected ultraviolet solar radiation from the atmosphere to derive total ozone amounts and ozone vertical profiles. Since launch, the NOAA instruments and the derived products have been undergoing extensive evaluation by scientists of NOAA and NASA. Measurements obtained with these instruments are processed in real time by the NESDIS. These are reprocessed as the SBUV/2 instrument characterization is refined and as the retrieval algorithm for processing the data is improved. The NOAA-9 ozone data archive begins in March 1985 and continues through October 1990. The archive of NOAA-11 data begins in January 1989 and the data continues to be acquired in 1992.

  2. Data Validation for Earth Probe-Total Ozone Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Stanford, John L.

    1995-01-01

    This presentation represents the final report for the NASA grant project. The goal of this project was to provide scientific analysis to aid in validation fo data sets used in detection of long term global trends of total ozone. Ozone data from the Earth Probe Total Ozone Mapping Spectrometer instrument was compared for validation purposes with features in previous TOMS data. Atmospheric dynamic concepts were used in the analysis. The publications sponsored by the grant are listed along with abstracts.

  3. Tropospheric Ozone from Assimilation of Aura Data using Different Definitions of the Tropopause

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Pawson, Steven; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone data from Aura OMI and MLS instruments were assimilated into the general circulation model (GCM) constrained by assimilated meteorological fields from the Global Modeling and Assimilation Office at NASA Goddard. Properties of tropospheric ozone and their sensitivity to the definition of the tropopause are investigated. Three definitions of the tropopause are considered: (1) dynamical (using potential vorticity and potential temperature), (2) using temperature lapse rate, and (3) using a fixed ozone value. Comparisons of the tropospheric ozone columns using these tropopause definitions will be presented and evaluated against coincident profiles from ozone sondes. Assimilated ozone profiles are used to identify possible tropopause folding events, which are important for stratosphere-troposphere exchange. Each profile is searched for multiple levels at which ozone attains the value typical of the troposphere-stratosphere transition in order to identify possible tropopause folds. Constrained by the dynamics from a global model and by assimilation of Aura ozone data every 3-hours, this data set provides an opportunity to study ozone evolution in the upper troposphere and lower stratosphere with high temporal resolution.

  4. Application of Aura OMI L2G Products Compared with NASA MERRA-2 Assimilation

    NASA Technical Reports Server (NTRS)

    Zeng, Jian; Shen, Suhung; Wei, Jennifer; Johnson, James E.; Su, Jian; Meyer, David J.

    2018-01-01

    The Ozone Monitoring Instrument (OMI) is one of the instruments aboard NASA's Aura satellite. It measures ozone total column and vertical profile, aerosols, clouds, and trace gases including NO2, SO2, HCHO, BrO, and OClO using absorption in the ultraviolet electromagnetic spectrum (280 - 400 nm). OMI Level-2G (L2G) products are based on the pixel-level OMI granule satellite measurements stored within global 0.25 deg. X 0.25 deg. grids, therefore they conserve all the Level 2 (L2) spatial and temporal details for 24 hours of scientific data in one file. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis, using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. MERRA-2 includes aerosol data reanalysis and improved representations of stratospheric ozone, compared with its predecessor MERRA, in both instantaneous and time-averaged collections. It is found that simply comparing satellite Level-3 products might cause biases, due to lack of detailed temporal and original retrieval information. It is therefore preferable to inter-compare or implement satellite derived physical quantities directly with/to model assimilation with as high temporal and spatial resolutions as possible. This study will demonstrate utilization of OMI L2G daily aerosol and ozone products by comparing them with MERRA-2 hourly aerosol/ozone simulations, matched in both space and time aspects. Both OMI and MERRA-2 products are accessible online through NASA Goddard Earth Sciences Data Information Services Center (GES DISC, https://disc.gsfc.nasa.gov/).

  5. Big Ozone Holes Headed For Extinction By 2040

    NASA Image and Video Library

    2015-05-06

    Caption: This is a conceptual animation showing ozone-depleting chemicals moving from the equator to the poles. The chemicals become trapped by the winds of the polar vortex, a ring of fast moving air that circles the South Pole. Watch full video: youtu.be/7n2km69jZu8 -- The next three decades will see an end of the era of big ozone holes. In a new study, scientists from NASA Goddard Space Flight Center say that the ozone hole will be consistently smaller than 12 million square miles by the year 2040. Ozone-depleting chemicals in the atmosphere cause an ozone hole to form over Antarctica during the winter months in the Southern Hemisphere. Since the Montreal Protocol agreement in 1987, emissions have been regulated and chemical levels have been declining. However, the ozone hole has still remained bigger than 12 million square miles since the early 1990s, with exact sizes varying from year to year. The size of the ozone hole varies due to both temperature and levels of ozone-depleting chemicals in the atmosphere. In order to get a more accurate picture of the future size of the ozone hole, scientists used NASA’s AURA satellite to determine how much the levels of these chemicals in the atmosphere varied each year. With this new knowledge, scientists can confidently say that the ozone hole will be consistently smaller than 12 million square miles by the year 2040. Scientists will continue to use satellites to monitor the recovery of the ozone hole and they hope to see its full recovery by the end of the century. Research: Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery. Journal: Geophysical Research: Atmospheres, December 18, 2014. Link to paper: onlinelibrary.wiley.com/doi/10.1002/2014JD022295/abstract.

  6. Simultaneous measurements of ozone outside and inside cabins of two B-747 airliners and a Gates Learjet business jet

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Briehl, D.

    1978-01-01

    Recently, passengers and crew members on long-distance commercial flights have filed complaints after suffering symptoms of ozone sickness. Studies were conducted to determine the frequency and concentration of ozone in commercial jet transports. The airliner problem with ozone prompted NASA to determine the ozone concentrations that might be encountered in the cabin of a small business jet. Simultaneous measurements of atmospheric ozone levels and ozone levels in the cabins of jet aircraft were necessary because of the wide and rapid variability of atmospheric ozone in flight. It was found that the atmospheric ozone concentrations in the case of B-747 airliners vary widely during a flight. A constant difference, or ratio, between ozone concentrations outside and inside the cabin does not exist.

  7. Looking at Ozone From a New Angle: Shuttle Ozone Limb Sounding Experiment-2 (SOLSE-2)

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Hilsenrath, Ernest; Janz, Scott; Brown, Tammy (Technical Monitor)

    2002-01-01

    The ozone layer above Earth is our planet's fragile sunscreen, protecting people, vegetation, and wildlife. NASA has been measuring ozone for more than 20 years by looking down, but SOLSE-2 will show that more information is available by looking at ozone from the side, at Earth's limb or atmospheric boundary. When the ozone layer is compromised, increased ultraviolet (UV) levels from the sun cause health problems ranging from severe sunburns to skin cancer and cataracts. A concerted global effort has been made to reduce or eliminate the production of chemicals that deplete ozone, but the ozone layer is not expected to recover for many decades because these chemicals can remain active in the atmosphere for up to 100 years. We know now that ozone monitoring needs to be focused in the lower stratosphere. The discovery of the ozone hole in 1985 demonstrated that very large changes in ozone were occurring in the lower stratosphere near 20 km, instead of the upper stratosphere as first expected, and where current ozone instruments are focused. Measuring ozone from a tangential perspective that is centered at the limb provides ozone profiles concentrated in the lower stratosphere. The first flight of SOLSE proved that this technique achieves the accuracy and coverage of traditional measurements, and surpasses the altitude resolution and depth of retrieval of conventional techniques. Results from the first flight convinced the science community to design the next generation ozone monitoring satellite based on SOLSE. The Ozone Mapping and Profiling Suite (OMPS) is currently being built for the NPOESS satellite. The primary objective of SOLSE-2 is to confirm the promising results of the first flight over a wider range of viewing conditions and spectral wavelengths. Sometimes a really hard problem can be solved when you look at it from a different angle! While scientists conduct research, protect yourself by observing the UV index and spend less unprotected time outdoors.

  8. From LIMS to OMPS-LP: Limb Ozone Observations for Future Reanalyses

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Kramarova, N.; Remsberg, E.; Coy, L.; Harvey, L.; Livesey, N.; Pawson, S.

    2017-01-01

    High vertical resolution and accuracy of ozone data from satellite-borne limb sounders has made them an invaluable tool in scientific studies of the middle and upper atmosphere. However, it was not until recently that these measurements were successfully incorporated in atmospheric reanalyses: of the major multidecadal reanalyses only ECMWF's (European Centre for Medium-Range Weather Forecasts') ERA (ECMWF Re-Analysis)-Interim/ERA5 and NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications-2) use limb ozone data. Validation and comparison studies have demonstrated that the addition of observations from the Microwave Limb Sounder (MLS) on EOS (Earth Observing System) Aura greatly improved the quality of ozone fields in MERRA-2 making these assimilated data sets useful for scientific research. In this presentation, we will show the results of test experiments assimilating retrieved ozone from the Limb Infrared Monitor of the Stratosphere (LIMS, 1978/1979) and Ozone Mapping Profiler Suite Limb Profiler (OMPS-LP, 2012 to present). Our approach builds on the established assimilation methodology used for MLS in MERRA-2 and, in the case of OMPS-LP, extends the excellent record of MLS ozone assimilation into the post-EOS era in Earth observations. We will show case studies, discuss comparisons of the new experiments with MERRA-2, strategies for bias correction and the potential for combined assimilation of multiple limb ozone data types in future reanalyses for studies of multidecadal stratospheric ozone changes including trends.

  9. Tropospheric Ozone Over North America

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Thompson, A. M.; Cooper, O. R.; Merrill, J. T.; Tarasick, D. W.; Newchurch, M. J.

    2007-05-01

    Ozone in the troposphere plays a significant role as an absorber of infrared radiation (greenhouse gas), in the cleansing capacity of the atmosphere as a precursor of hydroxol radical formation, and a regulated air pollutant capable of deleterious health and ecosystem effects. Knowledge of the ozone budget in the troposphere over North America (NA) is required to properly understand the various mechanisms that contribute to the measured distribution and to develop and test models capable of simulating and predicting this key player in atmospheric chemical and physical processes. Recent field campaigns including the 2004 and 2006 INTEX Ozone Network Studies (IONS) http:croc.gsfc.nasa.gov/intexb/ions06.html that have included intensive ozone profile measurements from ozonesondes provide a unique data set for describing tropospheric ozone over a significant portion of the North American continent. These campaigns have focused on the spring and summer seasons when tropospheric ozone over NA is particularly influenced by long-range transport processes, significant photochemical ozone production resulting from both anthropogenic and natural (lightning) precursor emissions, and exchange with the stratosphere. This study uses ozone profiles measured over NA in the latitude band from approximately 12-60N, extending from the tropics to the high mid latitudes, to describe the seasonal behavior of tropospheric ozone over NA with an emphasis on the spring and summer. This includes the variability within seasons at a particular site as well as the contrasts between the seasons. Emphasis is placed on the variations among the sites including latitudinal and longitudinal gradients and how these differ through the seasons and with altitude in the troposphere. Regional differences are most pronounced during the summer season likely reflecting the influence of a wider variation in processes influencing the tropospheric ozone distribution including lightning NOX production in the upper

  10. Chemical transport model ozone simulations for spring 2001 over the western Pacific: Comparisons with TRACE-P lidar, ozonesondes, and Total Ozone Mapping Spectrometer columns

    NASA Astrophysics Data System (ADS)

    Wild, Oliver; Sundet, Jostein K.; Prather, Michael J.; Isaksen, Ivar S. A.; Akimoto, Hajime; Browell, Edward V.; Oltmans, Samuel J.

    2003-11-01

    Two closely related chemical transport models (CTMs) employing the same high-resolution meteorological data (˜180 km × ˜180 km × ˜600 m) from the European Centre for Medium-Range Weather Forecasts are used to simulate the ozone total column and tropospheric distribution over the western Pacific region that was explored by the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) measurement campaign in February-April 2001. We make extensive comparisons with ozone measurements from the lidar instrument on the NASA DC-8, with ozonesondes taken during the period around the Pacific Rim, and with TOMS total column ozone. These demonstrate that within the uncertainties of the meteorological data and the constraints of model resolution, the two CTMs (FRSGC/UCI and Oslo CTM2) can simulate the observed tropospheric ozone and do particularly well when realistic stratospheric ozone photochemistry is included. The greatest differences between the models and observations occur in the polluted boundary layer, where problems related to the simplified chemical mechanism and inadequate horizontal resolution are likely to have caused the net overestimation of about 10 ppb mole fraction. In the upper troposphere, the large variability driven by stratospheric intrusions makes agreement very sensitive to the timing of meteorological features.

  11. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Li, Xiangshang; Jeon, Wonbae; Souri, Amir Hossein

    2015-11-01

    A WRF-SMOKE-CMAQ modeling system was used to study Volatile Organic Compound (VOC) emissions and their impact on surface VOC and ozone concentrations in southeast Texas during September 2013. The model was evaluated against the ground-level Automated Gas Chromatograph (Auto-GC) measurement data from the Texas Commission on Environmental Quality (TCEQ). The comparisons indicated that the model over-predicted benzene, ethylene, toluene and xylene, while under-predicting isoprene and ethane. The mean biases between simulated and observed values of each VOC species showed clear daytime, nighttime, weekday and weekend variations. Adjusting the VOC emissions using simulated/observed ratios improved model performance of each VOC species, especially mitigating the mean bias substantially. Simulated monthly mean ozone showed a minor change: a 0.4 ppb or 1.2% increase; while a change of more than 5 ppb was seen in hourly ozone data on high ozone days, this change moved model predictions closer to observations. The CMAQ model run with the adjusted emissions better reproduced the variability in the National Aeronautics and Space Administration (NASA)'s Ozone Monitoring Instrument (OMI) formaldehyde (HCHO) columns. The adjusted model scenario also slightly better reproduced the aircraft HCHO concentrations from NASA's DISCOVER-AQ campaign conducted during the simulation episode period; Correlation, Mean Bias and RMSE improved from 0.34, 1.38 ppb and 2.15 ppb to 0.38, 1.33 ppb and 2.08 ppb respectively. A process analysis conducted for both industrial/urban and rural areas suggested that chemistry was the main process contributing to ozone production in both areas, while the impact of chemistry was smaller in rural areas than in industrial and urban areas. For both areas, the positive chemistry contribution increased in the sensitivity simulation largely due to the increase in emissions. Nudging VOC emissions to match the observed concentrations shifted the ozone hotspots

  12. ER-2 #809 and DC-8 in Arena Arctica hangar in Kiruna, Sweden prior to the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-23

    NASA ER-2 # 809 and its DC-8 shown in Arena Arctica before the SAGE III Ozone Loss and Validation Experiment (SOLVE). The two airborne science platforms were based north of the Arctic Circle in Kiruna, Sweden, during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, "Arena Arctica" housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. "The collaborative campaign will provide an immense new body of information about the Arctic stratosphere," said program scientist Dr. Michael Kurylo, NASA Headquarters. "Our understanding of the Earth's ozone will be greatly enhanced by this research."

  13. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    NASA Technical Reports Server (NTRS)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  14. Free Radicals and Reactive Intermediates for the SAGE III Ozone Loss and Validation Experiment (SOLVE) Mission

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    2001-01-01

    This grant provided partial support for participation in the SAGE III Ozone Loss and Validation Experiment. The NASA-sponsored SOLVE mission was conducted Jointly with the European Commission-sponsored Third European Stratospheric Experiment on Ozone (THESEO 2000). Researchers examined processes that control ozone amounts at mid to high latitudes during the arctic winter and acquired correlative data needed to validate the Stratospheric Aerosol and Gas Experiment (SAGE) III satellite measurements that are used to quantitatively assess high-latitude ozone loss. The campaign began in September 1999 with intercomparison flights out of NASA Dryden Flight Research Center in Edwards. CA. and continued through March 2000. with midwinter deployments out of Kiruna. Sweden. SOLVE was co-sponsored by the Upper Atmosphere Research Program (UARP). Atmospheric Effects of Aviation Project (AEAP). Atmospheric Chemistry Modeling and Analysis Program (ACMAP). and Earth Observing System (EOS) of NASA's Earth Science Enterprise (ESE) as part of the validation program for the SAGE III instrument.

  15. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  16. Ozone formation during an episode over Europe: A 3-D chemical/transport model simulation

    NASA Technical Reports Server (NTRS)

    Berntsen, Terje; Isaksen, Ivar S. A.

    1994-01-01

    A 3-D regional photochemical tracer/transport model for Europe and the Eastern Atlantic has been developed based on the NASA/GISS CTM. The model resolution is 4x5 degrees latitude and longitude with 9 layers in the vertical (7 in the troposphere). Advective winds, convection statistics and other meteorological data from the NASA/GISS GCM are used. An extensive gas-phase chemical scheme based on the scheme used in our global 2D model has been incorporated in the 3D model. In this work ozone formation in the troposphere is studied with the 3D model during a 5 day period starting June 30. Extensive local ozone production is found and the relationship between the source regions and the downwind areas are discussed. Variations in local ozone formation as a function of total emission rate, as well as the composition of the emissions (HC/NO(x)) ratio and isoprene emissions) are elucidated. An important vertical transport process in the troposphere is by convective clouds. The 3D model includes an explicit parameterization of this process. It is shown that this process has significant influence on the calculated surface ozone concentrations.

  17. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  18. Evaluation of Day and Nighttime Lower Tropospheric Ozone from Air Quality Models using TES and Ozonesondes

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.

    2012-12-01

    At night, ozone can be transported long distances above the surface inversion layer without chemical destruction or deposition. As the boundary layer breaks up in the morning, this nocturnal ozone can be mixed down to the surface and rapidly increase ozone concentrations at a rate that can rival chemical ozone production. Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture nighttime ozone concentrations and transport. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the INTEX Ozonesonde Network Study (IONS), EPA AirNow ground station ozone data, the Community Multi-Scale Air Quality (CMAQ) model, and the National Air Quality Forecast Capability (NAQFC) model to examine air quality events during August 2006. We present both aggregated statistics and case-study analyses that assess the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone both during the day and at night. We perform the comparisons looking at the geospatial dependence in the differences between the measurements and models under different surface ozone conditions.

  19. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  20. Variability in Tropical Tropospheric Ozone as Observed by SHADOZ

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Coetzee, Geert J. R.; Chatfield, Robert B.; Hudson, Robert D.

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, nasa.gov/shadoz>, for 12 stations: Ascension Island; Nairobi and Malindi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil; Paramaribo, Surinam. Some results to date indicate reliability of the measurement and highly variable interactions between ozone and tropical meteorology. For example: 1. By using ECC sondes with similar procedures, 5-10% accuracy and precision (1-sigma) of the sonde total ozone measurement was achieved [Thompson et al., 2003al; 2. Week-to-week variability in tropospheric ozone is so great that statistics are frequently not Gaussian and most stations vary up to a factor of 3 in column amount over the course of a year [Thompson et al., 2002b]. 3. Longitudinal variability in tropospheric ozone profiles is a consistent feature, with a 10- 15 DU column-integrated difference between Atlantic and Pacific sites; this is the cause of the zonal wave-one feature in total ozone [Shiotani, 1992]. The ozone record from Paramaribo, Surinam (6N, 55W) is a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone. Interpretations of SHADOZ time-series and approaches to classification suggested by SHADOZ data over Africa and the Indian Ocean will be described.

  1. Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.

    1991-01-01

    The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.

  2. Boulder Ozone Sonde Data Analyses for Multiple Tropopause Origins

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Manney, G. L.; Johnson, B.; Minschwaner, K.; Torres, L.; Lawrence, Z. D.

    2014-12-01

    Boulder ozone profile measurements tend to feature structures with multiple layers in the troposphere, so called laminae. These have been shown to be related to several phenomena, including stratospheric air intrusions that are transported to the location of measurements and local gravity wave perturbations (Boulder is located near the Rocky Mountain range where gravity waves are prevalent). In addition, observations indicate that air from the tropical tropopause layer can be transported into regions with multiple tropopauses over the middle latitudes in the vicinity of the subtropical jets. We use GMAO's GEOS-5 data assimilation system products, including Modern-Era Retrospective analysis for Research and Applications (MERRA), interpolated to Boulder, Colorado, USA (40N, 105W) to assess incidence of upper tropospheric jets that influence UTLS ozone distribution. The proximity of the subtropical jet to Boulder results in frequent observations of multiple tropopauses. We analyze ozonesonde data launched in June-July 2014 to determine the origins of laminae observed in the upper troposphere/lower stratosphere (UTLS). Our tools include back trajectory analysis coupled with 4D satellite ozone profile data, including those from NASA's Aura Microwave Limb Sounder instrument. Filaments causing laminae in ozone profiles observed at Boulder will be tracked to origins in either stratospheric or tropospheric intrusions using reverse domain-filling (RDF) trajectory methods. Detailed studies of several ozone profiles collected over Boulder in June/July 2014 will help determine techniques for future analysis of a larger dataset that goes back to 1978. Ozone variability in the UTLS over Boulder is of importance for studies of local climatological ozone conditions, their causes/attribution, and with regard to EPA ozone regulations at the mountain sites across the USA.

  3. NASA Operational Environment Team (NOET): NASA's key to environmental technology

    NASA Technical Reports Server (NTRS)

    Cook, Beth

    1993-01-01

    NASA has stepped forward to face the environmental challenge to eliminate the use of Ozone-Layer Depleting Substances (OLDS) and to reduce our Hazardous Air Pollutants (HAP) by 50 percent in 1995. These requirements have been issued by the Clean Air Act, the Montreal Protocol, and various other legislative acts. A proactive group, the NASA Operational Environment Team or NOET, received its charter in April 1992 and was tasked with providing a network through which replacement activities and development experiences can be shared. This is a NASA-wide team which supports the research and development community by sharing information both in person and via a computerized network, assisting in specification and standard revisions, developing cleaner propulsion systems, and exploring environmentally-compliant alternatives to current processes.

  4. Global long-term ozone trends derived from different observed and modelled data sets

    NASA Astrophysics Data System (ADS)

    Coldewey-Egbers, M.; Loyola, D.; Zimmer, W.; van Roozendael, M.; Lerot, C.; Dameris, M.; Garny, H.; Braesicke, P.; Koukouli, M.; Balis, D.

    2012-04-01

    The long-term behaviour of stratospheric ozone amounts during the past three decades is investigated on a global scale using different observed and modelled data sets. Three European satellite sensors GOME/ERS-2, SCIAMACHY/ENVISAT, and GOME-2/METOP are combined and a merged global monthly mean total ozone product has been prepared using an inter-satellite calibration approach. The data set covers the 16-years period from June 1995 to June 2011 and it exhibits an excellent long-term stability, which is required for such trend studies. A multiple linear least-squares regression algorithm using different explanatory variables is applied to the time series and statistically significant positive trends are detected in the northern mid latitudes and subtropics. Global trends are also estimated using a second satellite-based Merged Ozone Data set (MOD) provided by NASA. For few selected geographical regions ozone trends are additionally calculated using well-maintained measurements of individual Dobson/Brewer ground-based instruments. A reasonable agreement in the spatial patterns of the trends is found amongst the European satellite, the NASA satellite, and the ground-based observations. Furthermore, two long-term simulations obtained with the Chemistry-Climate Models E39C-A provided by German Aerospace Center and UMUKCA-UCAM provided by University of Cambridge are analysed.

  5. Antarctic Ozone Hole on September 17, 2001

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Satellite data show the area of this year's Antarctic ozone hole peaked at about 26 million square kilometers-roughly the size of North America-making the hole similar in size to those of the past three years, according to scientists from NASA and the National Oceanic and Atmospheric Administration (NOAA). Researchers have observed a leveling-off of the hole size and predict a slow recovery. Over the past several years the annual ozone hole over Antarctica has remained about the same in both its size and in the thickness of the ozone layer. 'This is consistent with human-produced chlorine compounds that destroy ozone reaching their peak concentrations in the atmosphere, leveling off, and now beginning a very slow decline,' said Samuel Oltmans of NOAA's Climate Monitoring and Diagnostics Laboratory, Boulder, Colo. In the near future-barring unusual events such as explosive volcanic eruptions-the severity of the ozone hole will likely remain similar to what has been seen in recent years, with year-to-year differences associated with meteorological variability. Over the longer term (30-50 years) the severity of the ozone hole in Antarctica is expected to decrease as chlorine levels in the atmosphere decline. The image above shows ozone levels on Spetember 17, 2001-the lowest levels observed this year. Dark blue colors correspond to the thinnest ozone, while light blue, green, and yellow pixels indicate progressively thicker ozone. For more information read: 2001 Ozone Hole About the Same Size as Past Three Years. Image courtesy Greg Shirah, GSFC Scientific Visualization Studio, based on data from the TOMS science team

  6. Boundary layer ozone - An airborne survey above the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.

    1988-01-01

    Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.

  7. Synergy Between Occultation, Limb and Nadir Satellite Data to Study Atmospheric Ozone, Aerosols and Radiation

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Loughman, R. P.; Ziemke, J. R.

    2017-12-01

    There is a widespread concern in the atmospheric chemistry community about the continuity of long-term datasets of ozone and related species needed to understand changes in Earth's atmospheric composition, particularly in the climate-sensitive upper tropospheric/lower stratospheric (UTLS) region. The MLS instrument on NASA 's Aura satellite designed to make such measurements is now more than 13 years old. The Canadian ACE-FTS solar occultation instrument is even older, and ESA's MIPAS instrument ceased operation in 2012. There are currently no plans to replace these instruments. Yet, at the same time for some of the atmospheric composition products we are arguably entering a golden era in space-based measurements. New generation of nadir-viewing instruments operating in IR, VIS and UV wavelengths are already flying and soon there will be 3 UV/VIS instruments in geostationary orbits. The limb-viewing component of the OMPS instrument launched on the Suomi NPP satellite in 2011 is capable of measuring ozone and aerosols at 2 km vertical resolution down to about 12 km. NASA is building another copy of this instrument for launch on JPSS-2 in 2022 and there are plans to build more. The SAGE III instrument installed on the International Space Station earlier this year has restarted the venerable time series of ozone and aerosols that ended in 2005 with the demise of SAGE II. However, we argue that to make best use of these assets it is desirable to take advantage of the synergies between these instruments. Several multi-instrument tropospheric ozone products are already available. We expect continued efforts to improve these products by doing joint retrieval of limb, IR and UV nadir data. Another promising area is to combine solar occultation and limb-scattered data to produce aerosol extinction profiles at high spatial resolution, and to constrain aerosol size distribution parameters and refractive indices- an approach similar to the almucantar technique pioneered by the

  8. Results of ozone measurements in Northern Germany: A case study

    NASA Technical Reports Server (NTRS)

    Schmidt, Manfred

    1994-01-01

    At most of the German ozone recording stations which have records over a sufficiently long period, the results of the summer months of 1989 showed the highest values since the beginning of the measurements. One of the reasons for this phenomenon was the high duration of sunshine in that summer; for example, in Potsdam near Berlin in May 1989 the sunshine duration was the highest in May since the beginning of the records in 1893. For that reason we selected this summer for a case study. The basis for the study was mainly the ozone measuring stations of the network of Lower Saxony and the Federal Office of Environment (Umweltbundesamt). The results of these summer measurements point to intense sources of ozone, probably in form of gaseous precursors, in the Middle German industrial areas near Leipzig and Halle and in Northwestern Czechoslovakia, with coal-mining, chemical and petrochemical industries, coking plants and others. The maps of average ozone concentrations, number or days with high ozone maxima, ozone-windroses of the stations, etc., suggest that these areas could be a main source of precursors and of photochemical ozone production in summer smog episodes in Central Europe. Stations on the North Sea coast, at which early ozone measurements were made by our institute in 1973/74 are compared with similarly located stations of the Lower Saxon network in 1989 and the results show a reversal of the ozone-windroses. In 1973/74, the highest ozone concentrations were correlated with wind directions from the sea while in 1989 these concentrations were correlated with directions from the continent. In the recent years, photochemical ozone production on the continent is probably predominant, while in former years the higher ozone content of the maritime subpolar air masses has been explained by stratospheric-tropospheric exchange.

  9. Tropical Tropospheric Ozone: New Insights from Remote Sensing and Field Studies

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1999-01-01

    This talk will summarize our recent research in tropical tropospheric ozone studies in the field and from space. New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument will be highlighted (Hudson and Thompson, 1998; Thompson and Hudson, 1999). These are suitable for studying processes like ozone pollution resulting from biomass fires, seasonal and interannual variations and trends. Archived maps of tropospheric ozone over the tropics, from the Nimbus 7 observing period (1979-1992) are available in digital form at our website. Real-time processing of TOMS data has produced images of tropical tropospheric ozone (TTO) since early 1997, using Earth-Probe TOMS; these maps are also available on the homepage.

  10. Ozone profiles from tethered balloon measurements in an urban plume experiment

    NASA Technical Reports Server (NTRS)

    Youngbluth, O., Jr.; Storey, R. W.; Clendenin, C. G.; Jones, S.; Leighty, B.

    1981-01-01

    NASA Langley Research Center used two tethered balloon systems to measure ozone in the general area of Norfolk, Va. The large balloon system which has an altitude range of 1,500 meters was located at Wallops Island, Va., and the smaller balloon which has an altitude range of 900 meters was located at Chesapeake, Va. Each balloon system measured ozone, temperature, humidity, wind speed, and wind direction from ground to its maximum altitude. From these measurements and from the location of the balloon sites, areas of ozone generation and ozone transport may be inferred. The measurements which were taken during August 1979 are discussed as well as the measurement techniques.

  11. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology. 2; Stratospheric and Tropospheric Ozone Variability and the Zonal Wave-One

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, Francoise; Coetzee, Gert J. R.; Hoegger, Bruno; hide

    2002-01-01

    This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at (nasa.gov/Data_services/shadoz>) are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network.

  12. Impact of Flow-Dependent Error Correlations and Tropospheric Chemistry on Assimilated Ozone

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Stajner, I.; Hayashi, H.; Pawson, S.; Jones, D. B. A.

    2003-01-01

    The presentation compares different versions of a global three-dimensional ozone data assimilation system developed at NASA's Data Assimilation Office. The Solar Backscatter Ultraviolet/2 (SBUV/2) total and partial ozone column retrievals are the sole data assimilated in all of the experiments presented. We study the impact of changing the forecast error covariance model from a version assuming static correlations with a one that captures a short-term Lagrangian evolution of those correlations. This is further combined with a study of the impact of neglecting the tropospheric ozone production, loss and dry deposition rates, which are obtained from the Harvard GEOS-CHEM model. We compare statistical characteristics of the assimilated data and the results of validation against independent observations, obtained from WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres. On the other hand, the main sensitivity to tropospheric chemistry is in the Tropics and sub-Tropics. The best agreement between the assimilated ozone and the in-situ sonde data is in the experiment using both flow-dependent error covariances and tropospheric chemistry.

  13. Comparison of Temperature and Ozone Measured by the AROTEL Instrument on DC8 Overflights of Ny Aalesund during the SOLVE Mission

    NASA Technical Reports Server (NTRS)

    Hoegy, Walter R.; McGee, Thomas J.; Burris, John F.; Heaps, William; Silbert, Donald; Sumnicht, Grant; Twigg, Laurence; Neuber, Roland

    2000-01-01

    The AROTEL instrument, deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss and Validation Experiment (SOLVE), flew over the NDSC station operated by the Alfred Wegner Institute at Ny Aalesund, Spitsbergen. AROTEL ozone and temperature measurements made during near overflights of Ny Aalesund are compared with sonde ozone and temperature, and lidar ozone measurements from the NDSC station. Nine of the seventeen science flights during the December through March measurement period overflew near Ny Aalesund. Agreement of AROTEL with the ground-based temperature and ozone values at altitudes from just above the aircraft to about 30 km gives strong confidence in using AROTEL temperature and ozone mixing ratio to study the mechanisms of ozone loss in the winter arctic polar region.

  14. Intercontinental Transport of Ozone from Tropical Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    2003-01-01

    Researchers have been looking at the connection between tropical biomass burning and ozone formation and long-range transport for roughly 15 years. One can see the linkage and transport patterns from satellite though aircraft and/or balloon-sonde profiles are required to observe the fine structure (ozone transport over thousands of km often happens in thin layers). In this review, I survey the pyrogenic ozone transport in the large oceanic basins - Indian Ocean, Pacific and Atlantic. Mechanistic complexities are discussed and examples shown from satellite, aircraft and soundings, including NASA results from TOMS, the GTE experiments and the SHADOZ sounding program. Experiments referred to include SAFARI-92, TRACE-A, INDOEX, PEM-Tropics and TRACE-P. augmented by subsidence, a variable tropopause height, and lightning - even ozone pollution from the Indian Ocean has been implicated. Over the Indian Ocean, pollution interacts with convection and the monsoon cycle.

  15. Advanced definition study for the determination of atmospheric ozone using the satellite eclipse technique

    NASA Technical Reports Server (NTRS)

    Emmons, R.; Preski, R. J.; Kierstead, F. H., Jr.; Doll, F. C.; Wight, D. T.; Romick, D. C.

    1973-01-01

    A study was made to evaluate the potential for remote ground-based measurement of upper atmospheric ozone by determining the absorption ratio of selected narrow bands of sunlight as reflected by satellites while passing into eclipse, using the NASA Mobile Satellite Photometric Observatory (MOSPO). Equipment modifications to provide optimum performance were analyzed and recommendations were made for improvements to the system to accomplish this. These included new sensor tubes, pulse counting detection circuitry, filters, beam splitters and associated optical revision, along with an automatic tracking capability plus corresponding operational techniques which should extend the overall measurement capability to include use of satellites down to 5th magnitude.

  16. Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)

    NASA Astrophysics Data System (ADS)

    Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat

    2018-05-01

    Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.

  17. Satellite Remote Sensing of Ozone Change, Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    To date satellite remote sensing of ozone depletion has been very successful. Data sets have been validated and measured trends are in agreement with model calculations. Technology developed for sensing the stratosphere is now being employed to study air quality and climate with promising results. These new data show that air quality is a transcontinental issue, but that better instrumentation is needed. Recent data show a connection between the stratosphere, troposphere and climate, which will require new technology to quantify these relationships. NASA and NOAA (National Oceanic and Atmospheric Administration) are planning and developing new missions. Recent results from TOMS (Total Ozone Mapping Spectrometer), SeaWiffs, and Terra will be discussed and upcoming missions to study atmospheric chemistry will be discussed.

  18. Retrieval of Total Ozone Amounts from Zenith-Sky Intensities in the Ultraviolet Region

    NASA Technical Reports Server (NTRS)

    Bojkov, B. R.; Bhartia, P. K.; Hilsenrath, E.; Labow, G. J.

    2004-01-01

    A new method to determine the total ozone column from zenith-sky intensities in the ultraviolet region has been developed for the Shuttle Solar Backscatter Ultraviolet Spectrometer (SSBUV) operating at the NASA Goddard Space Flight Center. The total ozone column amounts are derived by comparing the ratio of measured intensities from three wavelengths with the equivalent ratios calculated by a radiative transfer model. The differences between the retrieved ozone column amounts and the collocated Brewer double monochromator are within 2% for the measurement period beginning in April 2001. The methodology, as well as the influences of the ozone profiles, aerosols, surface albedo, and the solar zenith angle on the retrieved total ozone amounts will be presented.

  19. Ozone Lidar Observations for Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Wang, Lihua; Newchurch, Mike; Kuang, Shi; Burris, John F.; Huang, Guanyu; Pour-Biazar, Arastoo; Koshak, William; Follette-Cook, Melanie B.; Pickering, Kenneth E.; McGee, Thomas J.; hide

    2015-01-01

    Tropospheric ozone lidars are well suited to measuring the high spatio-temporal variability of this important trace gas. Furthermore, lidar measurements in conjunction with balloon soundings, aircraft, and satellite observations provide substantial information about a variety of atmospheric chemical and physical processes. Examples of processes elucidated by ozone-lidar measurements are presented, and modeling studies using WRF-Chem, RAQMS, and DALES/LES models illustrate our current understanding and shortcomings of these processes.

  20. New Insights on "Next Day" Ozone Increases in the Northeastern U.S. using Continuous Vertical Profiles of Ozone

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.

    2016-12-01

    A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.

  1. Seasonal Characteristics of Tropical Ozone Profiles using the SHADOZ Ozonesonde Data Set: Comparisons with TOMS Tropical Ozone Climatology

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Advances in tropospheric ozone data products being developed for tropical and subtropical regions using TOMS (Total Ozone Mapping Spectrometer) and other satellites are motivating efforts to renew and expand the collection of balloon-borne ozonesonde observations. The SHADOZ (Southern Hemisphere ADditional OZonesondes) project is a web-based archive established since 1998. It's goals are to support validation of TOMS and SBUV (Solar Backscatter UV) satellite ozone measurements and to improve remote sensing techniques for estimating tropical and subtropical ozone. Profile data are taken from balloon-borne ozonesondes, currently at 11 stations coordinating weekly to bi-weekly launches. Station data are publically available at a central location via the internet: nasa.gov/Data_services/shadoz>. Since the start of the project, the SHADOZ archive has accumulated over 1500 ozonesonde profiles. Data also includes measurements from various SHADOZ supported field campaigns, such as, the Indian Ocean Experiment (INDOEX), Sounding of Ozone and Water in the Equatorial Region (SOWER) and Aerosols99 Atlantic Cruise. Using data from the archive, profile climatologies from selected stations will be shown to 1/characterize the variability of tropospheric tropical ozone among stations, 2/illustrate the seasonal offsets with respect to the tropical profile used in the TOMS v7 algorithm, and 3/estimate the potential error in TOMS retrieval estimates of the tropospheric portion of the atmosphere.

  2. The Version 8.6 SBUV Ozone Data Record: An Overview

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Bhartia, P. K.; Haffner, D.; Labow, Gordon J.; Flynn, Larry

    2013-01-01

    Under a NASA program to produce long-term data records from instruments on multiple satellites, data from a series of nine Solar Backscatter Ultraviolet (SBUV and SBUV2) instruments have been re-processed to create a coherent ozone time series. Data from the BUV instrument on Nimbus 4, SBUV on Nimbus 7, and SBUV2 instruments on NOAA 9, 11, 14, 16, 17, 18, and 19 covering the period 1970-1972 and 1979-2011 were used to create a long-term data set. The goal is an ozone Earth Science Data Record - a consistent, calibrated ozone time series that can be used for trend analyses and other studies. In order to create this ozone data set, the radiances were adjusted and used to re-process the entire data records for each of the nine instruments. Inter-instrument comparisons during periods of overlap as well as comparisons with data from other satellite and ground-based instruments were used to evaluate the consistency of the record and make calibration adjustments as needed. Additional improvements in this version 8.6 processing included the use of the Brion, Daumont, and Malicet ozone cross sections, and a cloud-height climatology derived from Aura OMI measurements. Validation of the re-processed ozone shows that total column ozone is consistent with the Brewer Dobson network to within about 1 for the new time series. Comparisons with MLS, SAGE, sondes, and lidar show that ozone at individual levels in the stratosphere is generally consistent to within 5 percent.

  3. AIRS Ozone Burden During Antarctic Winter: Time Series from 8/1/2005 to 9/30/2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of AIRS Ozone Burden During Antarctic Winter

    AIRS provides a daily global 3-dimensional view of Earth's ozone layer. Since AIRS observes in the thermal infrared spectral range, it also allows scientists to view from space the Antarctic ozone hole for the first time continuously during polar winter. This image sequence captures the intensification of the annual ozone hole in the Antarctic Polar Vortex.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  4. Insights into Tropospheric Ozone from the INTEX Ozonesonde Network Study (IONS)

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, J. C.; Kucsera, T. L.; Merrill, J. T.; Morris, G.; Newchurch, M. J.; Oltmans, S. J.; Schmidlin, F. J.; Tarasick, D. J.

    2004-01-01

    Ozone profile data from soundings integrate models, aircraft and other ground-based measurements for better interpretation of atmospheric chemistry and dynamics. A well-designed network of ozonesonde stations, with consistent sampling, can answer questions not possible with short campaigns or current satellite technology. The SHADOZ (Southern Hemisphere Additional Ozonesondes) project, for example, has led to these findings about tropical ozone: definition of the zonal tropospheric wave-one pattern in equatorial ozone, characterization of the "Atlantic ozone paradox" and establishment of a link between tropical Atlantic and Indian Ocean pollution. Building on the SHADOZ concept, a short-term ozone network was formed in July-August 2004 to coordinate ozonesonde launches during the ICARTT/INTEX/NEAQS (International Consortium on Atmospheric Research on Transport and Transformation)/Intercontinental Transport Experiment/New England Air Quality Study. In IONS (INTEX Ozonesonde Network Study), more than 250 soundings, with daily frequency at half the sites, were launched from eleven North American stations and an oceanographic ship in the Gulf of Maine. Although the goal was to examine pollution influences under stable high-pressure systems and transport associated with "warm conveyor belt" flows, the INTEX study region was dominated by a series of weak frontal system that mixed aged pollution with stratospheric ozone in the middle troposphere. Deconvoluting ozone sources provides new insights into ozone in the transition between mid-latitude and polar air.

  5. Stratospheric Intrusion-Influenced Ozone Air Quality Exceedences Investigated in MERRA-2

    NASA Technical Reports Server (NTRS)

    Knowland, K. Emma; Ott, Lesley; Duncan, Bryan; Wargan, Krzysztof

    2017-01-01

    Ozone near the surface is harmful to human health and is a result of the photochemical reaction with both man-made and natural precursor pollutant sources. Therefore, in order to reduce near surface ozone concentrations, communities must reduce anthropogenic pollution sources. However, the injection of stratospheric ozone into the troposphere, known as a stratospheric intrusion, can also lead to concentrations of ground-level ozone exceeding air quality standards. Stratospheric intrusions are dynamical atmospheric features, however, these intrusions have been misrepresented in models and reanalyses until recently, as the features of a stratospheric intrusion are best identified in horizontal resolutions of approximately 50 km or smaller. NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis is a publicly-available high-resolution dataset (50 km) with assimilated ozone that characterizes stratospheric ozone on the same spatiotemporal resolution as the meteorology. We show that stratospheric intrusions that impact surface air quality are well represented in the MERRA-2 reanalysis. This is demonstrated through a case study analysis of stratospheric intrusion events which were identified by the United States Environmental Protection Agency (EPA) to impact surface ozone air quality in spring 2012 in Colorado. The stratospheric intrusions are identified in MERRA-2 by the folding of the dynamical tropopause under the jet stream and subsequent isentropic descent of dry, O3-rich stratospheric air towards the surface where ozone air quality exceedences were observed. The MERRA-2 reanalysis can support air quality agencies for more rapid identification of the impact of stratospheric air on ground-level ozone.

  6. A computer program for the determination of the solar risk in Argentina by dermatologists employing NASA TOMS satellite ozone data as a key geophysical variable

    NASA Astrophysics Data System (ADS)

    Piacentini, R.; Cede, A.; Luccini, E.; Stengel, F.

    The connection between skin cancer and solar ultraviolet radiation has been well documented (i.e., UNEP report "Environmental Effects of Ozone Depletion. 1998 Assessment"). In this work wepresent a computer software that can be used by dermatologists for determining the risk of persons that are exposed to solar UV radiation incident in Argentina, a country largely extended from low (tropical) to high southern hemisphere latitudes. In particular, its spectral distribution weighted by the CIE standard erythemal action spectrum and integrated in wavelength usually called "erythemal irradiance", is calculated including the following geophysical variables: ozone, solar elevation, Sun-Earth distance, altitude, aerosol and albedo. Other variables that have less influence in the final results are the vertical ozone, aerosol, pressure and temperature profiles, the extraterrestrial spectral solar UV irradiance and the ozone photoabsorption cross section. The ozone total column was obtained from the corresponding seasonal and latitudinal climatological NASA TOMS satellite data, including monthly averages, standard deviations and tendencies for the particular geographical situation of Argentina. The program considers also the different skin types, in order to determine the skin risk without or with a sunscreen protection at each moment of the day and for different days of the year. We present the program output for typical examples of persons exposed in extreme conditions, like in the high altitude tropical Puna of Atacama desert in the North- West, or when the ozone hole event overpasses Ushuaia in the South, as well as in Buenos Aires, the largest populated city in the country and one of the megacities of the world. The availability of a large satellite ozone data set gives us the possibility to make a clear sky day solar risk forecast for all the year, that can be applied in all places of the country. This work was made possible through a collaboration between the Argentina

  7. Comparison of STOIC 1989 ground-based lidar, microwave spectrometer, and Dobson spectrophotometer Umkehr ozone profiles with ozone profiles from balloon-borne elecrochemical concentration cell ozonesondes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komhyr, W.D.; McDermid, I.S.; Margitan, J.J.

    1995-05-20

    Ground-based measurements of stratospheric ozone using a Jet Propulsion Laboratory (JPL) lidar, a NASA Goddard Space Flight Center (GSFC) lidar, a Millitech Corporation/NASA Langley Research Center (Millitech/LaRC) microwave spectrometer, and a NOAA Dobson ozone spectrophotometer were compared with in situ measurements made quasi-simultaneously with balloon-borne electrochemical concentration cell (ECC) ozonesondes during 10 days of the Stratospheric Ozone Intercomparison Campaign (STOIC). Within the altitude range of 20-32 km, ozone measurement precisions were estimated to be {+-}0.6 to {+-}1.2% for the JPL lidar, {+-}0.7% for the GSFC lidar, {+-}4% for the microwave spectrometer, and {+-}3% for the NOAA ECC ozonesonde instruments. Thesemore » precisions decreased in the 32 to 38.6-km altitude range to {+-}1.3, {+-}1.5 and {+-}3% to {+-}10% for the JPL lidar, GSFC lidar, and the ECC sondes, respectively, but remained at {+-}4% for the microwave radiometer, and {+-}5% for the ECC ozonesondes. The accuracies decreased in the 32 to 38.6-km altitude range to {+-}2.6, {+-}3.0, {+-}7, and 1{+-}4% to {minus}4{+-}10% for the JPL lidar, the GSFC lidar, the microwave spectrometer, and the ECC ozonesondes, respectively. While accuracy estimates for the ECC sondes were obtained by combining random and estimated bias errors, the accuracies for the lidar instruments were obtained by doubling the measurement precision figures, with the assumption that such doubling accounts for systematic errors. Within the altitude range of 20-36 km the mean ozone profiles produced by the JPL, GSFC, and the Millitech/LaRC groups did not differ from the mean ozone profiles produced by the mean ECC sonde ozone profile by more than about 2, 4, and 5% respectively. Six morning Dobson instrument Umkehr observations yielded mean ozone amounts in layers 3 and 5-7 that agreed with comparison ECC ozonesonde data to within {+-}4%. In layer 4 the difference was 7.8%. 24 refs., 6 figs., 1 tab.« less

  8. A study of interferences in ozone UV and chemiluminescence monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgens, E.E.; Kleindienst, T.E.; McElroy, F.F.

    A study was conducted to examine interferences and other measurement anomalies in chemiluminescence and ultraviolet ozone monitors. Previous results had show that there was a positive deviation in the chemiluminescence monitors and no direct interference with ultraviolet monitors due to the presence of water at non-condensing concentrations. The present study continues this effort, examining both potential positive and negative effects of moisture and other interferences on these monitors. Aromatic compounds and their oxidation products could potentially show a positive interference with ultraviolet monitors, and test measurements were made with aromatics such as toluene, benzaldehyde, and nitrotoluene to determine their possiblemore » retention in the ozone scrubber and their absorption in the cell as a function of the humidity. A detailed examination of the scrubbers used in ultraviolet ozone monitors has also been undertaken. Ozone scrubbers that have shown anomalous behavior in the field have been studied in various reduced-efficacy modes under controlled laboratory conditions. Longer term tests of unused scrubbers for possible ozone breakthrough under exposure to various simulated field conditions were initiated.« less

  9. Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis

    PubMed Central

    Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary

    2018-01-01

    We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies. PMID:29527096

  10. Using Source Apportionment to Evaluate the Cross State Transport of Ozone in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Canty, T. P.; Hembeck, L.; Vinciguerra, T.; Carpenter, S. F.; Anderson, D. C.; Salawitch, R. J.; Dickerson, R. R.

    2014-12-01

    The amount of air pollution crossing state lines has great policy implications. Using the ozone source apportionment tool (OSAT) in the Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10, we can quantify how much ozone is generated locally versus transported from upwind locations. Initial results show that up to 70% of the surface ozone in Maryland during poor air quality days in the summer of July 2011 can be attributed to pollution from outside of the state's borders. Modifications to the CB05 gas-phase chemistry mechanism, supported by literature recommendations and improve agreement with NASA's DISCOVER-AQ Maryland aircraft campaign, can further increase this percentage. Additionally, we show the role of upwind sources and background ozone has become increasingly important as local emissions of ozone precursors continue to drop, starting with the steep reductions imposed in 2002 in response to Maryland's State Implementation Plan submitted to EPA. This study suggests future efforts to control surface ozone must include a meaningful strategy for dealing with cross-state transport of ozone precursors.

  11. A New SBUV Ozone Profile Time Series

    NASA Technical Reports Server (NTRS)

    McPeters, Richard

    2011-01-01

    Under NASA's MEaSUREs program for creating long term multi-instrument data sets, our group at Goddard has re-processed ozone profile data from a series of SBUV instruments. We have processed data from the Nimbus 7 SBUV instrument (1979-1990) and data from SBUV/2 instruments on NOAA-9 (1985-1998), NOAA-11 (1989-1995), NOAA-16 (2001-2010), NOAA-17 (2002-2010), and NOAA-18 (2005-2010). This reprocessing uses the version 8 ozone profile algorithm but now uses the Brion, Daumont, and Malicet (BMD) ozone cross sections instead of the Bass and Paur cross sections. The new cross sections have much better resolution, and extended wavelength range, and a more consistent temperature dependence. The re-processing also uses an improved cloud height climatology based on the Raman cloud retrievals of OMI. Finally, the instrument-to-instrument calibration is set using matched scenes so that ozone diurnal variation in the upper stratosphere does not alias into the ozone trands. Where there is no instrument overlap, SAGE and MLS are used to estimate calibration offsets. Preliminary analysis shows a more coherent time series as a function of altitude. The net effect on profile total column ozone is on average an absolute reduction of about one percent. Comparisons with ground-based systems are significantly better at high latitudes.

  12. Model Assessment of the Impact on Ozone of Subsonic and Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Danilin, Michael; Scott, Courtney; Shia, Run-Lie

    2000-01-01

    This is the final report for work performed between June 1999 through May 2000. The work represents continuation of the previous contract which encompasses five areas: (1) continued refinements and applications of the 2-D chemistry-transport model (CTM) to assess the ozone effects from aircraft operation in the stratosphere; (2) studying the mechanisms that determine the evolution of the sulfur species in the aircraft plume and how such mechanisms affect the way aircraft sulfur emissions should be introduced into global models; (3) the development of diagnostics in the AER 3-wave interactive model to assess the importance of the dynamics feedback and zonal asymmetry in model prediction of ozone response to aircraft operation; (4) the development of a chemistry parameterization scheme in support of the global modeling initiative (GMI); and (5) providing assessment results for preparation of national and international reports which include the "Aviation and the Global Atmosphere" prepared by the Intergovernmental Panel on Climate Change, "Assessment of the effects of high-speed aircraft in the stratosphere: 1998" by NASA, and the "Model and Measurements Intercomparison II" by NASA. Part of the work was reported in the final report. We participated in the SAGE III Ozone Loss and Validation Experiment (SOLVE) campaign and we continue with our analyses of the data.

  13. Diagnostic studies of the Antarctic vortex during the 1987 Airborne Antarctic Ozone Experiment - Ozone miniholes

    NASA Technical Reports Server (NTRS)

    Mckenna, D. S.; Jones, R. L.; Austin, J.; Browell, E. V.; Mccormick, M. P.; Krueger, A. J.

    1989-01-01

    Localized rapid reductions in total ozone (miniholes), which were observed during the Airborne Antarctic Ozone Experiment, are studied with particular attention given to meteorological aspects. It is suggested that miniholes are forced by tropospheric weather features and that they are largely reversible distortions to the airflow around the vortex. The relationship between the miniholes and upper tropospheric and lower stratospheric synoptic-scale disturbances is studied. Trajectory calculations are presented which demonstrate the exchange of air from low latitudes with air from within the vortex, with the vortex air subsequently moving to lower latitudes.

  14. Application of infrared techniques to the study of atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Secroun, C.; Barbe, A.; Marche, P.; Jouve, P.

    The present investigation is concerned with the utilization of the infrared wavelength region for the study of the ozone in the atmosphere, taking into account three atmospheric windows including the wavelength ranges near 10, 5, and 3 micrometers. More than 3200 spectral lines could be assigned to different bands of the ozone spectrum. Laboratory studies formed one part of the investigation. Spectral frequencies, absorption line intensities, and linewidths were determined for ozone. Some of the obtained results were employed in connection with data provided by the radiometric probe LIMS on board the Nimbus-7 satellite. The second part of the investigation involved a study of the atmosphere. The same spectrometer as in the laboratory study was utilized, and the sun was employed as radiation source. The obtained results were compared with data provided by a Dobson spectrophotometer. Attention is also given to vertical concentration profiles. It is concluded that infrared absorption spectroscopy represents a suitable technique for studies of atmospheric ozone.

  15. Low Ozone over Europe Doesn't Mean the Sky Is Falling, Its Actually Rising

    NASA Technical Reports Server (NTRS)

    Strahan, Susan; Newman, Paul; Steenrod, Stephen

    2016-01-01

    Data Sources: NASA Aura Microwave Limb Sounder (MLS) (O3 profiles and columns), NASA Global Modeling Initiative (GMI) Chemistry and Transport Model (calculated O3depletion), and MERRA Tropopause Heights. Technical Description of Figures: The left graphics show MLS northern hemisphere stratospheric column ozone on Feb. 1, 2016. Very low columns are seen over the UK and Europe (<225 DU, inside dashed circle). The lower graphic shows the GMI-calculated O3 depletion. It's very small, suggesting the low O3 does not indicate significant depletion. The right graphics show how the high tropopause height in this region explains the observed low ozone. The lower panel shows that the high tropopause on Feb. 1 lifts the O3 profile compared to a typical profile found earlier in winter. This motion lifts the profile to lower pressures thus reducing the total column. The GMI Model shows only 4 Dobson Units (DU) of O3 depletion even though the column is more than 100 DU lower than one month earlier. Scientific significant and societal relevance: To quantitatively understand anthropogenic impacts to the stratospheric ozone layer, we must be able to distinguish between low ozone caused by ozone depleting substances and that caused by natural dynamical variability in the atmosphere. Observations and realistic simulations of atmospheric composition are both required in order to separate natural and anthropogenic ozone variability.

  16. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  17. RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels.

    PubMed

    Waldeck, Nathan; Burkey, Kent; Carter, Thomas; Dickey, David; Song, Qijian; Taliercio, Earl

    2017-06-29

    Ozone is an air pollutant widely known to cause a decrease in productivity in many plant species, including soybean (Glycine max (L.) Merr). While the response of cultivated soybean to ozone has been studied, very little information is available regarding the ozone response of its wild relatives. Ozone-resistant wild soybean accessions were identified by measuring the response of a genetically diverse group of 66 wild soybean (Glycine soja Zucc. and Sieb.) accessions to elevated ozone levels. RNA-Seq analyses were performed on leaves of different ages from selected ozone-sensitive and ozone-resistant accessions that were subjected to treatment with an environmentally relevant level of ozone. Many more genes responded to elevated ozone in the two ozone-sensitive accessions than in the ozone-resistant accessions. Analyses of the ozone response genes indicated that leaves of different ages responded differently to ozone. Older leaves displayed a consistent reduction in expression of genes involved in photosynthesis in response to ozone, while changes in expression of defense genes dominated younger leaf tissue in response to ozone. As expected, there is a substantial difference between the response of ozone-sensitive and ozone-resistant accessions. Genes associated with photosystem 2 were substantially reduced in expression in response to ozone in the ozone-resistant accessions. A decrease in peptidase inhibitors was one of several responses specific to one of the ozone resistant accessions. The decrease in expression in genes associated with photosynthesis confirms that the photosynthetic apparatus may be an early casualty in response to moderate levels of ozone. A compromise of photosynthesis would substantially impact plant growth and seed production. However, the resistant accessions may preserve their photosynthetic apparatus in response to the ozone levels used in this study. Older leaf tissue of the ozone-resistant accessions showed a unique down-regulation of

  18. Rocket Ozone Data Recovery for Digital Archival

    NASA Astrophysics Data System (ADS)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  19. AIRS Ozone Burden During Antarctic Winter: Time Series from 8/1/2005 to 9/30/2005

    NASA Image and Video Library

    2007-07-24

    The Atmospheric Infrared Sounder (AIRS) provides a daily global 3-dimensional view of Earth's ozone layer. Since AIRS observes in the thermal infrared spectral range, it also allows scientists to view from space the Antarctic ozone hole for the first time continuously during polar winter. This image sequence captures the intensification of the annual ozone hole in the Antarctic Polar Vortex. http://photojournal.jpl.nasa.gov/catalog/PIA09938

  20. Causes of Interannual Variability over the Southern Hemispheric Tropospheric Ozone Maximum

    NASA Technical Reports Server (NTRS)

    Liu, Junhua; Rodriguez, Jose M.; Steenrod, Stephen D.; Douglass, Anne R.; Logan, Jennifer A.; Olsen, Mark A.; Wargan, Krzysztog; Ziemke, Jerald R.

    2017-01-01

    We examine the relative contribution of processes controlling the interannual variability (IAV) of tropospheric ozone over four sub-regions of the southern hemispheric tropospheric ozone maximum (SHTOM) over a 20-year period. Our study is based on hindcast simulations from the National Aeronautics and Space Administration Global Modeling Initiative chemistry transport model (NASA GMI-CTM) of tropospheric and stratospheric chemistry, driven by assimilated Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Our analysis shows that over SHTOM region, the IAV of the stratospheric contribution is the most important factor driving the IAV of upper tropospheric ozone (270 hectopascals), where ozone has a strong radiative effect. Over the South Atlantic region, the contribution from surface emissions to the IAV of ozone exceeds that from stratospheric input at and below 430 hectopascals. Over the South Indian Ocean, the IAV of stratospheric ozone makes the largest contribution to the IAV of ozone with little or no influence from surface emissions at 270 and 430 hectopascals in austral winter. Over the tropical South Atlantic region, the contribution from IAV of stratospheric input dominates in austral winter at 270 hectopascals and drops to less than half but is still significant at 430 hectopascals. Emission contributions are not significant at these two levels. The IAV of lightning over this region also contributes to the IAV of ozone in September and December. Over the tropical southeastern Pacific, the contribution of the IAV of stratospheric input is significant at 270 and 430 hectopascals in austral winter, and emissions have little influence.

  1. Causes of interannual variability over the southern hemispheric tropospheric ozone maximum

    NASA Astrophysics Data System (ADS)

    Liu, Junhua; Rodriguez, Jose M.; Steenrod, Stephen D.; Douglass, Anne R.; Logan, Jennifer A.; Olsen, Mark A.; Wargan, Krzysztof; Ziemke, Jerald R.

    2017-03-01

    We examine the relative contribution of processes controlling the interannual variability (IAV) of tropospheric ozone over four sub-regions of the southern hemispheric tropospheric ozone maximum (SHTOM) over a 20-year period. Our study is based on hindcast simulations from the National Aeronautics and Space Administration Global Modeling Initiative chemistry transport model (NASA GMI-CTM) of tropospheric and stratospheric chemistry, driven by assimilated Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Our analysis shows that over SHTOM region, the IAV of the stratospheric contribution is the most important factor driving the IAV of upper tropospheric ozone (270 hPa), where ozone has a strong radiative effect. Over the South Atlantic region, the contribution from surface emissions to the IAV of ozone exceeds that from stratospheric input at and below 430 hPa. Over the South Indian Ocean, the IAV of stratospheric ozone makes the largest contribution to the IAV of ozone with little or no influence from surface emissions at 270 and 430 hPa in austral winter. Over the tropical South Atlantic region, the contribution from IAV of stratospheric input dominates in austral winter at 270 hPa and drops to less than half but is still significant at 430 hPa. Emission contributions are not significant at these two levels. The IAV of lightning over this region also contributes to the IAV of ozone in September and December. Over the tropical southeastern Pacific, the contribution of the IAV of stratospheric input is significant at 270 and 430 hPa in austral winter, and emissions have little influence.

  2. DIAL Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John; Newchurch, Michael J.; Johnson, Steve

    2007-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by NASA and the University of Alabama at Huntsville (UAH), measures free-tropospheric ozone profiles between 4-10 km. Located at 192 meters altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from better than 8% at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration. With anticipated improvements to allow retrievals at both higher and lower altitudes, this ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique 18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.

  3. Development of the Joint NASA/NCAR General Circulation Model

    NASA Technical Reports Server (NTRS)

    Lin, S.-J.; Rood, R. B.

    1999-01-01

    The Data Assimilation Office at NASA/Goddard Space Flight Center is collaborating with NCAR/CGD in an ambitious proposal for the development of a unified climate, numerical weather prediction, and chemistry transport model which is suitable for global data assimilation of the physical and chemical state of the Earth's atmosphere. A prototype model based on the NCAR CCM3 physics and the NASA finite-volume dynamical core has been built. A unique feature of the NASA finite-volume dynamical core is its advanced tracer transport algorithm on the floating Lagrangian control-volume coordinate. The model currently has a highly idealized ozone production/loss chemistry derived from the observed 2D (latitude-height) climatology of the recent decades. Nevertheless, the simulated horizontal wave structure of the total ozone is in good qualitative agreement with the observed (TOMS). Long term climate simulations and NWP experiments have been carried out. Current up to date status and futur! e plan will be discussed in the conference.

  4. NASA's Experience with UV Remote Using SBUV and TOMS Instruments

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.

    1999-01-01

    This paper will discuss key features of the NASA algorithm that has been used to produce several highly popular geophysical products from the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) series of instruments. Since these instruments have a limited number of wavelengths, many innovative algorithmic approaches have been developed over the years to derive maximum information from these sensors. We will use Global Ozone Monitoring Experiment (GOME) data to test the assumptions made in these algorithms and show what additional information is contained in the GOME hyperspectral data. At NASA we are using this information to improve the SBUV and TOMS algorithms, as well as to develop more efficient algorithms to process GOME data.

  5. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    EPA Science Inventory

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  6. SHADOZ (Southern Hemisphere Additional Ozonesondes): A Project Overview and New Insights on Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, S. J.; Schmidlin, F. J.

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the website, http://croc.gsfc.nasa.gov/shadoz, for 12 stations: Ascension Island; Nairobi and Malindi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil; Paramaribo, Surinam. Key results from SHADOZ will be described from among the following: 1) By using ECC sondes with similar procedures, 5-10% accuracy and precision (1-sigma) of the sonde total ozone measurement is achieved; 2) Week-to-week variability in tropospheric ozone is so great that statistics are frequently not Gaussian; most stations vary up to a factor of 3 in tropospheric column over the course of a year; 3) Longitudinal variability in tropospheric ozone profiles is a consistent feature, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; this causes a "zonal wave-one" feature in total ozone; 4) The ozone record from Paramaribo, Surinam (6N, 55W) is a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone.

  7. Airborne Measurements of Ozone and Other Trace Gases Captured by the Alpha Jet Atmospheric eXperiment (AJAX) during the 2016 California Baseline Ozone Transport Study (CABOTS)

    NASA Astrophysics Data System (ADS)

    McNamara, M. E.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; Langford, A. O.; Alvarez, R. J., II; Senff, C. J.; Kirgis, G.; Chiao, S.; Eiserloh, A. J., Jr.

    2016-12-01

    In October 2015, the Environmental Protection Agency lowered the National Ambient Air Quality Standard for ozone (O3) from 75 ppbv to 70 ppbv. However, meeting the stricter air standards is a challenge for certain areas of California, like the San Joaquin Valley (SJV), where O3 levels are typically high due to topography, meteorology, and local emissions. Another factor potentially contributing to increased surface O3 is the trans-Pacific transport of O3 from Asia. The extent of which O3stems from local emissions or is transported across the Pacific, however, is unclear. The California Ozone Transport Study (CABOTS), a joint effort between the California Air Resource Board, the National Oceanic and Atmospheric Administration, and San Jose State University, was conducted during the spring and summer of 2016 in an attempt to answer this question. Nearly 10 science flights were carried out by the Alpha Jet Atmospheric eXperiment (AJAX) between June and August 2016, based out of the NASA Ames Research Center. A summary of airborne O3, CO2, CH4, H2O, formaldehyde (HCHO), and 3D wind measurements will be presented. AJAX flights connect the fixed-location measurements at Visalia (TOPAZ ozone lidar) and Bodega Bay (ozonesondes), while exploring the spatial heterogeneity of O3 concentrations across California and at various offshore locations. Preliminary analyses of these flights will investigate connections between offshore O3 and Central Valley O3. Vertical profiles, time series, and tracer-tracer correlations will be employed to identify the sources of O3 during these flights.

  8. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  9. Evaluating the Vertical Distribution of Ozone and its Relationship to Pollution Events in Air Quality Models using Satellite Data

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.

    2014-12-01

    Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture the distribution of ozone in the mid- and upper troposphere, but it is unclear how this shortcoming relates to their ability to simulate surface ozone. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and a new joint product from TES and the Ozone Monitoring Instrument along with ozonesonde measurements and EPA AirNow ground station ozone data to examine air quality events during August 2006 in the Community Multi-Scale Air Quality (CMAQ) and National Air Quality Forecast Capability (NAQFC) models. We present both aggregated statistics and case-study analyses with the goal of assessing the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone. We find that the models lack the mid-tropospheric ozone variability seen in TES and the ozonesonde data, and discuss the conditions under which this variability appears to be important for surface air quality.

  10. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    NASA Astrophysics Data System (ADS)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  11. Sensitivity of Assimilated Tropical Tropospheric Ozone to the Meteorological Analyses

    NASA Technical Reports Server (NTRS)

    Hayashi, Hiroo; Stajner, Ivanka; Pawson, Steven; Thompson, Anne M.

    2002-01-01

    Tropical tropospheric ozone fields from two different experiments performed with an off-line ozone assimilation system developed in NASA's Data Assimilation Office (DAO) are examined. Assimilated ozone fields from the two experiments are compared with the collocated ozone profiles from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. Results are presented for 1998. The ozone assimilation system includes a chemistry-transport model, which uses analyzed winds from the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The two experiments use wind fields from different versions of GEOS DAS: an operational version of the GEOS-2 system and a prototype of the GEOS-4 system. While both versions of the DAS utilize the Physical-space Statistical Analysis System and use comparable observations, they use entirely different general circulation models and data insertion techniques. The shape of the annual-mean vertical profile of the assimilated ozone fields is sensitive to the meteorological analyses, with the GEOS-4-based ozone being closest to the observations. This indicates that the resolved transport in GEOS-4 is more realistic than in GEOS-2. Remaining uncertainties include quantification of the representation of sub-grid-scale processes in the transport calculations, which plays an important role in the locations and seasons where convection dominates the transport.

  12. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  13. Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data

  14. The GEOS Ozone Data Assimilation System: Specification of Error Statistics

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    A global three-dimensional ozone data assimilation system has been developed at the Data Assimilation Office of the NASA/Goddard Space Flight Center. The Total Ozone Mapping Spectrometer (TOMS) total ozone and the Solar Backscatter Ultraviolet (SBUV) or (SBUV/2) partial ozone profile observations are assimilated. The assimilation, into an off-line ozone transport model, is done using the global Physical-space Statistical Analysis Scheme (PSAS). This system became operational in December 1999. A detailed description of the statistical analysis scheme, and in particular, the forecast and observation error covariance models is given. A new global anisotropic horizontal forecast error correlation model accounts for a varying distribution of observations with latitude. Correlations are largest in the zonal direction in the tropics where data is sparse. Forecast error variance model is proportional to the ozone field. The forecast error covariance parameters were determined by maximum likelihood estimation. The error covariance models are validated using x squared statistics. The analyzed ozone fields in the winter 1992 are validated against independent observations from ozone sondes and HALOE. There is better than 10% agreement between mean Halogen Occultation Experiment (HALOE) and analysis fields between 70 and 0.2 hPa. The global root-mean-square (RMS) difference between TOMS observed and forecast values is less than 4%. The global RMS difference between SBUV observed and analyzed ozone between 50 and 3 hPa is less than 15%.

  15. In situ ozone data for evaluation of the laser absorption spectrometer ozone remote sensor: 1979 southeastern Virginia urban plume study summer field program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Mcdougal, D. S.; Mathis, J. J., Jr.

    1980-01-01

    Ozone data from the 1979 Southeastern Virginia Urban Study (SEV-UPS) field program are presented. The SEV-UPS was conducted for evaluation of an ozone remote sensor, the Laser Absorption Spectrometer. During the measurement program, remote-sensor evaluation was in two areas; (1) determination of the remote sensor's accuracy, repeatability, and operational characteristics, and (2) demonstration of the application of remotely sensed ozone data in air-quality studies. Data from six experiments designed to provide in situ ozone data for evaluation of the sensor in area 1, above, are presented. Experiments consisted of overflights of a test area with the remote sensor aircraft while in situ measurements with a second aircraft and selected surface stations provided correlative ozone data within the viewing area of the remote sensor.

  16. Total ozone derived from UV spectrophotometer measurements on the NASA CV-990 aircraft for the fall 1976 latitude survey flights

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.

    1977-01-01

    An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).

  17. TOMS Tropical Tropospheric Ozone Data Sets at the University of Maryland Website

    NASA Technical Reports Server (NTRS)

    Kochhar, A. K.; Thompson, A. M.; Hudson, R. D.; Frolov, A. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Since 1997, shortly after the launch of the Earth-Probe TOMS (Total Ozone Mapping Spectrometer) satellite instrument, we have been processing data in near-real time to post maps of tropical tropospheric ozone at a website: metosrv2.umd.edu/-tropo. Daily, 3-day and 9-day averages of tropical tropospheric ozone column depth (TTO) are viewable from 10N to 10S. Data can be downloaded (running 9-day means) from 20N-30S. Pollution events are trackable along with dynamically-induced variations in tropospheric ozone column. TOMS smoke aerosol (toms.gsfc.nasa.gov) can be used to interpret biomass burning ozone, as for example, during the extreme ozone and smoke pollution period during the ENSO-related fires of August November 1997. During that time plumes of ozone and smoke were frequently decoupled and ozone from Indonesian fires and from Africa merged in one large feature by late October 1997. In addition to the Earth-Probe TOMS record, data as half-month averages and as daily 9-day means from the Nimbus 7 TOMS instrument are at the metosrv2.umd.edu/-tropo website. A guide to the website and examples of ozone time-series and maps will be shown.

  18. SMM mesospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  19. The study of international and interstate transport of ozone in Yuma, Arizona

    NASA Astrophysics Data System (ADS)

    Li, Y.; Sonenberg, M.; Wood, J. L.; Pearson, C. R.; Colson, H.; Malloy, J. W.; Pace, M.; Mao, F.; Paul, J.; Busby, B. R.; Parkey, B.; Drago, L.; Franquist, T. S.

    2017-12-01

    In October 2015, EPA reduced the National Ambient Air Quality Standards (NAAQS) for ozone from 75 parts per billion (ppb) to 70 ppb. Meeting the new standard may be extremely challenging for some areas, including rural Yuma County in the State of Arizona. Yuma County faces unique air quality challenges, since it borders the Mexican states of Baja California and Sonora, and the State of California. The present study investigates the contribution of international and interstate transport of ozone and ozone precursors to episodes of elevated ozone concentrations in Yuma. The Arizona Department of Environmental Quality (ADEQ) merged HYSPLIT modeling outputs with two years of hourly ground ozone monitor data to investigate the potential area contributions to ozone concentrations in Yuma County. This analysis found that elevated ozone concentrations in Yuma in 2014 and 2015 frequently coincided with back-trajectories over both California and Mexico, typically favoring Mexico during the spring. In May 2017, ADEQ installed a new ozone monitor in San Luis Rio Colorado, Sonora, Mexico (Latitude: 32.4665, Longitude: -114.7688), which is 29 km south of ozone site in Yuma County. We will present the first simultaneous observations of ozone seasons in Sonora, Mexico, eastern California, and Yuma.

  20. Sources of Springtime Tropospheric Ozone Over North China: A Modeling Analysis of Ozonesonde and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chan, C.; Huang, J.; Zhang, Y.; Choi, H.; Crawford, J. H.; Considine, D. B.; Zheng, X.; Oltmans, S. J.; Liu, S. C.; Zhang, L.; Liu, X.; Thouret, V.

    2012-12-01

    ozone mixing ratios exhibit strong spatio-temporal variability. The model generally simulates well the ozonesonde observations but tends to underestimate ozone in the upper troposphere over Beijing and Longfengshan. We find that Asian fossil fuel emissions, stratospheric ozone, African lightning NOx emissions, as well as intercontinental transport are the main contributors to tropospheric ozone over North China in spring. While the lower-tropospheric ozone is largely influenced by Asian fossil fuel emissions (except over Aletai, Northwest China), lightning NOx emissions have a larger impact on the upper-tropospheric ozone than Asian fossil fuel emissions (except over Longfengshan, Northeast China). Model simulations suggest that the European fossil fuel emissions contribute more to the lower-tropospheric ozone over Aletai than the Asian fossil fuel emissions. We will also show that tropospheric ozone measurements by Tropospheric Emission Spectrometer (TES) aboard the NASA EOS Aura satellite can be used to study tropospheric ozone variability at Xining.

  1. Effect of ozone to remineralize initial enamel caries: in situ study.

    PubMed

    Samuel, S R; Dorai, S; Khatri, S G; Patil, S T

    2016-06-01

    Effect of ozonated water in remineralizing artificially created initial enamel caries was investigated using laser fluorescence and polarized light microscopy in an in situ study. Teeth specimens (buccal sections) were immersed in 5-ml solution of 2 mM CaCl2, 2 mM NaH2P04, and 50 mM CH3COOH at pH of 4.55 for 5 h in an incubator at 37° to create subsurface demineralization. After which, they were randomly allocated into one of the following remineralization regimens: ozone (ozonated water 0.1 mg/l and 10 % nano-hydroxyapatite paste, Aclaim(TM)), without ozone (only 10 % nano-hydroxyapatite paste, Aclaim(TM)), and control (subjects' saliva alone). Specimens were embedded in acrylic retainers worn by orthodontic patients throughout the 21-day study duration and constantly exposed to their saliva. Laser fluorescence was recorded for all the specimens at baseline, after demineralization, and remineralization using DIAGNOdent, and the results were validated using polarized microscopic examination. The results were analyzed using repeated measures, one-way ANOVA with post hoc multiple comparisons. Reduced DIAGNOdent scores and greater depth of remineralization following application of ozonated water and nano-hydroxyapatite were found compared to those of the without ozone and control groups (P < 0.001), and the ozone-treated group exhibited maximum remineralization under the polarized light microscopy. Ozonated water can be considered an effective agent in reversing the initial enamel caries alongside with nano-hydroxyapatite compared to nano-hydroxyapatite alone and saliva. Ozone water can be used to remineralize incipient carious lesions, and it enhances the remineralizing potential of nano-hydroxyapatite thereby preventing the tooth from entering into the repetitive restorative cycle.

  2. A feasibility study of methods for stopping the depletion of ozone over Antarctica

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ways of stopping the ozone depletion in the ozone hole over Antarctica were studied. The basic objectives were: (1) to define and understand the phenomenon of the ozone hole; (2) to determine possible methods of stopping the ozone depletion; (3) to identify unknowns about the hole and possible solutions. Two basic ways of attacking the problem were identified. First is replenishment of ozone as it is being depleted. Second is elimination of ozone destroying agents from the atmosphere. The second method is a more permanent form of the solution. Elimination and replenishment methods are discussed in detail.

  3. ER-2 #809 on the SAGE III Ozone Loss and Validation Experiment (SOLVE) with pilot Dee Porter prepari

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Lockheed Martin pilot Dee Porter climbs up the ladder wearing a heavy tan pressure suit, preparing to board NASA ER-2 #809 at Kiruna, Sweden, for the third flight in the SAGE III Ozone Loss and Validation Experiment. Assisting him is Jim Sokolik, a Lockheed Martin life support technician. Number 809, one of Dryden's two high-flying ER-2 Airborne Science aircraft, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of the SAGE III Ozone Loss and Validation Experiment (SOLVE). A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main

  4. Semiconductor Sensors for Studying the Heterogeneous Destruction of Ozone at Low Concentrations

    NASA Astrophysics Data System (ADS)

    Obvintseva, L. A.; Sharova, T. B.; Avetisov, A. K.; Sukhareva, I. P.

    2018-06-01

    Prospects for the use of semiconductor resistive sensors in studies of the heterogeneous destruction of ozone at low concentrations (5-400 μg/m3) were shown. The influence of various factors (sensor temperature, gas flow rate, ozone concentration) on the results of ozone concentration measurements with sensors of various types was studied. Methods for forming a sensitive layer of In2O3(3% Fe2O3) sensors with specified parameters of calibration curves were proposed. The optimum conditions for the operation of sensors in a flow mode were formulated. The results of the study of heterogeneous destruction of ozone on microfiber polymer and natural disperse (sand, coals) materials obtained by the developed method were presented.

  5. Monitoring Tropospheric Ozone Enhancement in the Front Range Using the Gsfc Tropoz DIAL during Discover - AQ 2014

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Hoff, R. M.; Twigg, L.; Sumnicht, G. K.

    2014-12-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Fort Collins, CO from 200 m to 16 km AGL. These measurements were taken as part of NASA's DISCOVER-AQ campaign in July/August 2014. Measurements were made during simultaneous aircraft spirals over the lidar site as well as collocated ozonesonde launches. Ozone enhancement from local sources typically occurred in the mid-afternoon convection period, especially when there was light winds and low cloud cover. Interesting ozone profiles and time series data will be shown. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. Three of these lidars, including the GSFC TROPOZ DIAL, recorded measurements during the DISCOVER-AQ campaign. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived.

  6. Undergraduate Research Program in Atmospheric Science: Houston Ozone Studies

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Balimuttajjo, M.; Damon, D.; Herridge, A.; Hromis, A. G.; Litwin, D.; Wright, J. M.

    2011-12-01

    The Minority University Consortium for Earth and Space Sciences (MUCESS) composed of the University of Houston-Downtown (UHD), Medgar Evers College (City University of New York), South Carolina State University, is an undergraduate atmospheric science program funded by NSF. The program's goal is to increase the participation of minority universities in STEM activities and careers by providing students with the knowledge and skills needed to perform weather balloon launches, interpret ozone and temperature variations in the troposphere and stratosphere. Ozone profiles up to 30 km altitude are obtained via an instrument payload attached to a weather balloon. The payload instrumentation consists of an EN-SCI ECC ozonesonde and an iMET radiosonde. The data is transmitted to a base station in real time and includes pressure, temperature, humidity, and GPS coordinates This presentation is directed towards comparing our 2011 Houston data to data that either UHD or the University of Houston (UH) has collected. Our launches are primarily on Sunday, and UH's on Friday. Our primary objective is to identify ground level ozone variations on Sunday and compare with weekday levels as tropospheric ozone is largely controlled by anthropogenic activities. Ozone levels vary depending on the time of year, temperature, rain, wind direction, chemical plant activities, private and commercial traffic patterns.etc. Our limited Friday launches, supported by UH data, indicate that ground level ozone is generally elevated in contrast to Sunday data, For example, our Friday July 2011 launch detected elevated low-altitude ozone levels with ground level ozone levels of 42 nb that increased to 46 nb from 500 m to 1 km. Other peaks are at 2.7 km (44 nb) and 6km (41 nb), decreasing to 17 nb at the tropopause (12 km). Overall, Sunday low altitude ozone levels are generally lower. Our Sunday ground level ozone data ranges from a low of 25 nb on July 11 to a high of 50 nb on August 1. A combination of

  7. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    PubMed

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  8. Simultaneous measurements of carbon monoxide and ozone in the NASA Global Atmospheric Sampling Program (GASP)

    NASA Astrophysics Data System (ADS)

    Newell, R. E.; Wu, M.-F.

    It is noted that the Global Atmospheric Sampling Program (GASP) was intended to establish global baseline values of selected atmospheric constituents that could be used for studies of the dynamics of the sampled region as well as for modeling purposes. Instrument packages were carried on four Boeing 747 aircraft in routine commercial service. Carbon monoxide and ozone data were collected simultaneously from early 1977 to early 1979 when GASP terminated. CO was measured with an infrared absorption analyzer using dual isotope fluorescence. Ozone was measured via absorption of UV light. Correlations between the CO and the O3 are tabulated; they are clearly negative for both troposphere and stratosphere in middle latitudes, indicating that transport processes between the stratosphere and troposphere (discussed) dominate. But in the low latitude troposphere the correlations are positive, indicating the possible influence of photochemical effects.

  9. Treatment of soft drink process wastewater by ozonation, ozonation-H₂O₂ and ozonation-coagulation processes.

    PubMed

    García-Morales, M A; Roa-Morales, G; Barrera-Díaz, C; Balderas-Hernández, P

    2012-01-01

    In this research, we studied the treatment of wastewater from the soft drink process using oxidation with ozone. A scheme composed of sequential ozonation-peroxide, ozonation-coagulation and coagulation-ozonation treatments to reduce the organic matter from the soft drink process was also used. The samples were taken from the conventional activated sludge treatment of the soft drink process, and the experiments using chemical oxidation with ozone were performed in a laboratory using a reactor through a porous plate glass diffuser with air as a feedstock for the generation of ozone. Once the sample was ozonated, the treatments were evaluated by considering the contact time, leading to greater efficiency in removing colour, turbidity and chemical oxygen demand (COD). The effect of ozonation and coagulant coupled with treatment efficiency was assessed under optimal conditions, and substantial colour and turbidity removal were found (90.52% and 93.33%, respectively). This was accompanied by a 16.78% reduction in COD (initial COD was 3410 mg/L). The absorbance spectra of the oxidised products were compared using UV-VIS spectroscopy to indicate the level of oxidation of the wastewater. We also determined the kinetics of decolouration and the removal of turbidity with the best treatment. The same treatment was applied to the sample taken from the final effluent of the activated sludge system, and a COD removal efficiency of 100% during the first minute of the reaction with ozone was achieved. As a general conclusion, we believe that the coagulant polyaluminum chloride - ozone (PAC- ozone) treatment of wastewater from the manufacturing of soft drinks is the most efficient for removing turbidity and colour and represents an advantageous option to remove these contaminants because their removal was performed in minutes compared to the duration of traditional physical, chemical and biological processes that require hours or days.

  10. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    NASA Astrophysics Data System (ADS)

    Wild, Oliver; Prather, Michael J.

    2006-06-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.

  11. Estimating the Tropospheric Ozone Distribution by the Assimilation of Satellite Data

    NASA Technical Reports Server (NTRS)

    Hayashi, Hiroo; Stajner, Ivanka; Winslow, Nathan; Jones, Dylan B. A.; Pawson, Steven; Thompson, Anne M.

    2003-01-01

    Tropospheric ozone is important to the environment, because it acts as a strong oxidant to control the concentrations of many reduced gases (methane, carbon monoxide, ... ), its radiative forcing plays a significant role in the greenhouse effect, and direct contact with ozone is harmful to human health. Tropospheric ozone, whose main sources are intrusion from the stratosphere and chemical production from source gases associated with urban pollution or biomass burning, varies on a wide range of spatial and temporal scales. Its transport and chemistry can be influenced by weather, seasonal, or multiannual variability. Despite the importance of tropospheric ozone, it contributes only about 10% of the total ozone loading in the atmosphere. Consequently, satellite instruments lose sensitivity below the stratospheric ozone peak, and provide little information about middle and lower tropospheric ozone. This talk will discuss recent modifications made to the satellite ozone data assimilation system at NASA's Data Assimilation Office (DAO) in order to provide better tropospheric ozone columns and profiles. We use a version of the system that assimilates only the data from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument. The quality of the assimilated ozone in the tropical troposphere is evaluated by comparison with independent observations obtained from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. It is shown that the quality of ozone fields is sensitive to the winds used in the transport model. Increasing the vertical resolution of the model also has a beneficial impact. The assimilated ozone in the lower troposphere was substantially improved by inclusion of tropospheric ozone production, loss, and dry deposition rates from the Harvard GEOS-CHEM model. The mechanisms behind these results will be examined and the implications for our understanding of tropospheric ozone will be discussed.

  12. Aura CO and Ozone profiles retrieved from combined TES and MLS measurements

    NASA Astrophysics Data System (ADS)

    Luo, M.; Read, W. G.; Wagner, P. A.; Schwartz, M.; Kulawik, S. S.; Herman, R. L.

    2017-12-01

    The NASA Aura Carbon Monoxide (CO) profile jointly retrieved from the co-located TES nadir and MLS limb satellite measurements has been released to the public and applied in studies of the complex chemical-transport processes related to pollutants emitted from the fires in the tropical region. Recently, the joint Aura Ozone profile retrievals are also being produced. Compared to the two standalone retrievals by the instrument teams, these Aura joint retrievals improve the profile resolution and sensitive ranges in the upper troposphere and lower stratosphere. The new version Aura CO data (mainly using the recent TES and MLS algorithm updates) is being generated and validated. We will present the comparisons of the Aura CO and the preliminary Ozone data to the in-situ measurements, e.g., data collected from the HIPPO and the MOZAIC campaigns, and the Ozone sonde observations. The characteristics of the Aura CO and O3 retrievals will also be described.

  13. Stratospheric Ozone Intercomparison Campaign (STOIC) 1989: Overview

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; hide

    1995-01-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE 2) aboard the Earth Radiation Budget Satellite and the Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the

  14. Arctic chemical Ozone Loss Observed by the AROTEL Instrument during the SOLVE Campaign, December 1999 - March 2000

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Newman, Paul; Heaps,William; Silbert, Donald; Lait, Leslie; Sumnicht, Grant; Twigg, Laurence

    2000-01-01

    During the winter of 1999-2000, the AROTEL instrument was deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss Validation Experiment (SOLVE). Measurements of ozone, temperature and aerosols were made on 18 local science flights from December to March. Extremely low temperatures were observed throughout most of the Arctic vortex and polar stratospheric clouds were observed throughout the Arctic area during January. Significant ozone loss was measured after the sun began to rise on the vortex area in February. Ozone mixing ratios as low as 800 ppbv were observed during flights in March.

  15. Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution

    NASA Astrophysics Data System (ADS)

    Wild, O.; Prather, M. J.

    2005-12-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.

  16. GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.

    2016-12-01

    It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.

  17. Procedures for estimating the frequency of commercial airline flights encountering high cabin ozone levels

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1979-01-01

    Three analytical problems in estimating the frequency at which commercial airline flights will encounter high cabin ozone levels are formulated and solved: namely, estimating flight-segment mean levels, estimating maximum-per-flight levels, and estimating the maximum average level over a specified flight interval. For each problem, solution procedures are given for different levels of input information - from complete cabin ozone data, which provides a direct solution, to limited ozone information, such as ambient ozone means and standard deviations, with which several assumptions are necessary to obtain the required estimates. Each procedure is illustrated by an example case calculation that uses simultaneous cabin and ambient ozone data obtained by the NASA Global Atmospheric Sampling Program. Critical assumptions are discussed and evaluated, and the several solutions for each problem are compared. Example calculations are also performed to illustrate how variations in lattitude, altitude, season, retention ratio, flight duration, and cabin ozone limits affect the estimated probabilities.

  18. Ozone budget over the Amazon - Regional effects from biomass-burning emissions

    NASA Technical Reports Server (NTRS)

    Richardson, Jennifer L.; Fishman, Jack; Gregory, Gerald L.

    1991-01-01

    Data from the NASA dry-season Amazon boundary layer experiment (ABLE2A) is used with a 1D tropospheric photochemical model to analyze the atmospheric chemistry in the region and determine the impact of the long-range transport of biomass-burning emissions. Inputs of surface sources and the deposition of various species measured during ABLE2A are employed to simulate the background atmosphere, and haze characteristics are introduced for a 12-hr simulation. The in situ ozone production rate doubles during the period of haze when hydrocarbons are present. The model predicts that the production of ozone is enhanced during the dry season, and that increased ozone during the southern tropical burning season is related to the regional transport of haze.

  19. Antarctic ozone loss in 1989-2010: evidence for ozone recovery?

    NASA Astrophysics Data System (ADS)

    Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H. K.; Goutail, F.; Pazmiño, A.; Shanklin, J. D.

    2012-04-01

    recovery signal at the 95% confidence intervals with the current ozone trends in the Antarctic. Thus, this study reveals that the recovery of the Antarctic ozone is well on course.

  20. Ozone Trend Detectability

    NASA Technical Reports Server (NTRS)

    Campbell, J. W. (Editor)

    1981-01-01

    The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.

  1. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  2. A numerical study of tropospheric ozone in the springtime in East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Meigen; Xu, Yongfu; Itsushi, Uno; Hajime, Akimoto

    2004-04-01

    The Models-3 Community Multi-scale Air Quality modeling system (CMAQ) coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to study the transport and photochemical transformation of tropospheric ozone in March 1998. The calculated mixing ratios of ozone and carbon monoxide are compared with ground level observations at three remote sites in Japan and it is found that the model reproduces the observed features very well. Examination of several high episodes of ozone and carbon monoxide indicates that these elevated levels are found in association with continental outflow, demonstrating the critical role of the rapid transport of carbon monoxide and other ozone precursors from the continental boundary layer. In comparison with available ozonesonde data, it is found that the model-calculated ozone concentrations are generally in good agreement with the measurements, and the stratospheric contribution to surface ozone mixing ratios is quite limited.

  3. EOS CHEM: A Mission to Study Ozone and Climate

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    1998-01-01

    The Earth's stratosphere contains the ozone layer, which shields us from the Sun@ harmful ultraviolet (UV) radiation. Ozone is destroyed through chemical reactions involving natural and man-made nitrogen, hydrogen, bromine, and chlorine compounds. The release of chlorofluoro-carbons CFCs) has caused a dramatic decrease in the protective stratospheric ozone layer during the last two decades. Detection of stratospheric ozone depletion led to regulation and phase-out of CFC production worldwide. As a result, man-made chlorine levels in the atmosphere are slowly beginning to decrease. CHEM will be able to determine whether the stratospheric ozone layer is now recovering, as predicted by scientific models.

  4. A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data

    NASA Astrophysics Data System (ADS)

    Labow, G. J.; McPeters, R. D.; Ziemke, J. R.

    2014-12-01

    A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.

  5. Effect of gaseous ozone on Enterococcus faecalis biofilm-an in vitro study.

    PubMed

    Boch, Tanja; Tennert, Christian; Vach, Kirstin; Al-Ahmad, Ali; Hellwig, Elmar; Polydorou, Olga

    2016-09-01

    The aim of this study was to evaluate the antimicrobial effect of gaseous ozone compared to conventional methods against Enterococcus faecalis. One hundred twenty-five teeth were infected by E. faecalis and were incubated for 72 h to form biofilm. Teeth were distributed among five groups. In the first group, ozone was used; in the second group, teeth were rinsed with 20 % ethylenediaminetetraacetic acid (EDTA); in the third group, with 3 % sodium hypochlorite (NaOCl). Group 4 combined 20 % EDTA with ozone. NaOCl and ozone were combined in group 5. After treatment, the samples with paper points were taken, followed by dentin samples taken with K-file, and cultured for 24 h. Then bacterial colonies were counted. All treatments reduced significantly (p < 0.05) the bacteria. Paper points' samples showed 85.38 % reduction after ozone. The highest reduction was observed in NaOCl group (99.98 %). EDTA reduced bacteria by 80.64 %. Combination of NaOCl and ozone eradicated 99.95 % of the bacteria. Combination of EDTA and ozone reduced E. faecalis up to 91.33 %. The dentin chips showed the following: the highest CFU counts were observed in EDTA group, followed by ozone and NaOCl group. The lowest CFU counts were found in NaOCl-ozone group and EDTA-ozone group. Ozone reduced E. faecalis, even organised in a biofilm, however, lower than NaOCl. No treatment reduced totally the bacteria. Used as an adjuvant, ozone can increase the efficacy of conventional rinsing like EDTA and presents an alternative treatment when NaOCl cannot be used e.g. in teeth with a wide-open apical foramen.

  6. Effects of ozone gas on skin flaps viability in rats: an experimental study.

    PubMed

    Güner, Mehmet Haşim; Görgülü, Tahsin; Olgun, Abdulkerim; Torun, Merve; Kargi, Eksal

    2016-10-01

    The main purpose of this study was to assess the effects of ozone gas on the viability of flaps for reconstruction and to determine the optimum application method. The antioxidant, immunomodulatory, and reperfusion effects of ozone gas have been previously assessed, and successful results have been reported. However, only one study has investigated the effect of ozone gas on flap viability. In the present study, it was hypothesised that the antioxidant and reperfusion effects of ozone gas would enhance flap viability. Forty female Wistar rats were randomly divided into four groups of 10 rats each. A cranial-based, 3 × 11 cm modified McFarlane flap including the panniculus carnosus was raised from the dorsum of a rat and re-sutured to its own bed using 3/0 sharp propylene. Group 1 (n = 10): no pharmacological agent was used after the operation. Group 2 (n = 10): vegetable (olive) oil group; vegetable-oil-impregnated gauze was used as a dressing for 7 days. Group 3 (n = 10): Vegetable (olive) oil with ozone peroxide group; vegetable oil with ozone peroxide-impregnated gauze was used as a dressing for 7 days. Group 4 (n = 10): Hemo-ozone therapy group; hemo-ozone therapy was applied rectally once every day for 7 days. All rats were sacrificed at the end of week 1 and assessed macroscopically and histopathologically. The proportion of substantive necrosis was less in group 4 than in the other three groups. Survival area ratios were better in groups 2 and 3 than in group 1; however, there was no significant difference between groups 2 and 3. No significant differences in the histopathological scores were observed among the groups. Ozone gas enhanced flap viability. No differences in flap viability were observed between the vegetable oil and vegetable oil with ozone peroxide groups. The greatest benefit ratios were found in the hemo-ozone therapy group.

  7. NASA participation in the 1980 Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NROS) Project: Operational aspects

    NASA Technical Reports Server (NTRS)

    Maddrea, G. L., Jr.; Bendura, R. J.

    1981-01-01

    A field experiment designed to further understand the formation and transport of visibility reducing aerosols and to characterize regional scale air masses and urban plumes is described. Measurements were made primarily in the Ohio River Valley region. The NASA participation included obtaining measurements for the determination of mixing layer height and ozone profiles by using airborne remote sensor systems such as the ultraviolet differential absorption lidar, the high spectral resolution lidar, and the laser absorption spectrometer. Other NASA systems included the microwave atmospheric remote sensor, tethered balloons, an in situ measurements aircraft, and several photometer/transmissiometer systems.

  8. Common Calibration Source for Monitoring Long-term Ozone Trends

    NASA Technical Reports Server (NTRS)

    Kowalewski, Matthew

    2004-01-01

    Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.

  9. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  10. Cooling tower water conditioning study. [using ozone

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.

    1979-01-01

    Successful elimination of cooling tower treatment chemicals was demonstrated. Three towers functioned for long periods of time with ozone as the only treatment for the water. The water in the systems was reused as much as 30 times (cycles of concentration) without deleterious effects to the heat exchangers. Actual system blow-down was eliminated and the only makeup water added was that required to replace the evaporation and mist entrainment losses. Minimum water savings alone are approximately 75.1 1/kg/year. Cost estimates indicate that a savings of 55 percent was obtained on the systems using ozone. A major problem experienced in the use of ozone for cooling tower applications was the difficulty of accurate concentration measurements. The ability to control the operational characteristics relies on easily and accurately determined concentration levels. Present methods of detection are subject to inaccuracies because of interfering materials and the rapid destruction of the ozone.

  11. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    NASA Technical Reports Server (NTRS)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  12. ER-2 #809 awaits pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experime

    NASA Technical Reports Server (NTRS)

    2000-01-01

    ER-2 #809 awaiting pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE). The ER-2, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for

  13. NASA SNPP SIPS - Following in the Path of EOS

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Hall, Alfreda; Ho, Evelyn

    2016-01-01

    NASA's Earth Science Data Information System (ESDIS) Project has been operating NASA's Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. At launch, the SDS focused primarily on the evaluation of Sensor Data Records (SDRs) and Environmental Data Records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program, as to their suitability for Earth system science. During the summer of 2014, NASA transitioned to the production of standard Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean, Atmosphere, Ozone, and Sounder were established to produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products developed by the SNPP Science Teams and to provide the products to NASA's Distributed Active Archive Centers (DAACs) for archive and distribution to the user community. The processing, archiving and distribution of data from NASA's Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments will continue. With the implementation of the JPSS Block 2 architecture and the launch of JPSS-1, the SDS will receive SNPP data in near real-time via the JPSS Stored Mission Data Hub (JSH), as well as JPSS-1 and future JPSS-2 data. The SNPP SIPS will ingest EOS compatible Level 0 data from the EOS Data Operations System (EDOS) element for their data processing, enabling the continuous EOS-SNPP-JPSS Satellite Data Record.

  14. Evaluation and Comparison of Methods for Measuring Ozone and NO2 Concentrations in Ambient Air during DISCOVER-AQ

    EPA Science Inventory

    Ambient evaluations of the various ozone and NO2 methods were conducted during field intensive studies as part of the NASA DISCOVER-AQ project conducted during July 2011 near Baltimore, MD; January – February 2013 in the San Juaquin valley, CA; September 2013 in Houston, TX...

  15. An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Whitten, R. C.; Turco, R. P.; Capone, L. A.

    1978-01-01

    An assessment of the potential effect on stratospheric ozone of an advanced supersonic transport operations is presented. This assessment, which was undertaken because of NASA's desire for an up-to-date evaluation to guide programs for the development of supersonic technology and improved aircraft engine designs, uses the most recent chemical reaction rate data. From the results of the present assessment it would appear that realistic fleet sizes should not cause concern with regard to the depletion of the total ozone overburden. For example, the NOx emission of one type designed to cruise at 20 km altitude will cause the ozone overburden to increase by 0.03% to 0.12%, depending upon which vertical transport is used. These ozone changes can be compared with the predictions of a 1.74% ozone decrease (for 100 Large SST's flying at 20 km) made in 1974 by the FAA's Climatic Impact Assessment Program.

  16. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  17. Multidecadal Changes in the UTLS Ozone from the MERRA-2 Reanalysis and the GMI Chemistry Model

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Orbe, Clara; Pawson, Steven; Ziemke, Jerald R.; Oman, Luke; Olsen, Mark; Coy, Lawrence; Knowland, Emma

    2018-01-01

    Long-term changes of ozone in the UTLS (Upper Troposphere / Lower Stratosphere) reflect the response to decreases in the stratospheric concentrations of ozone-depleting substances as well as changes in the stratospheric circulation induced by climate change. To date, studies of UTLS ozone changes and variability have relied mainly on satellite and in-situ observations as well as chemistry-climate model simulations. By comparison, the potential of reanalysis ozone data remains relatively untapped. This is despite evidence from recent studies, including detailed analyses conducted under SPARC (Scalable Processor Architecture) Reanalysis Intercomparison Project (S-RIP), that demonstrate that stratospheric ozone fields from modern atmospheric reanalyses exhibit good agreement with independent data while delineating issues related to inhomogeneities in the assimilated observations. In this presentation, we will explore the possibility of inferring long-term geographically and vertically resolved behavior of the lower stratospheric (LS) ozone from NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications -2) reanalysis after accounting for the few known discontinuities and gaps in its assimilated input data. This work builds upon previous studies that have documented excellent agreement between MERRA-2 ozone and ozonesonde observations in the LS. Of particular importance is a relatively good vertical resolution of MERRA-2 allowing precise separation of tropospheric and stratospheric ozone contents. We also compare the MERRA-2 LS ozone results with the recently completed 37-year simulation produced using Goddard Earth Observing System in "replay"� mode coupled with the GMI (Global Modeling Initiative) chemistry mechanism. Replay mode dynamically constrains the model with the MERRA-2 reanalysis winds, temperature, and pressure. We will emphasize the areas of agreement of the reanalysis and replay and interpret differences between them in the context

  18. Aura Microwave Limb Sounder Estimates of Ozone Loss, 2004/2005 Arctic Winter

    NASA Image and Video Library

    2005-06-02

    These data maps from the Microwave Limb Sounder on NASA Aura spacecraft depict levels of hydrogen chloride, chlorine monoxide, and ozone at an altitude of approximately 19 km 490,000 ft on selected days during the 2004-05 Arctic winter.

  19. The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael

    2016-01-01

    We use the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine(Br(sub y)) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Br(sub y) are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASAs Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Br(sub y) source from VSLS.

  20. Influencing factors and kinetic studies of imidacloprid degradation by ozonation.

    PubMed

    Chen, Shi; Deng, Jing; Deng, Yang; Gao, Naiyun

    2018-03-02

    Batch kinetic tests in ozonation of imidacloprid from water were performed in this study. The pseudo-first-order rate constant of imidacloprid degradation was increased from 0.079 to 0.326 min -1 with the increasing pH from 6.02 to 8.64 at an average ozone dose of 1.149 mg L -1 . When the alkalinity was increased from 0 to 250 mg L -1 NaHCO 3 , the pseudo-first-order rate constants decreased from 0.121 to 0.034 min -1 . These results suggested that the predominant oxidant gradually switched from ozone to hydroxyl radicals ([Formula: see text]) with the increase in solution pH. The secondary rate constant [Formula: see text] (10.92 ± 0.12 M -1 s -1 ) for the reaction of imidacloprid and molecular ozone was determined at pH 2.0 and in the presence of 50 mM ter-butyl alcohol (p-chlorobenzoic acid, pCBA), respectively. An indirect competition method was used to determine the secondary rate constant for [Formula: see text] oxidation of imidacloprid in the presence of pCBA as the reference compound. The rate constants [Formula: see text] were estimated to range 2.65-3.79 M -1 s -1 at pH 6.02-8.64. Results obtained from this study demonstrate that ozonation appears to be an effective method to remove imidacloprid from water.

  1. Photocatalytic ozonation of terephthalic acid: a by-product-oriented decomposition study.

    PubMed

    Fuentes, Iliana; Rodríguez, Julia L; Poznyak, Tatyana; Chairez, Isaac

    2014-11-01

    Terephthalic acid (TA) is considered as a refractory model compound. For this reason, the TA degradation usually requires a prolonged reaction time to achieve mineralization. In this study, vanadium oxide (VxOy) supported on titanium oxide (TiO2) served as a photocatalyst in the ozonation of the TA with light-emitting diodes (LEDs), having a bandwidth centered at 452 nm. The modified catalyst (VxOy/TiO2) in combination with ozone and LEDs improved the TA degradation and its by-products. The results obtained by this system were compared with photolysis, single ozonation, catalytic ozonation, and photocatalytic ozonation of VxOy/TiO2 with UV lamp. The LED-based photocatalytic ozonation showed almost the same decomposition efficiency of the TA, but it was better in comparison with the use of UV lamp. The oxalic acid accumulation, as the final product of the TA decomposition, was directly influenced by either the presence of VxOy or/and the LED irradiation. Several by-products formed during the TA degradation, such as muconic, fumaric, and oxalic acids, were identified. Besides, two unidentified by-products were completely removed during the observed time (60 min). It was proposed that the TA elimination in the presence of VxOy/TiO2 as catalyst was carried out by the combination of different mechanisms: molecular ozone reaction, indirect mechanism conducted by ·OH, and the surface complex formation.

  2. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  3. Solar cycle effect in SBUV/SBUV 2 ozone data

    NASA Astrophysics Data System (ADS)

    Gruzdev, Aleksandr

    Effect of the 11-year solar cycle on stratospheric ozone is analyzed using the data of ozone measurements with SBUV/SBUV 2 instruments aboard Nimbus 7, NOAA 9, NOAA 11, NOAA 14, NOAA 16, and NOAA 17-NOAA 19 satellites for 1978-2012 (ftp://toms.gsfc.nasa.gov/pub/sbuv/). High-resolution spectral and cross-spectral methods as well as the method of multiple linear regression were used for the analysis. The regression model takes into account the annual variation, the linear trend, the solar cycle effect and the effects on ozone of the products of the Pinatubo volcano eruption and the quasi-biennial oscillations in the equatorial stratospheric wind. The cross-spectral analysis of ozone concentration and 10.7 cm solar radio flux shows that, generally, 11-year ozone variations in the upper stratosphere and lower mesosphere lag behind while ozone variations in the low-latitude lower stratosphere lead the solar cycle. The phase shift between the ozone variations and the solar cycle reaches pi/2 in 35-40 km layer over the tropics and in the southern hemisphere lower stratosphere. Calculations show that taking into account the phase shift is especially important for correct estimation of the ozone response to the solar cycle in the tropical middle stratosphere. Local maxima of ozone sensitivity to the 11-year solar cycle are noted around a year below the stratopause (45-50 km), in 30-35 km layer in the middle stratosphere, and in the polar lower stratosphere. The sensitivity of the ozone response to the solar cycle for the whole period of 1978-2012 is less than that for the period of 1978-2003 which does not include the 24th solar cycle with anomalously small amplitude. The ozone response is seasonally dependent. Maximal amplitudes of the ozone response are characteristic for polar latitudes during winter-spring periods. For example ozone changes related to the solar cycle can reach 5% in the low and middle latitudes during the 1978-2012 period, while winter-spring ozone

  4. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites

  5. NASA space and Earth science data on CD-ROM

    NASA Technical Reports Server (NTRS)

    Towheed, Syed S.

    1993-01-01

    The National Space Science Data Center (NSSDC) is very interested in facilitating the widest possible use of the scientific data acquired through NASA spaceflight missions. Therefore, NSSDC has participated with projects and data management elements throughout the NASA science environment in the creation, archiving, and dissemination of data using Compact Disk-Read Only Memory (CD-ROM). This CD-ROM technology has the potential to enable the dissemination of very large data volumes at very low prices to a great many researchers, students and their teachers, and others. This catalog identifies and describes the scientific CD-ROM's now available from NSSDC including the following data sets: Einstein Observatory CD-ROM, Galileo Cruise Imaging on CD-ROM, International Halley Watch, IRAS Sky Survey Atlas, Infrared Thermal Mapper (IRTM), Magellan (MIDR), Magellan (ARCDR's), Magellan (GxDR's), Mars Digital Image Map (MDIM), Outer Planets Fields & Particles Data, Pre-Magellan, Selected Astronomical Catalogs, TOMS Gridded Ozone Data, TOMS Ozone Image Data, TOMS Update, Viking Orbiter Images of Mars, and Voyager Image.

  6. Ozone Loss From Quasi-Conservative Coordinate Mapping During the 1999-2000 SOLVE Campaign

    NASA Technical Reports Server (NTRS)

    Lait, L. R.; Schoeberl, M. R.; Newman, P. A.; McGee, T.; Burris, J.; Browell, E. V.; Richard, E.; Braathen, G. O.; Bojkov, B. R.; Goutail, F.; hide

    2001-01-01

    During the winter of 1999-2000, the Sage III Ozone Loss and Validation Experiment (SOLVE) field experiment took place in Kiruna, Sweden. The purpose of SOLVE was to examine ozone depletion mechanisms in the Arctic stratosphere (from about 10 to 50 km altitude) during the winter and early spring, when a band of strong winds (the 'polar vortex') circle the pole. Measurements of stratospheric ozone were made by several different kinds of instruments in different meteorological situations. We analyzed these data using the 'quasi-conservative coordinate mapping' technique, in which the measurements are analyzed in terms of meteorological properties ('potential temperature' and 'potential vorticity') which tend not to change very much over a few days. This technique reduces or removes the changes that are associated with the polar vortex moving around. Over longer time periods, potential temperature and potential vorticity change as air cools and descends within the polar vortex. We account for these changes by calculating the trajectories of air parcels, and this enables us to extend the analysis over a ten-week period from January 10 to March 17, 2000. Using data from the NASA ER-2 aircraft, from the DIAL and AROTEL laser sounders on the NASA DC-8 aircraft, and balloon-borne ozonesondes, our analysis reveals changes in ozone which, because we have removed the effects of polar vortex motion and the descending air, indicate chemical destruction of ozone in early 2000. We find a peak decline rate of approximately 0.03 ppmv/day near 470 K of potential temperature (near 20 km) in mid-January which sinks in altitude to around 440 K (near 18 km) in mid-March.

  7. Tropospheric Ozone during the TRACE-P Mission: Comparison between TOMS Satellite Retrievals and Aircraft Lidar Data, March 2001

    NASA Technical Reports Server (NTRS)

    Frolov, A. D.; Thompson, A. M.; Hudson, R. D.; Browell, E. V.; Oltmans, S. J.; Witte, J. C.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) represents a new algorithm that uses TOMS radiances directly to extract tropospheric ozone in regions of constant stratospheric ozone. It is not geographically restricted, using meteorological regimes as the basis for classifying TOMS radiances and for selecting appropriate comparison data. TDOT is useful where tropospheric ozone displays high mixing ratios and variability characteristic of pollution. Some of these episodes were observed downwind of Asian biomass burning during the TRACE-P (Transport and Atmospheric Chemical Evolution-Pacific) field experiment in March 2001. This paper features comparisons among TDOT tropospheric ozone column depth, integrated uv-DIAL measurements made from NASA's DC-8, and ozonesonde data.

  8. Tobacco smoke aging in the presence of ozone: A room-sized chamber study

    NASA Astrophysics Data System (ADS)

    Petrick, Lauren M.; Sleiman, Mohamad; Dubowski, Yael; Gundel, Lara A.; Destaillats, Hugo

    2011-09-01

    Exposure to tobacco pollutants that linger indoors after smoking has taken place ( thirdhand smoke, THS) can occur over extended periods and is modulated by chemical processes involving atmospheric reactive species. This study investigates the role of ozone and indoor surfaces in chemical transformations of tobacco smoke residues. Gas and particle constituents of secondhand smoke (SHS) as well as sorbed SHS on chamber internal walls and model materials (cotton, paper, and gypsum wallboard) were characterized during aging. After smoldering 10 cigarettes in a 24-m 3 room size chamber, gas-phase nicotine was rapidly removed by sorption to chamber surfaces, and subsequently re-emitted during ventilation with clean air to a level of ˜10% that during the smoking phase. During chamber ventilation in the presence of ozone (180 ppb), ozone decayed at a rate of 5.6 h -1 and coincided with a factor of 5 less nicotine sorbed to wallboard. In the presence of ozone, no gas phase nicotine was detected as a result of re-emission, and higher concentrations of nicotine oxidation products were observed than when ventilation was performed with ozone-free air. Analysis of the model surfaces showed that heterogeneous nicotine-ozone reaction was faster on paper than cotton, and both were faster than on wallboard. However, wallboard played a dominant role in ozone-initiated reaction in the chamber due to its large total geometric surface area and sink potential compared to the other substrates. This study is the first to show in a room-sized environmental chamber that the heterogeneous ozone chemistry of sorbed nicotine generates THS constituents of concern, as observed previously in bench-top studies. In addition to the main oxidation products (cotinine, myosmine and N-methyl formamide), nicotine-1-oxide was detected for the first time.

  9. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  10. Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements

    NASA Astrophysics Data System (ADS)

    Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.

    2010-10-01

    This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter

  11. Comparison of scientific findings from major ozone field studies in North America and Europe

    NASA Astrophysics Data System (ADS)

    Solomon, Paul; Cowling, Ellis; Hidy, George; Furiness, Cari

    During the past decade, nearly 600 million dollars were invested in more than 30 major field studies in North America and Europe examining tropospheric ozone chemistry, meteorology, precursor emissions, and modeling. Most of these studies were undertaken to provide new or refined knowledge about ozone accumulation and to assist in the development of economical and effective emissions management practices for ozone. In this paper, we describe a selection of field research programs conducted under a wide range of geographical and climatological conditions in North America and Europe. The designs of these studies were generally similar, employing a combination of ground-based observation networks, upper-air sampling, and meteorological observations. Analysis and interpretation of the resulting data were combined with improved inventories of ozone precursor emissions and air quality modeling to develop new or enhanced knowledge about photochemical processes under various tropospheric conditions. The scientific results from these studies contained few surprises; in fact, they generally affirmed the conclusions in the review by the US National Research Council (NRC, 1999). Key findings include: (1) reaffirmation that tropospheric ozone is a multi-scale phenomenon extending to continental boundaries; (2) aerometric conditions aloft are important to ground-level ozone; (3) biogenic sources make important contributions to VOC and NO x emissions in parts of eastern North America and southern Europe; (4) emissions estimates are among the more uncertain components of predictive models for ozone; (5) recirculating flow over complex terrain and large water bodies are universally important factors affecting accumulation of ozone at the ground; (6) nonlinearities in ozone response to precursor changes create important degrees of freedom in management strategies - VOC and NO x sensitivities vary extensively in urban and rural areas, making decisions about emissions management

  12. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    NASA Astrophysics Data System (ADS)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  13. Ozone

    MedlinePlus

    Ozone is a gas. It can be good or bad, depending on where it is. "Good" ozone occurs naturally about 10 to 30 miles above ... the sun's ultraviolet rays. Part of the good ozone layer is gone. Man-made chemicals have destroyed ...

  14. Laser Spectroscopic Study on Oxygen Isotope Effects in Ozone Surface Decomposition

    NASA Astrophysics Data System (ADS)

    Minissale, Marco; Boursier, Corinne; Elandaloussi, Hadj; Te, Yao; Jeseck, Pascal; Rouille, Christian; Zanon-Willette, Thomas; Janssen, Christof

    2016-04-01

    The isotope kinetics of ozone formation in the Chapman reaction [1] O + O2 + M → O3 + M (1) provides the primary example for a chemically induced oxygen isotope anomaly and is associated with large [2] and mass independent [3] oxygen isotope enrichments in the product molecule, linked to a symmetry selection in the ozone formation kinetics [4-5]. The isotopic composition of ozone and its transfer to other molecules is a powerful tracer in the atmospheric and biogeochemical sciences [6] and serves as a primary model for a possible explanation of the oxygen isotopic heterogeneity in the Solar system [7-8]. Recently, the isotope fractionation in the photolytic decomposition process O3 + hν → O2 + O (2) using visible light has been studied in detail [9-10]. Much less is currently known about the isotope fractionation in the dry deposition or in the gas phase thermal decomposition of ozone O3 + M → O2 + O +M. (3) Here we report on first spectroscopic studies of non-photolytic ozone decomposition using a cw-quantum cascade laser at 9.5 μm. The concentration of individual ozone isotopomers (16O3,16O16O17O, and 16O17O16O) in a teflon coated reaction cell is followed in real time at temperatures between 25 and 150 °C. Observed ozone decay rates depend on homogeneous (reaction (3)) processes in the gas phase and on heterogeneous reactions on the wall. A preliminary analysis reveals agreement with currently recommended ozone decay rates in the gas phase and the absence of a large symmetry selection in the surface decomposition process, indicating the absence of a mass independent fractionation effect. This result is in agreement with previous mass spectrometer (MS) studies on heterogeneous ozone formation on pyrex [11], but contradicts an earlier MS study [12] on ozone surface decomposition on pyrex and quartz. Implications for atmospheric chemistry will be discussed. [1] Morton, J., Barnes, J., Schueler, B. and Mauersberger, K. J. Geophys. Res. 95, 901 - 907 (1990

  15. SAGE-III Ready for Ozone Checkup

    NASA Image and Video Library

    2017-02-15

    A third-generation investigation into the state of the ozone layer of Earth’s atmosphere is scheduled for launch to the International Space Station on the SpaceX-10 cargo ship. Marilee Roell of NASA’s Langley Research Center explains how the third iteration of the Stratospheric Aerosol and Gas Experiment will measure ozone, aerosols and other components of the atmosphere for scientists who hope to see an improvement in the atmosphere’s ability to protect the planet—and everyone and everything on it—from harmful ultraviolet radiation. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/HQdMZ5OAU3U

  16. 16 CFR 260.11 - Ozone-safe and ozone-friendly claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...

  17. 16 CFR 260.11 - Ozone-safe and ozone-friendly claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...

  18. NASA/USRA high altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Richardson, Michael; Gudino, Juan; Chen, Kenny; Luong, Tai; Wilkerson, Dave; Keyvani, Anoosh

    1990-01-01

    At the equator, the ozone layer ranges from approximately 80,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 lbs. of payload. In addition, the aircraft must have a minimum of a 6,000 mile range. The low Mach number, payload, and long cruising time are all constraints imposed by the air sampling equipment. A pilot must be able to take control in the event of unforseen difficulties. Three aircraft configurations were determined to be the most suitable for meeting the above requirements, a joined-wing, a bi-plane, and a twin-boom conventional airplane. The techniques used have been deemed reasonable within the limits of 1990 technology. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  19. NASA atmospheric effects of aviation projects: Status and plans

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Thompson, Anne M.; Stolarski, Richard S.

    1994-01-01

    NASA's Atmospheric Effects of Aviation Project is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. Issues addressed include predicted ozone changes and climatic impact, and related uncertainties. A primary goal is to assist assessments of United Nations scientific organizations and, hence, consideration of emission standards by the International Civil Aviation Organization. Project focus is on simulation of atmospheric processes by computer models, but studies of aircraft operations, laboratory studies, and remote and in situ observations of chemical, dynamic, and radiative processes are also included.

  20. Science/Society Case Study - Ozone

    ERIC Educational Resources Information Center

    Moore, John W., Ed.; Moore, Elizabeth A., Ed.

    1975-01-01

    Describes various threats to the stability of the ozone layer of the atmosphere, including freons emitted from aerosol cans, combustion products from jet aircraft engines, and nuclear explosions in the atmosphere. (MLH)

  1. An improved rocket ozonesonde (Rocoz-A). III - Northern mid-latitude ozone measurements from 1983 to 1985

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Chamberlain, Marcella A.; Parsons, Chester L.; Holland, Alfred C.

    1989-01-01

    The results of the ozone measurements taken during rocket-busted flights of the rocket ozonesonde Rocoz-A at the NASA Wallops Flight Facility from August 1983 to September 1985 are presented. Nineteen profiles were obtained using Rocoz-A and electrochemical concentration cell ozonesondes, standard U.S. meteorological radiosondes, and Super-Loki datasondes. The results were found to agree with the Krueger and Minzner (1976) midlatitude ozone model for the 1976 U.S. Standard Atmosphere.

  2. The influence of temperature on ozone production under varying NOx conditions - a modelling study

    NASA Astrophysics Data System (ADS)

    Coates, Jane; Mar, Kathleen A.; Ojha, Narendra; Butler, Tim M.

    2016-09-01

    Surface ozone is a secondary air pollutant produced during the atmospheric photochemical degradation of emitted volatile organic compounds (VOCs) in the presence of sunlight and nitrogen oxides (NOx). Temperature directly influences ozone production through speeding up the rates of chemical reactions and increasing the emissions of VOCs, such as isoprene, from vegetation. In this study, we used an idealised box model with different chemical mechanisms (Master Chemical Mechanism, MCMv3.2; Common Representative Intermediates, CRIv2; Model for OZone and Related Chemical Tracers, MOZART-4; Regional Acid Deposition Model, RADM2; Carbon Bond Mechanism, CB05) to examine the non-linear relationship between ozone, NOx and temperature, and we compared this to previous observational studies. Under high-NOx conditions, an increase in ozone from 20 to 40 °C of up to 20 ppbv was due to faster reaction rates, while increased isoprene emissions added up to a further 11 ppbv of ozone. The largest inter-mechanism differences were obtained at high temperatures and high-NOx emissions. CB05 and RADM2 simulated more NOx-sensitive chemistry than MCMv3.2, CRIv2 and MOZART-4, which could lead to different mitigation strategies being proposed depending on the chemical mechanism. The increased oxidation rate of emitted VOC with temperature controlled the rate of Ox production; the net influence of peroxy nitrates increased net Ox production per molecule of emitted VOC oxidised. The rate of increase in ozone mixing ratios with temperature from our box model simulations was about half the rate of increase in ozone with temperature observed over central Europe or simulated by a regional chemistry transport model. Modifying the box model set-up to approximate stagnant meteorological conditions increased the rate of increase of ozone with temperature as the accumulation of oxidants enhanced ozone production through the increased production of peroxy radicals from the secondary degradation of

  3. A modeling study of the impact of urban trees on ozone

    Treesearch

    David J. Nowak; Kevin L. Civerolo; S. Trivikrama Rao; Gopal Sistla; Christopher J. Luley; Daniel E. Crane

    2000-01-01

    Modeling the effects of increased urban tree cover on ozone concentrations (July 13-15, 1995) from Washington, DC, to central Massachusetts reveals that urban trees generally reduce ozone concentrations in cities, but tend to increase average ozone concentrations in the overall modeling domain. During the daytime, average ozone reductions in urban areas (1 ppb) were...

  4. ER-2 #809 and DC-8 in Arena Arctica hangar in Kiruna, Sweden prior to the SAGE III Ozone Loss and Va

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA ER-2 # 809 and its DC-8 shown in Arena Arctica before the SAGE III Ozone Loss and Validation Experiment (SOLVE). The two airborne science platforms were based north of the Arctic Circle in Kiruna, Sweden, during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' ER-2s bearing tail numbers 806 and 809 are used as airborne science platforms by NASA's Dryden Flight Research Center. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, an ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The

  5. Reactivity of organic micropollutants with ozone: A kinetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambilla, A.; Bolzacchini, E.; Meinardi, S.

    1995-12-01

    Studies about the chemical reactivity of compounds widely used in the environment are needed. The chemical reactivity of triazines (simazine, atrazine, terbutylazine) and phenylureas (linuron and diuron) was studied. The kinetics of the oxidation of the triazines and phenylureas with ozone at pH 3 and the kinetics of the saturation of the solution with ozone were evaluated. These data may be useful for the prediction of the persistency of these compuonds in the environment and for the treatment of wastewaters contaminated with these compounds. The solution was presaturated with ozone before the addition of the substrate, and the reaction constantsmore » for the pseudo first order kinetics -d[substrate]/dt = k{sub app} [substrate] at 298{degree}K were obtained, assuming a steady state concentration of ozone of 1.91 10{sup -4} mol L{sup -1} for the phenylureas and of 3.03 10{sup -4} and L{sup -1} for the triazines. The data obtained were: atrazine k = 6.86 (L mol{sup -1}s{sup -1}); simazine: 9.26; t-butylazine 7.26; linuron 11.00; diuron 43.90. The activation parameters for the reaction of simazine were {Delta}H{sup =} = 9.35 kcal mol{sup -1} and {Delta}S{sup =} = -22.3 cal mol{sup -1} {degree}K{sup -1} and for the reaction of diuron were {Delta}H{sup =} = 16.83 Kcal mol{sup -1}, {Delta}S{sup =} = 5.696 cal mol{sup -1} {degree}K{sup -1}.« less

  6. Influence of isentropic transport on seasonal ozone variations in the lower stratosphere and subtropical upper troposphere

    NASA Technical Reports Server (NTRS)

    Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.

    2005-01-01

    The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.

  7. Characteristics of stratospheric ozone intrusions into the lower free troposphere in subtropical East Asia

    NASA Astrophysics Data System (ADS)

    Ou-Yang, C. F.; Lin, J. R.; Yen, M. C.; Sheu, G. R.; Wang, J. L.; Lin, N. H.

    2017-12-01

    Stratospheric intrusion (SI) is mainly induced by tropopause folds, frontal passages, cutoff lows, and surface pressure systems. Ozone can be increased rapidly by the SI with decreased humidity and other primary air pollutants in the lower free troposphere. We present 5 years of ozone observed at Lulin Atmospheric Background Station (LABS, 23.47°N, 120.87°E, 2862 m a.s.l.) as a representative regional mountain site located in subtropical East Asia from April 2006 to March 2011. A fast-screening algorithm was proposed to sift the SI events at the LABS. The ozone was increased approximately 13.5±6.1 ppb on average during the 54 detected SI events, whereas the mean ozone mixing ratio was calculated to be 32.8±15.2 ppb over the 5 years. Distinct seasonal variation of ozone was observed with a maximum in spring and a minimum in summer, which was predominately shaped by the long-range transport of biomass burning air masses from Southeast Asia and oceanic influences from the Pacific, respectively. By contrast, the SI events were observed at the LABS mainly during wintertime. The characteristics of the SI events were also investigated in association with Modern Era Retrospective Analysis - 2 (MERRA-2) assimilated data provided by NASA/GSFC in this study.

  8. Utilization of satellite observation of ozone and aerosols in providing initial and boundary condition for regional air quality studies

    NASA Astrophysics Data System (ADS)

    Pour-Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yun-Hee; Newchurch, Mike; McNider, Richard T.; Liu, Xiong; Byun, Daewon W.; Cameron, Robert

    2011-09-01

    To demonstrate the efficacy of satellite observations in the realization of the background and transboundary transport of pollution in regional air quality modeling practices, satellite observations of ozone and aerosol optical depth were incorporated in the EPA Models-3 Community Multiscale Air Quality (CMAQ) model (http://www.cmascenter.org). Observations from Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite and AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra (EOS AM) and Aqua (EOS PM) satellites were used to specify initial and lateral boundary conditions (IC/BC) for a simulation that spanned over August 2006. The tools and techniques using the satellite data were tested in the context of current regulatory air quality modeling practices. Daily satellite observations were remapped onto the modeling domain and used as IC/BC for daily segments of a month-long simulation and the results were evaluated against surface and ozonesonde observations. Compared to the standard application of CMAQ, OMI O3 profiles significantly improved model performance in the free troposphere and MODIS aerosol products substantially improved PM2.5 predictions in the boundary layer. The utilization of satellite data for BC helped in the realization of transboundary transport of pollution and was able to explain the recirculation of pollution from Northeast Corridor to the southeastern region. Ozone in the mid- to upper-troposphere was largely dominated by transport and thus benefited most from satellite provided BC. The ozone within the boundary layer was mostly affected by fast production/loss mechanisms that are impacted by surface emissions, chemistry and removal processes and was not impacted as much. A case study for August 18-22 demonstrated that model errors in the placement of a stationary front were the main reason for errors in PM2.5 predictions as the front acted as a boundary between high and low PM2.5 concentrations.

  9. The Response of Tropospheric Ozone to ENSO in Observations and a Chemistry-Climate Simulation

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Waugh, D. W.; Rodriguez, J. M.; Nielsen, J. E.

    2012-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent results have revealed an ENSO induced wave-l anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this result using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show targeted comparisons with observations from NASA's Aura satellite Microwave Limb Sounder (MLS), and the Tropospheric Emissions Spectrometer (TES) to provide insight into the vertical structure of ozone changes. The tropospheric ozone response to ENSO could be a useful chemistry-climate model evaluation tool and should be considered in future modeling assessments.

  10. A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation.

    PubMed

    Utsumi, Hideo; Han, Youn-Hee; Ichikawa, Kazuhiro

    2003-12-01

    Hydroxyl (OH) radical is proposed as an important factor in the ozonation of water. In the present study, the enhancing effect of 3-chlorophenol on OH radical generation was mathematically evaluated using electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocity of DMPO-OH generation in ozonated water containing 3-chlorophenol was quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus which was controlled by home-made software. The initial velocity of DMPO-OH generation increased as a function of the concentration of ozone and the more effectively of 3-chlorophenol concentration. The relation among ozone concentration, amount of 3-chlorophenol and the initial velocity (nu(0)) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, nu(0) (10(-6)M/s)=[9.7 x [3-chlorophenol (10(-9)M)] + 0.0005]exp(57 x [ozone (10(-9)M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.99. The equation for the enhancing effect by 3-chlorophenol should provide useful information to optimize the condition in ozone treatment process of water containing phenolic pollutants.

  11. Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.

    PubMed

    Lin, Ching-Ho

    2008-04-01

    The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and

  12. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    PubMed

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. National Emission Standards for Hazardous Air Pollutants (NESHAP) Memorandum of Agreement (MOA) Between NASA Headquarters and MSFC (Marshall Space Flight Center) for NASA Principal Center for Review of Clean Air Regulations

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Clark-Ingram, Marceia A.

    2000-01-01

    This paper presents a memorandum of agreement on Clean Air Regulations. NASA headquarters (code JE and code M) has asked MSFC to serve as principle center for review of Clean Air Act (CAA) regulations. The purpose of the principle center is to provide centralized support to NASA headquarters for the management and leadership of NASA's CAA regulation review process and to identify the potential impact of proposed CAA reguations on NASA program hardware and supporting facilities. The materials and processes utilized in the manufacture of NASA's programmatic hardware contain HAPs (Hazardous Air Pollutants), VOCs (Volatile Organic Compounds), and ODC (Ozone Depleting Chemicals). This paper is presented in viewgraph form.

  14. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China

    NASA Astrophysics Data System (ADS)

    Li, Kangwei; Chen, Linghong; Ying, Fang; White, Stephen J.; Jang, Carey; Wu, Xuecheng; Gao, Xiang; Hong, Shengmao; Shen, Jiandong; Azzi, Merched; Cen, Kefa

    2017-11-01

    Regional ozone pollution has become one of the most challenging problems in China, especially in the more economically developed and densely populated regions like Hangzhou. In this study, measurements of O3, CO, NOx and non-methane hydrocarbons (NMHCs), together with meteorological data, were obtained for the period July 1, 2013-August 15, 2013 at three sites in Hangzhou. These sites included an urban site (Zhaohui ;ZH;), a suburban site (Xiasha ;XS;) and a rural site (Qiandaohu ;QDH;). During the observation period, both ZH and XS had a higher ozone level than QDH, with exceeding rates of 41.3% and 47.8%, respectively. Elevated O3 levels in QDH were found at night, which could be explained by less prominent NO titration effect in rural area. Detailed statistical analysis of meteorological and chemical impacts on ozone formation was carried out for ZH, and higher ozone concentration was observed when the wind direction was from the east. This is possibly due to emissions of VOCs from XS, a typical chemical industrial park located in 30 km upwind area of ZH. A comprehensive comparison between three ozone episode periods and one non-episode period were made in ZH. It was concluded that elevated concentrations of precursors and temperatures, low relative humidity and wind speed and easterly-dominated wind direction contribute to urban ozone episodes in Hangzhou. VOCs reactivity analysis indicated that reactive alkenes like isoprene and isobutene contributed most to ozone formation. Three methods were applied to evaluate O3-VOCs-NOx sensitivity in ZH: VOCs/NOx ratio method, Smog Production Model (SPM) and Relative Incremental Reactivity (RIR). The results show that summer ozone in urban Hangzhou mostly presents VOCs-limited and transition region alternately. Our study implies that the increasing automobiles and VOCs emissions from upwind area could result in ozone pollution in urban Hangzhou, and synergistic reduction of VOCs and NOx will be more effective.

  15. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy; hide

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  16. Evaluating a Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Langford, Andrew; Senff, Chris; Leblanc, Thierry; Berkoff, Timothy; hide

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product.TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  17. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.

    2016-12-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  18. Liquid-phase study of ozone inactivation of Venezuelan equine encephalomyelitis virus.

    PubMed

    Akey, D H; Walton, T E

    1985-10-01

    Ozone, in a liquid-phase application, was evaluated as a residue-free viral inactivant that may be suitable for use in an arboviral research laboratory. Commonly used sterilizing agents may leave trace residues, be flammable or explosive, and require lengthy periods for gases or residues to dissipate after decontamination of equipment such as biological safety cabinets. Complete liquid-phase inactivation of Venezuelan equine encephalomyelitis virus was attained at 0.025 mg of ozone per liter within 45 min of exposure. The inactivation of 10(6.5) median cell culture infective doses (CCID50 of Venezuelan equine encephalomyelitis virus per milliliter represented a reduction of 99.99997% of the viral particles from the control levels of 10(7.25-7.5) CCID50/ml. A dose-response relationship was demonstrated. Analysis by polynomial regression of the logarithmic values for both ozone concentrations and percent reduction of viral titers had a highly significant r2 of 0.8 (F = 63.6; df = 1, 16). These results, together with those of Akey (J. Econ. Entomol. 75:387-392, 1982) on the use of ozone to kill a winged arboviral vector, indicate that ozone is a promising candidate as a sterilizing agent in some applications for biological safety cabinets and other equipment used in vector studies with arboviruses.

  19. NASA's High Speed Research Program - An introduction and status report

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.; Kayten, Gerald G.

    1990-01-01

    NASA's High Speed Research Program (HSRP) gives attention to the potential environmental effects of a next-generation SST in three areas of concern: atmospheric pollution, airport community noise, and sonic boom. Research has accordingly been undertaken in such fields as the validation of ozone depletion predictions, the feasibility a 90-percent NO(x) emissions reduction to minimize ozone-layer impacts, economically viable compliance with FAR 36 Stage 3 airport community noise levels, and the comparative advantages of efficient subsonic flight over land masses or low-sonic-boom-optimized configurations. Interim HSRP milestones for 1991 and 1992 are noted.

  20. A summary of research on the NASA-Global Atmospheric Sampling Program performed by the Atmospheric Sciences Research Center. [ozone transport theory

    NASA Technical Reports Server (NTRS)

    Falconer, P. D.; Pratt, R. W.

    1979-01-01

    The annual variations of ozone near the tropopause are derived from aircraft exhibit year-to-year differences which are not explicitly accounted for by the simple, classical ozone transport theory. Phenomena such as tropopause lifting, interannual variations in the rates of stratospheric-tropospheric exchange and meridional mixing, contribute differently to the distribution of ozone in this altitude region. Ozone encounter climatologies have been represented by global maps which show the probabilities of exceeding ambient ozone levels of 200, 300, and 400 ppbV along flight routes during the year. Continuous ozone records obtained from the GASP system revealed the presence of gravity waves whose wavelength is of the order 20 km. The GASP data cannot, however, be utilized for the evaluation of horizontal fluxes of such quantities as ozone, sensible heat, and zonal momentum; the data are too sparsely and irregularly distributed for the computation of stable correlations. Multiple species data from the unique circumglobal flight of a Pan American airliner on 28-30 October 1977 are discussed with particular regard to the apparent interhemispheric differences in tropospheric species concentrations, variation between the Arctic and Antarctic stratospheres, to possible covariations between species, and to potential source regions for various constituents.

  1. Ozone Layer Protection

    MedlinePlus

    ... Offices Labs and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “ ... to ozone-depleting substances, and sun safety. Stratospheric Ozone Layer Basic Ozone Layer Science Health and Environmental ...

  2. Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert

    NASA Astrophysics Data System (ADS)

    VanCuren, R. A.

    2014-12-01

    A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.

  3. Source attribution of tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Butler, T. M.

    2015-12-01

    Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both

  4. Stratospheric Ozone Variations Caused by Solar Proton Events between 1963 and 2005

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Fleming, Eric L.

    2006-01-01

    Solar proton fluxes have been measured by satellites for over forty years (1963-2005). Several satellites, including the NASA Interplanetary Monitoring Platforms (1963-1993) and the NOAA Geostationary Operational Environmental Satellites (1994-2005), have been used to compile this long-term dataset. Some solar eruptions lead to solar proton events (SPEs) at the Earth, which typically last a few days. High energy solar protons associated with SPEs precipitate on the Earth's atmosphere and cause increases in odd hydrogen (HOx) and odd nitrogen (NOy) in the polar cap regions (greater than 60 degrees geomagnetic). The enhanced HOx leads to short-lived ozone depletion (days) due to the short lifetime of HOx constituents. The enhanced NOy leads to long-lived ozone changes because of the long lifetime of the NOy family in the stratosphere and lower mesosphere. Very large SPEs occurred in 1972, 1989, 2000, 2001, and 2003 and were predicted to cause maximum total ozone depletions of 1-3%, which lasted for several months to years past the events. These long-term ozone changes caused by SPES are discussed.

  5. Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study

    NASA Technical Reports Server (NTRS)

    Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.

    1998-01-01

    New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.

  6. Impact of surface ozone interactions on indoor air chemistry: A modeling study.

    PubMed

    Kruza, M; Lewis, A C; Morrison, G C; Carslaw, N

    2017-09-01

    An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C 6 -C 10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C 6 -C 10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5-7 ppb), driven by oxidation-derived emissions from painted walls. In addition, ozone-derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4-oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone-derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants. © 2017 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  7. Long Island Sound Tropospheric Ozone Study (LISTOS) Fact Sheet

    EPA Pesticide Factsheets

    EPA scientists are collaborating on a multi-agency field study to investigate the complex interaction of emissions, chemistry and meteorological factors contributing to elevated ozone levels along the Long Island Sound shoreline.

  8. Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.

    2016-01-01

    Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time

  9. Improved hurricane forecasting from a variational bogus and ozone data assimilation (BODA) scheme: case study

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Zhang, Wei

    2016-12-01

    This study develops a proper way to incorporate Atmospheric Infrared Sounder (AIRS) ozone data into the bogus data assimilation (BDA) initialization scheme for improving hurricane prediction. First, the observation operator at some model levels with the highest correlation coefficients is established to assimilate AIRS ozone data based on the correlation between total column ozone and potential vorticity (PV) ranging from 400 to 50 hPa level. Second, AIRS ozone data act as an augmentation to a BDA procedure using a four-dimensional variational (4D-Var) data assimilation system. Case studies of several hurricanes are performed to demonstrate the effectiveness of the bogus and ozone data assimilation (BODA) scheme. The statistical result indicates that assimilating AIRS ozone data at 4, 5, or 6 model levels can produce a significant improvement in hurricane track and intensity prediction, with reasonable computation time for the hurricane initialization. Moreover, a detailed analysis of how BODA scheme affects hurricane prediction is conducted for Hurricane Earl (2010). It is found that the new scheme developed in this study generates significant adjustments in the initial conditions (ICs) from the lower levels to the upper levels, compared with the BDA scheme. With the BODA scheme, hurricane development is found to be much more sensitive to the number of ozone data assimilation levels. In particular, the experiment with the assimilation of AIRS ozone data at proper number of model levels shows great capabilities in reproducing the intensity and intensity changes of Hurricane Earl, as well as improve the track prediction. These results suggest that AIRS ozone data convey valuable meteorological information in the upper troposphere, which can be assimilated into a numerical model to improve hurricane initialization when the low-level bogus data are included.

  10. Tropospheric ozone (TOR) trend over three major inland Indian cities: Delhi, Hyderabad and Bangalore

    NASA Astrophysics Data System (ADS)

    Kulkarni, Pavan S.; Ghude, Sachin D.; Bortoli, D.

    2010-10-01

    An analysis of tropospheric column ozone using the NASA Langley TOR data during 1979-2005 has been done to investigate the trend over major Indian cities Delhi, Hyderabad and Bangalore. India was under social democratic-based policies before 1990s. Economic Liberalization began in nineties which lead to a significant growth in industrial, energy and transport sectors in major cities. Our analysis shows that there is a systematic increase in the number of months with higher tropospheric ozone values after 1990. A comparison of TOR climatology before and after 1990 over these cities shows evidence of increase in the tropospheric ozone after 1990. Trend obtained from the model shows significant change during monsoon over Delhi and during pre-monsoon and post-monsoon over Hyderabad and Bangalore. The present analysis using TOR technique demonstrates the TOR potential to detect changes in tropospheric ozone over large cities which are impacted by large anthropogenic pollution.

  11. Ozone decomposition

    PubMed Central

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  12. Present state of knowledge of the upper atmosphere: An assessment report; processes that control ozone and other climatically important trace gases

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Geller, M. A.; Stolarski, R. S.; Hampson, R. F.

    1986-01-01

    The state of knowledge of the upper atmosphere was assessed as of January 1986. The physical, chemical, and radiative processes which control the spatial and temporal distribution of ozone in the atmosphere; the predicted magnitude of ozone perturbations and climate changes for a variety of trace gas scenarios; and the ozone and temperature data used to detect the presence or absence of a long term trend were discussed. This assessment report was written by a small group of NASA scientists, was peer reviewed, and is based primarily on the comprehensive international assessment document entitled Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, to be published as the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 16.

  13. Liquid-phase study of ozone inactivation of Venezuelan equine encephalomyelitis virus.

    PubMed Central

    Akey, D H; Walton, T E

    1985-01-01

    Ozone, in a liquid-phase application, was evaluated as a residue-free viral inactivant that may be suitable for use in an arboviral research laboratory. Commonly used sterilizing agents may leave trace residues, be flammable or explosive, and require lengthy periods for gases or residues to dissipate after decontamination of equipment such as biological safety cabinets. Complete liquid-phase inactivation of Venezuelan equine encephalomyelitis virus was attained at 0.025 mg of ozone per liter within 45 min of exposure. The inactivation of 10(6.5) median cell culture infective doses (CCID50 of Venezuelan equine encephalomyelitis virus per milliliter represented a reduction of 99.99997% of the viral particles from the control levels of 10(7.25-7.5) CCID50/ml. A dose-response relationship was demonstrated. Analysis by polynomial regression of the logarithmic values for both ozone concentrations and percent reduction of viral titers had a highly significant r2 of 0.8 (F = 63.6; df = 1, 16). These results, together with those of Akey (J. Econ. Entomol. 75:387-392, 1982) on the use of ozone to kill a winged arboviral vector, indicate that ozone is a promising candidate as a sterilizing agent in some applications for biological safety cabinets and other equipment used in vector studies with arboviruses. PMID:4083884

  14. Ozone therapy in periodontics

    PubMed Central

    Gupta, G; Mansi, B

    2012-01-01

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics. PMID:22574088

  15. Ozone therapy in periodontics.

    PubMed

    Gupta, G; Mansi, B

    2012-02-22

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics.

  16. Climate Suite Study for the National Polar-Orbiting Operational Environmental Satellite System Internal Concepts Study. Part A; Ozone Sensors

    NASA Technical Reports Server (NTRS)

    Lucke, R. L.; Planet, Walter G.; Hudson, R. D.

    1995-01-01

    Our recommendations to NPOESS for the sensors it should adopt to meet threshold requirements for global monitoring of ozone and, to some extent, of aerosols and of atmospheric temperature, pressure, and water vapor content are summarized in this report. The degree to which these sensors fulfill other NPOESS requirements than ozone is also summarized. The number of sensors that should be in the constellation is discussed in terms of desired reliability, continuity of coverage, and the ability to cross-calibrate successive sensors. Our recommendations for specific ozone measurement requirements, IORD item 4.1.6.2.28, are given. We make the case that the monitoring of three minor constituents in the upper atmosphere (N20, ClO or ClONO2, and HNO3) should be added to the list of NPOESS requirements because of their importance to long-term ozone studies and the small additional cost required (ozone sensors are already designed to measure them). Specific measurement requirements, which should be regarded as supplementary to the ozone requirement, are given here. The necessity of using two types of sensors, nadir-viewers and limb-scanners, for atmospheric studies is discussed.

  17. SHADOZ (Southern Hemisphere ADditional Ozonesondes}: What Have We Learned About Tropical Tropospheric Ozone from the First Three Years (1998-2000) Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on an Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, reside at: nasa.gov/ Data - services/shadoz>. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  18. SHADOZ (Southern Hemisphere ADditional Ozonesondes): What Have We Learned About Tropical Tropospheric Ozone from the First Three Years' (1998-2000) Data?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, Pawan (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: nasa.gov/ Data_services/shadoz>. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  19. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  20. Physicochemical patterns of ozone absorption by wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  1. Two-dimensional model studies of the effect of supersonic aircraft operations on the stratospheric ozone content

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Poppoff, I. G.; Latt, L.; Widhopf, G. F.; Capone, L. A.; Reigel, C. A.

    1981-01-01

    For a fleet of 250 aircraft, the change in the ozone column is predicted to be very close to zero; in fact, the ozone overburden may actually increase as a result of show that above 25 to 30 km the ozone abundance decreases via catalytic destruction, but at lower heights it increases, mainly as a result of coupling with odd hydrogen species. Water vapor released in the engine exhaust is predicted to cause ozone decreases; for the hypothetical engines used in the study, the total column ozone changes due to water vapor emission largely offset the predicted ozone increases due to NOx emission. The actual effect of water vapor may be less than calculated because present models do not include thermal feedback. Feedback refers to the cooling effect of additional water vapor that would tend to slow the NOx reactions which destroy ozone.

  2. Airborne UV DIAL Measurements of Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    2000-01-01

    The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system measures vertical profiles of ozone and aerosols above and below the aircraft along its flight track. This system has been used in over 20 airborne field missions designed to study the troposphere and stratosphere since 1980. Four of these missions involved tropospheric measurement programs in the Pacific Ocean with two in the western North Pacific and two in the South Pacific. The UV DIAL system has been used in these missions to study such things as pollution outflow, long-range transport, and stratospheric intrusions; categorize the air masses encountered; and to guide the aircraft to altitudes where interesting features can be studied using the in situ instruments. This paper will highlight the findings with the UV DIAL system in the Pacific Ocean field programs and introduce the mission planned for the western North Pacific for February-April 2001. This will be an excellent opportunity for collaboration between the NASA airborne mission and those with ground-based War systems in Asia Pacific Rim countries to make a more complete determination of the transport of air from Asia to the western Pacific.

  3. Lightning and Other Influences On Tropical Tropospheric Ozone: Empirical Studies of Covariation

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Guan, Hong; Hudson, Robert D.; Witte, Jacquelyne C.

    2003-01-01

    Tropical and subtropical tropospheric ozone are important radiatively active species, with particularly large effects in the upper third of the troposphere. Temporal variability of O3 has proved difficult to simulate day by day in process models. Thus, individual roles of lightning, biomass burning, and other pollution in providing precursor NO(x), radicals, and chain carriers (CO, hydrocarbons) remain unquantified by simulation, and it is theoretically reasonable that individual roles are magnified by a joint synergy. We use wavelet analysis and Burg-algorithm maximum entropy spectral analyses to describe time-scales and correlation of ozone with proxies for processes controlling its concentration. Our empirical studies link time variations apparent in several datasets: the SHADOZ (Southern Hemisphere Additional Ozonesondes) network stations (Nairobi, Fiji), and auxiliary series with power to explain ozone-determining processes, with some interpretation based on the TTO (Tropical Tropospheric Ozone) product derived from TOMS (the Total Ozone Mapping Spectrometer). The auxiliary series are The OTD/LIS(Optical Transient Detector/Lightning Imaging Sensor) measurements of the lightning NO(x) source, the OLR (Outgoing Longwave Radiation)measurement of high-topped clouds, and standard meteorological variables from the United States NCEP (National Centers for Environmental Prediction) and Data Assimilation Office analyses. Concentrating on equatorial ozone, we compare the statistical evidence on the variability of tropospheric ozone. Important variations occur on approximately two-week, two-month (Madden-Julian Oscillation) and annual scales, and relations with OLR suggest controls associated with continental clouds. Hence we are now using the Lightning Imaging Sensor data set to indicate NO(x) sources. We report initial results defining relative roles of the process mentioned affecting O3 using their covariance properties.

  4. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    NASA Astrophysics Data System (ADS)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  5. Ozone production by corona discharges during a convective event in DISCOVER-AQ Houston

    NASA Astrophysics Data System (ADS)

    Kotsakis, Alexander; Morris, Gary A.; Lefer, Barry; Jeon, Wonbae; Roy, Anirban; Minschwaner, Ken; Thompson, Anne M.; Choi, Yunsoo

    2017-07-01

    An ozonesonde launched near electrically active convection in Houston, TX on 5 September 2013 during the NASA DISCOVER-AQ project measured a large enhancement of ozone throughout the troposphere. A separate ozonesonde was launched from Smith Point, TX (∼58 km southeast of the Houston site) at approximately the same time as the launch from Houston and did not measure that enhancement. Furthermore, ozone profiles for the descent of both sondes agreed well with the ascending Smith Point profile, suggesting a highly localized event in both space and time in which an anomalously large enhancement of 70-100 ppbv appeared in the ascending Houston ozonesonde data. Compared to literature values, such an enhancement appears to be the largest observed to date. Potential sources of the localized ozone enhancement such as entrainment of urban or biomass burning emissions, downward transport from the stratosphere, photochemical production from lightning NOx, and direct ozone production from corona discharges were investigated using model simulations. We conclude that the most likely explanation for the large ozone enhancement is direct ozone production by corona discharges. Integrating the enhancement seen in the Houston ozone profile and using the number of electrical discharges detected by the NLDN (or HLMA), we estimate a production of 2.48 × 1028 molecules of ozone per flash which falls within the range of previously recorded values (9.89 × 1026-9.82 × 1028 molecules of ozone per flash). Since there is currently no parameterization for the direct production of ozone from corona discharges we propose the implementation of an equation into a chemical transport model. Ultimately, additional work is needed to further understand the occurrence and impact of corona discharges on tropospheric chemistry on short and long timescales.

  6. Ozone Production by Corona Discharges During a Convective Event in DISCOVER-AQ Houston

    NASA Technical Reports Server (NTRS)

    Kotsakis, Alexander; Morris, Gary A.; Lefer, Barry; Jeon, Wongbae; Roy, Anirban; Minschwaner, Ken; Thompson, Anne M.; Choi, Yunsoo

    2017-01-01

    An ozonesonde launched near electrically active convection in Houston, TX on 5 September 2013 during the NASA DISCOVER-AQ project measured a large enhancement of ozone throughout the troposphere. A separate ozonesonde was launched from Smith Point, TX (approx. 58 km southeast of the Houston site) at approximately the same time as the launch from Houston and did not measure that enhancement. Furthermore, ozone profiles for the descent of both sondes agreed well with the ascending Smith Point profile, suggesting a highly localized event in both space and time in which an anomalously large enhancement of 70 - 100 ppbv appeared in the ascending Houston ozonesonde data. Compared to literature values, such an enhancement appears to be the largest observed to date. Potential sources of the localized ozone enhancement such as entrainment of urban or biomass burning emissions, downward transport from the stratosphere, photochemical production from lightning NO(sub x), and direct ozone production from corona discharges were investigated using model simulations. We conclude that the most likely explanation for the large ozone enhancement is direct ozone production by corona discharges. Integrating the enhancement seen in the Houston ozone profile and using the number of electrical discharges detected by the NLDN (or HLMA), we estimate a production of 2.48 x 10(exp. 28) molecules of ozone per flash which falls within the range of previously recorded values (9.89 x 10(exp. 26) - 9.82 x 10)exp. 28) molecules of ozone per flash). Since there is currently no parameterization for the direct production of ozone from corona discharges we propose the implementation of an equation into a chemical transport model. Ultimately, additional work is needed to further understand the occurrence and impact of corona discharges on tropospheric chemistry on short and long timescales.

  7. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    NASA Astrophysics Data System (ADS)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  8. Average ozone vertical distribution at Sodankyla based on the 1988-1991 ozone sounding data

    NASA Technical Reports Server (NTRS)

    Kyro, Esko; Rummukainen, Markku; Taalas, Petteri; Supperi, Ari

    1994-01-01

    The study presents the statistical analysis of ozone sonde data obtained at Sodankyla (67.4 deg N, 26.6 deg E) from the beginning of the sounding program on March 1988 to the end of December 1991. The Sodankyla sounding data offers the longest continuous record of the ozone vertical distribution in the European Arctic. In this paper, we present the average ozone partial pressures within each 1 km column obtained for different seasons during the almost four year long period. We believe that the data represented here are useful as an interim reference ozone atmosphere, especially considering the fact that northern Scandinavia has become a popular campaign site for the big international ozone experiments.

  9. Forests and ozone: productivity, carbon storage, and feedbacks.

    PubMed

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  10. Factors dominating 3-dimensional ozone distribution during high tropospheric ozone period.

    PubMed

    Chen, Xiaoyang; Liu, Yiming; Lai, Anqi; Han, Shuangshuang; Fan, Qi; Wang, Xuemei; Ling, Zhenhao; Huang, Fuxiang; Fan, Shaojia

    2018-01-01

    Data from an in situ monitoring network and five ozone sondes are analysed during August of 2012, and a high tropospheric ozone episode is observed around the 8th of AUG. The Community Multi-scale Air Quality (CMAQ) model and its process analysis tool were used to study factors and mechanisms for high ozone mixing ratio at different levels of ozone vertical profiles. A sensitive scenario without chemical initial and boundary conditions (ICBCs) from MOZART4-GEOS5 was applied to study the impact of stratosphere-troposphere exchange (STE) on vertical ozone. The simulation results indicated that the first high ozone peak near the tropopause was dominated by STE. Results from process analysis showed that: in the urban area, the second peak at approximately 2 km above ground height was mainly caused by local photochemical production. The third peak (near surface) was mainly caused by the upwind transportation from the suburban/rural areas; in the suburban/rural areas, local photochemical production of ozone dominated the high ozone mixing ratio from the surface to approximately 3 km height. Furthermore, the capability of indicators to distinguish O 3 -precursor sensitivity along the vertical O 3 profiles was investigated. Two sensitive scenarios, which had cut 30% anthropogenic NO X or VOC emissions, showed that O 3 -precursor indicators, specifically the ratios of O 3 /NOy, H 2 O 2 /HNO 3 or H 2 O 2 /NO Z , could partly distinguish the O 3 -precursor sensitivity between VOCs-sensitive and NOx-sensitive along the vertical profiles. In urban area, the O 3 -precursor relationship transferred from VOCs-sensitive within the boundary layer to NOx-sensitive at approximately 1-3 km above ground height, further confirming the dominant roles of transportation and photochemical production in high O 3 peaks at the near-ground layer and 2 km above ground height, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ozone adsorption on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were

  12. An assessment of western North Pacific ozone photochemistry based on springtime observations from NASA's PEM-West B (1994) and TRACE-P (2001) field studies

    NASA Astrophysics Data System (ADS)

    Davis, D. D.; Chen, G.; Crawford, J. H.; Liu, S.; Tan, D.; Sandholm, S. T.; Jing, P.; Cunnold, D. M.; Dinunno, B.; Browell, E. V.; Grant, W. B.; Fenn, M. A.; Anderson, B. E.; Barrick, J. D.; Sachse, G. W.; Vay, S. A.; Hudgins, C. H.; Avery, M. A.; Lefer, B.; Shetter, R. E.; Heikes, B. G.; Blake, D. R.; Blake, N.; Kondo, Y.; Oltmans, S.

    2003-11-01

    The current study provides a comparison of the photochemical environments for two NASA field studies focused on the western North Pacific (PEM-West-B (PWB) and TRACE-P (TP)). These two studies were separated in calendar time by approximately 7 years. Both studies were carried out under springtime conditions, with PWB being launched in 1994 and TP being deployed in 2001 (i.e., 23 February-15 March 1994 and 10 March-15 April 2001, respectively). Because of the 7-year time separation, these two studies presented a unique scientific opportunity to assess whether evidence could be found to support the Department of Energy's projections in 1997 that increases in anthropogenic emissions from East Asia could reach 5%/yr. Such projections would lead one to the conclusion that a significant shift in the atmospheric photochemical properties of the western North Pacific would occur. To the contrary, the findings from this study support the most recent emission inventory data [, 2003] in that they show no significant systematic trend involving increases in any O3 precursor species and no evidence for a significant shift in the level of photochemical activity over the western North Pacific. This conclusion was reached in spite of there being real differences in the concentration levels of some species as well as differences in photochemical activity between PWB and TP. However, nearly all of these differences were shown to be a result of a near 3-week shift in TP's sampling window relative to PWB, thus placing it later in the spring season. The photochemical enhancements seen during TP were most noticeable for latitudes in the range of 25-45°N. Most important among these were increases in J(O1D), OH, and HO2 and values for photochemical ozone formation and destruction, all of which were typically two times larger than those calculated for PWB. A comparison of these airborne results with ozonesonde data from four Japanese stations provided further evidence showing that the 3

  13. PARAMETER EVALUATION AND MODEL VALIDATION OF OZONE EXPOSURE ASSESSMENT USING HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    EPA Science Inventory

    To examine factors influencing long-term ozone exposures by children living in urban communities, we analyzed longitudinal data on personal, indoor, and outdoor ozone concentrations as well as related housing and other questionnaire information collected in the one-year-long Harv...

  14. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  15. Further studies on possible volcanic signal to the ozone layer

    NASA Astrophysics Data System (ADS)

    Zerefos, C. S.; Tourpali, K.; Bais, A. F.

    1994-12-01

    This paper provides a new look at the spatial and temporal distribution of monthly mean residuals of the global ozone field following the two large volcanic eruptions of El Chichon and Pinatubo. The residuals have been calculated after careful removal of the components of known oscillations from the monthly mean total ozone records. The removal eliminated not only the well-established Quasi Biennial Oscillation but also the robust pattern of all El Nino/Southern Oscillation events active during the period of study. These residuals are composed by a "climatic noise" term plus a possible volcanic signal whose amplitude is in some agreement with model calculations particularly over low and middle latitudes following the recent Pinatubo eruption. However, this analysis shows no ozone deficiency following El Chichon over the southern hemisphere and this result can be explained by the prevailing winds in the lower stratosphere in the post-El Chichon period as described in the text. Quantitatively speaking, the magnitude of the observed ozone deficiency which can be attributed to the volcanic effect is smaller than reported earlier either from theory or observations, and ranges between 2 and 4% at the equatorial latitudes up to about 5% over the middle and high latitudes, including the noise term, and lasting for a period of months after the eruption. These deficiencies are also larger than the anticipated error caused by the aerosol-contaminated radiances, as reported by other scientists. The present results, although not precluding a transient volcanic component following large volcanic eruptions in the ozone records, do show, however, that our understanding of the physical mechanisms involved is probably still incomplete.

  16. Dial Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Newchurch, Mike; Kuang, Shi; Burris, John; Johnson, Steve; Long, Stephanie

    2008-01-01

    A tropospheric ozone DIfferential Absorption Lidar (DIAL) system has been developed jointly by NASA and the University of Alabama at Huntsville (UAH). Two separated Nd:YAG pumped dye laser systems produce the laser pulses with wavelengths of 285 and 291 nm at 20 Hz frequency. The receiver is a Newtonian telescope with a 40 cm primary and a two-channel aft optics unit. The detection system currently uses photon counting to facilitate operations at the maximum achievable altitude. This lidar measures free-tropospheric ozone profiles between 4-10 km at Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) in UAH campus (ASL 206 m) under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from approx.5% at 4 km to approx.60% at 10 km with 750-m vertical resolution and 30-minute integration. Three Hamamatsu 7400 PMTs and analog detection technique will be added on the current system to extend the measurement to approx.100 m above ground to monitor the PBL and lower tropospheric ozone variations.

  17. Study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Guarnieri, R.; Padilha, L.; Guarnieri, F.; Echer, E.; Makita, K.; Pinheiro, D.; Schuch, A.; Boeira, L.; Schuch, N.

    Ultraviolet radiation type B (UV-B 280-315nm) is well known by its damage to life on Earth, including the possibility of causing skin cancer in humans. However, the atmo- spheric ozone has absorption bands in this spectral radiation, reducing its incidence on Earth's surface. Therefore, the ozone amount is one of the parameters, besides clouds, aerosols, solar zenith angles, altitude, albedo, that determine the UV-B radia- tion intensity reaching the Earth's surface. The total ozone column, in Dobson Units, determined by TOMS spectrometer on board of a NASA satellite, and UV-B radiation measurements obtained by a UV-B radiometer model MS-210W (Eko Instruments) were correlated. The measurements were obtained at the Observatório Espacial do Sul - Instituto Nacional de Pesquisas Espaciais (OES/CRSPE/INPE-MCT) coordinates: Lat. 29.44oS, Long. 53.82oW. The correlations were made using UV-B measurements in fixed solar zenith angles and only days with clear sky were selected in a period from July 1999 to December 2001. Moreover, the mathematic behavior of correlation in dif- ferent angles was observed, and correlation coefficients were determined by linear and first order exponential fits. In both fits, high correlation coefficients values were ob- tained, and the difference between linear and exponential fit can be considered small.

  18. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  19. NASA's Small Explorer program

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon; Rasch, Nickolus O.

    1989-01-01

    This paper describes a new component of the NASA's Explorer Program, the Small Explorer program, initiated for the purpose of providing research opportunities characterized by quick and frequent small turn-around space missions. The objective of the Small Explorer program is to launch one to two payloads per year, depending on the mission cost and the availability of funds and launch vehicles. In the order of tentative launch date, the flight missions considered by the Small Explorer program are the Solar, Anomalous, and Magnetospheric Explorer; the Submillimeter Wave Astronomy Satellite; the Fast Auroral Snapshot Explorer; and the Total Ozone Mapping Spectrometer.

  20. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Villalta, P. W.; Zahniser, M. S.; Nelson, D. D.; Kolb, C. E.

    1998-01-01

    This is the final report for this project. Its purpose is to reduce the uncertainty in rate coefficients for key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring the rate coefficients for the reactions of HO2 + O3, and HO2 + NO2 in the temperature range (200-240 K) relevant to the lower stratosphere. In order to accomplish this, a high pressure turbulent flow tube reactor was built and its flow characteristics were quantified. The instrument was coupled with tunable diode laser spectroscopy for HO2 detection. Room temperature measurements of the HO2 + NO2 rate coefficients over the pressure range of 50-300 torr agree well with previous measurements. Preliminary measurements of the HO2 + O, rate coefficients at 50 - 300 Torr over the temperature range of 208-294 K agree with the NASA evaluation from 294-225 K but deviate significantly (50 % higher) at approximately 210 K.

  1. A Chemiluminescence Detector for Ozone Measurement.

    ERIC Educational Resources Information Center

    Carroll, H.; And Others

    An ozone detector was built and evaluated for its applicability in smog chamber studies. The detection method is based on reaction of ozone with ethylene and measurement of resultant chemiluminescence. In the first phase of evaluation, the detector's response to ozone was studied as a function of several instrument parameters, and optimum…

  2. Modeling and Observations of the Response of Tropical Tropospheric Ozone to ENSO

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Waugh, D. W.; Lang, C.; Rodriquez, J. M.; Nielsen, J. E.

    2012-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere, Recent results have revealed an ENSO induced wave-1 anomaly in observed tropical tropospheric column ozone, This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this result using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years, An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region, We will show targeted comparisons with SHADOZ ozonesondes over these regions to provide insight into the vertical structure. Also, comparisons with NASA's Aura satellite Microwave Limb Sounder (MLS) and Tropospheric Emissions Spectrometer (TES) instruments and other appropriate data sets will be shown. In addition, the water vapor response to ENSO will be compared to help illuminate its role relative to dynamics in impacting ozone concentrations. These results indicate that the tropospheric ozone response to ENSO is potentially a very useful chemistry-climate diagnostic and should be considered in future modeling assessments.

  3. Tabulations of ambient ozone data obtained by GASP (Global Air Sampling Program) airliners, March 1975 to July 1979

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Holdeman, J. D.

    1984-01-01

    Tabulations are given of GASP ambient ozone mean, standard deviation, median, 84th percentile, and 98th percentile values, by month, flight level, and geographical region. These data are tabulated to conform to the temporal and spatial resolution required by FAA Advisory Circular 120-38 (monthly by 2000 ft in altitude by 5 deg in latitude) for climatological data used to show compliance with cabin ozone regulations. In addition seasonal x 10 deg latitude tabulations are included which are directly comparable to and supersede the interim GASP ambient ozone tabulations given in appendix B of FAA-EE-80-43 (NASA TM-81528). Selected probability variations are highlighted to illustrate the spatial and temporal variability of ambient ozone and to compare results from the coarse and fine grid analyses.

  4. Retrieval of ozone profiles from OMPS limb scattering observations

    NASA Astrophysics Data System (ADS)

    Arosio, Carlo; Rozanov, Alexei; Malinina, Elizaveta; Eichmann, Kai-Uwe; von Clarmann, Thomas; Burrows, John P.

    2018-04-01

    This study describes a retrieval algorithm developed at the University of Bremen to obtain vertical profiles of ozone from limb observations performed by the Ozone Mapper and Profiler Suite (OMPS). This algorithm is based on the technique originally developed for use with data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument. As both instruments make limb measurements of the scattered solar radiation in the ultraviolet (UV) and visible (Vis) spectral ranges, an underlying objective of the study is to obtain consolidated and consistent ozone profiles from the two satellites and to produce a combined data set. The retrieval algorithm uses radiances in the UV and Vis wavelength ranges normalized to the radiance at an upper tangent height to obtain ozone concentrations in the altitude range of 12-60 km. Measurements at altitudes contaminated by clouds in the instrument field of view are identified and filtered out. An independent aerosol retrieval is performed beforehand and its results are used to account for the stratospheric aerosol load in the ozone inversion. The typical vertical resolution of the retrieved profiles varies from ˜ 2.5 km at lower altitudes ( < 30 km) to ˜ 1.5 km (about 45 km) and becomes coarser at upper altitudes. The retrieval errors resulting from the measurement noise are estimated to be 1-4 % above 25 km, increasing to 10-30 % in the upper troposphere. OMPS data are processed for the whole of 2016. The results are compared with the NASA product and validated against profiles derived from passive satellite observations or measured in situ by balloon-borne sondes. Between 20 and 60 km, OMPS ozone profiles typically agree with data from the Microwave Limb Sounder (MLS) v4.2 within 5-10 %, whereas in the lower altitude range the bias becomes larger, especially in the tropics. The comparison of OMPS profiles with ozonesonde measurements shows differences within ±5 % between 13 and 30 km at

  5. Analysis of TES Satellite Ozone Observations from 2005 to 2013 to Understand Global Air Pollution Transport

    NASA Astrophysics Data System (ADS)

    Kladar, R. M.; Cooper, O. R.

    2015-12-01

    To better understand the causes of ozone formation and transport, we create and analyze global satellite ozone retrieval products for ground level to upper tropospheric ozone concentrations over the years 2005 to 2013 using the Tropospheric Emission Spectrometer (TES) that rides aboard the NASA Aura satellite. Many global and regional tropospheric ozone trends are not fully understood. Observing many different pressure levels between 1000 hPa to 215 hPa, we focus on the areas where model and other observation strategies disagree, namely the Arabian Peninsula, the Australian outback, and the southern Sahara. We observe (and these areas may be experiencing) unusually high ozone concentrations. We also comment on the historically high ozone areas such as China, Northern India, western Europe, and the western and southern United States and how known phenomena compare to our observations. Many observations confirm known mechanisms of ozone formation and transport, such as the effect of the yearly monsoon cycle in South, Southeast, and East Asia. Others, such as the surprisingly high monthly average concentrations on the Arabian Peninsula and Southern Sahara, deserve more thorough investigation. Several hypotheses for these disagreement areas are put forward here. Lastly, we comment on the usefulness of the TES instrument for trends analysis and future global observations.

  6. Improved tooth bleaching combining ozone and hydrogen peroxide--A blinded study.

    PubMed

    Al-Omiri, Mahmoud K; Abul Hassan, Ra'ed S; AlZarea, Bader K; Lynch, Edward

    2016-03-01

    To evaluate the efficacy of tooth bleaching using ozone after hydrogen peroxide (H2O2) in comparison to the use of H2O2 alone. 70 extracted teeth were randomly distributed into two groups. Teeth surfaces in group 1 (n=35) were treated using 38% H2O2 and then were exposed to ozone for 60s and this ozonated peroxide mixture was left on the teeth for 20 min. Meanwhile, teeth in group 2 (n=35) were treated with H2O2 38% for 20 min. The L* a* b* and Vita Classic shade values of teeth were evaluated in both groups at base line, after application of H2O2 and ozone in group 1, and after application of H2O2 and then again after another application of ozone in group 2. The statistically significant changes were set at P ≤ 0.05. Baseline L* a* b* and Vita shade values were comparable between groups (P>0.05). Teeth obtained lighter shades following bleaching with both H2O2 and ozone or with H2O2 alone (P ≤ 0.05). Further bleaching with ozone for teeth already bleached with H2O2 alone showed further improvement of the shades of teeth (P<0.001). Teeth treated with H2O2 and ozone had more shade improvements than those only treated with H2O2 (P<0.001). Also, L* values were increased while b* values were decreased (teeth obtained lighter shades) following bleaching in both groups (P ≤ 0.05). More changes were obtained when both ozone and H2O2 were used (P ≤ 0.05). Bleaching with 38% H2O2 and ozone resulted in teeth with lighter shades than bleaching with 38% H2O2 alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes. Volume 3: October 1978 - July 1979

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Jasperson, W. H.

    1985-01-01

    Measurements of ozone concentrations at cruise altitudes both outside and in the cabin of a Boeing 747SP and Boeing 747-100 airliners in routine commercial service are presented. Plotted and tabulated data are identified by route and are arranged chronologically for each airplane. These data were taken at 5- or 10-min intervals by automated instruments used in the NASA Global Atmospheric Sampling Program (GASP). All GASP cabin ozone data obtained from October 1978 to early July 1979 are presented.

  8. Ozone Therapy Enhances Osseous Healing in Rats With Diabetes With Calvarial Defects: A Morphometric and Immunohistochemical Study.

    PubMed

    Alpan, Aysan Lektemur; Toker, Hülya; Ozer, Hatice

    2016-08-01

    Bone healing is impaired in diabetes mellitus (DM) cases. The aim of this study is to investigate, both morphometrically and immunohistochemically, the effect of gaseous ozone on bone healing in diabetic rat calvarial defects treated with xenografts. DM was induced with 50 mg/kg intraperitoneal streptozotocin in 56 male Wistar rats. Study groups were as follows: 1) empty defect (control, n = 14); 2) xenograft (XG, n = 14); 3) empty defect treated with ozone therapy (control + ozone, n = 14); and 4) xenograft and ozone application (XG + ozone, n = 14). Critical-size defects were created in all rats. Bovine-derived xenograft was applied to XG groups. Gaseous ozone was applied on the operation day and daily for 2 weeks (140 ppm at 2 L/d, 2.24 mg). Rats were sacrificed at 4 or 8 weeks post-surgery. Total bone area, newly formed bone, and residual graft material were measured histomorphometrically. Osteocalcin and bone morphogenic protein (BMP)-2 expression was evaluated immunohistochemically. Osteoclast numbers in the XG + ozone group were higher than the other groups at week 4 (P <0.05). XG + ozone group revealed more total bone area and new bone area than the XG group at weeks 4 (P <0.05) and 8 (P >0.05). Residual graft materials were decreased in the XG + ozone group and the same group revealed more BMP-2 positivity compared with other groups. Osteocalcin positivity in XG groups was higher than in control groups. Within the limitations of this DM animal study, gaseous ozone application accelerates xenograft resorption and enhances bone regeneration, especially in the early stages of bone healing.

  9. TOLNet Data Format for Lidar Ozone Profile & Surface Observations

    NASA Astrophysics Data System (ADS)

    Chen, G.; Aknan, A. A.; Newchurch, M.; Leblanc, T.

    2015-12-01

    The Tropospheric Ozone Lidar Network (TOLNet) is an interagency initiative started by NASA, NOAA, and EPA in 2011. TOLNet currently has six Lidars and one ozonesonde station. TOLNet provides high-resolution spatio-temporal measurements of tropospheric (surface to tropopause) ozone and aerosol vertical profiles to address fundamental air-quality science questions. The TOLNet data format was developed by TOLNet members as a community standard for reporting ozone profile observations. The development of this new format was primarily based on the existing NDAAC (Network for the Detection of Atmospheric Composition Change) format and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) format. The main goal is to present the Lidar observations in self-describing and easy-to-use data files. The TOLNet format is an ASCII format containing a general file header, individual profile headers, and the profile data. The last two components repeat for all profiles recorded in the file. The TOLNet format is both human and machine readable as it adopts standard metadata entries and fixed variable names. In addition, software has been developed to check for format compliance. To be presented is a detailed description of the TOLNet format protocol and scanning software.

  10. Tropospheric Ozone Climatology over Irene, South Africa, From 1990-1994 and 1998-2002

    NASA Technical Reports Server (NTRS)

    Diab, R. D.; Thompson, A. M.; Marl, K.; Ramsay, L.; Coetzee, G. J. R.

    2004-01-01

    This paper describes ozone profiles from sonde data during the period of NASA s TRACE-A and the more recent SHADOZ (Southern Hemisphere Additional Ozonesondes) period. The data were taken by the South African Weather Service at the Irene (25 deg.54 min S; 28 deg. 13 min. E) station near Pretoria, South Africa, an area that is a unique mixture of local industry, heavy biofuels use and importation of biomass burning ozone from neighboring countries to the north. The main findings are: (1) With its geographical position at the edge of the subtropical transition zone, mid- latitude dynamical influences are evident at Irene, predominantly in winter when upper tropospheric ozone is enhanced as a result of stratospheric-tropospheric exchange. (2) There has been an increase in the near-surface ozone amount between the early 1990s and a decade later, presumably due to an influx of rural population toward the Johannesburg-Pretoria area, as well as with industrial growth and development. (3) Most significant for developing approaches for satellite ozone profile climatologies, cluster analysis has enabled the delineation of a background and "most polluted" profile. Enhancements of at least 30% occur throughout the troposphere in spring and in certain layers increases of 100 % are observed.

  11. Ambient Ozone Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities.

    PubMed

    Yin, Peng; Chen, Renjie; Wang, Lijun; Meng, Xia; Liu, Cong; Niu, Yue; Lin, Zhijing; Liu, Yunning; Liu, Jiangmei; Qi, Jinlei; You, Jinling; Zhou, Maigeng; Kan, Haidong

    2017-11-21

    Few large multicity studies have been conducted in developing countries to address the acute health effects of atmospheric ozone pollution. We explored the associations between ozone and daily cause-specific mortality in China. We performed a nationwide time-series analysis in 272 representative Chinese cities between 2013 and 2015. We used distributed lag models and over-dispersed generalized linear models to estimate the cumulative effects of ozone (lagged over 0-3 d) on mortality in each city, and we used hierarchical Bayesian models to combine the city-specific estimates. Regional, seasonal, and demographic heterogeneity were evaluated by meta-regression. At the national-average level, a 10-μg/m 3 increase in 8-h maximum ozone concentration was associated with 0.24% [95% posterior interval (PI): 0.13%, 0.35%], 0.27% (95% PI: 0.10%, 0.44%), 0.60% (95% PI: 0.08%, 1.11%), 0.24% (95% PI: 0.02%, 0.46%), and 0.29% (95% PI: 0.07%, 0.50%) higher daily mortality from all nonaccidental causes, cardiovascular diseases, hypertension, coronary diseases, and stroke, respectively. Associations between ozone and daily mortality due to respiratory and chronic obstructive pulmonary disease specifically were positive but imprecise and nonsignificant. There were no statistically significant differences in associations between ozone and nonaccidental mortality according to region, season, age, sex, or educational attainment. Our findings provide robust evidence of higher nonaccidental and cardiovascular mortality in association with short-term exposure to ambient ozone in China. https://doi.org/10.1289/EHP1849.

  12. Regional and local background ozone in Houston during Texas Air Quality Study 2006

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Banta, R. M.; Hardesty, R. M.; Alvarez, R. J.; Sandberg, Scott P.; Darby, Lisa S.

    2009-04-01

    Principal Component Analysis (PCA) is used to isolate the common modes of behavior in the daily maximum 8-h average ozone mixing ratios measured at 30 Continuous Ambient Monitoring Stations in the Houston-Galveston-Brazoria area during the Second Texas Air Quality Study field intensive (1 August to 15 October 2006). Three principal components suffice to explain 93% of the total variance. Nearly 84% is explained by the first component, which is attributed to changes in the "regional background" determined primarily by the large-scale winds. The second component (6%) is attributed to changes in the "local background," that is, ozone photochemically produced in the Houston area and spatially and temporally averaged by local circulations. Finally, the third component (3.5%) is attributed to short-lived plumes containing high ozone originating from industrial areas along Galveston Bay and the Houston Ship Channel. Regional background ozone concentrations derived using the first component compare well with mean ozone concentrations measured above the Gulf of Mexico by the tunable profiler for aerosols and ozone lidar aboard the NOAA Twin Otter. The PCA regional background values also agree well with background values derived using the lowest daily 8-h maximum method of Nielsen-Gammon et al. (2005), provided the Galveston Airport data (C34) are omitted from that analysis. The differences found when Galveston is included are caused by the sea breeze, which depresses ozone at Galveston relative to sites further inland. PCA removes the effects of this and other local circulations to obtain a regional background value representative of the greater Houston area.

  13. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  14. A NASA Lightning Parameterization for CMAQ

    NASA Technical Reports Server (NTRS)

    Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard

    2009-01-01

    Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and

  15. New Tether Ozonesonde System Developed for Uintah Basin Ozone Study in February, 2012

    NASA Astrophysics Data System (ADS)

    Johnson, B. J.; Cullis, P.; Wendell, J.; Hall, E.; Jordan, A.; Albee, R.; Schnell, R. C.

    2012-12-01

    NOAA/ESRL/GMD participated in the February, 2012 UINTAH basin air quality campaign to measure ozone concentrations from surface to 300 meters above ground level. The study region, southwest of Vernal, Utah, is an active oil and gas production and exploration area. During the previous winter in 2011, an air quality study led by state and local agencies and Utah State University measured very high ozone at several sites, exceeding 140 ppbv centered near Ouray, Utah under shallow boundary layer with surface snow-cover conditions. The high ozone conditions never developed during the 2012 campaign. The weather remained dry and warm with typical ozone mixing rations ranging from 20 to 60 ppbv. In order to provide near continuous ozone profiles without consuming a balloon and ozonesonde for each sounding, a tether system was developed by the Global Monitoring Division based upon a motorized deep sea fishing rod and reel with 50 pound line. The lightweight system was shown to be rugged and reliable and capable of conducting an ascending and descending profile to 300 m within 90 minutes. Communication software and data loggers continuously monitor the radiosonde pressure to control the ascent/descent rates and altitude. The system can operate unmanned as it will ascend, descend and hold an altitude as controlled from a laptop computer located up to 30 m distant.

  16. Near-real-time TOMS, telecommunications and meteorological support for the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Ardanuy, P.; Victorine, J.; Sechrist, F.; Feiner, A.; Penn, L.

    1988-01-01

    The goal of the 1987 Airborne Antarctic Ozone Experiment was to improve the understanding of the mechanisms involved in the formation of the Antarctic ozone hole. Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the experiment. During the experiment, the near-real-time TOMS total ozone observations were supplied within hours of real time to the operations center in Punta Arenas, Chile. The final report summarizes the role which Research and Data Systems (RDS) Corporation played in the support of the experiment. The RDS provided telecommunications to support the science and operations efforts for the Airborne Antarctic Ozone Experiment, and supplied near real-time weather information to ensure flight and crew safety; designed and installed the telecommunications network to link NASA-GSFC, the United Kingdom Meteorological Office (UKMO), Palmer Station, the European Center for Medium-Range Weather Forecasts (ECMWF) to the operation at Punta Arenas; engineered and installed stations and other stand-alone systems to collect data from designated low-orbiting polar satellites and beacons; provided analyses of Nimbus-7 TOMS data and backup data products to Punta Arenas; and provided synoptic meteorological data analysis and reduction.

  17. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    NASA Astrophysics Data System (ADS)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  18. Seasonal/Diurnal Mapping of Ozone and Water in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Novak, R. E.; Mumma, M. J.; DiSanti, M. A.; DelloRusso, N.; Magee-Sauer, K.; Bonev, B.

    2003-01-01

    Ozone and water are key species for understanding the stability and evolution of Mars atmosphere; they are closely linked (along with CO, H, OH, and O) through photochemistry. Photolysis of water produces the OH radical (thought to catalyze reformation of CO2 from CO and O2) and atomic hydrogen (which reacts with O3 forming OH and O2). Atomic hydrogen also reacts with O2 (forming HO2), thereby reducing the amount of O2 available to reform O3 from collisions between O and O2. Hence ozone and water should be anti-correlated on Mars. Photolysis of O3 produces O2(a(sup 1) delta g) with 90% efficiency, and the resulting emission band system near 1.27 mm traces the presence and abundance of ozone. This approach was initially used to study ozone on Earth and then applied to Mars. In 1997, we measured several lines of the O2(a(sup 1) delta g) emission using CSHELL at the NASA IRTF; the O2(a(sup 1) delta g) state is also quenched by collisions with CO2. This quenching dominates at lower altitudes so that the detected emissions are used to detect ozone column densities above 20 km. The slit was positioned N-S along Mars' central meridian resulting in a one-dimensional map of ozone. Nearly simultaneous maps may be made of water using CSHELL by detecting the v1 fundamental band of HDO near 3.67 microns and using the D/H ratio for Mars. This technique was used by DiSanti and Mumma. With CSHELL, measurements for both O2(a(sup 1) delta g) emissions and HDO absorptions can be made during the day or night. Since January, 1997, we have repeated these measurements at different times during the Martian year. For all of these dates, we have positioned the slit N-S along the central meridian; for some of these dates, we have also stepped the slit across the planet at 1 arc-sec intervals generating a 2-dimensional map. We have also positioned the slit E-W on Mars thus providing diurnal variations of ozone and water along the slit.

  19. SHADOZ (Southern Hemisphere ADditional Ozonesondes): A Look at the First Three Years' (1998-2000) Tropospheric Ozone Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere ADditional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natai, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at an open archive: nasa.gov/Data_services/shadoz>. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, ENSO, and Madden-Julian circulation on convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude.

  20. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1996-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HOx and NOx species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences.

  1. Comparison of HIPWAC and Mars Express SPICAM Observations of Ozone on Mars 2006-2008 and Variation from 1993 IRHS Observations

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, Theodor; Lefevre, Frank; Hewagama, Tilak; Livengood, Timothy A.; Delgado, Juan D.; Annen, John; Sonnabend, Guido

    2009-01-01

    Ozone is a tracer of photochemistry in the atmosphere of Mars and an observable used to test predictions of photochemical models. We present a comparison of retrieved ozone abundances on Mars using ground-based infrared heterodyne measurements by NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) and space-based Mars Express Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet measurements. Ozone retrievals from simultaneous measurements in February 2008 were very consistent (0.8 microns-atm), as were measurements made close in time (ranging from less than 1 to greater than 8 microns-atm) during this period and during opportunities in October 2006 and February 2007. The consistency of retrievals from the two different observational techniques supports combining the measurements for testing photochemistry-coupled general circulation models and for investigating variability over the long-term between spacecraft missions. Quantitative comparison with ground-based measurements by NASA'GSFC's Infrared Heterodyne Spectrometer (IRHS) in 1993 reveals 2-4 times more ozone at low latitudes than in 2008 at the same season, and such variability was not evident over the shorter period of the Mars Express mission. This variability may be due to cloud activity.

  2. Airliner Cabin Ozone: An Updated Review

    DTIC Science & Technology

    1989-12-01

    authorized Airliner Cabin Ozone: An Updated Review INTRODUCTION Prior to 1980 , there was a great deal of concern about the adverse effects of ozone on the...and by flight planning to avoid known areas of high atmospheric ozone concentration. Since the final rule was published in 1980 , few reports have...pointed out in 1980 (4), that ozone concentration is the predominant factor in determining the effective dose. These latter studies indicate that

  3. Future heat waves and surface ozone

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  4. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  5. "OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...

    EPA Pesticide Factsheets

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil

  6. Children's Models of the Ozone Layer and Ozone Depletion.

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  7. Ozone bioindicator

    Treesearch

    John W. Coulston; Mark J. Ambrose

    2007-01-01

    Why Is Ozone Important? Ground-level ozone occurs at phytotoxic levels in the United States (Lefohn and Pinkerton 1988). Elevated levels of ozone can cause foliar injury to several tree species, may cause growth loss, and can make trees more susceptible to insects and pathogens (Chappelka and Samuelson 1998). However, tree species have varying degrees of sensitivity to...

  8. Ozone, Tropospheric

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1995-01-01

    In the early part of the 20th century, ground-based and balloon-borne measurements discovered that most of atmosphere's ozone is located in the stratosphere with highest concentrations located between 15 and 30 km (9,3 and 18.6 miles). For a long time, it was believed that tropospheric ozone originated from the stratosphere and that most of it was destroyed by contact with the earth's surface. Ozone, O3, was known to be produced by the photo-dissociation of molecular oxygen, O2, a process that can only occur at wavelengths shorter than 242 nm. Because such short-wave-length radiation is present only in the stratosphere, no tropospheric ozone production is possible by this mechanism. In the 1940s, however, it became obvious that production of ozone was also taking place in the troposphere. The overall reaction mechanism was eventually identified by Arie Haagen-Smit of the California Institute of Technology, in highly polluted southern California. The copious emissions from the numerous cars driven there as a result of the mass migration to Los Angeles after World War 2 created the new unpleasant phenomenon of photochemical smog, the primary component of which is ozone. These high levels of ozone were injuring vegetable crops, causing women's nylons to run, and generating increasing respiratory and eye-irritation problems for the populace. Our knowledge of tropospheric ozone increased dramatically in the early 1950s as monitoring stations and search centers were established throughout southern California to see what could be done to combat this threat to human health and the environment.

  9. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    NASA Technical Reports Server (NTRS)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  10. Ozone kinetics in low-pressure discharges

    NASA Astrophysics Data System (ADS)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  11. Convective Distribution of Tropospheric Ozone and Tracers in the Central American ITCZ Region: Evidence from Observations During TC4

    NASA Technical Reports Server (NTRS)

    Avery, Melody; Twohy, Cynthia; MCabe, David; Joiner, Joanna; Severance, Kurt; Atlas, Eliot; Blake, Donald; Bui, T. P.; Crounse, John; Dibb, Jack; hide

    2010-01-01

    During the Tropical Composition, Clouds and Climate Coupling (TC4) experiment that occurred in July and August of 2007, extensive sampling of active convection in the ITCZ region near Central America was performed from multiple aircraft and satellite sensors. As part of a sampling strategy designed to study cloud processes, the NASA ER-2, WB-57 and DC-8 flew in stacked "racetrack patterns" in convective cells. On July 24, 2007, the ER-2 and DC-8 probed an actively developing storm and the DC-8 was hit by lightning. Case studies of this flight, and of convective outflow on August 5, 2007 reveal a significant anti-correlation between ozone and condensed cloud water content. With little variability in the boundary layer and a vertical gradient, low ozone in the upper troposphere indicates convective transport. Because of the large spatial and temporal variability in surface CO and other pollutants in this region, low ozone is a better convective indicator. Lower tropospheric tracers methyl hydrogen peroxide, total organic bromine and calcium substantiate the ozone results. OMI measurements of mean upper tropospheric ozone near convection show lower ozone in convective outflow. A mass balance estimation of the amount of convective turnover below the tropical tropopause transition layer (TTL) is 50%, with an altitude of maximum convective outflow located between 10 and 11 km, 4 km below the cirrus anvil tops. It appears that convective lofting in this region of the ITCZ is either a two-stage or a rapid mixing process, because undiluted boundary layer air is never sampled in the convective outflow.

  12. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    NASA Astrophysics Data System (ADS)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  13. Natural hydrocarbons, urbanization, and urban ozone

    NASA Technical Reports Server (NTRS)

    Cardelino, C. A.; Chameides, W. L.

    1990-01-01

    The combined effects of emission control and urbanization, with its concomitant intensification of the urban heat island, on urban ozone concentrations are studied. The effect of temperature on ozone is considered, and attention is given to the temperature effect on ozone photochemistry. Model calculations suggest that ozone concentration enhancements are caused by the effect of temperature on the atmospheric chemistry of peroxyacetyl nitrate, as well as the temperature dependence of natural and anthropogenic hydrocarbon emissions. It is pointed out that, because of the sensitivity of urban ozone to local climatic conditions and the ability of trees to moderate summertime temperatures, the inadvertent removal of trees from urbanization can have an adverse effect on urban ozone concentration, while a temperature increase in the urban heat island caused by urbanization can essentially cancel out the ozone-reducing benefits obtained from a 50-percent reduction in anthropogenic hydrocarbon emissions.

  14. Tropospheric ozone toxicity vs. usefulness of ozone therapy.

    PubMed

    Bocci, Velio Alvaro

    2007-02-01

    There is a general consensus that continuous inhalation of air polluted with ozone is detrimental for the lungs and vital organs. Even if the concentration of tropospheric ozone is slightly above the tolerated dose, toxicity ensues owing to the cumulative dose inhaled for months. However, in medicine ozone is used as a real drug and a precise concentration and therapeutic dosage must be calibrated against the antioxidant capacity of blood. As ozone reacts with blood, it generates pharmacological messengers such as H(2)O(2) and lipid oxidation products (LOPs). These activate several biochemical pathways in blood cells, which after reinfusion are responsible for therapeutic activities lasting several days. Neither acute nor chronic toxicity has been registered.

  15. Total ozone changes in the 1987 Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  16. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area

    NASA Astrophysics Data System (ADS)

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-03-01

    Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.

  17. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI).

  18. Effect of Acute Ozone Induced Airway Inflammation on Human Sympathetic Nerve Traffic: A Randomized, Placebo Controlled, Crossover Study

    PubMed Central

    Tank, Jens; Biller, Heike; Heusser, Karsten; Holz, Olaf; Diedrich, André; Framke, Theodor; Koch, Armin; Grosshennig, Anika; Koch, Wolfgang; Krug, Norbert; Jordan, Jens; Hohlfeld, Jens M.

    2011-01-01

    Background Ozone concentrations in ambient air are related to cardiopulmonary perturbations in the aging population. Increased central sympathetic nerve activity induced by local airway inflammation may be one possible mechanism. Methodology/Principal Findings To elucidate this issue further, we performed a randomized, double-blind, cross-over study, including 14 healthy subjects (3 females, age 22–47 years), who underwent a 3 h exposure with intermittent exercise to either ozone (250 ppb) or clean air. Induced sputum was collected 3 h after exposure. Nineteen to 22 hours after exposure, we recorded ECG, finger blood pressure, brachial blood pressure, respiration, cardiac output, and muscle sympathetic nerve activity (MSNA) at rest, during deep breathing, maximum-inspiratory breath hold, and a Valsalva maneuver. While the ozone exposure induced the expected airway inflammation, as indicated by a significant increase in sputum neutrophils, we did not detect a significant estimated treatment effect adjusted for period on cardiovascular measurements. Resting heart rate (clean air: 59±2, ozone 60±2 bpm), blood pressure (clean air: 121±3/71±2 mmHg; ozone: 121±2/71±2 mmHg), cardiac output (clean air: 7.42±0.29 mmHg; ozone: 7.98±0.60 l/min), and plasma norepinephrine levels (clean air: 213±21 pg/ml; ozone: 202±16 pg/ml), were similar on both study days. No difference of resting MSNA was observed between ozone and air exposure (air: 23±2, ozone: 23±2 bursts/min). Maximum MSNA obtained at the end of apnea (air: 44±4, ozone: 48±4 bursts/min) and during the phase II of the Valsalva maneuver (air: 64±5, ozone: 57±6 bursts/min) was similar. Conclusions/Significance Our study suggests that acute ozone-induced airway inflammation does not increase resting sympathetic nerve traffic in healthy subjects, an observation that is relevant for environmental health. However, we can not exclude that chronic airway inflammation may contribute to sympathetic activation

  19. The Response of Lower Atmospheric Ozone to ENSO in Aura Measurements and a Chemistry-Climate Simulation

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Rodriquez, J. M.; Waugh, D. W.; Nielsen, J. E.

    2012-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent work has revealed an ENSO-induced wave-1 anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this feature using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show composition sensitivity in observations from NASA s Aura satellite Microwave Limb Sounder (MLS) and the Tropospheric Emissions Spectrometer (TES) and a simulation to provide insight into the vertical structure of these ENSO-induced ozone changes. The ozone changes due to the Quasi-Biennial Oscillation (QBO) in the extra-polar upper troposphere and lower stratosphere in MLS measurements will also be discussed.

  20. On the Quality of the Nimbus 7 LIMS Version 6 Ozone for Studies of the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis; Lingenfelser, Gretchen; Natarajan, Murali; Gordley, Larry; Thompson, Earl

    2006-01-01

    The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) radiance profile dataset of 1978/79 was reconditioned and reprocessed to Version 6 (V6) profiles of temperature and species that are improved significantly over those from Version 5 (V5). The LIMS V6 dataset was archived for public use in 2002. Improvements for its ozone include: (1) a more accurate accounting for instrument and spacecraft motion effects in the radiances, (2) the use of better spectroscopic line parameters for its ozone forward model, (3) retrievals of all its scans, (4) more accurate and compatible temperature versus pressure profiles (or T(p)), which are needed for the registration of the ozone radiances and for the removal of temperature effects from them, and (5) a better accounting for interfering species in the lower stratosphere. The retrieved V6 ozone profiles extend from near cloud top altitudes to about 80 km and from 64S to 84N latitude with better sampling along the orbit than for the V5 dataset. Calculated estimates of the single-profile precision and accuracy are provided for the V6 ozone from this study. Precision estimates based on the data themselves are of order 3% or better from 1 to 30 hPa. Estimates of total systematic error for a single profile are hard to generalize because the separate sources of error may not all be of the same sign and they depend somewhat on the atmospheric state. It is estimated that the V6 zonal mean ozone distributions are accurate to within 9% to 7% from 50 hPa to 3 hPa, respectively. Effects of a temperature bias can be significant and may be present at 1 to 2 hPa though. There may be ozone biases of order 10% at those levels due to possible biases of up to +2 K, but there is no indication of a similar problem elsewhere in the stratosphere. Simulation studies show that the LIMS retrievals are also underestimating slightly the small amplitudes of the atmospheric temperature tides, which affect its retrieved day/night ozone differences

  1. Calibration of the SBUV version 8.6 ozone data product

    NASA Astrophysics Data System (ADS)

    DeLand, M. T.; Taylor, S. L.; Huang, L. K.; Fisher, B. L.

    2012-11-01

    This paper describes the calibration process for the Solar Backscatter Ultraviolet (SBUV) Version 8.6 (V8.6) ozone data product. Eight SBUV instruments have flown on NASA and NOAA satellites since 1970, and a continuous data record is available since November 1978. The accuracy of ozone trends determined from these data depends on the calibration and long-term characterization of each instrument. V8.6 calibration adjustments are determined at the radiance level, and do not rely on comparison of retrieved ozone products with other instruments. The primary SBUV instrument characterization is based on prelaunch laboratory tests and dedicated on-orbit calibration measurements. We supplement these results with "soft" calibration techniques using carefully chosen subsets of radiance data and information from the retrieval algorithm output to validate each instrument's calibration. The estimated long-term uncertainty in albedo is approximately ±0.8-1.2% (1σ) for most of the instruments. The overlap between these instruments and the Shuttle SBUV (SSBUV) data allows us to intercalibrate the SBUV instruments to produce a coherent V8.6 data set covering more than 32 yr. The estimated long-term uncertainty in albedo is less than 3% over this period.

  2. Calibration of the SBUV version 8.6 ozone data product

    NASA Astrophysics Data System (ADS)

    DeLand, M. T.; Taylor, S. L.; Huang, L. K.; Fisher, B. L.

    2012-07-01

    This paper describes the calibration process for the Solar Backscatter Ultraviolet (SBUV) Version 8.6 (V8.6) ozone data product. Eight SBUV instruments have flown on NASA and NOAA satellites since 1970, and a continuous data record is available since November 1978. The accuracy of ozone trends determined from these data depends on the calibration and long-term characterization of each instrument. V8.6 calibration adjustments are determined at the radiance level, and do not rely on comparison of retrieved ozone products with other instruments. The primary SBUV instrument characterization is based on prelaunch laboratory tests and dedicated on-orbit calibration measurements. We supplement these results with "soft" calibration techniques using carefully chosen subsets of radiance data and information from the retrieval algorithm output to validate each instrument's calibration. The estimated long-term uncertainty in albedo is approximately ±0.8-1.2% (1σ) for most of the instruments. The overlap between these instruments and the Shuttle SBUV (SSBUV) data allows us to intercalibrate the SBUV instruments to produce a coherent V8.6 data set covering more than 32 yr. The estimated long-term uncertainty in albedo is less than 3% over this period.

  3. The Antarctic Ozone Hole

    ERIC Educational Resources Information Center

    Jones, Anna E.

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For…

  4. SONEX: NASA SASS Ozone and Nitrogen Oxide Experiment

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.; Zhu, Yong; Cho, John; Hu, Yuanlong

    1999-01-01

    This final report follows closely on our 1998 Annual Progress Report which was forwarded to NASA on November 19, 1998. Rather than reiterate the material therein we note here the continuation of the various items covered. SONEX has proN,Ided a number of opportunities to learn more about the fine-scale structure of the atmosphere. Coupled with the MOZAIC work on layers we can synthesize a new 3-D view of the fine scales that influence atmospheric chemistry. As a side issue we are also relating the features to clear air turbulence which would be, we think, a useful connection for commercial aviation.

  5. Earth's Endangered Ozone

    ERIC Educational Resources Information Center

    Panofsky, Hans A.

    1978-01-01

    Included are (1) a discussion of ozone chemistry; (2) the effects of nitrogen fertilizers, fluorocarbons, and high level aircraft on the ozone layer; and (3) the possible results of a decreasing ozone layer. (MR)

  6. Identifying and forecasting deep stratospheric ozone intrusions over the western United States from space

    NASA Astrophysics Data System (ADS)

    Lin, M.; Fiore, A. M.; Horowitz, L. W.; Cooper, O. R.; Langford, A. O.; Pan, L.; Liu, X.; Reddy, P. J.

    2012-12-01

    Recent studies have shown that deep stratospheric ozone intrusions can episodically enhance ground-level ozone above the health-based standard over the western U.S. in spring. Advanced warning of incoming intrusions could be used by state agencies to inform the public about poor air quality days. Here we explore the potential for using total ozone retrievals (version 5.2, level 3) at twice daily near global coverage from the AIRS instrument aboard the NASA Aqua satellite to identify stratospheric intrusions and forecast the eventual surface destination of transported stratospheric ozone. The method involves the correlation of AIRS daily total ozone columns at each 1ox1o grid box ~1-3 days prior to stratospheric enhancements to daily maximum 8-hour average ozone at a selected surface site using datasets from April to June in 2003-2011. The surface stratospheric enhancements are estimated by the GFDL AM3 chemistry-climate model which includes full stratospheric and tropospheric chemistry and is nudged to reanalysis winds. Our earlier work shows that the model presents deep stratospheric intrusions over the Western U.S. consistently with observations from AIRS, surface networks, daily ozone sondes, and aircraft lidar available in spring of 2010 during the NOAA CalNex field campaign. For the 15 surface sites in the U.S. Mountain West considered, a correlation coefficient of 0.4-0.7 emerges with AIRS ozone columns over 30o-50oN latitudes and 125o-105oW longitudes - variability in the AIRS column within this spatial domain indicates incoming intrusions. For each "surface receptor site", the spatial domain can narrow to an area ~5ox5o northwest of the individual site, with the strong correlation (0.5-0.7) occurring when the AIRS data is lagged by 1 day from the AM3 stratospheric enhancements in surface air. The spatial pattern of correlations is consistent with our process-oriented understanding developed from case studies of extreme intrusions. Surface observations

  7. Total Ozone Observations at Arosa (Switzerland) by Dobson and Brewer: Temperature and Ozone Slant Path Effect

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Groebner, J.

    2008-12-01

    Dobson and Brewer spectrophotometers are the main ground based instruments used to monitor the ozone layer. Early total ozone (TOZ) measurements were made primarily with Dobson instruments; however, there has been a trend over the last years to replace them by the newer, more advanced Brewer spectrophotometer. Given this transition, it is of utmost importance to assure the homogeneity of the data taken with these two distinct instruments types if total ozone (TOZ) changes over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percentage from Brewer and Dobson spectrophotometers measurements at mid-latitudes. At Arosa (Switzerland), two Dobson and three Brewers instruments have been co-located since 1998, producing a unique dataset of quasi-simultaneous observations valuable for the study of systematic differences between these measurements. The differences can be at least partially attributed to seasonal variability in the atmospheric temperature and the ozone slant path. The effective temperature sensitivity of the ozone cross section has been calculated using different reference spectra, at high and low resolution, weighting of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. If one takes into account the temperature dependence of the [Bass, 1985] ozone absorption spectra (current remote sensing standard) and the ozone slant path effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced from an amplitude of about 2% to less than 0.5%. The use of different ozone laboratory spectra yields different results in retrieved TOZ, because of the sensitivity of the retrieval algorithms and uncertainties in the experimental ozone cross section measurements.

  8. Modeling Study of Winter Ozone Pollution in Uintah Basin: A Case Study of January 15-31 in 2013 Using WRF-CAMx.

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Tran, H. N. Q.; Mansfield, M. L.; Lyman, S. N.

    2014-12-01

    Since elevated ozone concentrations (>75ppb) were first detected in Uintah Basin in 2009, winter ozone pollution in Uintah Basin (Eastern Utah) has drawn researchers' attention in this region. Joint research efforts among several research groups have been undertaken to study this topic (UBOS, 2012; 2013; 2014); yet this phenomenon is still not completely understood. For example, modeling studies still face problems such as errors in emission inventories and inappropriate meteorological and chemical modeling parameterizations for winter conditions in the Uintah Basin. In this study, the SMOKE-WRF-CAMx model platform (grid resolution of 1.3km) was used to simulate ozone formation in the basin during Jan 15-31 in 2013 to compare the impacts of current bottom-up versus top-down emission inventories on modeled ozone concentrations. Different VOC emission profiles for oil and gas emissions that have been applied in various studies were also examined in CAMx and compared with available monitoring data to determine the representative profile for future studies.

  9. Effects of combining ozone and hydrogren peroxide on tooth bleaching: A clinical study.

    PubMed

    Al-Omiri, Mahmoud K; Hassan, Ra'ed S Abul; AlZarea, Bader K; Lynch, Edward

    2016-10-01

    The purpose of this study was to evaluate the efficiency of bleaching after combining ozone and 38% H2O2 in comparison to the sole use of 38% H2O2. Consecutive 26 participants (13 males and 13 females) were recruited into this study. They were randomly allocated into 2 groups (n=13 for each group). In group 1 (test group); the participants' upper anterior teeth were treated with 38% H2O2 for 20min then the teeth were exposed to ozone for 60s (healOzone(®) X4, KaVo Dental, Biberach, Germany). In group 2 (controls); the upper anterior teeth were treated with 20min of 38% H2O2 only. The shade of teeth was evaluated by recording the L* a* b* values and Vita Classic shades at study baseline and after bleaching in both groups. The statistically significant changes were set at P≤0.05. Tooth sensitivity and teeth shades were comparable between groups at study baseline (p>0.05). Controls reported more tooth sensitivity following bleaching (p<0.001). Teeth achieved better Vita shades, higher L* values (lighter shades), and lower a* and b* values (lighter shades) after bleaching in both groups (P≤0.05). However, teeth bleached with H2O2 and ozone achieved better Vita shades, higher L* values and lower a* values (lighter shades) than those bleached with H2O2 alone (p<0.001). Changes in b* values were not significantly different between groups. Bleaching with 38% H2O2 for 20min followed by 60s of ozone application would result in teeth with lighter shades than bleaching with 38% H2O2 alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ozone risk and foliar injury on Viburnum lantana L.: a meso-scale epidemiological study.

    PubMed

    Gottardini, Elena; Cristofolini, Fabiana; Cristofori, Antonella; Ferretti, Marco

    2014-09-15

    A stratified random sampling design was adopted to contrast sites with different ozone exposure levels (≤ 18,000 and >18,000 μg m(-3) h) in order to define whether and to what extent a relationship exists between potential risk (estimated by exposure to ozone) and the response of Viburnum lantana L. in terms of foliar symptoms. The study was designed over a meso-scale (6200 km(2)), carried out in 2010 and repeated in 2012 on a subset of sites. No difference was found between the occurrences of symptoms in relation to soil moisture or plant size. Although no direct significant exposure-response function could be identified, when data were aggregated according to ozone exposure levels the symptoms (in terms of number of symptomatic plants and symptomatic leaves per plant) were found to be significantly more frequent at sites with higher exposure (AOT40>18,000 μg m(-3) h), especially at high elevations (>700 ma.s.l.). The 2012 results confirmed the 2010 findings. Although ozone levels in the region were almost similar between 2010 and 2012, symptoms were significantly less frequent in 2012. This was likely due to drier conditions in 2012 (+1.1 °C; -23% precipitation), a situation that may have prevented in part ozone uptake and therefore the expression of symptoms. These results are useful in several respects: (i) for identifying areas where ozone is likely to impact vegetation; (ii) for testing the appropriateness of EU standards to protect vegetation from ozone; and (iii) for designing biomonitoring surveys. We suggest that V. lantana is a suitable indicator for assessing qualitatively (but not quantitatively) the potential risk of ozone damage to vegetation over remote, large areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Convective and Wave Signatures in Ozone Profiles Over the Equatorial Americas: Views from TC4 (2007) and SHADOZ

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; MacFarlane, Alaina M.; Morris, Gary A.; Yorks, John E.; Miller, Sonya K.; Taubman, Brett F.; Verver, Ge; Voemel, Holger; Avery, Melody A.; Hair, Johnathan W.; hide

    2009-01-01

    During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100- 300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer.

  12. Ground-based lidar measurements of stratospheric ozone. The NASA/GSFC stratospheric ozone lidar trailer experiment STROZ LITE

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Butler, James; Burris, John; Heaps, William S.

    1990-01-01

    The major research objective is the measurement of high precision vertical profiles of ozone between 20-40 kilometers. The precision is such that the instrument should be capable of detecting a small trend (on the order of less that 1 percent per year) over a 5-10 year period. Temperature was measured between 30 and 365 km. The Goddard Space Flight Center (GSFC) mobile lidar was installed at Table Mountain and a comparison between it and the permanent Jet Propulsion Laboratory (JPL) lidar was made over the course of about 3 weeks. The lidars agreed very well between 20 and 40 km, and under certain conditions up to 45-47 km. There were several anomalies that both lidars followed very well. Agreement with Rocket Ozonesonde (ROCOZ) and electrochemical concentration cell (ECC) sondes was also very good.

  13. Intercomparison among tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Urita, N.; Ohta, E.; Hayashida, S.; Richter, A.; Burrows, J. P.; Liu, X.; Chance, K.; Ziemke, J. R.

    2005-12-01

    Rapid economical growth and industrial development in East Asian regions are causing serious air pollution. The influence of such air pollution is not limited to a local scale but reaches an intercontinental or hemispheric scale. Satellite-borne observations can monitor the behaviors of air pollutants in a global scale for long periods with a single instrument. In particular, ozone and nitrogen dioxide in the troposphere have a crucial role in air pollution, and many studies have tried to derive those species. Recently, instrumentations and retrieval techniques have made a lot of progress in measurements of tropospheric constituents. However, tropospheric observations from space need careful validation because of difficulties in detecting signals from the lower atmosphere through the middle atmosphere. In the present study, we intercompare the tropospheric ozone and nitrogen dioxide data obtained by satellite- and ground-based measurements in order to validate the satellite measurements. For the validation of tropospheric ozone, we utilize ozonesonde data provided by WOUDC, and three satellite-borne data (Tropospheric Ozone Residual (TOR), Cloud Slicing, and GOME) are intercompared. For nitrogen dioxide, we compare GOME observations with ground-based air monitoring measurements in Japan which are operationally conducted by the Ministry of the Environment Japan. This study demonstrates the validity and potential of those satellite datasets to apply for quantitative analysis of dispersion of air pollutants and their chemical lifetime. Acknowledgments. TOR data is provided by J. Fishman via http://asd-www.larc.nasa.gov/TOR/data.html. The ground observation data of nitrogen dioxide over Japan is provided by National Institute for Environmental Studies (NIES) under the collaboration study with NIES and Nara Women's University.

  14. Ozone and Ozone By-Products in the Cabins of Commercial Aircraft

    PubMed Central

    Weisel, Clifford; Weschler, Charles J.; Mohan, Kris; Vallarino, Jose; Spengler, John D.

    2013-01-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were > 75ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO’s formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  15. CAMx Ozone Source Attribution in the Eastern United States using Guidance from Observations during DISCOVER-AQ Maryland.

    PubMed

    Goldberg, Daniel L; Vinciguerra, Timothy P; Anderson, Daniel C; Hembeck, Linda; Canty, Timothy P; Ehrman, Sheryl H; Martins, Douglas K; Stauffer, Ryan M; Thompson, Anne M; Salawitch, Ross J; Dickerson, Russell R

    2016-03-16

    A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NO y by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (CB6r2 chemistry, MEGAN v2.1 biogenic emissions, 50% reduction in mobile NO x , enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NO x -limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NO x reductions as well as the current contribution of EGUs to surface ozone.

  16. Extreme value modeling for the analysis and prediction of time series of extreme tropospheric ozone levels: a case study.

    PubMed

    Escarela, Gabriel

    2012-06-01

    The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results.

  17. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately uponmore » mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.« less

  18. A Comparative Study on Ozone Photochemical Formation in the Megacities of Tianjin and Shanghai, China

    NASA Astrophysics Data System (ADS)

    Ran, L.; Zhao, C.; Xu, W.; Geng, F.; Lu, X.; Han, M.; Lin, W.; Xu, X.

    2011-12-01

    As one of the most widespread and stubborn environmental issues, the ozone problem has been of particular concern for many years, given the potential adverse effects of high ozone concentrations on public health and agricultural productivity. In the past decades, rapid urbanization and industrialization have given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated megacities. Due to the highly nonlinear impacts of ozone precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs) on ozone photochemistry, formation of ozone affected by different precursor emission patterns in those megacities has exhibited different characteristics. A comparative analysis of ozone photochemical production in the megacities of Tianjin and Shanghai has thus been carried out, using the data sets of surface ozone and its precursors measured respectively at an urban and a suburban site of the two megacities during the summertime. Observation-based analysis indicated an elevated ozone daily peak under photochemistry dominant conditions from the urban center to the suburb in both regions, nevertheless bearing different reasons. Ozone production was generally sensitive to VOCs in the Tianjin region, leading to a relatively higher level of ozone in the suburb where reactive VOCs were abundantly released from a number of industrial facilities, whereas a sensitivity of ozone production to NOx was found in Shanghai. The high level of NOx emitted mainly by motor vehicles in urban Shanghai largely inhibited ozone formation and resulted in a much more rapid decrease in ozone concentrations after reaching the daily maximum around midday compared with the other three areas. Ozone pollution in the megacity of Tianjin was more representative of the regional condition, implying that combined efforts would be needed to bring the ozone problem under control within this region. Improved understanding of

  19. A new differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington DC region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-04-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.

  20. Ozone, ozone production rates and NO observations on the outskirts of Quito, Ecuador

    NASA Astrophysics Data System (ADS)

    Cazorla, M.

    2014-12-01

    Air quality measurements of ambient ozone, ozone production rates and nitrogen oxides, in addition to baseline meterology observations, are being taken at a recently built roof-top facility on the campus of Universidad San Francisco de Quito, in Ecuador. The measurement site is located in Cumbayá, a densely populated valley adjacent to the city of Quito. Time series of ozone and NO are being obtained with commercial air quality monitors. Rush-hour peaks of NO, above 100 ppb, have been observed, while daytime ozone levels are low. In addition, ozone production rates are being measured with the Ecuadorian version of the MOPS, Measurement of Ozone Production Sensor, originally built at Penn State University in 2010. NO and ozone observations and test results of measured ozone production rates will be presented.

  1. Ozone and the stratosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  2. Indoor secondary pollutants from household product emissions in the presence of ozone: A bench-scale chamber study.

    PubMed

    Destaillats, Hugo; Lunden, Melissa M; Singer, Brett C; Coleman, Beverly K; Hodgson, Alfred T; Weschler, Charles J; Nazaroff, William W

    2006-07-15

    Ozone-driven chemistry is a source of indoor secondary pollutants of potential health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields for most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid, and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of secondary particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10(5) molecules cm(-3) were determined by an indirect method. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate chamber study, we exposed the dry residue of two products to ozone and observed the formation of gas-phase and particle-phase secondary oxidation products.

  3. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    NASA Technical Reports Server (NTRS)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  4. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    NASA Astrophysics Data System (ADS)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  5. Aura Microwave Limb Sounder Animation Illustrating the Interaction Between Temperatures and Chemicals Involved in Ozone Destruction, 2004-2005 Arctic Winter

    NASA Image and Video Library

    2005-06-02

    This still from an animation created from data from the Microwave Limb Sounder instrument on NASA Aura spacecraft depicts the complex interaction of chemicals involved in the destruction of ozone during the 2005 Arctic winter.

  6. An RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels

    USDA-ARS?s Scientific Manuscript database

    Ozone is a pollutant widely known to cause decrease in productivity in many plant species, including soybean. While cultivated soybean response to ozone has been studied, less work has been done to identify sources of resistance from wild relatives. This study presents a putative SNP marker on Chrom...

  7. Parameterizing the impacts of ozone-vegetation coupling and feedbacks on ozone air quality in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Tai, A. P. K.; Lombardozzi, D.

    2016-12-01

    Apart from being an important greenhouse gas, tropospheric ozone is a significant air pollutant that is shown to have harmful effects both on human health and vegetation. Ozone damages vegetation mainly through reducing plant photosynthesis and stomatal conductance. Meanwhile, ozone is also strongly dependent on vegetation via various biogeochemical and physical processes. These interdependences between ozone and vegetation would constitute feedback mechanisms that can potentially alter ozone concentration itself, and should be considered in future climate and air quality projections. In this study, we first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM), and simulate the relative changes in leaf area indices (LAI) and stomatal conductance for three plant groups (consolidated from 15 plant functional types) at various prescribed ozone levels (from 0 ppb to 100 ppb). We find that all plant groups suffer the greatest decreases in LAI and stomatal conductance in regions with their greatest abundance, and grasses and crops show the most severe damage from ozone exposure compared with broadleaf and needleleaf groups, with an LAI reduction of as much as 50% in some areas even at an ozone level of 30 ppb. Using the CLM-simulated results, we develop a semi-empirical parameterization scheme to link prescribed ozone levels to the spatially varying simulated relative changes in LAI and stomatal conductance at model steady state. We implement the scheme in the GEOS-Chem chemical transport model so that ozone-vegetation chemical coupling via ozone dry deposition and biogenic volatile organic compound (VOC) emissions can be simulated online. Model simulations indicate that ozone effect on stomatal conductance (which modifies dry deposition) appears to be the dominant feedback pathway influencing surface ozone, whereas ozone-mediated LAI changes (which affects biogenic VOC emissions) appear to play a lesser role. This work is the

  8. OZONE BYPRODUCT FORMATION

    EPA Science Inventory

    The use of ozone for water treatment has been increasing as ozone has great potential for degrading water pollutants and inactivating viruses, Giardia cysts, and Cryptosporidium oocysts. Although it appears that ozone generates less undesirable disinfection by-products (DBPs) th...

  9. Model development for naphthenic acids ozonation process.

    PubMed

    Al Jibouri, Ali Kamel H; Wu, Jiangning

    2015-02-01

    Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters.

  10. The effect of environmental initiatives on NASA specifications and standards activities

    NASA Technical Reports Server (NTRS)

    Griffin, Dennis; Webb, David; Cook, Beth

    1995-01-01

    The NASA Operational Environment Team (NOET) has conducted a survey of NASA centers specifications and standards that require the use of Ozone Depleting Substances (ODS's) (Chlorofluorocarbons (CFCs), Halons, and chlorinated solvents). The results of this survey are presented here, along with a pathfinder approach utilized at Marshall Space Flight Center (MSFC) to eliminate the use of ODS's in targeted specifications and standards. Presented here are the lessons learned from a pathfinder effort to replace CFC-113 in a significant MSFC specification for cleaning and cleanliness verification methods for oxygen, fuel and pneumatic service, including Shuttle propulsion elements.

  11. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  12. An Overview of the Uintah Basin Winter Ozone Study Intensives: 2012, 2013, and 2014

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.; Edwards, P. M.; Brown, S. S.; Ahmadov, R.; Bates, T. S.; De Gouw, J. A.; Gilman, J.; Graus, M.; Helmig, D.; Koss, A.; Langford, A. O.; Lefer, B. L.; Lerner, B. M.; Li, R.; Li, S. M.; Liggio, J.; McKeen, S. A.; McLaren, R.; Parrish, D. D.; Quinn, P.; Senff, C. J.; Stutz, J.; Thompson, C. R.; Tsai, J. Y.; Veres, P. R.; Washenfelder, R. A.; Warneke, C.; Wild, R. J.; Young, C.; Yuan, B.

    2014-12-01

    Ground level ozone frequently exceeds the National Ambient Air Quality Standard in the Uintah Basin in northeastern Utah during the winter season. The basin is home to some of the most intensive oil and gas production in the region, activities that have been accelerated by new technologies in that industry. High ozone episodes are coincident with the presence of snow and "cold pool" conditions during which a stable shallow boundary layer persists for periods of up to 10 days. Local emissions of NOx and VOCs build up within this layer, but the sources of radicals that initiate the photochemistry have been unclear since low photolysis rates and water vapor make the traditional channel, ozone photolysis, quite inefficient. Intensive studies over the past 3 winter seasons have shown that unconventional radical sources; primarily carbonyls, and to a lesser extent nitryl chloride and nitrous acid, are responsible for radical production in this environment. The role of snow cover is to restrict vertical mixing, enhance photolysis rates through increased albedo, and reduce ozone deposition. The uptake and production of photo-labile species on the snow surface were observed, but appear to have only minor influences on the ozone photochemistry.

  13. The characteristics of tropospheric ozone seasonality observed from ozone soundings at Pohang, Korea.

    PubMed

    Kim, Jae H; Lee, H J; Lee, S H

    2006-07-01

    This paper presents the first analysis of vertical ozone sounding measurements over Pohang, Korea. The main focus is to analyze the seasonal variation of vertical ozone profiles and determine the mechanisms controlling ozone seasonality. The maxima ozone at the surface and in the free troposphere are observed in May and June, respectively. In comparison with the ozone seasonality at Oki (near sea level) and Happo (altitude of 1840 m) in Japan, which are located at the same latitude as of Pohang, we have found that the time of the ozone maximum at the Japanese sites is always a month earlier than at Pohang. Analysis of the wind flow at the surface shows that the wind shifts from westerly to southerly in May over Japan, but in June over Pohang. However, this wind shift above boundary layer occurs a month later. This wind shift results in significantly smaller amounts of ozone because the southerly wind brings clean wet tropical air. It has been suggested that the spring ozone maximum in the lower troposphere is due to polluted air transported from China. However, an enhanced ozone amount over the free troposphere in June appears to have a different origin. A tongue-like structure in the time-height cross-section of ozone concentrations, which starts from the stratosphere and extends to the middle troposphere, suggests that the ozone enhancement occurs due to a gradual migration of ozone from the stratosphere. The high frequency of dry air with elevated ozone concentrations in the upper troposphere in June suggests that the air is transported from the stratosphere. HYSPLIT trajectory analysis supports the hypothesis that enhanced ozone in the free troposphere is not likely due to transport from sources of anthropogenic activity.

  14. The Use of Regulatory Air Quality Models to Develop Successful Ozone Attainment Strategies

    NASA Astrophysics Data System (ADS)

    Canty, T. P.; Salawitch, R. J.; Dickerson, R. R.; Ring, A.; Goldberg, D. L.; He, H.; Anderson, D. C.; Vinciguerra, T.

    2015-12-01

    The Environmental Protection Agency (EPA) recently proposed lowering the 8-hr ozone standard to between 65-70 ppb. Not all regions of the U.S. are in attainment of the current 75 ppb standard and it is expected that many regions currently in attainment will not meet the future, lower surface ozone standard. Ozone production is a nonlinear function of emissions, biological processes, and weather. Federal and state agencies rely on regulatory air quality models such as the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) to test ozone precursor emission reduction strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe various model scenarios that simulate how future limits on emission of ozone precursors (i.e. NOx and VOCs) from sources such as power plants and vehicles will affect air quality. These scenarios are currently being developed by states required to submit a State Implementation Plan to the EPA. Projections from these future case scenarios suggest that strategies intended to control local ozone may also bring upwind states into attainment of the new NAAQS. Ground based, aircraft, and satellite observations are used to ensure that air quality models accurately represent photochemical processes within the troposphere. We will highlight some of the improvements made to the CMAQ and CAMx model framework based on our analysis of NASA observations obtained by the OMI instrument on the Aura satellite and by the DISCOVER-AQ field campaign.

  15. Reduction of date microbial load with ozone

    PubMed Central

    Farajzadeh, Davood; Qorbanpoor, Ali; Rafati, Hasan; Isfeedvajani, Mohsen Saberi

    2013-01-01

    Background: Date is one of the foodstuffs that are produced in tropical areas and used worldwide. Conventionally, methyl bromide and phosphine are used for date disinfection. The toxic side effects of these usual disinfectants have led food scientists to consider safer agents such as ozone for disinfection, because food safety is a top priority. The present study was performed to investigate the possibility of replacing common conventional disinfectants with ozone for date disinfection and microbial load reduction. Materials and Methods: In this experimental study, date samples were ozonized for 3 and 5 hours with 5 and 10 g/h concentrations and packed. Ozonized samples were divided into two groups and kept in an incubator which was maintained at 25°C and 40°C for 9 months. During this period, every 3 month, microbial load (bacteria, mold, and yeast) were examined in ozonized and non-ozonized samples. Results: This study showed that ozonization with 5 g/h for 3 hours, 5 g/h for 5 hours, 10 g/h for 3 hours, and 10 g/h for 5 hours leads to about 25%, 25%, 53%, and 46% reduction in date mold and yeast load and about 6%, 9%, 76%, and 74.7% reduction in date bacterial load at baseline phase, respectively. Appropriate concentration and duration of ozonization for microbial load reduction were 10 g/h and 3 hours. Conclusion: Date ozonization is an appropriate method for microbial load reduction and leads to an increase in the shelf life of dates. PMID:24124432

  16. Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Askari Ardehjani, Nastaran

    2018-06-01

    In this work, the adsorption of ozone molecule on Fe, Co and Ni doped boron nitride nanosheets (BNNSs) were investigated using density functional theory. The most stable adsorption configurations, charge transfer and adsorption energy of ozone molecule on pure and doped BNNSs are calculated. It is shown that ozone molecule has no remarkable interaction with pure boron nitride nanosheet, it tends to be chemisorbed on Fe, Co and Ni doped BNNSs with adsorption energy in the range of -249.4 to -686.1 kJ/mol. In all configurations, the adsorption of ozone molecule generates a semiconductor by reducing Eg in the pure and Fe, Co and Ni doped boron nitride nanosheet. It shows that the conductance of BNNSs change over the adsorption of ozone molecule. The obtained results in this study can be used in developing BN-based sheets for ozone molecule removal.

  17. Mechanisms of inactivation of bacteriophage phiX174 and its DNA in aerosols by ozone and ozonized cyclohexene.

    PubMed Central

    de Mik, G.; de Groot, I.

    1977-01-01

    The mechanisms of inactivation of aerosolized bacteriophage phiX174 in atmospheres containing ozone, cyclohexene, or ozonized cyclohexene were studied by using 32P-labelled phage. The inactivation of the aerosolized phage in clear air or in air containing cyclohexene is due to damage of the protein coat since the deoxyribonucleic acid (DNA) extracted from the inactivated phage retains its biological activity. Inactivation of the phage in air containing ozonized cyclohexene is due both to protein and DNA damage. Sucrose gradient analysis shows that aerosolized inactivated phiX174 releases unbroken DNA. In contrast, the DNA from phage phiX174 inactivated by ozonized cyclohexene is broken. The inactivation of aerosolized phage phiX174-DNA was studied in the same atmospheres using 32P-labelled DNA. phiX174-DNA aerosolized in clear air or air containing cyclohexene at 75% r.h. is inactivated by a factor of 2 in 30 min. The inactivated DNA is broken. Ozone as well as ozonized cyclohexene inactivates KNA very fast causing breaks in the molecule. This is in contrast with the intact bacteriophage in which ozone does not produce breaks in the DNA. PMID:265342

  18. The Role of Ambient Ozone in Epidemiologic Studies of Heat-Related Mortality

    PubMed Central

    Snowden, Jonathan M.; Kontgis, Caitlin; Tager, Ira B.

    2012-01-01

    Background: A large and growing literature investigating the role of extreme heat on mortality has conceptualized the role of ambient ozone in various ways, sometimes treating it as a confounder, sometimes as an effect modifier, and sometimes as a co-exposure. Thus, there is a lack of consensus about the roles that temperature and ozone together play in causing mortality. Objectives: We applied directed acyclic graphs (DAGs) to the topic of heat-related mortality to graphically represent the subject matter behind the research questions and to provide insight on the analytical options available. Discussion: On the basis of the subject matter encoded in the graphs, we assert that the role of ozone in studies of temperature and mortality is a causal intermediate that is affected by temperature and that can also affect mortality, rather than a confounder. Conclusions: We discuss possible questions of interest implied by this causal structure and propose areas of future work to further clarify the role of air pollutants in epidemiologic studies of extreme temperature. PMID:22899622

  19. Ozone Observations by the Gas and Aerosol Measurement Sensor during SOLVE II

    NASA Technical Reports Server (NTRS)

    Pitts, M. C.; Thomason, L. W.; Zawodny, J. M.; Wenny, B. N.; Livingston, J. M.; Russell, P. B.; Yee, J.-H.; Swartz, W. H.; Shetter, R. E.

    2006-01-01

    The Gas and Aerosol Measurement Sensor (GAMS) was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). GAMS acquired line-of-sight (LOS) direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS) optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10-20% in theWulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.

  20. Scientific assessment of stratospheric ozone: 1989, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A scientific review is presented of the current understanding of stratospheric ozone. There have been highly significant advances in the understanding of the impact of human activities on the Earth's protective ozone layer. There are four major findings that each heighten the concern that chlorine and bromine containing chemicals can lead to a significant depletion of stratospheric ozone: (1) Antarctic ozone hole (the weight of evidence indicates that chlorinated and brominated chemicals are responsible for the ozone hole; (2) Perturbed arctic chemistry (the same potentially ozone destroying processes were identified in the Arctic stratosphere); (3) Long term ozone decreases; and (4) Model limitations (gaps in theoretical models used for assessment studies).

  1. Inheritance of ozone resistance in tall fescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, W.J.; Haaland, R.L.; Dickens, R.

    Ozone is considered the most important air pollutant affecting vegetation. With progressive urbanization, ozone levels have steadily escalated. Reports suggest that ozone tolerance is a highly heritable characteristic and that the selection of resistant plants and breeding for ozone resistance should be possible. This study was undertaken to gain information on the inheritance of ozone resistance in tall fescue (Festuca arundinacea Schreb.).Progenies from a diallel among six tall fescue genotypes of diverse origin were evaluated for ozone resistance in a fumigation-chamber. Sixteen-day-old seedlings were exposed to 0.5 ppm ozone for 3 hours and scored for injury after 3 days. Generalmore » combining ability (GCA) and reciprocal effects were both highly significant; however, GCA constituted a major portion of the genotypic variation. Specific combining ability was not significant. The predominance of additive genetic variance observed indicates that breeding for ozone resistance in this tall fescue population should be possible.« less

  2. Global Ozone Distribution relevant to Human Health: Metrics and present day levels from the Tropospheric Ozone Assessment Report (TOAR)

    NASA Astrophysics Data System (ADS)

    Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.

  3. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery

    NASA Astrophysics Data System (ADS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego

    2018-02-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend

  4. A Madden-Julian Oscillation in Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.

    2003-01-01

    This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5-10 Dobson Unit (DU) peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.

  5. CANOZE measurements of the Arctic ozone hole

    NASA Technical Reports Server (NTRS)

    Evans, W. F. J.; Kerr, J. B.; Fast, H.

    1988-01-01

    In CANOZE 1 (Canadian Ozone Experiment), a series of 20 ozone profile measurements were made in April, 1986 from Alert at 82.5 N. CANOZE is the Canadian program for study of the Arctic winter ozone layer. In CANOZE 2, ozone profile measurements were made at Saskatoon, Edmonton, Churchill and Resolute during February and March, 1987 with ECC ozonesondes. Ground based measurements of column ozone, nitrogen dioxide and hydrochloric acid were conducted at Saskatoon. Two STRATOPROBE balloon flights were conducted on February 26 and March 19, 1987. Two aerosol flights were conducted by the University of Wyoming. The overall results of this study will be reported and compared with the NOZE findings. The results from CANOZE 3 in 1988, are also discussed. In 1988, as part of CANOZE 3, STRATOPROBE balloon flights were conducted from Saskatchewan on January 27 and February 13. A new lightweight infrared instrument was developed and test flown. A science flight was successfully conducted from Alert (82.5 N) on March 9, 1988 when the vortex was close to Alert; a good measurement of the profile of nitric acid was obtained. Overall, the Arctic spring ozone layer exhibits many of the features of the Antarctic ozone phenomenon, although there is obviously not a hole present every year. The Arctic ozone field in March, 1986 demonstrated many similarities to the Antarctic ozone hole. The TOMS imagery showed a crater structure in the ozone field similar to the Antarctic crater in October. Depleted layers of ozone were found in the profiles around 15 km, very similar to those reported from McMurdo. Enhanced levels of nitric acid were measured in air which had earlier been in the vortex. The TOMS imagery for March 1987 did not show an ozone crater, but will be examined for an ozone crater in February and March, 1988, the target date for the CANOZE 3 project.

  6. Consumer acceptance of ozone-treated whole shell eggs.

    PubMed

    Kamotani, Setsuko; Hooker, Neal; Smith, Stephanie; Lee, Ken

    2010-03-01

    Ozone-based processing is a novel technology with potentially fewer adverse effects than in-shell thermal pasteurization of eggs. There are no consumer acceptance studies published on ozone-treated eggs. This study examines consumers' ability to detect changes between ozone-treated, thermal-treated, and fresh untreated eggs. Consumers (n = 111) evaluated visual attributes of uncooked eggs and a separate group of consumers (n = 132) evaluated acceptability of cooked eggs. Consumers evaluated attribute intensity of the eggs. The yolks and albumens of the thermal-treated and ozone-treated eggs were perceived to be significantly cloudier than the untreated control, while the ozone-treated eggs were more similar to control (P < 0.05). The yolks of ozone-treated eggs were perceived to have significantly lower heights and greater spreads than the others (P < 0.05). Despite these perceptions, overall visual appeal of ozone-treated eggs was not significantly different from control eggs. A separate set of consumers used hedonic scales to evaluate overall liking, appearance, aroma, flavor, and texture of cooked eggs. Just-about-right (JAR) scales were used to rate the color, moistness, and texture. There were no differences on any attribute scores between the treatments, except thermal-treated and ozone-treated were perceived as less moist than the control. There were no adverse effects on consumer acceptance of eggs, treated with ozone, with acceptance the same as an untreated control. These findings are useful as ozone pasteurization can enhance the safety of fresh shell eggs to meet the goals of the U.S. Egg Safety Action Plan. The U.S. Egg Safety Action Plan requires all shell eggs to be pasteurized to prevent foodborne illness. Heat pasteurization partially cooks the egg, so an alternative process uses ozone with less heat. This study shows the ozone pasteurization has no detectable sensory defects.

  7. A Composite View of Ozone Evolution in the 1995-1996 Northern Winter Polar Vortex Developed from Airborne Lidar and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Schoeberl, M. R.; Kawa, S. R.; Browell, E. V.

    2000-01-01

    The processes which contribute to the ozone evolution in the high latitude northern lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS); the Polar Ozone and Aerosol Measurement (POAM II) solar occultation instrument. Time series for the different data sets are consistent with each other, and diverge from model time series during December and January. The model ozone in December and January is shown to be much less sensitive to the model photochemistry than to the model vertical transport, which depends on the model vertical motion as well as the model vertical gradient. We evaluate the dependence of model ozone evolution on the model ozone gradient by comparing simulations with different initial conditions for ozone. The modeled ozone throughout December and January most closely resembles observed ozone when the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. We make a quantitative estimate of the uncertainty in the vertical advection using diabatic trajectory calculations. The net transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The observed and modeled ozone time series during December and January are consistent when these transport uncertainties are taken into account.

  8. Ozone Antimicrobial Efficacy

    EPA Science Inventory

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  9. Simulation of tropospheric ozone with MOZART-2: An evaluation study over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Qianxia; Zhang, Meigen; Wang, Bin

    2005-07-01

    Climate changes induced by human activities have attracted a great amount of attention. With this, a coupling system of an atmospheric chemistry model and a climate model is greatly needed in China for better understanding the interaction between atmospheric chemical components and the climate. As the first step to realize this coupling goal, the three-dimensional global atmospheric chemistry transport model MOZART-2 (the global Model of Ozone and Related Chemical Tracers, version 2) coupled with CAM2 (the Community Atmosphere Model, version 2) is set up and the model results are compared against observations obtained in East Asia in order to evaluate the model performance. Comparison of simulated ozone mixing ratios with ground level observations at Minamitorishima and Ryori and with ozonesonde data at Naha and Tateno in Japan shows that the observed ozone concentrations can be reproduced reasonably well at Minamitorishima but they tend to be slightly overestimated in winter and autumn while underestimated a little in summer at Ryori. The model also captures the general features of surface CO seasonal variations quite well, while it underestimates CO levels at both Minamitorishima and Ryori. The underestimation is primarily associated with the emission inventory adopted in this study. Compared with the ozonesonde data, the simulated vertical gradient and magnitude of ozone can be reasonably well simulated with a little overestimation in winter, especially in the upper troposphere. The model also generally captures the seasonal, latitudinal and altitudinal variations in ozone concentration. Analysis indicates that the underestimation of tropopause height in February contributes to the overestimation of winter ozone in the upper and middle troposphere at Tateno.

  10. Ozone reactivity of biogenic volatile organic compound (BVOC) emissions during the Southeast Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Park, J.; Guenther, A. B.; Helmig, D.

    2013-12-01

    Recent studies on atmospheric chemistry in the forest environment showed that the total reactivity by biogenic volatile organic compound (BVOC) emission is still not well understood. During summer 2013, an intensive field campaign (Southeast Oxidant and Aerosol Study - SOAS) took place in Alabama, U.S.A. In this study, an ozone reactivity measurement system (ORMS) was deployed for the direct determination of the reactivity of foliage emissions. The ORMS is a newly developed measurement approach, in which a known amount of ozone is added to the ozone-free air sample stream, with the ORMS measuring ozone concentration difference between before and after a glass flask flow tube reaction vessel (2-3 minutes of residence time). Emissions were also collected onto adsorbent cartridges to investigate the discrepancy between total ozone reactivity observation and reactivity calculated from identified BVOC. Leaf and canopy level experiments were conducted by deploying branch enclosures on the three dominant tree species at the site (i.e. liquidambar, white oak, loblolly pine) and by sampling ambient air above the forest canopy. For the branch enclosure experiments, BVOC emissions were sampled from a 70 L Teflon bag enclosure, purged with air scrubbed for ozone, nitrogen oxides. Each branch experiment was performed for 3-5 days to collect at least two full diurnal cycle data. In addition, BVOCs were sampled using glass tube cartridges for 2 hours during daytime and 3 - 4 hours at night. During the last week of campaign, the inlet for the ORMS was installed on the top of scaffolding tower (~30m height). The ozone loss in the reactor showed distinct diurnal cycle for all three tree species investigated, and ozone reactivity followed patterns of temperature and light intensity.

  11. Using Tropospheric Ozone Profiles and Surface Data (2004 - 2012) to Determine Background Ozone Levels in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Spychala, M. D.; Morris, G. A.; Lefer, B. L.; Rappenglueck, B.; Cohan, D. S.; zhou, W.

    2012-12-01

    The Tropospheric Ozone Pollution Project (TOPP) at Rice University (2004 - 2006) and the University of Houston (2006 - present) has gathered > 400 profiles of ozone, temperature, pressure, and relative humidity, and > 250 of those also have wind speed and wind direction near the core of the City of Houston, Texas. Houston continues to be plagued with difficulty in coming into compliance with EPA National Ambient Air Quality Standards (NAAQS) due to a combination of its geographic location, large commuter population, significant petrochemical and energy production, and favorable weather patterns. An outstanding question remains the relative partitioning of ozone between local and remote, anthropogenic and natural sources. In this presentation, we use TOPP ozone profiles to determine a "background" ozone concentration and compare this measure with surface monitor "background" ozone as determined from upwind and downwind Continuous Air Monitoring Stations (CAMS) in an effort to further our understanding of this partitioning. For periods studied with the Community Multiscale Air Quality (CMAQ) Model, we also compare the sonde and surface "background" ozone with that suggested by the model.

  12. Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angell, J. K.; Korshover, J.; Planet, W. G.

    For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual total ozone variations, and seasonal and annual layer mean ozone variations. The total ozone data are for four regions (Soviet Union, Europe, North America,more » and Asia); five climatic zones (north and south polar, north and south temperate, and tropical); both hemispheres; and the world. Layer mean ozone data are for four climatic zones (north and south temperate and north and south polar) and for the stratosphere, troposphere, and tropopause layers. The data are in two files [seasonal and year-average total ozone (13.4 kB) and layer mean ozone variations (24.2 kB)].« less

  13. A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    NASA Technical Reports Server (NTRS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-01-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore

  14. A Composite View of Ozone Evolution in the 1995-96 Northern Winter Polar Vortex Developed from Airborne Lidar and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Schoeberl, M. R.; Kawa, S. R.

    2000-01-01

    The processes which contribute to the ozone evolution in the high latitude lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite; and the Polar Ozone and Aerosol Measurement (POAM II) solar occulation instrument, on board the French Satellite Pour I'Observations de la Terre. Comparisons of the different data sets with the model simulation are shown to provide complementary information and a consistent view of the ozone evolution. The model ozone in December and January is shown to be sensitive to the ozone vertical gradient and the model vertical transport, and only weakly sensitive to the model photochemistry. The most consistent comparison between observed and modeled ozone evolution is found for a simulation where the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. Diabatic trajectory calculations are used to estimate the uncertainty due to vertical advection quantitatively. The transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The model ozone evolution during December and January is broadly consistent with the observations when these transport uncertainties are taken into account.

  15. MULTIPOLLUTANT METHODS - METHODS FOR OZONE AND OZONE PRECURSORS

    EPA Science Inventory

    This task involves the development and testing of methods for monitoring ozone and compounds associated with the atmospheric chemistry of ozone production both as precursors and reaction products. Although atmospheric gases are the primary interest, separation of gas and particl...

  16. Twenty Five Years of Airborne Observations of Ozone-Depleting and Climate-Related Gases in the Upper Troposphere and Lower Stratosphere.

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Nance, J. D.; Hall, B. D.

    2016-12-01

    NOAA scientists started in situ airborne measurements of two strong ozone-depleting gases or chlorofluorocarbons, CFC-11 and CFC-113 in 1991 on the NASA ER-2 aircraft with a two-channel gas chromatograph, Airborne Chromatograph for Atmospheric Trace Species (ACATS). We broaden our list of gases to include more ozone-depleting and other climate-related gases. An improved 4-channel gas chromatograph that included N2O, SF6, CFC-11, -12, -113, halon-1211, CCl4, CH3CCl3, CH4, CO, and H2 was added to the ER-2 aircraft in 1994. As CFC replacements took hold, we add a gas chromatograph-mass spectrometer system, PAN and other Trace Hydro-halocarbon Experiment (PANTHER), to examine shorter-lived gases mainly in the upper troposphere. These airborne measurements were to complement of ground-based flask and in situ measurements from the NOAA Halocarbon and other Trace Species Network. This talk will show results from a tropical study, Airborne Tropical Tropopause Experiment (ATTREX) on the NASA Global Hawk aircraft and preliminary results from the Atmospheric Tomography Mission (ATom) conducted in August 2016 on the NASA DC-8 aircraft. A detrended, gridded, latitudinal distribution of SF6 is shown in the figure below for the years of 1994 through 2014. Such a plot may be useful to atmospheric modelers trying to capture transport or calculate emissions.

  17. Statistical estimation of ozone exposure metrics

    NASA Astrophysics Data System (ADS)

    Blankenship, Erin E.; Stefanski, L. A.

    Data from recent experiments at North Carolina State University and other locations provide a unique opportunity to study the effect of ambient ozone on the growth of clover. The data consist of hourly ozone measurements over a 140 day growing season at eight sites in the US, coupled with clover growth response data measured every 28 days. The objective is to model an indicator of clover growth as a function of ozone exposure. A common strategy for dealing with the numerous hourly ozone measurements is to reduce these to a single summary measurement, a so-called exposure metric, for the growth period of interest. However, the mean ozone value is not necessarily the best summarization, as it is widely believed that low levels of ozone have a negligible effect on growth, whereas peak ozone values are deleterious to plant growth. There are also suspected interactions with available sunlight, temperature and humidity. A number of exposure metrics have been proposed that reflect these beliefs by assigning different weights to ozone values according to magnitude, time of day, temperature and humidity. These weighting schemes generally depend on parameters that have, to date, been subjectively determined. We propose a statistical approach based on profile likelihoods to estimate the parameters in these exposure metrics.

  18. Quantitative characterization of the Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Ito, T.; Sakoda, Y.; Matsubara, K.; Takao, T.; Akagi, K.; Watanabe, Y.; Shibata, S.; Naganuma, H.

    1994-01-01

    The long-term evolution of the Antarctic ozone hole is studied based on the TOMS data and the JMA data-set of stratospheric temperature in relation with the possible role of polar stratospheric clouds (PSC's). The effective mass of depleted ozone in the ozone hole at its annual mature stage reached a historical maximum of 55 Mt in 1991, 4.3 times larger than in 1981. The ozone depletion rate during 30 days before the mature ozone hole does not show any appreciable long-term trend but the interannual fluctuations do, ranging from 0.169 to 0.689 Mt/day with the average of 0.419 Mt/day for the period of 1979 - 1991. The depleted ozone mass has the highest correlation with the region below 195 K on the 30 mb surface in June, whereas the ozone depletion rate correlates most strongly with that in August. The present result strongly suggests that the long-term evolution of the mature ozone hole is caused both by the interannual change of the latitudinal coverage of the early PSC's, which may control the latitude and date of initiation of ozone decrease, and by that of the spatial coverage of the mature PSC's which may control the ozone depletion rate in the Antarctic spring.

  19. Tropospheric ozone as a fungal elicitor.

    PubMed

    Zuccarini, Paolo

    2009-03-01

    Tropospheric ozone has been proven to trigger biochemical plant responses that are similar to the ones induced by an attack of fungal pathogens,i.e. it resembles fungal elicitors.This suggests that ozone can represent a valid tool for the study of stress responses and induction of resistance to pathogens. This review provides an overview of the implications of such a phenomenon for basic and applied research. After an introduction about the environmental implications of tropospheric ozone and plant responses to biotic stresses, the biochemistry of ozone stress is analysed, pointing out its similarities with plant responses to pathogens and its possible applications.

  20. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    NASA Technical Reports Server (NTRS)

    Chance, Kelly

    2003-01-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  1. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    NASA Astrophysics Data System (ADS)

    Chance, Kelly

    2003-02-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  2. The High Resolution Tropospheric Ozone Residual

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2006-01-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic overestimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  3. Efficient ozone generator for ozone layer enrichment from high altitude balloon

    NASA Technical Reports Server (NTRS)

    Filiouguine, Igor V.; Kostiouchenko, Sergey V.; Koudriavtsev, Nikolay N.; Starikovskaya, Svetlana M.

    1994-01-01

    The possibilities of ozone production at low gas pressures by nanosecond high voltage discharge has been investigated. The measurements of ozone synthesis in N2-O2 mixtures have been performed. The explanation of experimental results is suggested. The possible ways of ozone yield growth are analyzed.

  4. Extracellular polymers of ozonized waste activated sludge.

    PubMed

    Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V

    2001-01-01

    Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% < 1,000 Da (low MW), 30% from 1,000 to 10,000 Da (medium MW), and 31% > 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.

  5. Ozone therapy as add-on treatment in fibromyalgia management by rectal insufflation: an open-label pilot study.

    PubMed

    Hidalgo-Tallón, Javier; Menéndez-Cepero, Silvia; Vilchez, Juan S; Rodríguez-López, Carmen M; Calandre, Elena P

    2013-03-01

    The objectives of this study were to evaluate the effectiveness and tolerability of ozone therapy by rectal insufflation as add-on therapy in fibromyalgia management. Patients with fibromyalgia received 24 sessions of ozone therapy during a 12-week period. At each session, the administered dose of ozone was 8 mg (200 mL of gas, at a concentration of 40 μg/mL). Ozone sessions were given 5 days a week during the first 2 weeks, twice a week from weeks 3-6, and weekly from weeks 7-12. Fibromyalgia Impact Questionnaire (FIQ) was the main outcome measure, and was administered at baseline and at weeks 4, 8, and 12. Secondary outcome measures, administered at baseline and at endpoint, were the Pittsburgh Sleep Quality Index, the Beck Depression Inventory, the State and Trait Anxiety Inventory, and the SF-12, the abbreviated form of the Short Form Health Survey. Emergent adverse reactions to treatment were recorded. FIQ total scores decreased significantly during the study period, with the decrease being observed in the first 4 weeks of the study. Significant improvement was also seen both in depression scores and in the Physical Summary Score of the SF-12. Transient meteorism after ozone therapy sessions was the most frequently reported side-effect. At the dose and number of sessions used in this study, ozone therapy by rectal insufflation seems to be beneficial for physical symptoms and depression of fibromyalgia.

  6. Antimicrobial Effect of Ozone Made by KP Syringe of High-Frequency Ozone Generator

    PubMed Central

    Prebeg, Domagoj; Katunarić, Marina; Budimir, Ana; Šegović, Sanja; Anić, Ivica

    2016-01-01

    Aim The aim of this study was to evaluate in vitro the antibacterial effect of ozone on suspension of three different bacteria inoculated in prepared canals of extracted human teeth. Material and methods Ozone was produced by special KP syringe of high frequency ozone generator Ozonytron (Biozonix, München, Germany) from aspirated atmospheric air by dielectric barrier discharge and applied through the tip of the syringe to the prepared root canal. The microorganisms used were Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis. Results However, none of the methods was 100% effective against the three bacterial types in suspension. Application of ozone significantly decreased the absolute count of microorganisms (89.3%), as well as the count of each type of bacteria separately (Staphylococcus aureus 94.0%; Staphylococcus epidermidis 88.6% and Enterococcus faecalis 79.7%). Ozone generated by KP syringe was statistically more effective compared to NaOCl as positive control, for Staphylococcus aureus and Staphylococcus epidermidis. Conclusion The absolute count of Enterococcus faecalis was statistically decreased without a statistically significant difference between the tested group and positive control, respectively. Among the three types of bacteria in suspension, KP probe had the lowest antimicrobial effect against Enterococcus faecalis. PMID:27789911

  7. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    NASA Astrophysics Data System (ADS)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  8. Relations between isoprene and nitric oxide in exhaled breath and the potential influence of outdoor ozone: a pilot study

    PubMed Central

    Khan, Alya; Staimer, Norbert; Tjoa, Thomas; Galassetti, Pietro; Blake, Donald R.; Delfino, Ralph J.

    2013-01-01

    The role of endogenous isoprene in the human body, if any, is unclear because previous research is inconsistent and mechanistic evidence for the biologic function of isoprene is lacking. Given previous evidence that exhaled isoprene is elevated in systemic inflammatory states, we hypothesized that exhaled isoprene would be positively associated with a breath biomarker of airway inflammation, the fractional concentration of exhaled nitric oxide (FENO). We examined relationships of exhaled breath isoprene with FENO and with outdoor ozone given that ozone chemically reacts with isoprene and has been positively associated with FENO in past studies. Sixteen elderly subjects were followed with ≤12 weekly exhaled hydrocarbon and FENO collections at the subjects’ retirement community. Outdoor ozone concentrations were measured continuously on site. Mixed-effects regression analyses tested relations of FENO with isoprene, and FENO and isoprene with ozone, adjusted for temperature. We found FENO was inversely associated with isoprene, and this was not confounded by ozone. Isoprene was inversely related to ozone. FENO was positively related to ozone and this relation was not confounded by isoprene. In contrast to hypothesized relations, we conclude that exhaled isoprene is inversely associated with FENO as well as outdoor ozone, which suggests possible protective ozone-scavenging functions of endogenous isoprene. Findings may indicate chemical reactions of isoprene oxidation by ozone and by hydroxyl radicals in the presence of O2 that is dependent on NO concentration. These preliminary results need to be confirmed in additional studies of human subjects, particularly as they apply to FENO monitoring in asthma. PMID:23999846

  9. Relations between isoprene and nitric oxide in exhaled breath and the potential influence of outdoor ozone: a pilot study.

    PubMed

    Khan, Alya; Staimer, Norbert; Tjoa, Thomas; Galassetti, Pietro; Blake, Donald R; Delfino, Ralph J

    2013-09-01

    The role of endogenous isoprene in the human body, if any, is unclear because previous research is inconsistent and mechanistic evidence for the biologic function of isoprene is lacking. Given previous evidence that exhaled isoprene is elevated in systemic inflammatory states, we hypothesized that exhaled isoprene would be positively associated with a breath biomarker of airway inflammation, the fractional concentration of exhaled nitric oxide (FENO). We examined relationships of exhaled breath isoprene with FENO and with outdoor ozone given that ozone chemically reacts with isoprene and has been positively associated with FENO in past studies. Sixteen elderly subjects were followed with ≤12 weekly exhaled hydrocarbon and FENO collections at the subjects' retirement community. Outdoor ozone concentrations were measured continuously on site. Mixed-effects regression analyses tested relations of FENO with isoprene, and FENO and isoprene with ozone, adjusted for temperature. We found FENO was inversely associated with isoprene, and this was not confounded by ozone. Isoprene was inversely related to ozone. FENO was positively related to ozone and this relation was not confounded by isoprene. In contrast to hypothesized relations, we conclude that exhaled isoprene is inversely associated with FENO as well as outdoor ozone, which suggests possible protective ozone-scavenging functions of endogenous isoprene. Findings may indicate chemical reactions of isoprene oxidation by ozone and by hydroxyl radicals in the presence of O2 that is dependent on NO concentration. These preliminary results need to be confirmed in additional studies of human subjects, particularly as they apply to FENO monitoring in asthma.

  10. Merged SAGE II, Ozone_cci and OMPS ozone profiles dataset and evaluation of ozone trends in the stratosphere

    NASA Astrophysics Data System (ADS)

    Tamminen, J.; Sofieva, V.; Kyrölä, E.; Laine, M.; Degenstein, D. A.; Bourassa, A. E.; Roth, C.; Zawada, D.; Weber, M.; Rozanov, A.; Rahpoe, N.; Stiller, G. P.; Laeng, A.; von Clarmann, T.; Walker, K. A.; Sheese, P.; Hubert, D.; Van Roozendael, M.; Zehner, C.; Damadeo, R. P.; Zawodny, J. M.; Kramarova, N. A.; Bhartia, P. K.

    2017-12-01

    We present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of European Space Agency Climate Change Initiative (Ozone_cci) with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and inter-compared; only those datasets, which are in good agreement and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE-CCI-OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE-CCI-OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90°S to 90°N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at mid-latitudes in the upper stratosphere and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s.

  11. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  12. Ozone and Botrytis interactions in onion-leaf dieback: open-top chamber studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wukasch, R.T.; Hofstra, G.

    1977-09-01

    Paired open-top chambers were used to study interactions between Botrytis spp. and ozone in field-grown onions. Charcoal filters removed 35 to 65% of the ambient ozone, resulting in six-fold reduction of onion leaf dieback and a 28% increase in onion yield compared with unfiltered chambers. Symptoms of leaf injury appeared soon after ozone levels exceeded 294 ..mu..g/m/sup 3/ (0.15 ppm) for 4 hr. Lesions caused by Botrytis were few because no dew formed in the chambers. However, when leaves were wetted with foggers, inoculation with mycelial suspensions of B. sauamosa in late August produced significantly more lesions and leaf diebackmore » in the unfiltered chamber. Botrytis squamosa, B. cinerea, B. allii, and several genera of secondary fungi were isolated from these lesions. Botrytis squamosa was recovered from lesions only, whereas B. cinerea and B. allii were associated more generally with onion leaf tissue regardless of lesions. 25 references, 1 figure, 2 tables.« less

  13. Studies on Stratospheric Moistening and Its Effect on Ozone Depletion in Global Perspective

    NASA Astrophysics Data System (ADS)

    Saha, Upal; Maitra, Animesh; Adhikari, Arpita

    2012-07-01

    Stratospheric moistening is the water vapor intrusion in the stratosphere which affects ozone, surface climate and stratospheric temperatures. Increased stratospheric water vapor can be an important cause of global warming as it acts to cool the stratosphere but warms the underlying troposphere. Stratospheric moistening is controlled by the transport through the tropopause region and the oxidation of methane within the stratosphere. In this article, variations of stratospheric moistening and stratospheric ozone over the whole Globe, equatorial region, mid latitudinal region, polar region are reported during the years from 2004 to 2011 using the Aura's Microwave Limb Sounder (MLS) water vapor data and Earth Probe TOMS ozone data. Maximum stratospheric moistening over the Globe is found to occur during boreal summer months although it is high during boreal winter months. The stratospheric ozone over Globe remains high during the pre-boreal summer months and decreases during the boreal winter. The mid latitudinal region has the maximum contribution of stratospheric moistening and stratospheric ozone over the Globe. Northern and southern poles have somewhat less contribution of stratospheric moistening. Stratospheric moistening over North Polar and mid latitudinal region is high during boreal summer months but over South Polar and mid latitudinal region it is high during boreal winter months. It is also found that stratospheric moistening has increased since 2004 and correspondingly stratospheric ozone concentration also decreased. This shows an anti-correlation between stratospheric moistening and stratospheric ozone, which indicates the dominance of prevailing photochemical reactions occurring in the stratosphere. Stratospheric moistening over the Indian and South Asian Monsoon regions has a global contribution of about 0.46% and 0.78% respectively. Latitudinal variation of stratospheric moistening and stratospheric ozone shows a good global inter-relation between

  14. Mixing Heights and Three-Dimensional Ozone Structure Observed by Airborne Lidar During the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Hardesty, R. M.; Senff, C. J.; Alvarez, R. J.; Banta, R. M.; Sandberg, S. P.; Weickmann, A. M.; Darby, L. S.

    2007-12-01

    A new all solid state ozone lidar was deployed on a NOAA Twin Otter to study boundary layer ozone and aerosol, mostly around Houston, during the 2006 Texas Air Quality Study. The new instrument transmits high pulse-rate, low pulse-energy light at 3 wavelengths in the ultraviolet to obtain ozone profiles with 500 m horizontal resolution and 90 m vertical resolution. During the Texas field study, 20 research flights resulted in nearly 70 hours of ozone measurements during the period from August 1 to September 15. Science objectives included characterization of background ozone levels over rural areas near Houston and Dallas and variability and structure of the boundary layer over different surface types, including urban, wooded, and agricultural land surface areas as well as over Galveston Bay and the Gulf of Mexico. A histogram of all boundary layer ozone concentration measurements showed a bimodal distribution with modes at 45 ppb and 70 ppb. The lower mode correlated with southerly flow, when relatively clean air was transported onshore into the Houston area. Segmenting the observations during southerly flow by region, including the Gulf of Mexico, land within about 55 km from the coast, and further inland indicated that background levels increased by about 10 ppb as air was transported onshore. During the latter part of the experiment, as more pollution was imported into the Houston region, background levels rose to nearly 80 ppb in regions N of Houston. Two flights aimed at observing import of ozone into Texas from the east showed that ozone concentrations increased and boundary layer depths deepened upwind of Houston between September 4 and September 8. Background levels rose by more than 10 ppb over this period. In addition to ozone measurements, we also estimated boundary layer height based on maximum gradient in observed backscatter. The technique worked well when the layer topped by the strongest gradient extends down to the surface. Investigation of the

  15. NASA Science Data Processing for SNPP

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Lowe, D. R.; Ho, E. L.

    2014-12-01

    NASA's ESDIS Project has been operating the Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. The science data processing system includes a Science Data Depository and Distribution Element (SD3E) and five Product Evaluation and Analysis Tool Elements (PEATEs): Land, Ocean, Atmosphere, Ozone, and Sounder. The SDS has been responsible for assessing Environmental Data Records (EDRs) for climate quality, providing and demonstrating algorithm improvements/enhancements and supporting the calibration/validation activities as well as instrument calibration and sensor table uploads for mission planning. The SNPP also flies two NASA instruments: OMPS Limb and CERES. The SNPP SDS has been responsible for producing, archiving and distributing the standard products for those instruments in close association with their NASA science teams. The PEATEs leveraged existing science data processing techniques developed under the EOSDIS Program. This enabled he PEATEs to do an excellent job in supporting Science Team analysis for SNPP. The SDS acquires data from three sources: NESDIS IDPS (Raw Data Records (RDRs)), GRAVITE (Retained Intermediate Products (RIPs)), and the NOAA/CLASS (higher level products). The SD3E component aggregates the RDRs, and distributes them to each of the PEATEs for further analysis and processing. It provides a ~32 day rolling storage of data, available for pickup by the PEATEs. The current system used by NASA will be presented along with plans for streamlining the system in support of continuing the NASA's EOS measurements.

  16. Study: Ozone Layer's Future Linked Strongly to Changes in Climate

    Science.gov Websites

    balloon to measure of the vertical profile of the ozone layer. NOAA scientists launch an ozonesonde via balloon to measure of the vertical profile of the ozone layer. NOAA releases ozonesondes at eight sites worldwide, including the Amundsen-Scott South Pole Station. It also uses satellite and ground-based systems

  17. A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.

    DTIC Science & Technology

    1987-01-01

    UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science

  18. Study of air pollution: Effects of ozone on neuropeptide-mediated responses in human subjects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boushey, H.A.

    1991-11-01

    The study examined the hypothesis that ozone inactivates the enzyme, neutral endopeptidase, responsible for limiting the effects of neuropeptides released from afferent nerve endings. Cough response of capsaicin solution delivered from a nebulizer at 2 min. intervals until two or more coughs were produced. Other endpoints measured included irritative symptoms as rated by the subjects on a nonparametric scale, spirometry, of each concentration of ozone were compared to those of filtered air in a single-blind randomized sequence. The results indicate that a 2 h. exposure to 0.4 ppm of ozone with intermittent light exercise alters the sensitivity of airway nervesmore » that mediate the cough response to inhaled materials. This dose of ozone also caused a change in FEV1. A lower level of ozone, 0.02 ppm, caused a change in neither cough threshold nor FEV1, even when the duration of exposure was extended to three hours. The findings are consistent with the author's hypothesis that ozone may sensitize nerve endings in the airways by inactivating neutral endopeptidase, an enzyme that regulates their activity, but they do not demonstrate that directly examining an effect directly mediated by airway nerves allows detection of effects of ozone at doses below those causing effects detected by standard tests of pulmonary function.« less

  19. Southern Hemispheric nitrous oxide measurements obtained during 1987 airborne Antarctic ozone experiment

    NASA Technical Reports Server (NTRS)

    Podolske, J. R.; Loewenstein, M.; Strahan, S. E.; Chan, K. Roland

    1988-01-01

    The chemical lifetime of N2O is about 150 years, which makes it an excellent dynamical tracer of air motion on the time scale of the ozone depletion event. For these reasons it was chosen to help test whether dynamical theories of ozone loss over Antarctica were plausible, particularly the theory that upwelling ozone-poor air from the troposphere was replacing ozone-rich stratospheric air. The N2O measurements were made with the Airborne Tunable Laser Absorption Spectrometer (ATLAS) aboard the NASA ER-2 aircraft. The detection technique involves measuring the diffential absorption of the IR laser radiation as it is rapidly scanned over an N2O absorption feature. For the AAOE mission, the instrument was capable of making measurements with a 1 ppb sensitivity, 1 second response time, over an altitude range of 10 to 20 kilometers. The AAOE mission consisted of a series of 12 flights from Punta Arenas (53S) into the polar vortex (approximately 72S) at which time a vertical profile from 65 to 45 km and back was performed. Comparison of the observed profiles inside the vortex with N2O profiles obtained by balloon flights during the austral summer showed that an overall subsidence had occurred during the winter of about 5 to 6 km. Also, over the course of the mission (mid-August to late September), no trend in the N2O vertical profile, either upward or downward, was discernible, eliminating the possibility that upwelling was the cause of the observed ozone decrease.

  20. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study

    PubMed Central

    Ueda, Yoshiaki; Frimpong, Felix; Qi, Yitao; Matthus, Elsa; Wu, Linbo; Höller, Stefanie; Kraska, Thorsten; Frei, Michael

    2015-01-01

    Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l–1 for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height –1.0%, shoot dry weight –15.9%, tiller number –8.3%, grain weight –9.3%, total panicle weight –19.7%, single panicle weight –5.5%) and biochemical/physiological traits (symptom formation, SPAD value –4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance. PMID:25371505

  1. A modelling case study to evaluate control strategies for ozone reduction in Southwestern Spain

    NASA Astrophysics Data System (ADS)

    Castell, N.; Mantilla, E.; Salvador, R.; Stein, A. F.; Millán, M.

    2009-09-01

    Ozone is a strong oxidant and when certain concentrations are reached it has adverse effects on health, vegetation and materials. With the aim of protecting human health and ecosystems, European Directive 2008/50/EC establishes target values for ozone concentrations, to be achieved from 2010 onwards. In our study area, located in southwestern Spain, ozone levels regularly exceed the human health protection threshold defined in the European Directive. Indeed, this threshold was exceeded on 92 days in 2007, despite the fact that the Directive stipulates that it should not be exceeded on more than 25 days per calendar year averaged over three years. It is urgent, therefore, to reduce the current ozone levels, but because ozone is a secondary pollutant, this reduction must necessarily involve limiting the emission of its precursors, primarily nitrogen oxides (NOx) and volatile organic compounds (VOC). During the central months of the year, southwestern Spain is under strong insolation and weak synoptic forcing, promoting the development of sea breezes and mountain-induced winds and creating re-circulations of pollutants. The complex topography of the area induces the formation of vertical layers, into which the pollutants are injected and subjected to long distance transport and compensatory subsidence. The characteristics of these highly complex flows have important effects on the pollutant dispersion. In this study two ozone pollution episodes have been selected to assess the ozone response to reductions in NOx and VOC emissions from industry and traffic. The first corresponds to a typical summer episode, with the development of breezes in an anticyclonic situation with low gradient pressure and high temperatures, while the second episode presents a configuration characteristic of spring or early summer, with a smooth westerly flow and more moderate temperatures. Air pollution studies in complex terrain require the use of high-resolution models to resolve the complex

  2. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  3. Activities of NASA's Global Modeling Initiative (GMI) in the Assessment of Subsonic Aircraft Impact

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Logan, J. A.; Rotman, D. A.; Bergmann, D. J.; Baughcum, S. L.; Friedl, R. R.; Anderson, D. E.

    2004-01-01

    The Intergovernmental Panel on Climate Change estimated a peak increase in ozone ranging from 7-12 ppbv (zonal and annual average, and relative to a baseline with no aircraft), due to the subsonic aircraft in the year 2015, corresponding to aircraft emissions of 1.3 TgN/year. This range of values presumably reflects differences in model input (e.g., chemical mechanism, ground emission fluxes, and meteorological fields), and algorithms. The model implemented by the Global Modeling Initiative allows testing the impact of individual model components on the assessment calculations. We present results of the impact of doubling the 1995 aircraft emissions of NOx, corresponding to an extra 0.56 TgN/year, utilizing meteorological data from NASA's Data Assimilation Office (DAO), the Goddard Institute for Space Studies (GISS), and the Middle Atmosphere Community Climate Model, version 3 (MACCM3). Comparison of results to observations can be used to assess the model performance. Peak ozone perturbations ranging from 1.7 to 2.2 ppbv of ozone are calculated using the different fields. These correspond to increases in total tropospheric ozone ranging from 3.3 to 4.1 Tg/Os. These perturbations are consistent with the IPCC results, due to the difference in aircraft emissions. However, the range of values calculated is much smaller than in IPCC.

  4. Plants, Pollution and Public Engagement with Atmospheric Chemistry: Sharing the TEMPO Story Through Ozone Garden Activities

    NASA Astrophysics Data System (ADS)

    Reilly, L. G.; Pippin, M. R.; Malick, E.; Summers, D.; Dussault, M. E.; Wright, E. A.; Skelly, J.

    2016-12-01

    What do a snap-bean plant and a future NASA satellite instrument named TEMPO have in common? They are both indicators of the quality of the air we breathe. Scientists, educators, and museum and student collaborators of the Tropospheric Emissions: Monitoring Pollution (TEMPO) instrument team are developing a program model to engage learners of all ages via public ozone garden exhibits and associated activities. TEMPO, an ultraviolet and visible spectroscopy instrument due for launch on a geostationary host satellite between 2019 and 2021, will scan North America hourly to measure the major elements in the tropospheric ozone chemistry cycle, providing near real-time data with high temporal and spatial resolution. The TEMPO mission provides a unique opportunity to share the story of the effects of air quality on living organisms. A public ozone garden exhibit affords an accessible way to understand atmospheric science through a connection with nature, while providing a visual representation of the impact of ozone pollution on living organisms. A prototype ozone garden exhibit was established at the Virginia Living Museum in partnership with NASA Langley, and has served as a site to formatively evaluate garden planting and exhibit display protocols, hands-on interpretive activities, and citizen science data collection protocols for learners as young as 3 to 10 as well as older adults. The fun and engaging activities, optimized for adult-child interaction in informal or free-choice learning environments, are aimed at developing foundational science skills such as observing, comparing, classifying, and collecting and making sense of data in the context of thinking about air quality - all NGSS-emphasized scientific practices, as well as key capabilities for future contributing members of the citizen science community. As the launch of TEMPO approaches, a major public engagement effort will include disseminating this ozone garden exhibit and program model to a network of

  5. Tropospheric Enhancement of Ozone over the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  6. Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies.

    PubMed

    Atkinson, R W; Butland, B K; Dimitroulopoulou, C; Heal, M R; Stedman, J R; Carslaw, N; Jarvis, D; Heaviside, C; Vardoulakis, S; Walton, H; Anderson, H R

    2016-02-23

    While there is good evidence for associations between short-term exposure to ozone and a range of adverse health outcomes, the evidence from narrative reviews for long-term exposure is suggestive of associations with respiratory mortality only. We conducted a systematic, quantitative evaluation of the evidence from cohort studies, reporting associations between long-term exposure to ozone and mortality. Cohort studies published in peer-reviewed journals indexed in EMBASE and MEDLINE to September 2015 and PubMed to October 2015 and cited in reviews/key publications were identified via search strings using terms relating to study design, pollutant and health outcome. Study details and estimate information were extracted and used to calculate standardised effect estimates expressed as HRs per 10 ppb increment in long-term ozone concentrations. 14 publications from 8 cohorts presented results for ozone and all-cause and cause-specific mortality. We found no evidence of associations between long-term annual O3 concentrations and the risk of death from all causes, cardiovascular or respiratory diseases, or lung cancer. 4 cohorts assessed ozone concentrations measured during the warm season. Summary HRs for cardiovascular and respiratory causes of death derived from 3 cohorts were 1.01 (95% CI 1.00 to 1.02) and 1.03 (95% CI 1.01 to 1.05) per 10 ppb, respectively. Our quantitative review revealed a paucity of independent studies regarding the associations between long-term exposure to ozone and mortality. The potential impact of climate change and increasing anthropogenic emissions of ozone precursors on ozone levels worldwide suggests further studies of the long-term effects of exposure to high ozone levels are warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. NASA Langley Research Center tethered balloon systems

    NASA Technical Reports Server (NTRS)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  8. Ozone and Ozonated Oils in Skin Diseases: A Review

    PubMed Central

    Travagli, V.; Zanardi, I.; Valacchi, G.; Bocci, V.

    2010-01-01

    Although orthodox medicine has provided a variety of topical anti-infective agents, some of them have become scarcely effective owing to antibiotic- and chemotherapeutic-resistant pathogens. For more than a century, ozone has been known to be an excellent disinfectant that nevertheless had to be used with caution for its oxidizing properties. Only during the last decade it has been learned how to tame its great reactivity by precisely dosing its concentration and permanently incorporating the gas into triglycerides where gaseous ozone chemically reacts with unsaturated substrates leading to therapeutically active ozonated derivatives. Today the stability and efficacy of the ozonated oils have been already demonstrated, but owing to a plethora of commercial products, the present paper aims to analyze these derivatives suggesting the strategy to obtain products with the best characteristics. PMID:20671923

  9. The Hole in the Ozone Layer.

    ERIC Educational Resources Information Center

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  10. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-10-01

    Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.

  11. Do trees smart from ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Douglas-firs near Eatonville, Washington - 70 miles south of Seattle - are getting doses of ozone pollution at levels regularly found in Los Angeles. Ozone levels of 220 parts per billion (ppb) can make your eyes smart and give your Aunt Edna a doozy of a headache. University of Washington researchers are now trying to find if Douglas-fir is adversely affected by 220 ppb of ozone. They are also studying whether individual branches can reveal how whole trees respond to pollutants. Studying entire trees is tough so researchers hope to take the pulse of a tree by examining its branches.more » At the university's experimental forest, researchers have placed 12-foot-tall plastic-covered corrals around six Douglas-firs, each nine or 10 years old and up to 15 feet tall. Three of the trees receive filtered air while three others are blasted with 220 ppb of ozone for eight hours each day. Four individual branches on each tree are encased in their own plastic chambers. Two are dosed with filtered air and two with ozone. To date, the UW research is the only study in the US combining branch chambers with whole tree measurements. Now in its second year, the experiment is expected to yield information about growth and foliage health by measuring respiration, chlorophyll, photosynthesis, and nutrient uptake. Loss of tree vigor could lead to increased problems with pathogens and insects. In the summer of '88, surprisingly high levels of ozone - up to 196 ppb - were detected in forests downwind from Seattle, worse than the urban areas themselves.« less

  12. An Overview of the NASA Spring/Summer 2008 Arctic Campaign - ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites)

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Clarke, Antony; Crawford, James H.; Dibbs, Jack; Ferrare, Richard A.; Hostetler, Chris A.; Maring, Hal; Russell, Philip B.; Singh, Hanwant B.

    2008-01-01

    ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) is a major NASA led airborne field campaign being performed in the spring and summer of 2008 at high latitudes (http://cloud1.arc.nasa.gov/arctas/). ARCTAS is a part of the International Polar Year program and its activities are closely coordinated with multiple U. S. (NOAA, DOE), Canadian, and European partners. Observational data from an ensemble of aircraft, surface, and satellite sensors are closely integrated with models of atmospheric chemistry and transport in this experiment. Principal NASA airborne platforms include a DC-8 for detailed atmospheric composition studies, a P-3 that focuses on aerosols and radiation, and a B-200 that is dedicated to remote sensing of aerosols. Satellite validation is a central activity in all these platforms and is mainly focused on CALIPSO, Aura, and Aqua satellites. Major ARCTAS themes are: (1) Long-range transport of pollution to the Arctic including arctic haze, tropospheric ozone, and persistent pollutants such as mercury; (2) Boreal forest fires and their implications for atmospheric composition and climate; (3) Aerosol radiative forcing from arctic haze, boreal fires, surface-deposited black carbon, and other perturbations; and (4) Chemical processes with focus on ozone, aerosols, mercury, and halogens. The spring deployment (April) is presently underway and is targeting plumes of anthropogenic and biomass burning pollution and dust from Asia and North America, arctic haze, stratosphere-troposphere exchange, and ozone photochemistry involving HOx and halogen radicals. The summer deployment (July) will target boreal forest fires and summertime photochemistry. The ARCTAS mission is providing a critical link to enhance the value of NASA satellite observations for Earth science. In this talk we will discuss the implementation of this campaign and some preliminary results.

  13. Urban Climate, Ozone Formation, and Public Health: Should Heat be Regulated as a Traditional Air Pollutant?

    NASA Astrophysics Data System (ADS)

    Stone, B.

    2003-12-01

    The return of record breaking heat waves to North American and European cities in 2003 highlights the growing need for urban planners to develop heat mitigation strategies for large metropolitan regions. Long associated with public health through its effects on human heat stress and heat related mortality, rising urban temperatures also hold important implications for regional air quality. This presentation will outline the results of a study focused on the relationship between regional temperatures and annual tropospheric ozone exceedances in the fifty largest (by population) metropolitan regions in the United States. With the aid of data from the EPA's National Emissions Inventory and NASA's Earth Observing System Data and Information System, this study examines trends in metropolitan emissions of nitrogen oxides, volatile organic compounds, mean regional temperatures, and annual ozone exceedances in U.S. metropolitan regions for the years 1990 through 1999. The intent of this work is to better establish connections between recent trends urban climate and ozone formation and to explore policy approaches to mitigating urban temperatures through physical planning. The results of this research indicate that annual violations of the national ozone standard during the decade of the 1990s were more closely associated with regional temperatures than with the emissions of regulated ozone precursors from mobile and stationary sources. Based on the results of this analysis, I argue that the air quality management strategies outlined in the Clean Air Act may be proving insufficient to control ozone formation due to ongoing and unanticipated changes in global and regional climate. I further argue that the emergence of urban heat as a significant threat to human health demands a strategic response from the fields of urban planning and public health. The presentation will conclude with a discussion of the linkages between urban form and ambient heat and will outline a set of

  14. Ozone as a Sink for Atmospheric Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Stephens, Sherry Lynn

    Critical information necessary for examining the chemical removal of smoke in the atmosphere by the reaction with ozone has been obtained. The kinetics, products and temperature dependence of the reaction of ozone with carbonaceous material were determined. This information can be included in models examining the fate of ozone and smoke in the atmosphere. In the first study, the rate of ozone loss was followed in its reaction with carbon black at room temperature. In addition to the ozone loss, the gaseous products, CO, CO _2 and O_2 were quantified with a phase locking mass spectrometer attached to a two-chamber Knudsen cell reactor. An oxygen molecule was detected for every ozone lost. It was observed that the initial loss rate was much greater than that seen after extended exposure to ozone. Oxygen atoms were desorbed 30% of the time as CO or CO_2 and those left behind on the surface were responsible for the decrease in rate. Heating the surface following this exposure would liberate CO and CO_2 and restore the initial reactivity. In the second study, the reaction of ozone with different types of soot was examined by following the decrease of optical depth of soot deposited on a quartz slide as a result of flowing a known concentration of ozone over the slide at temperatures from 21^circ to 175^circC. The reaction kinetics were very similar for the four types of soot used in this study. Treating all types together the activation energy and the order with respect to ozone were 10.9 (+/-1.0) kcal mol ^{-1} and 0.89 (+/- 0.14), respectively. The lifetime of soot under atmospheric conditions was calculated to be on the order of years to decades. The reaction of ozone with acetylene smoke suspended in air was the final method of examining the reaction. The change of acetylene smoke size distribution and ozone concentration was monitored while controlling the temperature. Irreproducibility caused this study to be unsuccessful. This was believed to be due to

  15. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  16. Five blind men and the elephant: what can the NASA Aura ozone measurements tell us about stratosphere-troposphere exchange?

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Prather, M. J.

    2012-03-01

    We examine whether the individual ozone (O3) measurements from the four Aura instruments can quantify the stratosphere-troposphere exchange (STE) flux of O3, an important term of the tropospheric O3 budget. The level 2 (L2) Aura swath data and the nearly coincident ozone sondes for the years 2005-2006 are compared with the 4-D, high-resolution (1° × 1° × 40-layer × 0.5 h) model simulation of atmospheric ozone for the same period from the University of California, Irvine chemistry transport model (CTM). The CTM becomes a transfer standard for comparing individual profiles from these five, not-quite-coincident measurements of atmospheric ozone. Even with obvious model discrepancies identified here, the CTM can readily quantify instrument-instrument biases in the tropical upper troposphere and mid-latitude lower stratosphere. In terms of STE processes, all four Aura datasets have some skill in identifying stratosphere-troposphere folds, and we find several cases where both model and measurements see evidence of high-O3 stratospheric air entering the troposphere. In many cases identified in the model, however, the individual Aura profile retrievals in the upper troposphere and lower stratosphere show too much noise, as expected from their low sensitivity and coarse vertical resolution at and below the tropopause. These model-measurement comparisons of individual profiles do provide some level of confidence in the model-derived STE O3 flux, but it will be difficult to integrate this flux from the satellite data alone.

  17. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    NASA Astrophysics Data System (ADS)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  18. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate--a comparative study.

    PubMed

    Gao, Shanshan; Zhao, Zhiwei; Xu, Yongpeng; Tian, Jiayu; Qi, Hong; Lin, Wei; Cui, Fuyi

    2014-06-15

    Sulfamethoxazole (SMX), a typical sulfonamide antibiotic, has been widely detected in secondary wastewater effluents and surface waters. In this work we investigated the oxidative degradation of SMX by commonly used oxidants of chlorine, ozone and permanganate. Chlorine and ozone were shown to be more effective for the removal of SMX (0.05-5.0mg/L), as compared with permanganate. Higher pH enhanced the oxidation of SMX by ozone and permanganate, but decreased the removal by chlorine. Moreover, the ozonation of SMX was significantly influenced by the presence of humic acid (HA), which exhibited negligible influence on the oxidation by chlorine and permanganate. Fairly lower mineralization of SMX occurred during the oxidation reactions, with the highest dissolved organic carbon (DOC) removal of 13% (for ozone). By using LC-MS/MS, 7, 5 and 5 oxidation products were identified for chlorine, ozone and permanganate and possible transformation pathways were proposed. It was shown that different oxidants shared some common pathways, such as the cleavage of SN bond, the hydroxylation of the benzene ring, etc. On the other hand, each of the oxidants also exhibited exclusive degradation mechanisms, leading to the formation of different transformation products (TPs). This work may provide useful information for the selection of oxidants in water treatment processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Ozone from fireworks: Chemical processes or measurement interference?

    PubMed

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Yang, Eun-Su; Cunnold, D. M.; Reinsel, C.; Zawodny, J. M.; Russell, James M., III

    2003-01-01

    Global ozone trends derived from the Stratospheric Aerosol and Gas Experiment I and II (SAGE I/II) combined with the more recent Halogen Occultation Experiment (HALOE) observations provide evidence of a slowdown in stratospheric ozone losses since 1997. This evidence is quantified by the cumulative sum of residual differences from the predicted linear trend. The cumulative residuals indicate that the rate of ozone loss at 35- 45 km altitudes globally has diminished. These changes in loss rates are consistent with the slowdown of total stratospheric chlorine increases characterized by HALOE HCI measurements. These changes in the ozone loss rates in the upper stratosphere are significant and constitute the first stage of a recovery of the ozone layer.

  1. Quantifying isentropic stratosphere-troposphere exchange of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huang; Chen, Gang; Tang, Qi

    There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less

  2. Quantifying isentropic stratosphere-troposphere exchange of ozone

    DOE PAGES

    Yang, Huang; Chen, Gang; Tang, Qi; ...

    2016-03-25

    There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less

  3. Can Assimilation of Satellite Ozone Data Contribute to the Understanding of the Lower Stratospheric Ozone?

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Pawson, S.; Hayashi, H.; Chang, L.-P.; Rood, R.

    2004-01-01

    We study the quality of lower stratospheric ozone fields from a three- dimensional global ozone assimilation system. Ozone in this region is important for the forcing of climate, but its global distribution is not fully known because of its large temporal and vertical variability. Modeled fields often have biases due to the inaccurate representation of transport processes in this region with strong gradients. Accurate ozonesonde or satellite occultation measurements have very limited coverage. Nadir measurements, such as those from the Solar Backscatter Ultraviolet/2 (SBUV/2) instrument that provide wide latitudinal coverage, lack the vertical resolution needed to represent sharp vertical features. Limb measurements, such as those from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), provide a finer vertical resolution. We show that assimilation of MIPAS data in addition to SBUV/2 data leads to better estimates of ozone in comparison with independent high quality satellite, aircraft, and ozone sonde measurements. Other modifications to the statistical analysis that have an impact on the lower stratospheric ozone will be mentioned: error covariance modeling and data selection. Direct and indirect impacts of transport and chemistry models will be discussed. Implications for multi-year analyses and short-tern prediction will be addressed.

  4. The Ozone Problem | Ground-level Ozone | New England | US ...

    EPA Pesticide Factsheets

    2017-04-10

    Many factors impact ground-level ozone development, including temperature, wind speed and direction, time of day, and driving patterns. Due to its dependence on weather conditions, ozone is typically a summertime pollutant and a chief component of summertime smog.

  5. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology: Ozonesonde Precision, Accuracy and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, Anne M.; McPeters, R. D.; Oltmans, S. J.; Schmidlin, F. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    As part of the SAFARI-2000 campaign, additional launches of ozonesondes were made at Irene, South Africa and at Lusaka, Zambia. These represent campaign augmentations to the SHADOZ database described in this paper. This network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project and established from operational sites, provided over 1000 profiles from ozonesondes and radiosondes during the period 1998-2000. (Since that time, two more stations, one in southern Africa, have joined SHADOZ). Archived data are available at: http://code9l6.gsfc.nasa.gov/Data-services/shadoz>. Uncertainties and accuracies within the SHADOZ ozone data set are evaluated by analyzing: (1) imprecisions in stratospheric ozone profiles and in methods of extrapolating ozone above balloon burst; (2) comparisons of column-integrated total ozone from sondes with total ozone from the Earth-Probe/TOMS (Total Ozone Mapping Spectrometer) satellite and ground-based instruments; (3) possible biases from station-to-station due to variations in ozonesonde characteristics. The key results are: (1) Ozonesonde precision is 5%; (2) Integrated total ozone column amounts from the sondes are in good agreement (2-10%) with independent measurements from ground-based instruments at five SHADOZ sites and with overpass measurements from the TOMS satellite (version 7 data). (3) Systematic variations in TOMS-sonde offsets and in groundbased-sonde offsets from station to station reflect biases in sonde technique as well as in satellite retrieval. Discrepancies are present in both stratospheric and tropospheric ozone. (4) There is evidence for a zonal wave-one pattern in total and tropospheric ozone, but not in stratospheric ozone.

  6. 2014 Summer Series - Laura Iraci - Up In the Air: Methane and Ozone Over California

    NASA Image and Video Library

    2014-08-07

    The Alpha Jet Atmospheric eXperiment (AJAX) at NASA Ames Research Center measures in-situ carbon dioxide, methane, and ozone concentrations in the Earth's atmosphere several times each month. The aircraft is stationed at Moffett Field and is outfitted with scientific instruments to measure trace gas concentrations and 3-D wind speeds. This talk will focus on recent observations over dairy operations, fossil fuel infrastructure, and wildfires.

  7. Ozone and temperature trends

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Fioletov, Vitali; Bishop, Lane; Godin, Sophie; Bojkov, Rumen D.; Kirchhoff, Volker; Chanin, Marie-Lise; Zawodny, Joseph M.; Zerefos, Christos S.; Chu, William

    1991-01-01

    An update of the extensive reviews of the state of knowledge of measured ozone trends published in the Report of the International Ozone Trends Panel is presented. The update contains a review of progress since these reports, including reviewing of the ozone records, in most cases through March 1991. Also included are some new, unpublished reanalyses of these records including a complete reevaluation of 29 stations located in the former Soviet Union. The major new advance in knowledge of the measured ozone trend is the existence of independently calibrated satellite data records from the Total Ozone Mapping Spectrometer (TOMS) and Stratospheric Aerosol and Gas Experiment (SAG) instruments. These confirm many of the findings, originally derived from the Dobson record, concerning northern mid-latitude changes in ozone. We now have results from several instruments, whereas the previously reported changes were dependent on the calibration of a single instrument. This update will compare the ozone records from many different instruments to determine whether or not they provide a consistent picture of the ozone change that has occurred in the atmosphere. The update also briefly considers the problem of stratospheric temperature change. As in previous reports, this problem received significantly less attention, and the report is not nearly as complete. This area needs more attention in the future.

  8. A Madden-Julian Oscillation in Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.

    2004-01-01

    This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5- 10 DU peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. The implications of these results are: (1) model values of TCO in the tropical Pacific region, when accounted for the MJO may be highly variable depending upon the phase of the MJO, and (2) MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.

  9. Ozone measurements

    NASA Technical Reports Server (NTRS)

    Randhawa, J.

    1978-01-01

    The chemiluminescent ozonesonde to be flown with the STRATCOM balloon flight consisted of two main parts: (1) A constant-volume sampling pump made from TEFLON was used for the intake of the air sample. Sample was drawn at a rate of 200 millimeters per minute. (2) Ozone was detected by the chemiluminescent process (Rhodamine - B). Ozone molecules in the air sample flowed over the detector and the photons produced by the destruction of ozone molecules on the chemiluminescent material were monitored by the photomultiplier tube, the output signal from which was transmitted to the ground receiver.

  10. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity.

    PubMed

    Tan, Zhaofeng; Lu, Keding; Jiang, Meiqing; Su, Rong; Dong, Huabin; Zeng, Limin; Xie, Shaodong; Tan, Qinwen; Zhang, Yuanhang

    2018-09-15

    We present the in-situ measurements in Chengdu, a major city in south west of China, in September 2016. The concentrations of ozone and its precursor were measured at four sites. Although the campaign was conducted in early autumn, up to 100 ppbv (parts per billion by volume) daily maximum ozone was often observed at all sites. The observed ozone concentrations showed good agreement at all sites, which implied that ozone pollution is a regional issue in Chengdu. To better understand the ozone formation in Chengdu, an observation based model is used in this study to calculate the RO x radical concentrations (RO x  = OH + HO 2  + RO 2 ) and ozone production rate (P(O 3 )). The model predicts OH daily maximum is in the range of 4-8 × 10 6  molecules cm -3 , and HO 2 and RO 2 are in the range of 3-6 × 10 8  molecules cm -3 . The modelled radical concentrations show a distinct difference between ozone pollution and attainment period. The relative incremental reactivity (RIR) results demonstrate that anthropogenic VOCs reduction is the most efficient way to mitigate ozone pollution at all sites, of which alkenes dominate >50% of the ozone production. Empirical kinetic modelling approach shows that three out of four sites are under the VOC-limited regime, while Pengzhou is in a transition regime due to the local petrochemical industry. The ozone budget analysis showed that the local ozone production driven by the photochemical process is important to the accumulation of ozone concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Traffic congestion and ozone precursor emissions in Bilbao, Spain.

    PubMed

    Ibarra-Berastegi, Gabriel; Madariaga, Imanol

    2003-01-01

    In urban environments, the measured levels of ozone are the result of the interaction between emissions of precursors (mainly VOCs and NOx) and meteorological effects. In this work, time series of daily values of ozone, measured at three locations in Bilbao (Spain), have been built. Then, after removing meteorological effects from them, ozone and traffic data have been analyzed jointly. The goal was to identify traffic situations and link them to ozone levels in the area of Bilbao. To remove meteorological effects from the selected ozone time series, the technique developed by Rao and Zurbenko was used. This is a widely used technique and, after its application, the fraction obtained from a given ozone time series represents an ozone forming capability attributable to emissions of precursors. This fraction is devoid of any meteorological influence and includes only the apportion of periodicities above 1.7 years. In the case of Bilbao, the ozone fractions obtained at three locations have been compared on that time scale with traffic data from the area. For the 1993-1996 period, a regression analysis of the ozone and traffic fractions due to periodicities above 1.7 years (long-term fractions), shows that traffic is the main explanatory factor for ozone with R2 ranging from 0.916 to 0.996 at the three locations studied. Analysis of these longterm fractions has made it possible to identify two traffic regimes for the whole area, associated to different profiles of ozone forming capability. The first one favors low ozone forming capability, and is associated with a situation of fluent traffic. The second one shows high ozone forming capability and represents congestion. Joint analysis of raw data of ozone and traffic do not show any clear pattern due to the strong masking effects that seasonal-meteorological effects (mainly radiation) have on the measured ozone signal. If only immission data of ozone are available, as in this case, a comparison between ozone and traffic

  12. Source Attribution of Near-surface Ozone in the Western US: Improved Estimates by TF HTAP2 Multi-model Experiment and Multi-scale Chemical Data Assimilation

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bowman, K. W.; Carmichael, G. R.; Lee, M.; Park, R.; Henze, D. K.; Chai, T.; Flemming, J.; Lin, M.; Weinheimer, A. J.; Wisthaler, A.; Jaffe, D. A.

    2014-12-01

    Near-surface ozone in the western US can be sensitive to transported background pollutants from the free troposphere over the eastern Pacific, as well as various local emissions sources. Accurately estimating ozone source contributions in this region has strong policy-relevant significance as the air quality standards tend to go down. Here we improve modeled contributions from local and non-local sources to western US ozone base on the HTAP2 (Task Force on Hemispheric Transport of Air Pollution) multi-model experiment, along with multi-scale chemical data assimilation. We simulate western US air quality using the STEM regional model on a 12 km horizontal resolution grid, during the NASA ARCTAS field campaign period in June 2008. STEM simulations use time-varying boundary conditions downscaled from global GEOS-Chem model simulations. Standard GEOS-Chem simulation overall underpredicted ozone at 1-5 km in the eastern Pacific, resulting in underestimated contributions from the transported background pollutants to surface ozone inland. These negative biases can be reduced by using the output from several global models that support the HTAP2 experiment, which all ran with the HTAP2 harmonized emission inventory and also calculated the contributions from east Asian anthropogenic emissions. We demonstrate that the biases in GEOS-Chem boundary conditions can be more efficiently reduced via assimilating satellite ozone profiles from the Tropospheric Emission Spectrometer (TES) instrument using the three dimensional variational (3D-Var) approach. Base upon these TES-constrained GEOS-Chem boundary conditions, we then update regional nitrogen dioxide and isoprene emissions in STEM through the four dimensional variational (4D-Var) assimilation of the Ozone Monitoring Instrument (OMI) nitrogen dioxide columns and the NASA DC-8 aircraft isoprene measurements. The 4D-Var assimilation spatially redistributed the emissions of nitrogen oxides and isoprene from various US sources, and

  13. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  14. Oxidation and ozonation of waste activated sludge.

    PubMed

    Mines, Richard O; Northenor, C Brett; Murchison, Mitchell

    2008-05-01

    In this bench-scale study, the treatment of waste activated sludge (WAS) was evaluated using aerobic digestion and ozonation. Two, 2-L batch digesters, one aerated and the other one ozonated, were operated for 30 days in each phase of the study. The aerated digester simulated the aerobic digestion process and served as control to the ozonated digester. In Phase I, the aerated digester was supplied 810 mg O(2) min(- 1), whereas, the ozonated digester was supplied 0.88 mg O(3) min(- 1). In Phase II, the oxygenation rate to the aerobic digester was increased to 1,200 mg O(2) min(- 1) while the ozonation rate was reduced to 0.44 mg O(3) min(- 1). Ozone was more effective than air at oxidizing and reducing both total solids (TS) and volatile solids (VS) in the WAS. TS removals of 50% and 56% were observed for the ozonated digester versus TS removals of 23% and 35% for the aerated digester. VS removals of 40% and 42% were observed for the aerobic digester versus 57% and 74% for the ozonated digester. Aerobic digestion barely met the 38% reduction in VS required by the U.S. Environmental Protection Agency (EPA). The degradation rate constant (K(d)) based on degradable TS for the ozonated digester varied from 0.082 to 0.11 days(- 1) and from 0.067 to 0.09 days(- 1) for the aerobic digester. Total chemical oxygen demand (TCOD) removal in the aerobic digester increased from 30% to 40% from Phase I to Phase II. TCOD removal increased slightly from 57% to 58% in the ozonated digester from Phase I to Phase II. Soluble chemical oxygen demand (SCOD) concentrations in the sludge supernatant increased with digestion time, especially in the ozonated digester. Approximately 0.12 to 0.22 mg SCOD was produced per mg of TS destroyed during ozonation. The specific oxygen uptake rate (SOUR) was consistently below the EPA standard of 1.5 mg O(2) per hr per g TS, indicating that the sludge was well stabilized. The average quantity of oxygen required during aerobic digestion was 1.53 g O(2

  15. NASA's Gravitational-Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consists of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to refine the conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The status of the Study are reported.

  16. Ozone and caries: a review of the literature.

    PubMed

    Burke, F J Trevor

    2012-05-01

    Ozone, either in gaseous form or as ozonated water, has been available for use as a treatment for dental caries for a decade. This paper reviews the literature on the subject by examining the findings of publications in the peer review literature. Eighteen papers were identified by a literature search. From the review of these, it was concluded that, while some laboratory studies and some short duration clinical studies have suggested that ozone may be effective in the treatment of root caries or killing of oral micro-organisms, the clinical evidence for the use of ozone in treatment of caries is not compelling.

  17. Effect of ozone fumigation on crop composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pippen, E.L.; Potter, A.L.; Randall, V.G.

    1975-01-01

    This report describes results of a survey undertaken at the Western Regional Research Laboratory in cooperation with the University of California at Riverside. Cabbage, carrots, corn, lettuce, strawberries, and tomatoes harvested from plants grown in (1) clean air (carbon-filtered air); (2) clean air fumigated with a low ozone level; and (3) clean air fumigated with a high ozone level were studied. The two ozone levels used (approximately 200 and 350 ppB O/sub 3/) represented levels commonly observed in the air in Southern California in summer and fall. Items determined quantitatively included five vitamins, solids, nitrogen, fiber, ash carbohydrate, and upmore » to nine metals. The metals Ca, Cu, Fe, Pb, Mn, K, Rb, Sr, and Zn were determined using X-ray fluorescence spectroscopy. With the metals significant differences occurred with different plants. The nonmetal nutrients showed that ozone had some effect on the crops. Carotene, vitamin C, thiamine, and riboflavin were studied. This survey indicated that ozone did not have a major and generally deleterious impact on crop composition. It indicated some areas where ozone influenced crop composition. 14 references, 5 tables.« less

  18. Ozone Contamination in Aircraft Cabins. Appendix B: Overview papers. Flight 8 planning to avoid high ozone

    NASA Technical Reports Server (NTRS)

    Belmont, A. D.

    1979-01-01

    The problem of preventing cabin ozone from exceeding a given standard was investigated. Statistical analysis of vertical distribution of ozone is summarized. The cost, logistics, maintenance, ability to forecast ozone, and avoiding high ozone concentrations are presented. Filtering approaches and the requirements to remove ozone toxicity are discussed.

  19. Extraordinary Difference in Reactivity of Ozone (OOO) and Sulfur Dioxide (OSO): A Theoretical Study.

    PubMed

    Lan, Yu; Wheeler, Steven E; Houk, K N

    2011-07-12

    Ozone and sulfur dioxide are valence isoelectronic yet show very different reactivity. While ozone is one of the most reactive 1,3-dipoles, SO2 does not react in this way at all. The activation energies of dipolar cycloadditions of sulfur dioxide with either ethylene or acetylene are predicted here by B3LYP, M06-2X, CBS-QB3, and CCSD(T) to be much higher than reactions of ozone. The dipolar cycloaddition of ozone is very exothermic, while that of than sulfur dioxide is endothermic. The prohibitive barriers in the case of SO2 arise from large distortion energies as well as unfavorable interaction energies in the transition states. This arises in part from the HOMO-LUMO gap of sulfur dioxide, which is larger than that of ozone. Valence bond calculations also show that while ozone has a high degree of diradical character, SO2 does not, and is better characterized as a dritterion.

  20. MUCESS-Supported Ozone Studies in Upstate New York and along the Texas Gulf Coast

    NASA Astrophysics Data System (ADS)

    Hromis, A.; Balimuttajjo, M.; Johnson, A.; Wright, J. M.; Idowu, A.; Vieyra, D.; Musselwhite, D.; Morris, P. A.

    2010-12-01

    The Minority University Consortium for Earth and Space Sciences (MUCESS) supports yearly atmospheric science workshops at their respective institutions. The NSF funded program has enabled Universities and colleges that are part of MUCESS, which include Medgar Evers College, City University of NY, University of Houston-Downtown and South Carolina State University, to develop and support atmospheric studies. The goal of the annual workshops is to instruct the students on the basics of atmospheric science and provide them with hands-on experience for preparing and calibrating the instruments for measuring atmospheric parameters. The instruments are subsequently attached to weather balloons. The data is obtained with an ENSCI ECC ozonesonde, which measures ozone concentrations to parts per billion, and an iMET radiosonde, which records temperature, pressure, relative humidity, and GPS altitude and position. In March 2010, Medgar Evers hosted the workshop in Paradox, NY. Students and faculty from the three institutions attended the 3 day workshop. Subsequent to the annual workshop students from the University of Houston-Downtown (UHD) launched a series of four Sunday launches during the summer from the campus. The data from both the workshop and UHD launches was subsequently analyzed to compare ozone profiles within the troposphere and stratosphere. Comparing rural (Paradox, NY) and urban ozone profiles (Houston, Tx) provides an invaluable experience. An excellent example is the March Paradox temperature profiles as the data indicates a mid-tropospheric temperature inversion. Coincident with this inversion, there is a significant rise in ozone concentrations, the source of which is likely of non-local provenance. In contrast, the Houston summer data indicates a different story as ground level ozone is produced by industrial and transportation-related ozone sources levels which vary. Weekend ground level ozone levels on Sunday are usually relatively low because of

  1. Ozone Production and Its Sensitivity to NOx and VOCs: Results from the DISCOVER-AQ Field Experiment, Houston 2013

    NASA Astrophysics Data System (ADS)

    Ren, X.; Mazzuca, G.; Loughner, C.; Estes, M. J.; Crawford, J. H.; Weinheimer, A. J.; Pickering, K. E.; Dickerson, R. R.

    2016-12-01

    An observation-constrained box model based on the Carbon Bond mechanism, Version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA DISCOVER-AQ campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O3). O3 production and its sensitivity to NOx and VOCs were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlation of these results with other parameters, such as radical sources and NOx mixing ratio, was also evaluated. It was generally found that O3 production tends to be more VOC sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O3 in Houston. In the afternoon, O3 production was found to be mainly NOx sensitive with some exceptions. O3 production at near major emissions sources such as Deer Park was mostly VOC sensitive for the entire day, other urban areas near Moody Tower and Channelview were VOC sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx sensitive for the entire day. It was also found that the control of NOx emissions has reduced O3 concentrations over Houston, but led to larger OPE values. The results from this work strengthen our understanding of O3 production; they indicate that controlling NOx emissions will provide air quality benefits over the greater Houston metropolitan area in the long run, but in selected areas controlling VOC emissions will also be

  2. Total Ozone Trends from 1979 to 2016 Derived from Five Merged Observational Datasets - The Emergence into Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Loyola, Diego

    2018-01-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (approximately 1996 globally and approximately 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 percent decade(exp. -1) that are barely statistically significant at the 2 Sigma uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 percent(exp.-1), while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of

  3. A general circulation model study of the climatic effect of observed stratospheric ozone depletion between 1980 and 1990

    NASA Technical Reports Server (NTRS)

    Dudek, Michael P.; Wang, Wei-Chyung; Liang, Xin-Zhong; Li, Zhu

    1994-01-01

    The total ozone mapping spectrometer (TOMS) and stratospheric aerosol and gas experiment (SAGE) measurements show a significant reduction in the stratospheric ozone over the middle and high latitudes of both hemispheres between the years 1979 and 1991 (WMO, 1992). This change in ozone will effect both the solar and longwave radiation with climate implications. However, recent studies (Ramaswamy et al., 1992; WMO, 1992) indicate that the net effect depends not only on latitudes and seasons, but also on the response of the lower stratospheric temperature. In this study we use a general circulation model (GCM) to calculate the climatic effect due to stratospheric ozone depletion and compare the effect with that due to observed increases of trace gases CO2, CH4, N2O, and CFC's for the period 1980-1990. In the simulations, we use the observed changes in ozone derived from the TOMS data. The GCM used is a version of the NCAR community climate model referenced in Wang et al. (1991). For the present study we run the model in perpetual January and perpetual July modes in which the incoming solar radiation and climatological sea surface temperatures are held constant.

  4. NASA Tropospheric Composition Program field campagins as prototypes to advance the Integrated Observing System for Air Quality

    NASA Astrophysics Data System (ADS)

    Lefer, B. L.; Crawford, J. H.; Pierce, R. B.; Berkoff, T.; Swap, R.; Janz, S. J.; Ahn, J.; Al-Saadi, J. A.

    2017-12-01

    With the launch over the virtual constellation of earth observing satellites for atmospheric composition (e.g., TROPOMI, GEMS, TEMPO, and Sentinel-4) over the next several years, we have a unique opportunity to develop an Integrated Observing System (IOS) for air quality in the northern hemisphere. Recently, NASA's Tropospheric Composition Program (TCP) has participated in several different air quality related field campaigns as an effort to explore various prototypes of the IOS for Air Quality. The IOS for air quality could be a system were space-based observations of air quality (generally, column abundances of NO2, HCHO, O3, SO2, and AOD) are given added "value" by being integrated with: a) long-term ground-based observations;b) regional and global air quality and chemical transport models; as well as c) measurements from targeted airborne field campaigns. The recent Korea-US Air Quality Study (KORUS-AQ), the Lake Michigan Ozone Study 2017 (LMOS), and the Ozone Water-Land Environmental Transition Study (OWLETS) field campaigns were held in different locations and made measurements over different scale. However, all of these provide an opportunity to learn about how a future integrated air quality observing system can be implemented to serve a variety of air quality related objectives. NASA TCP is also exploring enchancements to our routine observations to strengthen the IOS for air quality in the future.

  5. Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from Aircraft

    NASA Technical Reports Server (NTRS)

    Situ, Wen; DeYoung, Russel J.

    1998-01-01

    Laser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.

  6. NASA Collaborative Approach Mitigates Environmentally-Driven Obsolescence

    NASA Technical Reports Server (NTRS)

    Greene, Brian; Leeney, Bob; Richards, Joni

    2016-01-01

    National Aeronautics and Space Administration (NASA) missions, like Department of Defense (DoD) organizations, require the rigorous testing and qualification of critical materials. Obsolescence supply risks created by environmental requirements can affect the cost, schedule and performance of NASA missions and the resilience of critical infrastructure. The NASA Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center helps to identify obsolescence supply risks driven by environmental requirements and works proactively with NASA Centers and Programs, the DoD, the European Space Agency (ESA) and other agencies and partners to identify and evaluate environmentally friendly alternatives. TEERM tracks environmental regulations, identifies the potential loss of material availability and works with NASA programs and Centers to evaluate potential impacts through a risk assessment approach. TEERM collaborative projects identify, demonstrate and evaluate commercially viable alternative technologies and materials. A major focus during the Space Shuttle Program was the need to replace ozone depleting substances that were used in spray foam and cleaning applications. The potential obsolescence of coatings containing hexavalent chromium and the risks associated with lead free solder were also of concern for the Space Shuttle and present ongoing risks to new programs such as the Space Launch System. One current project teams NASA and ESA in the evaluation and testing of individual coatings and coating systems as replacements for hexavalent chromium coatings in aerospace applications. The proactive, collaborative approach used by TEERM helps reduce the cost burden on any one team partner, reduces duplication of effort, and enhances the technical quality and overall applicability of the testing and analysis.

  7. Fundamentals of ISCO Using Ozone

    EPA Science Inventory

    In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...

  8. The Two Faces of Ozone.

    ERIC Educational Resources Information Center

    Monastersky, Richard

    1989-01-01

    Provides answers to questions regarding the ozone problem: (1) nature of ozone in the troposphere and stratosphere; (2) possibility of sending the excess ozone at ground level to the stratosphere; (3) possibility of producing pure ozone and carrying it to the stratosphere; and (4) banning chlorofluorocarbons. (YP)

  9. The use of ozone, ozone plus UV radiation, and aerobic microorganisms in the purification of some agro-industrial wastewaters.

    PubMed

    Benitez, F Javier; Acero, Juan L; Gonzalez, Teresa; Garcia, Juan

    2002-08-01

    The oxidation of the pollutant organic matter present in wastewaters generated during different stages in the black table-olive industry was investigated by using ozone alone or combined with UV radiation; by using aerobic microorganisms; and finally, by aerobic degradation of the previously ozonated wastewaters. In the ozonation processes, the removal of substrate (COD) and aromatic compounds, the decreases in BOD5 and pH, and the ozone consumed in the reaction were evaluated. A kinetic study was conducted that led to the evaluation of the stoichiometric ratio for the chemical reaction, as well as the rate constants for the substrate reduction and ozone disappearance. In the single aerobic degradation treatment, the evolution of substrate and biomass was monitored during the process, and a kinetic study was performed by applying the Contois model to the experimental data, giving the specific biokinetic constant, the cell yield coefficient, and the rate constant for the microorganism death phase. Finally, a combined process was performed, consisting in the aerobic degradation of pre-ozonated wastewaters, and the effect of such chemical pretreatment on the substrate removal and kinetic parameters of the later biological stage is discussed.

  10. Tropospheric ozone in east Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadnis, M.J.

    1996-12-31

    An analysis of the observed data for the tropospheric ozone at mid latitudes in east Asia is done. There are three ways by which the tropospheric ozone is calculated, namely: (1) Ozonesonde measurements, (2) Fishman`s method of Residual Ozone and (3) TOMS measurements - an indirect method of calculating tropospheric ozone. In addition the surface ozone values at the network sites in Japan is also considered. The analysis of data is carried out for a period of twelve years from 1979 to 1991. In general it is observed that the tropospheric ozone is more in summer than winter, obviously becausemore » of the larger tropopause height in summer. On an average for the period of the analysis, the ozone values are at a high of about 60 DU (dobson units). While in winter the values go down to around 30 DU. Also a time series analysis shows an increasing trend in the values over the years. The ozonesonde values are correlated more to the TOMS tropospheric ozone values. For the stations analyzed in Japan, the TOMS tropospheric ozone values are generally greater than the ozonesonde values. The analysis of the average monthly surface ozone in Japan shows highs in spring and lows in summer. This can be attributed to movement of pollutant laden fronts towards Japan during spring. The highs for surface ozone are about 50 DU while the lows are around 20 DU.« less

  11. Tropical tropospheric ozone and biomass burning.

    PubMed

    Thompson, A M; Witte, J C; Hudson, R D; Guo, H; Herman, J R; Fujiwara, M

    2001-03-16

    New methods for retrieving tropospheric ozone column depth and absorbing aerosol (smoke and dust) from the Earth Probe-Total Ozone Mapping Spectrometer (EP/TOMS) are used to follow pollution and to determine interannual variability and trends. During intense fires over Indonesia (August to November 1997), ozone plumes, decoupled from the smoke below, extended as far as India. This ozone overlay a regional ozone increase triggered by atmospheric responses to the El Niño and Indian Ocean Dipole. Tropospheric ozone and smoke aerosol measurements from the Nimbus 7 TOMS instrument show El Niño signals but no tropospheric ozone trend in the 1980s. Offsets between smoke and ozone seasonal maxima point to multiple factors determining tropical tropospheric ozone variability.

  12. Problem of photochemical equilibrium of ozone in planetary atmospheres: Ozone distribution in the lower atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Grams, G. W.; SHARDANAND

    1972-01-01

    The inherent errors of applying terrestrial atmospheric ozone distribution studies to the atmosphere of other planets are discussed. Limitations associated with some of the earlier treatments of photochemical equilibrium distributions of ozone in planetary atmospheres are described. A technique having more universal application is presented. Ozone concentration profiles for the Martian atmosphere based on the results of the Mariner 4 radio occultation experiment and the more recent results with Mariner 6 and Mariner 7 have been calculated using this approach.

  13. Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.

    2014-02-01

    The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (P<0.0001). In a nutshell, ozone enhanced the remineralizing potential of nanohydroxyapatite, and laser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.

  14. NASA/USRA high altitude research aircraft. Gryphon: Soar like an eagle with the roar of a lion

    NASA Technical Reports Server (NTRS)

    Rivera, Jose; Nunes, Anne; Mcray, Mike; Wong, Walter; Ong, Audrey; Coble, Scott

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet. This is beyond the capabilities of the ER-2, which is NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozoned layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  15. Ozone layer depletion simulation in an Environmental Chemistry course.

    NASA Astrophysics Data System (ADS)

    Cano, G. S.; Gavilán, I. C.; Garcia-Reynoso, J. A.; Santos, E.; Mendoza, A.; Perea, B.

    2015-12-01

    The reactions taking place between the ozone (O3) and various compounds present in the stratosphere has been studied extensively. When the balance between these reactions breakdown, destruction of ozone is favored. Here we create an experiment for and Environmental Chemistry laboratory course where students evaluate the ozone behavior by comparing its reactivity to various physical and chemical conditions; and observe the destruction of ozone by the action of halogenated compounds by means of volumetric technic. The conditions used are: (1) Ozone vs. Time; (2) Ozone + UV vs. Time; (3) Ozone + halogenated compound vs. Time; and (4) Ozone + UV + halogenated compound vs. Time. The results show that the O3 breaks down rapidly within about 25 min (Fig). They also explain the chemical reactions that occur in the destruction and generation of the ozone layer and demonstrate ozone depletion through the presence of halogenated compounds. The aim of this work is to bring the knowledge gained from theory into practice and thus the possibility of developing a critical attitude towards various environmental problems that arise today.

  16. Is Ozone Going Up Now?

    NASA Astrophysics Data System (ADS)

    Steinbrecht, W.; Froidevaux, L.; Davis, S. M.; Degenstein, D. A.; Wild, J.; Roth, C.; Kaempfer, N.; Leblanc, T.; Godin-Beekmann, S.; Vigouroux, C.; Swart, D. P. J.; Querel, R.; Harris, N.; Nedoluha, G. E.

    2016-12-01

    The last WMO ozone assessment (WMO, 2014) concluded that observations show significant ozone increase, 3% per decade (±2% per decade, 2σ), in the upper stratosphere since 2000. At other levels, or for total ozone, increases were not found or not significant. Overall, this is consistent with expectations from model simulations, (e.g. CCMVal2, Eyring et al., 2010). These simulations indicate that declining chlorine levels and stratospheric cooling due to CO2 increase should contribute roughly equal parts to ozone increase in the upper stratosphere. Shortly after the assessment, results from the SI2N initiative (Harris et al., 2015) confirmed increasing ozone in the upper stratosphere. However, the SI2N results indicated smaller increases (+1.5% per decade) than the WMO assessment, and substantially larger uncertainties (±5% per decade, 2σ). Differences can be attributed to time period, 1998 to 2012, compared to 2000 to 2013/14 for the assessment, and to larger assumed instrumental drift uncertainties, 6% per decade, (only 1 to 2% per decade in WMO 2014, see also Hubert et al., 2016). Here, we explore how additional ground-based and satellite data since 2013, as well as new and improved records, affect ozone trends and uncertainties. The focus will be on ozone in the upper stratosphere, because this is the region where the earliest signs of beginning ozone recovery are expected. ReferencesEyring, V., et al.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010. Harris, N. R. P., et al.: Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015, 2015. Hubert, D., et al.: Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, doi:10.5194/amt-9

  17. [Ru/AC catalyzed ozonation of recalcitrant organic compounds].

    PubMed

    Wang, Jian-Bing; Hou, Shao-Pei; Zhou, Yun-Rui; Zhu, Wan-Peng; He, Xu-Wen

    2009-09-15

    Ozonation and Ru/AC catalyzed ozonation of dimethyl phthalate (DMP), phenols and disinfection by-products precursors were studied. It shows that Ru/AC catalyst can obviously enhance the mineralization of organic compounds. In the degradation of DMP, TOC removal was 28.84% by ozonation alone while it was 66.13% by catalytic ozonation. In the oxidation of 23 kinds of phenols, TOC removals were 9.57%-56.08% by ozonation alone while they were 41.81%-82.32% by catalytic ozonation. Compared to ozonation alone, Ru/AC catalyzed ozonation was more effective for the reduction of disinfection by-products formation potentials in source water. The reduction of haloacetic acids formation potentials was more obvious than thichlomethane formation potentials. After the treatment by catalytic ozonation, the haloacetic acids formation potentials decreased from 144.02 microg/L to 58.50 microg/L, which was below the standard value of EPA. However ozonation alone could not make it reach the standard. The treatments of source water by BAC, O3 + BAC, O3/AC + BAC and Ru/AC + O3 + BAC were also studied. In the four processes, TOC removal was 3.80%, 20.14%, 27.45% and 48.30% respectively, COD removal was 4.37%, 27.22%, 39.91% and 50.00% respectively, UV254 removal was 8.16%, 62.24%, 67.03% and 84.95% respectively. Ru/AC + O3 + BAC process is more effective than the other processes for the removal of TOC, COD and UV254 and no ruthenium leaching observed in the solution. It is a promising process for the treatment of micro polluted source water.

  18. Noninvasive determination of respiratory ozone absorption: development of a fast-responding ozone analyzer.

    PubMed

    Ultman, J S; Ben-Jebria, A

    1991-03-01

    We developed a chemiluminescent ozone analyzer and constructed an ozone bolus generator with the eventual goal of using a bolus-response method to measure noninvasively the longitudinal distribution of ozone absorption in human lungs. Because the analyzer will be used to sample gases within a single breath, it must have a sufficiently rapid response to monitor changes in ozone concentration during a four-second breathing period, yet its sampling flow must be small enough that it does not interfere with quiet respiratory flows of 300 mL/sec. Our analyzer, which is based on the chemiluminescent reaction between 2-methyl-2-butene and ozone, has favorable performance characteristics: a 90 percent step-response time of 110 msec; a linear calibration from 0.03 to 10 parts per million (ppm)2 with a sensitivity of 2.3 nA/ppm; a signal-to-noise ratio of 30 evaluated at 0.5 ppm; and a minimum detection limit of 0.017 ppm. At an airflow corresponding to quiet breathing, the ozone generator is capable of producing single boluses with a peak ozone fraction as high as 4 ppm, but containing only 0.35 micrograms of ozone dispersed over a small volume of 19 mL. To test the combination of ozone analyzer and bolus generator, we performed bolus-response experiments at steady airflows of 50 to 200 mL/sec in excised pig and sheep tracheas. In spite of the small surface area available for radial diffusion, we found that 25 to 50 percent of the ozone introduced into the trachea was absorbed. By comparing the mathematical moments of the bolus input and the response curves to the predictions of a diffusion theory, we computed an absorption coefficient (K). The values of K increased with increasing airflow, implying that ozone absorption is limited by diffusion processes in the airway lumen as well as in the surrounding tissue.

  19. A kinetic study of enhancing effect by phenolic compounds on the hydroxyl radical generation during ozonation.

    PubMed

    Han, Y H; Ichikawa, K; Utsumi, H

    2004-01-01

    Ozone decomposition in aqueous solution proceeds through a radical type chain mechanism. These reactions involve the very reactive and catalytic intermediates O2- radical, OH radical, HO2 radical, OH-, H2O2, etc. OH radical is proposed as an important factor in the ozonation of water among them. In the present study, the enhancing effects of several phenolic compounds; phenol, 2-, 3-, 4-monochloro, 2,4-dichloro, 2,4,6-trichlorophenol on OH radical generation were mathematically evaluated using the electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocities of DMPO-OH generation in ozonated water containing phenolic compounds were quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus, which was controlled by homemade software. The initial velocities of DMPO-OH generation increased as a function of the ozone concentration. The relation among ozone concentration, amount of phenolic compounds and the initial velocity (v0) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, v0 (10(-6) M/s) = (A' x [PhOHs (10(-9) M)] + 0.0005) exp (60 x [ozone (10(-9) M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.98.

  20. Up in the Air: Methane and Ozone over California

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.

    2014-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) at NASA Ames Research Center measures in-situ carbon dioxide, methane, and ozone concentrations in the Earth's atmosphere several times each month. The AJAX team studies local photochemical smog production, provides data for long-term studies of trans-Pacific transport of pollution, and supports the observation of greenhouse gases from satellites. The aircraft is stationed at Moffett Field and is outfitted with scientific instruments to measure trace gas concentrations and 3-D wind speeds. Vertical profiles from near the surface up to approximately 27,000 ft are routinely collected over locations such as: Merced, Edwards Air Force Base, Railroad Valley, NV, and over the Pacific Ocean. In addition, boundary layer measurements scout for surface sources such as fires, oil gas infrastructure, livestock, and urban pollution. This talk will focus on recent observations over dairy operations, fossil fuel infrastructure, and wildfires.

  1. Passive ozone network of Dallas: a modeling opportunity with community involvement. 2.

    PubMed

    Sather, M E; Varns, J L; Mulik, J D; Glen, G; Smith, L; Stallings, C

    2001-11-15

    Attaining the current lower tropospheric U.S. ozone standards continues to be a difficult task for many areas in the U.S. Concentrations of ozone above the standards negatively affects human health, agricultural crops, forests, and other ecosystem elements. This paper describes year two (1999) of a regional networking of passive and continuous ozone monitoring sites in the Dallas-Fort Worth (DFW) Metroplex region. The objectives of the second year of study were to (1) validate conclusions of the 1998 Passive Ozone Network of Dallas (POND) I study, (2) define the value of taking 12-h diurnal samples in addition to 24-h samples, and (3) add to the scientific knowledge base of rural/urban ozone comparison studies. Results of the POND II (1999) study demonstrated that ozone concentrations exceeding the new 8-h ozone standard could be recorded at least 130 km, or 80 miles, from the DFW Metroplex core in more rural areas. In addition, results of the POND II study indicated that ozone concentrations exceeding the 8-h standard probably occurred in areas recording a 12-h daytime ozone concentration above 60 parts per billion (ppb). The 12-h passive ozone data from POND II also suggests the relative magnitude of anthropogenic pollution influence could be assessed for rural passive ozone sites. The data from the POND II study provide modelers a rich database for future photochemical subgrid development for the DFW ozone nonattainment area. Indeed, the POND database provides a great amount of additional ozone ambient data covering 26 8-h and 13 1-h ozone standard exceedance days over an approximate 25000 km2 region. These data should help decrease uncertainties derived from future DFW ozone model exercises.

  2. Using Ozone Lidar to Investigate Sources of High Ozone Concentrations in the Western United States

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Alvarez, R. J.; Brewer, Wm. A.; Banta, R. M.; Marchbanks, R. D.; Sandberg, S. P.; Weickmann, A. M.; Holloway, J. S.; Williams, E. J.

    2016-06-01

    We have used NOAA's Tunable Optical Profiler for Aerosol and oZone (TOPAZ) ozone lidar to investigate the sources of high surface ozone concentrations in two different regions of the western United States (US): the Uintah Basin in northeast Utah and Clark County in southern Nevada, which includes the city of Las Vegas. The Uintah Basin is a booming oil and gas producing region that often suffers from very high wintertime ozone concentrations. Clark County experiences violations of the US ozone standard primarily in spring and early summer despite a lack of any major local pollution sources. TOPAZ lidar observations, in conjunction with surface in situ measurements and model results, provided strong evidence that the high wintertime ozone concentrations in the Uintah Basin are primarily driven by local emissions associated with oil and gas exploration, whereas the Clark County ozone exceedances are often caused by ozone-rich air that is transported from the lower stratosphere all the way down to the earth's surface.

  3. Gas-phase chemiluminescent reactions of ozone with monoterpenes

    NASA Astrophysics Data System (ADS)

    Arora, P. K.; Chatha, J. P. S.; Vohra, K. G.

    1983-08-01

    Chemiluminescent reactions of ozone with monoterpenes such as linallol, geraniol, d-limonene and α-pinene have been studied in the gas phase at low pressures. Methylglyoxal phosphorescence has been observed in the first two reactions. Emissions from HCHO( 1A 2) and glyoxal ( 3A u) are observed in the reaction of ozone with d-limonene and formation of excited glyoxal is found to be first order in ozone. The reaction of ozone with β-pinene gives rise to emission from a α-dicarbonyl compound and this is found to be first order in ozone. The mechanisms for the formation of excited species are proposed.

  4. The QBO and interannual variation in total ozone

    NASA Technical Reports Server (NTRS)

    Lait, Leslie R.; Schoeberl, Mark R.; Newman, Paul A.; Stolarski, Richard S.

    1988-01-01

    Garcia and Soloman (1987) have noted that the October monthly mean minimum total ozone amounts south of 30 S were modulated by a quasibiennial oscillation (QBO) signal. The precise mechanism behind this effect, however, is unclear. Is the modulation brought about by the circulation-produced QBO signal in the ozone concentration itself, or does the temperature QBO modulate the formation of polar stratospheric clouds (PSCs), leading to changes in the chemically induced Antarctic spring ozone decline rate. Or is some other phenomenon involved. To investigate the means through which the QBO effect occurs, a series of correlation studies has been made between polar ozone and QBO signal in ozone and temperature.

  5. Sensitivity studies and a simple ozone perturbation experiment with a truncated two-dimensional model of the stratosphere

    NASA Technical Reports Server (NTRS)

    Stordal, Frode; Garcia, Rolando R.

    1987-01-01

    The 1-1/2-D model of Holton (1986), which is actually a highly truncated two-dimensional model, describes latitudinal variations of tracer mixing ratios in terms of their projections onto second-order Legendre polynomials. The present study extends the work of Holton by including tracers with photochemical production in the stratosphere (O3 and NOy). It also includes latitudinal variations in the photochemical sources and sinks, improving slightly the calculated global mean profiles for the long-lived tracers studied by Holton and improving substantially the latitudinal behavior of ozone. Sensitivity tests of the dynamical parameters in the model are performed, showing that the response of the model to changes in vertical residual meridional winds and horizontal diffusion coefficients is similar to that of a full two-dimensional model. A simple ozone perturbation experiment shows the model's ability to reproduce large-scale latitudinal variations in total ozone column depletions as well as ozone changes in the chemically controlled upper stratosphere.

  6. Influence of Mountains on Arctic Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Whiteway, J. A.; Seabrook, J.

    2015-12-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.

  7. Observing Tropospheric Ozone From Space

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  8. Comparison of SBUV and SAGE II ozone profiles: Implications for ozone trends

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.; Miles, T.; Flynn, L. E.; Wellemeyer, C. G.; Zawodny, J. M.

    1994-01-01

    Solar backscattered ultraviolet (SBUV) ozone profiles have been compared with Stratospheric Aerosol and Gas Experiment (SAGE) II profiles over the period October 1984 through June 1990, when data are available from both instruments. SBUV measurements were selected to closely match the SAGE II latitude/longitude measurement pattern. There are significant differences between the SAGE II sunrise and the sunset zonal mean ozone profiles in the equatorial zone, particularly in the upper stratosphere, that may be connected with extreme SAGE II solar azimuth angles for tropical sunrise measurements. Calculation of the average sunset bias between SBUV and SAGE II ozone profiles shows that allowing for diurnal variation in Umkehr layer 10, SBUV and SAGE II agree to within +/- 5% for the entire stratosphere in the northern midlatitude zone. The worst agreement is seen at southern midlatitudes near the ozone peak (disagreements of +/- 10%), apparently the result of the SBUV ozone profile peaking at a lower altitude than SAGE. The integrated ozone columns (cumulative above 15 km) agree very well, to within +/- 2.3% in all zones for both sunset and sunrise measurements. A comparison of the time dependence of SBUV and SAGE II shows that there was less than +/- 5% relative drift over the 5.5 years for all altitudes except below 25 km, where the SBUV vertical resolution is poor. The best agreement with SAGE is seen in the integrated column ozone (cumulative above 15 km), where SAGE II has a 1% negative trend relative to SBUV over the comparison period. There is a persistent disagreement of the two instruments in Umkehr layers 9 and 10 of +/- 4% over the 5.5-year comparison period. In the equatorial zone this disagreement may be caused in part by a large positive trend (0.8 K per year) in the National Meteorologica Center temperatures used to convert the SAGE II measurement of ozone density versus altitude to a pressure scale for comparison with SBUV. In the middle stratosphere (30

  9. The Nevada Rural Ozone Initiative: Field measurements of surface ozone in rural settings

    NASA Astrophysics Data System (ADS)

    Fine, R.; Gustin, M. S.; Weiss-Penzias, P. S.; Jaffe, D. A.; Peterson, C.

    2011-12-01

    The Nevada Rural Ozone Initiative (NVROI) focuses on measuring ozone and other parameters at rural sites across Nevada. The project was prompted by observations of elevated ozone concentrations at Great Basin National Park (GBNP), a remote location at the eastern boundary of the state. Past CASTNET data collected at GBNP demonstrated that the area will be out of attainment if the new ozone NAAQS are established at any values between 60 and 70 ppb. To examine the ozone sources we have augmented the CASTNET data at GBNP with measurements at additional sites. NVROI field sites are situated between 1390 and 2080 meters above sea level along transects consistent with the prevailing wind directions across the state. Data collection began in July 2011. Measurements indicate significant variability in the diel pattern of ozone concentrations between field sites suggesting that site specific physicochemical characteristics, free tropospheric inputs, and regional transport of air pollutants all influence observed values at these background sites. Ancillary gas, particulate matter, and meteorological parameters will be coupled with trajectory analyses to investigate the influence of local, regional, and long range sources on background ozone concentrations.

  10. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2012-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".

  11. Modeling the Effects of Temperature on Ozone-Related Mortality

    EPA Science Inventory

    Studies show ozone and temperature are associated with increased mortality; however, the joint effects are not well characterized. Understanding this relationship is important for estimating the potential effects of climate change on ozone-related mortality. We extend the ozone r...

  12. Effects of ozone therapy on facial nerve regeneration.

    PubMed

    Ozbay, Isa; Ital, Ilker; Kucur, Cuneyt; Akcılar, Raziye; Deger, Aysenur; Aktas, Savas; Oghan, Fatih

    Ozone may promote moderate oxidative stress, which increases antioxidant endogenous systems. There are a number of antioxidants that have been investigated therapeutically for improving peripheral nerve regeneration. However, no previous studies have reported the effect of ozone therapy on facial nerve regeneration. We aimed to evaluate the effect of ozone therapy on facial nerve regeneration. Fourteen Wistar albino rats were randomly divided into two groups with experimental nerve crush injuries: a control group, which received saline treatment post-crush, and an experimental group, which received ozone treatment. All animals underwent surgery in which the left facial nerve was exposed and crushed. Treatment with saline or ozone began on the day of the nerve crush. Left facial nerve stimulation thresholds were measured before crush, immediately after crush, and after 30 days. After measuring nerve stimulation thresholds at 30 days post-injury, the crushed facial nerve was excised. All specimens were studied using light and electron microscopy. Post-crushing, the ozone-treated group had lower stimulation thresholds than the saline group. Although this did not achieve statistical significance, it is indicative of greater functional improvement in the ozone group. Significant differences were found in vascular congestion, macrovacuolization, and myelin thickness between the ozone and control groups. Significant differences were also found in axonal degeneration and myelin ultrastructure between the two groups. We found that ozone therapy exerted beneficial effect on the regeneration of crushed facial nerves in rats. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. A Long Data Record (1979-2003) of Stratospheric Ozone Derived from TOMS Cloud Slicing: Comparison with SAGE and Implications for Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerry R.; Chandra, Sushil; Bhartia, Pawan K.

    2004-01-01

    It is generally recognized that Stratospheric Aerosols and Gas Experiment (SAGE) stratospheric ozone data have become a standard long-record reference field for comparison with other stratospheric ozone measurements. This study demonstrates that stratospheric column ozone (SCO) derived from total ozone mapping spectrometer (TOMS) Cloud Slicing may be used to supplement SAGE data as a stand-alone long- record reference field in the tropics extending to middle and high latitudes over the Pacific. Comparisons of SAGE I1 version 6.2 SCO and TOMS version 8 Cloud Slicing SCO for 1984-2003 exhibit remarkable agreement in monthly ensemble means to within 1-3 DU (1 - 1.5% of SCO) despite being independently-calibrated measurements. An important component of our study is to incorporate these column ozone measurements to investigate long-term trends for the period 1979-2003. Our study includes Solar Backscatter Ultraviolet (SBW) version 8 measurements of upper stratospheric column ozone (i.e., zero to 32 hPa column ozone) to characterize seasonal cycles and seasonal trends in this region, as well as the lower stratosphere and troposphere when combined with TOMS SCO and total column ozone. The trend analyses suggest that most ozone reduction in the atmosphere since 1979 in mid-to-high latitudes has occurred in the Lower stratosphere below approx. 25 km. The delineation of upper and lower stratospheric column ozone indicate that trends in the upper stratosphere during the latter half of the 1979-2003 period have reduced to near zero globally, while trends in the lower stratosphere have become larger by approx. 5 DU decade%om the tropics extending to mid-latitudes in both hemispheres. For TCO, the trend analyses suggest moderate increases over the 25-year time record in the extra-tropics of both hemispheres of around 4-6 DU (Northern Hemisphere) and 6-8 DU (Southern Hemisphere).

  14. Global 3-D Modeling Studies Of Tropospheric Ozone And Related Gases

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Logan, Jennifer A.

    2003-01-01

    Our research was targeted at three issues: (1) the factors controlling ozone in the tropical troposphere, (2) the Asian outflow of ozone and its precursors, and (3) the causes of decadal trends observed in ozone and CO. We have also used support from this ACMAP grant to (1) work with Kelly Chance on the retrieval and interpretation of HCHO and NO2 observations from GOME, and (2) develop GEOS-CHEM into a versatile model supporting the work of a large number of users including outside Harvard. ACMAP has provided the core support for GEOS-CHEM development. Applications of the GEOS-CHEM model with primary support from ACMAP are discussed below. A list of publications resulting from this grant is given at the end of the report.

  15. The changing oxidizing environment in London - trends in ozone precursors and their contribution to ozone production

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Vieno, M.; Monks, P. S.

    2014-01-01

    Ground-level ozone is recognized to be a threat to human health (WHO, 2003), have a deleterious impact on vegetation (Fowler et al., 2009), is also an important greenhouse gas (IPCC, 2007) and key to the oxidative ability of the atmosphere (Monks et al., 2009). Owing to its harmful effect on health, much policy and mitigation effort has been put into reducing its precursors - the nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOCs). The non-linear chemistry of tropospheric ozone formation, dependent mainly on NOx and NMVOC concentrations in the atmosphere, makes controlling tropospheric ozone complex. Furthermore, the concentration of ozone at any given point is a complex superimposition of in-situ produced or destroyed ozone and transported ozone on the regional and hemispheric-scale. In order to effectively address ozone, a more detailed understanding of its origins is needed. Here we show that roughly half (5 μg m-3) of the observed increase in urban (London) ozone (10 μg m-3) in the UK from 1998 to 2008 is owing to factors of local origin, in particular, the change in NO : NO2 ratio, NMVOC : NOx balance, NMVOC speciation, and emission reductions (including NOx titration). In areas with previously higher large concentrations of nitrogen oxides, ozone that was previously suppressed by high concentrations of NO has now been "unmasked", as in London and other urban areas of the UK. The remaining half (approximately 5 μg m-3) of the observed ozone increase is attributed to non-local factors such as long-term transport of ozone, changes in background ozone, and meteorological variability. These results show that a two-pronged approach, local action and regional-to-hemispheric cooperation, is needed to reduce ozone and thereby population exposure, which is especially important for urban ozone.

  16. Development of a Climate Record of Tropospheric and Stratospheric Column Ozone from Satellite Remote Sensing: Evidence of an Early Recovery of Global Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil

    2012-01-01

    Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979-2010) long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30- 40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  17. Generation and delivery device for ozone gas and ozone dissolved in water

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2004-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  18. Observed ozone exceedances in Italy: statistical analysis and modelling in the period 2002-2015

    NASA Astrophysics Data System (ADS)

    Falasca, Serena; Curci, Gabriele; Candeloro, Luca; Conte, Annamaria; Ippoliti, Carla

    2017-04-01

    Local ambient air quality is strongly influenced by anthropogenic emissions and meteorological conditions. The year 2015 is considered by NASA scientists as one of the hottest at the global scale since 1880. Furthermore, in Europe it was the first summer after the introduction of Euro6 regulation, the latest emission standard for passenger vehicles. The goal of this study is twofold: (1) the investigation of the impact of the heat wave occurred in the summer of 2015 on ozone levels and (2) the exploration of the weight of temperature as driver of high-level ozone events with respect to other variables. We performed a quantitative examination of the ozone seasons (May-September) for the period 2002-2015 using ozone concentration and weather data from 24 stations across Italy. The number of exceedances of limit values set by the European directive was calculated for each year, and compared with the trend of ozone concentration and temperature. Furthermore, the data were grouped in clusters of consecutive days of ozone exceedances in order to characterize the duration and the intensity of high ozone events. Finally, we developed a multivariate logistic regression model to investigate the role of a set of independent variables (meteorological, and temporal variables, altitude, number of inhabitants, vehicle emission standard) on the probability of exceedances. Results show that 2015 is one of the hottest years after 2003. During the period 2002-2015, the average number of exceedances per station of the daily maximum 8-hour average is often higher than the limit established by the European directive (25 per year). The highest number of exceedances was 65 per station, reached in 2003. The Po Valley is confirmed as a hot spot for pollution, with more frequent exceedances and a higher sensitivity to temperature, especially at urban sites. Ozone events in 2015 were fewer than recent years, but of longer duration (on average 4 days against 3 days), and with similar mean

  19. Formation of Ozonic Compound and Used as Therapeutic Agent in Medicine

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Ye, Chunyong; Min, Xinmin

    2018-03-01

    It has some encouraging results to use ozone in medicine. However, as ozone is usually in gas state, unstable and strong oxidability, it is difficult to be stored and used commonly. Ozone, ethylene, acrylic acid and the ozonic compounds were calculated to study the interaction between ozone and carrier material to form ozonide. The stability of the ozonide, or the bond strength between ozone and ions of carrier are controlled felicitously to release ozone from the ozonide with proper velocity. Ozone antimicrobial has been composed on the above principle. It can be used conveniently, especially for common families. There are some characteristics of ozone antimicrobial or ozone, such as universal applicability, efficiency and rapidity, security, strong penetrability, no drug resistance and sterilization and treatment simultaneity.

  20. An Overview of NASA Automotive Component Reliability Studies

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using US Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Councils AECQ standardization program, the second part provides a summary of the results of NASAs procurement and testing experiences and other lessons learned along with preliminary test results.

  1. An Overview Of NASA Automotive Component Reliability Studies

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using US Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Councils AECQ standardization program, the second part provides a summary of the results of NASAs procurement and testing experiences and other lessons learned along with preliminary test results.

  2. The NASA L3 Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    The Astrophysics Implementation Plan calls for a minority role in L3, planned for launch in 2034. L3 The third large mission in ESAs Cosmic Visions 2015-2025 Programme NASA and ESA have been discussing a collaboration for 2 years Gravitational Observatory Advisory Team (GOAT) ESA study evaluating and recommend scientific performance tradeoffs, detection technologies, technology development activities, data analysis capabilities, schedule and cost US representatives: Guido Mueller, Mark Kasevich, Bill Klipstein, RTS Started in October 2014, concluding with a final report in late Marchor early April 2016. ESA solicited interest from ESA Member States in November 2015 NASA is continuing technology development support. ESA is restarting technology development activities.

  3. Development and Application of Hyperspectral Infrared Ozone Retrieval Products for Operational Meteorology

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2015-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  4. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  5. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER( box model for an idealized parcel in the lower stratosphere at 70 N during winter/spring with different assumed stratospheric coolings and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  6. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K Cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  7. Camx Ozone Source Attribution in the Eastern United States Using Guidance from Observations During DISCOVER-AQ Maryland

    NASA Technical Reports Server (NTRS)

    Goldberg, Daniel L.; Vinciguerra, Timothy P.; Anderson, Daniel C.; Hembeck, Linda; Canty, Timothy P.; Ehrman, Sheryl H.; Martins, Douglas K.; Stauffer, Ryan M.; Thompson, Anne M.; Salawitch, Ross J.; hide

    2016-01-01

    A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Maryland field campaign. Comparisons for the baseline simulation (Carbon Bond 2005 (CB05) chemistry, Environmental Protection Agency 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (Carbon Bond 6 Revision 2 chemistry (CB6r2), Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 biogenic emissions, 50% reduction in mobile NOx, enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NOx limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NOx reductions as well as the current contribution of EGUs to surface ozone.

  8. Study of Ozone Layer Variability near St. Petersburg on the Basis of SBUV Satellite Measurements and Numerical Simulation (2000-2014)

    NASA Astrophysics Data System (ADS)

    Virolainen, Y. A.; Timofeyev, Y. M.; Smyshlyaev, S. P.; Motsakov, M. A.; Kirner, O.

    2017-12-01

    A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0-25 and 25-60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0-25 and 25-60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (-2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study.

  9. Biomarkers of Oxidative Stress Study V: Ozone exposure of rats and its effect on lipids, proteins and DNA in plasma and urine

    PubMed Central

    Kadiiska, Maria B.; Basu, Samar; Brot, Nathan; Cooper, Christopher; Csallany, A. Saari; Davies, Michael J.; George, Magdalene M.; Murray, Dennis M.; Roberts, L. Jackson; Shigenaga, Mark K.; Sohal, Rajindar S.; Stocker, Roland; Van Thiel, David H.; Wiswedel, Ingrid; Hatch, Gary E.; Mason, Ronald P.

    2014-01-01

    Ozone exposure effect on free radical-catalyzed oxidation products of lipids, proteins and DNA in the plasma and urine of rats was studied as a continuation of the international Biomarker of Oxidative Stress Study (BOSS) sponsored by NIEHS/NIH. The goal was to identify a biomarker for ozone-induced oxidative stress and to assess whether inconsistent results often reported in the literature might be due to the limitations of the available methods for measuring the various types of oxidative products. The time and dose-dependent effects of ozone exposure on rat plasma lipid hydroperoxides, malondialdehyde, F2-isoprostanes, protein carbonyls, methionine oxidation, tyrosine- and phenylalanine oxidation products, as well as urinary malondialdehyde and F2-isoprostanes were investigated with various techniques. The criterion used to recognize a marker in the model of ozone exposure was that a significant effect could be identified and measured in a biological fluid seen at both doses at more than one time point. No statistically significant differences between the experimental and control groups at either ozone dose and time point studied could be identified in this study. Tissue samples were not included. Despite all the work accomplished in the BOSS study of ozone, no available product of oxidation in biological fluid has yet met the required criteria of being a biomarker. The current negative findings as a consequence of ozone exposure are of great importance, because they document that in complex systems, as the present in vivo experiment, the assays used may not provide meaningful data of ozone oxidation, especially in human studies. PMID:23608465

  10. Tropospheric Ozone Lidar Network (TOLNet) Observations of Processes Controlling Spatio-Temporal Tropospheric-Ozone Distributions

    NASA Astrophysics Data System (ADS)

    Newchurch, M.; Johnson, M. S.; Leblanc, T.; Langford, A. O.; Senff, C. J.; Kuang, S.; Strawbridge, K. B.; McGee, T. J.; Berkoff, T.; Chen, G.

    2017-12-01

    The Tropospheric Ozone Lidar Network, TOLNet, has matured into a credible scientific group of six ozone lidars that are capable of accurate, high-spatio-temporal-resolution measurement of tropospheric ozone structures and morphology These lidars have demonstrated their 10% accuracy in several intercomparison campaigns and have participated in several scientific investigations both in small and large instrumentation groups. They have investigated many scientific phenomena including stratosphere-to-troposphere exchange, boundary-layer development, the interaction between the boundary layer and the free troposphere, Front-range-ozone morphology, urban outflow, land/sea interactions, et al. These processes determine the ozone distribution affecting large portions of the population. The TOLNet group is now making significant contributions to the innovation of ozone lidar instrumentation and retrieval techniques. The campaigns proposed over the next few years build on demonstrated capability to address more difficult scientific issues, especially the ozone production potential and distribution from wildfires and prescribed burns. Through scientific cooperation with other ground-based profiling instrumentation, TOLNet is also contributing to the validation of the new measurement capabilities of TEMPO.

  11. Ozone Treatment For Cooling Towers

    NASA Technical Reports Server (NTRS)

    Blackwelder, Rick; Baldwin, Leroy V.; Feeney, Ellen S.

    1990-01-01

    Report presents results of study of cooling tower in which water treated with ozone instead of usual chemical agents. Bacteria and scale reduced without pollution and at low cost. Operating and maintenance costs with treatment about 30 percent of those of treatment by other chemicals. Corrosion rates no greater than with other chemicals. Advantage of ozone, even though poisonous, quickly detected by smell in very low concentrations.

  12. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-04

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.

  13. Effect of Ventilation Strategies on Residential Ozone Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain S.; Sherman, Max H.

    Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-­exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less

  14. 21 CFR 173.368 - Ozone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ozone. 173.368 Section 173.368 Food and Drugs FOOD... Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and... specifications for ozone in the Food Chemicals Codex, 4th ed. (1996), p. 277, which is incorporated by reference...

  15. 21 CFR 173.368 - Ozone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ozone. 173.368 Section 173.368 Food and Drugs FOOD... Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and... specifications for ozone in the Food Chemicals Codex, 4th ed. (1996), p. 277, which is incorporated by reference...

  16. 21 CFR 184.1563 - Ozone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ozone. 184.1563 Section 184.1563 Food and Drugs....1563 Ozone. (a) Ozone (O3, CAS Reg. No. 10028-15-6) is an unstable blue gas with a pungent... maximum residual level at the time of bottling of 0.4 milligram of ozone per liter of bottled water...

  17. 21 CFR 173.368 - Ozone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ozone. 173.368 Section 173.368 Food and Drugs FOOD... ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.368 Ozone. Ozone (CAS Reg... defined in § 170.3(o)(2) of this chapter. (c) The additive meets the specifications for ozone in the Food...

  18. 21 CFR 173.368 - Ozone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ozone. 173.368 Section 173.368 Food and Drugs FOOD... Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and... specifications for ozone in the Food Chemicals Codex, 4th ed. (1996), p. 277, which is incorporated by reference...

  19. 21 CFR 173.368 - Ozone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ozone. 173.368 Section 173.368 Food and Drugs FOOD... Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and... specifications for ozone in the Food Chemicals Codex, 4th ed. (1996), p. 277, which is incorporated by reference...

  20. Biomarkers of Oxidative Stress Study IV. Are Antioxidants Markers of Ozone Exposure?

    EPA Science Inventory

    To determine whether the oxidative effects of ozone would result in losses of antioxidants from plasma, and possibly bronchoalveolar lavage fluid (BALF). This research is part of a comprehensive, multilaboratory validation study searching for noninvasive biomarkers of oxidative ...